
 
Abstract—Semantic segmentation is one of the most challenging 

tasks for very high resolution (VHR) remote sensing applications. 
Deep convolutional neural networks (CNN) based on the attention 
mechanism have shown outstanding performance in VHR remote 
sensing images semantic segmentation. However, existing 
attention-guided methods require the estimation of a large 
number of parameters that are affected by the limited number of 
available labeled samples that results in underperforming 
segmentation results. In this paper, we propose a multi-scale 
feature fusion lightweight model (MSFFL) to greatly reduce the 
number of parameters and improve the accuracy of semantic 
segmentation. In this model, two parallel enhanced attention 
modules, i.e., the spatial attention module (SAM) and the channel 
attention module (CAM) are designed by introducing encoding 
position information. Then a covariance calculation strategy is 
adopted to recalibrate the generated attention maps. The 
integration of enhanced attention modules into the proposed 
lightweight module results in an efficient lightweight attention 
network (LiANet). The performance of the proposed LiANet is 
assessed on two benchmark datasets. Experimental results 
demonstrate that LiANet can achieve promising performance 
with a small number of parameters. 
 

Index Terms—Semantic segmentation, very high resolution 
(VHR) images, position information, covariance, lightweight, 
remote sensing. 

I. INTRODUCTION 

ERY high resolution (VHR) remote sensing images with 
spatial resolution from meter to submeter have offered 

tremendous opportunities to distinguish and identify objects at 
a fine spatial scale. Semantic segmentation is an indispensable  
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process for VHR remote sensing images in many applications  
including land use/cover mapping [1], urban planning [2],  
land/marine ecosystem processes [3] and environment 
monitoring [4]. The rich details and structural information of 
VHR remote sensing images lead to a dramatic increase in the 
spectral heterogeneity of the same geographical entity. In 
addition, the phenomenon of having different objects with 
similar spectral signatures caused by the few spectral 
information provided in VHR remote sensing images reduces 
the separability of different ground objects. Both these pose the 
challenge of fine-grained segmentation of VHR remote sensing 
imagery [5]. 

In recent years, deep convolutional neural networks 
(DCNNs), which have powerful feature extraction capabilities, 
have become one of the most popular methods for semantic 
segmentation [6]. The DCNN-based semantic segmentation 
models can be classified into different types. One type of 
network is the DeepLab series [7-10]. It can extract global 
feature information based on a large receptive field, also 
modeling multi-scale features efficiently [11]. The most recent 
DeepLab v3+ achieved excellent performance in various 
segmentation tasks by combining the astral spatial pyramid 
pooling (ASPP) and a powerful variant of Xception [10], [12]. 
Zhao et al. [13] proposed a pyramid pooling module that 
aggregates contextual information at different scales and 
improves the ability to obtain global semantic information. 
Another type of network is related to models with encoder- 
decoder structure. The most typical one is UNet, which can 
make full use of the context information of each stage by 
combining feature maps from the extraction path with the 
corresponding expanding path [14]. Given the simplicity of the 
encoder-decoder style, researchers proposed many improved 
UNet models [15-17] for semantic segmentation tasks. 

However, DeepLab series models and architectures based on 
the encoder-decoder structure are not effective in taking into 
account the global semantic information at high spatial 
resolution, which is critical for segmentation performance. 
Recently, the attention mechanism gained huge success in 
machine translation tasks and has been introduced in VHR 
remote sensing image semantic segmentation. In this context, 
the spatial information related to the relative position of each 
pixel is particularly important, as it plays a guiding role in the 
attention strategy. The attention mechanism-based methods can 
efficiently obtain global dependencies while preserving the 
spatial information of features. 
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In the literature, there are many attention mechanism-based 
VHR semantic segmentation methods. Liu et al. [18] proposed 
an adaptive fusion network (AFNet), in which a scale-feature 
attention module (SFAM) and a scale-layer attention module 
(SLAM) are designed to fuse multiscale feature maps and 
segment the ground objects with high intra-class difference and 
various scales. Although AFNet achieved competitive 
performance on two International Society for Photogrammetry 
and Remote Sensing (ISPRS) datasets, it requires the 
estimation of a huge number of parameters. Peng et al. [19] 
used channel-wise attention to select informative feature maps 
and fused them with different level feature maps. Li et al. [20] 
used the convolutional block attention module (CBAM) [21] 
for ultra-high resolution remote sensing imagery semantic 
segmentation, which performed well on two ISPRS datasets. 
Zhao et al. [22] proposed a pyramid attention pooling module, 
in which attention mechanism was introduced to adaptively 
refine the features in the multiscale module. Besides, the 
self-attention, which can model the relationship among features 
at the global scale, has also been introduced for VHR semantic 
segmentation. Non-Local [23], the first self-attention method in 
computer vision, used a dot-product between query feature map 
and key feature map to gather information and achieved a great 
advantage in building channels and spatial attention. Fu et al. 
[24] proposed a parallel self-attention network to construct 
global context from spatial and channel domains. The 
combination of DCNN with the attention mechanism, 
especially self-attention, to generate global attention maps can 
effectively achieve fine-grained rich contextual information. 
This addresses the effects of large spectral variability within the 
same category and the tendency of homogeneity among 
different categories in VHR remote sensing image. However, 
this results in a sharp increase in the number of parameters of 
the model and in the computational time. In general, existing 
attention mechanism-based VHR semantic segmentation 
methods are limited by the large number of parameters and the 
high computational cost and cannot be applied to scenarios with 
limited resources. In addition, on-orbit real-time image 
segmentation is an urgent requirement for intelligent remote 
sensing systems, which can extract target information from 
images in real time to better serve tasks, such as pollution 
monitoring, forest fire early warning, and land cover type 
change monitoring [25]. Thus, it is necessary to design 
lightweight models to reduce the number of both parameters 
and calculations. 

Existing lightweight semantic segmentation models [26-35] 
can be divided into two categories. One embeds lightweight 
convolutional neural networks directly as feature extractors in 
the previous models [36], [37]. The other one exploits the idea 
of designing lightweight modules for feature extraction to 
reduce the computational complexity [38] or redesigns the 
attention mechanism computation to reduce the quadratic 
complexity to linear complexity [26], [34], [35]. Although 
these methods can effectively reduce the number of parameters 
and computational complexity, the lightweight operation 
usually makes their feature representation capability reduced, 
which in turn results in a significant reduction in segmentation 

performance. Therefore, it is critical to design a lightweight 
attention-based VHR semantic segmentation model that can 
maintain competitive segmentation performance. 

