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Abstract
We report the results of the SemEval 2022 Task
3, PreTENS, on evaluation the acceptability
of simple sentences containing constructions
whose two arguments are presupposed to be
or not to be in an ordered taxonomic relation.
The task featured two sub-tasks articulated as:
(i) binary prediction task and (ii) regression
task, predicting the acceptability in a continu-
ous scale. The sentences were artificially gen-
erated in three languages (English, Italian and
French). 21 systems, with 8 system papers
were submitted for the task, all based on var-
ious types of fine-tuned transformer systems,
often with ensemble methods and various data
augmentation techniques. The best systems
reached an F1-macro score of 94.49 (sub-task1)
and a Spearman correlation coefficient of 0.80
(sub-task2), with interesting variations in spe-
cific constructions and/or languages.

1 Introduction

A growing body of literature on the cognitive side
of computational linguistics has tried to probe the
ability of language models to recognize deviant
linguistic structures. Recognizing linguistic ill-
formedness requires some degree of metalinguis-
tic awareness in adult humans (i.e. the ability to
say not just that there is ‘something wrong’ in a
sentence, but also where the problem lies or how
the sentence could be improved), and it is not
clear whether and to what extent artificial systems
can induce this type of knowledge purely from
exposure to raw linguistic data (Linzen and Ba-
roni, 2020). Most of the previous investigations
on this topic have focused on phenomena that are
purely syntactic (agreement, Gulordava et al. 2018;
dislocated arguments with island effects, Wilcox
et al. (2018); Warstadt et al. (2019); Chowdhury
and Zamparelli (2018), clause embedding, Futrell
et al. 2019, etc.) or at the syntax/semantics inter-
face (negative-polarity items, Jumelet and Hupkes
2018; argument structure, quantifier restrictions,

Warstadt et al. 2019), mostly using LSTM archi-
tectures (but see Tran et al. 2018; Ettinger 2020).
The fact that many purely semantic effects result in
the (non) availability of certain readings (e.g. the
scope of a quantifier over a higher negation, in “I
didn’t see some people”) makes it of course harder
to translated them into computationally testable
paradigms.

The task we describe in this paper focuses on
an area of purely semantic competence that, to the
best of our knowledge, is unexplored in the com-
putational literature, and one which gives rise to a
robust intuition of deviance, triggered by the failure
of a type of presupposition: the requirement for
two nominal arguments to be (or not be) in an (or-
dered) taxonomic relation. These presuppositions
are introduced by a wide variety of constructions,
such as comparatives (1a), coordinations, verbs like
prefer, modifiers headed by type or except (1b) etc.
(see Table 1 for the full list).

(1) a. I hate guns more than {*weapons / social
media}.

b. I like dogs, except {*birds / greyhounds}

Distinguishing the deviant from the acceptable
cases requires the ability to (i) detect taxonomic re-
lations and (ii) recognize those constructions which
place restrictions on them. The first point is of
course crucial for most tasks in Natural Language
Inference (NLI) — an active and fast-growing field
in the NLP community, with various datasets and
benchmarks (e.g. GLUE Wang et al. 2018, Super-
GLUE Wang et al. 2019). NLI datasets, however,
normally assume that felicity conditions are satis-
fied. The present dataset, which we call PreTENS,
takes a step back and aims to verify if a computa-
tional model can detect when this presupposition
fails.

The task requires world knowledge, common-
sense knowledge (in the sense discussed in Storks
et al. 2019), but also linguistic knowledge, to catch



Construction Example Presup.(Variants)
EXCEPT (2) I like [A1 dogs ] except [A2 {*cats / pugs / *animals}] A1>A2
PARTICULAR (2) I like [A1 dogs ], and in particular [A2 {*animals / *cats / pugs}]. A1>A2
IN GENERAL I like [A1 dogs ], and [A2 {animals / *cats / *pugs}] in general. A1<A2
GENERALLY I like [A1 dogs ], and more generally [A2 {animals / *cats / *pugs}]. A1<A2
TYPE (2) I like [A1 dogs ], an interesting type of [A2 {animal / *cat / *pug}]. A1<A2
AND-TOO I like [A1 dogs ], and [A2 {cats / *pugs / *animals}] too. A1 ̸><A2
COMPAR. (3) I like [A1 dogs ] more than [A2 {cats / *pugs / *animals}] A1 ̸><A2
DRATHER I would rather have [A1 dogs ] than [A2 {cats / *pugs / *animals}] A1 ̸><A2
PREFER I don’t like [A1 dogs], I prefer [A2 {cats / *pugs / *animals}] A1 ̸><A2
UNLIKE Unlike [A1 dogs ], [A2 {*animals / cats / *pugs}] are often mentioned in this text . A1 ̸><A2
BUT-NOT I like [A1 dogs ], but not [A2 {*animals / cats / pugs}] A1 ̸></>A2

