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Abstract

Tiny machine learning (tinyML) is becoming popular in Internet of
Things (IoT) systems to add intelligence to end nodes with limited
resources. Nowadays, there are tens of billions of connected de-
vices that exchange data wirelessly, making dense IoT networks.
However, the data involved in interconnected devices is increas-
ing their memory footprint, making the transmission of raw data
over low-power wide-area networks a challenging and expensive step.
TinyML implements in-situ data processing, ensuring the efficiency
and reliability of IoT systems without overloading communication
channels.
Developing tinyML systems is complex because it involves the im-
plementation of the traditional ML algorithm and then its optimiza-
tion and compression to ensure successful deployment in resource-
constrained devices. However, ML algorithms range from simple
systems (e.g., 1-layer feed-forward neural networks), to the most
complex ones, such as deep neural networks (DNNs) with tens of
hidden layers and millions of parameters. The optimization of DNNs
is an active research area as it presents many challenges to deploy
them in IoT end-nodes efficiently.
This dissertation presents a general framework aiming at developing
tinyML systems. It investigates different ML algorithms and em-
bedded platforms to validate the correct operation of the proposed
framework. Furthermore, it selects different use cases to motivate
and demonstrate the effectiveness of the proposed solution for de-
veloping tinyML algorithms in IoT systems. The use cases consist
of real-world applications providing actual techniques and methods
to implement tinyML algorithms in constrained devices successfully.
Furthermore, this thesis provides clear evidence of the benefits of
tinyML considering energy efficiency, reliability, and maintenance.
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Finally, it improves the capability of standard tinyML systems with
on-device learning techniques. In this way, it is possible to obtain
tinyML systems which follow the trend of the environment, learning
new patterns and reducing maintenance operations.
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Chapter 1

Introduction

In recent years, artificial intelligence (AI), machine learning (ML),
and deep learning (DL) have gained significant popularity in acade-
mia and industrial applications. They can achieve impressive perfor-
mance by increasing the quality of service compared to traditional
solutions. For instance, computer vision applications widely employ
DL algorithms because of their outstanding performance in image
classification, detection, and recognition. However, such algorithms
are characterized by a high computational demand limiting their
usage in powerful devices without memory and energy constraints.
This poses a challenge when using DL in IoT systems where simple
devices with low-power resources are connected.
Considering the enormous progress in embedded devices that follow
Moore’s law, it is now reasonable to integrate ML functionalities
and ubiquitous intelligence in end devices with limited resources.
Therefore, many researchers have moved their attention to this gap
to make the end nodes of an IoT network intelligent and imple-
ment the tinyML paradigm. TinyML unleashes intelligence even in
small, low-power, and low-cost devices with the benefits related to
edge computing. On the other hand, implementing tinyML algo-
rithms introduces different challenges such as model optimization
and compression, computational capability, reliability, and mainte-
nance.
The counterpart of edge computing is called “cloud computing”
which permits the off-loading of the computational burden in re-
mote servers. However, this approach is extremely inefficient as it
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involves the transmission of raw data, thus increasing the traffic of
big data in wireless networks. Moreover, the wireless transmission
of raw data involves a considerable latency and energy consump-
tion which affects the frame rate and energy sustainability of any
application. Lastly, it is a costly solution as it involves the usage
of high-cost servers with near-unlimited resources [3, 4]. On the
other side, cloud computing can execute the most complex ML al-
gorithms, thus guaranteeing a high quality of service [5].
TinyML with the edge computing approach fits perfectly with IoT
systems and overcomes all the limitations of cloud computing per-
mitting the deployment of ML algorithms close to the data source
(e.g., the sensor itself).
The main benefits of tinyML are:

• Near-sensor computing: Raw data are processed as close
as possible to the data source avoiding the transmission of
raw data. In this way, it is possible to send only the processed
data with the useful information, thus saving transmission en-
ergy and data storage. The most recent and advanced sen-
sors (e.g., image sensors with in-pixel processing capabilities)
permit the processing of the acquired data directly in the ac-
quisition pipeline with simple but effective ML solutions [6].
This reduces the energy demand and the runtime execution
by keeping a high quality of service.

• Real-time execution: TinyML reduces the communication
latency by moving the inference to the source device. This
guarantees a real-time execution even in time-sensitive appli-
cations where a prompt exchange of information is fundamen-
tal. In particular, mobile robotics applications require real-
time responsiveness making the tinyML a successful approach
for such scenarios.

• Privacy concerns: TinyML avoids the transmission of raw
data, thus it ensures the privacy of every individual without
sending over the internet any sensitive data. It limits the usage
of sensitive data for in-situ processing and then deletes them.
Thus, it protects data privacy from any cyber attack.

• Network independent: TinyML processes data locally, thus
it does not indispensably need an always-available network for
wireless data transmission. This opens the usage of tinyML
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in extreme scenarios where a wireless network might not be
available.

• Cost-effective: TinyML devices are low-cost permitting lar-
ge-scale manufacturing and small, thus deployable in hard-to-
reach positions. Such devices range from embedded GPUs,
and single-board computers, to microcontrollers with a few
kilobytes of memory.

To take advantage of all these benefits, it is fundamental to develop
ML models aware of the hardware used. This introduces the main
challenge of tinyML: deploying complex ML models, such as DNNs,
on end devices with low computational capabilities. Fortunately,
there are existing solutions for model compression and optimization
that permit the deployment of complex ML models in resource-
constrained devices. However, compression and optimization tech-
niques introduce performance degradation, thus it is important to
optimize models by keeping an acceptable quality of service. For
this reason, researchers are working in this field to find solutions
that can highly compress models without significantly affecting per-
formance.
The main effective optimization techniques are:

• Quantization: It converts model weights represented in
floating point (i.e., 32-bit), with an integer representation (i.e.,
8-bit). This introduces a 4× compression factor. However, it
is important to test the quantized model as it could not satisfy
the application requirements due to the lack of bit precision.

• Pruning: It is used in deep architectures where weights and
branches are uninfluent (i.e., close to 0), or rarely activated.
Then, it cuts off those branches that do not play an active role
in producing a fair result, obtaining a parameter reduction.
After the pruning operation, it is needed a fine-tuning of the
new architecture.

• Parameter optimization: MLmodels, especially DNNs, are
characterized by a high number of parameters. However, de-
pending on the application scenario, a lower number of param-
eters can satisfy the system requirements. Thus, it is possi-
ble to simplify the model architecture by removing layers and
reducing the overall number of parameters. This operation is
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performed empirically to find the best trade-off between mem-
ory footprint and performance.

• Knowledge distillation: This technique trains a simple net-
work (i.e., a student architecture) starting from a complex ar-
chitecture, namely the teacher architecture. This achieves a
lightweight model with a similar performance to the teacher
model.

The tinyML paradigm presented above presents a main limitation:
such systems use static models that can only perform inference,
making them vulnerable to context drift (i.e., the effect related to
the changing of the environment). This leads to performance degra-
dation and periodic maintenance due to model retraining and fine-
tuning. Thus, ensuring a high model accuracy over time requires
continuous monitoring and potential retraining, which is harder on
distributed, resource-constrained devices. This challenge is solved
with the so-called ‘on-device training’ or ‘online learning’. It per-
forms inference and training on the input data received, thus learn-
ing from the changes that affect the environment and recognising
new patterns during runtime. However, ML model training, espe-
cially for computer vision applications, is typically performed on
desktop GPUs because it requires a high computational capability,
thus moving the training step on resource-constrained end devices is
almost impossible. With ‘tiny online learning’ (tinyOL) techniques,
it is possible to add learning capabilities to end devices without af-
fecting the application latency considerably. It uses trade-offs such
as the combination of a static model with a dynamic model which
can be updated during runtime. This increases the lifetime of IoT
devices reducing the maintenance and increasing the performance
over time.
TinyML is widely employed in academia, however, many real-world
applications do not benefit from it because of the development com-
plexity. Even though libraries such as TensorFlow Lite and Py-
Torch Mobile support tinyML development, the ecosystem is still
fragmented, making its implementation difficult. Thus, the lack of
standardized tools and frameworks makes the tinyML integration
into real-world applications challenging. Moreover, many industries
are not adopting tinyML due to the lack of robustness and integra-
tion with existing systems. In general, the insufficiency of tinyML
widespread and high-profile success case studies makes companies
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hesitant to invest in tinyML systems [7, 8].
This dissertation aims to provide a framework and methodologies
to develop efficient tinyML systems to overcome the challenges re-
lated to development complexity and maintenance. This removes
the gap between tinyML research and its employment for commer-
cial purposes opening its usage in many fields. The effectiveness
of the proposed framework and methodologies is proven with real-
life applications of tinyML and tinyOL which give clear evidence
of their benefits in various scenarios. Moreover, they demonstrate
the improvements in moving the computational burden near the
sensor compared to cloud solutions. Finally, they address the anal-
ysis, comparison, and characterisation of different hardware classes
to find the optimal trade-off between computational demand, mem-
ory usage, performance, and energy efficiency. In particular, the
following main use cases are explored:

• Precision agriculture: Agriculture fields have limited re-
sources requiring low-impact monitoring systems. TinyML
can give precious support in this scenario by integrating ad-
vanced monitoring for pests and weed infestation, thus opti-
mising the usage of pesticides.

• Autonomous drones: Mobile robotics, in particular drones,
are increasingly autonomous thanks to advanced sensors and
navigation techniques. However, small-sized drones have lim-
ited payload and energy resources which make fundamental
the usage of tinyML for implementing autnomous navigation
with advanced data processing.

• Industrial inspection: Companies are changing their in-
spection systems from expensive devices to low-power and low-
cost hardware. In this scenario, tinyML and tinyOL support
the integration of efficient monitoring systems into low-cost
devices with learning capabilities.

The thesis is organized into 7 chapters. Chapter 1 introduces the
thesis by giving an overview of the main benefits and challenges of
tinyML.
Chapter 2 presents an innovative smart trap with tinyML func-
tionalities. It first introduces the scenario highlighting the main
challenges. Then, it presents the implementation of the pest de-
tection system based on deep neural networks running on a single-
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board computer. Finally, it presents the platform characterization
ensuring its energy neutrality thanks to the usage of a solar energy
harvester.
Chapter 3 addresses the autonomous navigation of small-size drones
with an unintrusive and low-power automatic landing system. Fur-
thermore, it analyses the disturbances introduced by adverse weather
conditions, in particular rain, and provides a tinyML-based solution
to predict and counteract critical conditions.
Chapter 4 includes the implementation of an industrial visual in-
spection system based on MCU-based cameras and deep neural net-
works running efficiently on the edge. The results confirm the ben-
efits of using tinyML in this use case.
In Chapter 5, the tinyOL system is presented by focusing on the
main challenges and possible solutions to execute such algorithms in
MCUs. Furthermore, it presents a further extension which involves
unsupervised learning techniques with tinyOL to extend its usage
in real-world applications.
Chapter 6 concludes the thesis with final remarks and proposes
future work to push tinyML systems at the extreme edge.
Finally, Chapter 7 presents the main activities carried out during
this research experience.



Chapter 2

Precision Agriculture
with TinyML

Artificial intelligence has smoothly penetrated several economic ac-
tivities, especially monitoring and control applications, including
the agriculture sector. However, research efforts toward low-power
sensing devices with fully functional machine learning (ML) on-
board are still fragmented and limited in smart farming. Biotic
stress is one of the primary causes of crop yield reduction. With the
development of deep learning in computer vision technology, au-
tonomous detection of pest infestation through images has become
an important research direction for timely crop disease diagnosis.
This chapter 1 presents an embedded system enhanced with ML
functionalities, ensuring the detection of pest infestation inside fruit
orchards. The embedded solution is based on a low-power embedded
sensing system along with a neural accelerator able to capture and
process images inside common pheromone-based traps. Three dif-

1The work presented in this chapter has been published in the following
papers:

• Brunelli, D., Albanese, A., d’Acunto, D., and Nardello, M. (2019). En-
ergy neutral machine learning based iot device for pest detection in pre-
cision agriculture. IEEE Internet of Things Magazine, 2(4), 10-13.

• Albanese, A., Nardello, M., and Brunelli, D. (2021). Automated pest
detection with DNN on the edge for precision agriculture. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 11(3), 458-467.
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ferent ML algorithms have been trained and deployed, highlighting
the capabilities of the platform. Moreover, the proposed approach
guarantees an extended battery life thanks to the integration of en-
ergy harvesting functionalities. Results show how it is possible to
automate the task of pest infestation for unlimited time without the
farmer’s intervention.

2.1 Introduction

Due to the constant growth of food production demand, in Eu-
rope, agriculture is responsible for more than 10% of greenhouse
gas emissions and 44% of water consumption nowadays. Chemical
treatments (e.g., pesticides) are being intensively used to improve
the market penetration of fruit crops, leading to a remarkable im-
pact on pollinators and the planet’s ecosystem. Thus, there is an
increasing interest in new techniques to lower the water demand [9]
and optimize pesticide treatments to preserve natural resources2.
Farmers and researchers have been teaming up to develop smart
systems for precision agriculture. Networks of smart sensors are
mounted directly inside fruit and vegetable orchards, and advanced
machine learning algorithms optimize the agriculture resources us-
age, enabling crop monitoring by gathering real-time data about the
orchard’s health.
Usually, pheromone-based traps are equipped with a passive cam-
era that captures pictures of the trapped insects and sends them
through internet nodes to the cloud. Afterward, an expert, or a
farmer, is required to review the captured images to check the ef-
fective presence of dangerous parasites and eventually plan a local
counteraction (i.e., a pesticide treatment). However, this process
requires a high amount of data to be sent over long-range commu-
nication, making the application inefficient and time-expensive due
to regular human intervention in the detection process.
Recently, researchers have started investigating smart-trap usage for
pest detection as a solution to increase the wealth of orchards while
lowering pesticide demand [10]. These traps – installed directly in-
side orchards – can autonomously detect dangerous parasites and
alert the farmer to apply targeted pesticide treatments. Thanks to

2Source: https://projects.research-and-innovation.ec.europa.eu/en/

horizon-magazine/how-crop-and-animal-sensors-are-making-farming-smarter

https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/how-crop-and-animal-sensors-are-making-farming-smarter
https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/how-crop-and-animal-sensors-are-making-farming-smarter
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the implementation of sophisticated at-the-edge machine learning
algorithms using the tinyML paradigm, the smart trap can detect
dangerous parasites without remote cloud infrastructure as gener-
ally required for machine learning applications.
This solution opens many new possibilities for monitoring applica-
tions in precision agriculture: i) The optimized usage of the limited
energy available inside orchards; ii) The balanced distribution of the
whole implemented application by exploiting the computation ca-
pabilities at different levels (edge-concentrators-cloud) for achieving
better scalability; iii) The capability of using the recent low-power
long-range and low-data-rate radio protocols [11, 12], as we do not
need to send the acquired massive image data but only the result of
its analysis; iv) Finally, thanks to a low energy budget, the capabil-
ities of exploiting energy harvesting extending to unlimited lifetime
the smart traps.
This chapter presents a smart trap for pest detection running a
Deep Neural Network (DNN) on edge. The smart trap enables fast
detection of pests in apple orchards by using ML algorithms that
improve the overall system efficiency [13, 14]. All the computation is
done on the node, thus slimming down the amount of data transmis-
sion and limiting it to a simple notification of a few bytes if threats
are detected. The smart trap features an energy harvesting system
composed of a real-time clock (RTC) to trigger the pest detection
task – implemented using a low-power STM32L03 MCU –, a small
Li-Ion battery, and a solar panel to power its operations indefinitely.
The hardware solution is developed on top of a Raspberry Pi single-
board-computer as a mainboard equipped with a camera as an image
sensor and an Intel Neural Compute Stick (NCS) as a neural acceler-
ator to optimize the inference execution and, accordingly, the energy
consumption [15, 16, 17]. The overall system has been characterized
by considering its power consumption over a full application cycle
to find out the power-hungry tasks that require dedicated power op-
timization to meet the system energy balance. Furthermore, three
different CNN models for image classification have been compared:
a modified LeNet-5 [18] which, thanks to its straightforward archi-
tecture, can speed the execution up, a VGG16 [19, 20] model which
features a more deep CNN architecture capable of achieving better
recognition accuracy when classifying class of objects, and finally a

3Info: https://www.st.com/en/microcontrollers-microprocessors/

stm32l0-series.html

https://www.st.com/en/microcontrollers-microprocessors/stm32l0-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l0-series.html
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MobileNetV2 [2] network perfectly suitable to be evaluated on the
edge by resource-constrained platforms.
This chapter explores the following aspects:

• The development and characterization of IoT smart traps that
can be deployed and left working unattended for prolonged
times without the need for any human intervention;

• The study, training, optimization, and validation of three dif-
ferent ML models for image classification suitable for the re-
source-constrained embedded platform. Results and perfor-
mance comparison are presented and determine the model
used for the final deployment.

• The platform sustainability assessment when powered using
the solar energy harvester.

