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In this paper, we review several results from singularly perturbed differential equations with
multiple small parameters. In addition, we develop a general conceptual framework to compare
and contrast the different results by proposing a three-step process. First, one specifies the setting
and restrictions of the differential equation problem to be studied and identifies the relevant small
parameters. Second, one defines a notion of equivalence via a property/observable for partitioning
the parameter space into suitable regions near the singular limit. Third, one studies the possible
asymptotic singular limit problems as well as perturbation results to complete the diagrammatic
subdivision process. We illustrate this approach for two simple problems from algebra and analysis.
Then we proceed to the review of several modern double-limit problems including multiple time
scales, stochastic dynamics, spatial patterns, and network coupling. For each example, we illustrate
the previously mentioned three-step process and show that already double-limit parametric diagrams
provide an excellent unifying theme. After this review, we compare and contrast the common
features among the different examples. We conclude with a brief outlook, how our methodology can
help to systematize the field better, and how it can be transferred to a wide variety of other classes
of differential equations.

1. INTRODUCTION

Effectively all problems arising from science and en-
gineering are studied by only considering a suitably re-
duced model of reality. In particular, we would often like
to reduce differential equations by assuming that certain
physical effects or external influences do not play a major
role for the scientific question of interest. Yet, this implic-
itly supposes we can also show that the terms we do ne-
glect are in some sense “small” so that they do not change
the answers to the relevant scientific questions. There is
a vast number of differential equations where direct ap-
proaches to remove small parameters fail and non-trivial
correction terms appear when perturbing away from the
limit. These differential equations are often called singu-
larly perturbed. A single generally accepted definition of
“singularly perturbed” does not exist as some definitions
are too narrow, others are too broad. Here, we adopt
a pragmatic approach and define a singularly-perturbed
differential equation as one where taking the small pa-
rameter to zero yields a differential equation within a dif-
ferent structural class. Doubly-singular differential equa-
tions are then those, where two small parameters lead
each in the singular limit to a different structural prob-

lem class. From a practical viewpoint, the first step is
to identify the origins of small parameters which con-
trol the strength of the terms we want to neglect. Some
typical examples appearing in the context of differential
equations are:

• Time Scale Separation: Two, or more, sets of vari-
ables evolve at different rates.

• Noise Level: Finite-size effects or external forces
are modeled via noise.

• Spatial Scale Separation: Two, or more, sets of vari-
ables have differing spatial scales.

• Network Coupling: Operating a system within a
network leads to new coupling dependencies.

In this paper, we are going to focus on these areas to
illustrate the types of results one can obtain for (multiple)
small parameters. Of course, there are many other areas
in differential equations, where small parameters appear,
for example:

• Discretization Size: Temporal and/or spatial dis-
cretization leads to small parameters.
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• Inverse Particle Number: One wants to convert fi-
nite systems to a continuum model.

• Interfaces: Interfaces or boundary layers are often
small.

• Nonlocal Coupling: Local derivatives are aug-
mented by global integral terms.

• Nonsmoothness: Functions are taken smooth out-
side of small subsets of space.

• Time Delay: (Small) communication delay induces
a time history dependence.

• Near-Symmetry: A system might be very close to
a symmetric one.

• Near-Integrability: Perturbations of integrable
and/or Hamiltonian systems are well-studied.

Even the combination of the two previous lists is just
a restricted snapshot of all potential cases where small
parameters may appear. From a historical perspective,
small parameters in differential equations are a quite clas-
sical topic that can be traced back at least to the end
of the 19th century. Among the first applications were
celestial mechanics [192] and fluid dynamics [194]. In ce-
lestial mechanics, since the two-body problem is solvable,
the three-body problem lends itself to consider singular
perturbations by assuming two large mass bodies and one
very small mass. In fluid mechanics, assuming very large
viscosity is helpful as this assumption usually precludes
the existence of turbulent flow. In the limited space of
this work, it is impossible to give proper credit to the
very successful, long, and sometimes winding, history of
singular perturbations in celestial mechanics and fluid
dynamics, so we refer to [37, 108, 185, 212] containing
excellent historical accounts and references regarding the
development of these areas.

Within the 20th century, the use of small parameters
and perturbation techniques for differential equations has
permeated effectively all areas of science and engineer-
ing, while more recently also quantitative modelling in
the social sciences tends to rely on differential equation
modelling. For some pointers to the vast literature, we
refer to the books [25, 27, 107, 122, 128, 133, 145, 180,
184, 189, 196, 213, 217, 218], where classical cases of ordi-
nary and partial differential equations (ODEs and PDEs)
with one small parameter are considered from a number
of different viewpoints. These books also contain several
variants and viewpoints on the definition of “singular per-
turbation” for ODEs and provide an outlook to the PDE
case.

Although the literature is quite detailed, it has be-
come apparent in recent years that several techniques
have to be extended to deal with more complex 21st cen-
tury challenges, where differential equations and small
parameters still take center stage. First, one might won-
der, why existing methods have to be developed further?

The first key reason is that mathematical modeling of
complex systems almost immediately dictates that the
case of just one small parameter is very rare. For ex-
ample, it would be very difficult to argue that global
climate dynamics, socio-economic networked systems, or
neuro-mechanical as well as systems biology problems,
frequently contain just one small parameter. Second,
in complex systems we often deal with many instabili-
ties. Each instability, even if it is localized in parame-
ter and phase space, leads to a delicate balance between
nonlinear terms. Hence, we cannot invoke simple princi-
ples that very stable leading-order linear terms dominate
so that small contributions from external/internal model
perturbations are irrelevant. This entails the need for
larger phase and parameter spaces [144]. In summary,
there is an imminent need to study the case of two or
more small parameters carefully to obtain a good prac-
tical understanding of current important topics in dif-
ferential equations. More precisely, we will restrict here
the focus on analyzing differential equations, where two
small parameters (ε, δ) tend to zero from above, and we
want to classify different scaling regimes for this double
limit.

As one might expect, this field also has an intricate
history within several sub-disciplines of differential equa-
tions being involved. This makes it often difficult to
gain access and/or an overview, when studying dou-
ble limits. The most classical cases, where two small
parameters have been analyzed first, were ODEs with
a focus on direct asymptotic methods such as match-
ing [92, 172, 182, 183], although more recently also more
geometric ODE approaches have gained popularity, see
e.g. [56, 139, 140, 147, 164, 166]. Although extensions
of existing approaches are often key components for our
understanding of multiple small parameters, the develop-
ment is not nearly as systematic and detailed as for just
one distinguished small parameter. One can view the
situation in analogy with several other areas of differ-
ential equations, e.g., second-order scalar oscillators al-
ready show a lot of interesting behaviour, but eventually
one has to go beyond a widely accepted standard class.
Therefore, we believe it is now time to re-think and sys-
tematize double limits in differential equations. In fact,
virtually within all areas of differential equations, multi-
ple small parameters do appear. In this review, we try
to reflect this broader perspective via several illustrating
examples motivated by very different applications. We
are going to describe many key challenges, where a naive
direct approach of taking double limits fails.

More precisely, a common, yet highly non-trivial, sit-
uation we want to understand are doubly-singularly per-
turbed differential equations, or more generally multi-
scale dynamics with multiple small parameters. As ar-
gued above, a unified framework to understand doubly-
singular perturbations is still lacking, so this will be our
starting point. Here we make a conceptual step towards
improving this situation.
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FIG. 1: Partitioning of the positive quadrant K near the
doubly-singular limit ε → 0 and δ → 0 into three different
regions (I)–(III), which are non-equivalent under a property
P. The thick lines (in blue) indicate hard boundaries be-
tween the different regions, e.g. between (II) and (III) there
is a precise curve separating these regions. The thin line (in
red) indicates that the boundary is only asymptotic up to
a constant between two regions. Dashed lines (in black) in-
dicate an unclassified axis (such as the vertical axis in this
figure). The circle at the origin also means that at this point
a classification with respect to P is not known and/or may
not even be possible.

Consider a doubly-singularly perturbed differential
equation with two small non-negative parameters ε and δ.
Often we are interested in the local behavior of the dif-
ferential equation in the cone

K := {(ε, δ) ∈ R2 : ε ≥ 0, δ ≥ 0}

intersected with a sufficiently small ball around the ori-
gin, i.e., suppose we have tried already to neglect the
small parameters but setting ε = 0 = δ does not provide
a suitable description of the dynamics. Hence, the natu-
ral step is to try to partition K into different regions as
shown in Figure 1. To make such a partitioning precise,
we propose several steps:

(S1) Specify the setting and restrictions of the problem
X to be studied.

(S2) Define a notion of equivalence via a prop-
erty/observable P for the partitioning.

(S3) Study the possible asymptotic limit problems A to
complete the diagram.

In the available literature, these steps can be found
in various incarnations and various levels of mathemat-
ical rigor. What tends to be missing in many problems
is to recognize (S1)–(S3) in a clear way to allow for a
more comparative and systematic classification of possi-
ble behaviors. Already very simple classical examples,
as discussed in Section 2, show that missing small de-
tails or slight changes in the setting X or definition P
in the steps (S1)-(S2) can lead to completely different
answers. We are going to show in this work that if the
steps (S1)–(S3) are carried out carefully and within a uni-
form framework, a surprisingly coherent picture emerges,

how doubly-singularly perturbed differential equations
can be studied. The cross-connections between different
classes of effects and methods thus become more visible.
Universal classification diagrams emerge that concisely
make the differences and similarities between different
sub-fields of differential equations much more prominent.
Of course, we are still relying on well-established meth-
ods to carry out certain proofs or numerical explorations,
particularly in step (S3), where the common viewpoint of
singular perturbation theory to utilize the singular limit
ε = 0 = δ takes center stage to understand scaling re-
lations for 0 < ε, δ � 1. From the viewpoint of singu-
larity/bifurcation theory for ODEs, this often means one
is trying to unfold the dynamics in a suitable neighbour-
hood of a singular point. Yet, the key point is to al-
ways take into account, how X , P, A are defined, which
may depend crucially on the question and/or applica-
tion. Indeed, this leads us beyond the notion of standard
ODE classification via topological equivalence, which is
not sufficient to fully understand double limits for differ-
ent classes of differential equations. In summary, we con-
tribute to provide a better starting point for a systematic
study of doubly-singular limits as another unifying scien-
tific principle in the analysis of differential equations.

The remaining part of this paper is structured as fol-
lows: In Section 2, we explain our approach via simple
examples from analysis and algebra without a direct ref-
erence to differential equations. The core part of this
work is contained in Section 3, where numerous classes
of known results for differential equation problems are
re-cast precisely in the three steps (S1)–(S3) to provide
a general framework, which highlights the unity of area.
This includes problems from fast-slow ODE dynamics,
small noise stochastic differential equations (SDEs) and
piecewise deterministic Markov processes (PDMPs), spa-
tial problems arising from the bifurcation analysis of par-
tial differential equations (PDEs), and a problem in net-
work dynamics. In Section 4, we then contrast and com-
pare the results. Section 5 provides an outlook towards a
more systematic study of multi-parameter singular limits
for differential equations.

2. CLASSICAL EXAMPLES

Before starting with the development of a singular limit
analysis of various classes of differential equations, we
illustrate some basic principles that occur in the steps
(S1)–(S3) in simpler settings.

2.1. Elementary Algebra

Consider the root-finding problem of a very simple
quadratic polynomial

f(x; ε, δ) := εx2 − δ !
= 0. (Xrts)
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For the problem (Xrts), we assume that we do not al-
low any coordinate changes and/or preliminary algebraic
scaling operations for the problem, i.e., we want to find
the roots as is. For any ε, δ > 0, we have the roots
x± = ±

√
δ/ε. Now it crucially depends on the choice of

the property P what a classification diagram in a form
similar to Figure 1 would look like. Suppose we take
as a definition that two problems of the form (Xrts) are
equivalent if they have the same property

P[−1,1] := cardinality{x ∈ [−1, 1] : f(x; ε, δ) = 0},

where we count roots according to multiplicity. Then
one just calculates |x±|2 = δ/ε ≤ 1 which yields δ ≤ ε.
Hence, there are just two regions in the (ε, δ)-diagram
separated by the diagonal {δ = ε} ∩ K. Above the di-
agonal, we have δ > ε so P[−1,1]|δ>ε = 0, while on or
below the diagonal we have P[−1,1]|δ≤ε = 2. Of course,
the point at the origin is special leading to a solution set
which is uncountable so we decide to leave it out in our
classification; see Figure 2.

ε

δ

II

I

FIG. 2: Classification diagram with respect to the property
P[−1,1]. In region II we have no zeros while in region I we
have two zeros (counting multiplicity).

The splitting into two main regions is also visible via
considering the two singular limit problems of (Xrts),
namely

lim
ε→0

f(x; ε, δ) = −δ !
= 0, (Aε=0

rts )

and

lim
δ→0

f(x; ε, δ) = εx2 !
= 0, (Aδ=0

rts )

where we get no roots and a double-root respectively. In
summary, there is also an inherent non-commutativity
in the limits. Yet, the precise setting of (Xrts) and the
specification P[−1,1] are crucial. For example, if we use
PR instead, looking for all the real roots, then there is
only one singular line remaining in parameter space given
by {ε = 0, δ > 0} with no roots and the usual singular
situation at the point (ε, δ) = (0, 0). Also, given the
function

f(x; ε, δ) := εx2 − δ (1)

we could have used a completely different property P to
check for equivalence. For example, we could ask for a
binary classification and set

Pcvx =

{
1 if f is convex in x,
0 if f is not convex in x.

(2)

ε

δ

I

FIG. 3: Classification diagram with respect to the property
Pcvx. We just have a single region as f(x; ε, δ) = εx2 − δ is
always convex on K.

Then we always have Pcvx|(ε,δ)∈K = 1 so the singular
limit classification is somewhat trivial as shown in Fig-
ure 3. This demonstrates that, although many a-priori
natural-looking mathematical properties could be used
for double limits, it is vital to have a good motivation
from applications and modeling to select the most im-
portant ones.

2.2. Elementary Analysis

The issues illustrated in the last section are evidently
not limited to just purely algebraic problems. For exam-
ple, let us consider the classical function

f̃(x, y) :=

{
xy(x2−y2)
x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0),
(Xpartials)

which is known to be a simple counter-example in the
context of Schwarz’s Theorem since the partial deriva-
tives do not commute at zero

− 1 = ∂xy f̃(0, 0) 6= ∂yxf̃(0, 0) = 1. (3)

Evidently, we can also just understand this via double
limits in defining

f(x, y; ε, δ) := f̃(x+ε,y+δ)−f̃(x,y+δ)
εδ

+ f̃(x,y)−f̃(x+ε,y)
εδ ,

and then (3) just means that

lim
δ→0

lim
ε→0

f(x, y; ε, δ) 6= lim
ε→0

lim
δ→0

f(x, y; ε, δ)

if we evaluate the two limits at (x, y) = (0, 0). Evidently
the subdivision of the cone K again depends crucially on
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FIG. 4: Classification diagram with respect to the property
P∂∂ . The two regions correspond to the two possible partial
derivative values at the origin of the function (Xpartials) given
for our elementary analysis problem. The thin line (red) could
have been chosen at any fixed slope as it is an asymptotic
subdividing line of the form {δ = κε, ε > 0} for some fixed
constant κ > 0.

the choice of the property P. However, here we shall
fix the relevant property via second partial derivatives
below.

