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Abstract

Despite wide variation among natural languages, there are lin-
guistic properties thought to be universal to all or almost all
natural languages. Here, we consider universals at the semantic
level, in the domain of quantifiers, which are given by the prop-
erties of monotonicity, quantity, and conservativity. We investi-
gate whether these universals might be explained by differences
in complexity. We generate a large collection of quantifiers,
based on a simple yet expressive grammar, and compute both
their complexities and whether they adhere to these universal
properties. We find that quantifiers satisfying semantic univer-
sals are less complex: they have a shorter minimal description
length.
Keywords: semantic universals; generalized quantifiers; logi-
cal grammar; complexity; minimal description length

Introduction
If you have ever tried to learn a new language, you will know
that this can be a challenge. You have to learn a lot of new
things that are different from the language you are used to.
While the world’s languages have many differences, at the
same time, interestingly, most languages also share a strik-
ing amount of similarities, called linguistic universals (Croft,
1990; Goddard & Wierzbicka, 2002; Greenberg, 1966). Here
we study such universals at the semantic level, in the domain of
quantifiers (Barwise & Cooper, 1981; von Fintel & Matthew-
son, 2008).

Quantifiers are semantic objects that express quantitative
relational properties, such as some, most, or all. It has been
observed that the quantifiers that are lexicalized (as mono-
morphemic words) in natural language share certain structural
properties, namely those of monotonicity, quantity, and con-
servativity (Barwise & Cooper, 1981; Keenan & Stavi, 1986).
When looking at the space of all logically possible quantifiers,
however, a large majority does not have these properties.

The question arises why these universals hold. Why do
quantifiers in natural language have precisely these properties?
A possible explanation for these universals lies in the inter-
action between these properties and our cognitive apparatus
(see, e.g., Gibson et al., 2019, Steinert-Threlkeld & Szymanik,
2020). This builds on the idea that the human cognitive system
is structured in such a way that it favors dealing with certain
meanings over others.

In this paper, we explore the following hypothesis: quanti-
fiers having these semantic properties are simpler. Simplicity
as an explanatory concept in cognition has been studied in a

variety of domains (Chater & Vitányi, 2003; Feldman, 2016).
Here we measure simplicity by the concept of minimal descrip-
tion length in a logical grammar (i.e., a language of thought),
a framework that has been used, e.g., in the domain of concept
learning (Feldman, 2000; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008), language acquisition (Piantadosi, Tenenbaum,
& Goodman, 2013), and auditory memory (Planton et al.,
2021). We use this grammar to generate a collection of over
24,000 logically possible quantifiers, and we compute both
their complexities and their adherence to universal properties.
Using a logistic regression model, we show that quantifiers
with universal properties are simpler.

This work extends the small-scale study by Van de Pol,
Steinert-Threlkeld, and Szymanik (2019), that used a measure
from the framework of algorithmic information theory—in
particular, an approximation to Kolmogorov complexity (Li
& Vitányi, 2008) based on the Lempel-Ziv compression algo-
rithm (Lempel & Ziv, 1976)—and tested this for a handful of
quantifier pairs. Their study uses a minimal-pair methodology
to select pairs of quantifiers that are similar but differ with
respect to their adherence to universal properties—a method
that is, unfortunately, not scalable. We overcome these lim-
its of scale by generating a large collection of quantifiers in
a principled manner and analyzing the association between
complexity and universal property for the entire space of quan-
tifiers. Furthermore, to test the robustness of their methods we
also compute and analyse the Lempel-Ziv complexity of all
quantifiers in our study and compare results.

The paper is structured as follows. First, we introduce the
framework of generalized quantifiers and the properties of
monotonicity, quantity, and conservativity, and the semantic
universals in relation to these properties. Then, we define the
logical grammar that we use to generate a formal language
of quantifiers, and we describe the methods that we use to
compute their minimal description lengths and their Lempel-
Ziv complexities. We report on both descriptive statistics and
bootstrapped logistic regression results, by which we analyse
the relation between quantifiers satisfying universal properties
and those that do not, and their level of simplicity. Finally, we
compare our results to previous complexity results by Van de
Pol et al. (2019) and previous learnability results by Steinert-
Threlkeld and Szymanik (2020) and we make suggestions for
future research.