2.2 Related Works

The recent advances in smart agriculture are mainly powered by
the progress in wireless sensor networks (WSNs), unmanned au-
tonomous vehicles (UAVs) [21], machine learning, low-power imag-
ing systems [22], and cloud computing. Tiny sensors are deployed
in difficult-to-access areas for the periodic acquisition of in-field
data [23]. Although research and comparable prototypes are still
limited, we provide a discussion on successful automating pest de-
tection tasks.
Monitoring is a crucial component in pheromone-based pest control
systems [24, 25]. In widely used trap-based pest monitoring, cap-
tured digital images are analyzed by human experts for recogniz-
ing and counting pests. Manual counting is labour-intensive, slow,
expensive, and error-prone, which precludes real-time performance
and cost targets.
Deep learning techniques are used to overcome these limitations and
achieve a completely automated, real-time pest monitoring system
by removing the human from the loop [26]. [27] is one of the re-
cent works that exploit ML techniques to classify insects. These
works can be grouped based on the applied method. In terms
of image sources, many articles have investigated insect specimens
[28, 29, 30]. Unfortunately, even if specimens are usually well pre-
served and managed in a laboratory environment, this approach is
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not suitable for creating a model for image classification when data
is collected in the wild. Researchers have thus proposed to extend
the datasets with images captured from real traps [27, 31, 32].
From an algorithmic perspective, various types of features have been
used for insect classification, including wing structures [28, 29, 30],
morphometric measurement [33] and global image features [34, 35,
36, 37].
Different classifiers were also developed starting from the various
feature extraction methods, including but not limited to support
vector machines (SVM) [33, 38, 39], artificial neural networks (ANN)
[40, 41, 42, 43] and k-nearest neighbours (KNN) [44, 45]. In general,
these proposed methods were not tested under real application sce-
narios, for example, to classify real-time images acquired from real
traps deployed inside orchards.
To solve some of these early methods’ problems, more recently, deep
learning has been proposed in the literature [46, 47, 48]. Their vari-
ants have emerged as the most effective method for object recog-
nition and detection by achieving state-of-the-art performance on
many well-recognized datasets also in the domain of precision agri-
culture. A particular class of DL algorithms – well known as Convo-
lutional Neural Networks (CNN) – has made a clear breakthrough
in computer vision techniques for pest detection. Many sorts of
algorithms based on CNN have emerged, significantly improving
current systems’ performance for classification as well as object lo-
calization [49, 50, 51, 52, 53].
Inspired by this research line, we adopt a region-based detection
pipeline with convolutional neural networks as the image classifier
to classify in-situ images captured inside pheromone-based traps
deployed inside apple orchards. The raw images are firstly prepro-
cessed with colour correction. Then, trained ConvNets are applied
to densely sampled image patches to extract single regions of inter-
est (ROIs). ROIs are then filtered by non-maximum suppression,
after which only those with probabilities higher than their neigh-
bours are preserved. Finally, the remaining ROIs are thresholded.
ROIs that meet the threshold are considered correct detections.
Even though the approach presented in this chapter is not a novelty,
the proposed solution can provide state-of-the-art detection results
directly from apple orchards. Our system shows a suitable accuracy
for the implemented task without first uploading acquired data to
the cloud. All the computation is carried out autonomously on the
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edge, with the capability to exploit energy harvesting to avoid the
energy overhead of the metering infrastructure and extend the life-
time of the installation.

2.3 System Architecture

The system has been designed to bring IoT technologies into a do-
main that requires data collection over vast areas. In this scenario,
the system requires long-range communication, and high scalability
from multiple devices. Thanks to the onboard recognition algo-
rithm, the smart trap’s data transmission is limited to a few bytes,
thus exploitable in any rural area. Only the result of the inference
will be transmitted, making it suitable even for low-bitrate commu-
nication. If the farmer needs a visual confirmation from the cap-
tured picture, a few images per day can be transmitted. Figure 2.1
presents the system prototype.

Figure 2.1: An example of the assembled prototype used during
indoor testing.
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2.3.1 Hardware Implementation

Each smart trap is built on a custom hardware platform that in-
cludes: a small, low-power image sensor to collect images; a compact
single-board computer from Raspberry PI; an Intel Neural Compute
module for optimizing the execution of the ML task; a long-range
radio chip for communication; and a solar energy-harvesting power
system for collecting and storing energy from the environment. Fig-
ure 2.2 presents the schematic block overview of the proposed IoT
device. Its main functionalities are designed as follows.

Solar Panel

Energy Harvester
BQ24160RGET

1820 mAh LiPo
Battery

Boost Voltage
Regulator
FAN48623

Raspberry
Pi 

STM32L0

Intel
NCS

3V3 LDO
Regulator
MCP1812

Battery Fuel 
Gauge

LC709203

Vout

I2C

5V

3V3

I2C

Enable

Vbat

Figure 2.2: Solar energy harvester and power management circuit
schematic block.

Sensing

The smart trap uses a Sony IMX219 image sensor. The IMX219
is a low-power back-illuminated CMOS image sensor. The sensor
utilizes 1.12 µm pixel technology that offers high sensitivity and only
needs a few external passive components to work. It integrates a
black-levels calibration circuit, automatic exposure, and gain control
loop to reduce host computation and commands to the sensor to
optimize the system power consumption.
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Processing

The processing layer is mainly composed of two parts. The first,
the Raspberry single board computer is responsible for managing
the sensor acquisition, the processing of the captured pictures, and
the transmission. After several tests with different releases on the
market, we select the Pi3 version as the best trade-off between com-
puting capability, energy demand, and cost. The second part con-
sists of a neural accelerator, namely an Intel Neural Compute Stick,
that is activated only during the ML task and reduces the inference
time.

Transmission

The smart trap is equipped with a LoRa module [54]. The con-
nectivity is provided by an RFM95W transceiver featuring a LoRa
low-power modem and a +20 dBm power amplifier that can achieve
a sensitivity of over -148 dBm. The LoRa IC is then connected to
an external antenna with a maximum gain of 2 dBi.

Power unit

The smart trap integrates a complete power supply with energy har-
vesting functionalities to efficiently use the LiPo battery’s limited
energy. Figure 2.2 presents the schematic block of the power supply
module. Starting from the top left corner, the solar panel is con-
nected directly to the energy harvester BQ24160, used to recharge
an 1820mAh Li-Po battery. Two voltage converters are connected
to it: the first, a MCP18124 LDO, is in charge of generating 3.3V to
the external microcontroller. The second, a FAN486235 Boost con-
verter, provides a stabilized 5V to the Raspberry. This converter is
controlled by an STM32L0 MCU and enabled according to the im-
plemented power policy (e.g., SW programmed intervals). A battery
fuel gauge LC709203F6 is used by the MCU for battery status mon-
itoring. The external low-power STM32L0 MCU is in charge of the
energy management of the platform. It enables the power-up and

4Info: https://www.microchip.com/wwwproducts/en/MCP1812
5Info: https://www.onsemi.com/pdf/datasheet/fan48623-d.pdf
6Info: https://www.onsemi.com/download/data-sheet/pdf/lc709203f-d.

pdf

https://www.microchip.com/wwwproducts/en/MCP1812
https://www.onsemi.com/pdf/datasheet/fan48623-d.pdf
https://www.onsemi.com/download/data-sheet/pdf/lc709203f-d.pdf
https://www.onsemi.com/download/data-sheet/pdf/lc709203f-d.pdf
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shutdown of the Raspberry and manages the harvesting function-
alities, guaranteeing the optimal battery life without the farmer’s
intervention.

2.3.2 Detection pipeline

The smart trap implements a multi-stage pipeline that processes an
image after its capture to detect dangerous insects, called Codling
Moth. The automatic detection pipeline is shown in Figure 2.3.

BOOT

[T1] Take a
picture

[T2] ROIs
extraction

[T3] ROIs
classification

[T4] Report
transmission

SLEEP

Picture 
windowing

Smothing 
(Gaussian Filter)

Edge Extraction
(Fanny Filter)

ROIs
thresholding

ROIs 
Selection

Figure 2.3: Detection Pipeline workflow. On the right, the ROI
extraction procedure is highlighted.

We use sliding windows and a trained image classifier. The classifier
is applied to local windows at different locations of the entire image
to extract and classify the regions of interest (ROIs). ROIs are a
portion of the captured image encompassing just a single insect. An
example of this operation is depicted in Figure 2.4.
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(a) Raw picture.

(b) RoI with codling moth. (c) RoI with general insect.

Figure 2.4: Image (a) presents a photo taken inside a pheromone-
based trap by the proposed smart camera while (b) and (c) present
an example of extracted ROIs with a single insect during the pre-
processing phase.

The classifier’s output is a single scalar, representing the probabil-
ity that a particular ROI contains a codling moth. These ROIs
are regularly and densely arranged over the image and thus largely
overlapping. Therefore, we perform smoothing (or blurring) of the
frame with a Gaussian filter and then Edge extraction through the
Canny operator to select only the ROIs whose respective probability
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is locally maximal.
After this detection phase, ROIs are further analyzed by the learn-
ing algorithm that tries to assert if the detected insect is a codling
moth or not. The final output of the detection pipeline is the ini-
tial captured images along with the coloured square highlighting
the detected positive ROIs, as shown in Figure 2.5. After the DNN
assessment, a report is generated and sent using the LoRa modem
to the farmer.

Figure 2.5: An example of an annotated photo after its evaluation.
The red boxes highlight the detected codling moth (positive class)
while the blue box general insects (negative class).

2.3.3 Edge Accelerator

Edge accelerator is a class of purpose-built Systems on a Chip (SoC)
for running deep learning models efficiently on edge devices. Differ-
ent companies have proposed hardware solutions to accelerate the
execution of deep learning algorithms at the edge of the network.
To this end, we took a systematic look at a set of edge accelerators,
their working principles, and their performance in terms of execut-
ing different learning tasks. We compared three different platforms:
Intel NCS2, Google Coral USB TPU and Nvidia Jetson Nano, which
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are state of the art on the market.
Energy consumption. Energy is a precious resource in battery-
powered edge accelerators. From an energy consumption viewpoint,
the most power-hungry platform is the Jetson Nano, requiring up
to 10W when exploiting the GPU during the inference7. On the
contrary, the power consumption of the Google TPU is around 5W.
A similar power consumption is measured for the Intel NCS 2 along
with the carrier board (in our case, an RPi 3B+) [55], mainly di-
vided into 2W consumed by the accelerator and 3W by the RPi.
Performance. The execution time of the model inference is a key
metric for sensory systems. Among the 3 platforms compared, the
Nvidia Jetson presents the higher computational capabilities, fol-
lowed by the Google TPU [56]. The Intel NCS 2 is the less powerful
platform, but still perfectly suitable for the proposed implemen-
tation that does not require hard real-time execution of the ML
task. In our case, we are more focused on energy reduction; thus
we selected the Intel NCS2 as a neural accelerator for the proposed
application.
Compatibility. Although Edge TPU appears the most competi-
tive in terms of performance and size, it is also the most limiting in
software as only Tensorflow frameworks are supported. Moreover, it
does not support the full Tensorflow Lite but only the models that
are quantized to 8-bit integers (INT8). This contrasts with NCS2
which also supports FP16/32 (16/32-bit floating point) in addition
to INT8. In addition, the Intel NCS2 is widely supported by the
community, thanks to the OpenVINO8 toolkit that allows the con-
version of machine learning frameworks. Nvidia’s software is the
most versatile as its TensorRT supports most ML frameworks in-
cluding MATLAB. Moreover, Google TPU and NCS2 are designed
to support some subset of computational layers (primarily for com-
puter vision tasks).
Availability. Hardware availability was also a factor limiting the
platforms and configuration tested. At the time of our project kick-
off, only the Intel NCS2 and the Google TPU were available and
adequately documented.
The exploration of the design space suggested continuing our devel-

7Info: https://docs.nvidia.com/jetson/archives/r34.1/

DeveloperGuide/index.html
8Info: https://www.intel.com/content/www/us/en/developer/tools/

openvino-toolkit/overview.html

https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/index.html
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/index.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
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opment on the Intel NCS2, because it represents the best trade-off
in terms of performance, energy consumption and learning model
compatibility.

2.4 Deep Neural Networks

Deep Learning is a class of machine learning algorithms based on
the so-called ANNs trained through feature learning techniques. DL
algorithms can improve the recognition capability of many systems
by simulating the biological neural networks (i.e., the human brain
behaviour). They can automatically learn features at multiple lev-
els of abstraction and compose them to learn complex ones. For
this application purpose, three state-of-the-art DNN architectures
represented in Figures 2.6, 2.7 and 2.8 has been chosen:

• A modified LeNet-5 [18], presented in Figure 2.6, which fea-
tures a simple and straightforward structure. It has been
designed for hand-written character recognition, but we ex-
tended it for classification problems with a few modifications.
As revealed in Figure 2.6, it is composed of seven layers: 3
convolutional, 2 subsampling and one fully connected layer
followed by a softmax classifier. Moreover, the second convo-
lutional block does not use all the features produced by the
average pooling layer. This permits the convolutional kernels
to learn different patterns and improve classification accuracy.
It also makes the network less computing demanding, which
is suitable for embedded platforms. By changing the original
activation function (i.e., tanh) to the rectified linear unit, it is
possible to extend this network for classification tasks where
specific patterns have to be recognized (especially for our case
of pest detection).

• VGG16 [19, 20], represented in Figure 2.7, is characterized
by a complex architecture and, when compared with LeNet
performance, reveals the higher potential in classification ac-
curacy. It uses convolutional kernels 3×3 with stride 1 and the
same padding and max-pool layers of 2×2 filter and stride 2.
In this way, convolutional kernels can learn different patterns
and geometrical shapes. Fully connected layers enable the
classification of objects depending on the position of shapes
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in the image. Thus, this network is perfect for recognition
problems.

• MobileNetV2 [2], shown in Figure 2.8, is based on an in-
verted residual structure where the shortcut connections are
between the thin bottleneck layers. In MobileNetV2, there are
two types of inverted residual blocks. The first is with a stride
of 1 and the second with a stride of 2 for downsizing. The
network is composed of 3 layers for both types of blocks. The
first layer is 1×1 convolution with ReLU6. The second layer
is the depthwise convolution. The third layer is another 1×1
convolution without any non-linearity. The intuition is that
the bottlenecks encode the model’s intermediate inputs and
outputs while the inner layer encapsulates the model’s abil-
ity to transform from lower-level concepts such as pixels to
higher-level descriptors such as image categories. Thanks to
this architecture, the network is perfectly suitable for build-
ing highly efficient mobile models. Finally, as with traditional
residual connections, shortcuts enable faster training and bet-
ter accuracy.
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Figure 2.6: LeNet-5 architecture.

We tested these three learning model architectures to select the best
trade-off between complexity, accuracy, and power consumption.

2.4.1 Training session

The dataset for the training phase has been constructed in a semi-
automatic way thanks to a specific image processing algorithm. It
starts from raw pictures, extracts relevant features such as contours
and blobs, and generates tiles with codling moths or general insects
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Figure 2.7: VGG16 architecture.
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Figure 2.8: MobileNetV2 architecture.

for the dataset. Initially, the overall dataset consists of 1100 images
where 30% are used for validation.
The number of dataset images has been increased by combining aug-
mentation techniques such as dataset generation (before training)
and in-place augmentation (during training). These techniques arti-
ficially expand the dimension of a training dataset and improve the
dataset sparsity to prone the network to generalization capabilities.
The purpose of these approaches is to create an expanded version of
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the original dataset by applying various image processing operators
(e.g., shift, flip, zoom). Finally, the overall dataset consists of 4400
images divided into two classes: 3200 for codling moth and 1200 for
general insect. It has been further split into 3500 images for the
train (2500 for codling moth and 1000 for general insect) and 900
for the test (625 for codling moth and 275 for general insect). An
example of the dataset images is shown in Figure 2.4, depicting a
raw picture used for the dataset construction (Figure 2.4a), a tile
with Codling Moth (Figure 2.4b), and a tile with a general insect
(Figure 2.4c) used for the network training.
The training is performed over 100 epochs with an input image size
equal to 52×52 for LeNet-5, VGG16 and MobileNetV2. An early
stopping by accuracy approach has been further used to stop the
training if the validation accuracy reaches at least 99.5%. In this
case, only VGG16 has stopped earlier than others (i.e., 8 epochs
have been enough) as shown in Figure 2.9b.
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Figure 2.9: Training and test accuracy comparison for (a) LeNet,
(b) VGG16 and (c) MobileNetV2 .

Figure 2.9 shows the accuracy and validation for LeNet, VGG16 and
MobileNetV2 over the epochs. Notice that all architectures’ accu-
racy increases together with the validation accuracy and converges
to almost 0.99. This confirms that the training sessions have been
successful without overfitting. Moreover, VGG16 has reached the
desired validation accuracy earlier than others because of its high
number of parameters and its deep structure.

2.4.2 Validation

The obtained DNN is tested with images that have been retrieved
from the dataset before the training phase. In this way, it is possible
to test the network generalization capability with new images. As
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stated before, 900 images have been used for the tests. The results
for the three solutions are shown in Table 2.1. Notice that VGG16

Table 2.1: LeNet, VGG16 and MobileNetV2 test results.

(%) Accuracy Recall Precision F-score

LeNet-5 96.1 94.9 99.6 97.2
VGG16 97.9 97.4 99.6 98.5

MobileNetV2 95.1 94.5 98.5 96.4

features a high precision but a lower recall, which means that it
misses some pests, but the predicted ones are accurate, and, conse-
quently, the F-measure is good.
To evaluate if the metrics satisfy the application requirements, we
interviewed apple farmers and looked into the literature. Com-
monly, farmers detect Codling Moth infestation exploiting phero-
mone-based traps. The traps are then checked once every week,
and the pesticide treatment is executed when 2 moths/week [57]
are trapped/detected. Considering the average number of Codling
Moth caught seasonally, as reported in several articles [57, 58],
the accuracy of the system is perfectly suitable for automating
the Codling Moth detection task. Moreover, the smart trap is
programmed to check for Codling Moth twice per day, allowing a
prompter reaction compared to today’s human-inspection approach.
All architectures confirm their generalization capability if new im-
ages are given as input. Thus, it implies that the models have been
trained without overfitting. On the other hand, both LeNet and
MobileNetV2 present good results in all parameters; thus, the three
architectures can be used in this application scenario. However,
considering the deep architecture and its high number of parame-
ters, VGG16 and MobileNet could outperform LeNet if the training
dataset is even more consistent. For reference, an example of moth
detection in a real scenario is shown in Figure 2.5 where codling
moths are highlighted with red bounding boxes.