Since we are in an analytic setting, and not in an alge-
braic one, it often makes sense not to aim for a point-wise
subdivision of the cone K. Instead, we are going to use an
asymptotic subdivision by assuming that δ = δ(ε) with
δ ∈ C0(R+

0 ,R
+
0 ) and δ(0) = 0, which just means that δ

is a continuous function of ε vanishing simultaneously. If
we define

P∂∂ := lim
ε→0

f(x, y; ε, δ(ε))|(x,y)=(0,0)

then there are two main regions in K. Either we have
δ(ε) = o(ε) as ε→ 0 (alternatively written δ � ε), which
yields P∂∂ = −1. Or we have δ � ε leading to P∂∂ = +1.
Hence, it is natural to divide K into two regions via a
line δ = κε for a fixed constant κ > 0. The constant κ is
somewhat arbitrary as long it is independent of ε and δ
so we just write for the codimension-one subdivision line
K ∩ {ε ' δ}; see Figure 4.

3. DOUBLY-SINGULAR SYSTEMS

As a next step, it is important to demonstrate that
different classes of doubly-singularly perturbed differen-
tial equations fit within and benefit from the more unified
view described so far. We shall illustrate this aspect with
several very recent examples, where one cannot only re-
cast the problem within our framework but where the
main strategy and effects become very transparent as a
result.

3.1. Multiple Time Scale Systems

We start with arguably one of the most classi-
cal [25, 122, 184] cases of singular perturbation prob-
lems [185, 213], namely ordinary differential equations

(ODEs) with two time scales, so-called fast-slow sys-
tems [128, 131, 145, 165]. A good illustration within this
context is to consider the transcritical fast-slow bifurca-
tion normal form

dx
dt = x′ = (x− y)(x+ y) + ε2

δ ,
dy
dt = y′ = ε,

(Xtc)

which is a well-studied system [142]. As before, we shall
assume that ε ≥ 0 is a small parameter and then consider
the case when δ ≥ 0 is a second small parameter. Taking
the fast subsystem limit (Xtc) given by ε→ 0 yields

x′ = x2 − y2,
y′ = 0,

(Aε=0
tc,f )

which is just a standard transcritical bifurcation with the
slow variable y acting as a bifurcation parameter. If we
re-scale time as s := εt and take the singular limit ε→ 0
again, then one obtains the slow subsystem

0 = (x− y)(x+ y),
dy
ds = 1.

(Aε=0
tc,s )

The fast and slow subsystems (Aε=0
tc,f )-(Aε=0

tc,s ) already
show a singular structure as the systems are differen-
tial equations of different types, i.e., we go from a differ-
ential equation to a parameterized differential equation
and differential algebraic equation respectively. The al-
gebraic constraint within the slow subsystem is given by
the critical manifold

C0 := {(0, 0)} ∪ Ca−
0 ∪ Ca+

0 ∪ Cr−
0 ∪ C

r+
0

where Ca−
0 := {|x| = |y|, x < 0, y < 0}, Ca+

0 := {|x| =
|y|, x < 0, y > 0}, Cr−

0 := {|x| = |y|, x > 0, y < 0},
and Cr+

0 := {|x| = |y|, x > 0, y > 0} are normally hy-
perbolic since the linearization with respect to the fast
variables yields Dx(x2 − y2) = 2x, which is nonzero on
C0 \ {(0, 0)}. The critical manifold C0 consists of equi-
librium points for the fast subsystem; see also Figure 5.
Fenichel Theory [88, 128, 145] implies that there exist
associated slow manifolds Ca±

ε and Cr±
ε .

A generally very important question in many appli-
cations is how trajectories of fast-slow systems pass
through the region of a transcritical bifurcation of the
fast subsystem; for example, there are applications in
ecology [51, 135], chemistry [143], numerical analysis [82],
epidemiology [124] and network science [125]. Sup-
pose we start with a trajectory γ = γ(t) at a typi-
cal point on the attracting critical manifold Ca−

0 , say
γ(0) = (x(0), y(0)) = (−3,−3) for concreteness as the
following arguments do not change up to scaling by fixed
constants. By Fenichel Theory, we have that γ(0) isO(ε)-
close to the slow manifold Ca−

ε . We are going to define
two one-dimensional sections:

Σ− := {x = −2, y ∈ [1, 3]}, Σ+ := {x = 2, y ∈ [−1, 1]}.
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Ca+0

Ca−0

Cr+0

Cr−0

Σ−

Σ+

FIG. 5: Sketch of the possible dynamics of (Xtc) in (x, y)-
coordinates. The critical manifold C0 is shown in gray (re-
pelling parts with dashed lines and attracting parts with
solid lines). Three trajectories (green, cyan, magenta) for
0 < ε � 1 are indicated for three different choices of δ (cor-
responding to the exchange-of-stability, canard, and critical
transition cases respectively). Double arrows show the di-
rection of the fast subsystem flow for orientation; the slow
subsystem dynamics on C0 is always directed upwards at unit
speed.

One may easily prove that the trajectory γ will first get
attracted to Ca−

ε exponentially fast and then track this
manifold up towards the origin due to the slow dynamics.
Then there are three cases [142]:

(I) If δ(ε) = ε(1 + O(|ε|p)), for some p > 0, then the
trajectory will intersect Σ−.

(II) If δ(ε) = ε(1 − O(|ε|p)), for some p > 0, then the
trajectory will intersect Σ+.

(III) If δ(ε) = ε(1±O(exp(−K/ε))), then the trajectory
will never intersect Σ±.

This classification is important as in case (I) we have
an exchange-of-stability as γ starts to track the attract-
ing slow manifold Ca+

ε , while in case (II), there is a crit-
ical transition leading to a jump near the fast subsys-
tem bifurcation point. In case (III), we have that γ
starts to track the repelling branch Cr+

ε for a slow time
of order O(1), which means that we have a canard or-
bit [26, 145, 165]. Hence, since these three cases differ
crucially for application purposes, it makes sense to de-
fine a property Ptcd by a variable having just three pos-
sible values corresponding to the cases (I)-(III) respec-
tively. This provides us with the double singular limit in
the cone K shown in Figure 6.

In particular, the line δ(ε) = ε becomes a dividing line
around which we find an asymptotically exponentially
small wedge. Outside this wedge, we have two completely
different dynamical behaviors (I) and (II) as described
above. Note that it also makes sense to formally con-
tinue the classification of (I) and (II) onto the two lines
{ε = 0, δ > 0} and {ε > 0, δ = 0} by using so-called
candidate trajectories obtained by concatenating orbits
of the suitable fast and slow subsystem singular limit

ε

δ

III
II

I

FIG. 6: Classification diagram with respect to the property
Ptcd for the problem (Xtc). The three regions correspond to
the cases (I)–(III) above yielding exchange-of-stability, critical
transition, and canard cases respectively.

problems. Yet, we evidently cannot make a meaningful
classification at the origin (ε, δ) = (0, 0) itself regarding
our property due to the undefined expression ε2/δ in the
last term of the fast variable dynamics in this case.

Obviously, the fast-slow normal form transcritical bi-
furcation case we have discussed here is just one of
many cases in multiple time scale dynamics where several
small parameters appear [145]. Another important sys-
tem directly motivated by a particular application to the
peroxidase-oxidase reaction is the Olsen model [67, 181].
It is given by

da
ds = δ2(p1 − αa)− aby,
db
ds = ε(δε− δbx)− δaby,

εdx
ds = −x2 + ε(b− p2)x+ 3aby + ε2p4,
dy
ds = p3(x2 − y − aby),

(XOl)

where (a, b, x, y) ∈ (R+)4, we fix the parameters p1 =
0.97, p2 = 0.98, p3 = 3.93, p4 = 1.2 · 10−5 to the classical
values considered by Olsen [67, 181] and take ε, δ as the
small parameters. Then one can prove [147] that for

ε2 � δ,

the system (XOl) exhibits non-standard, but regularly
periodic, relaxation oscillations [175]. A singular limit
geometric phase space description [147], as well as nu-
merical simulations [67, 181] and numerical continuation
calculations [69, 177], strongly suggest that there are at
least two further important asymptotic regimes namely

ε2 � δ and κε2 = δ = δ(ε), κ = O(1),

as ε→ 0. In these cases one observes mixed-mode oscil-
lations (MMOs) [68] and chaotic oscillations respectively,
i.e., we have for the Olsen model

(I) ε2 � δ: non-standard relaxation oscillations,

(II) O(ε2) = δ: chaotic oscillations,

(III) ε2 � δ: mixed-mode oscillations,
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FIG. 7: Classification diagram with respect to the property
Posc for the problem (XOl). Note that the two parabolic thin
curves (red) have the same function form δ(ε) = κε2 just with
two different constants κ > 0. The three regions correspond
to the cases (I)–(III) above yielding non-standard relaxation
oscillations, MMOs, and chaotic oscillations respectively.

which is illustrated in Figure 7.
If we want to distinguish the three different classes of

oscillation patterns (relaxation, MMO, chaos), then it
does not suffice to rely on distinguishing properties in-
dividually such as number of maxima for one variable
within a time interval Pmax, the sign of the top/leading
Lyapunov exponent PLya, or topological equivalence of
the phase portraits Ptop. For example, one expects that
stable relaxation oscillations and MMOs may have topo-
logically equivalent phase portraits and negative Lya-
punov exponents for certain parameters. Furthermore,
the number of maxima is also not a good indicator alone
as for a given initial condition and a fixed time inter-
val it is easily conceivable that an MMO and a chaotic
oscillation have the same Pmax. Yet, suppose we fix a
generic initial condition in the positive quadrant and a
positive sufficiently large fixed time T = Kε with a con-
stant K > 0 such that for Pmax we have a fixed number
Pmax = K0 > 0 for the case of non-standard relaxation
oscillations. Let us define

Posc := PmaxPLya;

then we expect that all three cases are different. Indeed,
we conjecture that

• Posc = −K0: stable non-standard relaxation oscil-
lations;

• Posc < −K0: stable mixed-mode oscillations;

• Posc > 0: chaotic oscillations.

Evidently, this is not a full classification, nor yet rigor-
ously proven beyond the non-standard relaxation case.
However, it is very helpful to conceptually understand
the Olsen model and its analysis; see Figure 7. The dif-
ficulties of the problem are now made precise and much
more apparent. Already defining the property P can be
crucial to make the mathematical analysis tractable as
proving a precise shape of a trajectory as well as an es-
timate of the Lyapunov exponent are highly non-trivial

for global orbits of non-linear systems. Although meth-
ods from geometric singular perturbation theory exist to
try to deal with this situation [98], we expect that for
the Olsen model these may have to be augmented by
computer-assisted proof techniques [101] to actually deal
with tracking the dynamics in certain two- and three-
dimensional reduced systems. As another question, Fig-
ure 7 points us immediately to the transition regimes,
i.e., one should ask how trajectories are deformed near
the separating asymptotic boundary curves and what
happens near/on the non-negative cone ∂K in (ε, δ)-
parameter space. Such a discussion is beyond the scope
of this work.

For our examples so far, the second small parameter
arose due to the need to study a bifurcation problem,
and the bifurcation parameter produced a double singu-
lar limit. Yet, in many applications, there are additional
“physical” modeling constraints, which lead to two small
parameters. A typical case is the effect of small noise,
which is going to be discussed in the next subsection.

3.2. Stochastic Fast-Slow Systems

Among the most popular models for random noise
acting on a dynamical system are stochastic differential
equations (SDEs) driven by a Wiener process. There is a
broad literature on such equations, based on different ap-
proaches such as analysing the Fokker–Planck equation
[110], the theory of large deviations [91], and random
dynamical systems [2]. Stochastic systems with multi-
ple timescales have been more particularly analysed in
[32, 129, 189]. The stochastic dynamics near bifurcation
points has been studied, for instance, in [62, 123, 148,
203, 206]. A particularly important field of application
is neuroscience. In this respect, we refer to [209] for an
overview, and to [14, 47, 74, 106, 138, 158, 159, 176, 200]
for examples of specific problems involving bifurcations.

Consider a stochastic differential equation of the form

dxt = f(xt, εt)dt+ σdWt , (4)

where f : R2 → R is sufficiently smooth, and Wt is a
Wiener process describing white noise. The small param-
eters are ε, which measures the slow drift of the “param-
eter” y = εt, and σ, which measures the noise intensity.

In order to understand the influence of the noise on
time scales, let us start by considering the case where
f = f(x) does not depend on the second variable, and
let V be a potential such that f(x) = −V ′(x). Assume
that V has a minimum at x = 0. Then the theory of large
deviations [91] implies that the probability of a solution
of the SDE starting from x0 = 0 to reach a point x in

a time of order 1 is of order e−V (x)/(2σ2), assuming V is
monotonous between 0 and x. This implies the so-called
Arrhenius law [4], which states that the expected time for

the solution to reach x has order eV (x)/(2σ2). Solutions
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of the SDE thus tend to spend exponentially long time
spans near stable stationary points of f .

When considering the slowly time-dependent sys-
tem (4), it is convenient to scale time by a factor ε,
so that f changes by order 1 in times of order 1. The
rescaled system reads

dxt =
1

ε
f(xt, t)dt+

σ√
ε

dWt , (Xsfs)

where the factor
√
ε is due to the scaling property of the

Wiener process. We remark that from (Xsfs) it is clear
that the problem is singularly perturbed as it is fast-slow
in ε and degenerates from an SDE to an ODE for σ = 0.
This is also apparent in the infinitesimal generator of

the SDE (Xsfs), which is given by σ2

2ε∆ + 1
εf · ∇. The

evolution of the probability density of the SDE, as well
as its exit distribution from a domain, are thus described
by parabolic or elliptic PDEs having a small parameter
multiplying the highest derivative.

Assume f has a smooth stable equilibrium branch x∗(t)
acting as a critical manifold for (Xsfs). This means that
f(x∗(t), t) = 0 for all t in some interval I, and that
a∗(t) = ∂xf(x∗(t), t) is negative, bounded away from
0 in I. In the deterministic case σ = 0, it is well
known [88, 208] that for small ε, (Xsfs) admits a so-called
slow solution x̄(t) staying at a distance of order ε from
x∗(t).