Quantifiers
Quantifiers are the semantic objects that are expressed by
(quantified) determiners,1 such as some, most, or all but
one, which describe quantity in a noun phrase. Determiners
are expressions that can combine with common nouns and a
verb phrase in simple sentences of the form Det N VP, like
“some bicycles are red.” We assume a division between simple
and complex determiners, where some and most are examples
of simple determiners and all but one is an example of a
complex determiner. Roughly speaking, one can think about
this as a division between quantifiers that are lexicalized (as
mono-morphemic words) and those that are not (Barwise &
Cooper, 1981; Keenan & Stavi, 1986).

Generalized Quantifiers
We use the framework of generalized quantifiers to represent
the meaning of quantifiers as a collection of models.2 A model
consists of a collection of objects and their properties. It can
be seen as a snapshot of a particular part of the world. For
instance, for the expression “some bicycles are red,” we look
at the collection of bicycles and the collection of red things,
and when those overlap we know that there are some bicycles
that are red.

Formally, a modelM = 〈M, A, B〉 consists of a domain,
the set M, and two subset of that domain, sets A, B ⊆ M,
where the sets A and B possibly overlap. Functionally, M
is called the domain of discourse, A is called the restrictor,
and B is called the scope. The sentence “some bicycles are red”
then means that there are some objects in A that are also in B.
In addition, we enumerate the objects in the domain, giving
us an ordering < over M, which allows to model sentences
in which the order of the objects matter, such as “the first 3
bicycles are red.” See Figure 1 for an illustration of a model
of the formM = 〈M, A, B,<〉.

A quantifier can then be represented and defined by a quan-
tifier expression: a formula in a set-theoretic language. The
quantifier is the collection of all models in which that quan-
tifier expression is true. For instance, the meaning of the
quantifier all can be represented by the expression A ⊆ B.
Formally, we would express the meaning of all by JallK =
{〈M, A, B〉 : A ⊆ B}.

Universal Properties of Quantifiers
Using the framework of generalized quantifiers we can define
various properties. A quantifier is monotone3 when it is either
upward or downward monotone. Monotonicity expresses that

1Not all determiners express quantifiers. For instance, the demon-
strative determiners—like those—do not express a quantifier. We
refer to determiners that express quantifiers as quantified determiners.

2Specifically, we use the framework of type 〈1,1〉 generalized
quantifiers. For a textbook treatment of generalized quantifiers see
Peters and Westerståhl (2006). For more details on computational
representations of quantifiers, see Szymanik (2016)

3We use the general term monotone to refer to what is also called
right monotone for type 〈1,1〉 quantifiers and monotone in the second
argument for arbitrary quantifiers. In our case (that of type 〈1,1〉
quantifiers) this means that a quantifier is monotone in the set B.

Figure 1: An example of a model of the form M =
〈M, A, B,<〉. The numbers represent the objects in the do-
main and they correspond to the position of the objects in the
order <. The sentence “the first 3 bicycles are red” is true
in this model, as the first three objects in A (the objects with
position 1, 3, and 5 in the order < over the whole domain) are
also in B.

the meaning of a quantifier does not change when expanding
or contracting its scope, i.e., the set B. Formally, it is defined
as follows. Let Q be a generalized quantifier over ordered
models.4 Q is upward monotone when: if 〈M, A, B,<〉 ∈
Q and B ⊆ B′, then 〈M, A, B′,<〉 ∈ Q. Analogously, Q is
downward monotone when: if 〈M, A, B,<〉 ∈ Q and B′ ⊆ B,
then 〈M, A, B′,<〉 ∈ Q. For example, the quantifier some is
upward monotone, few is downward monotone, and exactly
two is neither upward nor downward monotone and therefore
non-monotone.5 The following universal has been proposed
with respect to monotonicity:

• All simple (quantified) determiners express monotone quan-
tifiers (Barwise & Cooper, 1981).6

The property of quantity7 expresses that the meaning of a
quantifier only depends on the sizes of A ∩ B, A \ B, B \ A,
and M \ (A∪ B). In contrast, its meaning does not depend on
the ordering of the objects in the domain or on their individual
identities or names. Formally, we say that Q is quantitative
when: if 〈M, A, B,<〉 ∈ Q and for M′, A′, B′ with A′, B′ ⊆
M′ it holds that A ∩ B, A \ B, B \ A, and M \ (A ∪ B) have
the same cardinalities as A′ ∩ B′, A′ \ B′, B′ \ A′, and M′ \
(A′ ∪ B′), and <′ is an order over M′, then 〈M′, A′, B′,<′

〉 ∈ Q. For example, the quantifier three is quantitative, and
the quantifier the first 3 is not quantitative. The following
universal has been proposed with respect to quantity:

4Note that the order < over the models plays no role in the defini-
tion of monotonicity. Neither does it play a role in the definition in
conservativity. Since it does play a role in the definition of the quan-
tity property, we include it for the sake of uniformity of presentation.

5We consider the literal meaning of quantifiers, not including their
implicatures or presuppositions.

6In fact, the original claim by Barwise and Cooper (1981) is a bit
weaker, including not just monotone quantifiers, but also conjunctions
of monotone quantifiers.

7The term quantity was introduced by Van Benthem (1984), it
refers to the same property that is called logical by Keenan and Stavi
(1986) and isomorphism closure by Peters and Westerståhl (2006).



• All simple (quantified) determiners express quantitative
quantifiers (Keenan & Stavi, 1986).

The property of conservativity8 expresses that to verify
a quantifier, the objects in B that are not in A are not rel-
evant: the meaning of such a quantifier is really about the
noun and less so about the verb phrase. Formally, we say
that Q is conservative when: 〈M, A, B,<〉 ∈ Q if and only
if 〈M, A, A ∩ B,<〉 ∈ Q. For example, the quantifier most
is conservative, and exactly as many A’s as B’s is not con-
servative. The following universal has been proposed with
respect to conservativity:

• All simple (quantified) determiners express conservative
quantifiers (Barwise & Cooper, 1981; Higginbotham &
May, 1981; Keenan, 1981; Keenan & Stavi, 1986).9

We interpret these universals as constraints on language in
the form of general tendencies or biases, not as fully strict de-
marcations. An extensive discussion and defense of these uni-
versals falls outside of the scope of the current study. Instead,
we focus on how these properties relate to the complexity or
simplicity of quantifiers and whether simplicity could explain
the pervasiveness of these properties in natural language.

Methods
We use the following methods to generate a large body of
generalized quantifiers, in order to study their complexities in
relation to the universal properties being present or not.

Grammar and Language
To study the universal properties of quantifiers we need to
look both at quantifiers that do and that do not have these
properties. We use a principled way of generating a large space
of generalized quantifiers with and without these properties.
In particular, we use a logical grammar to generate quantifier
expressions, over which the meaning of a quantifier10 can be
computed.

We define a simple yet expressive grammar that consists of
basic building blocks and standard rules for how to combine
them. In particular, the grammar is defined by the collection of
operators presented in Table 1. These consist of standard set-
theoretic operators (∪,∩,\, | · |,⊆), integer operators (=,>),
and boolean operators (¬,∧,∨). In order to investigate the
property of quantity, we need an operator that is sensitive to
the ordering over objects. In fact, whenever we say set, we
mean a tuple of a set and an ordering < over the elements in
the set. We include such an index-like operator, namely ι(·, ·),

8The term conservativity was introduced by Keenan (1981), it
refers to the same property that is called lives on by Barwise and
Cooper (1981), and intersectivity by Higginbotham and May (1981).