To address the above problems, in this paper, an efficient 
lightweight attention mechanism-based network (LiANet) is 
proposed for VHR remote sensing images semantic 
segmentation. In order to guarantee the segmentation 
performance and reduce the number of parameters, we propose 
to embed the spatial information, i.e., the position information, 
into the channel attention to simplify the conventional attention 
and adopt covariance matrix for modelling local and global 
dependency to strengthen the representation of attention maps. 
The experiments conducted on two ISPRS datasets verified the 
effectiveness of the proposed method. The main contributions 
of this work are as follows. 

1) We design a multi-stage feature fusion lightweight 
(MSFFL) model, which can effectively fuse the 
high-level and low-level feature maps and greatly reduce 
the calculation parameters. 

2) We present two parallel enhanced attention modules, i.e., 
a spatial attention module (SAM) and a channel attention 
module (CAM) by introducing the encoding position 
information to guarantee the performance of the 
proposed lightweight attention network. 

3) We adopt covariance matrix to partially recalibrate the 
generated attention map and mitigate the degradation of 
segmentation performance in the lightweight networks. It 
allows the LiANet to achieve competitive performance 
with fewer parameters than the compared methods. 

The remainder of this paper is organized as follows. Section 
II introduces the related work, including attention mechanism, 
position information, covariance and lightweight network with 
semantic segmentation. Section III presents the details of our 
proposed model. First, this section illustrates the multi-stage 
features fusion lightweight module. Second, it presents the 
spatial attention module and the channel attention module. 
Then, the proposed lightweight network embedded with the 
two attention modules is introduced. Experiments of results on 
two VHR data sets and discussion are provided in Section IV. 
Finally, Section V draws the conclusion of the paper. 

II. RELATED WORK 

A. Attention Mechanism 

The attention mechanism has been proven powerful in the 
field of image semantic segmentation. Generally, two attention 
structures, i.e., spatial and channel attention modules can be 
constructed in a CNN network. The spatial attention module 
generates a spatial attention map by utilizing the inter-spatial 
relationship of features. The channel attention module produces 
a channel attention map by using the inter-channels relationship 
of features and assigning different weight coefficients to each 
channel to measure its importance. 

According to the calculation method of attention map, 
attention mechanism can be divided into soft attention and 
self-attention. A typical soft-attention approach is the 
Squeeze-and-Excitation (SE) Network [39], which assigns 
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different weight coefficients to each channel. CBAM [21] is 
another commonly used soft-attention method that extends SE 
by adding the attention to the spatial dimensions. Moreover, 
Zhang et al. [40] proposed a channel-wise attention, which 
considers contextual semantics and category information to 
improve the accuracy of segmentation.  

However, soft attention cannot express the interdependence 
among channels or spatial features. Spatial relevance is very 
important for semantic segmentation tasks. Therefore, the 
self-attention mechanism that can model the relationship across 
features has received a large attention from researchers. 
Moreover, various Non-Local based models have been 
proposed to improve the performance of the semantic 

segmentation. An example is the point-wise spatial attention 
network (PSANet) [41], in which the prediction of one position 
can be aided by information from other positions. Yuan et al. 
[42] proposed a pixelated object context to approximate the 
object by learning the pixel-wise similarity map. Li et al. [43] 
introduced self-attention into UNet [14] and achieved good 
performance in fine-resolution remote sensing image semantic 
segmentation tasks. 

Although Non-Local (i.e., self-attention) based models are 
widely used in semantic segmentation tasks and have achieved 
good results, the above methods have high computational 
complexity and usually introduce a large number of parameters. 

 

 

Fig. 1. Overview of the proposed network. The MSFFL module is the multi-stage feature fusion lightweight module. 
 

B. Position Information Used in Semantic Segmentation 

Location as position information is vital for VHR semantic 
segmentation. The conventional convolution operations can 
obtain local position information. However, a limited receptive 
field makes CNN fails to model long-range dependencies and 
makes it difficult to obtain the complete location of the global 
image. In [44], Hou et al. encoded the channel attention along 
the two dimensions of the space to obtain accurate position 
information when capturing the long-range dependencies. Wu 
et al. [45] combined position embedding information with a 
residual network and a bidirectional long short-term memory 
network to achieve unconstrained off-line handwritten word 
recognition.  

For VHR remote sensing images, the coordinate of each 
pixel records its spatial position in the scene. However, when a 
CNN gets deeper, the semantic information of features 
extracted by it becomes stronger, while the position 
information results weaker. To address such a limitation, in this 
paper we design a powerful spatial and channel attention 
module for mitigating the loss of position information. 

C. Covariance Combined with Semantic Segmentation 

The covariance matrix reflects the correlations between the 
multi-dimensional data. It is an important tool in pattern 
recognition, computer vision, and signal processing [46]. It has 
been used in image semantic segmentation to construct feature 
context that dependencies with effects similar to the attention 
mechanism models. Therefore, it can be used as a way to 
enhance the expression ability of the attention mechanism and 
to strengthen correlation, thus weaken irrelevance and correct 
the expression of relevance to some extent in order to obtain 
richer semantic information. 

In earlier research, Yang et al. [47] proposed the 
two-dimensional principal component analysis (2DPCA) for 
image representation, which preserves the spatial information 
of the image when calculating the covariance matrix. Recently, 
Liu et al. [48] introduced the covariance matrix into the 
attention mechanism to strengthen the details in the image, and 
significantly improved the performance of semantic 
segmentation. 

However, for VHR remote sensing datasets, a troublesome 
problem is that the feature representations of objects with the 
same category are quite different in complex scenes. This tends 
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to extract the wrong similarity relationship between pixels for 
the pixel-wise attention. To solve this problem, we introduce 
the covariance matrix to enhance and correct the expression of 
the attention map.  

D. Lightweight Network with Semantic Segmentation 

Lightweight networks are particularly important for model 
deployment. As mentioned in the introduction, there are mainly 
two types lightweight methods. The first type adopts existing 
embedded mobile lightweight models as feature extraction 
network, such as MobileNet [36] and ShuffleNet [37]. The 
other type is based on a self-designed network as the backbone 
to capture low-level and high-level feature maps. At present, 
the application of the self-designed lightweight networks is still 
at the stage of rapid development. Cai et al. [29] adopted the 
depth-wise separable convolution to design the attention 
enhancement module and reduce the number of parameters. In 
[31], the encoder-decoder style convolutional neural network 
and the asymmetric depth-wise separable convolution units are 
designed to fully extract different level feature maps and reduce 
the number of parameters. Differently from [29], [31], the 
dilated convolution strategy is also adopted in autonomously 
designed network to further achieve lightweight models [28], 
[30]. In addition, in [38] the criss-cross attention captures the 
contextual information of each pixel on its criss-cross path to 
achieve high computational efficiency and less GPU memory 
requirements. 