Let us now fix, say, I = [0, 1], and consider the solution
of (Xsfs) starting at time 0 in x̄(0). Denote by P (σ, ε)
the probability that the solution leaves a neighborhood
of x̄(t) at or before time 1. Then

(I) on one hand, the large-deviation results just men-
tioned imply that when σ decreases to 0 for fixed
ε > 0, P (σ, ε) converges to 0;

(II) on the other hand, irreducibility of the Markov pro-
cess (xt)t≥0 implies that when ε decreases to 0 for
fixed σ > 0, P (σ, ε) converges to 1.

Hence, the regimes (I)-(II) induce a property Psfs, which
divides the (ε, σ)-space via the escape probability. The
transition between P (σ, ε) close to 0 and close to 1 occurs

when ε is of order e−H/(2σ
2) for an H > 0 depending on

the considered neighborhood (Figure 8).
A more precise formulation of the regime σ ↘ 0 has

been given in [29, 32]. Let B(h) be a family of strips

centered in x∗(t), of width h/
√

2|a(t)|, where a(t) =
∂xf(x̄(t), t) is the linearization of f at the slow solution.
These strips act as a kind of “confidence intervals”, in
the sense that the probability Pt(h, σ, ε) of leaving B(h)
before time t satisfies

Pt(h, σ, ε) '
[

1

ε

∫ t

0

|a(s)|ds
]
h

σ
e−h

2/(2σ2) (5)

as long as t� εech
2/σ2

for some constant c > 0 (see [32,
Theorem 3.1.10] for a precise formulation). Choosing h

ε

σ

P (σ, ε) ' 0

P (σ, ε) ' 1

II

I

FIG. 8: Probability P (σ, ε) that a solution of the SDE (Xsfs)
leaves the neighborhood of a stable critical manifold in slow
time of order 1, in the parameter space (ε, σ). The probability
is close to 0 or 1, except near the curve ε = exp[−H/(2σ2)].

t

x
x∗+(t)

x∗−(t)

x̄(t)

xt

xt

√
ε−

√
ε

√
ε

FIG. 9: Slow passage through a transcritical bifurcation. The
blue curve is a deterministic solution of (Xtcs) with σ = 0,
which stays at distance at most of order

√
ε from the stable

critical curve x∗+(t) = |t|. Red paths sketch the behavior
of typical stochastic solutions xt, in parameter regimes (I)
(upper path) and (II) (lower path).

of order σ
√

2 log(t/(εp)), we obtain Pt(h, σ, ε) ' p, so
that B(h) is indeed a confidence strip at level p.

This first example of a two-scale behavior for an SDE
is somewhat atypical compared to other examples given
in this review, in the sense that the transition between
qualitatively different regimes occurs when ε is exponen-
tially small in σ. Of course, one can “regularize” things

by writing ε = e−λ/σ
2

and describing the behavior in
terms of λ and σ. This is the approach adopted in [90]
for instance.

More standard examples of double limits can however
be found in the vicinity of bifurcation points. Consider
for instance the fast-slow SDE (Xsfs)

dxt =
1

ε
(t2 − x2

t )dt+
σ√
ε

dWt , (Xtcs)

which is a stochastic version of (Xtc). The critical man-
ifold of the deterministic equation εẋ = t2 − x2 is com-
posed of a stable branch {x = x∗+(t) = |t| : t 6= 0} and
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an unstable branch {x = x∗−(t) = −|t| : t 6= 0}. It is
well-known (see for instance [100]) that when σ = 0,
the equation (Xtcs) admits a slow solution x̄(t) of or-
der max{|t|,

√
ε}. This solution tracks the stable branch

x∗+(t) at a distance of order ε/max{|t|,
√
ε} (Figure 9).

In the case σ > 0, we can define as above a strip
B(h) centered in the slow solution x̄(t), and of width

h/
√

2|a(t)|. Note that this time, the linearization |a(t)|
has order max{|t|,

√
ε}. The width of B(h) is maximal

near t = 0, where it has order h/ε1/4. It turns out that
one then has two qualitatively different situations [30]:

(I) If σ � ε3/4, we can take h of order ε3/4 and still
have a strip B(h) staying away from the origin. One
can then show that the probability of a solution
of (Xtcs) leaving B(h) before, say, time 1, has order
exp[−h2/(2σ2)] = exp[−ε3/2/σ2], which is expo-
nentially small in this regime.

(II) If σ � ε3/4, on the other hand, any strip B(h) with
h ≥ σ intersects the t-axis already at or before a
time of order −σ2/3. One can then show that it is
very likely that the solution xt becomes negative, of
order 1, shortly after time −σ2/3. The probability
that xt remains positive up to time 1 has order

e−σ
4/3/(ε log(σ−1)).

One can summarize the difference between the two
regimes by considering the transition probability

Ptrans(σ, ε) = P(x̄(t0),t0)
{
∃t ≤ 1: xt = −1

}
, (6)

where the superscript (x̄(t0), t0) indicates the initial con-
dition. For negative t0 of order 1, we have

Ptrans(σ, ε)

{
≤ e−κε

3/2/σ2

in Regime (I) ,

≥ 1− e−κσ
4/3/(ε log(σ−1)) in Regime (II) ,

(7)
for a constant κ > 0 (Figure 10). Hence, we can again use
a suitable transition probability to define a property Ptcs,
which provides at least two clearly distinct asymptotic
regimes (I)-(II) in the double limit. See [32, Theorems
3.5.1 and 3.5.2] for precise formulations of these results.

An interesting generalization of Example (Xtcs) is the
SDE

dxt =
1

ε
(t2 − x2

t + δ)dt+
σ√
ε

dWt , (Xtcd)

where the parameter δ > 0 plays the same role as ε/δ
in (Xtc). Note that we are now dealing with three small
parameters ε, σ, and δ. The critical manifolds are given
here by x∗±(t) = ±

√
t2 + δ, so that they do not quite

touch: their minimal distance is 2
√
δ.

A similar analysis as for the transcritical bifurca-
tion (Xtcs) can be made, and results in the following case
distinction (Figure 11, see [30, Theorems 2.6 and 2.7] for
precise formulations):

ε

σ

σ = ε3/4

I

II

FIG. 10: The probability Ptrans that the solutions xt of equa-
tion (Xtcs) starting on the stable slow solution x̄(t) becomes
negative behaves differently in the two shown parameter re-
gions. In Region (I), Ptrans has order exp[−ε3/2/σ2], while in

Region (II), 1− Ptrans has order exp[−σ4/3/(ε log(σ−1))].

ε

σ

σ = max{ε, δ}3/4

I

II

δ3/4

δ

FIG. 11: (ε, σ)-parameter plane for the SDE (Xtcd) describ-
ing an avoided transcritical bifurcation, for a fixed δ > 0.
In Region (I), the transition probability Ptrans has order

exp[−max{ε, δ}3/2/σ2], while in Region (II), 1 − Ptrans has

order exp[−σ4/3/(ε log(σ−1))].

(I) If σ � max{ε, δ}3/4, solutions tend to stay near the
slow solution x̄(t) tracking x∗+(t), and the transition
probability Ptrans is exponentially small.

(II) If σ � max{ε, δ}3/4, solutions are likely to escape
to negative values of x as soon as t is slightly larger
than −σ2/3.

This results in a transition probability behaving as

Ptrans(σ, ε)

{
≤ e−κmax{ε,δ}3/2/σ2

in Regime (I) ,

≥ 1− e−κσ
4/3/(ε log(σ−1)) in Regime (II) .

(8)
The parameter δ thus causes a saturation effect at small
values of ε.

The examples considered so far were all particular
cases of the slowly time-dependent SDE (Xsfs). Other
types of bifurcations, such as the saddle-node bifurcation,
which results in similar regimes with different exponents,
are described in [32, Chapter 3]. One can however also
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P ∗

x

y

separatrix

nullclines

FIG. 12: Phase space of the stochastic FitzHugh–Nagumo
system (XFHs). The separatrix is defined as the determin-
istic negative orbit of the local maximum of the x-nullcline
{y = x3 − x}. When P ∗ is a focus, stochastic solutions tend
to perform small oscillations around P ∗ before crossing the
separatix, and making a large excursion (or spike) before re-
turning near P ∗.

consider fully coupled fast-slow systems of the form

dxt =
1

ε
f(xt, yt)dt+

σ√
ε
F (xt, yt)dWt ,

dyt = g(xt, yt)dt+ σ′G(xt, yt)dWt , (9)

where x ∈ Rm, y ∈ Rn, and Wt is a k-dimensional Wiener
process. In a similar way as for (4), one can obtain con-
centration results for solutions near stable normally hy-
perbolic critical manifolds, see [31].

A particularly interesting case is the stochastic
FitzHugh–Nagumo system modelling action potential dy-
namics of individual neurons, investigated in [35, 176].
We consider here the particular case

dxt =
1

ε

[
xt − x3

t + yt
]
dt+

σ√
ε

dW
(1)
t ,

dyt =
[
a− xt

]
dt+ σdW

(2)
t , (XFHs)

where W
(1)
t and W

(2)
t are independent Wiener processes.

In the deterministic case σ = 0, the system (XFHs) has a
unique equilibrium point P ∗ = (a, a3− a). The eigenval-
ues of the linearisation at P ∗ are given by

λ± =
−δ ±

√
δ2 − ε
ε

, δ =
3a2 − 1

2
. (10)

Hence P ∗ is a stable node for δ >
√
ε, a stable focus for

0 < δ <
√
ε, an unstable focus for −

√
ε < δ < 0, and an

unstable node for δ < −
√
ε.

We are interested here in the excitable regime 0 < δ �
1, σ > 0. In that situation, though P ∗ is stable in the
deterministic case, it lies close to a (pseudo-)separatrix
(Figure 12). Whenever the noise kicks it over the separa-
trix, the system makes a large excursion before returning
to its rest state, producing a so-called spike of the neu-
ron’s membrane potential.

In [176], the authors investigated the stochastic sys-
tem (XFHs) via formal computations, and found a large

ε3/4

√
ε δ

σ

σ =
δε
1/

4σ =

√ δε

σ
=
δ
3/
2

I

II

III

FIG. 13: (δ, σ)-parameter plane for the stochastic FitzHugh–
Nagumo SDE (XFHs), for a fixed ε > 0. The three regions
correspond to (I) rare isolated spikes, (II) clusters of spikes,
and (III) repeated spikes.

number of different parameter regimes. Some of these
formal results have been proved rigorously in [35]. One
can identify three main parameter regimes, as shown in
Figure 13:

(I) If 0 < δ <
√
ε and σ � δε1/4 or if

√
ε ≤ δ � 1

and σ � δ3/2, the system displays rare isolated
spikes (Figure 14-(I)). In particular, [35, Theo-
rem 3.2] shows that if δ/

√
ε is sufficiently small,

then the expected number of small oscillations
around P ∗ between two consecutive spikes has or-
der exp{δ2

√
ε/σ2}.

(II) If 0 < δ <
√
ε and δε1/4 ≤ σ ≤ ε3/4, one can

observe clusters of spikes (Figure 14-(II)). In fact,
what happens is that as σ increases, the probabil-
ity that a spike is immediately followed by another
spike gradually increases like

Φ

(
−ε

1/4(δ − σ2/ε)

σ

)
, (11)

where Φ denotes the distribution function of a stan-
dard normal random variable. The dashed curve
σ =
√
δε in Figure 13 corresponds to this probabil-

ity being close to 1/2 (see [35, Section 5]).

(III) If 0 < δ <
√
ε and σ � ε3/4 or if

√
ε ≤ δ � 1

and σ � δ3/2, the system displays repeated spikes
(Figure 14-(III)), meaning that after having spiked,
it is very likely to spike again immediately.

Note that these three regimes actually use a probabilis-
tic asymptotic spiking pattern to define a property PFHs

to dissect the (triple) singular limit parameter space. So
the example nicely illustrates that also on a stochastic
level, one can use macroscopic patterns, and that quite
frequently even more than two small parameters are rel-
evant.

The behavior in regimes just described in (I)–(III) can
be considered as a stochastic instance of mixed-mode os-
cillations (MMOs) [68], in which small-amplitude and
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(I) (II)

(III)

FIG. 14: Time series −xt of solutions to the stochastic
FitzHugh–Nagumo equation (XFHs) in three different param-
eter regimes. Parameter values are ε = 0.01, δ = 0.03, and
(I) σ = 0.001, (II) σ = 0.0025 and (III) σ = 0.01.

large-amplitude oscillations alternate; cf. problem (XOl).
While deterministic MMOs often show a regular pat-
tern, and sometimes a chaotic pattern, in the stochas-
tic case considered here the number of small and large-
amplitude oscillations are random variables. More in-
tricate patterns can arise near folded-node bifurcations
in three-dimensional SDEs, as for instance in the Koper
model [33, 34].

The examples in this subsection have shown that the
interplay between a deterministic multiple time scale sys-
tem with small noise provides a very natural class of sys-
tems, and small noise induces a doubly singularly per-
turbed problem. Yet, stochastic differential equations
provide many other avenues to double limits, even with-
out explicit time scale separation for the drift. This is
illustrated by the next subsection.

3.3. Shear-Induced Chaos

In this section, we consider the interaction of shear
forces and stochastic noise that can generate a switch-
ing from synchronization to chaotic behavior in stochas-
tic oscillators. The onset of chaos by an interplay of
shear and, typically small, noise has been broadly dis-
cussed within the context of stochastic Hopf bifurcation
[3, 15–17, 75, 156, 197], with important connections to
coupled (neural) oscillators [42, 155, 157, 219] and ques-
tions around the role of noise and chaos in (turbulent)
fluid flows [1, 87, 111, 112]. Note that the idea of adding
small noise to prove chaotic properties in the determinis-
tic zero-noise limit has become an important tool in dy-
namical systems theory in recent years [43, 44, 81, 222].

As a basic toy model (cf. [83]), we consider the SDE,
written in Stratonovich form,

dy = −αy dt+ σ
∑m
i=1 fi(ϑ) ◦ dW i

t ,
dϑ = (1 + by) dt ,

(Xsic)

where (y, ϑ) ∈ R×S1 are cylindrical amplitude-phase co-
ordinates, m ≥ 1 is a natural number, and W i

t for i ∈
{1, . . . ,m} denote independent one-dimensional Brown-
ian motions. We will assume that α, σ, b ≥ 0, i.e. all
parameters are non-negative.

When there is no noise (σ = 0), the SDE (Xsic) yields
in its singular limit an ODE, which has a globally at-
tracting limit cycle at y = 0 with contraction rate α > 0;
for α = 0, every trajectory is a periodic orbit at some
y ∈ R. In the presence of noise (σ > 0), the amplitude
direction is driven by phase-dependent random pertur-
bations. The real parameter b induces an effect which
is often called shear: if b > 0, the phase velocity de-
pends on the amplitude y. Note that for α = 0, the
drift term of the y-component vanishes, while the second
component has no noise component. This yields a very
non-generic/singular coupling between a pure drift SDE
and an ODE.