9In fact, the original claim is even stronger, namely that all (quanti-
fied) determiners express conservative quantifiers, not just the simple
ones. See also Zuber and Keenan (2019) for an alternative definition
of the conservativity constraint.

10The meaning of a quantifier is defined by the collection of models
in which a quantifier expression is true. This is also called the
extension of a quantifier.

operator type gloss

∪ SET × SET→ SET union
∩ SET × SET→ SET intersection
\ SET × SET→ SET setminus

ι(·, ·) INT × SET→ SINGLETON SET ‘object at index’
| · | SET→ INT cardinality
⊆ SET × SET→ BOOL subset equal
= INT × INT→ BOOL integer equality
> INT × INT→ BOOL integer larger than
¬ BOOL→ BOOL negation
∧ BOOL × BOOL→ BOOL and
∨ BOOL × BOOL→ BOOL or

Table 1: The collection of operators used to generate quanti-
fier expressions. Note that the sets are ordered, which is of
relevance for operator ι.

that, given a set and an index position, returns a singleton with
the object at that index position, given the ordering over the
set.

In addition to the operators, the grammar has two vari-
ables {A, B}—where A and B are placeholders for sets (with
an ordering)—and a collection of constants {0,1, . . . , s},11

which represent integers. This grammar defines a formal lan-
guage with quantifier expressions, which are the expressions
that return a Boolean value and that can be formed by using
the given variables, constants, and operators, adhering to the
type restrictions of the operators.

Minimal Expression Length
Quantifier expressions in this language are not unique. The
quantifier at most one can, for instance, be defined both
by (2 > |A ∩ B|) and by ¬ (|A ∩ B| > 1). The meanings of
these expressions are equivalent: they are true in exactly the
same models. We define the length of an expression by the
number of operators in it. So the length of expression (2 >
|A∩ B|) is three and the length of expression ¬ (|A ∩ B| > 1)
is four. The minimal expression length of a quantifier in
this language is the length of the shortest expression for this
quantifier.

We generate the collection of quantifier expressions by the
following procedure. We first generate all expressions of
length 1, one by one, by going through the list of operators.
For each expression we compute its meaning for all models
from size 1 to size s. We compare this meaning to the mean-
ings of expressions that we stored so far. If the meaning is
not yet present, we add this expression and its meaning to our
collection. If the meaning was already present, this means we
already included an equivalent expression of equal or shorter
length. Then we do not add it and continue with the next
quantifier expression in line. When finished with all possi-
ble quantifiers of length one, we continue with quantifiers of

11Where s is the maximum model size that is considered, which,
to limit computational blow-up, we set to 8.



length two and repeat the procedure up to length `. This way,
we generated all 24,632 semantically unique quantifiers ex-
pressions, defined by this grammar, up until expression length
five.12 By virtue of this procedure, we know that all quantifier
expressions in this language are of minimal expression length:
their meanings cannot be expressed by a shorter combination
of operators in our grammar.

Encoding Quantifier Meanings
To compare the meanings of the quantifier expressions, we
generate binary representations of those meanings. This works
as follows. We first encode each model as a sequence of
symbols. We give the different subareas in a model a label,
say A ∩ B 7→ d, A \ B 7→ e, and B \ A 7→ f ,13 we label the
objects by their area, and place each label in a sequence, based
on the order of the objects. The order of those labels in the
sequence represents the order over the objects. For example,
the model in Figure 1 is encoded by d f d f d f ee. Then, we
enumerate all models from small to large, up to a maximum
model size s, in a fixed order, in particular, in the lexicographic
order over the encodings of the model, i.e., the dictionary order
over the labels (d, e, f ).14 Finally, for each of the models in
the sequence, we put a 1 when the quantifier expression is
true in that model and a 0 otherwise. This results in a unique
representation for each quantifier meaning, up to a certain
model size. Unsurprisingly, computationally we can only deal
with finite sequences, and given the exponential blow-up of
the binary encodings of quantifiers in terms of the maximum
model size s, we limit the maximum model size to eight.

