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Fast Differentiable Matrix Square Root and
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Abstract—Computing the matrix square root and its inverse in a differentiable manner is important in a variety of computer vision tasks.
Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz
iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the
forward pass or the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root
and the inverse square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is
to use Matrix Padé Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation
using the matrix sign function. A series of numerical tests show that both methods yield considerable speed-up compared with the SVD or
the NS iteration. Moreover, we validate the effectiveness of our methods in several real-world applications, including de-correlated batch
normalization, second-order vision transformer, global covariance pooling for large-scale and fine-grained recognition, attentive
covariance pooling for video recognition, and neural style transfer. The experiments demonstrate that our methods can also achieve
competitive and even slightly better performances. Code is available at https://github.com/KingJamesSong/FastDifferentiableMatSqrt.

Index Terms—Differentiable Matrix Decomposition, Decorrelated Batch Normalization, Global Covariance Pooling, Neural Style Transfer.
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1 INTRODUCTION

Consider a positive semi-definite matrix A. The principle
square root A

1
2 and the inverse square root A−

1
2 are mathe-

matically of practical interests, mainly because some desired
spectral properties can be obtained by such transformations.
An exemplary illustration is given in Fig. 1. As can be
seen, the matrix square root can shrink/stretch the feature
variances along with the direction of principle components,
which is known as an effective spectral normalization for
covariance matrices. The inverse square root, on the other
hand, can be used to whiten the data, i.e., make the data
has a unit variance in each dimension. These appealing
spectral properties are very useful in many computer vision
applications. In Global Covariance Pooling (GCP) [1], [2], [3],
[4] and other related high-order representation methods [5],
[6], the matrix square root is often used to normalize the
high-order feature, which can benefit some classification
tasks like general visual recognition [2], [3], [5], fine-grained
visual categorization [7], and video action recognition [6].
The inverse square root is used as the whitening transform to
eliminate the feature correlation, which is widely applied in
decorrelated Batch Normalization (BN) [8], [9], [10] and other
related models that involve the whitening transform [11],
[12]. In the field of neural style transfer, both the matrix
square root and its inverse are adopted to perform successive
Whitening and Coloring Transform (WCT) to transfer the
style information for better generation fidelity [13], [14], [15].

To compute the matrix square root, the standard method
is via Singular Value Decomposition (SVD). Given the real
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Fig. 1: Exemplary visualization of the matrix square root
and its inverse. Given the original data X∈R2×n, the matrix
square root performs an effective spectral normalization by
stretching the data along the axis of small variances and
squeezing the data in the direction with large variances,
while the inverse square root transforms the data into the
uncorrelated structure that has unit variance in all directions.

symmetric matrix A, its matrix square root is computed as:

A
1
2 = (UΛUT )

1
2 = UΛ

1
2 UT (1)

where U is the eigenvector matrix, and Λ is the diagonal
eigenvalue matrix. As derived by Ionescu et al. [16], the
partial derivative of the eigendecomposition is calculated as:

∂l

∂A
= U

(
KT � (UT ∂l

∂U
) + (

∂l

∂Λ
)diag

)
UT (2)

where l is the loss function, � denotes the element-wise
product, and ()diag represents the operation of setting the
off-diagonal entries to zero. Despite the long-studied theories
and well-developed algorithms of SVD, there exist two
obstacles when integrating it into deep learning frameworks.
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One issue is the back-propagation instability. For the matrix
K defined in eq. (2), its off-diagonal entry is Kij=1/(λi−λj),
where λi and λj are involved eigenvalues. When the two
eigenvalues are close and small, the gradient is very likely
to explode, i.e., Kij→∞. This issue has been solved by some
methods that use approximation techniques to estimate the
gradients [4], [17], [18]. The other problem is the expen-
sive time cost of the forward eigendecomposition. As the
SVD is not supported well by GPUs [19], performing the
eigendecomposition on the deep learning platforms is rather
time-consuming. Incorporating the SVD with deep models
could add extra burdens to the training process. Particularly
for batched matrices, modern deep learning frameworks,
such as Tensorflow and Pytorch, give limited optimization
for the matrix decomposition within the mini-batch. They
inevitably use a for-loop to conduct the SVD one matrix by
another. However, how to efficiently perform the SVD in
the context of deep learning has not been touched by the
research community.

To avoid explicit eigendecomposition, one commonly
used alternative is the Newton-Schulz iteration (NS itera-
tion) [20], [21] which modifies the ordinary Newton iteration
by replacing the matrix inverse but preserving the quadratic
convergence. Compared with SVD, the NS iteration is rich
in matrix multiplication and more GPU-friendly. Thus, this
technique has been widely used to approximate the matrix
square root in different applications [1], [3], [9]. The forward
computation relies on the following coupled iterations:

Yk+1 =
1

2
Yk(3I− ZkYk),Zk+1 =

1

2
(3I− ZkYk)Zk (3)

where Yk and Zk converge to A
1
2 and A−

1
2 , respectively.

Since the NS iteration only converges locally (i.e., ||A||2<1),
we need to pre-normalize the initial matrix and post-
compensate the resultant approximation as Y0= 1

||A||F A

and A
1
2 =
√
||A||FYk. Each forward iteration involves 3

matrix multiplications, which is more efficient than the
forward pass of SVD. However, the backward pass of the
NS iteration takes 14 matrix multiplications per iteration.
Consider that the NS iteration often takes 5 iterations to
achieve reasonable performances [3], [9]. The backward pass
is much more time-costing than the backward algorithm
of SVD. The speed improvement could be larger if a more
efficient backward algorithm is developed.

To address the drawbacks of SVD and NS iteration, i.e.
the low efficiency in either the forward or backward pass,
we derive two methods that are efficient in both forward
and backward propagation to compute the differentiable
matrix square root and its inverse. In the forward pass
(FP), we propose using Matrix Taylor Polynomial (MTP)
and Matrix Padé Approximants (MPA) for approximating
the matrix square root. The former approach is slightly faster
but the latter is more numerically accurate. Both methods
yield considerable speed-up compared with the SVD or the
NS iteration in the forward computation. The proposed MTP
and MPA can be also used to approximate the inverse square
root without any additional computational cost. For the
backward pass (BP), we consider the gradient function as a
Lyapunov equation and propose an iterative solution using
the matrix sign function. The backward pass costs fewer
matrix multiplications and is more computationally efficient

than the NS iteration. Our proposed iterative Lyapunov
solver applies to both the matrix square root and the inverse
square root. The only difference is that deriving the gradient
of inverse square root requires 3 more matrix multiplications
than computing that of matrix square root.