Table 1: Distribution of taxonomic constructions and their presuppositions. ̸>< indicates no overlap; (n) indicates n
variants on the construction (e.g. COMPAR. contains samples of majority, minority and equality comparatives). The
BUT-NOT case is probably ambiguous, with one meaning close to EXCEPT; the same applies to GENERALLY, which
draw uncertain results in the human evaluation and was excluded from sub-task 2 in favour of IN GENERAL.

the requirement of the specific presupposition-
inducing constructions. In this respect, the present
task is closer in spirit to SemEval-2020 task 4, sub-
task A, on the validation of sentences for common-
sense (Wang et al., 2020), than to SemEval 2016
task 3, where participants had to extract and iden-
tify the taxonomic relationships between two terms
(Bordea et al., 2016).

Besides NLI practitioners, the task could be
relevant for researchers interested in the poten-
tial of NNs as cognitive/linguistic models (see e.g.
Warstadt et al. 2019). We believe that it is also a
potentially useful addition to the toolbox of probes
used to understand the inner working of current
language models.

2 Dataset and Task description

2.1 Composition

The PreTENS contains 21,765 artificial sentences
with 2-argument relations filled by nominals (the
argument nouns). The sentences were designed
to follow or flout the presuppositions that (i) the
argument nouns should or should not be in a taxo-
nomic relation (i.e. one a subset of the other: dogs
< animals) and (ii) when a taxonomic relation was
required, the order should be a specific one. (ii)
differentiates I like dogs, and in particular pitbulls
from *I like pitbulls, and in particular dogs). The
list of constructions used is in Table 1.

The data for this task was programmatically gen-
erated from a human-verified template, yielding
sets of sentences that are extremely similar across
constructions. The argument nouns (A1 and A2
in Table 1) are taken from the following semantic
categories: dogs, birds, animals, cars, motorcycles,

cutlery, clothes, trees, plastics, furniture, wine, ani-
mals, sports, music, vegetables, fruits, pork-based
food, desserts, seafood, apartments, movies, jew-
elry, pets, rain, nature, senses, emotions, books,
workers and scientists, and repeat across construc-
tions. The elements not in taxonomic relations
were chosen to maximize the plausibility of com-
parison (e.g. dogs if the semantic category was
birds) and the verbs were chosen to be as semanti-
cally neutral as possible (often like or have, but e.g.
trust in the semantic category of senses). The En-
glish template file was created and revised (using
dictionaries and Wordnet) by the task proponents,
all expert linguists, and double-checked by a native
speaker.

PreTENS is a simplified, no-repetiton subset of
a larger dataset, DuckRabbit, which also contains
5 semantic categories (countries, cities, painters,
politicians, actors) examplified by well-known
proper names (e.g. Paris, Picasso, Obama), which
we decided not to use for the PreTENS task. The
full DuckRabbit dataset (55,296 items) is arranged
in a way that systematically tests all the possible or-
ders of pairs of argument nouns taken from a super-
category, a subcategory in the same taxonomic do-
main and a distractor (non taxonomically ordered
with either, e.g. <birds, parrots, dogs>). This
arrangement, however, creates a large number of
repeated entries.

The fixed nature of the patterns used allowed us
to propose the dataset in three languages (English,
Italian and French), where the French and Italian
versions are slightly adapted translations of the
English dataset.1 Adding more languages would

1A key difference was that the English bare plurals used in
generic sentences were replaced by NPs introduced by definite



be relatively straightforward. The template and
the scripts used to generate the data are publicly
available under a CC BY 3.0 “Attribution” license.2

As far as we can tell, the contents do not raise any
issue w.r.t. ethics or privacy.