2.4.3 Network Optimization and Data augmen-
tation

Much of the success of deep learning has come from building larger
and larger deep neural networks. This allows these models to per-
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form better on various tasks but also makes them more computa-
tionally demanding. Larger models take more storage space which
makes them harder to distribute. Also, larger models take more time
to run and can require more expensive hardware. The optimization
phase aims to reduce the size of models while minimizing the loss
in accuracy or performance, thus speeding up the inference step.
The proposed implementation applies optimization both during the
training phase and before the evaluation of the training model.
Data Augmentation. Training machine learning models, usually
requires large and heterogeneous datasets to achieve good gener-
alization capabilities. In our case, the amount of training data,
which is represented by the number of training patches, is much
smaller than standard small-scale image classification datasets [59,
60], which have on the order of 50,000 training examples. Therefore,
we performed data augmentation to increase the number of images
for training and incorporate invariance to basic geometric transfor-
mations into the classifier. Based on the “top-view” nature of the
trap images, a certain patch will not change its class label when it
is slightly translated, flipped, or rotated. Therefore, we apply these
simple geometric transformations to the original patches to increase
the number of training examples.
Pruning. Neural network pruning is a compression method that
involves removing unnecessary neurons or weights from a trained
model. There are different ways to prune a neural network. 1)
Weights pruning by setting individual parameters to zero and mak-
ing the network sparse; 2) removing entire nodes from the network,
making the architecture smaller, while keeping the accuracy of the
initial larger network. In our case, we prune weights so as not to
impact the accuracy of the performance. Network pruning is ex-
ecuted iteratively during the training phase to achieve the desired
accuracy during the validation phase.
Model Optimization. After the training phase, the model has
been further optimized to reduce the network complexity and to in-
crement the evaluation speed. To facilitate faster model inference,
we perform Node Merging [61], Constant and Horizontal Fusion [62],
Batch Normalization [63], and drop of unused layers (Dropout layer
used during the training phase).
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2.5 Results and Evaluation

This application checks the presence of codling moths twice per day.
In one application cycle, the smart trap has to perform the following
tasks:

• [Boot] - Power ON

• [Task 1] - Take a picture of the trapped insects

• [Task 2] - Pre-process the captured images

• [Task 3] - Execute the classification algorithm

• [Task 4] - Send the computation results using the radio

• [Shutdown] - Power OFF

These steps are used to characterize the smart trap performance in
terms of power consumption and required energy. Moreover, since
the system has preferably to work unattended indefinitely, a few
remarks and considerations about its energy balance are taken into
account.

2.5.1 Power consumption

Thanks to the external low-power microcontroller, the system can
wake up only when planned. To characterize the system consump-
tion, we measure the current required by each task by comparing
twelve configurations:

• Raspberry Pi3 evaluating MobileNet V2;

• Raspberry Pi3 evaluating LeNet;

• Raspberry Pi3 evaluating VGG16;

• Raspberry Pi3 supported by NCS evaluating MobileNet;

• Raspberry Pi3 supported by NCS evaluating LeNet;

• Raspberry Pi3 supported by NCS evaluating VGG16;

• Raspberry Pi4 evaluating MobileNet V2;

• Raspberry Pi4 evaluating LeNet;
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• Raspberry Pi4 evaluating VGG16;

• Raspberry Pi4 supported by NCS evaluating MobileNet;

• Raspberry Pi4 supported by NCS evaluating LeNet;

• Raspberry Pi4 supported by NCS evaluating VGG16;

Table 2.2: Battery recharge time for both a single application cycle
and for fully charging the battery [20-100%] while harvesting solar
energy at three different illuminance levels.

2000 lx 10000 lx 25000 lx

Full Battery 60 h 13 h 7 h
Single Cycle 23 min 5 min 3 min

These configurations permit finding the software bottlenecks and
selecting the best trade-off for the overall system performance. As
can be noted in Table 2.3, Task 3 is the one that requires more
energy because of the neural inference computation together with
the use of NCS. Even if it boosts the neural inference step, its VPU
requires a high power to perform accelerated edge inference. Here,
the best arrangement that absorbs less power on average than others
is the Raspberry Pi3 evaluating LeNet-5. Figure 2.10 shows the
energy consumption of each task. In this case, Task 3 is confirmed
as the most power-hungry activity and requires more energy than
others. Moreover, configurations that involve Raspberry Pi4 are
characterized by higher energy consumption than others. This is
due to the Pi4, which features oversized CPU performance. Even if
it executes the application faster than Pi3, it requires more energy to
complete one application cycle. Thus, the configuration consisting
of the Raspberry Pi3 running LeNet demonstrates to provide the
best trade-off.

2.5.2 Expected Battery Lifetime

The platform is powered by a single-cell LiPo battery with 1820
mAh capacity. Considering the most energy-demanding configura-
tion (i.e., Raspberry Pi4 evaluating MobileNetV2 consuming 200.1
J for one application cycle), the battery can supply the system for



2.5. RESULTS AND EVALUATION 27

MNV2 LeNet VGG16 MNV2 LeNet VGG16 MNV2 LeNet VGG16 MNV2 LeNet VGG16
0

50

100

150

200
E

n
e
rg

y
[J

]

Boot Task1 Task2 Task3 Task4 Shutdown

Raspberry PI 3
Raspberry PI 4

Raspberry PI 3
+

Intel NCS

Raspberry PI 4
+

Intel NCS

Figure 2.10: Tasks Energy consumption breakdown comparison for
a single cycle of the implemented application. Single-task energy is
presented in Table 2.3 for each implementation.

about 120 complete cycles, which lasts around two months. On
the other hand, if the best configuration is considered (i.e., Rasp-
berry Pi3 evaluating LeNet consuming 123.2 J for one application
cycle), the system operates unattended for about 200 cycles (around
3 months) with the only battery.
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Figure 2.11: Solar panel characterization respectively (a) at 2000
lx, (b) at 10 klx and (c) at 25 klx.

2.5.3 Energy Harvesting and Platform Sustain-
ability

In apple orchards, energy resources are limited. Thus a self-sustaina-
ble system leads to a more robust and durable application to foster
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farmers to “deploy and forget” the sensors. For this purpose, an
energy harvesting system has been designed and characterized. It
is composed of an MCU to trigger the power-on and shut down
and a 140mm×100mm solar panel used for recharging the battery.
The solar panel used has been characterized using several different
light levels. Figure 2.11 present the I-V curves of the solar panel
in three different environmental situations: 2000 lx (i.e., cloudy,
Figure 2.11a), 10000 lx (i.e., fair, Figure 2.11b) and 25000 lx (i.e.,
sunny, Figure 2.11c).
By considering the measured power output from the solar harvester,
we measured the time duration of the whole charge process of the
battery in different conditions. We have measured both the time
needed to charge a depleted battery and the time to harvest the
energy necessary for a single application cycle. The results are pre-
sented in Table 2.2. Starting with the lower illuminance level, the
recharging time is lower than the application duty cycle (i.e., 2 cycles
per day), validating the sustainability of the platform. This feature
is also confirmed by the graphs presented in Figure 2.12 that show
the battery energy trend while harvesting with an illuminance equal
to 7000 lx. It can be argued that even by emulating 3 days of cycles,
the battery level does not drop, validating the hypothesis that the
platform can self-sustain its operation thanks to the integrated solar
harvester.

2.6 Conclusions

Computer vision systems are already widely employed in different
segments of precision agriculture and industrial food production.
Running deep learning features on the edge can optimize the man-
agement of fruit orchards.
This chapter presents a computer vision solution for automating
pest detection inside orchards. The platform exploits ML function-
alities on edge to evaluate images captured inside common phero-
mone traps to get early detection of dangerous parasites. Further-
more, on board inference avoids the transmission of the whole image,
reducing the wireless communication bandwidth and energy costs.
We analyzed the best hardware configuration using different neural
networks, trained to get the best pest detection accuracy. More-
over, we combined a designed energy harvester to demonstrate the
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perpetual operation of the device unattended.
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Chapter 3

TinyML-based
Autonomous UAVs

3.1 Automatic Landing in Resource Con-
strained UAVs

Unmanned Aerial Vehicles (UAVs) can operate autonomously in
dynamic and complex operational environments and are becoming
increasingly common. Deep learning techniques for motion control
have recently taken a major qualitative step because vision-based in-
ference tasks execute directly on edge. The goal is to fully integrate
the machine learning element into the small UAV. However, given
the limited payload capacity and energy available on small UAVs,
the integration of computing resources sufficient to host ML, auton-
omy, and vehicle control functions is still challenging. This chapter 1

1The work presented in this section has been published in the following
papers:

• Albanese, A., Nardello, M., and Brunelli, D. (2022). Low-power deep
learning edge computing platform for resource constrained lightweight
compact UAVs. Sustainable Computing: Informatics and Systems, 34,
100725.

• Santoro, L., Albanese, A., Canova, M., Rossa, M., Fontanelli, D., and
Brunelli, D. (2023, June). A Plug-and-Play TinyML-based Vision System
for Drone Automatic Landing. In 2023 IEEE International Workshop on
Metrology for Industry 4.0 and IoT (MetroInd4.0IoT) (pp. 293-298).
IEEE.
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presents a modular and generic system that can control the UAV
by evaluating vision-based ML tasks directly inside the resource-
constrained UAV. Two different vision-based navigation configura-
tions are tested and demonstrated. The first configuration imple-
ments an autonomous landing site detection system. Two architec-
tures are evaluated, namely LeNet-5 and MobileNetV2. This allows
the UAV to change its planned path accordingly and approach the
target to land. The second configuration presents a model for peo-
ple detection based on a custom MobileNetV2 network. Finally, the
application execution time and power consumption are measured
and compared with a cloud computing approach. The results show
the ability of the developed system to dynamically react to the en-
vironment to provide the necessary maneuver after detecting the
target exploiting only the constrained computational resources of
the UAV controller. Furthermore, it is demonstrated that moving
to the edge, instead of using cloud computing, can lower the energy
requirement of the system without reducing the quality of service.

3.1.1 Introduction

In recent years, considerable research has been conducted regarding
the design, development, and operation of autonomous Unmanned
Aerial Vehicles (UAVs). Multi-rotor UAVs are potentially useful
in a wide variety of scenarios. They can work in extreme environ-
ments to monitor and explore areas hardly reachable by operators,
and they can perform tasks such as rescue operations [64, 65], wild
monitoring [66, 67, 68], and pest detection [69, 70, 71], telecommu-
nications relay [72, 73, 74], border surveillance [75, 76, 77] and many
others [78, 79, 80, 81, 82, 83].
While UAV control technologies have progressed steadily in recent
years, the main control methodologies are still radio remote and
preprogrammed. Nevertheless, these fields of application impose
enormous constraints for normal operation tasks such as taking-off,
navigation, object detection, environment interaction or landing.
To overcome these limitations, researchers have proposed different
approaches to ease each task [84, 85, 86, 87].

• Albanese, A., Taccioli, T., Apicella, T., Brunelli, D., and Ragusa, E.
(2022, September). Design and deployment of an efficient landing pad
detector. In International Conference on System-Integrated Intelligence
(pp. 137-147). Cham: Springer International Publishing.
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The growing amount of processing resources sufficiently portable for
deployment on-board lightweight UAVs has made it possible to run
machine learning-based image processing on these devices in real-
time [88]. Machine learning models have been integrated into UAVs
for many years, but only recently, Deep Neural Networks (DNNs)
have been utilized for various autonomous UAV operations. DNN
models exhibit “excellent capabilities for learning high-level repre-
sentations from raw sensor data” [89]. Unfortunately, DNNs require
training on large and specialized datasets to achieve good results in
many applications [90] and getting these models to edge devices has
been challenging.
Usually, UAVs have limited onboard computation resources, thus
requiring a significant amount of time to process the acquired data
and decreasing the UAV’s responsiveness to the external environ-
ment. Moreover, continuously running complex algorithms imposes
a considerable energy expense which can affect the operational life-
time. To overcome this limitation, researchers have proposed to
exploit cloud computing to offload part of the computation [91, 92].
In the literature, we can find different architectures [93, 94] to re-
lieve the resource constraints of UAV processing capabilities. These
approaches enable UAVs to benefit from the redundant resources
of modern data centres. However, even if cloud-based processing
offloading has obtained some positive results [5], they have yet to
achieve high Quality of Service (QoS) for resource-intensive appli-
cations mainly due to the following reasons:

• Data transfer: Data transmission from the UAV to the re-
mote cloud can cause latency issues. This is because some
UAV tasks are latency-intolerant. After all, they have to
make near-real-time decisions, and even slight delays can cause
dangerous consequences (i.e., collisions). Moreover, a large
amount of streaming data causes long communication delays
when the data is transferred to remote centralized data centres
for processing.

• Energy cost: While computation offloading to cloud servers
can reduce the energy consumption associated with data pro-
cessing, it considerably increases the overall energy consump-
tion due to the energy cost of transmitting the data. The prob-
lem can also worsen if the applications are communication-
intensive or the UAV experiences poor network connectivity.
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Therefore, in some conditions and locations, the time needed to
transport data to the edge server and receive the analysis outcome
may exceed the time with local processing at the UAV.
The challenge of optimizing resource utilization on resource-con-
strained devices has also been tackled in the setting of IoT comput-
ing. Researchers [95, 96, 97, 98] have proposed to move part of the
data analysis near the sensor where the data is collected, by using
the so-called edge computing approach. Edge computing permits to
meet the processing requirements in a scalable, context-aware, and
interoperable manner by enabling the distribution of data processing
between devices and gateways intelligently, and between the cloud
and endpoint devices. Nevertheless, UAVs have to be equipped
with high-performance and ultra-low-power neural accelerators to
perform learning model evaluation and meet the requirements of
the latency-critical application.
This chapter presents a framework platform for enabling machine
learning on the edge for the fast evaluation of learning models di-
rectly on-board UAVs. The proposed implementation exploits the
computational power of Raspberry PI SBC equipped with a neural
accelerator. By using a visual sensor, the UAV can promptly react
to the changing environment in near-real-time. Two ML tasks are
tested and characterized to evaluate the proposed solution: 1) An
autonomous landing algorithm based on the evaluation of a DNN;
2) An autonomous navigation algorithm based on people detection
and tracking. This chapter implements the following contributions:

• The assessment of edge computing is more profitable than
cloud computing from an energy point of view by testing it
with a real-time system (e.g., drone).

• The implementation and characterization of a processing plat-
form for vision-based inference on the edge. Different HW
configurations are tested to assess the best configuration from
an energy processing point of view.

• The implementation and characterization of different learning
models to assess the platform functionalities even with the
execution of multiple DL models with different complexities
in the same run-time.

• The implementation of an autonomous vision-based control
mechanism for lightweight UAVs. The prototype developed
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and used for testing the autonomous navigation functionalities
is presented in Figure 3.1.

Figure 3.1: Lightweight UAV prototype.

3.1.2 Related Works

Advances in UAVs offer unprecedented opportunities to boost a
wide array of IoT applications. Nevertheless, UAV platforms still
face significant limitations, such as autonomy and weight, which
impact their remote sensing capabilities. Therefore, capturing and
processing the data required for developing autonomous and robust
real-time object detection systems is still challenging.
To complete the scheduled mission, a UAV must be fully aware of
its states, including location, navigation speed, heading direction,
starting point, and target location. Various navigation methods
have been proposed, and they can be mainly divided into three cat-
egories: inertial navigation [99, 100], satellite navigation [101], and
vision-based navigation [102, 103].
Due to the rapid development of compact, low-power computer vi-
sion systems, vision-based navigation proves to be a primary and
promising research direction for implementing autonomous naviga-
tion. However, UAVs constitute a specific case where the complexity
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of vision tasks is substantially increased due to the rapid movements
that such a platform can experience. These movements are not lim-
ited to lateral-forward but also involve movements along the ver-
tical axis, which affect the visioned size (i.e., scale) of the tracked
object [103, 104].
Recently, researchers have proposed to use ML algorithms to en-
hance autonomous UAVs’ reliability and efficiency [105]. In [106]
a system for safe landing area detection is developed. It combines
classical computer vision and deep learning algorithms to improve
system performance. Our work reveals that this combination is a
successful approach to enhance the detection accuracy and optimize
the execution time as well as the power consumption. The authors
in [107] propose a two-stage training system to spot landing areas.
The first stage consists of a CNN trained with synthetic images of
landing areas. The second one employs a transfer learning approach
during flight by using weights produced by the previously trained
network. In this way, it is obtained a specialized model that can
be used in different scenarios. In [108] a weed detection system for
precision agriculture is executed autonomously directly on-board
an Odroid-U3+ SBC. Results show how the SBC can compute the
(x, y) target coordinates, colour detection, and weed detection using
an object-based image analysis algorithm.
Machine learning methods can be divided into two categories based
on the processing methods: Cloud (offline) and Edge (online) learn-
ing approaches.

