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Abstract: In this work, we determined the total effective vascular compliance of a global closed-loop
model for the cardiovascular system by performing an infusion test of 500 mL of blood in four
minutes. Our mathematical model includes a network of arteries and veins where blood flow is
described by means of a one-dimensional nonlinear hyperbolic PDE system and zero-dimensional
models for other cardiovascular compartments. Some mathematical modifications were introduced
to better capture the physiology of the infusion test: (1) a physiological distribution of vascular
compliance and total blood volume was implemented, (2) a nonlinear representation of venous
resistances and compliances was introduced, and (3) main regulatory mechanisms triggered by the
infusion test where incorporated into the model. By means of presented in silico experiment, we
show that effective total vascular compliance is the result of the interaction between the assigned
constant physical vascular compliance and the capacity of the cardiovascular system to adapt to new
situations via regulatory mechanisms.

Keywords: effective vascular compliance; cardiovascular modeling of human circulation; regulatory
mechanisms of arterial pressure

1. Introduction

The vascular compliance of the circulatory system is defined as the slope of the
relationship between intravascular volume and circulatory filling pressure; this property
reflects the inherent elasticity of the vascular system. Changes in vascular compliance are of
primary importance in the control of cardiovascular function and extracellular fluid volume
regulation [1]. In animals, an estimation of total vascular compliance can be obtained by
determining Mean Circulatory Filling Pressure (MCFP)-blood volume curves. MCFP refers
to the pressure, constant in all vascular districts, that can be obtained by stopping the heart
and waiting for blood to redistribute in the vascular system according to the capacity of the
different districts [2]. Compliance is thus defined as the change in blood volume divided
by the change in MCFP, thus total vascular compliance (TVC) is

TVC =
V−Vu

MCFP
, (1)

where V is total blood volume and Vu is unstressed blood volume, i.e., the blood volume
contained in the vascular system for zero MCFP. Different methods were used to evaluate
the TVC in different animal species [2–4]; some of them imply stopping the circulation
to measure MCFP, while others require the use of anesthesia and extensive surgery, as
in the constant cardiac output reservoir technique [5,6], to determine compliance as the
ratio of a change in volume to a change in venous pressure. However, the values for total
vascular compliance are very close whatever the method adopted; in dogs, values from
1.4 to 4.2 mL/kg/mmHg were observed with an average of 2.57 mL/kg/mmHg [3,5,7,8].

Classical estimation of MCFP requires stopping systemic flow, posing ethical limita-
tions to its application to humans. To avoid this methodological limitation, a different index
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of capacitance was introduced as a measure of total vascular compliance. This method
was first presented in [9] and then used in [10–17]; it involves simultaneous recording of
right atrial pressure and volume changes induced by transfusion, bleeding, or rapid iso-
oncotic dextran infusion. Based on the experiment first presented in [9], London et al. [10]
determined the total effective vascular compliance (TEVC) using an infusion of 500 mL
of 6% dextran carried out within four minutes in a large forearm vein in control and
hypertensive patients in supine position. Dextran is an osmotically neutral fluid that is
used in intravenous solutions as volume expanders to replace lost blood in emergency
situations; it is effective in expanding and maintaining the plasma volume. According
to the authors of [18], total blood volume after dextran infusion increased only by the
amount of solution administered. The slope of the relationship between central venous
pressure (CVP) and blood volume was called TEVC in order to differentiate it from the
compliance obtained from MCFP measurements [9]. CVP, usually considered as repre-
sentative of the right atrial pressure, depends on the venous return and the pumping
ability of the heart, thus it does not rely exclusively upon vascular volume and the elastic
properties of the vascular bed [19]. Moreover, a four-minute long infusion is not rapid
enough to prevent the participation of some regulatory mechanisms such as the short-term
regulation of blood pressure, which occurs within seconds. Modification in CVP and also
arterial pressure due to blood volume variations activates various reflexes that modify
specific cardiovascular system properties like vascular compliance, vascular tone, heart
rate, etc. [20]. In turn, such modifications influence the final CVP change for a given blood
volume variation and thus the estimated TEVC [6,21]. Even if CVP is influenced by several
factors during blood volume changes via transfusion or bleeding, Echt et al. [9] showed
that the pressure–volume relationship is practically linear; in normal men, it ranges from
2.1 to 2.7 mL/kg. It was shown [6,22] that 1–3% of this value can be attributed to the
compliance of arterial circulation, while approximately 20% of total vascular compliance
represents compliance of the cardiopulmonary circulation [12].

In mathematical models of the human circulation, the vascular compliance, that is, the
relationship between stressed volume and the transmural pressure of a vascular segment,
is generally represented by either linear or nonlinear relationships that include physical
parameters. The values assigned to these parameters are usually based on experimental
evidence of effective compliance and blood volume distribution among different vascular
compartments. For example, in the lumped model of the entire circulation proposed by
Sun et al. [23], the elastance (the inverse of the compliance) and volume in each vascular
territory were estimated from the blood volume distribution in [24]. Ursino et al. [25]
proposed a model of the cardiovascular system represented as six lumped compartments
arranged in series, which synthesizes the main hemodynamic properties of the systemic
arterial, systemic venous, pulmonary arterial, and pulmonary venous, as well as of the left
and right cardiac volumes. In that work, a total vascular compliance was assigned based
on human and animal TEVC [26], and then this value was distributed among different com-
partments following literature data on blood flow distribution. Mynard and Smolich [27]
adopted a vascular compliance of 170 mL/mmHg for the entire circulation, that was dis-
tributed in the following way: 1.7 mL/mmHg in the arterial circulation, following [28],
146 mL/mmHg in the venous circulation, based on [29], and 6.7 and 15.8 mL/mmHg in
the arterial and venous pulmonary circulation respectively. The same was done in the
previous version of the global mathematical model adopted here [30]. As we can see in
these works, mathematical modelers set the total vascular compliance equal to a parameter.
However, this parameter value is usually based on the index of TEVC that is the result of an
experiment wherein the elastic properties of the vascular system interact with the pumping
ability of the heart and the reflex control of blood pressure. This choice is necessary to
represent the vascular capacity, that is the amount of blood held by the systemic vascular
bed at a specific pressure. However, this assumption could lead to inappropriate results,
especially if we move from the baseline status, i.e., the model state for which the model
was parametrized and validated.
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The aim of this mathematical work was to determine in silico the effective total
vascular compliance of a global mathematical model for the cardiovascular system. To
this end, we reproduced the experiment of London et al. [10]. Changes in blood volume
and changes in central venous pressure were recorded during the infusion. The model
used for this kind of test is based on the works in [30–32]. It is composed of networks of
major arteries and veins where blood flow is described by means of a mathematical model
consisting of a nonlinear hyperbolic PDE system. This system can be derived assuming axial
symmetry of flow [33] or using a more general framework based on mass and momentum
balance, as well as a specialized version of Reynolds transport theorem, as proposed in [34].
Other cardiovascular compartments, i.e., heart, pulmonary circulation, microvasculature,
venous valves, Starling resistors and cerebrospinal fluid dynamics, are described by lumped
parameter models. A high-order well-balanced nonlinear numerical scheme based on the
ADER [35] (Arbitrary high-order DERivatives) framework was used for discretization of
one-dimensional blood flow equations. Compared to previous versions of the mathematical
model, some changes were introduced to better capture the main physiological processes
involved in the infusion test as well as to update modeling assumptions that needed to be
improved in order to consider a deviation from the baseline state. First of all, we performed
a physiologically sound parametrization of the mathematical model in the baseline pre-
infusion status: this required the introduction of the unstressed volume in all vascular
compartments. Assuming that each vascular compartment has an average pressure, a value
of compliance was assigned such that the stressed volume together with the unstressed
volume gave the desired total blood volume. As the major part of total blood volume is
located in the lumped-parameters model of the venules/distal veins, nonlinear resistances
and compliances were introduced in the venous 0D compartments to take into account the
distension of the vasculature during volume expansion. Moreover, the global mathematical
model of the circulation was coupled to a model for short-term regulation of pressure
that considers the activity of high- and low-pressure baroreceptors. Such activity was
represented by sigmoid functions, featuring a symmetric response to low/high arterial
and/or venous pressure deviations from baseline values, that generate efferent sympathetic
and parasympathetic firing rates. Results reported here show that a good parametrization
of the vascular compliance and blood volume of the human body gives a reasonable
representation of the vascular capacity in the baseline setting. However, when total blood
volume is changed with the infusion test, this parametrization becomes necessary but
not sufficient for reproducing the effective behaviour of the human circulation. The main
short-term regulatory mechanisms of arterial pressure play an essential role in the capacity
of the model to correctly describe experimental results. In fact, TEVC reflects the interaction
between the assigned parameters but also the functioning of the regulatory mechanisms.