2.2 Definition of the Task

The task was articulated into the two sub-tasks:

• a binary classification task (hereafter re-
ferred to as sub-task1), which consisted in
predicting the acceptability label assigned to
each sentence of the test set on the basis of a
theoretical linguistic model;

• a regression task (hereafter sub-task2), which
consisted in predicting the average score on a
7 point Likert-scale assigned by human anno-
tators to a subset of data evaluated via crowd-
sourcing (see Section 2.3).

For each task and each language, the dataset was
split into training and test sets. The classification
task was composed of 5,838 training samples and
14,560 testing samples; the regression task, of 524
sentences in training and 1,009 in test. Table 2
reports the internal composition of the training and
test dataset of each sub-task. As it can be seen, not
all the constructions contained in the test were pro-
vided in the training set. This choice was deliberate,
to test the generalization abilities of the systems
across unseen constructions. The sentences in train-
ing data were independently randomly ordered in
the three languages, to discourage mapping the re-
sults obtained in one language to sentences with
the same ID in the other languages.

2.3 Annotation with human judgments

The dataset released for Sub-task2 is composed by
a subset of 1,533 sentences taken from the whole
dataset, corresponding to about 5% of the total and
representative of the patterns considered, which
were judged by human annotators via a crowdsourc-
ing campaign.

The purpose of this evaluation was two-fold: (i)
to provide a bottom-up assessment of the quality of

determiners in Italian and French. This makes the latter sub-
datasets systematically longer. In addition, certain English
nouns required compounds or N+PPs to be rendered in the
other languages.

2Github Repository: https://github.com/
shammur/SemEval2022Task3
Task Website: https://sites.google.com/view/
semeval2022-pretens/

Constructions sub-task1 sub-task2
Training Test Training Test

and-too 835 525 131 88
but-not 831 526 131 88
comparatives 835 3,245 131 88
drather – 1,360 – –
except 831 1,887 – –
in general – – – 219
generally – 1,360 – –
particular 835 1,885 – 219
prefer 835 525 – –
type 835 1,887 131 88
unlike – 1,360 – 219
TOTAL 5,838 14,560 524 1,009

Table 2: Distribution of taxonomic constructions in
terms of number of sentences in the dataset.

the linguistic categories that informed the creation
of the dataset templates; (ii) to obtain more fine-
grained judgments of semantic acceptability in the
form of gradual, rather than categorical, scores.

The annotation was performed through the Pro-
lific3 platform. Specifically, for each language the
annotation process was split into different tasks,
each one consisting in the annotation of about 150
randomly mixed sentences for the typologies re-
ported in Table 1. For all tasks, we recruited 12
native speakers, who were asked to read each sen-
tence and answer the following question:

How acceptable is this sentence from
1 (completely unacceptable) to 7 (com-
pletely acceptable)?’

As an example, we report below two sentences
(with corresponding average score) from the En-
glish portion of the annotated dataset, which were
rated as very poorly and very highly acceptable:

I like politicians, an interesting type of
farmer (1.42)

I like governors, an interesting type of
politician (6.16)

Table 3 provides the average value (µ) and stan-
dard deviation (σ) of acceptability labels for the
whole dataset (first row) and for sentences clas-
sified according to the various constructions. As
it can be noted, French sentences were evaluated
on average as more acceptable than Italian and
English ones but with a slightly higher standard
deviation. While for all languages the maximum
average score on the Likert scale was obtained by
very few sentences (i.e. only one sentence for En-
glish and French and four for Italian), the number

3www.prolific.co

https://github.com/shammur/SemEval2022Task3
https://github.com/shammur/SemEval2022Task3
https://sites.google.com/view/semeval2022-pretens/
https://sites.google.com/view/semeval2022-pretens/


ENG ITA FRE
µ σ µ σ µ σ

All sents 3.89 1.61 3.75 1.73 4.05 1.85
and-too 4.83 0.92 4.98 0.97 5.29 0.95
but-not 4.59 1.08 3.94 1.06 5.07 0.94
comparatives 4.91 1.93 5.05 1.42 5.18 1.41
in general 3.64 1.17 3.28 1.29 3.78 1.06
particular 2.54 1.48 2.36 1.46 2.28 1.50
type 2.13 1.45 1.89 1.44 1.80 1.40
unlike 4.56 0.84 4.74 1.15 4.93 1.93