Cloud Architecture

The missing hardware and platform able to run ML directly near
sensors and the incoming of the Internet of Things (IoT) which
permits the exchange of even big data through Internet nodes, has
pushed to use the cloud inference approach. It can overcome the
computational limitation problem that characterizes most robotic
systems by moving the high-computing demand off-board. The idea
consists of collecting useful data while flying and sending them via
wireless LAN to a server that computes the inference and sends back
the result. For instance, a cloud-based real-time object tracking by
using UAVs called “Dronetrack” is developed by [109]. This system
reveals its cloud architecture which exchanges data between drone,
server, and user on the ground. In this way, it is possible to send
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the video sensed by the drone and use it to perform object track-
ing off-board. This system is tested in three different scenarios: a
walking person on a football pitch using a WiFi router operating
with 3G/4G, a walking person in a city district with an optic fibre
connection, and a moving vehicle in a city district with an optic
fibre connection. Fast connections (e.g., optic fibre) can lead to a
better performance thus reaching a real-time execution. However,
the optic fibre connection cover area is limited, and it cannot be
available in every type of environment and situation. On the other
hand, the arrival of 5G can enhance the cloud architecture capabil-
ity by improving its data transmission velocity. The object tracking
system tests also revealed an additional limitation due to object ve-
locity. Objects that are moving too fast, after all, are difficult to be
tracked (e.g., a moving vehicle). Still, ML algorithms can overcome
this issue and add more stability and reliability to the system.
A cloud-based autonomous system opens the usage of complex ML
models. However, data transmission introduces a consistent latency
that limits this approach to only a few application requirements. For
example, considering an application where a drone has to interact
actively and continuously with the surrounding environment, the
cloud inference approach, usually, is not the best choice. Moreover,
the authors in [110] have developed a cloud-based object detection
system for UAVs using a Region-based Convolutional Neural Net-
work (R-CNN). CNNs are characterized by an enormous number
of operations (especially with the 2D convolution layers and with
fully connected layers) to compute a prediction giving an input im-
age. Thus, using a cloud inference approach makes it possible to
move the high computing demand to servers with unconstrained re-
sources. This system is tested and characterized by comparing the
execution speed and the prediction accuracy with the state-of-the-
art YOLO and SSD object detectors with aerial images. This test
reveals that the proposed R-CNN presents the best accuracy (83.9
mAP) but the lowest speed (3.48 FPS). Furthermore, an additional
comparison is conducted by considering the execution time of fast
YOLO on a local laptop and the R-CNN on a remote server as a
simulated cloud. In the first case, YOLO takes about 7 seconds to
carry out one application cycle, while R-CNN takes only 1,29 sec-
onds including the transmission latency which is one-third of the
whole time.
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Edge Architecture

Cloud systems have revealed their powerful aspects because of their
almost unlimited resources. However, a wireless and robust connec-
tion is not always available, and the introduced transmission latency
might be consistent, thus limiting UAV operations only in specific
situations. Autonomous UAVs based on edge computing architec-
tures avoid data transmission and can be scaled in every application
by reaching better execution performance. Furthermore, edge com-
puting is already widespread in fixed robotic systems (e.g., surveil-
lance and monitoring) to slim down the amount of data that needs
to be transmitted. For instance, a fixed robotics system for pest
detection is developed in [10] [26] [111]. This research has imple-
mented an ML-based system for pest detection in apple orchards
using Raspberry Pi3 equipped with a Pi camera and Intel Movidius
NCS. Here, the edge inference approach is used to process the data
through a VGG16 CNN [112] for insect classification and obtain the
result (i.e., the effective presence of dangerous insects). In this way,
it is possible to decrease the amount of data to be transmitted to
the user (e.g., apple farmer) by limiting it to a simple notification
of a few bytes.
The proposed hardware can be scaled to mobile robotics applica-
tions to enable autonomous navigation. A perception, guidance, and
navigation system for autonomous drone racing by using DL tech-
niques is developed by [113] which navigates racing drones through
gates. The most common computer vision techniques have been
revealed inefficiently, but it is possible to estimate the gate centre
quickly and accurately by using CNNs. This system uses NVIDIA
Jetson TX2, - one of the most powerful boards to perform inference
near sensors with impressive performance- as a computer on-board
to carry out all vision processing. The presented system is com-
pared with other two state-of-the-art networks (VGG-16 based SSD
[114] and AlexNet based SSD [115] [116]), resulting as the fastest
(28.95 FPS) but the worst in terms of detection accuracy (85.2% de-
tection rate). The NVIDIA Jetson TX2 is also used for embedded
real-time object detection in a UAV warning system [117]. It uses
the state-of-the-art Yolo V2 [118] network which enables dangerous
product recognition directly on-board. Specifically, the Jetson TX2
is responsible for the execution of the object detection algorithm
and positioning algorithm. At the same time, the decision sup-
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port engine back-end is responsible for the warning alarm if people
are getting too close to dangerous areas. In this case, the system
performance is evaluated in terms of image input resolution and de-
tection frame rate by comparing Yolo V2 [118], and Tiny Yolo [119].
This research confirmed that using low-resolution input images and
simple network architectures (e.g., Tiny Yolo) can lead to faster ex-
ecution.
Edge processing needs the usage of model compression techniques to
better exploit the power of DNNs in edge platforms. The challenge
consists of highly compressing models without losing accuracy; in
this way, it is possible to move intelligence in mobile devices or IoT
systems by keeping the service quality [120]. The most used com-
pression techniques are quantization and pruning; the first quantizes
weights from floating point to integer to reduce the number of bits
and, consequently, the model memory footprint. The second one
cuts off weights and their relative connections that are close to 0
to reduce the model complexity. This operation usually needs to
retrain the model to fine-tune it with the missed branches. On the
other hand, these techniques can lead to optimized model complex-
ity, but, they can reduce the service quality by losing prediction
accuracy. Surveys have shown that even if the model is highly com-
pressed, the loss in accuracy is negligible (i.e., in the order of 0.001
%) [121] [122] [123] [124] [125]. By using model compression tech-
niques, it is possible to have a lightweight system optimized to per-
form real-time inference in edge devices such as embedded GPUs,
SBCs (e.g. Raspberry) or MCUs. Nevertheless, these devices have
limited memory, thus the model compression step is fundamental.
For instance, embedded GPUs and SBCs can host models of GBs,
but MCUs have a few hundred KBs available. This sets the platform
limits and its potential to run complex ML algorithms [126].

Platform selection

Many researchers are looking to find the best trade-offs in using
DL techniques for resource-constrained environments such as UAVs.
DroNet [127] is an efficient CNN detector for real-time UAV appli-
cations. It uses network optimization and pruning to optimize the
memory footprint of a modified Tiny Yolo architecture. The im-
provements consist of using a single class classification and chang-
ing the number of filters, layers, input size, convolutions, and pool-
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ing layers. With the proposed modifications, the new architecture
reduces the feature map by a factor of 2. The system perfor-
mance is assessed with a vehicle detection application on an Odroid-
XU4 board which reveals a frame rate execution of around 8-10
FPS with an accuracy of 95%. Additionally, the same system is
moved to Raspberry Pi3, which reveals worse performance due to
the less capable CPU. As shown, DroNet is suitable for drones’
real-time applications, however, it is based on a cloud architecture:
the drone streams a video to a base station that performs the pro-
cessing and sends back the navigation commands. EdgeNet [128],
instead, efficiently performs object detection with the edge comput-
ing approach. It is composed of three steps; the first consists of
a lightweight CNN that detects objects through a simple CNN for
object detection. It follows the selection of image regions that con-
tain the detected objects to reduce the image size and, thus, the
further processing complexity. Finally, it employs an optical flow-
based tracker to further reduce the processing demand and track
the detected objects without using the CNN-based object detector.
EdgeNet can process high-resolution images, such as aerial images,
with a low-power profile and a fast processing execution, thus mak-
ing it suitable for UAV applications. However, the presented work
use-case shows the feasibility and the cost-efficiency of using edge
architecture for drone applications, thus performing all processing
on-board on drones and reducing the processing demand.
FPGA-based platforms can lead to better performance in terms of
energy consumption and inference acceleration, however, its usage
is strictly tailored for a specific application, thus not scalable for
related applications that, for instance, may require additional sen-
sors [129]. SBCs such as Raspberry, Odroid and BeagleBone are
more flexible than FPGA-based platforms and they can enable edge
computing by processing raw sensor data. Embedded GPUs such
as NVIDIA Jetson Nano and Google Coral are widely used in edge
computing as well. On the other hand, they lead to fast execution of
neural inference but with high power consumption (in the order of
10 W). In this use case, embedded GPUs are oversized because the
used neural models are not so complex to need a GPU for real-time
execution. This reason has moved the attention to the SBC fam-
ily. Odroid and BeagleBone feature high execution performance,
but they are still too energy-demanding. Moreover, they are not
supported by a large community as Raspberry Pi is, thus making
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them less affordable for prototyping. In addition, the camera used in
this case study is not supported by Odroid and BeagleBone. Rasp-
berry presents 40 i/o pins and the CSI camera port. It perfectly fits
these application requirements for connectivity, supported modules,
execution performance, and power consumption [130].

3.1.3 Video Processing

Video pre-processing is a fundamental step in AI vision-based ap-
plications to make correct predictions and train a CNN. A basic
video processing algorithm highlights relevant features of frames
(e.g., contours, edges, contrast) and reduces the noise introduced
by the image sensor. This section introduces the video processing
algorithm developed to create a consistent dataset for CNN train-
ing in a semi-automatic way. The same algorithm is used as a pre-
processing step in the final application workflow. For this purpose,
many videos of different landing pads in different environmental
situations are acquired to compose a heterogeneous dataset (e.g.,
landing pad in a garden, on the street, in a car parking).

Pre-processing implementation

The algorithm is implemented by following a particular approach
for video pre-processing for AI applications. It consists of noise re-
duction, features highlighting, and cropping of the region of interest
(RoI) which may contain a landing pad.

Figure 3.2b presents the algorithm workflow and it works as
follows:

• Read video: the video can be acquired offline and then read
to retrieve each frame; otherwise, it can be streamed from a
camera (e.g. the Pi camera) and read from Raspberry Pi.

• Denoise: it consists of a Gaussian blurring of the image to
filter out high-frequency noise. A kernel mask of shape 9×9 is
used.

• Gray scale: conversion from RGB to gray-scale.

• Segmentation: image binarization through an adaptive Gaus-
sian threshold.
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Figure 3.2: Machine learning task workflow. (a) Dataset generation
flowchart. (b) Pre-processing algorithm flowchart. (c) Landing pad
detection algorithm flowchart. Flowchart (b) presents the prepro-
cessing block of flow chart (a) and (c)

• Morphology: application of morphological filters with a struc-
turing element of size 3×3 and unitary element values. Two
iterations of opening and four iterations of dilation are applied
to highlight each blob of interest.

• Contour detection: this step finds each contour revealed
from each processed frame.

• Contour filtering: filter out small contours (filter by area)
and contours that do not present any hierarchy level (filter by
hierarchy).

• Crop RoI: each region of interest around each filtered contour
is extracted.

Then, each cropped RoI can be used as:

• NN input: before a resizing for matching the NN input
shape, RoI is used in the final application as NN input.
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• Dataset: RoI is used to construct a large dataset for the NN
training.

The step-by-step result of the video processing algorithm is sum-
marized in frames in Figure 3.3. The algorithm implementation is

(a) Original frame. (b) Gaussian blur.

(c) Binarization. (d) Morphological filtering.

(e) Contour extraction and filtering. (f) Cropped RoI.

Figure 3.3: Example of video processing algorithm workflow.

carried out by using Python program language and the OpenCV
library.



44 CHAPTER 3. TINYML-BASED AUTONOMOUS UAVS

3.1.4 Landing pad Detection

The landing pad detection problem can be expressed in terms of
symbol/character recognition and image classification. Therefore,
a modified structure of the LeNet-5 [131] [18] CNN architecture,
presented in Figure 2.6, is used. It has been initially developed
for character recognition, but it can be extended to classification
problems, especially for this application purpose that involves the
detection of symbols on a landing area. It presents a straightforward
architecture, which makes it feasible for embedded applications.

This NN takes gray-scale images (i.e. single channel) of size
64×64 as input which is processed through two 2D convolution lay-
ers with a ReLU activation function (despite to the original struc-
ture where it is used a tanh activation function) which exhibits a
better classification accuracy than tanh. Furthermore, the second
convolutional block does not use all the features extracted by the
average pooling layer, thus permitting learning different patterns
and enhancing the classification accuracy. This peculiarity makes
the network even less computationally demanding, and thus suitable
for embedded platforms. Finally, the last layer is a Softmax clas-
sifier which provides the confidence probability among two classes
(binary classification): Landing pad and Not landing pad. More-
over, the state-of-the-art MobileNetV2 [2] [132], presented in Fig-
ure 2.8, is trained with the same dataset to compare its performance
with LeNet. It presents a more deep and complex architecture than
LeNet, but, due to the inverted residual block, it drastically reduces
by a factor of 13 the number of parameters compared to LeNet. On
the other hand, LeNet uses a fully connected layer to flatten the
output which considerably increases the network number of param-
eters.

Dataset construction and organization

The dataset construction and organization are important steps for
NN training. It is preferable to have a consistent and heterogeneous
dataset to obtain an accurate model with generalization capabilities.
For this purpose, the dataset is constructed by using the algorithm
explained in section 3.1.3 which processes multiple videos of differ-
ent kinds of landing pads acquired offline. In this way, it is possible
to generate a dataset with thousands of images in a semi-automatic
way by following the workflow in Figure 3.2a. However, not all ob-
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tained RoIs represent landing pads, and sometimes the algorithm
shows RoIs with miscellaneous objects such as storm drains, tiles,
and plants. Considering that the pre-processing algorithm may fail
in this way, it is chosen to use this kind of object to construct the
against class Not landing pad. By doing so, CNN can use images
that could be truly the network’s input.
Furthermore, synthetic images -generated by [133]- representing land-
ing pads with different shapes and symbols are added to the dataset
to obtain a more heterogeneous one. The dataset is organized in
folders to facilitate the automatic label extraction of each image. It
consists of 13576 images for the Landing pad class and 12807 images
for the Not landing pad class. The obtained dataset is composed of
various types of landing pads and many miscellaneous objects. Fig-
ure 3.4 shows a few examples of them.

CNN training

The final application requires the trained CNN deployed on the
Raspberry Pi micro-computer to perform edge computing and reach
high performance. Thus, it is necessary to focus on the memory foot-
print occupied by the neural model. For this purpose, many training
sessions with different parameters (i.e., number of epochs, input im-
age size and depth, and batch size) are executed. The best trade-off
is found with parameters shown in table 3.1 and performing data
augmentation to enhance the dataset and the network accuracy.

Table 3.1: Landing pad detection algorithm training parameters.

Network Architecture
LeNet-5 MobileNet V2

Epochs 20 20
Batch size 32 16

Initial learning rate 10−3 10−3

Input image 64×64×1 100×100×1
Optimizer Adam Adam

Loss function Cross-entropy Cross-entropy
Source framework Tensorflow Tensorflow

Training accuracy (%) 99.8 99.9
Validation accuracy (%) 99.2 99.9
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(a) Hand crafted. (b) Blue landing pad. (c) Red landing pad.

(d) CiterX pad (syn-
thetic).

(e) Green square pad
(synthetic).

(f) Red landing pad
(synthetic).

(g) Storm drain. (h) Tile. (i) Bike.

Figure 3.4: Example of dataset images.

CNN test

Both networks are tested with about 3000 images that are retrieved
from the dataset before the training session. Moreover, a few im-
ages of even different landing pads found on the web (about 30)
are added to the test dataset to assess the network generalization
capability. The results are summarized in Table 3.2. Both networks
reach satisfying results in accuracy and precision, thus making these
neural models suitable for this application purpose. An example of
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Table 3.2: LeNet and MobileNetV2 test results.

(%) Accuracy Recall Precision F-score

LeNet-5 99.4 99.5 99.9 99.7
MobileNetV2 99.4 99.6 100 99.8

landing pad detection on a test aerial video is shown in Figure 3.6a.

Embedded implementation

The overall algorithm has to run on the Raspberry Pi single-board
computer equipped with a Pi Camera and the Movidius NCS, which
accelerates and optimizes the neural inference step. Furthermore,
the OpenVINO toolkit is used to optimize the landing pad detection
model to an Intermediate Representation (IR) and perform video
processing and neural inference on the Movidius NCS.
The landing pad detection algorithm workflow is shown in Fig-
ure 3.2c, and it consists of the following steps. The Pi Camera
enables a continuous streaming mode at 30 FPS, and each frame
is retrieved. Then, the frame is processed with the pre-processing
algorithm shown in section 3.1.3 which outputs RoIs that may con-
tain a landing pad. Because the pre-processing algorithm is not
reliable as a landing pad detector, each RoI is classified with the
CNN presented in section 3.1.4, which gives an accurate result by
identifying the effective presence of a landing pad. The classification
step produces a confidence level that reveals how confident the CNN
is that the input RoI is a landing pad. For this purpose, a threshold
value of 0.8 is set to have the best precision and recall trade-off. It
is possible to notice that the pre-processing step involves the usage
of Raspberry together with Movidius NCS. In contrast, the classi-
fication step involves only the Movidius NCS, which boosts neural
inference by reducing its execution time.

Execution of multiple DL models

This chapter addresses the problem of the fast deployment of DL
models in resource-constrained environments such as UAVs. Thus,
the developed framework platform capability is assessed by running
multiple DL models in the same runtime. For this purpose, we use
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and test a pre-trained model for people detection1 (specifications in
the Table 3.3) based on MobileNetV2-like backbone [2] [132].

Table 3.3: People detection model specifications.

Parameter Value

Average Precision (AP) 88.62%

Pose coverage
Standing upright,

parallel to image plane
Support of occluded pedestrians YES

Occlusion coverage <50%
Min pedestrian height 100 pixels (on 1080p)

GFlops 2.300
MParams 0.723

Source framework Caffe
Input shape [1× 3× 320× 544]
Color order BGR

This model is executed in the target hardware together with the
landing pad detection model. As shown in Figure 3.5, they work as
two subordinate systems. When the drone is flying, it first checks
the presence of people and, if recognized, it plans a path to avoid
collisions with them. If any person is detected, it looks for a safe
landing area (i.e., execution of the landing pad detection algorithm)
and, if the confidence is greater than 80%, it autonomously lands
on the detected landing pad. The pre-trained model used for people
detection is suited to recognize pedestrians from an aerial survey,
as shown in Figure 3.6b. However, due to the dataset used for the
training session, the model needs a minimum pixel-wise pedestrian
height of about 100 pixels on a 1080p image. This makes high-
altitude people detection difficult. It is thus clear that, if the drone
flies too high, it cannot achieve the desired detection accuracy. To
enhance the people detection algorithm capability, it is possible to
further train the model with a sparser dataset with aerial images
representing people of different sizes and positions (e.g., people close
or very remote to the camera system). Moreover, a transfer learning
approach can be considered to improve the overall accuracy. It starts
from an already trained network for related tasks and fine-tunes it

1Source: https://docs.openvinotoolkit.org/latest/omz_models_model_

person_detection_retail_0013.html

https://docs.openvinotoolkit.org/latest/omz_models_model_person_detection_retail_0013.html
https://docs.openvinotoolkit.org/latest/omz_models_model_person_detection_retail_0013.html
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Figure 3.5: Execution of multiple DL models flowchart.

to obtain one with the required detection accuracy. For instance,
it is possible to use a base network for people detection and extend
its capability to detect very small people (i.e., a dozen pixels). By
doing so, this model will not be limited by the people’s height, and
it will be suitable for aerial applications.

3.1.5 Results

The presented framework platform is characterized by measuring
the execution time and power consumption by running the landing
pad detection algorithm together with the people detection model.
In this way, it is possible to find out the system bottlenecks and
improve the platform. Furthermore, two hardware configurations
are used to compare their performance: Raspberry Pi3 with Mo-
vidius NCS v2 and Raspberry Pi4 with Movidius NCS v2. For this
purpose, the application workflow, referred to Figure 3.2c, is split
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(a) Landing pad detection example.

(b) People detection example.

Figure 3.6: Demo of the proposed algorithms for people and landing
pad detection.

into two general tasks:
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• Task 1: Video pre-processing.

• Task 2: Neural inference.