The rest of the paper is structured as follows. In Section 2, we present the global closed-
loop mathematical model of the human circulation and the modifications introduced in
this work as well as the baroreflex control mechanism. Section 3 presents the main results
about the infusion test; the evaluation of the TEVC; and how mean arterial pressure,
cardiac output, heart rate, and cardiopulmonary blood volume change during the blood
volume expansion; moreover, a discussion on the modeling choices and the main outcomes
is provided. Section 4 summarizes the main findings and poses some directions for
further investigations.

2. Materials and Methods

In this section, we briefly describe the closed-loop model of the cardiovascular system
used in this work, focusing on the main improvements with respect to previous versions of
the model. These include the parametrization of the global model with the introduction of
total blood volume and the nonlinear relationship in venous resistances and compliances.
Moreover, we present the equations that describe the functioning of baroreflex control
mechanisms considered in our work and how we performed the infusion test reported
in [10].
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2.1. A Global Closed-Loop Model for the Human Circulation

The mathematical model used in this work is an extension of the closed-loop model
for the entire human circulation presented in [31,32]. It is a geometric multi-scale type
model which includes one-dimensional models for blood flow in major vessels and zero-
dimensional lumped-parameters models describing blood flow in the remaining compart-
ments. Figure 1 illustrates schematically the structure of the model: it includes 323 vessels,
comprising arteries and veins; four heart chambers and cardiac valves; 3 compartments for
the pulmonary circulation; 31 compartmental models describing the connections between
terminal arteries and veins through the microcirculation; 17 venous valves; 21 Starling
resistors; and one cerebrospinal fluid compartment.

Figure 1. Schematic representation of the global model used in this work [30]. 1D models refer to
networks of major arteries and veins, which are modeled using evolutionary partial differential
equations, providing space- and time-resolved blood pressure and flow. Rectangles represent lumped-
parameter models, which are used to describe the heart chambers, the pulmonary circulation, the
microcirculation, as well as brain and CSF dynamics. Such compartments are modeled using ordinary
differential equations, which provide time-resolved hemodynamic variables.

Blood flow in major vessels—arteries and veins—was modeled using a 1D system of
partial differential equations. A complete derivation of the governing equations can be
found in [36], where such equations were derived from conservation principles. A vessel is
represented as a single compliant rectilinear tube with impermeable walls. Moreover, blood
is assumed to be an incompressible Newtonian fluid. The resulting system of equations is
given by ∂t A + ∂xq = 0 ,

∂tq + ∂x

(
α̂

q2

A

)
+ A

ρ ∂x p = − f .
(2)

The first equation represents the conservation of mass in the flexible tube, while the
second one describes momentum balance. The three unknowns of the problem are the
cross-sectional area of the vessel’s lumen, A(x, t); the blood flow rate across a section of the
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vessel, q(x, t); and the cross-sectionally averaged internal pressure, p(x, t). α̂ is the Coriolis
coefficient linked to the velocity profile, here taken equal to 1 to represent a flat velocity
profile, ρ is the blood density, and f is the friction force per unit length of the tube. The
problem has more unknowns than equations, thus an extra closure condition is required.
This condition couples the internal blood flow distribution with the mechanical properties
of the solid moving vessel wall. We adopted a pressure-area relation which describes the
viscoelastic nature of vessels wall

p(x, t) = pext(x, t) + K(x)
((

A(x, t)
A0(x)

)m
−
(

A(x, t)
A0(x)

)n)
+ P0︸ ︷︷ ︸

Elastic term

+
Γ

A0
√

A
∂t A︸ ︷︷ ︸

Viscoelastic term

. (3)

In this tube law, the internal pressure p(x, t) is expressed as a function of the cross-
sectional area A(x, t) and other parameters. The first part of the tube law represents the
elastic behaviour of the vessel wall. It depends on A0(x), the vessel cross-sectional area
for which the transmural pressure (p(x, t)− pext(x, t)) is zero. The parameters m and n are
two real numbers that can be derived from experimental measurements; throughout this
work, we assume m = 0.5 and n = 0 for arteries, while we assume m = 10 and n = −1.5
for veins. Moreover, K(x) is a positive function representing the vessel stiffness, which
accounts for mechanical and geometrical properties of the vessel; in this work, K(x) was
obtained from the reference wave speed c0 assumed for each vessel, distinguishing arteries,
veins, and dural sinuses [30]. P0 is the reference pressure while pext is the external pressure,
generally prescribed. The second term of the tube law describes the viscoelastic nature
of vessel walls; it depends on the time partial derivative of the cross-sectional area of the
vessel and on Γ, a constant related to the viscoelastic properties of the vessel wall and
expressed, following the work in [37], as

Γ =
2
3
√

πγh0(x) , (4)

where γ is the wall viscosity and h0(x) is the wall thickness. The value of these parameters
are chosen such that the hysteresis behaviour of pressure-area plots in peripheral arteries
and veins reproduces the physiological behaviour. We refer the reader to [30] for more
details about the chosen parameters of the viscoelastic term in the tube law.

The friction term f (x, t) on the right hand side, which depends on the local velocity
profile, is set as follows

f =
8µπ

ρ

q
A

, (5)

with µ being the blood dynamic viscosity. This formulation is obtained by assuming a
fully developed laminar flow in an axially symmetric tube.

Note that A0(x), K(x), and pext(x, t) are variable material and geometrical parameters
that depend on x. To deal with parameters that vary in space, the system in Equation (2) is
rewritten as in Toro and Siviglia [38,39], obtaining a 5× 5 first-order system whose vector
of unknowns is Q = [A, q, K, A0, pext]

T . When the tube law in Equation (3) is inserted
in the momentum balance equation in system (2), the problem becomes an advection-
diffusion-reaction problem as a second-order spatial derivative of the flow variable arises.
Using a relaxation technique [40], one can obtain a nonlinear hyperbolic PDE system
that is solved using a high-order well-balanced nonlinear numerical scheme based on
ADER [35] (Arbitrary high-order DERivatives) framework for networks of elastic and
viscoelastic vessels [41,42] and an explicit local time-stepping temporal discretization (LTS)
approach [43]. We refer the reader to the works in [35,44] for an up-to-date review of the
ADER scheme, to the works in [45,46] for full details about the high-order well-balanced
scheme in the framework of path-conservative schemes, to the works in [41,42,47] for
clarification about the hyperbolic reformulation of the parabolic system incorporating the
viscoelastic nature of the vessel wall mechanics, and finally to the works in [43,48] for the
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local time-stepping procedure which is implemented so that the local time step is defined
at the level of the vessels (and not computational cells).