In addition to minimal expression length, we also compute
the Lempel-Ziv complexity of each quantifier, for comparison
with the results of the study by Van de Pol et al. (2019). This
complexity measure is computed over the binary encoding of
the quantifier meanings, using the Lempel-Ziv compression
algorithm, which measures the number of unique subpatterns,
when scanning the string from left to right. For further details,
we refer to Van de Pol et al. (2019).

Results
Using the described procedures we generated a collection of
24,632 quantifiers. For each quantifier we computed whether
they have the property of monotonicity, quantity, and conser-
vativity, and we computed their complexity scores, both for
minimal expression length (ML) and Lempel-Ziv complexity
(LZ). To facilitate the comparison of the results for ML and
LZ, we normalized the complexity data by computing their
z-scores. The code that we used for generating these data and

12The number of quantifier expressions grows exponentially in the
maximum expression length `. To manage this exponential blow-up
we limited the maximum expression length to five.

13We are assuming the property of extensionality, i.e., that the
subarea M \ (A ∪ B) does not matter for the meaning of a quantifier
(Szymanik, 2016). Therefore the four subareas in Figure 1 are now
reduced to three.

14In principle, any fixed ordering of the models can be used for
this.

YES NO

monotonicity -0.12 0.05
quantity -0.15 0.03

conservativity -0.16 0.02

Table 2: Averge normalized ML scores of quantifiers with
versus without universal property.
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Figure 2: Percentage of universal property per minimal ex-
pression length.

the data themselves can be found at https://github.com/
ivdpol/QuantifierComplexity/tree/CogSci2021.

Descriptive Statistics
The descriptive statistics show a negative relation between
minimal expression length (ML) and universal property. For
each universal property, the average ML of quantifiers with
that property is consistently lower than the average ML of
quantifiers without that property. See Table 2. The fact that
these difference are only small is unsurprising given the high
total average of raw ML scores (of 4.84) over all quantifiers
(ML scores range between 1 and 5).15 Furthermore, for each
universal property, the average level of universal property
shows a negative relation to ML: the lower the minimal ex-
pression length, the higher the proportion of quantifiers with a
universal property. See Figure 2.

Logistic Regression Results
In addition to considering the descriptive statistics, we per-
formed a logistic regression for each universal property, with
the universal property as dependent variable and complexity
as the independent variable. We used bootstrap resampling
to compute a distribution over the regression coefficient, and
we compared this to a baseline, which we generated by ran-

15This high total average follows from the fact that the number of
different expressions grows exponential in expression length.

https://github.com/ivdpol/QuantifierComplexity/tree/CogSci2021
https://github.com/ivdpol/QuantifierComplexity/tree/CogSci2021


domly shuffling the actual complexity values over the different
quantifiers, each time before taking a sample. We computed
the coefficient for the original complexity data and the ran-
domly shuffled complexity data in pairs, over the same random
samples of quantifiers.16 The regression results for all three
universal properties that we looked at show a negative relation
between ML complexity and the universal property, i.e., a
positive relation between simplicity and universal property.
See Figure 3.

Monotonicity The logistic regression results for monotonic-
ity show a negative relation between ML and monotonicity.
The difference (per sample) between the coefficient of the orig-
inal (normalized) ML data and the coefficient of the randomly
shuffled (normalized) ML scores has a mean of -0.15 (95% CI
[-0.24, -0.06]). See Figure 3.

Quantity The logistic regression results for quantity show
a negative relation between ML and quantity. The difference
(per sample) between the coefficient of the original (normal-
ized) ML data and the coefficient of the randomly shuffled
(normalized) ML scores has a mean of -0.15 (95% CI [-0.26,
-0.04]). See Figure 3.