III. PROPOSED APPROACH 

In this section, we present the proposed LiANet framework 
for VHR scene semantic segmentation. The overall framework 
of the proposed LiANet is shown in Fig. 1. Our proposed 
approach consists of three modules aimed at: 1) fusing 
multi-stage features with fewer parameters by MSFFL; 2) 
capturing global context information from the perspective of 
SAM and CAM; 3) using covariance matrix to further improve 
segmentation performance in the lightweight networks. 

A. Multi-stage Features Fusion Lightweight Module 

In classical convolution operation, only local features can be 
extracted for the limited receptive field size. To obtain global 
context, a common strategy is to stack convolutional layers 
continuously to extract global high-level semantic features. 
This is widely used in pre-training backbone and the related 
output is exploited as the input to downstream tasks to improve 
the performance of the model. Most of existing methods simply 
fuse and concatenate different feature maps, which leads to a 
large increase in the number of parameters model. In general, 
the low-level feature map obtained by the shallow layer 
contains more texture and structure information, while the deep 
layer extracts a high-level feature map with rich global and 
abstract semantic information. Both texture and deep semantic 
information are important for accurate segmentation of objects. 
Accordingly, we combine the high-level feature map with the 
low-level feature map to get features with better discriminative 
ability. More specifically, the high-level feature maps are 
up-sampled to the same size of the low-level maps. This allows 

low-level feature maps to indirectly obtain global context from 
high-level feature maps, by reducing significantly the number 
of parameters. Thus, a multi-stage feature fusion lightweight 
(MSFFL) module is designed to maintain segmentation 
performance and compress the number of model parameters. 
The architecture of MSFFL module is shown in Fig. 2. 

Let us assume that the different colored rectangles (i.e., 𝑠ଵ, 
𝑠ଶ, 𝑠ଷ and 𝑠ସ) in Fig. 2 represent multi-stage feature maps from 
the ResNet-50 [49] backbone. Note that we eliminate the 
downsampling operation in the last two stages of ResNet and 
adopt the atrous convolutions, resulting in enlarging the size of 
the final feature map to 1/8 of the input image, and this allows 
the feature map to retain more details. Inspired by UNet [14], it 
consists of a channel reduction path, which includes a 11 
convolution to alleviate the number of channels, and a feature 
fusion path which is used to combine the different level feature 
maps. For the MSFFL module, we first apply the 1  1 
convolution to reduce the number of channels of the two 
high-level feature maps (i.e., 𝑠ଷ and 𝑠ସ) to obtain 𝑠ଷ

ᇱ  and 𝑠ସ
ᇱ , and 

then they are concatenated together, followed by a 1  1  
convolution operation to fuse the concatenated feature maps. 
Next, the feature map 𝐴ᇱ  obtained in the previous step is 
concatenated with the feature map 𝑠ଶ

ᇱ  after reducing the number 
of channels, and the feature map 𝐴ᇱᇱ is subsequently derived by 
fusion with a convolution operation. Finally, 𝐴ᇱᇱ is upsampled 
and concatenated with the feature map 𝑠ଵ

ᇱ , and the final feature 
map A with reduced number of channels and rich semantic 
information is obtained after a 11 convolution. The proposed 
MSFFL makes full use of the guiding effects of high-level 
feature maps and enhances the diversity of features. In this 
module, the number of parameters can be reduced effectively 
without affecting the VHR segmentation accuracy. 

B. Spatial Attention Module 

In image semantic segmentation, the acquired long-range 
semantic information becomes more abundant with the increase 
in the number of convolutional layers, but the spatial 
information between pixels becomes blurred. Spatial 
information is vital in semantic segmentation as it represents 
the relative position between pixels. Therefore, we design an 
attention mechanism module that models spatial information. It 
incorporates a position index into feature maps. In addition, we 
use the covariance matrix to correct the attention for making the 
generated attention maps more accurate in reflecting the 
correlation between pixels.  

Fig. 2. Architecture of the MSFFL module. 

C

C

C

ConcatenationC

Convolution

Upsampling

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3272614

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



Inspired by [44], we add the position information of pixels to 
the conventional attention to establish a rich context 
relationship model in feature maps, which enhances the ability 
of attention representation. Meantime, the spatial attention and 
the channel attention are independent each other, which keeps 
the spatial dimension in the spatial attention module unchanged 
while compresses the number of channels. Therefore, the 
number of parameters of the model can be further reduced. 

Fig. 3 illustrates the spatial attention module. Given the 
output of the multi-stage feature fusion lightweight module 𝐴 ∈
ℜ஼ൈுൈௐ , we first use the pooling operation to obtain the 
position information B  and D from the H and W dimensions, 
where 𝐵 ∈ ℜ஼ൈுൈଵ  and 𝐷 ∈ ℜ஼ൈଵൈௐ . Next we reshape B in 
ℜ஼ൈଵൈு  and concatenate it with D, and use a convolutional 
layer for the fusion. We also exploit a ReLU function and batch 
normalization to obtain the feature map 𝑃 ∈ ℜ஼/ఊൈଵൈሺுାௐሻ 
with the position information on both H and W dimensions, 
where 𝛾 is the compression ratio for reducing the module size. 
Then the Split & Expand operator (see in Fig.4) is adopted to 
obtain the feature maps 𝐹௛ and 𝐹௪ in the horizontal and vertical 
directions, respectively. From the Fig.4 one can see that 𝑃 ∈
ℜ஼/ఊൈଵൈሺுାௐሻ is first split into two parts, i.e., 𝑃௛ ∈ ℜ஼/ఊൈଵൈு 
and 𝑃௪ ∈ ℜ஼/ఊൈଵൈௐ. After that, we use the 11 convolution 
operation to convert the number of channels of 𝑃௛ and 𝑃௪ to be 
the same as that of A. Then, the outputs 𝑃௛

ᇱ  and 𝑃௪
ᇱ  from the last 

step are extended to the size of A according the broadcast 
mechanism. Thus, we can obtain the comprehensive feature 
map 𝐹 ∈ ℜ஼ൈுൈௐ  by the element-wise add operation among 
𝐹௛ , 𝐹௪  and A (see in Fig.3). In this way, the position 
information of each feature can be recorded. Then we feed 𝐹 
into the 11 convolution layer to generate three new feature 
maps Q, K and V with reduced number of channels, where 
ሼ𝑄, 𝐾, 𝑉ሽ ∈ ℜ஼/ఊൈுൈௐ. Q and K are used to calculate the spatial 
attention map 𝑆௦. Specifically, Q and K are first reshaped to 
ℜ஼/ఊൈே , where  𝑁 ൌ 𝐻 ൈ 𝑊  is the number of pixels in the 
feature map, and then the spatial attention map 𝑆௦ ∈ ℜேൈே can 

be obtained via a matrix multiplication between Q and the 
transpose of K followed by a softmax layer: 

           𝑠௜௝
௦ ൌ

ୣ୶୮ ሺொ೔∙௄ೕ
೅ሻ

∑ ୣ୶୮ ሺொ೔∙௄ೕሻಿ
ೕసభ

                                 (1) 

where 𝑠௜௝
௦  measures the correlation between 𝑖 and 𝑗. 