Lumped-parameter models for the microcirculation describe the connection between
arteries and veins through arterioles, capillaries, and venules; the generic vascular bed
model used for all microvasculature beds is based on the three-element Windkessel model.
This model is characterized by

• characteristic impedances that couple any number of connecting 1D arteries/veins
to lumped-parameter models for the microvasculature (Rda or Rvn) and regulate the
pressure drop between 1D domains and vascular beds,

• peripheral resistances and compliances divided between arterioles (Ral , Cal) and
capillaries (Rcp, Ccp), and

• venous compartments with related compliances (Cvn), which represent venules and
distal veins not included in the 1D network.

Figure 2 shows an example of a generic terminal vascular beds connecting three 1D
arteries and multiple 1D veins.

The heart model considers the “time-varying elastance” model [23,49] to describe the
dynamics of relaxation/contraction of the four cardiac chambers, while cardiac valves were
modeled as in [50]. For each heart chamber, the time-varying elastance E(t) is defined by

E(t) = EAe(t) + EB , (6)

where EA and EB are respectively the maximal elastance at systole and the baseline elas-
tance, while e(t) is the normalized time-varying elastance taken as in [23].

The pulmonary circulation is divided into arteries, capillaries, and veins, and it was
modeled as in [23]; each compartment is characterized by a pulmonary resistance and
a pulmonary inertance that are used for the evolution of the fluid exchange between
compartments and by an exponential pressure–volume relationship describing vascular
capacitance. Venous circulation was equipped by venous valves which governs the flow
across the interface between two vessels. Starling resistors were placed at the confluence of
cortical veins in the dural sinuses; they prevent the vein collapse maintaining the blood
pressure upstream the collapsed segment higher than the intracranial pressure. Both venous
valves and Starling resistors were represented by the model presented in [50]. Finally, the
blood circulation model was coupled to a simple cerebrospinal fluid model. This model,
based on the works in [32,51], is characterized by a simple compartment representing the
cranial and spinal cavity with elastic behaviour. An ordinary differential equation which
depends on cerebral blood volume (cerebral arteries, arterioles, capillaries, venules, and
veins), capillaries, and superior sagittal sinus pressures was used for the evaluation of the
intracranial pressure that was then adopted as external pressure in cerebral 1D vessels and
lumped-parameters compartments.

The parameters needed for the implementation of the global closed-loop model were
defined in order to simulate a young healthy subject. Unless specified otherwise in this
work, the parametrization is the same as the one reported in [30]. We refer the reader
to the works in [30–32] for more details about the model description, parameter selection,
and validation of the baseline state.

2.2. Compliances, Unstressed Volumes, and Total Blood Volume Distribution

As in this work we would like to describe a change in blood volume through an
infusion test, we first defined basal parameters describing total blood volume and to-
tal vascular compliance. Following the work in [14], the total vascular compliance is
∼2.1 mL/mmHg/kg for humans; ∼70% of this value may characterize the systemic circu-
lation, while the remaining part is ascribed to the pulmonary circulation [20]. Moreover,
the systemic vascular compliance may be divided between systemic arterial and venous
compliances, assuming that ∼3% of the systemic compliance is in the arterial side [5]. For
the pulmonary circulation, few data are available about the distinction between arterial and
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venous compliances; we considered here that 20% of total pulmonary compliance is in the
arterial side, as in [25]. Table 1 reports the compliance value for each vascular territory. As
in [30], arterial and venous compliance were distributed in 1D vessels following the work
in [49]. Moreover, after determination of 1D vessel vascular compliance, the remaining part
of the arterial compliance was distributed among Cal in arterioles according to [49] and
15% of the arterioles compliance was assigned to the capillaries Ccp (see Figure 2). The re-
maining part of the venous compliance was assigned to venule compartments according to
blood flow distribution. For the heart circulation, atria and ventricular baseline elastances
were set as in previous works [30].

Total blood volume was reported to be in the range of 75 to 80 mL/kg body weight
for a normal male subject [52,53]. Stressed volume is usually approximately 30–40% of
total volume [54,55]. The unstressed volume is the volume in a compartment when the
transmural pressure is equal to zero. In previous version of the model [30–32], only the
stressed component of the total blood volume was considered in lumped-parameters
models of the microcirculation, heart, and pulmonary circulation. We added here the
unstressed part in order to have complete control on total blood volume.

Using assigned compliances as in Table 1 and pressures as in previous works [30],
we set for each vascular territories the amount of unstressed volume such that the total
blood volume distribution among different vascular compartments follows those reported
in the literature. For the heart circulation, we fixed 50 mL of unstressed volume (one
sixth of the cardiac blood volume), 20 mL for each atrium, and 5 mL in each ventricle, as
suggested in [25,56]. In the pulmonary circulation, we set 70 mL of unstressed volume,
divided between arteries and capillaries, and 490 mL of unstressed volume in venous
compartment [56]. Concerning the systemic circulation, we considered 715 mL of arterial
unstressed volume, distributed between 1D arteries and arterioles, and 2500 mL of venous
unstressed blood that was assigned to capillaries, venules, and 1D veins [56]. In the arterial
part, we evaluated the unstressed volume of 1D arteries as the volume in each vessel at
zero-transmural pressure according to tube law in Equation (3), and then subtracted it to
the total amount of arterial unstressed volume; the remaining part was distributed between
arterioles compartments of vascular beds according to flow distribution in venous capaci-
tors (Cvn, see Figure 2). The same was done for the venous circulation; after subtracting
1D venous unstressed volume from total venous unstressed volume, the remaining part
was distributed between capillaries (15%) and venules (85%) following the flow distribu-
tion in venous capacitors. Table 1 summarizes the assigned compliances and unstressed
volume distribution.

Table 1. Basal value for model parameters of compliance and unstressed volume in the main vascular
compartments.

Vascular Territory Compliance [mL/mmHg] Unstressed Volume [mL]

Systemic arterial circulation 4 615
Systemic venous circulation 111 2500
Pulmonary arterial circulation 6.56 90
Pulmonary venous circulation 25.37 490
Cardiac circulation 50

2.3. Nonlinear Venous Resistances and Compliances

In order to take into account the distension of the vasculature during the infusion
test, we modified the resistances that characterize the venous vascular beds in a nonlinear
manner according to blood volume variation. The resistances that are located between
capillaries and venules compartments and the characteristic impedances that couple 1D
veins to venules compartment (Rcp and Rvn, see Figure 2) in the vascular beds were
modified at each time step according to the following relationship:
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R(t) = Rre f

( Vre f

V(t)

)2

, (7)

where R(t) stands for Rcp or Rvn at time t, Rre f is the corresponding reference resistance in
the baseline condition, V(t) is the current volume in the capacitor, and Vre f is the reference
volume of the venous capacitor at the baseline condition.

Rda Ral Rcp

Rvn

Cal

Pext

Ccp

Pext

Cvn,2

Pext

Rda Ral

Rcp

Rcp

Cal

Pext

Ccp

Pext

Rda Ral Rcp

Rvn

Rvn

Cal

Pext

Ccp

Pext

Cvn,1

Pext

Rvn

.

.

.

.

.

.

1D Artery  

1D Artery  

1D Artery  

1D Vein  

1D Vein  

1D Vein  

1D Vein  

Figure 2. Example of a generic complex vascular bed connecting three 1D arteries to multiple 1D
veins [30]. Each connecting artery can be linked to one or both venous capacitors Cvn, while each
venous capacitor can be connected to any number of terminal veins. Each 1D artery is connected
to arterioles compartments (Ral , Cal), that in turn is connected to either one or two capillaries
compartments (Rcp, Ccp). The pressure drop between 1D arteries and the vascular beds is regulated
by Rda while on the venous side by Rvn.