In the tradition of random dynamical systems theory
[2], and in contrast to the sample paths approach in the
last subsection, we now compare trajectories with differ-
ent initial conditions but driven by the same noise. As
trajectories depend on the noise realization, one cannot
expect any convergent behavior of individual trajectories
to a fixed attractor. An alternative point of view avoiding
this problem is to consider, for a fixed noise realization
in the past, the flow of a set of initial conditions from
time t = −T to a fixed endpoint in time, say t = 0, and
then take the (pullback) limit T → ∞. If trajectories of
initial conditions converge under this procedure to some
set, then this set is called a random pullback attractor,
or simply random attractor.

Typically, one can observe two different scenarios gen-
erated by the impact of noise on a stable limit cycle, as
in model (Xsic) with α > 0: either synchronization of
trajectories towards a random equilibrium (see Figure 15
(a)-(c)), or separation of trajectories within an attracting
object, a random strange attractor with fractal proper-
ties (see Figure 15(d)-(f)). The crucial quantity for de-
termining the character of the dynamics is the sign of the
first Lyapunov exponent λ1 = λ1(α, b, σ) with respect to
the ergodic invariant measure of the random system. The
quantity λ1 can be summarized as the dominant infinites-
imal asymptotic growth rate of almost all trajectories.

The mechanism, whereby a combination of shear and
noise leads to a positive Lyapunov exponent, was de-
scribed as shear-induced chaos [156]. The noise per-
turbations drive some points of the deterministic limit
cycle up and some down on the cylinder. Due to the
phase-amplitude coupling b, the points with larger y-
coordinates move faster in the ϑ-direction. At the same
time, the dissipation force with strength α attracts the
curve back to the limit cycles. This provides a mecha-
nism for stretching and folding characteristic of chaos.
The transition to chaos in the continuous time stochastic
forcing is much faster than in the case of, e.g., periodic
kicks [156]. This is due to the fact that points end up
in areas with arbitrarily large values of y with positive
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FIG. 15: Pullback attraction to random equilibrium (a)-(c)
for model (Xsic) with σ = 0.5, α = 1.5, b = 3 such that λ1 < 0,
and to random strange attractor (d)-(f) for σ = 2, α = 1.5, b =
3 such that λ1 > 0.

probability such that already small shear can generate
the described stretching and folding.

The validity of this mechanism has first been demon-
strated analytically [188, 215, 216] in the case of period-
ically kicked limit cycles, including probabilistic charac-
terizations of the dynamics. An analytical proof of shear-
induced chaos in the stochastic setting was developed
in [83]. Based on a specific machinery to explicitly ex-
press Lyapunov exponents for noisy oscillators [117, 118]
one can provide the formula

λ1(α, b, σ) = −α
2

+
bσ

2

∫ ∞
0

v mσ,b,α(v) dv , (12)

λ2(α, b, σ) = −α
2
− bσ

2

∫ ∞
0

v mσ,b,α(v) dv , (13)

where

mσ,b,α(v) =

1√
v

exp
(
− bσ6 v

3 + α2

2bσv
)

∫∞
0

1√
u

exp
(
− bσ6 u3 + α2

2bσu
)

du
, (14)

and λ2 is the second Lyapunov exponent, which is al-
ways negative unless α = σ = 0. Furthermore, one
can prove the following result [83]: assume the functions
fi : S1 ' [0, 1) → R to be C2,κ for some 0 < κ ≤ 1
to guarantee differentiability of the random dynamical
system (see [2, Theorem 2.3.32]), and, to make explicit
calculations possible, assume m ≥ 2 with

m∑
i=1

f ′i(ϑ)2 = 1 for all ϑ ∈ S1 . (15)

Then there is c0 ≈ 0.2823 such that for all α, b > 0, the
number

σ0(α, b) =
α3/2

c
1/2
0 b

> 0, (16)

is the unique value of σ where the top Lyapunov exponent
λ1(α, b, σ) of (Xsic) changes sign:

λ1(α, b, σ)


< 0 if 0 < σ < σ0(α, b) ,

= 0 if σ = σ0(α, b) ,

> 0 if σ > σ0(α, b) .

In particular, we can just use the sign of the top Lya-
punov exponent as a definition of a property Psic for the
shear-induced chaos problem (Xsic). Figure 16 shows the
graph of σ0 for 0 ≤ α ≤ 1 and fixed b = 1. Note that for
b, σ 6= 0, we can always conduct a change of variables in
the amplitude variable y to rescale the shear parameter b
to 1 and the effective noise amplitude to σb. Hence, the
above result and the corresponding illustration in Fig-
ure 16 hold in precisely the same way, when the roles of
σ and b are exchanged.

α

σ

σ = c
−1/2
0 α3/2

I

II

III

III

FIG. 16: Fixing b = 1 in model (Xsic), the figure shows the ar-
eas of negative (I) and positive (II) λ1 in the (α, σ)-parameter
space being separated by the curve {(α, σ0(α, 1))} (III) of λ1

being zero, using formula (16) for σ0.

For all fixed α > 0, if σ = 0, i.e., in the zero-noise
limit, we clearly have λ1 = 0, now seen as the leading
Lyapunov exponent associated with the attracting deter-
ministic limit cycle. The convergence can also be seen by
a different form of formula (12), which is obtained by a
change of variables as

λ1(α, b, σ) =
α

2

(∫ ∞
0

u m̃σ,b,α(u) du− 1

)
, (17)

where

m̃σ,b,α(u) =

1√
u

exp
(
− α3

σ2b2

[
1
6u

3 − 1
2u
])∫∞

0
1√
w

exp
(
− α3

σ2b2

[
1
6w

3 − 1
2w
])

dw
.

Hence, there is a continuous transition back to situation
(III) at the α-axis. When α = 0 but σ > 0, dissipativity
and the existence of a random attractor are lost and the
system becomes volume-preserving. Still, the associated
first Lyapunov exponent λ1 is positive and the σ-axis
belongs to situation (II), as can be easily seen from for-
mula (12). The origin (σ, α) = (0, 0) itself belongs to
(III). This gives a full categorization of model (Xsic) in
terms of the first Lyapunov exponent under the double



13

limit of the parameters σ, b on the one side and α on the
other.

Generally, shear-induced chaos can take more compli-
cated forms with more nonlinearities. A paradigm prob-
lem is the normal form of a Hopf bifurcation with additive
noise

dx = (αx− βy − (ax− by)(x2 + y2)) dt+ σ dW 1
t ,

dy = (αy + βx− (bx+ ay)(x2 + y2)) dt+ σ dW 2
t ,
(XsH)

where σ ≥ 0 is the strength of the noise, α ∈ R equals the
real part of eigenvalues of the linearization of the vector
field at (0, 0), b ∈ R represents shear strength, β ∈ R
is the linear component of rotational speed and W 1

t ,W
2
t

denote independent one-dimensional Brownian motions.
For α > 0, the deterministic system (σ = 0) possesses
a limit cycle at radius

√
α/a, for any fixed a > 0, with

linear contraction rate −2α.
The model has been studied in [72, 75, 220] with var-

ious, predominantly numerical, approaches to describing
shear-induced chaos. Hence, it again makes sense to de-
fine PsH via the sign of the first Lyapunov exponent.
For (XsH), only the case of synchronization, i.e. λ1 < 0,
has been proven analytically [75]. The change of sign
of λ1 to positive values is only proven in the particu-
lar context of the conditioned Lyapunov exponent [84],
considering the random dynamics on a bounded domain
with killing at the boundary, by conducting a computer-
assisted proof [52]. An explicit formula as before seems
out of scope for system (XsH) on the whole domain.

α

σ

σ = α

I

?

III

FIG. 17: Fixing all other parameters in model (XsH), in par-
ticular b �

√
2a, we consider the (α, σ)-parameter space for

α, σ sufficiently small, and can associate the area beneath the
diagonal with negative λ1 (I) and the α-axis, including the
origin, with λ1 = 0 (III).

However, there are two small parameter results that
give some indication concerning the question of double
limits in this case and demonstrate the differences to
the cylinder model. Firstly, it was shown in [72] and
then further elaborated in [75] that for any fixed a > 0,

b <
√

2a and α smaller than a given bound depending
on all other parameters, the first Lyapunov exponent
is negative, i.e. λ1 < 0. This means that for the case
b, α → 0 we will always be in scenario (I), in contrast
to model (Xsic) where scenario (II) can happen in the
double-limiting case, as illustrated in Figure 16 — re-
call that σ and b are interchangeable in this case and

the same formula and corresponding figure are also true
for replacing σ by b. This does not transfer to the more
complicated, highly nonlinear situation of model (XsH).
Secondly, Deville et al. [72] demonstrate that λ1 < 0 for
σ aα → 0. This allows us to give at least a partial pic-
ture of the small parameter situation for α, σ when the
shear strength b�

√
2a is large; Figure 17 depicts such a

sufficiently small domain in parameter space. Analytical
approximation of other areas than the one beneath the
diagonal seems out of reach with current methods.

The examples involving SDEs have shown clearly that
small noise is a common source of double limits. Yet,
SDEs still carry some regularity due to the (almost 1/2-
Hölder) continuous input. The next subsection illustrates
that even for stochastic switching problems one can fre-
quently identify double limits.

3.4. Piecewise Deterministic Processes

Piecewise deterministic processes are stochastic pro-
cesses that evolve deterministically on most time inter-
vals of short length; random events occur instantaneously
and come for example in the shape of random switches
between several driving vector fields, or jumps to ran-
domly chosen sites of the phase space. In this subsection,
we will consider two instances of piecewise deterministic
processes, which are induced by a parameter-dependent
differential equation with an intermittently-acting noise
that depends itself on a small parameter. We work within
the following basic framework: Let M be an open sub-
set of Rm, m ∈ N, and let u0 and u1 be smooth vector
fields on M that depend on a small positive parameter
δ. In addition, assume that for i ∈ {0, 1} and for every
x0 ∈M , the initial-value problem

ẋ(t) = ui(x(t)), t > 0,

x(0) = x0

has a unique solution x(t) = Φti(x0) that is defined for
all t ≥ 0. Consider the differential equation

dx

dt
= U(ω, x(t), t), (Xpd)

where ω is a realization of a continuous-time Markov
chain on {0, 1} with transition rates

λ0 = lim
t↓0

P(ωt = 1|ω0 = 0)

t
, λ1 = lim

t↓0

P(ωt = 0|ω0 = 1)

t
,

and where

U(ω, x, t) :=

{
u0(x), ωt = 0,

u1(x), ωt = 1.

The differential equation in (Xpd) is thus alternately
driven by the vector fields u0 and u1, and switches be-
tween these vector fields correspond to the jumps of a
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continuous-time Markov chain. The latter being the only
source of randomness, we shall assume that the transi-
tion rates λ0 and λ1 depend on a second small parameter
ε > 0. For a typical choice of ω, the equation in (Xpd)
has a unique solution X(ω) that is defined for all t ≥ 0.
The resulting stochastic process X = (Xt)t≥0 on M can
be turned into a Markov process by adjoining the process
E = (Et)t≥0 on {0, 1} defined by Et(ω) := ωt. The re-
sulting two-component process (X,E) on the state space
M ×{0, 1} belongs to the class of piecewise deterministic
Markov processes [66].

In line with standard terminology, a stationary distri-
bution for (X,E) is a probability measure µ on M×{0, 1}
such that for every Borel set A ⊂ M , i ∈ {0, 1}, and
t ≥ 0,

µ(A× {i}) =
∑

j∈{0,1}

∫
M

Pt(x, j;A× {i}) µ(dx× {j}),

where (Pt)t≥0 denotes the Markov semigroup of (X,E).

Consider the dynamical system induced by randomly
switching between the two-dimensional linear vector
fields ui(x) = Uix, i ∈ {0, 1}, where

U0 :=

(
−δ 1
0 −δ

)
, U1 :=

(
−δ 0
−1 −δ

)
. (Xpdl)

The switching rates are assumed to be λ0 = λ1 = ε−1,
i.e., for small ε we are in the regime of fast switching.
This system belongs to the class of switching systems
studied in [149]. Here, we present some of the main find-
ings from [149] using the viewpoint of double limits in
ε and δ. Note that the problem is singularly perturbed
since for ε→ 0, one effectively obtains a single limit ODE
governed by the average of U0 and U1, while for δ = 0,
the individual linear vector fields give rise to ODEs whose
solutions are constant in one component.

Both U0 and U1 are defective matrices, meaning that
the eigenspaces corresponding to their only eigenvalue −δ
have dimension 1. Since −δ < 0, the equilibrium point
(0, 0) shared by u0 and u1 is globally asymptotically sta-
ble for each individual ODE ẋ(t) = ui(x(t)). However,
as pointed out in [19], [149] for the random case, and in
[12] for the deterministic case, switching between stable
ODEs may cause instability. This phenomenon can be
easily apprehended if switching takes place between two
stable vector fields that admit an unstable average. As
the switching rates tend to infinity, the random dynamics
start to resemble the deterministic dynamics governed by
the unstable average [86]. For the present system, how-
ever, the mechanism causing instability is more subtle
(Figure 18).

Let us be more precise: We call the random dynamical
system under consideration stable if the stochastic pro-
cess X on R2, induced by alternately flowing along u0

and u1, satisfies

Px,i
(

lim
t→∞

‖Xt‖ = 0
)

= 1

x1

x2

FIG. 18: Sample trajectories for the vector fields u0 and
u1 associated with (Xpdl). The blue and red curves represent
trajectories for u0 and u1, respectively. If one first flows along
the blue curve towards the origin and then switches to the red
one at the point where the curves touch, one can increase the
distance to the origin.

for every x ∈ R2 and i ∈ {0, 1}. Here, Px,i denotes the
law of the Markov process (X,E) starting at (x, i), and
‖·‖ is the Euclidean norm on R2. The random dynamical
system is said to be unstable if for every x ∈ R2 \{(0, 0)}
and i ∈ {0, 1},

Px,i
(

lim
t→∞

‖Xt‖ =∞
)

= 1.

A priori, there may be choices of ε and δ for which the
system is neither stable nor unstable. As we are about
to see, this is, at least generically, not the case. We want
to study the property

Ppdl =

{
1 if the system is stable,
0 if the system is unstable.