Meanwhile, we perform covariance operation to effectively 
correct the expression ability of spatial attention map 𝑆௦. To be 
specific, we perform a matrix multiplication between V (which 
is first reshaped to ℜ஼/ఊൈே) and the transpose of 𝑆௦ to get 𝑀௦ ∈
ℜ஼/ఊൈே. Then we calculate the covariance 𝐶௦ ∈ ℜேൈே between 
transpose of 𝑀௦ and 𝐴 as follows: 

𝐶௦ ൌ 𝑐𝑜𝑣ሺ𝐴, 𝑀௦ሻ ൌ ଵ

ே
ൣሺ𝐴 െ 𝜇஺ሻ ⋅ ൫𝑀௦ െ 𝜇ெೞ൯൧         (2) 

where 𝜇஺  and 𝜇ெೞ
 represent the mean value vectors at 

dimension 𝑁 ൌ 𝐻 ൈ 𝑊.  
Let 𝐿௦ ∈ ℜேൈே be the modified attention map obtained by 

performing element-wise sum operation between 𝑆௦  and the 
covariance 𝐶௦ . We reshape A to ℜ஼ൈே and apply a matrix 
multiplication between A and 𝐿௦ and reshape the result to  𝐸௦ ∈
ℜ஼ൈுൈௐ. Finally, to prevent the vanishing of the gradient and 
make better use of the original input A, we multiply 𝐸௦ by a 
scale parameter 𝛼  and perform an element-wise adding 
operation with A to obtain the final output 𝑂௦ ∈ ℜ஼ൈுൈௐ  as 
follows: 

𝑂௦ ൌ 𝛼 ∙ 𝐸௦ ൅ 𝐴                                  (3) 
where 𝛼 is initialized to 0 and gradually learns to assign weight. 

Through above enhancement, the final feature map 𝑂௦ will 
contains the position information of the global context based on 
the attention map recalibrated by the covariance result. 

C. Channel Attention Module 

Each channel map can be regarded as a different response to 
the input. Modelling the interdependency between channels can 
help to emphasize the more important semantic features. 
Accordingly, we design an enhanced channel attention module 
to explicitly model dependencies between channels. 

The SENet [37] proposed in the literature firstly compresses 
the feature map of each channel to a value, then calculates the 
weight vector of all channels, and finally applies the weight 
value to the feature map in each channel. In this way, the 
feature map is completely compressed to the size of 11. Thus, 
the spatial size of the feature map in each channel and the 
influence of the position information on the channel weight are 
not considered. Moreover, it complete use of the spatial size of 
the entire feature map to model the channel context information 
leads to a huge number of parameters.  

Fig. 4. Details of the Split & Expand operator. 

Fig. 5. Structure of the channel position attention module (CAM).

Fig. 3. Structure of the spatial attention module (SAM). 
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In this work, we design an enhanced channel attention 
module (CAM) (see Fig.5) for considering the influence of 
spatial size and position information on channel attention 
without using a large amount of calculation and parameters. We 
use the same method of SAM to generate the position 
information of the H and W dimensions, and superimpose them 
with the input 𝐴 ∈ ℜ஼ൈுൈௐ  to get  𝐹 ∈ ℜ஼ൈுൈௐ . With this 
operation, we focus on the construction of attention between 
channels, and further lightweight model in H and W dimensions. 
Then, we scale the size in dimensions of H and W to half of the 
original with the pooling method resulting in 𝐹ᇱ ∈ ℜ஼ൈு/ଶൈௐ/ଶ. 
Next we reshape 𝐹ᇱ  to generate 𝑅 ∈ ℜ஼ൈ்  and 𝑍 ∈ ℜ஼ൈ் , 
where 𝑇 ൌ 𝐻/2 ൈ 𝑊/2. After that, we generate the channel 
attention map 𝑆௖ ∈ ℜ஼ൈ஼ by matrix multiplication between 𝑍 
and the transpose of 𝑍 using the follow formula: 

    𝑠௜௝
௖ ൌ

௘௫௣ቀ௓೔⋅௓ೕ
೅ቁ

∑ ௘௫௣ቀ௓೔⋅௓ೕ
೅ቁ಴

ೕసభ
                              (4) 

where the 𝑠௜௝
௖  measures the impact of channel 𝑖 on channel 𝑗. In 

addition, we perform a matrix multiplication between 𝑆௖ and R, 
and reshape the result to 𝑀௖ ∈ ℜ஼ൈு/ଶൈௐ/ଶ. Next, we use the 
bilinear interpolation to recover the size of 𝑀௖  to ℜ஼ൈுൈௐ. To 
correct the result of the attention map 𝑆௖, we first reshape both 
𝑀௖ and A to ℜ஼ൈே, where 𝑁 ൌ 𝐻 ൈ 𝑊. Then we calculate the 
covariance matrix 𝐶௖ ∈ ℜேൈே  using (2) between 𝑀௖  and 
transpose of A. After that, an element-wise adding operation is 
applied to 𝐶௖and 𝑆௖ to generate the final channel attention map 
𝐿௖ ∈ ℜ஼ൈ஼. Finally, we perform matrix multiplication between 
𝐿௖   and A to get the feature map 𝐸௖ ∈ ℜ஼ൈுൈௐ . At last, a 
residual style design is used between 𝐸௖ and A to obtain the 
final output 𝑂௖ ∈ ℜ஼ൈுൈௐ. In this process, 𝛽 is also used to 
measure the importance of the attention map, according the 
following equation: 

                            𝑂௖ ൌ 𝛽 ∙ 𝐸௖ ൅ 𝐴                                   (5) 
where 𝛽 is initialized to 0 in this module.  