In order to account for the nonlinear pressure–volume relation of the venous sys-
tem during the blood infusion test, we applied a nonlinear pressure–volume relation
to zero-dimensional venules compartments. The equation describing this behaviour is
the following:

P(t) = K

((
V(t)
Vre f

)m

−
(

V(t)
Vre f

)n)
+ Pre f + Pext , (8)

where m and n are set to be 10 and −3/2, respectively, as it is usually done for 1D veins.
Pre f and Vre f constitute the basal point of the pressure-volume relationship with the basal
value of compliance Cre f as in the linear case. The value of the parameter K is assigned by

imposing the passage of the curve through Pre f and Vre f , that is,
(

dV
dP

)
V=Vre f

= Cre f . Given

this nonlinear pressure–volume relationship, the unstressed volume Vun in the venules
compartments was modified imposing zero transmural pressure in Equation (8). Figure 3
compares the linear and nonlinear pressure-volume relation of one venule compartment
of the right forearm. As a result of this parametrization procedure we recover the linear
compliance case if we set m = 1 and n = 0.
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Figure 3. Comparison between linear and nonlinear pressure–volume relationship in one venule/vein
compartment of the right forearm. (Vre f , Pre f ) is the basal point of the pressure-volume relationship

with linear basal value of compliance Cre f and reference unstressed volume Vre f
un . Following the

nonlinear pressure–volume relationship, the unstressed volume Vun was calculated imposing zero
transmural pressure.

2.4. The Baroreflex Regulation

The baroreflex model adopted in this work is based on [57–59]. It includes the ac-
tivity of high- and low-pressure receptors. The set of parameters undergoing regulation
is ε = { H, Emax, Ra, Cv, Vu }, where H is the heart rate, Emax is the maximum value of
elastance of the four cardiac chambers, Ra is the arterial resistance, and Cv and Vu are
the venous compliance and unstressed volume (i.e., the venous tone). In our closed-loop
model, Ra refers to the proximal resistance of 1D terminal arteries and to the resistance
of arteriolar compartment of vascular beds for all vascular districts, except for the brain,
which is directly regulated by cerebral autoregulation with the model presented in [30].
Cv and Vu refers to compliance and unstressed volume of venules compartment of non-
intracranial vascular beds and 1D veins; changes in compliance and unstressed volume of
1D veins are reflected in variation of reference area A0 and stiffness K of these vessels, as
explained later at the end of this section.

The arterial baroreflex is activated by the mean arterial pressure (over a cardiac cycle)
in the aortic arch and in both carotid arteries. We assumed that the receptors located in
all these arteries behave in the same manner [58]. The low-pressure baroreceptors are
activated by the right atrial pressure. The level of activation of the afferent nervous system
is evaluated as

P̄a =
1
3
(P̄rc + P̄lc + P̄aa) , (9)

P̄v = P̄ra , (10)

where P̄rc, P̄lc, P̄aa, and P̄ra are the mean pressure over the previous cardiac cycle of right
carotid artery, left carotid artery, aortic arch, and right atrium, respectively.

Alterations in the arterial pressure P̄a and/or in the venous pressure P̄v affect the
firing rates of afferent fibers. These fibers reach the central nervous system which in turn
generates efferent sympathetic and parasympathetic nerve activity. An enhanced firing
rate results in an enhanced parasympathetic response and a reduced sympathetic activity.
It was experimentally proved in vagotomized animals that the efferent responses in heart
rate and arterial resistances follow a sigmoid relationship. For this reason, the sympathetic



Symmetry 2021, 13, 1858 10 of 24

and parasympathetic firing rates are modeled via sigmoid functions that depend on arterial
and venous pressure changes [57–59]. The sympathetic and parasympathetic activity are
described by the following expressions:

ns,i =
1

1 + eyi/ki
, (11)

np,i =
1

1 + e−yi/ki
, (12)

where yi is a linear combination of pressure changes

yi = ga,i(P̄a − µ) + gv,i(P̄v − δ) , (13)

and the index i ranges the set ε. µ and δ are the baseline arterial and venous activation,
respectively. The values of the sympathetic and parasympathetic responses range between
0 and 1; when yi is equal to 0, i.e., when the model is operating in the baseline setting
with P̄a = µ and P̄v = δ, both ns and np assume the value 0.5. ns approaches 1 when yi is
less than 0 while it tends to 0 when yi is larger than 1; this implies that the sympathetic
nerve activity is reduced when the relative change of arterial and/or venous pressure from
the baseline values increases. By contrast, the parasympathetic response np assumes its
maximum value 1 when yi tends to infinity. ga and gv are the maximum open loop gains
of the arterial and cardiopulmonary baroreceptor mechanisms, each evaluated when the
other mechanism is not operating. gv is set equal to zero for all variables in ε, expect for Ra
and Vu, on which both arterial and low-pressure baroreceptors work in synergism; in this
case, the total open loop gain results from a nonlinear superimposition of the action of the
two classes of receptors [59]. Finally, ki is a parameter which determines the slope of the
sigmoidal characteristic at its central point, chosen to be equal to −1 as in [59]. The efferent
responses are governed by first order ordinary differential equations. These equations read
as

dxi
dt

=
1
τi
(−xi + σi) , (14)

where
σi = αins,i − βinp,i + γi , i ∈ ε . (15)

τi is the characteristic time constant, while αi, βi, and γi are defined using physiologically
admissible threshold values. Table 2 reports parameters for the baroreflex model, which
were taken from [57–59]. Following the works in [57,58], a symmetric response to devia-
tions was assumed by setting minimum and maximum threshold values at equal distance
from the central point of the sigmoid function.

The baroreflex regulation changes venous compliance and unstressed volume; in
order to maintain constant total blood volume, we reset the venous pressure in 0D venules
compartments modifying the reference pressure Pre f in Equation (8), according to the
modified compliance and unstressed volume given by the baroreflex model. The same is
done in one-dimensional veins. The venous pressure is reset by changing reference area and
stiffness of 1D veins. In each computational cell of a vein, given Âus and Ĉ the unstressed
area and compliance determined by the baroreflex regulation, the modified reference area
Â0 and vessel stiffness K̂ are evaluated solving the following nonlinear system:

Ψ̂(Âus) + p0 = 0∫ L
0

(
∂Ψ̂(A)

∂A |A=Â0

)−1
dx = Ĉ ,

(16)

where

Ψ̂(A) = K̂
((

A
Â0

)m
−
(

A
Â0

)n)
. (17)
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The first equation of system (16) is derived from the definition of unstressed area, that
is, the area for which the transmural pressure is equal to zero; the second equation relies
upon the definition of compliance in a one-dimensional vessel, that is the integral average
over the length of the domain of the inverse of the pressure changes with respect to area
variation, when area is the reference area of the vessel.

Table 2. Parameters for the efferent pathways of the baroreceptors and for the arterial and venous
gain in Equation (15) for all i ∈ ε.

Actuator τi [s] αi βi γi ga,i [mmHg−1] gv,i [mmHg−1]

H 4 1.15 0.34 0.595 0.02 0
Emax 10 0.4 0 0.8 0.02 0
Ra 15 0.8 0 0.6 0.02 0.7
Cv 30 −0.2 0 1.1 0.02 0
Vu 60 −0.2 0 1.1 10.8 417

2.5. Determination of Total Effective Compliance

The TEVC of the above-described computational model was computed by reproducing
in silico the experiment reported in [10]. A 500 mL blood infusion in four minutes was
simulated adding a flow source at the level of the left atrium, starting from a periodic
solution in the baseline setting. In all the simulations, the infusion started at 80 s and ended
at 320 s; after the expansion, the new periodic state was reached in 40 s and the simulations
were stopped at 400 s. Main cardiovascular indexes were recorded after completion of the
infusion’s generated transient, i.e., after a periodic state was reached for the new situation
with increased blood volume. During the simulated infusion test, the mean central venous
pressure (right atrial pressure) over a cardiac cycle was plotted against changes in total
blood volume. The effective compliance was evaluated in the following three scenarios:

(1) Linear case: linear resistances and compliances in 0D venous compartments were
applied. The use of linear resistances implies that R(t) = Rre f in Equation (7) during
the entire simulation. With linear compliance, pressure in 0D venules compartments
is evaluated with m = 1 and n = 0 in Equation (8); this is equivalent to

P(t) =
V(t)−Vre f

un (t)
Cre f

+ Pext , (18)

where Vre f
un is the unstressed volume of the linear pressure–volume relationship (see

Figure 3) and Cre f is the basal value of compliance in Equation (8).
(2) Nonlinear case: in case of nonlinear resistances and compliances in 0D venous com-

partments, Equation (7) was applied for the evaluation of nonlinear resistances,
while (8) was used for nonlinear compliances.