The tasks referred to the video streaming and output post-process-
ing (i.e., sending of the land command) are neglected because they
are executed within a period hundreds of times less than the other
two tasks, thus not affecting the measurement results. The mea-
surement campaign is conducted by processing 50 frames acquired
from the camera installed in a static scene with a landing pad and a
few people. Then, the measurements are averaged, and each task’s
energy consumption and execution time are retrieved. Different con-
figurations are considered to get a complete comparison of the two
target hardware:

• Landing pad detection with LeNet.

• Landing pad detection with MobileNetV2.

• People detection and landing pad detection with LeNet.

• People detection and landing pad detection with MobileNetV2.

Landing pad detection on Raspberry and NCS

The execution of a single DL model is initially considered. Fig-
ure 3.7 shows the energy consumption among the different hard-
ware and neural network configurations for one application cycle
(i.e., the processing of one frame). Furthermore, Table 3.4 summa-
rizes the required energy for each task and the relative execution
performance.
The most power-hungry task is the video pre-processing which uses
ad-hoc video processing techniques with high computational de-
mand. Furthermore, the MobileNetV2 architecture increases the
power consumption in the second task because of its more complex
architecture than LeNet. By considering the energy consumption
and the execution performance, the best configuration is Raspberry
Pi4 evaluating LeNet architecture for landing pad detection. It con-
sumes 0.246 J for processing one frame, and it reaches real-time
performance with a processing execution of 22.26 FPS.
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Figure 3.7: Landing pad detection energy comparison.

Table 3.4: Energy tasks breakdown and execution timing of the
tested platforms by executing the landing pad detection algorithm
alone. The best trade-off is provided by Raspberry Pi4 evaluating
LeNet boosted with NCS.

Configuration
Task 1
(J)

Task 2
(J)

Total
(J)

Elapsed
Time (ms)

FPS

RPi3 eval
LeNet

0.208 0.062 0.27 74.69 13.37

RPi4 eval
LeNet

0.2 0.046 0.246 44.90 22.26

RPi3 eval
MobileNetV2

0.165 0.125 0.29 76.73 13.04

RPi4 eval
MobileNetV2

0.166 0.165 0.331 59.59 16.78

People detection and landing pad detection on Raspberry
and NCS

The same comparison of the section above is conducted by running
multiple DL models in the same run-time. In this case, the landing
pad detector is running together with a people detection model to
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set the platform limits. Even though both models share the same
sensed data and the same NCS where the neural inference is per-
formed, they are executed in a subordinate way and work as two
independent systems. In Figure 3.8, it is possible to evaluate the
energy consumption among the different configurations. Table 3.5
summarizes the required energy and execution performance.

Figure 3.8: People and landing pad detection energy comparison.

Here, the most power-hungry task is the second one because of the
people detection algorithm, which requires an extremely high com-
putational power due to its large input image size and complex ar-
chitecture. Moreover, the first task energy consumption is slightly
increased compared to the previous case because of an additional
standard pre-processing algorithm required by the people detector.
If it is considered the energy consumption, the best configuration is
Raspberry Pi3 evaluating LeNet which requires about 100 mJ fewer
than the other configurations. However, its execution performance
is degraded (3.23 FPS) due to the less capable chipset of Raspberry
Pi3. On the other hand, when the execution time matters more
than the energy consumption, the best configuration is Raspberry
Pi4 evaluating LeNet. It uses 1.223 J to process one frame, but its
execution performance is increased to 4.68 FPS.
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Table 3.5: Energy tasks breakdown and execution timing of the
tested platforms by executing the landing pad detector together with
the people detection model. The best trade-off by considering the
energy consumption is provided by Raspberry Pi3 evaluating LeNet
boosted with NCS. However, if the execution time is considered,
the best trade-off is provided by Raspberry Pi4 evaluating LeNet
boosted with NCS.

Configuration
Task 1
(J)

Task 2
(J)

Total
(J)

Elapsed
Time (ms)

FPS

RPi3 eval
LeNet

0.216 0.912 1.128 309.8 3.23

RPi4 eval
LeNet

0.240 0.983 1.223 213.88 4.68

RPi3 eval
MobileNetV2

0.207 0.969 1.176 322.86 3.1

RPi4 eval
MobileNetV2

0.244 1.02 1.264 226.33 4.42

Drone flight time reduction

The presented platform aims to make UAVs autonomous; thus, the
combination of Raspberry, Movidius NCS and the camera has to be
mounted on-board on drones and plugged into their energy source
(i.e., battery). However, the available energy in drone systems is
limited, and it is a precious resource to ensure a long enough flight
time. Therefore, the drone’s battery has to power motors, ESC and
electronic boards for flight control and, in addition, the RPi SBC
which runs the autonomous navigation algorithms. For this reason,
it is evaluated the degradation of the flight duration while using the
proposed system.
We consider a 250 mm class drone (i.e., small size) equipped with
a 1500 mAh battery operating at 14.8 V which ensures 15 minutes
of flight in normal conditions. Furthermore, we consider the FPS’s
best configuration (i.e., Raspberry Pi4 evaluating LeNet) of the pro-
posed system for estimating the drone battery lifetime. Table 3.6
compares the flight time and the corresponding energy for three ar-
rangements: normal mode, execution of single model and execution
of multiple models. As a result, the proposed platform reduces the
drone flight time by only 6% for the execution of a single model
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Table 3.6: Drone flight time reduction overview. Columns show the
available flight time and the corresponding energy. Rows consider
three different arrangements: without the autonomous navigation
system (normal), with the landing pad detector (single model)
and with people and landing pad detector (multiple models).

Flight
Time (min)

Available
Energy (KJ)

Normal 15 80
Single Model 14.1 76

Multiple Models 14 75.6

and multiple models, thus it does not affect the battery degrada-
tion consistently.

Edge computing energy sustainability

Recently, researchers have highlighted that the edge computing ap-
proach outperforms the cloud one by avoiding data transmission
and speeding up the application execution. To show how the energy
consumption is distributed among the two different approaches, we
compared the best configuration investigated above for landing pad
detection (i.e. RPi4 evaluating LeNet) with the same application
running on a Parrot Mambo mini-drone in cloud mode. Because
the landing pad detection model and the test images are the same,
the detection accuracy does not change; it changes the platforms
where the application is executed, thus their performance in terms
of energy consumption and execution time. The mini-drone utilizes
a laptop as a ground station which features an intel core i5-3360M
CPU@2.80GHz x 4. It is connected to the mini-drone with a private
Wi-Fi network which enables data exchange among the mini-drone
and ground station. The mini-drone acquires an image from its
ground camera and sends it to the station; then, it performs image
pre-processing (task 1) and neural inference (task 2) and sends back
the landing command if a safe landing area is detected. Considering
cloud computing, it is worthwhile to analyze the energy consumed
from the drone side for networking overhead without considering the
processing on the ground station because it is plugged into an un-
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limited energy source. In this way, it is possible to find out the most
cost-effective approach between cloud computing and edge comput-
ing and assess the platform’s energy sustainability. The comparison
is shown in Figure 3.9, and it demonstrates that the networking
overhead for data exchange in cloud mode is much more expensive
(i.e., 2.16 J) than the overall processing with edge computing (i.e.,
0.246 J). This confirms the energy sustainability of the edge comput-
ing approach compared to the cloud one. Moreover, edge computing
outperforms cloud computing considering the execution time. The
first one takes 45 ms to process one frame, while the second one
needs 1.4 s. This comparison clearly shows that edge computing sat-
isfies real-time requirements in a resource-constrained environment
with low energy consumption. Cloud computing, rather, degrades
its performance due to the transmission latency (i.e., 1.34 s) and
the required energy for data exchange.

Figure 3.9: Energy consumption comparison of edge computing and
cloud computing for landing pad detection.
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3.1.6 Conclusions

Deep learning algorithms together with computer vision techniques
are widely spread in autonomous UAV vision systems. However,
performing autonomous applications among different constraints in
performance, such as real-time execution, is still challenging. This
chapter addresses this problem by implementing a platform for the
fast deployment of DL algorithms directly onboard UAVs by using
an edge computing approach. In this way, all computations and neu-
ral inferences are performed near-sensor, thus avoiding the big data
management that characterizes cloud architectures. The platform
performance is assessed with an autonomous landing algorithm that
exploits ML functionalities. It is trained and compared among two
different CNN architectures: LeNet and MobileNetV2. An addi-
tional pre-trained model for people detection is used and deployed
on the proposed platform to characterize and compare its perfor-
mance by running even multiple models in the same run-time. The
best hardware and NN architecture configuration is found by con-
sidering the fastest and most low-energy execution. Final remarks
about the energy impact of the platform on the drone flight time are
taken into account. In future work, networks such as DroNet [127]
and EdgeNet [128] are trained over the same dataset to compare
them with the proposed solution and find the best cost-efficiency
way to enable autonomous navigation.
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3.2 Autonomous UAV Visual Odometry
in Adverse Rainy Conditions

Reliable navigation is critical for autonomous drones performing
life-saving missions in harsh weather conditions. However, rain sig-
nificantly degrades their visual odometry-based navigation, poten-
tially compromising mission success. This work 2 proposes a sys-
tem to estimate rain severity, ensuring reliable navigation and data
acquisition even during downpours. We analyze the performance
degradation of visual odometry in various rain conditions, with the
worst-case scenario yielding a 1.5 m average error in trajectory es-
timation. To address this challenge, we compare three deep neu-
ral network architectures for rain severity classification and optimal
counteraction selection, for example, slow down, switch navigation
systems, and land. The most lightweight network, reaching an ac-
curacy of 90% with a memory footprint of 1.28 MB and a frame rate
of 93 FPS, is ideal for real-time processing on resource-constrained
drones.

3.2.1 Introduction

Drones equipped with depth cameras for visual navigation have be-
come indispensable for critical missions like search and rescue, in-
frastructure inspection, and disaster response. These time-sensitive
operations require immediate action and collaboration among mul-
tiple drones, making reliable navigation fundamental in all weather
conditions. Unfortunately, visual odometry (VO) systems, crucial
for drone navigation, are significantly affected by rain. Rain disrupts
the visual scene, leading to inaccurate positioning and motion esti-
mation, thus potentially jeopardizing mission success. It degrades
the visual scene by altering image contrast, causing significant blur-
ring due to water droplets on the camera lens, and masking crucial
visual landmarks. In worst-case scenarios, such errors can cause
mission failure, collisions, or even safety hazards. Therefore, de-
veloping methods to analyze and estimate rain severity’s impact on
VO accuracy is critical to ensure reliable UAV navigation in adverse
weather.

2The work presented in this chapter has been conducted during a visiting
research period at the Dyson School of Design Engineering of Imperial College
London, United Kingdom, from September 2023 to February 2024.
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Existing research on rain impact focuses on autonomous vehicles,
where camera images are captured from the cockpit with water
droplets on the windshield, which differs significantly from the di-
rect lens exposure experienced by drones [134, 135, 136]. To address
this gap, we investigate rain’s impact on a VO system designed for
drones in a laboratory setting that simulates a low-altitude flight.
Building upon the success of deep learning (DL) for rain severity
estimation in vehicles, we leverage these algorithms to improve the
system’s performance and reliability [137, 138]. However, unlike ve-
hicles with substantial computational resources, small drones have
limited capabilities. Therefore, designing the DL system to be aware
of the on-board resource constraints is fundamental.
To overcome the challenges of rain on drone navigation, this chap-
ter proposes a novel system that analyzes the performance degra-
dation of a VO system under various rain intensities in a labora-
tory setting. A laboratory setup with a depth camera, processing
unit, and rain simulator mimics a low-altitude drone flight. Dur-
ing these experiments, we collected a dataset with images of dif-
ferent rain intensities. Based on this analysis, we propose a DNN-
based system for classifying and estimating rain severity from cam-
era images captured by the UAV. The DNNs have been developed
with a low-complexity impact, enabling deployment on resource-
constrained edge devices like small drones [139]. By accurately es-
timating rain severity, the system enables the implementation of
appropriate counteractions to maintain reliable navigation perfor-
mance during UAV operations in rainy conditions, ultimately im-
proving mission success rates.
Our chapter contributions include:

• A comprehensive dataset of approximately 335,000 real images
categorized into 7 classes representing different rain intensity
levels, ranging from clear to slanting heavy rain. This dataset
is acquired through laboratory experiments simulating low-
altitude drone flight.

• VO system characterization under varying rain conditions,
quantifying average error, restoration time, and informing the
selection of optimal counteractions in adverse weather condi-
tions.

• The training, testing, and comparison of three state-of-the-
art deep neural networks to identify the best trade-off between
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performance and resource requirements for the deployment on
resource-constrained drones.

3.2.2 Related Works

The rapid proliferation of commercial drones, from high-end aerial
photography tools to delivery services, has made UAVs a ubiquitous
sight in the skies. Despite their growing presence, a significant lim-
itation remains: adverse weather conditions. While these versatile
devices excel in various applications, rain, strong winds, and other
weather events can affect them, hindering their effectiveness in real-
time applications such as search and rescue. Unfortunately, current
UAV systems are not equipped to handle all weather conditions, lim-
iting their usefulness in critical scenarios [140, 141, 142, 4, 143, 144].
The research presented in [145] investigates “drone flyability”, de-
fined as the percentage of time drones can safely operate. The study
reveals that common drones have a limited flyability of less than 5.7
hours per day (or 2.0 hours during daylight). However, this estimate
excludes the impact of various adverse weather conditions, including
rain, snow, fog, and high winds. The analysis highlights that en-
hancing weather resistance can dramatically increase flyability, with
weather-resistant drones achieving up to 20.4 hours per day (or 12.3
hours during daylight). These findings underscore the fundamental
role of weather in drone operations.
A crucial aspect not considered is the impact of adverse weather on
a drone’s autonomous navigation system. Rain, snow, fog, and high
winds can disrupt the performance of sensors and navigation sys-
tems, potentially leading to malfunction and mission failure. This
highlights the need for researches that address not only weather re-
sistance but also the robustness of autonomous navigation systems
in challenging weather conditions.
Deep-reinforcement learning holds promise for improving the relia-
bility of autonomous UAV navigation within the Internet of Things
(IoT) framework [146, 147]. However, a critical gap exists in re-
searches that analyze the impact of adverse weather on these sys-
tems. Existing contributions often examine weather effects from an
autonomous driving perspective, although, the sensing systems and
datasets used in these studies are specifically designed for vehicles,
making them unsuitable for small drones [148, 149]. While these
studies focus on vehicles, they demonstrate the significant influ-
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ence of weather on sensor performance. This suggests that similar
effects likely impact UAVs, warranting investigation using compara-
ble methodologies to develop robust autonomous navigation systems
for UAVs operating in adverse weather conditions [150, 151, 152].
For instance, wind can disrupt flight stability, rain can obscure
vision sensors, snow can accumulate on wings, fog can limit vis-
ibility, and flares can interfere with onboard electronics. For ex-
ample, some researchers have investigated the impact of external
wind on autonomous drone navigation. They have proposed a rein-
forcement learning-based solution to address these unknown distur-
bances, paving the way for the safe operation of autonomous UAVs
in windy conditions [153, 154, 155]. However, similar solutions are
needed to address the broader spectrum of adverse weather condi-
tions that can compromise reliable navigation.
Rain is one of the most prevalent adverse weather conditions affect-
ing UAV operations and its impact on visual odometry (VO) sys-
tems can be severe. Raindrops cause various perturbations to the
sensing and perception system, including blurring due to scattered
light, distortion from refraction, and reduced contrast due to reflec-
tion on the camera lens. These effects lead to pixel value fluctuations
in captured images, ultimately causing inaccurate processing of raw
data by VO algorithms. Deep learning-based algorithms, commonly
used for object detection and image classification in UAVs, are par-
ticularly susceptible to rain, rendering them unreliable. Therefore,
developing methods to assess rain severity is crucial for optimizing
image processing and computer vision algorithms used in VO sys-
tems. This will ensure reliable navigation performance for UAVs
even in rainy conditions [156].
While de-raining methods offer a post-processing approach to mit-
igate rain effects, their effectiveness can be limited. These tech-
niques may not always deliver optimal performance and can signif-
icantly increase the computational burden on resource-constrained
UAVs [157, 158, 159]. Other researchers propose specialized algo-
rithms that outperform standard methods in adverse weather. How-
ever, these solutions are limited in scalability as they are often tai-
lored to specific applications. These limitations highlight the need
for a more comprehensive solution that addresses rain’s impact on
VO systems while maintaining computational efficiency and broad
applicability across various scenarios [152, 160].
The adverse weather impact, in particular rain, represents a re-
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search gap which makes this work a crucial study to implement
autonomous UAVs that can operate 24/7.

3.2.3 Experimental Setup

To quantify the performance degradation of the visual odometry
system under varying rain intensities, we designed a controlled lab-
oratory environment. A key component of this setup is a custom-
built water-resistant enclosure (Figure 3.10) housing the VO sys-
tem. The VO system itself comprises a processing unit (Intel NUC
11 Pro Kit NUC11TNKi7) and a depth camera (Intel RealSense
D435i). While these components are not inherently water-resistant,
the enclosure ensures their protection during the experiments. The
enclosure, constructed from polymethyl methacrylate (acrylic) pan-
els cut using a laser cutting machine, measures 20 × 15 × 10 cm
(length×width×height), providing ample space for the VO system
and necessary cables. For easy access to the internal components,
the enclosure features a sealed lid at the back. An IP68-rated nylon
gland further ensures water resistance by providing a secure connec-
tion point between the device’s power supply and an external power
source. The enclosure itself is assembled using a combination of bi-
component glue, silicone sealant, and rubber seals, guaranteeing a
watertight environment for the VO system.
The processing unit within the water-resistant enclosure executes

Figure 3.10: The water-resistant enclosure hosting the VO system.



3.2. UAV IN RAINY CONDITIONS 63

the VINS-Fusion algorithm [161, 162, 163, 164]. It is an optimization-
based multi-sensor state estimator suited for accurate SLAM (Si-
multaneous Localization and Mapping) in autonomous navigation
applications. VINS-Fusion offers flexibility by supporting various
visual-inertial sensor configurations:

• Mono camera and IMU (Inertial Measurement Unit).

• Stereo cameras and IMU.

• Stereo cameras only.