Table 3: Statistics about the distribution of human judg-
ments in the dataset collected for sub-task2. µ = average
judgment; σ = standard deviation.

of sentences rated with the lowest score is higher
for Italian and French (i.e. 42 and 45 respectively)
than for English (i.e. 7). If we focus on the distribu-
tion of judgments across the distinct constructions,
we observe that examples containing the TYPE con-
struction were perceived on average as the less
acceptable ones for all languages. Conversely, sen-
tences belonging to the AND TOO and COMPARA-
TIVES categories obtained the highest acceptability
scores.

In order to see how consistent was the human per-
ception of semantic acceptability across languages,
we computed the Pearson’s r between the average
scores assigned to the whole set of sentences for
each pair of languages. The correlation scores were
very high, with the highest scores obtained between
sentences in French and Italian (i.e. 0.86), followed
by English and French (i.e. 0.80), and, lastly, by
English and Italian (i.e. 0.77)4.

Finally, an additional outcome that we want to
highlight here is the strong connection between
the theoretically-driven and the human-based se-
mantic acceptability label, which was assessed by
calculating the Spearman’s rank correlation coef-
ficient between the average human scores and the
binary acceptability labels attributed to the same
set of sentences, for all languages. In this case, too,
we found a very high correlation, although weaker
in English (ρ=.73) than in Italian and, especially,
French (ρ =.78 and .83, respectively).

3 Shared Task Organisation

Shared Task Phases We ran the shared Task 3
in two phases. In the first phase, we released the
baseline pipeline, along with the cross-validation
results on the official training set and introduced the
participants to the aforementioned task evaluation

4All correlations are significant with p value< 0.01.

Figure 1: Statistics of participants’ interest on Tasks
based on initial registration.

Task sub-task1 sub-task2
Team Participated 21 17
Total System Submissions 134 110
Total Accepted Submissions 108 84

Table 4: Statistics on participation

measure.
The second phase – the main Evaluation Phase

– was conducted using codalab platforms for both
sub-task15 and sub-task2.6 During this phase, the
participants were provided with the test sets and
were allowed to submit their predictions to the sys-
tem. The number of submissions of each partici-
pant was limited to three, but the participant could
choose among them which runs/submission they
want to display in the leader-board. During the
evaluation phase, the leader-board was visible to
all the participants.

Baselines For each sub-task a separate baseline
were defined: i) for Sub-task1 – the binary classifi-
cation sub-task, a Linear Support Vector classifier
using n-grams (up to three) as input features was
used, and for the ii) Sub-task2 – the regression
sub-task, a baseline using a Linear Support Vec-
tor regressor with the same n-grams features was
provided.

We provided the starter code to all the partici-
pants, along with different cross-validation config-
urations that we encouraged participants to use to
validate their methodology. Moreover, we provided

5https://codalab.lisn.upsaclay.fr/
competitions/1292

6https://codalab.lisn.upsaclay.fr/
competitions/1290

https://codalab.lisn.upsaclay.fr/competitions/1292
https://codalab.lisn.upsaclay.fr/competitions/1292
https://codalab.lisn.upsaclay.fr/competitions/1290
https://codalab.lisn.upsaclay.fr/competitions/1290


information on how the performance in the valida-
tion task translated in the official test split (applying
the baseline methods to the official test-set yielded
results 10-20% lower than with the training set).
We highlighted the importance of achieving maxi-
mal syntactic generality on this task and test differ-
ent cross-validation configurations on the training
set.

Official Evaluation Metrics Given the differ-
ences in the nature of the sub-tasks output, we
defined two different sets of evaluation metrics.
For sub-task1, systems are evaluated with respect
to binary and macro F-measure. These measures
were evaluated per languages, and the final ranking
was based on the global ranking of each partici-
pant, calculated by averaging the macro F-measure
score from all the three languages (this provided
an incentive to give results for all languages). In
addition to the official measure, we also gave the
participants their precision and recall scores, per
language.