CAM models the long-range semantic dependencies between 
channels and boosts the feature expression in channel 
dimension. 

D. Lightweight Attention Mechanism-based Network (LiANet) 

Combining the designed multi-stage feature fusion 
lightweight (MSFFL) module, the spatial attention module 
(SAM) and the channel attention module (CAM) with position 
information and covariance recalibration, we obtain the 
lightweight attention mechanism-based network (LiANet). 
First, the MSFFL module is designed to compress the model 
and effectively reduce the parameters without reducing the 
performance of the model. Then, in order to fully model the 
long-range dependence information, we use the attention 
mechanism in the spatial and channel directions to construct the 
context relationship. The position information is introduced in 
our modules to improve the generality of attention. At the same 
time, in order to partially modify the effect of the attention map, 
a covariance matrix is produced to enrich the content of 
attention. Finally, we perform an element-wise sum operation 
between spatial attention and channel attention to generate the 
final prediction map. 

IV. EXPERIMENTAL RESULTS 

To assess the effectiveness of the proposed model, extensive 
experiments have been conducted on two different public data 
sets, i.e., the Vaihingen and Potsdam that are 2D semantic 
labeling challenging benchmarks provided by ISPRS. First, the 
description of the two data sets, the implementation details and 
the evaluation metrics are provided. Then the results for each 
data sets are reported and analyzed. 

A. Description of Data Sets 

1) Vaihingen Data Set: This data set is a subset of the data 
used for the test of digital aerial cameras carried out by the 
German Association of Photogrammetry and Remote Sensing 
(DGPF). It was captured over Vaihingen in Germany. The 
spatial resolution of the images is varied from 8 m to about half 
a meter. 33 VHR patches are considered, 16 images are used for 
training, and the others for testing. Each image contains red, 
green and near-infrared spectral bands, as well as a digital 
surface model (DSM). In our experiment, DSM information 
was not used. Six land-cover categories are included in this 
dataset, i.e., impervious surfaces, building, low vegetation, tree, 
car and clutter/background. 

2) Potsdam Data Set: The second data set chosen for 
evaluation is the public Potsdam data set. This dataset consists 
of 38 patches. All patches contain red, green, blue and 
near-infrared spectral bands and a DSM channel. In this 
benchmark, 24 images are used for training and the others for 
testing. This dataset contains six land-cover classes, i.e., 
impervious surfaces, building, low vegetation, tree, car, and 
clutter/background. 

B. Experimental Setup 

1) Compared methods and implementation details 
To assess the effectiveness of the proposed LiANet, two 

widely used methods (i.e., DeepLabV3+ [10] and PSPNet [13]) 
and three approaches integrating attention mechanism (i.e., 
DANet [24], PSANet [41], and MAResUNet [43]) are chosen 
as benchmarks for comparisons. Meanwhile, four lightweight 
models based on the attention mechanism (i.e., CoordAttention 
[44] ABCNet [26], MANet [34], A2FPN [35]) are also adopted. 
The comparative algorithms are briefly described below. 

1) DeepLabV3+ [10]: This is a typical semantic 
segmentation method based on ASPP enlarging 
receptive field size. 

2) PSPNet [13]: This is a classical approach with pyramid 
pooling module that merges multi-scale contextual 
information used for semantic segmentation. 

3) DANet [24]: This is an attention-based method with 
parallel self-attention module to capture global context 
information. 

4) PSANet [41]: Point-wise spatial attention module 
collects information on other positions for accurate 
semantic segmentation. 

5) MAResUNet [43]: ResNet and multistage attention are 
incorporated into the UNet for VHR remote sensing 
image segmentation. 

6) CoordAttention [44]: Coordinate attention, embedding 
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positional information into channel attention, is 
designed to enhance the representation of target objects. 
It should be noted that CoordAttention is a lightweight 
semantic segmentation method. 

7) ABCNet [26]: This is a lightweight semantic 
segmentation model with a spatial path to retain the 
abundant spatial detail and a contextual path to capture 
the global contextual information. 

8) MANet [34]: Kernel attention with linear complexity is 
adopted to alleviate the need for a large amount of 
computation in attention. 

9) A2FPN [35]: This conbines Feature Pyramid Network 
(FPN) and Attention Aggregation Module (AAM) 
enhanced multiscale feature learning through 
attention-guided feature aggregation. 

For all the experiments, the ResNet-50 [49] pretrained on the 
ImageNet [50] is used as the backbone, a poly learning rate 
policy is adopted, in which the initial learning rate is set to 
0.004, and the power is set to 0.9. The stochastic gradient 
descent (SGD) is used for training the model, with momentum 
and weight decay set to 0.9 and 0.0001, respectively. For data 
augmentation, the original large images are random cropped to 
512512 to create the training sets; then rotation is adopted to 
increase the diversity of training data. In the experiment, 4
NVIDIA Tesla V100 GPUs are used to perform all the 
experiments. The batch size is set to 8. 

2) Evaluation metrics 
Following the evaluation method provided by the data 

publisher [51], two metrics are used to validate the performance 
of proposed model, i.e. the overall accuracy (OA) and the F1 
score. According to the ISPRS evaluation rules, the 
clutter/background category is not involved in the model 
performance comparison. In addition, we also provide the 
per-class F1 score. The OA can be defined as follows: 

                            TP
OA

TP FP FN TN


  
                            (6) 

where TP, FP, FN and TN are the representations of true 
positives, false positives, false negatives, and true negatives. 

The F1 score is defined as:  

                                      1 2
P R

F
P R





                                        (7) 

where the precision (P) and the recall (R) can be calculated as  
                       TP

P
TP FP




       TP
R

TP FN



                                  (8) 

To further evaluate the performance of the proposed model, 
we also compare the number of parameters, computation 
complexity, and the computational time taken by each method 
on the test set. 