To isolate the impact of rain on VO, we leverage VINS-Fusion in
its stereo camera-only configuration running on the Intel RealSense
D435i camera. This configuration excludes the IMU data, allowing
us to focus solely on the performance of the visual odometry system
under varying rain intensities.
To evaluate the performance of the VO system under varying rain
intensities, we conducted controlled experiments within a high-en-
tropy laboratory environment. The experiments encompassed two
distinct navigation scenarios: static and moving.

• Static Condition: In this scenario, the VO system remains
stationary on all axes, simulating a hovering drone. This con-
figuration isolates the impact of rain on the camera data with-
out additional movement influencing the VO estimation.

• Moving Condition: Here, the VO system follows a pre-
defined rectangular trajectory of 140 × 160 cm with a con-
stant height. This simulates a drone navigating at a desired
altitude. The experiments are conducted by a trained user
who moves the VO system over a stool with a constant ve-
locity of approximately 0.2 m/s. This low velocity allows us
to focus primarily on the rain’s effect on the visual odometry
system.

Rain Simulation

We employed a sprayer to simulate different rain conditions by vary-
ing its distance and inclination relative to the VO system [165].
Specific rain intensity levels are achieved based on the parameters
detailed in Table 3.7. Additionally, we conducted control experi-
ments without simulated rain to establish a baseline performance
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reference for comparison.
To comprehensively analyze the impact of rain on the VO system,

Table 3.7: The rain conditions used during the experiments. “Dist.”
represents the distance between the sprayer and the box to simulate
different rain intensities. To avoid the visual perturbation of the
user on the camera scene, the inclination is w.r.t. the vertical axes
in front/side of the camera.

Rain Conditions Slanting Vertical

Heavy
Dist. < 10 cm
Inclination ∼ 30°

Dist. < 10 cm
Inclination ∼ 0°

Medium
10 cm < Dist.
< 20 cm
Inclination ∼ 30°

10 cm < Dist.
< 20 cm
Inclination ∼ 0°

Low
Dist. > 30 cm
Inclination ∼ 30°

Dist. > 30 cm
Inclination ∼ 0°

we design two distinct rain simulation scenarios:

• Slanting Rain: This scenario, replicating the most common
condition during medium/high-velocity drone navigation, sim-
ulates raindrops directly striking the camera lens. This config-
uration allows us to assess the immediate effects of raindrops
on image quality and their influence on VO performance.

• Vertical Rain: This scenario simulates light rain or drizzle,
often encountered during hovering or low-speed navigation.
While vertical rain may not directly impact the camera lens
with individual droplets, it can create a mist or film of wa-
ter droplets on the lens surface. This scenario allows us to
evaluate the performance degradation due to such a film ob-
structing the camera’s view.

For each scenario presented above, we conduct experiments with
three different rain intensities, namely, heavy, medium, and low (see
Table 3.7). Moreover, to quantify the system’s recovery time under
adverse conditions, we measured the restoring time specifically in
the slanting rain scenario (considered the most severe). This restor-
ing time represents the duration required for the VO system to
return to an acceptable performance level, with an average error
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below 30 cm.
To ensure statistically robust results, all experiments are repeated
30 times under each condition. The rain simulation employed a con-
stant water flow rate of 1.8 ml/s. This rate is chosen to mimic the
natural spraying behaviour of a typical user, where a single press
on a sprayer might result in a continuous stream equivalent to ap-
proximately 2.4 sprays per second.

3.2.4 DNN Development and Dataset

Dataset

To facilitate the development of robust rain classification systems for
autonomous UAV navigation, we created a comprehensive dataset
encompassing various rain conditions. This dataset is composed of
raw colour images captured during the experiments described above.
The dataset comprises seven distinct classes representing different
rain conditions:

• Clear

• Slanting Heavy Rain

• Vertical Heavy Rain

• Slanting Medium Rain

• Vertical Medium Rain

• Slanting Low Rain

• Vertical Low Rain

Each class contains 48,000 images, resulting in a total of approxi-
mately 336,000 images. The dataset is divided into training (80%),
validation (10%), and testing (10%) sets to facilitate the develop-
ment and evaluation of machine learning models for rain classifi-
cation. A representative selection of images from the dataset is
presented in Figure 3.11.

DNN Training

To achieve accurate rain classification for autonomous UAV navi-
gation, we employ three state-of-the-art deep learning architectures
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(a) Slanting heavy rain. (b) Slanting medium rain.

(c) Slanting low rain. (d) Vertical heavy rain.

(e) Vertical medium rain. (f) Vertical low rain.

Figure 3.11: Example of dataset images.
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because they present an excellent trade-off between computational
complexity and classification performance [166, 167]:

• MobileNetV2 (α = 0.35) [2]: This architecture offers a well-
balanced trade-off between performance and computational
efficiency, making it suitable for resource-constrained UAV
platforms. We employed a variant with an α parameter of
0.35 for this specific task.

• MobileNetV3 small (α = 0.35) [168]: Similar to MobileNet
V2, the MobileNetV3 small model prioritizes efficiency while
maintaining good accuracy. We used a variant with an α pa-
rameter of 0.35 for optimal performance in this application.

• SqueezeNet [1]: This architecture is known for its compact
design while achieving high classification accuracy.

All three DNNs are trained on a powerful NVIDIA GeForce RTX
4090 GPU using the following hyperparameters:

• Epochs: 100

• Image Input: 224 × 224 × 3 (image size with width, height,
and colour channels)

• Optimizer: Stochastic Gradient Descent (SGD)

• Batch Size: 64 (number of images processed per training step)

• Learning Rate Scheduler: Polynomial decay with an initial
learning rate of 0.1, decaying to 0.001 over 10,000 steps using
a square root (power of 0.5) decay function.

As shown in Table 3.8, all three DNN architectures (MobileNetV2,
MobileNetV3 small, and SqueezeNet) exhibit a low memory foot-
print despite their potentially deep structures. This efficiency is
attributed to the innovative building blocks incorporated into these
architectures, which optimize the balance between model complex-
ity and resource requirements.

3.2.5 Results

This section presents the findings from the experiments conducted
using the setup described before. We employed two key metrics to
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Table 3.8: Memory footprint and number of parameters of Mo-
bileNetV2, MobileNetV3 small, and SqueezeNet.

Architecture
Number of
Parameters

Memory
Footprint (MB)

MobileNet V2 419175 1.70
MobileNet V3

Small
336855 1.28

SqueezeNet 774503 2.95

quantify the impact of rain on the VO system’s path estimation
accuracy:

• Standard Deviation: This metric measures the variability of
the estimated path compared to the actual (ground truth) tra-
jectory. We will analyze the standard deviation for the static
scenario. A higher standard deviation indicates a greater de-
viation from the true path due to rain’s influence.

• Root Mean Square Error (RMSE): This metric provides
the average magnitude of the error between the estimated path
and the ground truth, with the clear condition as the reference.
Analyzing RMSE for the moving scenario will reveal how rain
intensity affects the average error in path estimation.

Furthermore, we measure the restoring time specifically in the slant-
ing rain scenario, considered the most severe. Restoring time refers
to the duration required for the VO system to recover to an accept-
able performance level, with an average error below 30 cm. This
value indicates how long it takes for the system to regain sufficient
accuracy after encountering heavy rain. To assess the effectiveness
of the DNNs for rain classification, we use the following metrics
based on the confusion matrix of the 7-class classifier:

• Average Accuracy: This metric represents the overall propor-
tion of correctly classified rain condition samples across all
classes. A higher average accuracy indicates the DNN’s gen-
eral ability to identify rain conditions accurately.

• Precision: This metric measures the fraction of correctly iden-
tified samples for each rain condition class. High precision for
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a specific class signifies the DNN’s ability to accurately dis-
tinguish that class from others.

• Recall: This metric indicates the proportion of true positives
(correctly classified samples) for each rain condition class out
of all actual positives in that class. High recall for a class sug-
gests the DNN’s effectiveness in capturing most of the relevant
samples within that class.

• F1-Score: This metric combines precision and recall, providing
a balanced view of the DNN’s performance for each class. A
high F1-score indicates a good balance between precision and
recall for a specific class.

The DNN with the highest average accuracy, precision, recall, and
F1-score across all rain classes will be identified as the best-perform-
ing model for rain classification.

Static Condition

We first evaluate the VO system’s performance under various rain
conditions in a static scenario, where the system remained station-
ary throughout the experiment. Figure 3.12 compares the esti-

Table 3.9: Standard deviation computed for the experiments in
static condition on the three axes x, y, and z.“Slanting Heavy Rain”
is the worst-case scenario (highlighted in red), while ‘Vertical Low
Rain’ is the best-case scenario (highlighted in green).

Condition (Static) Error (σx, σy, σz)(mm)

Clear (Reference) 0.05, 0.09, 0.2
Slanting Heavy Rain 10.5, 6.2, 7.9
Vertical Heavy Rain 0.1, 0.07, 0.3

Slanting Medium Rain 3.6, 5.1, 4.5
Vertical Medium Rain 3.5, 1.4, 0.4
Slanting Low Rain 1.0, 0.6, 1.4
Vertical Low Rain 0.09, 0.09, 0.2

mated trajectories and data distribution across different rain con-
ditions. Table 3.9 summarizes the standard deviation of the esti-
mated position for each rain condition. Since the system is fixed at
the origin (0, 0, 0) in all axes, the standard deviation reflects the
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(a) Trajectory esti-
mation of slanting
and vertical heavy
rain.

(b) Trajectory estima-
tion of slanting and
vertical medium rain.

(c) Trajectory estima-
tion of slanting and
vertical low rain.

(d) Data distri-
bution of slant-
ing and vertical
heavy rain.

(e) Data distribution
of slanting and vertical
medium rain.

(f) Data distribution
of slanting and vertical
low rain.

Figure 3.12: Trajectory estimation and data distribution of the
static scenario under the different rain conditions. In Figures “a”
and “d”, the clear and vertical rain trajectories and data distribu-
tions are highlighted by the blue circle.

performance degradation relative to the ideal scenario (no rain).
The results highlight the significant impact of slanting heavy rain,
as shown in Figures 3.12a and 3.12d. The high standard deviation
value in Table 3.9 confirms this observation, indicating a consider-
able drift in the estimated position. Conversely, the “Vertical Low
Rain” scenario exhibits minimal error according to the standard de-
viation in Table 3.9, suggesting negligible performance degradation
compared to the clear condition.

Moving Condition

We further evaluate the VO system’s performance under various
rain conditions in a moving scenario. Here, the system follows a pre-
defined rectangular trajectory at a constant height. Figure 3.13
compares the estimated trajectories under different rain intensity
levels (heavy, medium, and low) within each rain direction (slant-
ing and vertical). Table 3.10 summarizes the RMSE for each rain
condition, calculated with the clear condition as the baseline. The
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(a) Trajectory estimation of
slanting and vertical heavy
rain.

(b) Trajectory estimation of
slanting and vertical medium
rain.

(c) Trajectory estimation of
slanting and vertical low rain.

Figure 3.13: Trajectory estimation and data distribution of the mov-
ing scenario under the different rain conditions.

Table 3.10: RMSE over the three axes and restoring time of the
moving scenario. The worst-case scenario is “Slanting Heavy Rain”
(highlighted in red), while the best-case scenarios are ”Vertical
Medium Rain” and ”Vertical Low Rain” (highlighted in green).

Condition (Moving) RMSE (x, y, z)(m)
Restoring
Time (s)

Slanting Heavy Rain 1.3, 0.9, 2.5 32.9
Vertical Heavy Rain 0.4, 0.4, 0.09 NA

Slanting Medium Rain 0.5, 0.5, 0.3 20.1
Vertical Medium Rain 0.3, 0.3, 0.08 NA
Slanting Low Rain 0.8, 0.9, 0.4 13.34
Vertical Low Rain 0.3, 0.4, 0.07 NA

results reinforce the significant impact of slanting heavy rain. As
shown in Figure 3.13a, this scenario introduces a substantial and
unacceptable drift in all axes, particularly evident in the vertical
direction. Table 3.10 confirms this observation with a high RMSE
value for the slanting heavy rain scenario. In contrast, the vertical
rain scenarios (both low and medium) exhibit considerably less se-
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vere errors. Their estimated trajectories in Figures 3.13b and 3.13c
show drift in the order of tens of centimetres, and the corresponding
RMSE values in Table 3.10 are lower compared to the slanting rain
condition.

DNN Results

We evaluate the performance of the three DNN architectures (Mo-
bileNetV2, MobileNetV3 small, and SqueezeNet) using their respec-
tive confusion matrices (refer to Tables 3.11, 3.12, and 3.13 for de-
tailed results). The evaluation metrics include precision, recall, and
F1-score for each of the seven rain classes, computed on the test set.
Overall, all three DNNs achieved good performance across most rain
classes, particularly for “Clear” and “Slanting Heavy Rain”. These
two classes represent the extremes of the rain conditions studied,
making them easier for the DNNs to distinguish. However, a com-
mon challenge across all DNNs is observed in the “Vertical Low
Rain” class, where recall is the lowest (highlighted in red in the
tables). This indicates a higher number of false negatives, mean-
ing the DNNs sometimes misclassified light vertical rain as clear
weather. This behaviour is understandable as the visual influence
of light vertical rain is minimal and can be very similar to clear
conditions, as confirmed by the VO system analysis. In the context
of autonomous UAV navigation, a false negative for “Vertical Low
Rain” is not critical. The slight visual perturbation caused by light
vertical rain is unlikely to significantly impact navigation safety.

Table 3.11: MobileNetV2 performance of each class. The worst
result consists of the recall in the “Vertical Low Rain” scenario
(highlighted in red).

MobileNet V2 Precision Recall F1-score

Clear 0.99 0.99 0.99
Slanting Heavy Rain 0.99 0.98 0.99
Vertical Heavy Rain 0.78 0.99 0.88

Slanting Medium Rain 0.97 0.79 0.87
Vertical Medium Rain 0.76 0.99 0.86
Slanting Low Rain 0.96 0.91 0.93
Vertical Low Rain 0.93 0.68 0.79
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Table 3.12: MobileNetV3 Small performance of each class. The
worst result consists of the recall in the “Vertical Low Rain” scenario
(highlighted in red).

MobileNet V3 Small Precision Recall F1-score

Clear 0.97 0.99 0.98
Slanting Heavy Rain 0.98 0.99 0.98
Vertical Heavy Rain 0.86 0.95 0.90

Slanting Medium Rain 0.97 0.88 0.92
Vertical Medium Rain 0.75 0.97 0.84
Slanting Low Rain 0.93 0.91 0.92
Vertical Low Rain 0.89 0.62 0.73

Table 3.13: SqueezeNet performance of each class. The worst result
is the recall in the “Vertical Low Rain” scenario (highlighted in red).

SqueezeNet Precision Recall F1-score

Clear 0.97 0.99 0.98
Slanting Heavy Rain 0.98 1.00 0.99
Vertical Heavy Rain 0.95 1.00 0.97

Slanting Medium Rain 0.94 0.82 0.88
Vertical Medium Rain 0.76 0.98 0.86
Slanting Low Rain 0.98 0.88 0.93
Vertical Low Rain 0.83 0.72 0.77

Table 3.14 summarizes the overall accuracy, precision, recall, and
F1-score for all three DNNs. The results indicate comparable per-
formance across the architectures, with all achieving metrics above
90%. This suggests their effectiveness in rain classification for UAV
navigation.

Table 3.14: Results on the test dataset of the three architectures.

Architecture Accuracy Precision Recall F1-score

MobileNet V2 0.90 0.91 0.91 0.90
MobileNet
V3 Small

0.90 0.91 0.90 0.90

SqueezeNet 0.91 0.92 0.91 0.91
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While all three DNNs perform well, MobileNetV3 Small offers a
compelling advantage for resource-constrained UAV platforms. As
shown in Table 3.8, it boasts the lowest memory footprint among
the tested architectures. Additionally, Table 3.15 reveals that Mo-
bileNetV3 Small has the fastest classification latency of approxi-
mately 10 milliseconds. This combination of low memory usage and
fast inference speed makes MobileNetV3 Small the most suitable
choice for deploying a stable, real-time rain classification solution
on small UAVs with limited on-board computational resources.

Table 3.15: Execution time in seconds of a classification cycle of the
three classifiers on the Intel NUC 11.

Classifiers
Avg.
(s)

Var.(×10−5)
(s2)

Max.
(s)

Min.
(s)

MobileNet V2 0.0706 3.2123 0.0944 0.0651
MobileNet V3

Small
0.0107 0.2062 0.0167 0.0087

SqueezeNet 0.5097 73.476 0.6385 0.4791

3.2.6 Conclusions

The growing prevalence of UAVs necessitates addressing challenges
that hinder autonomous navigation in various weather conditions.
While visual odometry (VO) systems are widely used, their be-
haviour under adverse weather like rain remains under-explored in
the literature. This gap necessitates research to ensure safe and re-
liable drone flight operations.
This study investigates the impact of rain on VO system perfor-
mance for UAV navigation. Our analysis identifies slanting heavy
rain as the most critical scenario, introducing significant path esti-
mation errors (1-2.5 meters) that render navigation unsafe. Other
“slanting rain” scenarios also exhibit higher errors compared to ver-
tical rain, but their acceptability depends on specific application
tolerances. To mitigate rain’s influence and enhance environmental
awareness, we propose a deep learning-based approach. We trained
and compared three DNN architectures, achieving an accuracy of
around 90%, to classify colour images captured by the VO system
into seven rain conditions: clear, varying degrees of slanting and ver-
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tical rain (heavy, medium, low). The best-performing DNN achieved
a frame rate of 97 FPS, enabling real-time classification.
This classification information can be used to suggest appropriate
actions for the drone based on the prevailing weather. Potential ac-
tions include switching to alternative navigation systems, adjusting
flight paths, or even landing. This approach has the potential to sig-
nificantly reduce the risk of accidents and enhance drone reliability
and operational flexibility. However, it is important to acknowledge
the potential limitations of the DNN-based approach. The accuracy
of 90% might not be perfect in all real-world scenarios, and factors
like variations in rain characteristics or sensor quality could affect
performance.
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Chapter 4

Industrial Visual
Inspection

The quality inspection of industrial products is a fundamental step
in large-scale production as it boosts the yield and reduces costs.
Intelligent embedded platforms with built-in tiny machine learning
algorithms and cameras can automate quality inspection. However,
running complex deep learning algorithms in low-cost and low-power
embedded devices is still challenging because of the limited memory
and energy resources. This chapter 1 presents an innovative sensor
system with three MCU-based tinyML cameras capable of auto-
matic artefact and anomaly detection in plastic components. The
system consists of a top camera for identifying shape defects and
two side cameras for colour anomalies. Data processing is executed
locally with the tinyML reducing the data transmission to a few
bytes. Two state-of-the-art convolutional neural networks (CNN)
are evaluated, namely MobileNetV2 and SqueezeNet. Results show

1The work presented in this chapter has been published in the following
papers:

• Albanese, A., Nardello, M., Fiacco, G., and Brunelli, D. (2022). Tiny
machine learning for high accuracy product quality inspection. IEEE
Sensors Journal, 23(2), 1575-1583.