As for sub-task2, a Spearman’s rank correlation
coefficient (ρ) between the task participants’ scores
and the test set scores was computed. To be con-
sistent with sub-task1, the global ranking of this
task was calculated by averaging the position of the
participant’s ρ per language.

At the end of the competition, we provided the
participants with packages containing the results
for each of their submissions, and publicly updated
the leader-board with ranks listing all teams who
competed in each sub-task.

Participation The task attracted nearly 83 teams.
Among them, 43 teams actually registered for the
evaluation phase; 21 teams (sub-task1) and 17
teams (sub-task2) submitted their system’s predic-
tions. The detailed statistics are shown in Table
4.

4 Participating Systems

We received six system description papers for both
sub-tasks, plus two papers by teams that partici-
pated only in sub-task1, for a total of eight papers.
As it can be observed in the following summaries of
the approaches proposed, there were several points
of methodological similarity, but also interesting
differences. Many teams experimented data aug-
mentation techniques devised to overcome the lim-
ited amount of training data, in particular for the
solution of sub-task2. These techniques ranged

from the use of external resources to the genera-
tion of new sentences (Zhou et al. (2022), Sarhan
et al. (2022) and van den Berg et al. (2022)), to the
automatic translations across the three languages
considered (Sarhan et al. (2022) and Zhou et al.
(2022)), to mapping the Likert scale results to the
binary values. This was the strategy used by the
first two teams classified (Xia et al. (2022) and Li
et al. (2022)) according to the global scores.

As we can see by the description of the partic-
ipating systems (see Section 4.1), the majority of
teams chose monolingual instead of multilingual
models, especially in the resolution of sub-task1.
The exceptions are represented by Li et al. (2022),
who obtained the second position in the global rank-
ing of both sub-tasks, by Aziz et al. (2022), and by
Sarhan et al. (2022) who (in the resolution of sub-
task 2 only), used the multilingual version of the
Universal Sentence Encoder, since it yielded better
performance than the monolingual one. Interest-
ingly enough, the top-ranked team in both sub-tasks
(Xia et al. (2022)) found that, for all languages, the
monolingual DeBERTa-v3 models always outper-
formed the multilingual version.

A further approach shared by the participating
teams is represented by the adoption of ensemble
methods. Two main ensemble strategies were sug-
gested. In the first one, the training data used to
fine-tune the adopted model was split, obtaining dif-
ferent models, each with its training and validation
sets. This was the case with the second-ranked sys-
tem (Li et al. (2022) and with Vetter et al. (2022),
but only in sub-task2. A second main approach
used the fusion of the acceptability scores predicted
by two different models. As described in the fol-
lowing subsection, Aziz et al. (2022) combined
the scores predicted by XLM-RoBERTa (Conneau
et al., 2019) and mBERT (Devlin et al., 2019),
while Zhou et al. (2022) merged the predictions
made by ERNIE-M and DeBERTa-v3 (only in sub-
task1).

4.1 Individual System Descriptions

Xia et al. (2022) (model LingJing), tackling sub-
task1, experimented with different strategies to fine-
tune DeBERTa-v3 (He et al., 2021), which ended
up outperforming both the PreTENS baseline and
three new baselines introduced by the authors, in-
cluding a multilingual version of DeBERTa, i.e.
mDeBERTa model. These strategies included the
augmentation of the original training set with trans-



Team/user name Global score Rank ENG Rank FRE Rank ITA Rank
LingJing⋆ 94.49 1 97.17 1 93.24 1 93.05 1
HW-TSC⋆ 92.80 2 93.04 5 93.01 2 92.34 2
UU-TAX⋆ 91.57 3 93.08 4 89.53 4 92.12 3
CSECU-DSG⋆ 91.12 4 91.51 7 90.73 3 91.11 4
piano 90.74 5 97.12 2 86.14 11 88.95 6
SPDB Innovation Lab⋆ 89.58 6 94.55 3 87.28 7 86.90 8
bpc 89.09 7 91.36 8 88.32 6 87.59 7
weijiyao 88.78 8 92.15 6 87.28 8 86.90 9
ddd7788 86.68 9 80.44 13 88.86 5 90.75 5
cnxupupup 86.68 10 86.88 9 86.39 10 86.76 10
MaChAmp 86.42 11 86.58 10 86.52 9 86.17 12
aidenqiu 86.30 12 86.29 11 86.09 12 86.51 11
UoR-NCL⋆ 80.32 13 77.23 16 80.08 14 83.65 13
RUG-1-pegasussers⋆ 79.56 14 80.31 14 79.71 15 78.64 14
KaMiKla⋆ 77.99 15 77.21 17 82.34 13 74.40 15
Huawei-zhangmin 71.80 16 78.54 15 65.77 18 71.08 16
RCLN 70.54 17 73.02 18 75.73 16 62.86 17
BASELINE 67.39 18 70.47 19 72.13 17 59.59 18
Jan/Jasper/Boris 27.26 19 81.76 12 – – – –
folkertleistra 22.64 20 67.92 20 – – – –
RUG-3 19.95 21 59.85 21 – – – –