It is convenient to represent the stochastic process X in
polar coordinates (see [134] on the utility of polar decom-
position for the study of Lyapunov exponents). Following
[19], one defines the radial process Rt := ‖Xt‖ and the
angular process At := Xt/‖Xt‖ whenever Xt 6= (0, 0).
The two-component process (A,E) on S1×{0, 1} is then
again a piecewise deterministic Markov process charac-
terized by random switching between the vector fields
θ 7→ sin2(θ) and θ 7→ cos2(θ), where S1 is identified
with the interval [0, 2π). According to [149, Lemma 3.2],
(A,E) admits a unique stationary distribution µ that is
absolutely continuous with respect to the product of arc-
length measure on S1 and counting measure on {0, 1}.
In our example, µ only depends on the switching rate,
i.e., it is a function of ε while being independent of δ.
Let ρ be the probability density function of µ and let
ρi(·) := ρ(·, i) for i ∈ {0, 1}. Since µ is ε-dependent, so
are ρ0 and ρ1. Define

G(ε) :=

∫ 2π

0

(ρ0(θ)− ρ1(θ)) cos(θ) sin(θ) dθ, (18)

which is set up in such a way that the integrand is positive
for all θ ∈ [0, 2π), and thus G > 0. From [149, Lemma
3.3] one obtains the following cases:
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(I) If δ < G(ε), then Ppdl = 0.

(II) If δ > G(ε), then Ppdl = 1.

There are explicit formulae for ρ0 and ρ1 [149]. Together
with (18), this yields a reasonably explicit representation
for the threshold function G that is in principle amenable
to asymptotic analysis.

ε

δ

I

II

FIG. 19: Classification diagram with respect to the property
Ppdl. The two regions (I) and (II) correspond to the cases
(I) (stable) and (II) (unstable). The blue curve separating
the regions (I) and (II) represents the graph of G. We have
not attempted to accurately render the asymptotic behavior
for the graph of G here. On the δ-axis, the problem is not
well-defined, which makes a classification impossible.

If δ = 0, ε > 0, the process X alternately moves along
lines parallel to the x-axis and lines parallel to the y-axis.
It is not hard to see that [149, Lemma 3.3] remains valid
in this limiting case. Since G(ε) > 0, one has Ppdl = 0.

If ε = 0, the process X is not well-defined because the
switching rates are infinite. It does, however, make sense
to study the limiting behavior of the random dynamical
system as ε → 0. According to [149, Thm. 2.5], for ε
sufficiently small (with the required smallness depending
on δ), one has Ppdl = 1. This implies that limε→0G(ε) =
0.

Finally, we examine the situation when δ = 0 and
ε → 0. In the classification diagram in Figure 19,
this corresponds to approaching the origin along the ε-
axis. By the averaging principle alluded to earlier [86,
Thm. 2.1], the process X converges in probability, uni-
formly on compact time intervals, to the deterministic
solution of the averaged problem

ẋ(t) =
1

2
(U0 + U1)x(t) =

(
0 1/2
−1/2 0

)
x(t),

x(0) =x0.

The matrices U0 and U1 contribute equally to the
averaged matrix 1

2 (U0 + U1) because λ0 = λ1. The

eigenvalues of the averaged matrix are ± i
2 , with zero real

part. In this doubly singular situation, the previously
observed dichotomy is broken: For every x0 6= 0, the
trajectory of the solution to the averaged problem is
a periodic orbit, more precisely a circle of radius ‖x0‖

centered at the origin.

As second example for a piecewise deterministic
Markov process, we are going to use a logistic growth
model with random switching. Just as our first example,
this Markov process is characterized by random switching
between two vector fields with a critical point in common.
Unlike the first example, though, the vector fields share
a compact trapping region of positive Lebesgue measure
that gives rise to a nontrivial stationary distribution.

The logistic model is a classical model for the growth
of a population that is limited by the capacity of the
environment to sustain the population. The model is
described by the logistic differential equation ẋ(t) =
U(x(t), r, p), where

U(x, r, p) := rx(1− x/p).

The time-dependent variable x represents the population
size. The parameters r (the growth rate) and p (the
carrying capacity) are assumed to be positive.

We consider the dynamical system induced by ran-
domly switching between the logistic vector fields

u0(x) := U(x, δ, 1),
u1(x) := U(x, 1, 2),

(Xpdp)

at switching rates λ0 = ε and λ1 = 1. Notice the asym-
metry in the switching rates that will lead to the system
spending more and more time in the regime governed by
u0 as ε approaches 0. In [114], random switching between
the vector fields U(·, p−, p−) and U(·, p+, p+) was studied
in detail, for parameters p− < 0 and p+ > 0 to the left
and to the right of the transcritical bifurcation at p = 0.
Even though the present setting is somewhat different,
we will follow [114] quite closely.

For r, p > 0, the logistic vector field U(·, r, p) has
the equilibrium points 0 and p, which are unstable and
asymptotically stable, respectively. Stability of 1 and 2
for u0 and u1 implies that the compact interval [1, 2] is
positively invariant under the switching dynamics, i.e.,
every switching trajectory starting in [1, 2] stays in this
interval for all positive times. Since, in addition, the
Markov semigroup of (X,E) is Feller (see Proposition
2.1 in [20]), the Krylov–Bogoliubov method (Theorem
3.1.1 in [64]) yields the existence of a stationary distri-
bution µ such that µ([1, 2] × {0, 1}) = 1. Moreover, by
[9, Theorem 2] or by [20, Theorem 4.4], µ is the unique
stationary distribution for (X,E) that assigns full mea-
sure to (0,∞)×{0, 1}. Finally, again by [9, Theorem 2],
µ is absolutely continuous with respect to the product
of Lebesgue measure on (0,∞) and counting measure on
{0, 1}. Hence, µ admits a density ρ with respect to the
latter measure.

For the invariant density ρ0(·) := ρ(·, 0), we consider
the property

Pbdd =

{
1, if ρ0 is bounded on (1, 2),

0, if ρ0 is unbounded on (1, 2).
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By [11, Thm. 1], ρ0 and ρ1 := ρ(·, 1) are C∞ smooth
in the open interval (1, 2) because u0 and u1 are smooth
vector fields with no equilibrium points in (1, 2). As a
result, the corresponding probability fluxes ϕi := ρiui,
i ∈ {0, 1}, satisfy the Fokker–Planck equations [85]

ϕ′i(x) = −
(

ε

u0(x)
+

1

u1(x)

)
ϕi(x), (19)

for all x ∈ (1, 2). The ODE in (19) has the general solu-
tion

ϕi(x) = Cx−
ε
δ−1(x− 1)

ε
δ (2− x), x ∈ (1, 2),

hence

ρ0(x) =c1x
− εδ−2(x− 1)

ε
δ−1(2− x),

ρ1(x) =c2x
− εδ−2(x− 1)

ε
δ ,

for positive normalizing constant c1 and c2. These for-
mulae for ρ0 and ρ1 show that ρ1 is always bounded on
(1, 2). Furthermore, the invariant density ρ0 has a sin-
gularity at the equilibrium point 1 of u0 if and only if
ε < δ. We obtain the following cases:

(I) If δ ≤ ε, then Pbdd = 1.

(II) If δ > ε, then Pbdd = 0.

ε

δ

I

II

FIG. 20: Classification diagram with respect to the property
Pbdd. The two regions I and II correspond to the cases (I)
(bounded) and (II) (unbounded). The blue ray separating the
regions (I) and (II) belongs to region (I). The property is not
well-defined on the axes.

This dichotomy admits the following heuristic explana-
tion: If ε (the rate of switching away from the vector field
u0) is small compared to δ (the contraction rate of u0 at
its equilibrium point x = 1), then a large amount of prob-
abilistic mass accumulates in the vicinity of the equilib-
rium point; a singularity at x = 1 is formed. Conversely,
if ε is large in comparison with δ, the system switches
sufficiently often away from u0 to prevent a strong accu-
mulation of probabilistic mass near x = 1; the invariant
density ρ0 stays bounded.

In the singular case ε = 0, no switching away from u0

takes place. The process (X,E) still has a unique station-
ary distribution on (0,∞) × {0, 1}, namely the product

of the Dirac measure at x = 1 and the measure (1, 0)
on {0, 1}. Of course, this distribution no longer has a
probability density function with respect to the product
of Lebesgue measure on (0,∞) and counting measure on
{0, 1}. It follows that the property Pbdd cannot be stud-
ied on the δ-axis.

If δ = 0, the vector field u0 is constantly equal to zero.
As long as ε > 0, the system alternates between flowing
along u1 and staying put. The unique stationary distri-
bution on (0,∞)×{0, 1} is then the product of the Dirac
measure at the equilibrium point x = 2 of the measure
( 1

1+ε ,
ε

1+ε ) on {0, 1}. Again, Pbdd cannot be meaningfully
studied. Finally, in the doubly singular case ε = δ = 0,
one obtains an infinite family of stationary distributions
(µx)x>0, where µx is the product of the Dirac measure
at x and the measure (1, 0) on {0, 1}.

For switching systems in dimension greater than one,
the set of singularities of invariant densities can have a
much richer structure than the one exhibited here (see
[10] for a simple yet nontrivial example in 2D). This can
result in more complex classification diagrams with re-
spect to a suitably defined version of Pbdd.

We conclude this subsection with some remarks on the
two examples presented above. We also hint at addi-
tional topics in the field of piecewise deterministic pro-
cesses where double limits may be fruitfully studied.

In the first example, we saw that switching between
vector fields of a certain kind (stable, in our example)
can result in a dynamical system of a very different kind
(unstable). In the same vein, for a Lotka–Volterra system
of two competing species, it is shown in [24] that switch-
ing between two environments that both favor the same
species can even lead to the extinction of this species.
The articles [24], [168], and [167] together provide a clear
picture of which parameter choice results in which long-
term behavior for the Lotka–Volterra system. It is thus
possible to represent the interplay of the parameters by
a double-limit diagram.

The boundedness property for invariant densities is
straightforward to study for piecewise deterministic pro-
cesses of spatial dimension one [11]. In higher dimen-
sions, a regularity theory for invariant densities is still
missing. However, the double-limits framework can also
be meaningfully applied to other ergodic properties, e.g.,
the number of stationary distributions, absolute continu-
ity of stationary distributions with respect to a suitable
reference measure, or exponential ergodicity. When it
comes to the number of stationary distributions, an es-
sential tool is the theory of stochastic persistence [18],
which gives criteria for the existence of a stationary dis-
tribution on the complement of an invariant closed subset
of the phase space (the so-called extinction set). In [23]
and [204], this theory – originally devised for Markov
processes in general – has been further developed in the
context of piecewise deterministic processes.

In general, there is a lack of precise necessary condi-
tions for absolute continuity and exponential ergodicity
of the stationary distribution. Besides, neither of these
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properties is affected by the rates of switching, which
makes it imperative to link both of the small parameters
ε and δ to the vector fields in order to obtain a nontrivial
double-limit diagram. Apart from [20] and [9], absolute
continuity for piecewise deterministic processes was stud-
ied for instance in [63] and [161], where the process X is
allowed to have jumps. Sufficient conditions for expo-
nential ergodicity in total-variation distance were given
in [20], [153], and [21]; and for exponential ergodicity in
Wasserstein distance in [22] and [58].

Other types of switching processes have been stud-
ied in the literature, some of them abundantly: switch-
ing between PDEs [150], non-Markovian switching [154],
switching between diffusions [221], etc. All of these
classes of stochastic processes are amenable to the
double-limit approach proposed in this article.

We have already seen in the current context, that one
expects double limit problems for stochastic systems to
be directly linked to double limits for Fokker–Planck (or
Kolmogorov) equations. We shall now continue with this
theme and focus in the next two subsections on prob-
lems arising from various classes of partial differential
equations (PDEs).

3.5. Matched Asymptotic Expansions & BVPs

Two-parameter singularly perturbed systems of dif-
ferential equations have been widely studied from the
analytical as well as from the numerical viewpoint (see
[57, 95, 103, 130, 182, 186, 187, 195, 210, 214] and ref-
erences therein). In most cases, the singularity is at-
tributed to the presence of small parameters in front of
the derivative terms; however, as shown in [193], this is
not a necessary condition. This also applies to the prob-
lem presented in this section.

We start with a PDE problem, which still links to
ODEs and classical double limit fast-slow systems. We
consider the following boundary value problem:

uXX =
λ

(1 + u)2

[
1− ε2

(1 + u)2

]
, X ∈ [−1, 1],

u = 0, X = ∓1.

(Xmes)

Equation (Xmes) describes the steady states associated to
a second-order parabolic PDE problem arising in the con-
text of Micro-Electro Mechanical Systems (MEMS) [160].
In particular, the function u(X) represents the deflection
of an elastic membrane towards a ground plate under the
action of an electric potential described by the parameter
λ > 0, while 0 < ε � 1 appears as a regularization pa-
rameter. The problem is evidently singularly perturbed
in λ, as for λ = 0 it becomes just a trivial linear bound-
ary value problem, while we shall see below that there is
a hidden fast-slow singular perturbation structure with
respect to ε.

The bifurcation diagram associated to (Xmes) consists
of two branches of stable equilibria separated by a third,

intermediate branch of unstable equilibria (see Figure
21a). The middle and upper branch meet at a saddle-
node bifurcation point λ∗(ε). A steady-state solution ex-
ists for every λ > 0, and the presence of the regularizing
ε-dependent term in (Xmes) guarantees that for any ε the
solution is bounded below by u = −1+ε; see Figure 21b.
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FIG. 21: (a) Numerically computed bifurcation diagram of
the one-dimensional membrane model, (Xmes), for ε = 0.05.
(b) Corresponding solutions in (X,u)-space.

In [160], the authors have studied (Xmes) both analyti-
cally, using matched asymptotic expansions to construct
solutions, and numerically, investigating the structure of
the ε-dependent bifurcation diagram. However, the an-
alytical motivation behind logarithmic switchback terms
in the expansions, as well as a detailed resolution of the
bifurcation diagram for very small values of ε, were left as
challenging open questions. In [119], a detailed asymp-
totic resolution of 21a, both in the singular limit of ε = 0
and for ε positive and sufficiently small, is accomplished
through separate investigation of three distinct, yet over-
lapping, regions in the diagram, allowing us to tackle
these questions.

To that end, we first reformulate the boundary value
problem (Xmes) in a dynamical systems framework; then,
identification of two main parameters in the resulting
equations yields a two-parameter singular perturbation
problem. Careful asymptotic analysis of that problem al-
lows us to identify the corresponding limiting solutions,
and to show how the third branch in the diagram found
for non-zero ε emerges from the singular limit of ε = 0,
where only the lower and the middle branch are present.
On that basis, we prove the existence and uniqueness of
solutions close to these limiting solutions.