Conservativity The logistic regression results for conserva-
tivity show a negative relation between ML and conservativity.
The difference (per sample) between the coefficient of the orig-
inal (normalized) ML data and the coefficient of the randomly
shuffled (normalized) ML scores has a mean of -0.15 (95% CI
[-0.28, -0.03]). See Figure 3.

Summary For all three semantic universals, these regres-
sions show that, in general, quantifiers satisfying the universal
are simpler than those that do not: they have a shorter minimal
description length.

Lempel-Ziv Complexity
In addition to minimal description length, we also measured
Lempel-Ziv complexity, as used in (Van de Pol et al., 2019),
and ran the same regressions as for minimal description length.
The results for Lempel-Ziv complexity show a negative re-
lation between LZ and monotonicity, a positive relation be-
tween LZ and conservativity, and no relationship between LZ
and quantity, both for the descriptive statistics and the boot-
strapped logistic regression results. The average (normalized)
LZ complexity for quantifiers with versus without the univer-
sal property is -0.19 versus 0.08 for monotonicity, 0.18 versus
-0.02 for conservativity, and 0.03 versus 0.00 for quantity. The
logistic regression results are as follows. For monotonicity,
the difference (per sample) between the coefficient of the orig-
inal (normalized) LZ data and the coefficient of the randomly
shuffled (normalized) LZ scores has a mean of -0.28 (95% CI

16We use a sample size of 5,000 quantifiers and we repeat the
proces for 20,000 random samples.

[-0.37, -0.18]). For conservativity, the difference (per sample)
between the coefficient of the original (normalized) LZ data
and the coefficient of the randomly shuffled (normalized) LZ
scores has a mean of 0.20 (95% CI [0.08, 0.33]). For quantity,
the difference (per sample) between the coefficient of the orig-
inal (normalized) LZ data and the coefficient of the randomly
shuffled (normalized) LZ scores has a mean of 0.03 (95% CI
[-0.09, 0.15]).

Discussion
We investigated the complexity of quantifiers in relation to
semantic universals. We studied whether a bias towards sim-
plicity could explain the semantic universals of monotonicity,
quantity, and conservativity. We used the framework of gener-
alized quantifiers and a simple yet expressive logical grammar
(language of thought) to generate a formal language of over
24,000 quantifier expressions. For each of these quantifiers
we computed its minimal expression length and whether it has
the properties of monotonicity, quantity, and conservativity.
We found for each of these universal properties that quantifier
expressions that satisfy them are simpler: they have a shorter
minimal expression length. This suggests the following ex-
planation for semantic universals in the domain of quantifiers:
meanings satisfying semantic universals are simpler.

We used the framework of generalized quantifiers because it
is a well-defined and well-studied framework for representing
the meaning of quantifiers. Our aim in defining the grammar
that we used to build a large collection of quantifier expres-
sions, was to keep it as basic as possible, while at the same
time capturing a significant part of natural language quantifiers
and in addition also going beyond natural language. Where
possible, we avoided complex operators that are combinations
of more basic operators, thereby not including single operators
for, i.e., “is an empty set” or “is of an even number.” Since
there are multiple collections of basic set-theoretical and logi-
cal operators that are definable in terms of each other, i.e., that
in the infinite case define the same collection of expressions,
there is not just one unique grammar that satisfies these ob-
jectives. Future work includes investigating such alternative
grammars and comparing the results.

The descriptive statistics showed that there are quite a few
expressions with the relatively short expression length of two,
that do not satisfy one or more universal properties. The ma-
jority of these expressions include the ι operator—which takes
as input and integer i and a set P and returns a singleton with
the the i-th object in P—and all but one of these expressions
include an integer constant. For example, for i ∈ {1, . . . ,8} the
expression A ⊆ ι(i, B) is an expression in our language that
has length two and that does not satisfy monotonicity, quantity,
or conservativity. To our knowledge, there is no quantifier at-
tested in natural language that expresses this meaning, which
could be described by “either there is no A or there is exactly
one A, which is the i-th B.” The prevalence of the ι operator
in these expressions suggests that the the ι operator might be
a less basic operator. Future work could include refining the



Figure 3: Bootstrapped logistic regression results for normalized ML scores.

definition of expression length by assigning different weights
to the operators, and possibly giving extra weight to the ι
operator.