• Albanese, A., and Brunelli, D. (2023). Industrial Visual Inspection with
TinyML for High-Performance Quality Control. IEEE Instrumentation
and Measurement Magazine, 26(8), 17-22.
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how both architectures - with appropriate compression techniques
– are suitable to be evaluated by resource-constrained microcon-
trollers. The networks achieve 99% classification accuracy while
maintaining suitable real-time performance, respectively equal to 5
FPS and 2 FPS.

4.1 Introduction

The Industrial Internet of Things (I-IoT) is becoming essential for
companies to optimize their production processes. Adding distribut-
ed intelligence along the production lines can lead to consistent cost
savings. Machine learning can be a crucial tool for supervising
products and production processes [169]. It is possible to gener-
ate models that can quickly inspect the quality of a product (e.g.,
the presence or absence of a correct label on a bottle or the clas-
sification of defects on the surface) with statistical methods and
databases, thus avoiding possible waste in production lines [170].
So far, cloud-based architectures have been used for many indus-
trial inspection applications by exploiting servers with unlimited
computing resources to carry out complex data processing. The
cloud computing approach usually employs high-resolution indus-
trial cameras providing high-quality images for accurate analysis.
Even though they provide superior service quality, they are expen-
sive solutions in terms of cost and performance [171]. Furthermore,
this approach is highly conditioned by the network quality, which
can introduce a significant latency or lead to service degradation if
the connection is lost. Also, scalability is affected as more sensors
pressure the cloud infrastructure (i.e., bandwidth and data storage
requirements).
A solution can be represented by low-cost intelligent electronic de-
vices, as such embedded platforms can guarantee a reduced devel-
opment cost without affecting the quality of service [172]. Using
the computational capacity that embedded systems have achieved,
it is possible to design complex visual inspection systems – pow-
ered by deep learning algorithms – directly on intelligent sensors
and actuators, using the so-called tinyML approach. TinyML ex-
pands the edge computing paradigm bringing complex data process-
ing closer to the data source. This approach improves the applica-
tion’s responsiveness and efficiency, reducing the amount of data



4.1. INTRODUCTION 79

transmitted [173]. Thus, cloud computing limitations associated
with data throughput and costs are avoided. In-pixel processing ar-
chitectures [174] could be used shortly to reduce the data exchange
between the sensor and the nearby microcontroller. Also, event
cameras can improve the system’s efficiency by transmitting only
detected conditions in the image (i.e., events in a scene). However,
these solutions are still under development and unavailable on the
market.
This chapter presents the design, implementation, and evaluation
of an automatic visual inspection I-IoT system based on image data
processing with tinyML, designed for large-scale product quality
inspection. We addressed the specific requirements of a company
leader in producing plastic parts through the injection moulding
process. They provided the dataset used to develop the deep learn-
ing models, the specifications about the responsiveness of the vi-
sual inspection system, and the list of possible anomalies during the
process. For this reason, this work consists of a unique scenario
with real case problems. The system is currently used in a dozen
of the company’s machines for long-time and large-scale testing.
Two convolutional neural networks (CNNs) for image classification
are trained, tested, and compared, namely MobileNetV2 [2] and
SqueezeNet [1]. Then, the CNN models are compressed and de-
ployed in the target platform, namely OpenMV Cam H7 Plus, for
image processing and neural classification directly on the microcon-
troller unit (MCU). Results highlight the perfect fit for this use case
due to their optimized structure for resource-constrained environ-
ments.
In particular, the main contributions of this chapter are:

• The design of a cyber-physical system for product quality in-
spection, capable of detecting the defects of plastic moulded
objects (Figure 4.1).

• The design, optimization, and deployment of tiny neural net-
works (NNs) for object classification on resource-constrained
cameras.

• The creation of a custom dataset used to train and test differ-
ent NN architectures.

• The evaluation and comparison of performances between the
two tiny NNs, namely MobileNetV2 and SqueezeNet.
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Figure 4.1: Picture of the system’s setup. The top camera is in the
centre of the ring light. Each camera is located at a distance of 25
cm from the working plane to ensure in-focus objects. Side cameras
have an orientation angle of 30° with respect to the vertical axes.

• The system characterization by examining its execution time
and energy consumption during image pre-processing and clas-
sification.

4.2 Related Work

Edge devices with ML capabilities are recently gaining interest in
designing intelligent IoT infrastructures that limit data exchange to
a few bytes. AI edge processing focuses on moving the inference
part of the AI workflow on the device by keeping data locally to
improve latency and bandwidth [175].

4.2.1 Industrial quality inspection

The main challenges in using ML algorithms in industrial manu-
facturing environments are the limited processing capabilities, the
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use of big data, memory and energy constraints, and, sometimes,
real-time processing [176]. Recent technologies for industrial vi-
sual inspection are based on line-scan cameras, spectrometers, or
high-resolution cameras. These systems are expensive and require
a significant amount of time to inspect one piece [177]. However,
companies that want to offer high-quality products and optimize
their production processes or costs need comprehensive and reliable
quality inspection tools. In [178], a framework for the detection of
glass bottle bottom defects is implemented using a combination of
the visual attention model and wavelet transformation. The system
achieves a recall of around 92%, requiring only 535 ms of computa-
tional time on a low-performance laptop CPU. The possible quality
improvements in industrial processes are also highlighted in [179].
By exploiting a machine learning vision-based classification model,
the authors highlight how the histogram-based droplet detection
and micrograph classification approach can be exploited to deter-
mine when the emulsification process is completed automatically.
However, inspection systems are usually deployed in unreachable
positions, making maintenance difficult. Thus, such systems must
be standalone and used with the “deploy and forget” approach.
Also, energy resources play a fundamental role in ensuring the sys-
tem’s reliability. For those reasons, research in machine learning
has increasingly shifted to move data evaluation where it is gen-
erated, reducing and optimizing the used resources. In [176], the
authors propose a quality inspection system that uses supervised
ML algorithms in edge devices. This work supports manufacturing
companies with a predictive model-based quality inspection system
to predict the final product quality based on the recorded parameter
of the process.
On the other hand, deep learning methods are data-hungry: they
need a large amount of annotated data which is labor-intensive and
time-consuming. As a workaround to these limitations, the authors
in [180] have proposed a segmentation-aggregation framework to
train object detectors from annotated visual data for automatic in-
dustrial visual inspection. They have limited the data annotation to
label the image class and avoid the expensive task of the bounding
box coordinate annotation. For this purpose, developing an accu-
rate dataset for ML training is crucial to obtaining a precise and
efficient system.
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4.2.2 Deep learning architecture and optimiza-
tion techniques

In the last few years, fostered by new-generation microcontrollers,
multiple neural network architectures were developed for resource-
constrained devices [130]. Thanks to the study of innovative prun-
ing and quantization techniques [120], it is possible to drastically
reduce the ML model complexity while maintaining the same pre-
diction accuracy. By combining those traditional techniques with
more recent Neural Architecture Search (NAS) [181], and Feder-
ated Learning [182] approaches, it is possible to deploy AI-based
systems in MCUs with impressive low energy consumption and high
accuracy [183]. In the literature, we can already find multiple im-
plementations, like MobileNetV2 [2] and SqueezeNet [1] and, more
recently, new cutting-edge deep architecture, namely MobileNetV3
small [168], EfficientNet [184], and MCU Net V1 and V2 [183, 185].
In our proposed implementation, we have preferred to stick with the
well-investigated MobileNetV2 and SqueezeNet as the preliminary
results obtained satisfied the requirements of this application. We
have thus preferred focusing on the deployment and long-term eval-
uation of the whole system in a real industrial large-scale test to
assess the real performance of the system. This has allowed us to
optimize the selected network further and achieve the results pre-
sented in Section 4.7.

4.3 System Architecture

The architecture of the visual inspection system is shown in Fig-
ure 4.2. The workflow consists of positioning the produced items
on a conveyor belt and moving them until they reach three cameras
that acquire pictures of the items from different perspectives. A
ToF (Time of Flight) sensor is placed on the side of the belt and
alerts the cloud gateway that the object has arrived at the exact
location. The gateway stops the belt, and the image classification
phase begins. By using DNNs and computer vision algorithms, the
MCU on the camera classifies objects, like those in Figure 4.3, as
conformant, with shape problems, or with colour anomalies. Infer-
ences and detection results are sent to the gateway, which controls
and rejects the part if it does not meet the requirements. In detail,
this process can be divided into four steps.
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Cloud 
Gateway

Figure 4.2: System architecture. It consists of a conveyor belt, a
ToF sensor that detects the presence of an object, three MCU-based
cameras responsible for image processing and classification, and the
cloud gateway which retrieves or rejects the piece according to the
classification results.

Figure 4.3: Possible defects of the objects. From left: conforming
object, deformed object, polluted object, object with stains, and
incomplete object.

4.3.1 Item Upload

The first phase consists of sliding the object on the conveyor belt.
The rotation of the object during the feeding has no constraints, so
the components can assume a random rotation. The conveyor belt
colour was carefully chosen as “matte black” to avoid unwanted light
reflections that can generate image distortions and lead to wrong
classifications.
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4.3.2 Item Movement

The object slides on the conveyor belt, which is moved by a stepper
motor positioned at the roller. The motor is controlled by the M4
core of the STM32MP1 MPU through the X-NUCLEO-IHM03M1
expansion board. Moreover, an X-NUCLEO-6180XA1 expansion
board detects the presence of the items on the belt through a ToF
sensor. The X-NUCLEO-6180XA1 also measures the ambient light,
used to derive the light conditions when tagging and classifying
items. Both expansion boards are connected to the cloud gateway.

4.3.3 Object Classification

Object classification is carried out with an edge computing approach
by the arrangement of three OpenMV H7 Plus cameras, as shown
in Figure 4.1. Two different models are used for the classification
of shape and colour anomalies. The position and the number of
the cameras were chosen based on the types of defects to detect.
Anomalies mainly occur only on 5 of the 6 faces of the object. This
means that the field of view (FoV) of a single camera cannot cover
all the object’s faces. The three cameras are placed in three differ-
ent locations to ensure that all faces are within the cameras’ FoV.
A “top camera” is positioned orthogonally to the belt and focuses
on the 2D plane of the object. The other two cameras, called “side
cameras”, are placed in a specular position with an orientation angle
of 30° concerning the vertical axes. They are placed on either side of
the object and expand the field of view on the remaining four faces.
The distance of the lens from the object is 25 cm to ensure focus ob-
jects. Moreover, the 20-degree FoV lens guarantees the inclusion of
an item within a picture with some extra space around it to compen-
sate for possible delays when stopping the belt. The three cameras
take three different images of the component on the belt. These
images are the input of DNNs deployed on the MCU responsible
for classifying shape and colour imperfections. The “shape-defect”
anomalies occur on the perimeter of the object. It follows that the
top camera is best suited to select this type of nonconformity. The
side cameras are used to detect color-defected objects.
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4.3.4 Post-processing

The cloud gateway, according to the value obtained from the three
cameras, enables the conveyor belt motor when the objects are con-
formant. On the contrary, if the result of the prediction is a non-
conforming object, it proceeds to eliminate the component by acti-
vating a plunger.

4.4 IoT Device for Inspection and Mon-
itoring

Advanced visual inspection and monitoring need cutting-edge stan-
dalone IoT devices to minimize maintenance and costs, by improving
its deployment in industrial plants. This device 2 can be powered
by a battery and it is equipped with LTE connectivity to use the
NB-IoT standard, making it deployable in almost any environment
where a power source or a stable Wi-Fi connection is not avail-
able. Furthermore, it can monitor the environmental conditions
ensuring a continuous streaming of data displayed in a dedicated
user interface. The device prototype is shown in Figure 4.4. It

Figure 4.4: Prototype of the industrial monitoring device composed
of an MCU-based camera and an IoT board with LTE connectivity.

is composed of two active parts, namely the OpenMV Cam (i.e.,
an MCU-based camera with tinyML capabilities), and the Actinius
Icarus IoT board based on the Nordic nRF9160 SiP with LTE-M and
GNSS modems. They are interconnected as shown in Figure 4.5. In
particular, the camera is responsible for the user interface and the

2This device has been presented in a patent application developed in collab-
oration with “Telecom Italia”:

• Albanese, A., Barchi, F., Brunelli, D., Elia, N., and Gotta, D. (2023).
Method and System for Controlling a Shipment.
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Figure 4.5: Functionalities of the inspection and monitoring device.

ML processing, while the Actinius Icarus IoT board is responsible
for the LTE connectivity and data transmission via NB-IoT and
environmental monitoring. The proof of concept of the monitoring
IoT device has enormous potential as it is independent, battery-
powered, running ML on the edge. It can be employed in different
applications, from industrial monitoring to advanced asset tracking.

4.5 Tiny Neural Networks

4.5.1 Network Architectures

Most DNN architectures require high computational capacity, fo-
cusing the deployment on specific high-performance computational
units. In this application, the available resources are limited be-
cause the target board is an MCU. This led to a challenge in re-
searching and optimizing DNNs. Two of the best-performing DNNs
specifically designed for embedded systems are chosen, namely Mo-
bileNetV2 [2] and SqueezeNet [1]. MobileNetV2 topology is defined
in Table 4.1, while the main block of SqueezeNet is shown in Fig-
ure 4.6 (i.e., the “Fire Module”).
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Table 4.1: Topology of MobileNetV2. “n” denotes the replicas of
the same layer, “c” the number of output channels, “s” the stride,
and “t” the expansion factor [2].

Input Operator t c n s

224× 224× 3 conv2d - 32 1 2
112× 112× 32 bottleneck 1 16 1 1
112× 112× 16 bottleneck 6 24 2 2
56× 56× 24 bottleneck 6 32 3 2
28× 28× 32 bottleneck 6 64 4 2
14× 14× 64 bottleneck 6 96 3 1
14× 14× 96 bottleneck 6 160 3 2
7× 7× 160 bottleneck 6 320 1 1
7× 7× 320 conv2d1× 1 - 1280 1 1
7× 7× 1280 avgpool7× 7 - - 1 -
1× 1× 1280 conv2d1× 1 - k - -

Figure 4.6: SqueezeNet micro-architectural view of convolution fil-
ters and fire module [1].

4.5.2 Model Compression

Model compression is a fundamental step to deploying deep learning
models in resource-constrained devices. In this application, three
compression techniques are used to make possible the deployment
of MobileNetV2 and SqueezeNet on the OpenMV Cam H7 plus.
Even though two datasets are used to compose the visual inspec-
tion system for colour and shape anomalies, they share the same
model architecture and input image size; therefore, the number of
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parameters and the required resources are the same.

Parameter minimization

DNN’s parameters are the sum of the weights and biases of each
layer. Convolution or fully connected layers present a high number
of parameters. Therefore, the number of parameters is proportional
to the number of convolution layers and affects the final model di-
mensions. It is possible to reduce the number of layers to obtain
a lighter model. However, this operation can reduce the overall
accuracy, especially if the network becomes too shallow. Starting
from this idea, MobileNetV2’s blocks are reduced from 17 to 14,
and the fire modules of SqueezeNet are reduced from 8 to 5. The
effect of parameter optimization is presented in the last two rows of
Table 4.4.

Pruning

After training the DNN models with the optimized architectures,
pruning is applied to optimize the model complexity further. It
permits cutting off weights irrelevant for prediction purposes (e.g.,
weights close to zero). We used the “Polynomial Decay” method to
apply sparsity to the DNN. This method uses a range of sparsity val-
ues to mask weights, starting from those with less significant values
and increasing them until the final sparsity is reached. In this case,
both DNNs were pruned with a sparsity range of [20, 50] expressed
as a percentage of removed weights, obtaining a model composed of
50% of the original parameters. This threshold is chosen to not lose
accuracy. The result of the pruning operation is shown in Table 4.2.

Table 4.2: Number of parameters before pruning and number of
non-zero parameters (NNZ) after pruning.

Parameters
before pruning

Sparsity
NNZ after
pruning

MobileNetV2 234 914 50% 117 457
SqueezeNet 120 930 50% 60 456
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Quantization

Quantization is essential to deploy DL models in MCU and improve
hardware acceleration latency and power efficiency. A model quan-
tized with 8-bit representation results in a model 4x smaller and
1.5x-4x faster in computations. In this work, weights, activations,
and network inputs and outputs are quantized. As a result, a “full-
integer” model is obtained.

4.6 System Implementation

4.6.1 Image Pre-processing

The pre-processing algorithm analyzes the images in the camera
MCU to highlight the relevant features useful for classification pur-
poses. In this use case, the object arrives on a dark belt; thus,
algorithms for background removal are used to avoid light reflec-
tion problems. Moreover, the object to classify may not be placed
exactly in the centre of the acquisition window. This means that
clipping can cause the elimination of fundamental data for clas-
sification. For this reason, the developed algorithm considers the
component’s position within the image window, therefore avoiding
incorrect clipping. Three well-known computer vision algorithms
are used: the “Canny algorithm”, “Blob detection”, and “Otsu’s
method”. The pre-processing algorithm works as follows:

• Capture an image and create a copy.

• Conversion of the image from RGB565 to gray-scale.

• Canny algorithm to find the component contour.

• Search for blobs inside the Canny image.

• Blobs merging.

• Blob center computation.

• Check the position of the centre to avoid wrong cropping.