We reformulate (Xmes) as a first-order system by re-
labeling u with x, introducing the variable y = xX , and
appending the trivial dynamics for the spatial variable X,
which we relabel as ξ, and ε. Moreover, we desingularize
the flow near x = −1 and define a shift in x via x̃ = 1+x,
which translates the singularity to x̃ = 0. Omitting the
tilde and denoting differentiation with respect to the new
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independent variable by a prime, we obtain

x′ = x4y, (20a)

y′ = λ(x2 − ε2), (20b)

ξ′ = x4, (20c)

ε′ = 0, (20d)

subject to the boundary conditions x = 1 at ξ = ∓1.
For ε = 0, this systems admits the line of degenerate
equilibria

S0 =
{

(0, y, ξ, 0)
∣∣ y ∈ R, ξ ∈ R

}
. (21)

When λ = 0, there is an additional manifold of equilibria
for (20a)-(20b) given by

M0 :=
{

(x, 0, ξ, 0)
∣∣x ∈ R+, ξ ∈ R

}
. (22)

As it turns out, in two of the three regions we investigate
it is useful to introduce a rescaled variable ỹ = δy, where

δ =

√
ε

λ
. (23)

Omitting the tilde for sake of simplicity, System (20)
hence becomes

x′ = x4y, (24a)

y′ = ε(x2 − ε2), (24b)

ξ′ = δx4, (24c)

ε′ = 0. (24d)

We observe that (24) is a fast-slow system, where x is
fast and y is slow. The nature of ξ, however, depends
on δ: in particular, ξ is fast when δ = O(1), and it
is slow when δ = O(ε). For δ = 0, the manifolds S0

and M0 represent two branches of the critical manifold
for (24). Since S0 is not normally hyperbolic, and the
reduced flow on it is highly degenerate, one can apply
the blow-up method to describe the dynamics of (24)
in its vicinity [77, 78, 141]. Such method has proved
to be particularly useful when tackling two-parameter
perturbed systems [137, 173]. To this aim, we introduce
the following blow-up transformation:

x = r̄x̄, y = ȳ, ξ = ξ̄, and ε = r̄ε̄, (25)

where (ȳ, ξ̄) ∈ R2 and (x̄, ε̄) ∈ S1, i.e., x̄2 + ε̄2 = 1. The
vector field induced by (25) on the cylindrical manifold in
(x̄, ȳ, ξ̄, ε̄, r̄)-space is best described in coordinate charts;
in particular, to carry out our analysis we require the two
following charts:

K1 : (x, y, ξ, ε) = (r1, y1, ξ1, r1ε1), (26a)

K2 : (x, y, ξ, ε) = (r2x2, y2, ξ2, r2). (26b)

We note that the phase-directional chart K1 describes
the “outer” regime, which corresponds to the transient

from x = 1 to x = 0 approaching S0, while the rescaling
chart K2 covers the “inner” regime where x ≈ 0, in the
context of (24). The corresponding dynamics are given
by

K1 :


r′1 = r1y1,

y′1 = ε1(1− ε2
1),

ξ′1 = δr1,

ε′1 = −ε1y1.

K2 :


x′2 = x4

2y2,

y′2 = x2
2 − 1,

ξ′2 = δr2x
4
2,

r′2 = 0.

(27)

In order to construct singular solutions, we define the
entry and exit sections in K1

Σin
1 :=

{
(ρ, y1, ξ1, ε1)

∣∣ y1 ∈ [y−, y+],

ξ1 ∈ [ξ−, ξ+], ε1 ∈ [0, σ]} ,
(28)

Σout
1 :=

{
(r1, y1, ξ1, σ)

∣∣ r1 ∈ [0, ρ],

y1 ∈ [y−, y+], ξ1 ∈ [ξ−, ξ+]} ,
(29)

where 0 < ρ < 1 and 0 < σ < 1 are appropriately defined
constants, while y∓ and ξ∓ are real constants, with y− <
− 2√

3
and y+ > 2√

3
. Translating Σout

1 in terms of K2-

coordinates, we obtain the section

Σin
2 :=

{
(σ−1, y2, ξ2, r2)

∣∣ y2 ∈ [y−, y+],

ξ2 ∈ [ξ−, ξ+], r2 ∈ [0, ρσ]} .
(30)

In terms of matched asymptotics, such sections describe
the transition between outer and inner regions. In par-
ticular, the outer regime corresponds to the area limited
by Σin

1 and Σout
1 in K1, while the inner regime is limited

by Σin
2 and the hyperplane {y = 0} in K2.

Solutions to (Xmes) arise as perturbations of singular
solutions obtained in the limit of ε = 0. Such solutions
are constructed by analyzing the dynamics in charts K1

and K2 separately in the limit as ε → 0. In particular,
solutions are constructed via two strategies:

Strategy 1. We consider two sets of boundary con-
ditions, corresponding to suitable intervals of y-
values that are defined at ξ = −1 and ξ = 1, respec-
tively. Flowing these two sets of boundary condi-
tions forward and backward, respectively, we verify
the transversality of the intersection of the two re-
sulting manifolds at ξ = 0. Each initial y-value
y0 for which these two manifolds intersect gives a
solution to the boundary value problem (Xmes).

Strategy 2. Since all such solutions are even, we can
focus our attention on the ξ-interval [−1, 0], with
boundary conditions x(−1) = 1 and y(0) = 0. The
set of initial conditions at ξ = −1 and x = 1, but
with arbitrary initial y-value y0, is then tracked
forward up to the hyperplane {y = 0}. The result-
ing manifold is parametrized by x(y, ε, δ, y0) and
ξ(y, ε, δ, y0); the unique “correct” value y0(ε, δ) cor-
responding to a solution to (Xmes) is then obtained
by solving ξ(y0, ε, δ) = 0 under the constraint that
y(y0, ε, δ) = 0.
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We distinguish three types of singular solutions to (Xmes)
(see Figure 22):

Type M1. Solutions of type M1 (indicated in blue in the
following figures) satisfy x = 0 for X ∈ I, where I
is an interval centered at X = 0. They occur in two
subtypes: the ones corresponding to λ = O(ε) have
constant finite slope w outside of I, while the ones
corresponding to λ = O(1) vanish on I = (−1, 1).

Type M2. Solutions of type M2 (indicated in green) are
those of slope y ≡ ∓1. These solutions reach {x =
0} at one point only, namely at X = 0.

Type M3. Solutions of type M3 (indicated in black)
never reach {x = 0}.

1−1

u

x

 

X

x

(a) Type M1, λ = O(ε).

1−1
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x
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x

(b) Type M1, λ = O(1).
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X

x

(c) Type M2.
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X

x

(d) Type M3.

FIG. 22: Singular solutions to (Xmes).

For ε > 0, we divide the bifurcation diagram in
(λ, ‖x‖22), in terms of the original variable, into three
overlapping regions, as shown in Figure 23:

R1 := [0, 1]×
[

2

3
+ ν1, 2

]
, (31a)

R2 := [0, ελ2]×
[

2

3
− ν2,

2

3
+ ν2

]
, (31b)

R3 := [0, 1]×
[
0,

2

3
+ ν2

]
\ [0, ελ3]×

[
2

3
− ν3,

2

3
+ ν2

]
,

(31c)

with ν2 > ν1 > 0, ν2 > ν3 > 0, and λ2 > λ3 > 0 large.
In our analysis, we consider λ ∈ [0, 1]. In region R3,

away from the point B =
(
0, 2

3

)
, the perturbation with

ε is regular, and we consider λ and δ as the two main
parameters for our investigation. In regions R1 and R2,
singular solutions exist only for λ ≥ 3

4ε or, equivalently,

for δ ≤ 2√
3
. Hence, in these regions, we need to take

λ ∈
[

3
4ε, 1

]
, i.e. δ ∈

[√
ε, 2√

3

]
; see Figure 24. The two

main parameters we consider in our proofs are here ε and

λ

‖u‖2
2

R1

R2

R3

B1

B2

B3

 

R3

B3
R2

R1

B1

B2

λ

‖u‖22

FIG. 23: Covering of the bifurcation diagram for (Xmes)
by regions R1 (brown), R2 (pink), and R3 (magenta). The
branches of solutions to (Xmes) for ε = 0.01 (dotted curve) and
ε = 0 (solid curve) are displayed. For ε = 0, the upper branch
reduces to the union of a vertical part B1, corresponding to
λ = O(ε), and a horizontal part B2 which corresponds to
λ = O(1). The green dot at B represents the singular solution
of type M2 for λ = 0. The black curve for type M3-solutions
is labeled B3.

δ. We define

Pss := singular solutions of (24) exist. (32)

In Regime (I), such property is satisfied and singular
solutions of type M1 and M2 exist, whereas in Regime
(IV ) there are no singular solutions. Two special cases
are represented by Regime (II) (corresponding to B1),
where singular solutions of type I exist, and Regime (III)
(corresponding to B2 ∪ B3), where we recover singular
solutions of type M1 and M3.

ε0 ε

δ

I

II

III

IV

FIG. 24: Classification diagram of (Xmes) with respect to
the property Pss in εδ-space. Regime (I) is bounded below

by {δ =
√
ε} (blue curve) and above by

{
δ = 2√

3

}
(dashed

gray line). Regime (I): two singular solutions of type M1 and
M2 exist. Regime (II): singular solutions of type M1 exist.
Regime (III): singular solutions of type M2 and M3 exist.
Regime (IV): no singular solutions exist.

By definition, δ = 0 occurs only when ε = 0. The
corresponding, highly degenerate limit gives a singular
orbit of type M1 with very singular structure, as shown
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in 22b. Hence, the whole line B2 corresponds to that one
singular solution.

In R1, we construct singular solutions and show their
persistence for ε ∈ (0, ε0) (with ε0 small) using Strategy

1 as follows. For a fixed λ ∈
[
ε
δ21
, 1
]

with 0 < δ1 <
2√
3
,

i.e. δ < 2√
3
, the presence of a saddle-node equilibrium for

the (x2, y2)-subsystem in chart K2 at (1, 0), on which the
reduced flow w.r.t. ξ2 occurs, allows us to determine the
unique, correct boundary value for y at ξ = −1 by follow-
ing the stable manifold of such equilibrium, which does
not depend on ε and does therefore not change for ε > 0,
backwards until Σin

2 = Σout
1 , and then tracking the flow in

chart K1 backwards until ξ1 = −1. The intrinsic symme-
try of the problem allows us to apply the same argument
to the right part of the orbit, tracking the unstable man-
ifold of the equilibrium (x2, y2) = (1, 0) and following

the flow in chart K1 until ξ1 = 1. When 0 ≤ δ < δ̂,
the proof is analogous except for the fact that we must
rescale δ =

√
εδ̃ and obtain a slower reduced flow. The

assumption that δ < 2√
3

ensures a non-trivial slow drift

(i.e. the portion of the orbit where x = 0 does not re-
duce to a point), which allows us to apply the Exchange
Lemma to infer persistence of solutions for 0 < ε� 1.

For 1√
λ2
≤ δ ≤ δ1, i.e. in R2, we show the exis-

tence of two unique type M1 and type M2 solutions
which coincide when δ = 2√

3
. The proof consists of

two parts: we first consider a small neighborhood of
δ∗ = 2√

3
, i.e. of λ = 3

4ε, where the saddle-node bifur-

cation occurs. We define a suitable bifurcation equation,
which describes the transition from solutions which limit
on type M1-solutions to those which limit on solutions
of type M2. Such equation is constructed by imposing
that ξ2(y0, ε, δ) = 0 when y(y0, ε, δ) = 0, i.e. using Strat-
egy 2. Based on that equation, we infer the presence
of the saddle-node bifurcation, and we calculate the ex-
pansion of the corresponding λ-value λ∗. This expansion
presents logarithmic switchback terms due to both a res-
onance phenomenon in chart K1 and the passage close
to the saddle point (x2, y2) = (1, 0). In a second step,
we consider the branch of solutions that limit on type
M2-solutions for the remaining values of λ in R2. That
branch is then shown to connect to solutions that are
covered by region R3, for which δ = 0. In that case,
the type M2-solution constructed in R2 collapses onto
the line {y1 = 0}, which leads to singular dynamics in
K1. Since such singular nature is due to the w-rescaling
introduced to obtain System (24), this regime is better
studied using System (20) and replacing ε = δ2λ. Since
this region contains a neighborhood of (δ, λ) = (0, 0), we
must perform an additional blow-up of (u, λ) = (0, 0)

and split R3 into two sub-regions: for λ ∈ [λ̃, λ∗] with

λ̃ > 0 and δ = 0, we can show the existence of a unique
singular solution of type M3 which perturbs regularly
when 0 < δ � 1 (in particular δ ≤ 1√

λ3
in R3). When

λ ∈ [0, λ̃], i.e. when R3 and R2 overlap, we have a sin-
gular solution of type M2 as λ → 0, and of type M3 as

δ → 0.

In summary, even unfolding a rather innocent-looking
PDE problem via spatial dynamics in one dimension
leads to a highly interesting double limit problem. In
the next section, we continue this theme and consider a
multi-component stationary PDE problem.

3.6. Fast Reaction Limits

A variety of biological and ecological phenomena
present different intrinsic time-scales, and typically some
processes are faster than others. The singular limit, or
fast reaction limit, expresses the fact that instantaneous
dynamics is also included in the system. For instance,
in a population, there can be a dichotomy of two groups,
and switching between them may be possible. Compared
to other interactions, the switch may seem instantaneous
and give rise to interesting effects such as an aggregation
of individuals or a population density pressure [54, 105].
Fast reaction limits have also been studied in other con-
texts, such as reversible and irreversible chemical reac-
tions [49, 50], bacteria proliferation [104], proteins local-
isation in stem cell division [102], but also to model the
Neolithic spread of farmers in Europe [79, 80].

In the context of predator–prey interactions, the ex-
pression of widely used functional responses can also
come out of a systematic process in which one starts with
a system of more than two equations with simple reac-
tion terms and performs one [28, 113, 151, 171] or more
limits [70, 93].

We consider here the cross-diffusion system, known as
Shigesada–Kawasaki–Teramoto (SKT) model [199], pro-
posed to account for stable inhomogeneous steady states
exhibiting spatial segregation between two species com-
peting for resources. We refer to [53, 146, 202] and ref-
erences therein for more details. The system is given by

∂tu−∆x ((d1 + d12v)u) = f(u, v)u,
∂tv −∆x ((d2 + d21u)v) = g(u, v)v,

(33)

endowed with initial conditions and homogeneous
Neumann boundary conditions. The quanti-
ties u(t, x), v(t, x) ≥ 0 represent the population
densities of two species at time t and position x,
confined on a bounded and connected domain Ω ⊂ RN .
The movements of the individuals on the domain are de-
scribed by non-linear cross-diffusion terms: the positive
coefficients d1, d2 refer to the (standard) diffusion, while
the non-negative cross-diffusion coefficients d12, d21

stand for competition pressure. The reaction terms
describe the growth and the interaction of the two
species, where

f(u, v) = r1 − a1u− b1v,
g(u, v) = r2 − b2u− a2v,

(34)

with the non-negative coefficients ri, ai, bi (i = 1, 2) be-
ing the intrinsic growth, the intra-specific competition
and the inter-specific competition rates.
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Model (33) falls into the class of quasilinear parabolic
systems for which even the existence problem of solu-
tions is not trivial. When d21 = 0 (triangular cross-
diffusion system), it has been shown [116, 121] that the
solutions of (33) can be approximated in a finite time in-
terval by those of a three-component reaction–diffusion
system if the solutions are bounded and provided that a
suitable parameter is small enough. The rigorous proof
of the convergence of solutions of the three-component
reaction–diffusion system towards the solutions of a tri-
angular cross-diffusion system of two equations has been
initially given in dimension N = 1 [59], and later gener-
alized to a wider set of admissible reaction terms and in
any dimension [71].