Table 5: Sub-task 1 results for each team/user ordered by overall F1-Macro along with micro-averages for each
language. Team/user names marked with ⋆ have submitted their system description.

lations from the three languages, adversarial train-
ing and Child-Tuning (Xu et al., 2021). In addition,
the authors performed experiments with different
compositions of the original training, i.e. mixing
the data for the three languages, and fine-tuning in
one language, then expanding to the others. Each
strategy achieved different results for each lan-
guage. Due to the small size of the training set
of sub-task2, the team transferred the knowledge
of the classification model to the regression task,
in terms of the model’s parameters and in the idea
of mapping the Likert scale results to the binary
values.

Li et al. (2022) (HW-TSC), addressing both sub-
tasks1 and 2, developed an ensemble classification
and regression model by fine-tuning the multilin-
gual XLM-RoBERTa model (Conneau et al., 2019)
on different splits of the training data. To this end,
they added a language tag to each training sentence
with the same id across the three languages and
divided the data in different folds to prevent the
model from learning the translation information.
To address the small size of the sub-task2 training
data, they devised a data augmentation strategy to
transform the binary values into the scalar human
judgments.

Sarhan et al. (2022) (UU-TAX), experimented
with different Neural Language Models and diverse
training data compositions to test their generaliza-
tion abilities against the PreTENS tasks. For sub-

task1, their best performing model is represented
by ELECTRA (Clark et al., 2020), which was fine-
tuned using a two-stage strategy to augment the
original training data. Firstly, the authors gener-
ated new sentences by making modifications to the
original sentences using BERT-base (Devlin et al.,
2019) to obtain the embeddings of the modified
words. Secondly, for each language l, the original
sentences of the other two languages were trans-
lated into l using the Google Translate API. For
sub-task2, the best model uses the multilingual ver-
sion of the Universal Sentence Encoder (Yang et al.,
2020) followed by a different type of classifier for
each language.

Aziz et al. (2022) (CSECU-DSG), for both sub-
tasks, exploited an ensemble method of two mul-
tilingual Transformers, i.e. XLM-RoBERTa (Con-
neau et al., 2019) and mBERT (Devlin et al., 2019),
which were fine-tuned with the PreTENS datasets.
To enhance the performance of each individual
model, the authors fused the predicted probabil-
ity scores of the two models by computing their
weighted arithmetic mean.

Vetter et al. (2022) (KaMiKla), for both sub-
tasks, used monolingual versions of the BERT
model (Devlin et al., 2019), i.e. BERT base for En-
glish, AlBERTo (Polignano et al., 2019) for Italian
and CamemBERT (Martin et al., 2020) for French.
For sub-task1, the authors fine-tuned the models on
the distributed training data, while for sub-task2,