Through a series of numerical tests, we show that the
proposed MTP-Lya and MPA-Lya deliver consistent speed
improvement for different batch sizes, matrix dimensions,
and some hyper-parameters (e.g., degrees of power series to
match and iteration times). Moreover, our proposed MPA-
Lya consistently gives a better approximation of the matrix
square root and its inverse than the NS iteration. Besides the
numerical tests, we conduct extensive experiments in a num-
ber of computer vision applications, including decorrelated
batch normalization, second-order vision transformer, global
covariance pooling for large-scale and fine-grained image
recognition, attentive global covariance pooling for video
action recognition, and neural style transfer. Our methods
can achieve competitive performances against the SVD and
the NS iteration with the least amount of time overhead.
Our MPA is suitable in use cases where the high precision
is needed, while our MTP works in applications where
the accuracy is less demanded but the efficiency is more
important. The contributions of the paper are twofold:

• We propose two fast methods that compute the differ-
entiable matrix square root and the inverse square root.
The forward propagation relies on the matrix Taylor
polynomial or matrix Padé approximant, while an iterative
backward gradient solver is derived from the Lyapunov
equation using the matrix sign function.

• Our proposed algorithms are validated by a series of
numerical tests and several real-world computer vision
applications. The experimental results demonstrate that
our methods have a faster calculation speed and also have
very competitive performances.

This paper is an expanded version of [22]. In the confer-
ence paper [22], the proposed fast algorithms only apply to
the matrix square root A

1
2 . For the application of inverse

square root A−
1
2 , we have to solve the linear system or

compute the matrix inverse. However, both techniques are
not GPU-efficient enough and could add extra computational
burdens to the training. In this extended manuscript, we
target the drawback and extend our algorithm to the case
of inverse square root, which avoids the expensive compu-
tation and allows for faster calculation in more application
scenarios. Compared with computing the matrix square root,
computing the inverse square root consumes the same time
complexity in the FP and requires 3 more matrix multiplica-
tions in the BP. The paper thus presents a complete solution to
the efficiency issue of the differentiable spectral layer. Besides
the algorithm extension, our method is validated in more
computer vision applications: global covariance pooling for
image/video recognition and neural style transfer. We also
shed light on the peculiar incompatibility of NS iteration and
Lyapunov solver discussed in Sec. 5.7.3.

The rest of the paper is organized as follows: Sec. 2
describes the computational methods and applications of
differentiable matrix square root and its inverse. Sec. 3
introduces our method that computes the end-to-end matrix
square root, and Sec. 4 presents the extension of our method
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to the inverse square root. Sec. 5 provides the experimental
results, the ablation studies, and some in-depth analysis.
Finally, Sec. 6 summarizes the conclusions.

2 RELATED WORK

In this section, we recap the previous approaches that
compute the differentiable matrix square root and the inverse
square root, followed by a discussion on the usage in some
applications of deep learning and computer vision.

2.1 Computational Methods

Ionescu et al. [16], [23] first formulate the theory of matrix
back-propagation, making it possible to integrate a spectral
meta-layer into neural networks. Existing approaches that
compute the differentiable matrix square root and its inverse
are mainly based on the SVD or NS iteration. The SVD
calculates the accurate solution but suffers from backward
instability and expensive time cost, whereas the NS iteration
computes the approximate solution but is more GPU-friendly.
For the backward algorithm of SVD, several methods have
been proposed to resolve this gradient explosion issue [4],
[17], [18], [24], [25]. Wang et al. [17] propose to apply Power
Iteration (PI) to approximate the SVD gradient. Recently,
Song et al. [4] propose to rely on Padé approximants to
closely estimate the backward gradient of SVD.

To avoid explicit eigendecomposition, Lin et al. [1] pro-
pose to substitute SVD with the NS iteration. Following this
work, Li et al. [2] and Huang et al. [8] adopt the NS iteration
in the task of global covariance pooling and decorrelated
batch normalization, respectively. For the backward pass
of the differentiable matrix square root, Lin et al. [1] also
suggest viewing the gradient function as a Lyapunov equa-
tion. However, their proposed exact solution is infeasible
to compute practically, and the suggested Bartels-Steward
algorithm [26] requires explicit eigendecomposition or Schur
decomposition, which is again not GPU-friendly. By contrast,
our proposed iterative solution using the matrix sign function
is more computationally efficient and achieves comparable
performances against the Bartels-Steward algorithm (see the
ablation study in Sec. 5.7.3).

2.2 Applications

2.2.1 Global Covariance Pooling

One successful application of the differentiable matrix square
root is the Global Covariance Pooling (GCP), which is a
meta-layer inserted before the FC layer of deep models to
compute the matrix square root of the feature covariance.
Equipped with the GCP meta-layers, existing deep models
have achieved state-of-the-art performances on both generic
and fine-grained visual recognition [1], [2], [3], [4], [7], [27],
[28], [29]. Inspired by recent advances of transformers [30],
Xie et al. [5] integrate the GCP meta-layer into the vision
transformer [31] to exploit the second-order statistics of
the high-level visual tokens, which solves the issue that
vision transformers need pre-training on ultra-large-scale
datasets. More recently, Gao et al. [6] propose an attentive
and temporal-based GCP model for video action recognition.

2.2.2 Decorrelated Batch Normalization
Another line of research proposes to use ZCA whitening,
which applies the inverse square root of the covariance to
whiten the feature, as an alternative scheme for the standard
batch normalization [32]. The whitening procedure, a.k.a
decorrelated batch normalization, does not only standardize
the feature but also eliminates the data correlation. The
decorrelated batch normalization can improve both the
optimization efficiency and generalization ability of deep
neural networks [8], [9], [10], [11], [12], [33], [34], [35], [36].

2.2.3 Whitening and Coloring Transform
The WCT [13] is also an active research field where the differ-
entiable matrix square root and its inverse are widely used.
In general, the WCT performs successively the whitening
transform (using inverse square root) and the coloring trans-
form (using matrix square root) on the multi-scale features
to preserve the content of current image but carrying the
style of another image. During the past few years, the WCT
methods have achieved remarkable progress in universal
style transfer [13], [37], [38], domain adaptation [15], [39],
and image translation [14], [40].

Besides the three main applications discussed above,
there are still some minor applications, such as semantic
segmentation [41] and super resolution [42].

TABLE 1: Summary of mathematical notation and symbol.

Ap Matrix p-th power.
I Identity matrix.

|| · ||F Matrix Frobenius norm.(n
k

)
Binomial coefficients calculated as n!/k!(n−k)!.

vec(·) Unrolling matrix into vector.
⊗ Matrix Kronecker product.

sign(A) Matrix sign function calculated as A(A2)−
1
2

∂l
∂A

Partial derivative of loss l w.r.t. matrix A

3 FAST DIFFERENTIABLE MATRIX SQUARE ROOT

Table 1 summarizes the notation we will use from now on.
This section presents the forward pass and the backward
propagation of our fast differentiable matrix square root. For
the inverse square root, we introduce the derivation in Sec. 4.