(3) Baroreflex case: in this case, the model presented in Section 2.4 was applied with
parameters of Table 2 in conjunction with nonlinear resistances and compliances in
venules/distal veins compartments.

The numerical results were compared to experimental results reported in [10].

3. Discussion
3.1. Control of Vascular Blood Volume

The mathematical model adopted in this paper departs from the Müller–Toro mathe-
matical model [30–32] for the systemic and pulmonary circulations in the entire human
body. In previous versions of the model, the unstressed component of blood volume was
included only in vessels described by one-dimensional models according to the nonlinear
relationship between area and pressure described by the tube law in Equation (3). By
contrast, in the models for heart, pulmonary circulation, and microvasculature, only the
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stressed component (that determines flow in the circulation) of blood volume was con-
sidered. While this modeling assumption was sufficient in previous applications of the
model, in this case a complete control of the total blood volume in the circulation became
necessary as we were interested in the total capacitance of the vascular system and the
short-term cardiovascular homeostasis. The introduction of the unstressed volumes was
generally adopted in fully lumped-parameters models of the circulation [25,60–62]. This
is the first global model with one-dimensional representation of major arteries and veins
with total control of blood volume. The presence of the unstressed volumes in the venous
part of the circulation is of primary importance when the baroreflex control of the arterial
pressure is considered.

Vascular compliance (for the evaluation of the stressed volumes) and unstressed vol-
ume for each vascular territory had to be assigned for the determination of the capacitance
of the vascular system. The mathematical model proposed here was parametrized with
values of compliances and unstressed volumes based on literature data for humans and
animals, as described in Section 2.2. Total blood volume was set to 5520 mL, of which
about 70% is unstressed blood volume (3745 mL). Figure 4 shows the total blood volume
distribution in different vascular territories; this distribution agrees with literature observa-
tions [24,63]. The same happens for the main cardiovascular indexes and the pressures of
different vascular compartments. Table 3 reports main cardiovascular indexes computed on
model results and general literature data, as well as London et al. [10]. The first part of the
table refers to variables of the systemic circulation, mean arterial pressure, pulse pressure,
cardiac output, and central venous pressure. Arterial compliance was evaluated as the
ratio between stroke volume and brachial pulse pressure, as routinely performed in clinical
practice [28]. We can observe that even if the arterial compliance parameter is assigned
to be 4 mL/mmHg (Table 1), the effective value of the arterial compliance evaluated as
proposed in [28] is in the physiological range. The second part of Table 3 shows the main
cardiac indexes, heart rate, arterial elastance, left ventricle elastance, arterial–ventricular
coupling index, maximum left ventricular volume, and minimum pressure rate of left
ventricle. The computed values are in line with literature observations and the model is
able to represent a normal functioning heart.

Arterial Blood [15 %]

16.7%
Capillaries [5 %]

5.3%

Venous Blood [64 %]

60.2%

Heart [7 %]

6.3%

Pulmonary Circulation [9 %]

11.5%
Stressed volume
  [30   40 %]

Unstressed volume
[60  70 %]

32.16 %

67.84 %

_

_

Figure 4. Total blood volume distribution. In the left pie chart, distribution among different vascular
compartments, while in the right frame distribution between stressed and unstressed volume. In
square brackets, reference blood volume distribution [24]. Total blood volume is set to be 5520 mL.
Arterial blood: 1D arteries and arterioles; Venous Blood: 1D veins and venules; Heart: sum of
volume of the four cardiac chambers; Pulmonary circulation: arterial, capillaries and venous blood of
pulmonary compartments.
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Table 3. Cardiovascular indexes. Current Value: computed numerical value; Ref. Value: literature
reference value with mean and standard deviation. (S/D)BP: systolic/diastolic aortic blood pressure;
MBP: mean blood pressure; PP: pulse pressure in aortic root and in brachial artery; PPAmplitude: ratio
between pulse pressure in brachial artery and aortic root; CO: cardiac output; Ca: arterial compliance
evaluated as the ratio between stroke volume and brachial pulse pressure [28]; CVP: central venous
pressure; H: heart rate; Ea: arterial elastance; Ees: left ventricle elastance; Ea/Ees: arterial-ventricular
coupling index; LVmax: maximum left ventricle volume; LVEF: averaged left ventricle volume; max.
dPLV

dt
: maximum pressure rate of left ventricle; min.

dPLV
dt

: minimum pressure rate of left ventricle.

Index Current Value Ref. Value Ref.

SBP [mmHg] 107.48 105 ± 8, 129 ± 3 [10,64]
DBP [mmHg] 76.18 71 ± 7, 76 ± 2 [10,64]
MBP [mmHg] 91.19 89 ± 8, 97 ± 2 [10,64]

PPAorta [mmHg] 31.31 30 ± 6 [64]
PPBrachial [mmHg] 38.01 49 ± 9 [64]

PPAmplitude [mmHg] 1.21 1.7 ± 0.14 [64]
CO [mL/s] 88.64

Ca [mL/mmHg] 1.91 1.7 [28]
CVP [mmHg] 4.21 4.2 ± 0.8 [10]
H [beats/min] 75 76 ± 4 [10]

Ees [mmHg/mL] 4.61 4.5 [65]
Ea [mmHg/mL] 2.80 2.3 [65]

Ea/Ees 0.60 0.58 [65]
LVmax 116.66 150 ± 67 [27]
LVEF 0.62 0.68 ± 0.12 [27]

max.
dPLV

dt
1511.27 1915 ± 410 [27]

min.
dPLV

dt
−2632.04 −2296 ± 530 [27]

Figure 5 shows the relationship between changes in blood volume and changes in
central venous pressure for the three scenarios considered here, as well as experimental
results reported by London et al. [10]. As in the literature, this relationship is practically
linear. The value of TEVC is expressed in brackets in mL/mmHg and then normalized
to the body weight, considered to be 75 kg. Even if the physical parametrization of the
model concerning compliance distribution and total blood volume was assigned following
physiological measurements based on the literature, the TEVC of the computational model
is not comparable to literature data if one considers the model setup with linear venule
resistance and compliance and no baroreflex (Figure 5): 5.13 mL/mmHg compared to
2.55 ± 0.11 mL/mmHg in [10], 2.7 in [15], and 2.3 in [9]. A reasonable value of TEVC
can be reached changing the physical parameter for the venous compliance. According
to sensitivity analysis not reported here, venous compliance and unstressed volume are
the main determinants of the TEVC of the global model in case of linear resistances and
compliances and without regulation; variations in these parameters could improve the
effective behaviour of the mathematical model. Reducing the compliance of the systemic
venous circulation from Cv = 111 mL/mmHg to Cv = 36 mL/mmHg and the total blood
volume to 4800 mL, the resulting TEVC was 2.7 mL/mmHg when we considered linear
resistances and compliances in the venous lumped parameters compartments and we
neglected the autonomic nervous system control by the baroreceptors. In this case, the
capacitance of the vascular system was changed by modified venous compliance, i.e.,
stressed volume, without changes in unstressed volume. With this setting, the unstressed
volume was 78% of total blood volume, while the blood distribution between vascular
compartments was the following: 19.3% of arterial blood, 6.1% of blood in capillaries,
53.7% of venous blood, 7.3% of blood in cardiac circulation, and 13.2% in lungs. In the
baseline condition, the mean arterial pressure and cardiac output were 92.53 mmHg and
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90.87 mL/s, respectively, while the baseline central venous pressure was 4.28 mmHg. We
observed that this parametrization led to a physiological status of the mathematical model
in the baseline setting, and the numerical effective compliance was comparable to the
literature. However, the changes in main cardiovascular indexes during the infusion were
unreasonable: the mean arterial pressure and the cardiac output increased by more than
35% and the cardiopulmonary blood volume changed by 25%. Even if the baroreflex control
was activated, the authors did not find physiological parameters for the baroreflex model
that were able to control the main cardiovascular indexes as in [10]. These observations
highlight the importance of including both, realistic physical parameters, appropriate
mathematical models for physical processes and relevant physiological processes regarding
the adaptation of the cardiovascular system to deviations from baseline conditions. These
elements are essential in order to reproduce experimental observations that imply large
deviations of the model with respect to the baseline condition for which the model was
parametrized (and/or conceived).
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Figure 5. Computed TEVC by means of an infusion test of 500 mL of blood in 4 min. Changes in
mean central venous pressure are plotted against changes in total blood volume and the inverse
of the slope of their linear relationship is the value of the effective compliance. CLinear: linear rela-
tionship for resistances and compliances in venules compartments; CNonlinear: nonlinear resistances
and compliances in venules compartments; CBarore f lex: nonlinear resistances and compliances and
baroreflex control; CLiterature: London et al. [10] experimental results on 9 controls subjects (mean
value of the group and ± 1 standard deviation).