C. Results on the Vaihingen Data Set 

The first set of experiments is conducted on the Vaihingen 
data set. Table I reports the quantitative results in term of OA, 
F1-Score, number of parameters (unit is M = 106) and test speed 
(time taken to process an image) of all models. One can see that 
the number of parameters used in the proposed LiANet 
(24.59M) is only slightly hihger than that of A2FPN (24.20M) 
and smaller than other comparison methods. LiANet achieves 

segmentation performance similar to DeepLabV3+, but using 
only half of the parameters. Compared with PSPNet, LiANet 
achieves a superior performance, with a 2.64% and 4.15% 
improvement in OA and F1 respectively, and with slightly 
more than half the number of parameters. With respect to the 
attention-based methods, LiANet achieves better performance 
than the DANet and PSANet with about half of the number of 
parameters. MAResUNet obtains better accuracy but with a 
number of parameters that is more than four times higher than 
that of the proposed LiANet. For the lightweight comparison 
models, the CoordAttention, ABCNet and MANet achieve 
satisfactory segmentation accuracy with 26.93M, 30.80M and 
35.90M parameters, respectively. However, LiANet achieves 
better segmentation performance with only 24.59M parameters. 
For this dataset, the A2FPN combining FPN and AAM 
achieves slightly better performance than LiANet with 24.2M 
parameters, with 0.42% and 0.51% improvement in OA and F1, 
respectively. The results reported in Table I demonstrate that 
the proposed LiANet can achieve a good segmentation 
performance with a reduced number of parameters. 

Fig. 6 shows the semantic segmentation results of different 
methods in two different scenarios (left: a large building with 
large internal variations; right: small cars difficult to be 
segmented) in the test set of Vaihingen dataset. As one can see, 
for the contextual information aggregation-based methods the 
PSPNet and DeepLabV3+ can neither segment large building 
objects well nor classify small car objects correctly.  

In contrast, for the attention mechanism-based models (i.e., 
DANet, PSANet and MAResUNet), the MAResUNet provides 
good segmentation result on large building targets, but it shows 
under segmentation in small targets. On both classes the DANet 
achieves the best segmentation results after the MAResUNet. 
In comparison, the PSANet achieves poor results in the 
segmentation of large and small objects. The lightweight 
CoordAttention method also fails to accurately segment large 
and small targets at the same time. One can see that it 
mis-segmented too much small car targets. The ABCNet, 
MANet and A2FPN lightweight attention-based models also 
failed to accurately segment large building objects. Finally, 
ABCNet has the worst segmentation accuracy for Car among 
all comparison methods. 

The proposed LiANet performs slightly worse than the 
MAResUNet and the DANet in the segmention of both large 
building with large internal variations and small cars. 
Nonetheless, the most segmentation results are better than those 
of the contextual information aggregation-based methods. This 
is due to the rich contextual semantic information that can be 
captured by the LiANet model, which integrates the MSFFL 
module and attention modules combined with the spatial 
location and the covariance. 

For the number of parameters in the models, Table I reports 
the computational complexity (FLOPs, i.e., the number of 
floating-point operations of the models, unit is G = 109) and the 
speed on the test set for each method. Taking into account three 
metrics, i.e., the number of parameters, the computational 
complexity and the test speed, one can see from Table I that the 
typical non-lightweight models have a greater number of  
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TABLE I  
QUANTITATIVE RESULTS IN TERMS OF PER-CLASS PIXEL ACCURACY, OA, MEAN F1 SCORE, NUMBER OF PARAMETERS, 

COMPUTATION COMPLEXITY AND TEST SPEED (VAIHINGEN DATA SET) 

Method 
Per-class F1 Score (%) OA 

(%) 

Average 
F1 Score 

(%)

Parameters 
(M) 

FLOPs 
(G) 

Test Speed 
(ms/image)Im. Surf. Build. L. Veg. Tree Car 

DeepLabV3+ [10] 94.63 95.71 85.65 90.29 80.70 91.93 89.39 53.35  248.12 93.17 

PSPNet [13] 98.21 91.74 79.27 86.47 65.67 89.48 84.27 44.43  184.52 74.42 

DANet [24] 95.67 96.07 85.21 89.03 77.73 91.89 88.74 45.36  205.18 83.14 

PSANet [41] 95.38 95.30 85.39 88.82 78.49 91.60 88.68 53.04  238.20 88.22 

MAResUNet [43] 95.62 96.46 87.59 91.59 86.07 93.15 91.47 97.96  85.22 82.29 

CoordAttention [44] 94.71 95.07 85.81 90.32 70.56 91.70 87.29 26.93  124.42 77.46 

ABCNet [26]  93.04 93.81 84.90 89.84 47.96 90.38 81.91 30.80  28.98 301.56 

MANet [34] 94.12 94.16 86.74 91.34 78.03 91.80 88.88 35.90  33.63 569.35 

A2FPN [35] 95.44 95.80 86.96 91.02 75.45 92.54 88.93 24.20  25.63 307.44 

LiANet (Ours) 95.63 96.00 85.67 89.79 75.02 92.12 88.42 24.59  130.35 102.69 

 

Image Ground truth  DeepLabV3+  Image  Ground truth DeepLabV3+ 

PSPNet DANet  PSANet  PSPNet  DANet PSANet 

MAResUNet CoordAttention  ABCNet  MAResUNet  CoordAttention ABCNet 

MANet 
 

A2FPN LiANet (Ours) MANet 
 

A2FPN 
 

LiANet (Ours) 

            impervious surfaces                 building                  low vegetable                tree                 car                 background 

Fig. 6. Examples of qualitative semantic segmentation results on Vaihingen data set. 

parameters and a higher computational complexity. For the 
compared lightweight models, ABCNet, MANet and A2FPN 
have a fewer number of parameters and least computational 

complexity. In contrast, the proposed model achieves a 
competitive computational complexity and test speed with a 
small number of parameters. 
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TABLE II  
QUANTITATIVE RESULTS IN TERMS OF PER-CLASS PIXEL ACCURACY, OA, MEAN F1 SCORE, NUMBER OF PARAMETERS, 

COMPUTATION COMPLEXITY AND TEST SPEED (POTSDAM DATA SET) 

Method 
Per-class F1 Score (%) OA 

(%) 

Average 
F1 Score 

(%)

Parameters 
(M) 

FLOPs 
(G) 

Test Speed 
(ms/image)Im. Surf. Build. L. Veg. Tree Car 

DeepLabV3+ [10] 94.53 94.02 81.16 75.38 92.64 91.09 87.55 53.35  248.12 88.14 

PSPNet [13] 93.13 94.95 64.63 78.48 84.62 87.62 83.22 44.43  184.52 68.57 

DANet [24] 95.50 95.57 81.78 77.74 91.62 92.23 88.44 45.36  205.18 74.66 

PSANet [41] 94.94 95.27 79.84 75.97 91.86 91.42 87.58 53.04  238.20 75.27 

MAResUNet [43] 95.97 96.66 81.42 77.59 92.58 92.66 88.84 97.96  85.22 70.68 

CoordAttention [44] 95.32 95.44 81.06 77.18 90.23 91.91 87.85 26.93  124.42 67.37 

ABCNet [26]  94.56 93.35 80.27 76.16 87.57 90.84 86.38 30.80  28.98 134.31 

MANet [34] 94.52 92.81 80.60 77.85 90.96 90.87 87.35 35.90  33.63 264.74 

A2FPN [35] 94.90 92.88 80.76 77.40 90.04 91.08 87.20 24.20  25.63 135.90 

LiANet (Ours) 95.33 96.10 79.79 77.14 91.37 91.99 87.95 24.59  130.35 89.18 

 

Image Ground truth DeepLabV3+ Image Ground truth DeepLabV3+ 

PSPNet DANet PSANet PSPNet DANet PSANet 

MAResUNet CoordAttention ABCNet MAResUNet CoordAttention ABCNet 

MANet  A2FPN  LiANet (Ours)  MANet A2FPN  LiANet (Ours) 

impervious surfaces             building                 low vegetable               tree                 car              background 

Fig. 7. Examples of qualitative semantic segmentation results on Potsdam data set.