3.1 Forward Pass
3.1.1 Matrix Taylor Polynomial
We begin with motivating the Taylor series for the scalar case.
Consider the following power series:

(1− z) 1
2 = 1−

∞∑
k=1

∣∣∣( 1
2

k

)∣∣∣zk (4)

where

(
1
2

k

)
denotes the binomial coefficients that involve

fractions, and the series converges when z<1 according to
the Cauchy root test. For the matrix case, the power series
can be similarly defined by:

(I− Z)
1
2 = I−

∞∑
k=1

∣∣∣( 1
2

k

)∣∣∣Zk (5)
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where I is the identity matrix. Let us substitute Z with (I−A),
we can obtain:

A
1
2 = I−

∞∑
k=1

∣∣∣( 1
2

k

)∣∣∣(I−A)k (6)

Similar with the scalar case, the power series converge
only if ||(I − A)||p<1, where || · ||p denotes any vector-
induced matrix norms. To circumvent this issue, we can
first pre-normalize the matrix A by dividing ||A||F. This
can guarantee the convergence as ||I− A

||A||F ||p<1 is always

satisfied. Afterwards, the matrix square root A
1
2 is post-

compensated by multiplying
√
||A||F. Integrated with these

two operations, eq. (6) can be re-formulated as:

A
1
2 =

√
||A||F ·

(
I−

∞∑
k=1

∣∣∣( 1
2

k

)∣∣∣(I− A

||A||F
)k
)

(7)

Truncating the series to a certain degree K yields the MTP
approximation for the matrix square root. For the MTP of
degree K , K−1 matrix multiplications are needed.

3.1.2 Matrix Padé Approximant

Fig. 2: The function (1− z) 1
2 in the range of |z| < 1 and its

approximation including Taylor polynomial, Newton-Schulz
iteration, and Padé approximants. The Padé approximants
consistently achieves a better estimation for other approxi-
mation schemes for any possible input values.

The MTP enjoys the fast calculation, but it converges
uniformly and sometimes suffers from the so-called ”hump
phenomenon”, i.e., the intermediate terms of the series grow
quickly but cancel each other in the summation, which
results in a large approximation error. Expanding the series
to a higher degree does not solve this issue either. The
MPA, which adopts two polynomials of smaller degrees
to construct a rational approximation, is able to avoid this
caveat. To visually illustrate this impact, we depict the
approximation of the scalar square root in Fig. 2. The Padé
approximants consistently deliver a better approximation
than NS iteration and Taylor polynomial. In particular, when
the input is close to the convergence boundary (z=1) where
NS iteration and Taylor polynomials suffer from a larger
approximation error, our Padé approximants still present a
reasonable estimation. The superior property also generalizes
to the matrix case.

The MPA is computed as the fraction of two sets of
polynomials: denominator polynomial

∑N
n=1 qnz

n and nu-
merator polynomial

∑M
m=1 pmz

m. The coefficients qn and
pm are pre-computed by matching to the corresponding
Taylor series. Given the power series of scalar in eq. (4),

Fig. 3: Python-like pseudo-codes for Padé coefficients.

the coefficients of a [M,N ] scalar Padé approximant are
computed by matching to the series of degree M+N+1:

1−
∑M
m=1 pmz

m

1−
∑N
n=1 qnz

n
= 1−

M+N∑
k=1

∣∣∣( 1
2

k

)∣∣∣zk (8)

where pm and qn also apply to the matrix case. This matching
gives rise to a system of linear equations:

−
∣∣∣( 1

2

1

)∣∣∣− q1 = −p1,

−
∣∣∣( 1

2

2

)∣∣∣+
∣∣∣( 1

2

1

)∣∣∣q1 − q2 = −p2,

−
∣∣∣( 1

2

M

)∣∣∣+
∣∣∣( 1

2

M − 1

)∣∣∣q1 + · · · − qM = pM ,

· · · · · ·

(9)

Solving these equations directly determines the coefficients.
We give the Python-like pseudo-codes in Fig. 3. The numer-
ator polynomial and denominator polynomials of MPA are
given by:

PM = I−
M∑
m=1

pm(I− A

||A||F
)m,

QN = I−
N∑
n=1

qn(I− A

||A||F
)n.

(10)

Then the MPA for approximating the matrix square root is
computed as:

A
1
2 =

√
||A||FQ−1N PM . (11)

Compared with the MTP, the MPA trades off half of the ma-
trix multiplications with one matrix inverse, which slightly
increases the computational cost but converges more quickly
and delivers better approximation abilities. Moreover, we
note that the matrix inverse can be avoided, as eq. (11) can be
more efficiently and numerically stably computed by solving
the linear system QNA

1
2 =
√
||A||FPM . According to Van et

al. [43], diagonal Padé approximants (i.e., PM and QN have
the same degree) usually yield better approximation than the
non-diagonal ones. Therefore, to match the MPA and MTP
of the same degree, we set M=N=K−1

2 .
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TABLE 2: Comparison of forward operations. For the matrix
square root and its inverse, our MPA/MTP consumes the
same complexity. The cost of 1 NS iteration is about that of
MTP of 4 degrees and about that of MPA of 2 degrees.

Op. MTP MPA NS iteration
Mat. Mul. K−1 (K−1)/2 3 × #iters
Mat. Inv. 0 1 0

Table 2 summarizes the forward computational com-
plexity. As suggested in Li et al. [3] and Huang et al. [9],
the iteration times for NS iteration are often set as 5 such
that reasonable performances can be achieved. That is, to
consume the same complexity as the NS iteration does, our
MTP and MPA can match to the power series up to degree
16. However, as illustrated in Fig. 4, our MPA achieves
better accuracy than the NS iteration even at degree 8. This
observation implies that our MPA is a better option in terms
of both accuracy and speed.

3.2 Backward Pass
Though one can manually derive the gradient of the MPA
and MTP, their backward algorithms are computationally
expensive as they involve the matrix power up to degree K ,
where K can be arbitrarily large. Relying on the AutoGrad
package of deep learning frameworks can be both time-
and memory-consuming since the gradients of intermediate
variables would be computed and the matrix inverse of MPA
is involved. To attain a more efficient backward algorithm,
we propose to iteratively solve the gradient equation using
the matrix sign function. Given the matrix A and its square
root A

1
2 , since we have A

1
2 A

1
2 =A, a perturbation on A

leads to:
A

1
2 dA

1
2 + dA

1
2 A

1
2 = dA (12)

Using the chain rule, the gradient function of the matrix
square root satisfies:

A
1
2
∂l

∂A
+

∂l

∂A
A

1
2 =

∂l

∂A
1
2

(13)

As pointed out by Li et al. [1], eq. (13) actually defines the
continuous-time Lyapunov equation (BX+XB=C) or a
special case of Sylvester equation (BX+XD=C). The closed-
form solution is given by:

vec(
∂l

∂A
) =

(
A

1
2 ⊗ I + I⊗A

1
2

)−1
vec(

∂l

∂A
1
2

) (14)

where vec(·) denotes unrolling a matrix to vectors, and ⊗ is
the Kronecker product. Although the closed-form solution
exists theoretically, it cannot be computed in practice due to
the huge memory consumption of the Kronecker product.
Supposing that both A

1
2 and I are of size 256×256, the

Kronecker product A
1
2⊗I would take the dimension of

2562×2562, which is infeasible to compute or store. Another
approach to solve eq. (13) is via the Bartels-Stewart algo-
rithm [26]. However, it requires explicit eigendecomposition
or Schulz decomposition, which is not GPU-friendly and
computationally expensive.