3.2. Nonlinearities in Venous Compartments

Another modeling improvement of this work regards the introduction of nonlinear
equations for the determination of venous resistances and compliances. As shown in
Figure 5, when linear venous compliances and constant resistances were considered, the
computed TEVC was higher with respect to experimentally measured compliance. During
the infusion test, the central venous pressure evaluated in the right atrium increased by
1.3 mmHg, while in terminal veins and venules compartments, the change in venous
pressure was twice the one observed in central veins. Echt et al. [9] evaluated changes in
central and peripheral venous pressures during infusion of 500 mL of 6% dextran solution
within 3 min. The central venous pressure was recorded in the right atrium while the
peripheral pressure was measured in a vein in the distal third of the left forearm. The
central venous pressure rose from 6.6 mmHg to 9.8 mmHg after infusion of 500 mL of
blood while the peripheral venous pressure increased from 10.2 mmHg to 12.9 mmHg.
A comparable increase in pressure was measured in both vascular locations. During the
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infusion test, the increased blood volume distends the blood vessels, thus reducing their
resistance and the resistance to venous return. Guyton et al. [66] studied the effect of blood
transfusion or hemorrhage on the venous return curve. The slope of the curve which relates
venous return and right atrial pressure is a measure of the resistance to venous return;
the more vertical the slope, the less is the resistance to the return of blood to the heart. In
dogs, it was observed that blood transfusion modified the slope of the venous return-right
atrial pressure relation: increased blood volume distended the blood vessels and hence it
decreased the resistance to blood flow. These considerations lead to the introduction of a
nonlinear relationship between compartment volume and resistance of the post-capillary
compartments. Vessel resistance is proportional to the inverse of radius to the power four
and volume is proportional to the radius squared; thus, for a given vessel length, volume
behaves as the inverse square root of the resistance; according to Equation (7), if the volume
increases with respect to the reference volume, the resistance will decrease. This kind of
relation was previously used by [67] to describe the biomechanics of the arterial–arteriolar
cerebrovascular bed, while in [68] it was used also for the venous cerebral compartments.
In [30], this relation was adopted to describe changes in cerebral arterial vasculature caused
by an autoregulation model. In this work, we applied this nonlinear relation between
resistance and volume to all venous compartments. The use of nonlinear resistances in
venous compartments decreased the effective compliance of the mathematical model of
the human circulation by 18.8% (from 5.133 mL/mmHg/kg to 4.168 mL/mmHg/kg).

According to the work in [20], the relationship between total contained volume in
the vasculature and the transmural pressure is nonlinear. As most of the total blood vol-
ume is contained in the venous circulation, a good approximation of the behaviour of the
venous compartments is essential for obtaining reasonable results in the determination
of TEVC. The 1D venous network adopted in this work contains all the main large veins.
However, most of the venous blood volume and the larger portion of venous compliance
were assigned to the 0D compartments which represent venules/distal veins. For this
reason, a nonlinear relationship between volume and pressure based on 1D veins tube
law was applied to 0D venous compartments. The law that represents venous compliance
(Equation (8)) is such that the actual compliance is similar to the reference linear compliance
in baseline volume condition. If the volume in the compartment is higher than the reference
volume, the transmural pressure evaluated according to the nonlinear pressure–volume
relationship will be higher with respect to linear compliance case. Ursino et al. [25] showed
how the nonlinear behaviour of the relationship between pressure and volume influenced
the computational results on the hemorrhage test; the use of linear pressure–volume curves
is acceptable provided that moderate blood volume changes are simulated. As pointed
out by Drees and Rothe [3], the use of linear compliances is probably adequate in the
physiological pressure range, but in the context of highest blood volume changes the
extrapolation of the results may produce unacceptable errors. The presence of nonlinear
compliances in venous compartments improved the computational effective compliance
by 13.78% (from 5.133 mL/mmHg/kg in linear case (1) to 4.426 mL/mmHg/kg). Com-
pared to the case of nonlinear resistances, the sensitivity of the effective compliance to
nonlinear compliances is lower than to nonlinear resistances. When both resistances and
compliances are nonlinear, the effective compliance improved from 5.133 mL/mmHg/kg
in scenario (1) to 3.835 mL/mmHg/kg in scenario (2). Figure 6 compares the computed
effective compliance in case of: linear resistances and compliances of venule compartments
(scenario (1)), variable resistances according to volume variation and linear compliances,
constant resistances and nonlinear compliances, nonlinear resistances and compliances
(scenario (2)). It can be observed that when both resistances and compliances are nonlinear,
the computed effective compliance is closer to the literature value of TEVC.
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Figure 6. Comparison between linear and nonlinear resistances and compliances of venule com-
partments. CLinear: linear relationship for resistances and compliances in venules compartments;
CNonlinearR: nonlinear resistances in venule compartments (Equation (7)); CNonlinearC: nonlinear com-
pliances in venule compartments (Equation (3)); CNonlinear: nonlinear resistances and compliances
in venules compartments; CLiterature: London et al. [10] experimental results on 9 controls subjects
(mean value of the group and ± 1 standard deviation).