Team/user name Global score Rank ENG Rank FRE Rank ITA Rank
LingJing⋆ 0.802 1 0.758 1 0.841 1 0.807 1
HW-TSC⋆ 0.757 2 0.706 2 0.805 2 0.759 2
Huawei-zhangmin 0.669 3 0.636 3 0.74 3 0.631 3
BASELINE 0.309 4 0.265 6 0.317 4 0.344 4
UU-TAX⋆ 0.221 5 0.478 4 -0.062 15 0.246 5
daydayemo 0.206 6 0.212 8 0.284 5 0.121 9
aidenqiu 0.205 7 0.211 9 0.284 6 0.121 10
CSECU-DSG⋆ 0.16 8 0.191 10 0.081 8 0.207 6
RCLN 0.139 9 0.418 5 -0.005 9 0.006 14
folkertleistra 0.123 10 0.232 7 0.102 7 0.036 13
KaMiKla⋆ 0.078 11 0.059 15 -0.01 10 0.186 7
xxxyyyxxx 0.074 12 0.094 14 -0.013 11 0.14 8
UoR-NCL⋆ 0.056 13 0.122 13 -0.043 13 0.089 12
RUG-3 0.046 14 0.137 12 – – – –
suzuki 0.042 15 0.14 11 -0.018 12 0.003 15
akkhan1871 0.008 16 -0.006 16 -0.06 14 0.09 11
MaChAmp -0.164 17 -0.131 17 -0.195 16 -0.167 16

Table 6: Sub-task 2 results for each team/user ordered by overall ρ along with results for each language. Team/user
names marked with ⋆ have submitted their system description.

they first normalized the scores to be between zero
and one, then performed an inverse transformation
to get the final output. In addition, for this second
task, they trained 10 models per language (each
with its one training split) and used the median
result as their final prediction.

Zhou et al. (2022) (SPDB) participated only in
sub-task1, using a different ensemble system for
each language. For Italian and French, the sys-
tem combines the results of 10 ERNIE-M mod-
els (Ouyang et al., 2021) obtained by applying a
cross-validation process; for English, the authors
combined the predictions made by ERNIE-M and
DeBERTa-v3 (He et al., 2021). They also enlarged
the distributed PreTENS training set using i) two
different translators (Google and Baidu) to translate
the English sentences into French and Italian, thus
increasing the diversity of data, and ii) the English
and French version of the XNLI dataset (Conneau
et al., 2018).

van den Berg et al. (2022) (RUG-1-pegasussers)
participated only in sub-task1 using English BERT
base (Devlin et al., 2019) which they fine-tuned,
experimenting with multiple approaches to expand
the training data. In particular, they augmented
the data by adding new English sentences that con-
tained new category templates, new words instanti-
ating the templates, new words previously used ex-
clusively as hyponyms, inversions of the arguments
involved in the taxonomical relation, paraphrases
automatically generated. The acceptability labels
of Italian and French sentences were predicted by
translating the sentences into English, in order to

process them with the English BERT.
Markchom et al. (2022) (UoR-NCL), for both

sub-tasks, experimented with fine-tuning different
monolingual versions of the BERT-based model
(Devlin et al., 2019), i.e. DistilBERT-Base-
Uncased for English (Sanh et al., 2019), BERT-
Base-Italian-XXL-Uncased for Italian, FlauBERT-
Base-Uncased for French. The authors relied on
the distributed training data to fine-tune the models
using specific loss functions, binary cross-entropy
loss for sub-task1 and mean squared error loss for
sub-task2.

5 Results and Discussion

Almost all teams submitted their runs for the three
languages considered. Tables 5 and 6 show, for
each sub-task, the top submissions received from
each team, along with the baseline scores. Team
names marked with ⋆ represent teams that have
submitted system description papers. The Rank
column reports the position of the team in the rank-
ing for global and language-specific scores.

Task 1 evaluation: To better understand the
performances per construction of the models sub-
mitted, we report the average F1-macro (±std) of
the top-3 submissions per language, in Table 7.

Our results show that English — the most
resource-rich language in terms of computational
models and data — outperforms the Italian and
French models for correctly predicting presuppo-
sitions in these constructions. However, the En-
glish model performed below French in the UN-
LIKE construction (e.g. “Unlike trees, {*oaks /



CONSTRUCTION EN FR IT Avg lang
DRATHER 94.9 (±0.04) 90.9 (±0.03) 89.3 (±0.03) 91.70
COMPARATIVES 94.2 (±0.05) 87.4 (±0.03) 88.2 (±0.02) 89.93
EXCEPT 88.8 (±0.09) 88.3 (±0.05) 84.1 (±0.05) 87.07
UNLIKE 87.4 (±0.07) 88.4 (±0.05) 84.6 (±0.05) 86.80
BUTNOT 89.3 (±0.07) 78.0 (±0.15) 81.5 (±0.03) 82.93
PREFER 86.5 (±0.1) 83.5 (±0.05) 78.1 (±0.01) 82.70
ANDTOO 84.4 (±0.13) 74.6 (±0.14) 77.5 (±0.0) 78.83
PARTICULAR 94.3 (±0.04) 45.3 (±0.0) 86.7 (±0.04) 75.43
TYPE 75.8 (±0.14) 66.8 (±0.08) 72.2 (±0.12) 71.60
GENERALLY 45.5 (±0.0) 75.2 (±0.12) 46.7 (±0.01) 55.80