To attain a GPU-friendly gradient solver, we propose
to use the matrix sign function and iteratively solve the
Lyapunov equation. Solving the Sylvester equation via

matrix sign function has been long studied in the literature
of numerical analysis [44], [45], [46]. One notable line of
research is using the family of Newton iterations. Consider
the following continuous Lyapunov function:

BX + XB = C (15)

where B refers to A
1
2 in eq. (13), C represents ∂l

∂A
1
2

, and X

denotes the seeking solution ∂l
∂A . Eq. (15) can be represented

by the following block using a Jordan decomposition:

H =

[
B C
0 −B

]
=

[
I X
0 I

] [
B 0
0 −B

] [
I X
0 I

]−1
(16)

The matrix sign function is invariant to the Jordan canonical
form or spectral decomposition. This property allows the use
of Newton’s iterations for iteratively solving the Lyapunov
function. Specifically, we have:

Lemma 1 (Matrix Sign Function [21]). For a given matrix
H with no eigenvalues on the imaginary axis, its sign function
has the following properties: 1) sign(H)2 = I; 2) if H has the
Jordan decomposition H=TMT−1, then its sign function satisfies
sign(H)=Tsign(M)T−1.

We give the complete proof in the Supplementary Ma-
terial. Lemma 1.1 shows that sign(H) is the matrix square
root of the identity matrix, which indicates the possibility
of using Newton’s root-finding method to derive the solu-
tion [21]. Here we also adopt the Newton-Schulz iteration,
the modified inverse-free and multiplication-rich Newton
iteration, to iteratively compute sign(H). This leads to the
coupled iteration as:

Bk+1 =
1

2
Bk(3I−B2

k),

Ck+1 =
1

2

(
−B2

kCk + BkCkBk + Ck(3I−B2
k)
)
.

(17)

The equation above defines two coupled iterations for solving
the Lyapunov equation. Since the NS iteration converges only
locally, i.e., converges when ||H2

k−I||<1, here we divide H0

by ||B||F to meet the convergence condition. This normal-
ization defines the initialization B0= B

||B||F and C0= C
||B||F .

Relying on Lemma 1.2, the sign function of eq. (16) can be
also calculated as:

sign(H) = sign
( [B C

0 −B

] )
=

[
I 2X
0 −I

]
(18)

As indicated above, the iterations in eq. (17) have the
convergence:

lim
k→∞

Bk = I, lim
k→∞

Ck = 2X (19)

After iterating k times, we can get the approximate solution
X= 1

2Ck. Instead of choosing setting iteration times, one can
also set the termination criterion by checking the convergence
||Bk − I||F<τ , where τ is the pre-defined tolerance.

Table 3 compares the backward computation complexity
of the iterative Lyapunov solver and the NS iteration. Our
proposed Lyapunov solver spends fewer matrix multiplica-
tions and is thus more efficient than the NS iteration. Even
if we iterate the Lyapunov solver more times (e.g., 7 or 8),
it still costs less time than the backward calculation of NS
iteration that iterates 5 times.
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TABLE 3: Comparison of backward operations. For the
inverse square root, our Lyapunov solver uses marginally
3 more matrix multiplications. The cost of 1 NS iteration is
about that of 2 iterations of Lyapunov solver.

Op. Lya (Mat. Sqrt.) Lya (Inv. Sqrt.) NS iteration
Mat. Mul. 6 × #iters 3 + 6 × #iters 4 + 10 × #iters
Mat. Inv. 0 0 0

4 FAST DIFFERENTIABLE INVERSE SQUARE ROOT

In this section, we introduce the extension of our algorithm
to the inverse square root.

4.1 Forward Pass
4.1.1 Matrix Taylor Polynomial
To derive the MTP of inverse square root, we need to match
to the following power series:

(1− z)− 1
2 = 1 +

∞∑
k=1

∣∣∣(− 1
2

k

)∣∣∣zk (20)

Similar with the procedure of the matrix square root in eqs. (5)
and (6), the MTP approximation can be computed as:

A−
1
2 = I +

∞∑
k=1

∣∣∣(− 1
2

k

)∣∣∣(I− A

||A||F
)k (21)

Instead of the post-normalization of matrix square root by
multiplying

√
||A||F as done in eq. (7), we need to divide√

||A||F for computing the inverse square root:

A−
1
2 =

1√
||A||F

·
(
I +

∞∑
k=1

∣∣∣(− 1
2

k

)∣∣∣(I− A

||A||F
)k
)

(22)

Compared with the MTP of matrix square root in the
same degree, the inverse square root consumes the same
computational complexity.

4.1.2 Matrix Padé Approximant
The matrix square root A

1
2 of our MPA is calculated as√

||A||FQ−1N PM . For the inverse square root, we can directly
compute the inverse as:

A−
1
2 = (

√
||A||FQ−1N PM )−1 =

1√
||A||F

P−1M QN (23)

The extension to inverse square root comes for free as it
does not require additional computation. For both the matrix
square root and inverse square root, the matrix polynomials
QN and PM need to be first computed, and then one matrix
inverse or solving the linear system is required.

Another approach to derive the MPA for inverse square
root is to match the power series in eq. (20) and construct the
MPA again. The matching is calculated as:

1 +
∑M
m=1 rmz

m

1 +
∑N
n=1 snz

n
= 1 +

M+N∑
k=1

∣∣∣(− 1
2

k

)∣∣∣zk (24)

where rm and sn denote the new Padé coefficients. Then the
matrix polynomials are computed as:

RM = I +
M∑
m=1

rm(I− A

||A||F
)m,

SN = I +
N∑
n=1

sn(I− A

||A||F
)n.

(25)

The MPA for approximating the inverse square root is
calculated as:

A−
1
2 =

1√
||A||F

S−1N RM . (26)

This method for deriving MPA also leads to the same
complexity. Notice that these two different computation
methods are equivalent to each other. Specifically, we have:

Proposition 1. The diagonal MPA 1√
||A||F

S−1N RM is equivalent

to the diagonal MPA 1√
||A||F

P−1M QN , and the relation pm=−sn
and qn=− rm hold for any m=n.

We give the detailed proof in Supplementary Material.
Since two sets of MPA are equivalent, we adopt the imple-
mentation of inverse square root in eq. (23) throughout our
experiments, as it shares the same PM and QN with the
matrix square root.

4.2 Backward Pass

For the inverse square root, we can also rely on the iterative
Lyapunov solver for the gradient computation. Consider the
following relation:

A
1
2 A−

1
2 = I. (27)

A perturbation on both sides leads to:

dA
1
2 A−

1
2 + A

1
2 dA−

1
2 = dI. (28)

Using the chain rule, we can obtain the gradient equation
after some arrangements:

∂l

∂A
1
2

= −A−
1
2

∂l

∂A−
1
2

A−
1
2 . (29)

Injecting this equation into eq. (13) leads to the re-
formulation:

A
1
2
∂l

∂A
+

∂l

∂A
A

1
2 = −A−

1
2

∂l

∂A−
1
2

A−
1
2

A−
1
2
∂l

∂A
+

∂l

∂A
A−

1
2 = −A−1

∂l

∂A−
1
2

A−1.