3.3. Baroreflex

London et al. [10] performed the infusion test of 500 mL of 6% dextran within 4 min
in 9 control patient in supine position. They found that an increase in total blood volume
changes the mean arterial pressure by 3%. Even if the study was carried out in the
shortest possible time, short-term cardiovascular regulation is considered to play a role in
maintaining arterial blood pressure. Figure 7 shows the variation in main cardiovascular
indexes during the expansion compared to London’s data (mean error and standard
deviations) [10]. The variables under consideration are mean arterial pressure (MAP),
cardiac output (CO), heart rate (HR), and cardiopulmonary blood volume. Heart rate is
evaluated as the inverse of the duration of the cardiac cycle while cardiopulmonary blood
volume is the sum of blood in heart and lungs. Mean arterial pressure and cardiac output
increased by more than 20% (23.20% and 22.72%, respectively) in case of linear venules
resistances and compliances. The increment in these quantities was even higher in the case
of nonlinear venules resistances and compliances. The cardiopulmonary blood volume
increased by 16.07% during the infusion test. Computational results revealed the need for
baroreflex control to limit the changes in mean arterial pressure. The baroreflex represents
the main neural mechanism involved in short-term regulation of arterial pressure. Two
categories of baroreceptors can be distinguished according to their location: high-pressure
arterial baroreceptors and low-pressure baroreceptors (also known as cardiopulmonary or
volume receptors). The first group of baroreceptors is located in the carotid arteries and
the aortic arch, and they are activated by a variation in systemic blood pressure. Afferent
signals will then be processed; the response to deviations from a nominal state will be
conveyed by efferent fibers and ultimately result in changes in vascular resistance, heart
rate and cardiac contractility and venous tone. Cardiopulmonary receptors compose an
heterogeneous group of sensors [69]. Despite their heteromorphism, cardiopulmonary
receptors tonically inhibit the vasomotor center in analogy to arterial baroreceptors. Low-
pressure baroreceptors are located in large systemic veins and the atria of the heart (at the
junction of the venae cavae and the pulmonary veins). They act on arterial resistance,
venous tone, and heart rate [70]. These low-pressure receptors minimize arterial pressure
changes when the blood volume variation is too small to be detected by high-pressure
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receptors; they activate reflexes parallel to the arterial baroreflexes to ensure a stronger
control of arterial pressure. Moreover, they participate in the control of renin release and
vasopressin secretion, with effects on salt and water retention, production of urine and
long-term control of arterial pressure. However, as the goal of this paper was to simulate
an infusion of blood in four minutes, only the short-term pressure regulation by high- and
low-pressure baroreceptors was considered.
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Figure 7. Changes in hemodynamic parameters before and after expansion. Comparison between
computational results for scenario (1) with linear resistances and compliances, scenario (2) with
nonlinear relationship in venous compartments, and scenario (3) with nonlinearities and baroreflex
control. Computed results are compared to literature data from [10]. Parameters under consider-
ation are MAP, mean arterial pressure; CO, cardiac output; H, heart rate; CPBV, cardiopulmonary
blood volume.

In this work, the mathematical function representing the nervous responses for both
high- and low receptors was a sigmoid function, which ranges between the low and
high saturation values symmetrically with respect to the baseline central point. It was
experimentally proved in anesthetized dogs [71] that the firing rate of high-pressure
receptors acted in an asymmetrical way in response to increasing or decreasing carotid
pressure, like in an hysteresis loop. Moreover, this asymmetry was more evident in the
parasympathetic activity than in the sympathetic one [69]: the parasympathetic firing
rate response is faster when the blood pressure increases than in response to a decrease
in pressure. For simplicity, the asymmetrical behaviour of the firing rate was neglected
in this work; however, other mathematical models of the baroreflex activity considered
the asymmetry of the firing rates, in particular in the control of the heart rate, where the
parasympathetic nerve activity plays a role [72,73].

The control of heart rate by atrial receptors is called the Bainbridge reflex. In 1915,
Bainbridge [74] reported that if 200 to 400 mL of blood or saline was injected into a 10 kg
dog over a period of 1.5 to 4 min then its heart rate increased; this increase did not seem to
be tied to arterial blood pressure because the heart rate rose regardless of whether arterial
blood pressure changed, but it increased whenever central venous pressure increased
sufficiently to increase ventricular end-diastolic pressure and cause ventricular dilation.
The Bainbridge reflex occurs especially if the initial heart rate is low [20]; on the other
hand, with more rapid heart rate, the infusion ordinarily slows the heart. Several studies
have failed to demonstrate a Bainbridge effect in humans [75]. This reflex might be poorly
developed or less sensitive in humans than in dogs, thus species-dependent. Moreover, a
10% volume expansion stimulates also the aortic receptors; it has been shown that the reflex
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generated by aortic receptors was able to reverse the tachycardic Bainbridge reflex into a
bradycardic response [20]. The resulting effect could maintain constant heart rate. In view
of these considerations, we applied the effects of cardiopulmonary receptors to arterial
resistance and venous unstressed volume, neglecting the Brainbidge reflex on the heart rate,
in agreement with work done in [59]. According to the sigmoid function, which describes
the heart rate variation by means of the sympathetic and parasympathetic activity from
arterial baroreceptors, the assumption of omitting the low-pressure receptors control of
heart rate may lead to insignificant changes in heart rate if the changes in arterial pressure
are small.

Mathematical models of human cardiovascular system [57,58,76] were applied to
study the effects of short-term regulation of arterial pressure during hemorrhage. These
works included only the high-pressure baroreceptors which were sufficient to appropriately
control the arterial pressure. We performed an hemorrhage test for the validation of the
parameters of the arterial baroreflex model, obtaining reasonable results in comparison
with animals and humans data [77,78], as well as other mathematical models [57]. There is
literature evidence on the activation of cardiopulmonary receptors when there are varia-
tions in total blood volume. Gupta et al. [79] demonstrated in dogs that the firing rate from
the low-pressure receptors decreased in proportion to the loss of blood volume, concluding
that the low-pressure receptors are primarily responsible for the reflex maintenance of
arterial pressure. Abboud et al. [80] stressed that both arterial pressure and cardiac filling
pressure increase with expansion of blood volume and activate the arterial baroreceptors
as well as cardiopulmonary baroreceptors with vagal afferents. The mathematical model
presented in Section 2.4 was first validated for a hemorrhage test; even if the underlying
model with high-pressure receptors alone was able to reproduce physiological variation
in mean arterial pressure during hemorrhage test, this was not the case for the infusion
test. According to a sensitivity analysis study, arterial resistance is positively correlated
to arterial pressure while negatively correlated to right atrial pressure. This means that a
decrease in arterial resistance might decrease the arterial pressure and increase the central
venous pressure. Therefore, the effect of the baroreflex control on arterial resistance is
twofold: it helps controlling the arterial pressure during the infusion and it increases the
central venous pressure, decreasing the total effective compliance. As reported in [10], the
infusion test did not significantly change the arterial pressure, so the variation in arterial
resistance might be due to the action of the low-pressure receptors. Figure 8 compares the
percentage change in mean arterial pressure and other cardiovascular indexes during the
infusion test under the action of either high-pressure baroreceptors (gv,i = 0 for all i ∈ ε)
or low-pressure receptors alone (ga,i = 0 for all i ∈ ε). In the first case, the mean arterial
pressure increases by 9%, leading to 20% variation in heart rate. On the contrary, under
the action of the low-pressure receptors alone, the value of the mean arterial pressure is
almost equal to the pre-infusion one due to the variation in arterial resistance and venous
unstressed volume. When the two types of receptors work together, the mean arterial
pressure increases only by 1.03% after the volume expansion; the cardiac output and the
cardiopulmonary blood volume increase by 24.11% and 16.98%, respectively, while the
heart rate decreases by 2.44% (as shown in Figure 7). As blood volume is infused in the
circulation, the pressure in carotid arteries and aortic arch increases and activates the
sympathetic control of the high-pressure baroreceptors; the low-pressure receptors are
in turn activated by changes in right atrial pressure. The variation in arterial resistance
and the unstressed volume was modified mainly by the receptors in the low-pressure
system while the other variables undergoing regulation remain almost constant during
the infusion, as we see in the efferent responses (Figure 9). The 39% variation in arterial
resistance increased the right atrial pressure up to 6.3 mmHg, decreasing the TEVC to
2.806 mL/mmHg/kg. This change in arterial resistance is such that the variation in total
systemic vascular resistance evaluated as ratio between mean arterial pressure and cardiac
output reflects the one observed in [10].
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Figure 8. Changes in hemodynamic parameters before and after expansion. Comparison between
simulation with high-baroreceptors alone (gv,i = 0 for all i ∈ ε) and simulation with complete
baroreflex control with both high- and low-pressure receptors. Computed results are compared
to literature data from [10]. Parameters under consideration are MAP, mean arterial pressure; CO,
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Figure 9. Efferent response of the baroreflex model during the volume expansion evaluated at the
beginning of the cardiac output by a first order differential Equation (14). Infusion starts at 80 s and
it ends at 320 s. The parameters undergoing regulation are H, heart rate, Emax, maximum elastance
of cardiac chambers, Ra, arterial resistance in terminal arteries and arterioles’ compartments, Cv,
venous compliance, Vu, venous unstressed volume.