The convergence of the stationary steady states of
the fast-reaction system towards the ones of the cross-
diffusion system has been also investigated by looking
at bifurcation diagrams with respect to different bifurca-
tion parameters [121, 146]. In particular, it has been ob-
served that the bifurcation structure of the fast-reaction
expands and converges as the time scale parameter be-
comes smaller, sometimes going through major qualita-
tive changes.

When d21 > 0, the full cross-diffusion system (33) can
be obtained, at least formally, as the singular-limit of a
four-component fast-reaction system involving two small
time scale parameters ε, δ, so the problem has a doubly
singular perturbation structure. In this case both species
are split into quiet and active states, denoted by u1, v1

and u2, v2 respectively. Hence, we have that u := u1 +
u2, v := v1 + v2. The resulting reaction–diffusion system
is

∂tu1 − d1∆xu1= f(u, v)u1 + 1
εh(u1, u2, v),

∂tu1 − d̂1∆xu2= f(u, v)u2 − 1
εh(u1, u2, v),

∂tv1 − d2∆xv1= g(u, v)v1 + 1
δk(u, v1, v2),

∂tv2 − d̂2∆xv2= g(u, v)v2 − 1
δk(u, v1, v2),

(Xfr)

together with initial conditions and homogeneous Neu-
mann boundary conditions. Active states are supposed
to have a larger diffusion coefficient than the correspond-
ing quiet state. In particular, we assume that the diffu-

sion coefficients of the active states are given by d̂1 :=

d1 +d12M2 and d̂2 := d2 +d21M2, where M1, M2 are pos-
itive constants such that 0 ≤ u(t, x) ≤ M1, M1 ≥ r1/a1

and 0 ≤ v(t, x) ≤ M2, M2 ≥ r2/a2 in R × Ω. The func-
tions h, k describing the switch between the states are

h(u1, u2, v) =

(
1− v

M2

)
u2 − u1

v

M2
,

k(u, v1, v2) =

(
1− u

M1

)
v2 − v1

u

M1
,

(35)

while the time scale parameters ε, δ describe that the
switch between the two different states happens much
faster than the other processes.

At a formal level, when ε → 0, system (Xfr) re-
duces to an intermediate three-component reaction–

ε

δ

2 eqs.
(full cross-d)

3 eqs.

(1st cross-d, δ)

3 eqs.
(3rd cross-d, ε)

4 eqs.

ε, δ

ε→ 0

ε→ 0

δ → 0 δ → 0

FIG. 25: Schematic representation of the systems of PDEs
in the εδ-plane. The first quadrant corresponds to the four-
equation system (Xfr). The ε-axis corresponds to the reduced
system with three equations for u1, u2, v, being the last equa-
tion with cross-diffusion. The δ-axis corresponds to the re-
duced system with 3 equations for u, v1, v2, being the first
equation with cross-diffusion. Finally, the origin corresponds
to system (33) with two cross-diffusion equations.

cross-diffusion system in the variables u, v1, v2. The
equation for u represents cross-diffusion, while the other
time scale parameter δ is still present in the equations
for v1, v2. Letting δ → 0, the intermediate three-
component system reduces to the full cross-diffusion sys-
tem. The same considerations hold if we let δ → 0 first,
and ε→ 0. In the time scale parameter plane (Figure 25),
the first quadrant corresponds to the four-equation sys-
tem (Xfr). The ε-axis corresponds to the reduced system
with three equations for u1, u2, v, being the last equa-
tion with cross-diffusion. The δ-axis corresponds to the
reduced system with three equations for u, v1, v2, being
the first equation with cross-diffusion. Finally, the ori-
gin corresponds to system (33) with two cross-diffusion
equations.

To the best of the authors’ knowledge, there are cur-
rently no rigorous results of convergence of solutions of
the four-component reaction–diffusion systems to the so-
lutions of the full cross-diffusion system. From a numeri-
cal point of view, despite a greater number of equations,
the structure of system (Xfr) is simpler than the cross-
diffusion system (33), since it presents standard diffusion
terms. For suitable small values of the time scale pa-
rameters ε, δ that leads to a “good” approximation of
the cross-diffusion system (33), the four-component fast-
reaction system tends to be more tractable. In order to
establish how accurate is the approximation, we look at
the bifurcation structure of stationary solutions when ε, δ
become small.

On the one hand, system (33) admits the homogeneous
coexistence state (u∗, v∗) where

u∗ =
r1a2 − r2b1
a1a2 − b1b2

, v∗ =
r2a1 − r1b2
a1a2 − b1b2

,
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which is positive for suitable parameter values (see [53,
146]). It is known that the homogeneous solution under-
goes some bifurcations under parameter variation, and
branches of non-homogeneous solutions originate at these
bifurcation points which correspond to different spatial
distributions (patterns) of the species on the domain.

On the other hand, also system (Xfr) admits the ho-
mogeneous coexistence state (u1∗, u2∗, v1∗, v2∗), given by

u1∗ = u∗

(
1− v∗

M2

)
, u2∗ = u∗

v∗
M2

,

v1∗ = v∗

(
1− u∗

M1

)
, v2∗ = v∗

u∗
M1

.

The homogeneous coexistence state turns out to be in-
dependent of the parameters ε, δ. However, the number
and the position of the bifurcation points on the homoge-
neous branch, and hence the global bifurcation structure,
changes depending on the time scale parameters. Then,
we say that the cross-diffusion system (33) and the four-
component fast-reaction system (Xfr) are equivalent if
they have the same property

Pfr := number of bifurcation points
on the homogeneous branch w.r.t.
the bifurcation parameter.

In the following, we select a set of parameters already
used in [53] and reported in Table I. It corresponds to
the strong competition case a1a2 − b1b2 < 0, in which
the homogeneous coexistence state is unstable in absence
of diffusion. However, stable non-homogeneous solutions
arise on branches originating from bifurcation points on
the homogeneous branch. In Figures 26a–26e we show
different bifurcation diagrams obtained for smaller values
of the parameters ε, δ, considering r1 as bifurcation pa-
rameter and fixing the other parameter values, while Fig-
ure 26f corresponds to the non-triangular cross-diffusion
system (33).

As shown in Figure 26, considering the parameter set
in Table I, we have that Pfr = 2, 4. In Figure 27 the
qualitative classification diagram of system (Xfr) with
respect to the property Pfr in the εδ-plane is shown.
The εδ-plane can be split into two regions. Note also
that in general the εδ-diagram is not symmetric with re-
spect to the diagonal ε = δ, but the intersections of the
separation curves with the axis depend on the parameter
set, in particular on the cross-diffusion coefficients. With
different parameter sets, mainly with smaller standard
diffusion coefficients d, one can obtain more bifurcation
points on the homogeneous branch, and more zones in
the εδ-plane, but its structure remains qualitatively sim-
ilar to Figure 27.

The same study can be performed for other fast-
reaction systems with multiple time scales and their
cross-diffusion limits [60, 70].

r2 a1 a2 b1 b2 d d12 d21 M1 M2

5 2 3 5 4 0.03 3 3 5 2

TABLE I: Set of parameter values relevant to 27. The
set ri, ai, bi, (i = 1, 2) corresponds to the strong-competition
case (a1a2 − b1b2 < 0), namely the homogeneous coexistence
state is unstable for the reaction part.
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(f) cross-diffusion

FIG. 26: Bifurcation diagrams with respect to the bifurcation
parameter r1 and the parameter set in Table I corresponding
to different values of ε and δ. The black line corresponds to
the homogeneous branch, while blue and red lines denote the
bifurcating branches of non-homogeneous solutions. Bifurca-
tion points are marked by circles.

3.7. Coupled Oscillators

As the last example, we proceed to systems on net-
works. As discussed above, the presence of multiple time
scales can lead to oscillations that are relevant in a vari-
ety of physical contexts; whether it is simple relaxation
oscillations [94], mixed mode oscillations [68], or other
examples of oscillatory deterministic dynamics discussed
in Sections 3.1 and 3.3. However, it is not only the oscil-
lations themselves but also the interaction between dif-
ferent oscillatory processes that play an important role
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FIG. 27: Qualitative classification diagram of system (Xfr)
with respect to the property Pfr in the εδ-plane. Region
I: two bifurcation points. Region II: four bifurcation points.
Grey points correspond to the bifurcation diagrams in Figure
26.

in many physical systems: These range from Huygens’
synchronizing clocks [115] to coupled oscillatory dynam-
ics in neuroscience [7, 109]. From a mathematical per-
spective, such systems can be understood as networks of
coupled oscillators. In isolation, each node oscillator has
state z ∈ Rd whose evolution is determined by a smooth
ODE

z′ :=
d

dt
z = F (z) (36)

that gives rise to an asymptotically stable limit cy-
cle γ ⊂ Rd. In a network, nodes interact non-trivially
if there is an edge between the two nodes. Despite the
dynamics of each node being fairly simple, the network
dynamics, namely the dynamics of joint state of all nodes
in the network, can be rich. While synchronization is
probably one of the best understood dynamical phenom-
ena in networks of coupled oscillators [40, 191, 205], even
networks consisting of just a few fully symmetric nodes
can give rise to complicated dynamics [39]. The network
dynamics depend on both the intrinsic dynamical prop-
erties of each node and the network interactions. Here
we will consider networks of weakly coupled relaxation
oscillators, which have two small parameters: The time
scale separation δ as an intrinsic property of the oscilla-
tors themselves and the coupling constant ε that is small
by the assumption of weak coupling.

A network of N identical all-to-all coupled oscillators
consists of N copies of (36) whose states zk ∈ Rd, k ∈
{1, . . . N}, evolve according to

z′k = F (zk) +
η

N

N∑
j=1

H(zj , zk), (37)

where H is a smooth interaction function and η the cou-
pling strength. If the coupling is weak, then the dy-

namics of this system on RNd can be reduced to a lower-
dimensional system [5]: If η = 0 then (37) has a normally
hyperbolic invariant torus γN which persists for small
coupling [109]. Specifically, there exists an η0 > 0 such
that for any η < η0 the system (37) has an attracting
normally hyperbolic invariant torus T as a perturbation
of γN ⊂ RNd. In the following assume that η0 is maxi-
mal with this property; note that, depending on H, this
may allow for ε0 = ∞, for example, for trivial coupling
H = 0. The dynamics of (37) reduce to the interaction
of N circular phase variables that evolve on T, a phase
oscillator network. The dynamics on the invariant torus
are typically referred to as a phase reduction of (37);
cf. [179, 190] for more details on how to compute these.

While a phase reduction is possible for any smooth os-
cillator, in many contexts the oscillators have particular
properties. Relaxation oscillators are characterized by
two time scales leading to a combination of slow quasi-
static and fast transitions. The most famous examples
include the van der Pol oscillator [211] and FitzHugh–
Nagumo oscillator [89, 178]. Consider a planar sys-
tem (36) with state z = (x, y) that evolves according
to

εx′ = f(x, y) (38a)

y′ = g(x, y) (38b)

where f, g : R2 → R are smooth and ε > 0 is the time
scale separation of the fast variable x and the slow vari-
able y. Now assume that (38) gives rise to a family of
relaxation oscillators, that is there is a family of asymp-
totically stable limit cycles γδ ⊂ R2 that converge in the
limit ε → 0 to a union of orbit segments consisting of
part of the critical manifold {(x, y) | f(x, y) = 0} and
line segments that correspond to the fast transitions.

In a series of papers [136, 201], Somers and Kopell
developed a theory to explain rapid synchronization in
networks of coupled relaxation oscillators motivated by
computational neuroscience. Write zk = (xk, yk) for the
state of oscillator k which evolves according to (38) when
uncoupled. The networks analyzed in [136, 201] include
systems of the form

εx′k = f(xk, yk) + δ
N

∑N
j=1 h(xj , xk),

y′k = g(xk, yk),
(Xnet)

for k ∈ {1, . . . , N} and coupling function h without spe-
cific assumptions on the coupling strength ε. Note that
(Xnet) is clearly singularly perturbed in ε due to its fast-
slow structure, while δ = 0 yields a singular limit since we
go from a networked dynamical system to an uncoupled
case without network structure. The analysis [136, 201]
considers the singular limit ε → 0 for network interac-
tions such that the input from one node to the other is
constant on each segment of the critical manifold and
evaluates the “compression” of time it takes a singular
trajectory to traverse segments of the critical manifold.
But even in the context of coupled neurons, other forms
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δ

ε mI
mII

FIG. 28: Sketch of a typical classification diagram expected
for a phase reduction of a network of relaxation oscillators.
The property Pnet divides the parameter space for (Xnet) into
a region (I), where a phase reduction is possible and a re-
gion (II), where we expect a torus breakdown for a generic
coupling function h. The line dividing the region is given
by δ0(ε).

of network interactions h—such as pulsatile coupling—
are relevant.

If both the time scale separation ε for the relaxation
oscillator and the coupling strength δ are small, then
the qualitative dynamics of (Xnet) can be understood in
terms of the unified framework above. Consider the prop-
erty

Pnet := a phase reduction is possible.

We obtain a system of the form (37) by dividing the fast
equations (Xnet) by ε and setting η = δ/ε. By fixing ε
we obtain an η0(ε) such that Pnet holds for all η < η0.
Hence, there is δ0(ε) such that Pnet holds for δ < δ0(ε)
in (Xnet). This leads to the classification of the parameter
space K into a region (I) where Pnet holds and its comple-
ment (II). Depending on the coupling function h, we may
have limε→0 δ0(ε) 6= 0 (for example if h = 0 as mentioned
above). However, for a generic interaction function one
would expect η0(ε) < C for some constant C. In this
case, we have limε→0 δ0(ε) = 0. The resulting classifica-
tion diagram is sketched in Fig. 28.

Izhikevich [120] derived explicit expressions for the dy-
namics on the invariant torus in the relaxation limit. As
noted there, these expressions only describe the doubly
singular limit for paths in parameter space converging to
the limit point (ε, δ) = (0, 0) that lie entirely within re-
gion (I). A first-order truncation of the phase dynamics—
as commonly considered—does not describe the dynam-
ics of the full oscillator network (Xnet) for all points in (I)
since higher-order terms may play a nontrivial role in the
dynamics [38, 41, 152].