(30)

As can be seen, now the gradient function resembles the
continuous Lyapunov equation again. The only difference
with eq. (13) is the r.h.s. term, which can be easily computed
as −(A−

1
2 )2 ∂l

∂A− 1
2

(A−
1
2 )2 with 3 matrix multiplications.

For the new iterative solver of the Lyapunov equation
BX+XB=C, we have the following initialization:

B0 =
A−

1
2

||A− 1
2 ||F

= ||A 1
2 ||FA−

1
2

C0 =
−A−1 ∂l

∂A− 1
2
A−1

||A− 1
2 ||F

= −||A 1
2 ||FA−1

∂l

∂A−
1
2

A−1.

(31)

Then we use the coupled NS iteration to compute the
gradient ∂l

∂A= 1
2Ck. Table 3 presents the complexity of

the backward algorithms. Compared with the gradient of
matrix square root, this extension marginally increases the
computational complexity by 3 more matrix multiplications,
which is more efficient than a matrix inverse or solving a
linear system.
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5 EXPERIMENTS

In the experimental section, we first perform a series of
numerical tests to compare our proposed method with SVD
and NS iteration. Subsequently, we evaluate our methods
in several real-world applications, including decorrelated
batch normalization, second-order vision transformer, global
covariance pooling for image/video recognition, and neural
style transfer. The implementation details are kindly referred
to the Supplementary Material.

5.1 Baselines

In the numerical tests, we compare our two methods
against SVD and NS iteration. For the various computer
vision experiments, our methods are compared with more
differentiable SVD baselines where each one has its specific
gradient computation. These methods include (1) Power
Iteration (PI), (2) SVD-PI [17], (3) SVD-Taylor [4], [18], and
(4) SVD-Padé [4]. We put the detailed illustration of baseline
methods in the Supplementary Material.

5.2 Numerical Tests

To comprehensively evaluate the numerical performance
and stability, we compare the speed and error for the input
of different batch sizes, matrices in various dimensions,
different iteration times of the backward pass, and different
polynomial degrees of the forward pass. In each of the
following tests, the comparison is based on 10, 000 random
covariance matrices and the matrix size is consistently
64×64 unless explicitly specified. The error is measured by
calculating the Mean Absolute Error (MAE) and Normalized
Root Mean Square Error (NRMSE) of the matrix square root
computed by the approximate methods (NS iteration, MTP,
and MPA) and the accurate method (SVD).

For our algorithm of fast inverse square root, since the
theory behind the algorithm is in essence the same with
the matrix square root, they are expected to have similar
numerical properties. The difference mainly lie in the forward
error and backward speed. Thereby, we conduct the FP error
analysis and the BP speed analysis for the inverse square
root in Sec. 5.2.1 and Sec. 5.2.2, respectively. For the error
analysis, we compute the error of whitening transform by
||σ(A−

1
2 X)−I||F where σ(·) denotes the extracted eigen-

values. In the other numerical tests, we only evaluate the
properties of the algorithm for the matrix square root.

5.2.1 Forward Error versus Speed
Both the NS iteration and our methods have a hyper-
parameter to tune in the forward pass, i.e., iteration times
for NS iteration and polynomial degrees for our MPA and
MTP. To validate the impact, we measure the speed and
error of both matrix square root and its inverse for different
hyper-parameters. The degrees of our MPA and MTP vary
from 6 to 18, and the iteration times of NS iteration range
from 3 to 7. As can be observed from Fig. 4, our MTP has the
least computational time, and our MPA consumes slightly
more time than MTP but provides a closer approximation.
Moreover, the curve of our MPA consistently lies below that
of the NS iteration, demonstrating our MPA is a better choice
in terms of both speed and accuracy.

Fig. 4: The comparison of speed and error in the FP for
the matrix square root (left) and the inverse square root
(right). Our MPA computes the more accurate and faster
solution than the NS iteration, and our MTP enjoys the
fastest calculation speed.

Fig. 5: The speed comparison in the backward pass. Our
Lyapunov solver is more efficient than NS iteration as fewer
matrix multiplications are involved. Our solver for inverse
square root only slightly increases the computational cost.

5.2.2 Backward Speed versus Iteration
Fig. 5 compares the speed of our backward Lyapunov solver
and the NS iteration versus different iteration times. The
result is coherent with the complexity analysis in Table 3: our
Lyapunov solver is much more efficient than NS iteration.
For the NS iteration of 5 times, our Lyapunov solver still
has an advantage even when we iterate 8 times. Moreover,
the extension of our Lyapunov solver for inverse square root
only marginally increases the computational cost and is sill
much faster than the NS iteration.

Fig. 6: Speed comparison for each method versus different
batch sizes. Our methods are more batch-efficient than the
SVD or NS iteration.

5.2.3 Speed versus Batch Size
In certain applications such as covariance pooling and in-
stance whitening, the input could be batched matrices instead
of a single matrix. To compare the speed for batched input,
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we conduct another numerical test. The hyper-parameter
choices follow our experimental settings in decorrelated
batch normalization. As seen in Fig. 6, our MPA-Lya and
MTP-Lya are consistently more efficient than the NS iteration
and SVD. To give a concrete example, when the batch size is
64, our MPA-Lya is 2.58X faster than NS iteration and 27.25X
faster than SVD, while our MTP-Lya is 5.82X faster than the
NS iteration and 61.32X faster than SVD.

As discussed before, the current SVD implementation
adopts a for-loop to compute each matrix one by one within
the mini-batch. This accounts for why the time consumption
of SVD grows almost linearly with the batch size. For the
NS iteration, the backward pass is not as batch-friendly
as our Lyapunov solver. The gradient calculation requires
measuring the trace and handling the multiplication for each
matrix in the batch, which has to be accomplished ineluctably
by a for-loop. Our backward pass can be more efficiently
implemented by batched matrix multiplication.

Fig. 7: The speed comparison (left) and the error comparison
(middle and right) for matrices in different dimensions. Our
MPA-Lya is consistently faster and more accurate than NS
iteration for different matrix dimensions. Since the SVD
is accurate by default, other approximate methods are
compared with SVD to measure the error.

5.2.4 Speed and Error versus Matrix Dimension
In the last numerical test, we compare the speed and error
for matrices in different dimensions. The hyper-parameter
settings also follow our experiments of ZCA whitening. As
seen from Fig. 7 left, our proposed MPA-Lya and MTP-
Lya consistently outperform others in terms of speed. In
particular, when the matrix size is very small (<32), the NS
iteration does not hold a speed advantage over the SVD. By
contrast, our proposed methods still have competitive speed
against the SVD. Fig. 7 right presents the approximation error
using metrics MAE and NRMSE. Both metrics agree well
with each other and demonstrate that our MPA-Lya always
has a better approximation than the NS iteration, whereas
our MTP-Lya gives a worse estimation but takes the least
time consumption, which can be considered as a trade-off
between speed and accuracy.

5.3 Decorrelated Batch Normalization
As a substitute of ordinary BN, the decorrelated BN [8]
applies the ZCA whitening transform to eliminate the
correlation of the data. Consider the reshaped feature map
X∈RC×BHW . The whitening procedure first computes its
sample covariance as:

A=(X− µ(X))(X− µ(X))T+εI (32)

where A∈RC×C , µ(X) is the mean of X, and ε is a small
constant to make the covariance strictly positive definite.