Concerning the unstressed volume, few data are available about the entity of changes
in venous tone during infusion or hemorrhagic events. Even if there are several techniques
for the determination of body venous tone, all of them present technical limitations; in
whole animals, information on body venous tone or capacitance cannot be obtained with
intact cardiovascular reflex system. The MCFP method was used for the evaluation of whole
body venous tone or venoconstrictor influence; however, this method is unable to obtain
reliable readings of compliance and unstressed volume. First, the amount of unstressed
volume was linearly extrapolated from the blood volume/MCFP relationship; however,
this relies on the assumption that there is a linear volume–pressure relationship, but this is
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not generally valid. Moreover, changes in blood volume activate cardiovascular reflexes
that modify the unstressed volume, which in turn initiate other regulatory mechanisms.
The volume/MCFP relationship has been obtained in animals with suppressed autonomic
reflex [81] and even then the effects of vasoactive agents, such as angiotensin II, vasopressin
or endothelium-derived relaxing and contracting factors modified the volume of blood,
leading to over- or underestimation of changes in compliance and/or unstressed volume.
There is evidence that a change in blood volume induced a larger change in unstressed
volume than compliance [3]. Echt et al. [9] measured venous tone in the arm during blood
volume changes by means of venous occlusion plethysmography in the left forearm. Using
forearm volume and pressure, the volume elasticity coefficient at an intravenous pressure of
15 mmHg was used as measure of venous tone. Their observations failed to reveal changes
in venous tone with moderate (±10%) changes in central blood volume; they did not
excluded the possibility of venous tone variation, probably these changes took place in other
parts of the capacitance system. Figure 9 shows the percentage alteration of the parameters
controlled by the baroreflex model during blood infusion. The venous compliance remained
almost constant during the infusion, while the unstressed volume varied by less that 10%,
according to venous pressure changes and the threshold and saturation points given by
previous works [59]. From literature evidence, it is difficult to establish the real variation of
unstressed volume or compliance per se, without combining the baroreceptors activity with
other reflex control mechanisms. However, we are aware that such variation in unstressed
volume is necessary to control the mean arterial pressure and cardiac output as in the
physiological experiment, especially when other cardiovascular regulatory system are not
taken in consideration. The local sensitivity analysis (not reported here) of the principal
parameters of the global mathematical model with linear relationship for resistances and
compliances and without baroreflex control revealed that the venous unstressed volume
is one of the major determinants of computed mean arterial pressure and mean central
venous pressure. Both arterial and venous pressures were negatively correlated to venous
unstressed volume; an increase of 20% in venous unstressed volume caused a decrease of
10.11% in mean arterial pressure and 13.32% in mean central venous pressure.

4. Conclusions

A mathematical model of the human circulation was used to estimate the TEVC of
a mathematical model for human circulation, evaluating the changes in central venous
pressure with respect to changes in blood volume during an infusion test. In order to per-
form this experiment the original model was modified. The main changes regarded (i) the
introduction of total blood volume, including both stressed and unstressed volume, (ii) the
parametrization of vascular compliance and its distribution between different vascular com-
partments, (iii) the use of nonlinear pressure–volume relations for venule compartments,
and (iv) the use of resistances for capillaries and venules featuring a nonlinear dependence
from compartment volume. We showed that a physiological parametrization of the mathe-
matical model, in particular the assignment of physical compliance and unstressed volume
in different vascular compartments, is necessary but not sufficient for obtaining a TEVC
in agreement with experimental data. In fact, major physiological mechanisms must be
considered, such as, for example, the short-term control of arterial pressure by barorecep-
tors which is crucial for obtaining modeling results that are in agreement with observed
variations in mean arterial pressure, cardiac output, heart rate, and cardiopulmonary blood
volume during the infusion test.

As we pointed out previously, other reflex mechanisms are activated to control volume
homeostasis and to re-establish baseline cardiovascular variables after blood volume
changes. Increased blood volume leads to increased cardiac output, which in turn increases
the capillary pressure; due to the capillary fluid shift mechanism, fluid starts to flow
out of the circulation through the tissue capillary walls to readjust the blood volume.
Moreover, increased venous pressure gradually distend the veins by the reflex called stress-
relaxation; the venous blood reservoirs (the unstressed volume in the liver and spleen)
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distend or contract, modifying the mean systemic pressure. Finally, excess blood flow in the
peripheral tissues activates autoregulatory mechanisms of blood flow control. This kind of
local control occurs within seconds to minutes and provide rapid regulation of tissue blood
flow by means of local vasodilation or vasoconstriction of small terminal vessels (arterioles
and pre-capillaries), thus modifying the peripheral vascular resistance and resistance to
venous return. Drees and Rothe [3] measured variation in mean circulatory pressure at
0.5, 2, and 5 min after randomized changes in blood volume in dogs; they showed the
reflexogenic control of vascular capacity evaluating the changes in effective compliance
with time. They concluded that the compensation after about 30 s was mostly from passive
viscoelastic creep and fluid shifts; less than half of the compensation for hemorrhage
during the first 5 min came from the stress-relaxation venoconstriction. Even if the infusion
considered in this work was performed in the shortest possible time, four minutes are long
enough to start reflex mechanisms other than the baroreflex control. This is one of the main
limitations of the present work. In future work, all these mentioned mechanisms should be
taken into account to better represent the physiology of this infusion test. This will imply
the introduction of a model for solute transport that permits to study the transcapillary
fluid shift during the infusion experiment.

London et al. [11,26] showed the strong positive relationships between compliance
and cardiopulmonary, interstitial and extracellular fluid volumes. As demonstrated by
animal experiments and by immersion in man, the filling pressure of the heart is monitored
through cardiac mechanoreceptors controlling renal function, extracellular fluid volume
and thirst via the autonomic nervous system. Thus, even if the effective compliance was
evaluated by an infusion within four minutes, a complete control of the volume in the
circulation should be obtained only if other body fluid compartments are added to the
mathematical model and the main regulatory mechanisms that participate in the long-term
regulation of arterial pressure are included. This link with other body fluids was stressed
in the evaluation of effective compliance in arterial hypertensive patients. It has been
shown [1,11,12,26] that hypertensive patients are characterized by decreased TEVC, mainly
in the venous compartment, due to complex hemodynamic abnormalities with alterations
in main fluid volume control mechanisms. A decreased venous compliance could increase
the cardiac output, causing the activation of regulatory mechanisms that modify the total
peripheral resistance; this could be an initiating factor in hypertension. Future work will
focus on the estimation of the effective compliance in the context of remodeling that is
cause/consequence of arterial hypertension.

A further aspect that leaves room for improvement is that of local autoregulation.
Previous versions of this model included the myogenic response of cerebral autoregulation.
In this work, we did not consider the local control, but a global regulation of venous
resistances. One should differentiate regulation with local mechanisms to brain and heart
and global control to the remaining vascular territories, as proposed in [82]. Finally, note
that even if the short-term control of arterial pressure by baroreceptors adopted in this work
produced results in agreement with experimental observations available in the literature,
an aspect that could be addressed in future developments is to consider a more refined
baroreflex model that would account for the asymmetrical response of receptors and that
would be able to generate an hysteresis loop for the nervous receptors activity, first of all in
the cardiac regulation.

While the parametrization of the mathematical model provided in this work and
the consequent adaptation of the cardiovascular system to the infusion test might not
be totally accurate, especially because of lack of experimental data available for model
parametrization, we believe that the results presented here should contribute to raise
awareness about the difference of effective and physical parameters, as well as about the
need to enrich the set of physiological processes that models like the one considered here
need to incorporate, especially if large deviations from the baseline model state are to
be described.
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