D. Results on the Potsdam Data Set 

Table II reports the accuracy metrics and the number of 
parameters used in different methods.  

From the table, on can see that the proposed LiANet obtains 
0.9% and 4.37% improvement of OA with respect to 
DeepLabV3+ and PSPNet respectively. Moreover, the number 

of parameters of LiANet is only the 46.09% and 55.35% of the 
number of parameters of DeepLabV3+ and PSPNet 
respectively. For the attention-based methods, the MAResUNet 
and the DANet both achieve good segmentation performance, 
which are slightly higher than that of the proposed LiANet in 
term of OA (0.67% and 0.24%) and F1 (0.89% and 0.49%). 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3272614

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



However, the number of parameters of MAResUNet (97.96M) 
and DANet (45.36M) are 3.98 and 1.84 times higher than that 
of the LiANet (24.59M). The PSANet obtains the lowest 
accuracy with more parameters. Comparing the lightweight 
models, CoordAttention, ABCNet and MANet all achieve 
worse segmentation performance than the proposed LiANet, 
and their numbers of parameters (2.34M, 6.21M and 11.31M, 
respectively) are larger than that of LiANet. Despite the fact 
that the number of parameters of A2FPN is slightly less than 
that of LiANet, its OA and F1 are 0.91% and 0.75% lower than 
those of LiANet, respectively. From the results reported in 
Table II, the proposed LiANet achieves competitive 
performance with the smallest number of parameters. This is 
consistent with the original motivation of reducing the number 
of parameters in the model as much as possible while 
maintaining high performance. 

The computation complexity of each model and the time 
required to process an image are reported in Table II. It should 
be noted that since both datasets take image patch with size of 
512×512 as input, the computation complexity of each model 
is the same on both datasets. From Table II, one can draw a 
conclusion similar to that of the Vaihingen dataset. Although 
the computational complexity of the proposed model is higher 
than those of other lightweight models (such as ABCNet, 
MANet, and A2FPN), the test speed of the proposed model is 
fastest. Experiments on both datasets indicate that our proposed 
model is able to achieve a better trade-off in terms of the 
number of parameters, computational complexity and test 
speed. 

Fig. 7 shows some examples of image from the test set of the 
Potsdam dataset. The qualitative analysis points out that the 
LiANet is only inferior to MAResUNet and better to other 
comparison methods. In particular, it can reduce the 
misclassification of land-cover types, such as building, 
compared with other methods. 

E. Ablation Study 

In this part, we conducted comprehensive experiments to 
verify the effect of the MSFFL module, the position 
information and the covariance added in attention. The 
experiments have been conducted on the two considered data 
sets. Considering that our proposed LiANet model is inspired 
by DANet, the DANet is selected as the baseline network for 
comparison. OA and F1 score are used to evaluate the 
performance of different modules, also with the number of 
parameters to demonstrate the degree of lightweight. The 
experimental results on the Vaihingen and the Potsdam data 
sets are shown in Table III and Table IV respectively, in which 
M represents the MSFFL module, P means adding position 
information to the attention module, and C is the covariance. 

For the Vaihingen data set, we can see that the baseline 
model (i.e., DANet) achieves 91.89% and 88.74% in OA and 
F1 score respectively, which are competitive compared with 
others from Table III. However, the model with the lightweight 
module (i.e., MSFFL) significantly reduces the number of 
parameters of the baseline model from 45.36M to 24.48M. In 
addition, the OA increases by 0.05% and the F1 score reduces 

by 0.05%. In terms of position information, the incorporation 
with MSFFL in the baseline increases the number of parameters 
of 0.04M, but achieves better OA and F1 score. This confirms 
the importance of integration of the position information. 
Finally, when we add the covariance to adjust the attention map, 
the OA is increased of 0.14% with only an increase of 0.07M 
parameters and decrease of F1 score of 0.33%. Therefore, in 
general, our improvements to the model are valid and can 
reduce the number of parameters while guaranteeing no 
degradation in model performance. 

For the Potsdam data set (Table IV), the baseline DANet 
achieves the best performance in terms of OA and F1 score. We 
point out that adding the MSFFL module into the baseline did 
not increase the OA and F1 score, but the number of parameters 
of the model was significantly reduced. This is mainly due to 
the feature representation capability reduced in lightweight 
models when using a small number of parameters, which 
results in degraded segmentation performance on the suburban 
scene datasets with complex ground objects. When the position 
information is introduced, the OA slightly increases whereas 
the F1 score decreases. The use of covariance enhances both the 
OA and F1 of the model to a level almost comparable to the 
performance of the baseline. However, this is achieved with a 
sharply smaller number of parameters that largely compensates 
the slight decline in model performance. 

The proposed model greatly reduces the number of 
parameters by significantly reducing the number of channels 
during feature fusion, as well as by compressing the spatial size 
by half when calculating the channel attention that captures the 
contextual relationships among channels. Then, the position 
information and covariance matrix operations with only a small 
number of parameters are introduced to improve the model 
performance. The results in Table III and Table IV show that 
the proposed model is able to significantly reduce the number 
of parameters of the model while taking into account the 
segmentation performance of the model, which confirms that 
effectiveness of proposed modules. 