Afterwards, the inverse square root is calculated to whiten
the feature map:

Xwhitend = A−
1
2 X (33)

By doing so, the eigenvalues of X are all ones, i.e., the feature
is uncorrelated. During the training process, the training
statistics are stored for the inference phase. We insert the
decorrelated BN layer after the first convolutional layer of
ResNet [47], and the proposed methods and other baselines
are used to compute A−

1
2 .

Table 4 displays the speed and validation error on
CIFAR10 and CIFAR100 [48]. The ordinary SVD with clipping
gradient (SVD-Clip) is inferior to other SVD baselines, and
the SVD computation on GPU is slower than that on CPU.
Our MTP-Lya is 1.16X faster than NS iteration and 1.32X
faster than SVD-Padé, and our MPA-Lya is 1.14X and 1.30X
faster. Furthermore, our MPA-Lya achieves state-of-the-art
performances across datasets and models. Our MTP-Lya has
comparable performances on ResNet-18 but slightly falls
behind on ResNet-50. We guess this is mainly because the
relatively large approximation error of MTP might affect
little on the small model but can hurt the large model. On
CIFAR100 with ResNet-50, our MPA-Lya slightly falls behind
NS iteration in the average validation error. As a larger and
deeper model, ResNet-50 is likely to have worse-conditioned
matrices than ResNet-18. Since our MPA involves solving a
linear system, processing a very ill-conditioned matrix could
lead to some round-off errors. In this case, NS iteration might
have a chance to slightly outperform our MPA-Lya. However,
this is a rare situation; our MPA-Lya beats NS iteration in
most following experiments.

5.4 Global Covariance Pooling
For the application of global covariance pooling, we evaluate
our method in three different tasks, including large-scale
visual recognition, fine-grained visual categorization, and
video action recognition. Since the GCP method requires the
very accurate matrix square root [4], our MTP-Lya cannot
achieve reasonable performances due to the relatively large
approximation error. Therefore, we do not take it into account
for comparison throughout the GCP experiments.

5.4.1 Large-scale Visual Recognition

Fig. 8: Overview of the GCP network [2], [3], [4] for large-
scale and fine-grained visual recognition.

Fig. 8 displays the architecture of a typical GCP network.
Different from the standard CNNs, the covariance square
root of the last convolutional feature is used as the global
representation. Considering the final convolutional feature
X∈RB×C×HW , a GCP meta-layer first computes the sample
covariance as:

P = XĪXT , Ī =
1

N
(I− 1

N
11T ) (34)

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3216339

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on November 16,2022 at 17:42:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 4: Validation error of ZCA whitening methods. The covariance matrix is of size 1×64×64. The time consumption is
measured for computing the inverse square root (BP+FP). For each method, we report the results based on five runs.

Methods Time (ms)
ResNet-18 ResNet-50

CIFAR10 CIFAR100 CIFAR100
mean±std min mean±std min mean±std min

SVD-Clip 3.37 4.88±0.25 4.65 21.60±0.39 21.19 20.50±0.33 20.17
SVD-PI (GPU) 5.27 4.57±0.10 4.45 21.35±0.25 21.05 19.97±0.41 19.27

SVD-PI 3.49 4.59±0.09 4.44 21.39±0.23 21.04 19.94±0.44 19.28
SVD-Taylor 3.41 4.50±0.08 4.40 21.14±0.20 20.91 19.81±0.24 19.26

SVD-Padé 3.39 4.65±0.11 4.50 21.41±0.15 21.26 20.25±0.23 19.98
NS Iteration 2.96 4.57±0.15 4.37 21.24±0.20 21.01 19.39±0.30 19.01

Our MPA-Lya 2.61 4.39±0.09 4.25 21.11±0.12 20.95 19.55±0.20 19.24
Our MTP-Lya 2.56 4.49±0.13 4.31 21.42±0.21 21.24 20.55±0.37 20.12

where Ī represents the centering matrix, I denotes the identity
matrix, and 1 is a column vector whose values are all ones,
respectively. Afterwards, the matrix square root is conducted
for normalization:

Q , P
1
2 = (UΛUT )

1
2 = UΛ

1
2 UT (35)

where the normalized covariance matrix Q is fed to the FC
layer. Our method is applied to calculate Q.

TABLE 5: Comparison of validation accuracy (%) on Im-
ageNet [49] and ResNet-50 [47]. The covariance is of size
256×256×256, and the time consumption is measured for
computing the matrix square root (FP+BP).

Methods Time (ms) Top-1 Acc. Top-5 Acc.
SVD-Taylor 2349.12 77.09 93.33

SVD-Padé 2335.56 77.33 93.49
NS iteration 164.43 77.19 93.40

Our MPA-Lya 110.61 77.13 93.45

Table 5 presents the speed comparison and the validation
error of GCP ResNet-50 [47] models on ImageNet [49]. Our
MPA-Lya not only achieves very competitive performance
but also has the least time consumption. The speed of our
method is about 21X faster than the SVD and 1.5X faster
than the NS iteration.

5.4.2 Fine-grained Visual Recognition

TABLE 6: Comparison of validation accuracy on fine-grained
benchmarks and ResNet-50 [47]. The covariance is of size
10×64×64, and the time consumption is measured for
computing the matrix square root (FP+BP).

Methods Time (ms) Birds Aircrafts Cars
SVD-Taylor 32.13 86.9 89.9 92.3

SVD-Padé 31.54 87.2 90.5 92.8
NS iteration 5.79 87.3 89.5 91.7

Our MPA-Lya 3.89 87.8 91.0 92.5

In line with other GCP works [2], [3], [4], after training on
ImageNet, the model is subsequently fine-tuned on each fine-
grained dataset. Table 6 compares the time consumption and
validation accuracy on three commonly used fine-grained
benchmarks, namely Caltech University Birds (Birds) [50],
FGVC Aircrafts (Aircrafts) [51], and Stanford Cars (Cars) [52].
As can be observed, our MPA-Lya consumes 50% less time
than the NS iteration and is about 8X faster than the SVD.

Moreover, the performance of our method is slightly better
than other baselines on Birds [50] and Aircrafts [51]. The
evaluation result on Cars [52] is also comparable.

5.4.3 Video Action Recognition

Fig. 9: Architecture of the temporal-attentive GCP network
for video action recognition [6]. The channel and spatial
attention is used to make the covariance more attentive.

Besides the application of image recognition, the GCP
methods can be also used for the task of video recognition [6].
Fig. 9 displays the overview of the temporal-attentive GCP
model for video action recognition. The temporal covariance
is computed in a sliding window manner by involving both
intra- and inter-frame correlations. Supposing the kernel
size of the sliding window is 3, then temporal covariance is
computed as:

Temp.Cov.(Xl) = Xl−1X
T
l−1 + XlX

T
l + Xl+1X

T
l+1︸ ︷︷ ︸

intra−frame covariance

+ Xl−1X
T
l + XlX

T
l−1 + · · ·+ Xl+1X

T
l︸ ︷︷ ︸

inter−frame covariance

(36)

Finally, the matrix square root of the attentive temporal-
based covariance is computed and passed to the FC layer.
The spectral methods are used to compute the matrix square
root of the attentive covariance Temp.Cov.(Xl).