While we focused on the interplay of small parame-
ter in the intrinsic oscillator dynamics and the network
coupling, interacting small parameters also arise in dif-
ferent ways in networked systems. In contrast to coupled
relaxation oscillators, one can also consider the case of
coupled oscillators close to a Hopf bifurcation where os-
cillations are almost sinusoidal. Considering both small
bifurcation parameter and weak coupling, one obtains

explicit phase reductions [8] that can—depending on the
order of the approximation—contain nonpairwise inter-
action terms as mentioned above. Limits involving mul-
tiple small parameters also occur if the network connec-
tions are adaptive [96]. This includes for example net-
works of neurons [61, 65, 169] or adaptation in epidemic
networks [97]. Indeed, oscillator networks with adaptive
interactions on have received renewed attention recently,
whether the adaptation is slow (see, e.g., [36, 132, 198])
or fast [6] relative to the oscillatory dynamics. However,
there are only few approaches taking into account dis-
tinct time scales explicitly (cf. [125]) in particular when
multiple small parameters interact. Thus, for adaptive
networks with multiple time scales, the framework pre-
sented here may help classify the dynamics of such cou-
pled oscillator networks.

4. COMPARISON

In Section 3, we have described a wide variety of
doubly-singular limit problems arising in differential
equations. Yet, from the different examples, several
themes emerge for the future of multiple singular limit
systems.

Property Types: We have seen various ways of defin-
ing properties P to obtain double limits which, however,
share quite surprising similarities:

• Individual Pattern Classification: It turned out to
be extremely useful to define P via important types
of patterns, e.g., the number of solutions/roots of
an algebraic equation in Section 2.1, the slow man-
ifold shapes near the transcritical point as well
as the oscillation patterns for the Olsen model in
Section 3.1, the stochastic excitable patterns for
FitzHugh–Nagumo SDEs in Section 3.2, the types
of stationary patterns for MEMS in Section 3.5, and
the number of bifurcation points for fast reaction
PDEs in Section 3.6.

• Phase Space Structure: A strongly related class of
properties emerges once one investigates pattern-
forming properties more on a global level, by study-
ing the entire phase space at once. Examples are
probabilistic quantifiers such as escape probabilities
in Section 3.2, the sign of the first Lyapunov expo-
nent in Section 3.3 for oscillators with shear, or the
global stability for linear PDMPs in Section 3.4.

• Mathematical Features: A last important class of
properties has emerged corresponding to elements
of proofs or mathematical properties. This includes
convexity from Section 2.1, the exchange of partial
derivatives in Section 2.2, the existence of a sta-
tionary distribution in Section 3.4, or the applica-
bility of phase reduction for networks of oscillators
in Section 3.7.
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In view of all the preceding examples, it seems diffi-
cult to imagine that, for practical problems in singularly
perturbed differential equations, there are highly useful
properties that do not fit within the three classes men-
tioned above. In fact, we see that each class asks a differ-
ent type of question, namely: How to understand indi-
vidual/observed patterns? How to understand the global
structure of phase space? What are the technical ingredi-
ents for proofs? Looking forward, it always seems useful
directly at the start of a work on double- (or multiple-)
limits to state carefully the major type of property one
is interested in for dissecting the non-negative parameter
cone K.

Diagram Structures: Even if one has obtained a
suitable partitioning of K, one can now ask, comparing
to other typical double limit problems, whether this par-
titioning via P is “typical” or “common”? Quite surpris-
ingly, a cohesive and well-founded answer to this problem
is possible as many common features seem to emerge in
(ε, δ)→ (0, 0) double-limit diagrams:

• Origin Ill-Posedness: Sometimes it turns out that
classifying the origin (ε, δ) = (0, 0) is ill-posed as P
is not well-defined or virtually impossible to evalu-
ate at the origin. This situation may still be com-
pletely satisfactory from an applied mathematical
perspective. Indeed, if the important regime for
practical applications only occurs for small posi-
tive values, and we can analyze this regime, we do
not really lose major information if we exclude the
origin in certain problems.

• Special Axes: Another common theme is that the
two axes {ε = 0, δ > 0} {ε > 0, δ = 0} have special
or degenerate properties with respect to P. These
axes are often crucial in proofs to construct per-
turbation results, i.e., to infer the scaling laws in
the small parameters via singular limit construc-
tions. Hence, it is often a suitable strategy to first
understand the axes, and then aim for a perturba-
tion, homotopy, or extension of the results to the
interior of the cone K.

• Polynomial Dissection: As expected from classical
scaling law results in physics as well as from the
mathematical viewpoint of singularity/regularity
theory, we often find curves δ = δ(ε) (resp. ε =
ε(δ)) with δ(0) = 0 (resp. ε(0) = 0), which pro-
vide a partitioning of the cone K. Indeed, local
Taylor (or Hölder-type) expansions should appear,
and one can then classify the partitioning of K via
the critical powers/exponents of the leading-order
terms of the curves.

• Special Features: Certain problems, either due to
their inherent problem formulation or due to dy-
namical effects, may lead to non-polynomial or oth-
erwise special dissection. Examples are exponential
terms arising in stochastic metastability as well as

for canard problems, or curves without ε(0) = 0 as
for fast-reaction bifurcation points.

In summary, it seems clear that a complete unifying
classification is impossible but in many cases a rather ex-
haustive description can be provided within a common
framework. First, one can aim to classify the behaviour
on the axis for a single limit problem. Second, one can
aim to obtain a set of (polynomial) curves partitioning
the interior of K including the leading-order scaling ex-
ponents. Third, one aims to check whether there are
any special cases occurring for the polynomial scaling or
lack of connectivity of the curves to the origin; these spe-
cial cases are then treated on a case-by-case basis and/or
using a suitable shift or re-scaling to obtain polynomial
order and/or connecting curves.

Mathematical Techniques: Another important les-
son from the comparison of the different examples of
doubly-singularly perturbed problems is that the ana-
lytical and numerical techniques tend to look very dif-
ferent at first sight. Yet, this seems to be a superficial
view if one delves deeper into each methodology. There
are many common themes appearing. First, numerical
methods tend to become more “stiff” near singular lim-
its, yet analytical methods become far more feasible the
closer we are to the origin within K. This implies that a
natural approach is to combine both approaches within
K by locally using analytical techniques and then extend
the results beyond a small neighborhood of (ε, δ) = (0, 0)
via numerical computations. Second, analytical methods
are always based upon similar principles, regardless of
the differential equation studied:

• Limit equations: In a simple limit with one param-
eter fixed, i.e., on the coordinate axes in the two-
parameter plane, we can often obtain a reduced
problem from which to start.

• Relative scaling: It frequently makes sense to
assume the existence of a relative scaling ε =
ε(δ) (resp. δ = δ(ε)), which provides again one-
parameter families of sub-problems lying on curves
in the interior of K.

• Desingularization: It often makes sense via geomet-
ric desingularization such as blow-up, or just via
purely algebraic scaling, to generate a more com-
plicated differential equation, which better splits
the relative scalings.

• Regularization: Some problems become signifi-
cantly easier if another singular parameter is added,
e.g., noise is well-known to regularize the dynam-
ics in many instances. In fact, we have seen this
effect for excitable systems as well as for stochasti-
cally perturbed limit cycles where a non-hyperbolic
structure collapses.

In summary, also the mathematical techniques to at-
tack very distant-looking singular perturbation problems
are more deeply related than one might anticipate.
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5. OUTLOOK

In this review, we have only been able to illustrate a
more general framework for differential equations with
multiple small parameters for certain classes of prob-
lems. It is evident that many important questions still re-
main. To illustrate the diversity of remaining problems,
we present a few crucial questions that seem tractable
within the next couple of decades:

(Q1) For many double-singular perturbations, multiple
methodological approaches exist and we definitely
need a better understanding how these approaches
can be compared more directly in concrete double-
limit test problems. This approach is very common
in other mathematical disciplines, e.g., in numeri-
cal analysis, which often provides sharp and pre-
cise comparisons of algorithms, or even in classical
analysis, where many problems involve the deriva-
tion of best-possible upper a-priori bounds. As
a concrete example for the case of double limits,
consider the case of multiple time scale stochas-
tic problems discussed in Section 3.2. We have
shown a sample-paths approach to estimate proba-
bilities, but alternatively one could also use a dis-
tributional approach via the Fokker-Planck equa-
tion, non-autonomous dynamics techniques such as
skew-product flows, quasi-stationary distributions,
matched asymptotic expansions, numerical meth-
ods, as well as many other methods to study the
double limit. The same remark applies to all other
examples we have discussed. A detailed discus-
sion of the advantages and disadvantages of every
method for double limits is clearly an open prob-
lem.

(Q2) For many double-limit problems, there are concrete
conjectures left to be proven for certain regions in
the two-parameter diagrams. A good example is
the Olsen model in Section 3.1, where the case of
non-classical relaxation oscillations is solved. Yet,
rigorous proofs for mixed-mode/bursting-type os-
cillations as well as chaotic dynamics are miss-
ing, although the geometry of the orbits has been
well illuminated via singular limits as well as via
numerics. This is actually a common theme for
all the problems, i.e., even though certain scaling
regimes are tractable, it is often extremely challeng-
ing to cover the entire parameter space via rigorous
proofs. An excellent goal for future research could
be to develop better first-principles mathematical
indicators, which tell us much quicker about the dif-
ficulties of certain scaling regions. Currently, trial-
and-error is still often our best approach in this
regard.

(Q3) Another question to follow within future work
is the role played by low regularity in singular-
perturbation problems. An astonishing variety of

small-parameter problems in differential equations
are connected to trajectories, which may have low
regularity. Beyond this, even the important dy-
namical invariant structures (such as attractors)
have low regularity. One example has been pre-
sented in Section 3.3, as shear-induced chaos for
stochastic differential equations is connected to rel-
atively rough individual sample paths and simulta-
neously to a chaotic attractor. Since chaotic attrac-
tors often have fractal dimension, they contribute
another aspect of low regularity. In more generality,
the same theme also appears for chaotic determin-
istic switching problems or in a completely differ-
ent setting in large-scale network limits, where the
regularity of the finite-dimensional problem may
not always transfer to the mean-field or continuum
limit.

(Q4) From a numerical perspective, many crucial chal-
lenges are posed by double-limit dynamics. In
fact, even very classical stiff differential equations
with a single small parameter constitute a vast
area already. Having two different, yet possibly
connected, singular parameters tends to make the
situation much worse. It seems wise to combine
analytical pre-processing, i.e., re-writing the dif-
ferential equations first into the best possible nu-
merical problem, and careful a-priori error esti-
mates, to avoid spurious solutions. A good exam-
ple of re-writing the numerical setting has been dis-
cussed in Section 3.6, where numerical continuation
in the small parameters leads to well-conditioned
boundary-value problems instead of quite poorly
conditioned initial-value problems. It is a very
worthwhile general goal to develop as many numer-
ical methods as possible that have robustness/well-
conditioning against small-parameter limits.

(Q5) Another aspect where many open questions remain
is the interplay between double limits and areas
usually quite far from classical singular-limit prob-
lems for differential equations. An illustrating ex-
ample are limits in coupled oscillators as discussed
in Section 3.7. More generally, one can assume that
the oscillators are coupled on a graph, on a sim-
plicial complex, or a general hypergraph [13, 41].
In these cases, methods from graph theory, combi-
natorics, and geometry/topology are going to enter
the mathematical challenge, and double-limit prob-
lems are not as classical in these areas as they are
for differential equations. Yet, exploring whether
it is possible to translate open questions in double-
limit problems into new areas seems to be promis-
ing.

(Q6) We have often assumed throughout this work that
the studied differential equations have quite a high
degree of regularity in their defining equations as
this is often the most natural starting point, e.g.,
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by invoking a more microscopic modelling approach
to retain smoothness. Even in the case of SODEs
with classical white noise, we have Hölder regular-
ity in Sections 3.2 and 3.3. Only for the PDMP
case in Section 3.4, we have less regularity as dis-
continuous jumps occur. Of course, if one allows
for arbitrary degeneracy in terms of input regular-
ity, then this leads already to very intriguing ques-
tions on the level of existence of a suitable dynam-
ical system, even for ODEs [48, 162]. Already for
ODEs the number of possibilities for bifurcations
in non-smooth systems is extremely large [73, 126]
and their unfoldings via multiple small parameters
involving a regularization is still under active de-
velopment [55, 127]. For non-smooth SDEs and
PDEs, the situation will be even more complicated.
In summary, identifying principles to derive univer-
sally valid and sufficiently low-dimensional double-
limit problems is already challenging once regular-
ity assumptions are relaxed.

(Q7) The biggest, and practically most pressing, remain-
ing challenge is to broaden the applicability of
double-limit results. In fact, the steps (S1)–(S3)
in the introduction apply to many other problems.
For example, double-limit differential equations oc-
cur in homogenization of PDEs [170], in homog-
enization of fast chaos [163], in rate-independent
systems modeling viscoelasticity [174], in burst-
ing oscillations in neuroscience [207], in oscillators
from systems biology [173], in plasma physics [76],
in mean-field analysis of particle systems [45], in
stochastic optimization [46], and in fluid dynam-
ics [99]. Of course, this list could be continued with
many additional fields.

(Q8) From a theoretical perspective, one of the most
challenging conceptual open problems is how to de-
lineate the class of singular perturbation problems,
where one has to carefully apply steps (S1)–(S3),
from those differential equations where direct ab-
stract techniques allow us to neglect the small pa-
rameters easily. For ODEs, several approaches have
been proposed, and one might intuitively think that
it should be easy to sharpen or restrict our defini-
tion of singular perturbation, and use this improve-
ment to transfer certain results to other classes of
differential equations. Unfortunately, this is not
simple. As an example consider the commonly
used definition that a problem is “singular” if a
small parameter multiplies the highest derivative.
Now consider an SDE. If a small parameter makes
the entire drift term vanish in the limit, then we
view the problem as singularly perturbed. Yet, if
one re-writes the SDE via the Fokker-Planck PDE,
then the drift term is generically not the high-
est derivative. Similar struggles appear with other

approaches to find more restrictive definitions for
“singular perturbation” if one wants to transport
them across classes.

Finally, we would like to point out that our general
view on double-limit problems in differential equations
might also have a general impact in several respects, not
only within the areas of the examples we have presented,
for the questions (Q1)–(Q8), but also well beyond:

• The diagram structure, which we have utilized to
summarize the main results for each case, seems to
be well-adapted to the basic case of two parameters
but, using suitable projections, higher-dimensional
generalizations are certainly conceivable.

• Although a complete classification of all possible
scaling laws in all double-limit problems seems out
of reach, a classification into generic cases via an
abstract universality theory, analogous to critical
exponents in physics, may very well exist.

• It seems very promising to consistently reconsider
double-limit problems that might have looked too
challenging in the past. With a more coherent data
base and a more structured classification, one might
be able to search for new methods in virtually any
other doubly-singular limit problem.
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