TABLE III 
QUANTITATIVE COMPARISONS AMONG ABLATION STUDIES ON THE 

VAIHINGEN DATA SET. M IS MSFFL, P IS POSITION INFORMATION AND C IS 

COVARIANCE 

Method OA (%) F1 (%) Parameters (M) 

DANet (baseline) 91.89 88.74 45.36 

baseline + M 91.94 88.69 24.48 

baseline + M + P 91.98 88.75 24.52 

baseline + M + P + C (LiANet) 92.12 88.42 24.59 

 
TABLE IV 

QUANTITATIVE COMPARISONS AMONG ABLATION STUDIES ON THE POTSDAM 

DATA SET. M IS MSFFL, P IS POSITION INFORMATION AND C IS COVARIANCE 

Method OA (%) F1 (%) Parameters (M)

DANet (baseline) 92.23 88.44 45.36 

baseline + M 88.60 84.63 24.48 

baseline + M + P 88.65 83.64 24.52 

baseline + M + P + C (LiANet) 91.99 87.95 24.59 
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F. Analysis and Discussion 

In this section, the effects of the two parameters, i.e., the size 
of the input image and the number of output channels, on the 
model performance are analyzed in detail. In the following 
experiments, to minimize the impact of input image size on 
model performance, three different crop sizes (i.e., 128128, 
256256 and 512512), have been considered. In order to 
better balance the relationship between the model accuracy and 
the amount of model parameters, the number of output channels 
of the MSFFL is selected from {256, 512, 1024, 2048} to 
analyze the proposed model. 

1) Size of input image 
In the experiments, we crop the original large image to image 

patches given as input to the model for adapting to the GPU 
memory. However, different image patch sizes may impact the 
performance of the model. This is because image contains 
objects with different scales, and differences in crop size can 
reduce the variety of objects in each image. The OA versus the 
different crop sizes and the number of channels of MSFFL on 
the two considered data sets are shown in Fig. 8. 

(a) 

(b) 

Fig. 8. Performance of the proposed LiANet versus different crop sizes: (a) 
Vaihingen data set, (b) Potsdam data set. 

Fig. 8 (a) shows the OA versus different cropping sizes of on 
the Vaihingen data set. One can see that OA increases by 

increasing the input image size when the number of output 
channels is 512, 1024 and 2048. Moreover, although the model 
achieves good performance with the input image size of 128
128 for 256 channels, the best performance is still achieved 
with the input image size of 512512. Therefore, the input size 
of 512512 was chosen for the Vaihingen dataset 

As shown in Fig. 8 (b), on the Potsdam dataset the OA 
increases by increasing the input image size for any number of 
output channels. In the range between 128 and 512, the model is 
very sensitive to the input size. When the input size is set to 128
128, the lack of context information affects the information 
available in the model training. When the input size is 512
512, the accuracy of the model reaches the maximum value. 
Thus, we used image patches of size of 512512 for training 
and testing on the Potsdam dataset. 

We can also observe from Fig. 8 that the performance of the 
proposed model shows a generally consistent trend with the 
input image size for different output channels on both datasets, 
indicating that the choice of the input image size is not affected 
by the number of output channels of MSFFL. 

2) Number of output channels 
In the multi-scale feature fusion model, the number of output 

channels of the feature map can be changed by fusing with 
multi-stage information. A different number of channels in the 
feature maps has an impact on the performance of the model. 
Meanwhile, it is worth noting that the number of parameters of 
the model increases exponentially by increasing the number of 
output channels. In order to better balance the relationship 
between the model accuracy and the amount of model 
parameters, we performed experiments by training and testing 
the model with different degrees of reduction on the output 
channels of the MSFFL. Fig. 9 shows the relationship between 
OA and the number of output channels on the Vaihingen and 
Potsdam data sets, respectively, under different input sizes. 

From Fig. 9 (a), one can observe that the segmentation 
performance of the model slightly fluctuates by reducing the 
number of MSFFL output channels when the input sizes are 
256256 and 512512. When the input size is equal to 128
128, the OA shows a tendency to increase as the number of 
output channels decreases. For the cases in which the input size 
is 256256 and 512512, although the model accuracy is 
optimal when the number of output channels is 1024, the 
accuracy is only slightly below the optimal accuracy when the 
number of output channels is 256, and the number of 
parameters is reduced by almost half. In addition, when the 
number of channels continue to increase over 1024, the OA and 
F1 Score do not improve or even decline. This is because the 
excessive number of channels causes the model to learn 
redundant features from the data and to loose generalization 
capabilities. To find a trade-off between the segmentation 
performance and the amount of model parameters, we selected 
256 channels as the final channel size of the fused feature map 
in the LiANet on the Vaihingen dataset. Under this 
combination, our model not only has a significant improvement 
of the segmentation performance, but also achieves the goal of 
the lightweight model. 
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(a) 

(b) 

Fig. 9. Performance and number of parameters versus the level of model 
reduction (different output channels of MSFFL module): (a) Vaihingen data set, 
(b) Potsdam data set. 

Similar results are obtained on the Potsdam data set [Fig. 9 
(b)] when the input size is 256256 and 512512. The model 
accuracy fluctuates with the number of output channels when 
the input size is 128128. The best OA is achieved with 1024 
output channels. This may be due to the small input size of 128
128, which makes the ground objects information contained 
in the different cropped image patches more variable and 
finally causes the model performance to be unstable. As a result, 
considering all the cases together and to balance between the 
segmentation performance and the number of model 
parameters, we used 256 channels as the final channel size of 
the output feature map of MSFFL module. 

As one can observed in Fig. 9, the trend of the performance 
of the proposed model with the number of output channels 
remains basically the same for different input sizes on both 
datasets. This again indicates that there is not mutual influence 
between the input image size and the number of output 
channels. 

V. CONCLUSION 

In this paper, a new lightweight attention mechanism-based 
network (LiANet) for VHR images semantic segmentation has 
been presented. In the proposed network, an effective MSFFL 

module is designed to fuse the high-level and low-level feature 
maps and sharply reduce the calculation parameters. 
Meanwhile, two parallel enhanced attention modules, i.e., a 
spatial attention module (SAM) and channel attention module 
(CAM), are designed by introducing position information to 
enhance the ability to express attention. To further improve the 
segmentation performance, covariance calculation is used to 
correct the expression of the attention mechanism. 
Experimental results on two benchmark VHR data sets show 
that the proposed LiANet can greatly reduce the number of 
model parameters while maintaining the stable performance of 
the model with respect to other literature methods. 

In the future developments of this work, we will focus on 
exploring lightweight convolution operations to further reduce 
the number of parameters and computational complexity of the 
model while maintaining high segmentation performance. This 
can be important for extreme scenarios in terms of few 
available resources like on-board of satellites. Moreover, we 
will embed proposed lightweight approach in the segmentation 
models designed for large-size remote sensing images (such as 
MFVNet [52]) to achieve good accuracy with lower number of 
parameters. 
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