We present the validation accuracy and time cost for the
video action recognition in Table 7. For the computation
speed, our MPA-Lya is about 1.74X faster than the NS itera-
tion and is about 10.82X faster than the SVD. Furthermore,
our MPA-Lya achieves the best performance on HMDB51,
while the result on UCF101 is also very competitive.

To sum up, our MPA-Lya has demonstrated its general ap-
plicability in the GCP models for different tasks. In particular,
without the sacrifice of performance, our method can bring
considerable speed improvements. This could be beneficial
for faster training and inference. In certain experiments
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TABLE 7: Validation top-1/top-5 accuracy (%) on
HMBD51 [53] and UCF101 [54] with backbone TEA R50 [55].
The covariance matrix is of size 16×128×128, and the time
consumption is measured for computing the matrix square
root (BP+FP).

Methods Time (ms) HMBD51 UCF101
SVD-Taylor 76.17 73.79/93.84 95.00/99.60

SVD-Padé 75.25 73.89/93.79 94.13/99.47
NS Iteration 12.11 72.75/93.86 94.16/99.50

Our MPA-Lya 6.95 74.05/93.99 94.24/99.58

such as fine-grained classification, the approximate methods
(MPA-Lya and NS iteration) can marginally outperform
accurate SVD. This phenomenon has been similarly observed
in related studies [3], [4], [9], and one likely reason is that the
SVD does not have as healthy gradients as the approximate
methods. This might negatively influence the optimization
process and consequently the performance would degrade.

5.5 Neural Style Transfer

Fig. 10: The architecture overview of our model for neural
style transfer. Two encoders take input of the style and
content image respectively, and generate the multi-scale
content/style features. A decoder is applied to absorb the
feature and perform the WCT process at 5 different scales,
which outputs a pair of images that exchange the styles.
Finally, a discriminator is further adopted to tell apart the
authenticity of the images.

We adopt the WCT process in the network architecture
proposed in Cho et al. [14] for neural style transfer. Fig. 10
displays the overview of the model. The WCT performs
successive whitening and coloring transform on the content
and style feature. Consider the reshaped content feature
Xc∈RB×C×HW and the style feature Xs∈RB×C×HW . The
style information is first removed from the content as:

Xwhitened
c =

(
(Xc − µ(Xc))(Xc − µ(Xc))

T
)− 1

2

Xc (37)

Then we extract the desired style information from the style
feature Xs and transfer it to the whitened content feature:

Xcolored
c =

(
(Xs−µ(Xs))(Xs−µ(Xs))

T
) 1

2

Xwhitened
c (38)

The resultant feature Xcolored
c is compensated with the mean

of style feature and combined with the original content
feature:

X = α(Xcolored
c + µ(Xs)) + (1− α)Xc (39)

where α is a weight bounded in [0, 1] to control the strength
of style transfer. In this experiment, both the matrix square
root and inverse square root are computed.

TABLE 8: The LPIPS [56] score and user preference (%) on
Artworks [57] dataset. The covariance is of size 4×256×256.
We measure the time consumption of whitening and coloring
transform that is conducted 10 times to exchange the style
and content feature at different network depths.

Methods Time (ms) LPIPS [56] (↑) Preference (↑)
SVD-Taylor 447.12 0.5276 16.25

SVD-Padé 445.23 0.5422 19.25
NS iteration 94.37 0.5578 17.00

Our MPA-Lya 69.23 0.5615 24.75
Our MTP-Lya 40.97 0.5489 18.50

Table 8 presents the quantitative evaluation using the
LPIPS [56] score and user preference. The speed of our MPA-
Lya and MTP-Lya is significantly faster than other methods.
Specifically, our MTP-Lya is 2.3X faster than the NS iteration
and 10.9X faster than the SVD, while our MPA-Lya consumes
1.4X less time than the NS iteration and 6.4X less time than
the SVD. Moreover, our MPA-Lya achieves the best LPIPS
score and user preference. The performance of our MTP-
Lya is also very competitive. Fig. 11 displays the exemplary
visual comparison. Our methods can effectively transfer the
style information and preserve the original content, leading
to transferred images with a more coherent style and better
visual appeal. We give detailed evaluation results on each
subset and more visual examples in Supplementary Material.

Fig. 11: Visual examples of the neural style transfer on
Artworks [57] dataset. Our methods generate sharper images
with more coherent style and better visual appeal. The red
rectangular indicates regions with subtle details.

5.6 Second-order Vision Transformer

The ordinary vision transformer [31] attaches an empty
class token to the sequence of visual tokens and only uses
the class token for prediction, which may not exploit the
rich semantics embedded in the visual tokens. Instead, The
Second-order Vision Transformer (So-ViT) [5] proposes to
leverage the high-level visual tokens to assist the task of
classification:

y = FC(c) + FC
(

(XXT )
1
2

)
(40)
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TABLE 9: Validation top-1/top-5 accuracy of the second-order vision transformer on ImageNet [49]. The covariance is of size
64×48×48, where 64 is the mini-batch size. The time cost is measured for computing the matrix square root (BP+FP).

Methods Time (ms) Architecture
So-ViT-7 So-ViT-10 So-ViT-14

PI 1.84 75.93/93.04 77.96/94.18 82.16/96.02 (303 epoch)
SVD-PI 83.43 76.55/93.42 78.53/94.40 82.16/96.01 (278 epoch)

SVD-Taylor 83.29 76.66/93.52 78.64/94.49 82.15/96.02 (271 epoch)
SVD-Padé 83.25 76.71/93.49 78.77/94.51 82.17/96.02 (265 epoch)

NS Iteration 10.38 76.50/93.44 78.50/94.44 82.16/96.01 (280 epoch)
Our MPA-Lya 3.25 76.84/93.46 78.83/94.58 82.17/96.03 (254 epoch)
Our MTP-Lya 2.39 76.46/93.26 78.44/94.33 82.16/96.02 (279 epoch)

Fig. 12: The scheme of So-ViT [5]. The covariance square root
of the visual tokens are computed to assist the classification.
In the original vision transformer [31], only the class token is
utilized for class predictions.

where c is the output class token, X denotes the visual token,
and y is the combined class predictions. We show the model
overview in Fig. 12. Equipped with the covariance pooling
layer, So-ViT removes the need for pre-training on the ultra-
large-scale datasets and achieves competitive performance
even when trained from scratch. To reduce the computational
budget, So-ViT further proposes to use Power Iteration (PI) to
approximate the dominant eigenvector. We use our methods
to compute the matrix square root of the covariance XXT .