Table 7: Average macro F-measure of the top 3 participants per construction in sub-task 1 (binary classification).
The standard deviation between the top 3 submission are in (.). Best results per construction are in bold.

animals} are often mentioned in this text”, presupp.
A1 ̸><A2), and does quite poorly in GENERALLY (“I
like oaks, and more generally {trees / *animals}”,
presupp. A1<A2). Note that neither constructions
were present in the training set. Italian is aligned
with English, while interestingly the French model
seems to be capable of more accurate generaliza-
tions in both cases.

Task 2 evaluation: To gain a better understand-
ing of the models generalization abilities in this
task, we computed the Root Mean Squared Error
(RMSE) between the gold value and the average
predicted value by the first three teams classified.
This data is shown in Figure 2 for each construc-
tion and for each language, along with the average
value across languages. As it can be seen, the re-
sulting picture contrasts substantially with that of
sub-task1. The TYPE and PARTICULAR construc-
tions, among the worst in the first sub-task, have
the lowest error in sub-task2. The second task sees
a substantial drop of ANDTOO (now the worst case)
and COMPARATIVES (one of the best constructions
in sub-task1).

We also observe distinctions between languages
across the two tasks. In particular, while the aver-
age performance for English across constructions
is the highest in sub-task1, the French models ob-
tained on average the best results in sub-task2. The
success at predicting the presuppositional knowl-
edge triggered by the same construction changes in
the two sub-tasks (which are often demanded to dif-
ferent models in the various teams). For example,
the French models are the best at classifying the
acceptability label for the UNLIKE construction but
are the worst in predicting the human score for the
same construction. Conversely, COMPARATIVES

turn out to be among the easiest constructions for
the English models in sub-task1 but are the most
mispredicted English type in sub-task2.

Quite interestingly, the presence of a construc-
tion in training doesn’t always guarantee better
performances. Two notable examples are repre-
sented by DRATHER and PARTICULAR. Despite
being absent in the training set of the correspond-
ing tasks, the first obtains the highest F1 score (for
English and on average) and the second is among
the top-predicted constructions in sub-task2. We
leave a more thorough analysis of the systematicity
of these trends to future work, where we will also
consider the linguistic variants for each construc-
tion and the semantic categories of the nominal
arguments involved.

Figure 2: sub-task2: Root Mean Squared Error (RMSE)
averaged across the top 3 participants per construction
(lower is better). Constructions are ordered per average
RMSE values across languages.

6 Conclusion

The SemEval2022 task3 – PreTENS offered two
sub-tasks aiming to investigate the effectiveness of
computational models to detect a certain type of
presuppositional failures induced by specific con-
structions. The task attracted a total of 21 teams,
from both academia and industry. The findings
showcases the power and ubiquity of large self-
supervised pre-trained models in mono- or multi-



lingual settings. Despite this apparent uniformity,
the participants chose to use and combine the mod-
els in very different and creative ways, giving rise
to a range of scores from 70.54% to 94.49%.

The outcomes of the task highlights the abil-
ity of these transformer models to generalize to
new/unknown construction in the test sets, but also
the presence of intriguing differences in specific
constructions and languages (e.g. in the binary task
A1 and more generally A2 reaches a 75.2 F-measure
in French but a 46.7 in Italian). Also worth further
investigation is the lower correlation between the
binary judgments and the human ratings in English
— probably reflected in the .05 drop seen in the
sub-task2 global score for this language, compared
to French.

The success of the task indicates a growing inter-
est towards research on prediction models that can
incorporate world knowledge and common sense,
along with an understanding of the linguistic prop-
erties that condition the outcomes. We hope that
this trend will continue and the PreTENS data will
help researchers to probe future models for this
ability. With this spirit, we make the dataset public.
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