Both the descriptive and logistic regression results for mini-
mal expression length show a robust but relatively small differ-
ence in complexity between quantifiers with versus without the
universal properties. This suggests on the one hand that a bias
for simplicity might indeed be an explanatory factor for these
semantic universals and, on the other hand, that simplicity is
likely not the only force at play in shaping the semantic prop-
erties of quantifiers. Other likely candidates that could play a
role in either pushing towards or away from these properties
are cultural evolution (Carcassi, Steinert-Threlkeld, & Szy-
manik, 2019) and communicative needs (Steinert-Threlkeld,
2020).

In addition to the minimal expression length, we also com-
puted the Lempel-Ziv complexities of the quantifiers, for com-
parison with the results of the study by Van de Pol et al. (2019).
For monotonicity, the LZ results for our collection of quanti-
fiers were in line both with the ML results and with the LZ
results in the study by Van de Pol et al. (2019)—that looked
at a small collection of quantifiers, and compared between
minimally differing pairs of quantifiers satisfying and not sat-
isfying a universal. Monotone quantifiers were found to have a
lower complexity in all of these three cases. For conservativity,
however, the LZ results were neither in line with the ML re-
sults that we found in the current study, nor with the LZ results
in the study by Van de Pol et al. (2019). Their study showed
no effect for the relation between LZ and conservativity, while
our study found opposite effects for LZ and ML with respect
to conservativity: conservative quantifiers have a lower ML
but a higher LZ than non-conservative quantifiers. Also for
quantity, the LZ results were neither in line with the current
ML results nor with the LZ results in the study by Van de Pol
et al. (2019). While their results for LZ in relation to quantity

were not fully robust, they did find a tendency towards quanti-
tative quantifiers being less complex. Our LZ results, however,
showed no effect for the relation to conservativity, while our
ML results, on the other hand, do show the effect that quanti-
tative quantifiers are less complex, i.e., have a lower ML score.
Given the differences between the LZ results for the current
large-scale study and the LZ results for the small-scale study
by Van de Pol et al. (2019), we conclude that the Lempel-Ziv
complexity as a measure of complexity for quantifiers in the
context of semantic universals does not scale up robustly.

It is commonly expected that simplicity and learnability
will correlate (Chater & Vitányi, 2003), and it is plausible that
when a quantifier is simpler it is easier to learn. For mono-
tonicity and quantity these simplicity results indeed agree
with the learnability results in the study by Steinert-Threlkeld
and Szymanik (2020). They found that monotone quantifiers
are easier to learn by a recurrent neural network than non-
monotone quantifiers, and idem for quantitative quantifiers.
For conservativity, they found no difference in learnability
for conservative versus non-conservative quantifiers. It is an
ungoing debate whether conservative quantifiers are indeed
easier to learn. While Hunter and Lidz (2013) found that
conservative quantifiers were easier to learn for children, this
effect was not found in a recent replication of their study by
Spenader and de Villiers (2019).

To further corroborate these results, future work would
ideally scale up our methods even further, both in terms of
the maximum expression length of the quantifiers that are
being considered, as well as in terms of the maximum model
size over which the meanings of the quantifiers are evaluated.
Given the computational blow-up inherent in the methods
used, it is not trivial how such scaling could be achieved. For
further comparison between the simplicity and learnability
of quantifiers in the context of semantic universals, similar
methods as used by Steinert-Threlkeld and Szymanik (2020)



could be used to compute the learnability of the collection
of quantifiers that we considered here. Finally, one could
extend the present framework to other domains than quantifiers
and possibly induce a maximally explanatory grammar over
multiple domains.
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