Table 9 compares the speed and performances on three
So-ViT architectures with different depths. Our proposed
methods significantly outperform the SVD and NS iteration
in terms of speed. To be more specific, our MPA-Lya is 3.19X
faster than the NS iteration and 25.63X faster than SVD-Padé,
and our MTP-Lya is 4.34X faster than the NS iteration and
34.85X faster than SVD-Padé. For the So-ViT-7 and So-ViT-10,
our MPA-Lya achieves the best evaluation results and even
slightly outperforms the SVD-based methods. Moreover, on
the So-ViT-14 model where the performances are saturated,
our method converges faster and spends fewer training
epochs. The performance of our MTP-Lya is also on par
with the other methods. The PI suggested in the So-ViT only
computes the dominant eigenpair but neglects the rest. In
spite of the fast speed, the performance is not comparable
with other methods.

5.7 Ablation Studies

We conduct three ablation studies to illustrate the impact
of the degree of power series in the forward pass, the
termination criterion during the back-propagation, and the

possibility of combining our Lyapunov solver with the SVD
and the NS iteration.

5.7.1 Degree of Power series to Match for Forward Pass

Table 10 displays the performance of our MPA-Lya for
different degrees of power series. As we use more terms
of the power series, the approximation error gets smaller and
the performance gets steady improvements from the degree
[3, 3] to [5, 5]. When the degree of our MPA is increased from
[5, 5] to [6, 6], there are only marginal improvements. We
hence set the forward degrees as [5, 5] for our MPA and as
11 for our MTP as a trade-off between speed and accuracy.

TABLE 10: Performance of our MPA-Lya versus different
degrees of power series to match.

Degrees Time (ms)
ResNet-18 ResNet-50

CIFAR10 CIFAR100 CIFAR100
mean±std min mean±std min mean±std min

[3, 3] 0.80 4.64±0.11 4.54 21.35±0.18 21.20 20.14±0.43 19.56
[4, 4] 0.86 4.55±0.08 4.51 21.26±0.22 21.03 19.87±0.29 19.64
[6, 6] 0.98 4.45±0.07 4.33 21.09±0.14 21.04 19.51±0.24 19.26
[5, 5] 0.93 4.39±0.09 4.25 21.11±0.12 20.95 19.55±0.20 19.24

5.7.2 Termination Criterion for Backward Pass

Table 11 compares the performance of backward algo-
rithms with different termination criteria as well as the
exact solution computed by the Bartels-Steward algorithm
(BS algorithm) [26]. Since the NS iteration has the prop-
erty of quadratic convergence, the errors ||Bk−I||F and
||0.5Ck −X||F decrease at a larger rate for more iteration
times. When we iterate more than 7 times, the error becomes
sufficiently neglectable, i.e., the NS iteration almost converges.
Moreover, from 8 iterations to 9 iterations, there are no
obvious performance improvements. We thus terminate the
iterations after iterating 8 times.

The exact gradient calculated by the BS algorithm does
not yield the best results. Instead, it only achieves the least
fluctuation on ResNet-50 and other results are inferior to
our iterative solver. This is because the formulation of our
Lyapunov equation is based on the assumption that the
accurate matrix square root is computed, but in practice we
only compute the approximate one in the forward pass. In
this case, calculating the accurate gradient of the approximate
matrix square root might not necessarily work better than the
approximate gradient of the approximate matrix square root.
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TABLE 11: Performance of our MPA-Lya versus different iteration times. The residual errors ||Bk−I|| and ||0.5Ck −X||F
are measured based on 10, 000 randomly sampled matrices.

Methods Time (ms) ||Bk−I||F ||0.5Ck−X||F
ResNet-18 ResNet-50

CIFAR10 CIFAR100 CIFAR100
mean±std min mean±std min mean±std min

BS algorithm 2.34 – – 4.57±0.10 4.45 21.20±0.23 21.01 19.60±0.16 19.55
#iter 5 1.14 ≈0.3541 ≈0.2049 4.48±0.13 4.31 21.15±0.24 20.84 20.03±0.19 19.78
#iter 6 1.33 ≈0.0410 ≈0.0231 4.43±0.10 4.28 21.16±0.19 20.93 19.83±0.24 19.57
#iter 7 1.52 ≈7e−4 ≈3.5e−4 4.45±0.11 4.29 21.18±0.20 20.95 19.69±0.20 19.38
#iter 9 1.83 ≈2e−7 ≈7e−6 4.40±0.07 4.28 21.08±0.15 20.89 19.52±0.22 19.25
#iter 8 1.62 ≈3e−7 ≈7e−6 4.39±0.09 4.25 21.11±0.12 20.95 19.55±0.20 19.24

5.7.3 Lyapunov Solver as A General Backward Algorithm

We note that our proposed iterative Lyapunov solver is a
general backward algorithm for computing the matrix square
root. That is to say, it should be also compatible with the
SVD and NS iteration as the forward pass.

For the NS-Lya, our previous conference paper [22] shows
that the NS iteration used in [2], [21] cannot converge on any
datasets. In this extended manuscript, we found out that the
underlying reason is the inconsistency between the FP and
BP. The NS iteration of [2], [21] is a coupled iteration that
use two variables Yk and Zk to compute the matrix square
root. For the BP algorithm, the NS iteration is defined to
compute the matrix sign and only uses one variable Yk. The
term Zk is not involved in the BP and we have no control
over the gradient back-propagating through it, which results
in the non-convergence of the model. To resolve this issue,
we propose to change the forward coupled NS iteration to a
variant that uses one variable as:

Zk+1 =
1

2
(3Zk − Z3

k

A

||A||F
) (41)

where Zk+1 converges to the inverse square root A−
1
2 . This

variant of NS iteration is often used to directly compute the
inverse square root [9], [58]. The Z0 is initialization with
I, and post-compensation is calculated as Zk = 1√

||A||F
Zk.

Although the modified NS iteration uses only one variable,
we note that it is an equivalent representation with the
previous NS iteration. More formally, we have:

Proposition 2. The one-variable NS iteration of [9], [58] is
equivalent to the two-variable NS iteration of [1], [2], [21].

We give the proof in the Supplementary Material. The
modified forward NS iteration is compatible with our iter-
ative Lyapunov solver. Table 12 compares the performance
of different methods that use the Lyapunov solver as the
backward algorithm. Both the SVD-Lya and NS-Lya achieve
competitive performances.

TABLE 12: Performance comparison of SVD-Lya and NS-Lya.

Methods Time (ms)
ResNet-18 ResNet-50

CIFAR10 CIFAR100 CIFAR100
mean±std min mean±std min mean±std min

SVD-Lya 4.47 4.45±0.16 4.20 21.24±0.24 21.02 19.41±0.11 19.26
NS-Lya 2.88 4.51±0.14 4.34 21.16±0.17 20.94 19.65±0.35 19.39

MPA-Lya 2.61 4.39±0.09 4.25 21.11±0.12 20.95 19.55±0.20 19.24
MTP-Lya 2.46 4.49±0.13 4.31 21.42±0.21 21.24 20.55±0.37 20.12

6 CONCLUSION

In this paper, we propose two fast methods to compute
the differentiable matrix square root and the inverse square
root. In the forward pass, the MTP and MPA are applied
to approximate the matrix square root, while an iterative
Lyapunov solver is proposed to solve the gradient function
for back-propagation. A number of numerical tests and com-
puter vision applications demonstrate that our methods can
achieve both the fast speed and competitive performances.
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