• Image crop by taking as reference the obtained centre.
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The images are acquired by setting the sensor size to QVGA res-
olution (i.e., 320×240). After the Canny algorithm, we binary the
image in the range [0,1] in which the pixels with value 1 are the
contours of the plastic component. The Blob detection algorithm
obtains different blobs of 1-pixel size referred to each pixel with
value 1. The blob fusion represents the four corners of the image,
taking into account their outermost positions. Once a single blob
is obtained, its centre is calculated as a reference point for the crop
to avoid clipping. Then, images are resized into 160×160 size, and
the background is removed. The resulting images include only the
object and straighten every other pixel regarding the background
as a value of 0 in the RGB range. At this point, Otsu’s method is
used to find an optimal threshold to execute background removal.

4.6.2 Dataset Acquisition

The collection of a robust dataset is a key step in DL algorithm de-
velopment. The three-camera arrangement uses two different DNN
models, thus, it is necessary to collect two separate datasets: one
for the top camera and one for the side cameras. The two datasets
are composed of images pre-processed with the algorithm presented
in Section 4.6.1.

(a) (b) (c)

Figure 4.7: (a) pre-processing on the top camera showing a “con-
formant” component. (b) pre-processing done on the side camera
showing a “color defected” component. (c) pre-processing done on
the side camera showing a “conformant” component.

Figure 4.7 shows the results obtained by the pre-processing algo-
rithms in the top camera and side cameras, respectively. In partic-
ular, Figure 4.7a is related to the pre-processing result from the top
camera of a “conformant” component. Figure 4.7b shows a “colour
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defected” component obtained after pre-processing. In this case,
the background pixels and the stained part of the component have
a value of 0 in the RGB channels. The rest of the image is in the
RGB colour space, where each pixel can take any value in the range
[0,255]. Figure 4.7c shows a “conformant” component; therefore,
despite the previous case, no pixel value about the component is set
to 0, but only the background pixels.
The pre-processed images are sent to the cloud gateway responsi-
ble for collecting the dataset. In this way, the camera does not
keep images in memory but sends them to the gateway through the
Remote Procedure Call (RPC) library embedded in Micro-Python.
This allows the camera to connect to another device and execute
remote procedure calls on the camera. The complete dataset is
acquired with the setup shown in Figure 4.1. Each component is
placed within the field of view of the three cameras, with differ-
ent orientations and a minimum of random rotation to extend the
heterogeneity of the dataset. Then, through a GUI, each image is
tagged by selecting the class of the object.
More than 500 images are acquired for each camera in a balanced
manner (i.e., each class includes the same number of images). More-
over, data augmentation is performed to increase the dataset size.
Rotation and translation are used as image transformations for bet-
ter generalizing the DNN’s inputs. This operation is necessary to
increase the number of images and replicate the real scenario where
components can be placed in different positions and with minimal
rotations in the camera field of view. The dataset is augmented by
rotating the image in a range of [10, -10] degrees. However, this
process is only done concerning the datum of the top camera be-
cause the two side cameras capture an image of the object laterally,
therefore in a perspective way. A rotation of the image can cause
distortion, thus, a wrong dataset optimization.
Given that the component can assume various positions, also image
translation is used as image transformation. Considering that we
are using square images with a rectangular object, the translation
along the image width is set to 4% of the total (i.e., a random trans-
lation in the range [-9, 9] pixels). The translation in amplitude is
10% of the total (i.e., a random translation in the range [-22, 22]
pixels along the height). The dataset size is summarized in Table 4.3
and is organized in sub-folders to simplify the label extraction.
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Table 4.3: Overview of the dataset size for the top camera and the
side cameras after data augmentation.

160x160px
Top Camera Side Camera

Conformant
Shape

Defected
Conformant

Colour
Defected

Train 3709 4068 2500 2409
Validation 1045 1145 691 672

Test 863 544
Total 10830 6816

4.6.3 Training

The training of MobileNetV2 (alpha parameter equal to 0.35) and
SqueezeNet is carried out with the parameters shown in Table 4.4.
Model weights are initialized with random values. The number of
epochs is set by using the early stopping callback by validation ac-
curacy approach. This technique permits stopping the training ses-
sion when the validation accuracy is below a certain threshold (i.e.,
99.5%) to be less prone to network overfitting. The model evaluation
is presented in Section 4.7.1. The resources needed for the deploy-
ment in the OpenMV Cam H7 Plus are summarized in Table 4.5.

Table 4.4: NN training parameters.

Network Architecture
SqueezeNet MobileNetV2

Batch size 32 32
Initial learning rate 10−5 10−5

Input image RGB 160×160 RGB 160×160
Optimizer Adam Adam

Loss function Binary cross-entropy Binary cross-entropy
Source framework Tensorflow Tensorflow
♯ of parameters

base model
723 522 412 770

♯ of parameters
modified model

337 090 176 386
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Table 4.5: Resources needed by the developed models to perform
inference on OpenMV Cam H7 Plus.

160x160px
Float32 model
(opt. parameters)

Optimized model
(pruning, quantization)

Compress
Factor

Flash (KB) RAM (KB) Flash (KB) RAM (KB)

MobileNetV2 635.29 1490 172.26 381.22 3.8 ×
SqueezeNet 1290 1780 334.35 455.25 3.9 ×

4.7 Results and Evaluation

4.7.1 Tiny Neural Network Evaluation

(a) Training and
validation accu-
racy of the Mo-
bileNetV2 archi-
tecture for the
top camera.

(b) Training
and validation
accuracy of
the SqueezeNet
architecture for
the top camera.

(c) Training and
validation accu-
racy of the Mo-
bileNetV2 archi-
tecture for the
side camera.

(d) Training
and validation
accuracy of the
SqueezeNet ar-
chitecture for the
side camera.

Figure 4.8: Training and validation accuracy for both networks and
cameras.

Top Camera

Figures 4.8a and 4.8b show the training results and validation ac-
curacy of both architectures for the top camera dataset. To reach
the desired validation accuracy value, MobileNetV2 and SqueezeNet
need 25 and 38 epochs, respectively.
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Side Cameras

Figures 4.8c and 4.8d show the results of the training session for the
side camera dataset evaluated with MobileNetV2 and SqueezeNet,
respectively. In this case, MobileNetV2 needs only 12 epochs to
reach the desired validation accuracy, while SqueezeNet does not
reach the set validation accuracy and uses the maximum number
of epochs to complete the train (i.e., 100). Figure 4.8c shows that
the validation loss value is low from the first epoch, which implies
a rapid growth of the training accuracy. On the other hand, the
plot in Figure 4.8d shows different negative peaks in the validation
accuracy due to the wrong weight update during backpropagation.
In this case, parameter optimization has influenced the performance
of SqueezeNet.

4.7.2 Top Camera Test

The top camera aims to classify “conformant” and “shape-defected”
objects. MobileNetV2 and SqueezeNet are evaluated by consider-
ing accuracy, precision, recall, and f-score, as well as the loss in
accuracy throughout the optimization operations. The test is con-
ducted with 863 images, where 412 of them are “conformant” and
451 are “shape-defected” images. Their results are summarized in
Table 4.6. Even though the models are highly compressed, the loss
in performance is negligible.
Figures 4.9a and 4.9b show the Grad-CAM heatmap of MobileNetV2
and SqueezeNet, respectively. Grad-CAM is a tool to reveal zones
where the network extracts features for classification. Here, the yel-
low circle highlights the shape anomalies (i.e., a missing pin), while
the red circle highlights the region where most of the features are
extracted by the deep learning model. In this case, the DL model
extracts most of the features where the imperfection is located to
produce the classification result. The MobileNetV2 heatmap in Fig-
ure 4.9a shows that only the image portion that includes the object,
especially the right side, is used for feature extraction. This leads to
a more generalized CNN, which processes almost the whole object to
classify shape defects. On the other hand, the SqueezeNet heatmap
in Figure 4.9b highlights only the image part related to the anomaly
(upper right corner). It means that the model is specialized for this
type of imperfection and cannot generalize as MobileNetV2 does.
Furthermore, it is crucial to minimize false negatives (FNs) in an
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industrial visual inspection system to avoid missing detection of de-
fects. As shown in Table 4.6, MobileNetV2 outperforms SqueezeNet
achieving a recall of 100% (i.e., any FN is predicted during the test).

Table 4.6: Comparison of MobileNetV2 and SqueezeNet perfor-
mance for the top camera. “Float 32” refers to the model with opti-
mized parameters, while “Optimized” refers to compressed models
with pruning and quantization.

160x160px
MobileNetV2 SquezeNet

Float32 Optimized ∆ Float32 Optimized ∆

Accuracy 99.5% 98.9% 0.6% 98.6% 98.4% 0.2%
Precision 99% 98% 1% 99% 99% 0
Recall 100% 100% 0 98% 98% 0
F-score 99.5% 99% 0.5% 98% 98% 0

4.7.3 Side Cameras Test

Side cameras classify “conformant” and “color-defect” objects. The
same evaluation for the top camera is conducted with 544 images.
Table 4.7 summarizes the results. In this case, the comparison re-
veals good performance also with a different dataset, and the loss in
accuracy due to the optimization process is negligible. Figures 4.9c
and 4.9d show the Grad-CAM heatmap of a color-defected compo-
nent of MobileNetV2 and SqueezeNet, respectively. Here, the yellow
circle highlights the colour anomalies (i.e., a stain), while the red
circle highlights the region where the deep learning model extracts
most of the features. It is visible that feature extraction involves
the portion of the image where the defect is located. However, Fig-
ure 4.9d confirms the worsening of the performance of SqueezeNet.
It highlights that most of the features useful for classification are ex-
tracted from the region in the upper-left corner, while features in the
bottom-right corner are less useful for classification purposes. This
phenomenon does not occur in the MobileNetV2 case (Figure 4.9c),
where the whole region that covers the object is used to extract
features to classify colour anomalies. It means that MobileNetV2
can better generalize colour anomalies than SqueezeNet. Further-
more, MobileNetV2 outperforms Squeezenet by analyzing the FNs,
achieving a recall of 99% after the optimization process (i.e., only
1% of the samples are classified as FN during the test).
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(a) (b) (c) (d)

Figure 4.9: Grad-CAM heatmap of MobileNetV2 and SqueezeNet
for the top camera ((a), and (b)), and side camera ((c), and (d)),
respectively.

Table 4.7: Comparison of MobileNetV2 and SqueezeNet perfor-
mance for the side cameras. “Float 32” refers to a model with opti-
mized parameters, while “Optimized” refers to compressed models
with pruning and quantization.

160x160px
MobileNetV2 SquezeNet

Float32 Optimized ∆ Float32 Optimized ∆

Accuracy 100% 99.6% 0.6% 98.4% 98.2% 0.2%
Precision 100% 100% 0 100% 100% 0
Recall 100% 99% 1% 96% 96% 0
F-score 100% 99.5% 0.5% 98% 98% 0

4.7.4 Inference on Cameras

The developed NN models are deployed in the setup shown in Fig-
ure 4.1. Their performance is evaluated by considering the exe-
cution time and the energy consumption of the two main tasks:
pre-processing and classification. The OpenMV Cam H7 Plus con-
sumes 0.8 W in active mode. The result is summarized in Table 4.8.
The pre-processing time remains the same for both architectures
because this task does not use DNN models. However, the top
camera pre-processing time is slightly higher than side cameras be-
cause of the image binarization operation. MobileNetV2 outper-
forms SqueezeNet for both top camera and side cameras, consider-
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ing the classification time and the energy consumption. As a result,
MobileNetV2 needs only 240 ms and 233 ms for the top camera
and the side camera, respectively, to process one image and classify
the object. Consequently, it consumes 192 mJ and 186 mJ for the
top camera and side camera processing, respectively. Moreover, the
industrial moulding machines, supported by the developed system,
take about 20 seconds to produce two moles of 8 pieces. Thus, 240
ms to classify one piece is enough to guarantee the continuous and
smooth operation of the production lines.

4.8 Conclusions

High-accuracy product quality inspection is a fundamental step in
any manufacturing process. It permits to boost in production yield
and reduces production costs. By using machine learning tech-
niques, developers can automate and make the process real-time.
This chapter presents the development and study of an innovative
sensor system for automatically inspecting on-edge the quality of
objects in large-scale production. The system exploits three smart
cameras trained to detect and classify different anomalies in the
components. Two different DNN models - namely the MobileNetV2
and the SqueezeNet - are trained and assessed, showing an accuracy
of 99% and 98%, respectively. Thanks to the learning model opti-
mization, the system can achieve respectively 5 FPS and 2 FPS for
the two learning models while executing the evaluation on the edge
of resource-constrained smart cameras. Future work will investigate
new and innovative training techniques, like NAS, and enhance some
features by integrating continuous learning functionalities to evolve
the model automatically and extend the set of anomalies detectable
by the system. Moreover, the system’s efficiency will be improved
by using cameras to detect only relevant information directly from
the imager, avoiding useless processing of uninteresting pixels.
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Chapter 5

Online Learning in
Resource-constrained
Devices

5.1 Online Learning Algorithms for Ges-
ture Recognition and Image Classifi-
cation

TinyML in IoT systems exploits MCUs as edge devices for data
processing. However, traditional TinyML methods can only per-
form inference, limited to static environments or classes. Real-case
scenarios usually work in dynamic environments, thus drifting the
context where the original neural model is no longer suitable. For
this reason, pre-trained models reduce accuracy and reliability dur-
ing their lifetime because the data recorded slowly becomes obso-
lete or new patterns appear. Continual learning strategies maintain
the model up to date, with runtime fine-tuning of the parameters.
This work 1 compares four state-of-the-art continual learning al-

1The work presented in this section has been published in the following paper:

• Avi, A., Albanese, A., and Brunelli, D. (2022, July). Incremental online
learning algorithms comparison for gesture and visual smart sensors. In
2022 International Joint Conference on Neural Networks (IJCNN) (pp.
1-8). IEEE.



100 CHAPTER 5. TINY ONLINE LEARNING

gorithms in two real applications: i) gesture recognition based on
accelerometer data and ii) image classification. Our results confirm
the systems’ reliability and the feasibility of deploying them in tiny-
memory MCUs, with a drop in the accuracy of a few percentage
points concerning the original models for unconstrained computing
platforms.

5.1.1 Introduction

IoT technology relies on the massive use of cloud computing re-
sources to elaborate data generated by distributed objects and sen-
sors. Improvements and more efficient applications have already
been demonstrated by shifting the attention from cloud to edge
and distributing the computation along the IoT chain, including
gateways and nodes [111, 4, 10]. Using MCUs for intensive data
elaboration can re-modulate part of the power consumption, which
is crucial for these tiny devices. MCUs can optimize the data trans-
mission and the data elaboration, which leads to the generation of
more compact and meaningful information, and decreases the traffic
of data on IoT networks.
Among the different opportunities opened by edge computing, ma-
chine learning on tiny embedded systems is gaining momentum.
TinyML explores various types of models that can run on small,
low-powered devices like microcontrollers for applications that re-
quire low latency, low power, and low bandwidth model inference.
However, tiny devices feature limited memory and computing ca-
pability, which makes challenging the usage of ML models in edge
devices. Thus, developing ML models of a few hundred Kbytes ca-
pable of keeping high accuracy while running MCU-enabled devices
is still challenging. Another challenge is maintaining and upgrading
deployed applications, which can be complex if devices are located
in impractical positions. Maintenance can be required for damage,
upgrade, malfunction, and, more and more frequently, for neural
network (NN) model updates permitting the IoT device to evolve
and correct its output.
Recently, continual learning (CL) systems have been introduced to
update NN models on the MCU in real-time while the inference ap-
plication runs. Current CL methods exploit continuous control over
the error committed by the prediction to guarantee stable accuracy
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and reliable output. Such methods present some drawbacks, and the
most important is the catastrophic forgetting [186]. This problem
consists of a remarkable reduction of the classification accuracy of
already learned classes while the system learns an additional class
from new data. Online or continuous learning applied to MCUs is a
recent topic receiving growing attention, mainly because of the need
to generate intelligent IoT systems that automatically self-upgrade,
reducing the required maintenance.
In this work, we test and compare the performance of state-of-the-
art continual learning algorithms and propose changes to fit MCU
constraints. We did several tests using two different case studies,
both targeting the classification of various types of data. The first
is a typical gesture recognition application that classifies accelerom-
eter data streams. We used an SMT32 Nucleo F401-RE equipped
with an accelerometer shield as a test platform. This case study can
be extended to other real-life applications such as industrial condi-
tion monitoring or anomaly detection [187, 188]. The second case
study compares various CL algorithms to classify instances from the
MNIST dataset [189]. The tests are done on an OpenMV Cam H7
Plus, which is on an ARM Cortex M7. Even this experiment can be
easily extended in real-life applications such as visual inspections of
products in a manufacturing process. The performance comparison
of CL algorithms is made starting on pre-trained models. All the
algorithms use a small framework developed on the MCUs to modify
and change the parameters of some layers (usually the last one) of
the pre-trained model runtime. This makes the MCU an inference
machine with training capabilities only on the selected layers. This
work presents the following contributions:

• The framework implementation for continual learning algo-
rithms on STM32 MCUs and OpenMV Cam H7 Plus with
micro-python interface. The framework extends the X-CUBE-
AI expansion pack developed from STM for performing infer-
ence. CL algorithms use the error committed by the predic-
tion to update the weights, save them in an array, and use the
update rule defined by the selected CL algorithm.

• Improvements of the most recent algorithms in the literature.
The methods have been modified to apply backpropagation
on the weights that depend on batches of incoming data;

• Comparison of state-of-the-art continuous learning algorithm
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performance in two case studies.

5.1.2 Related Works

TinyML has registered an impressive rate of scientific literature in
the last few years. So far, the main topics are the implementation
of frameworks for optimal compression and the deployment of mod-
els for efficient inference. For example, MCUNet [183] was one of
the first to achieve high accuracy on off-the-shelf commercial mi-
crocontrollers, while other methods present deep compression with
pruning [190] or SRAM-optimized approaches useful for the entire
workflow in an ML model, including classification, porting, stitching
and deployment [191].
In recent times, TinyML has expanded, and a relevant new branch
related to Tiny online learning (TinyOL) has gained increasing at-
tention. CL has already been explored for classic server and par-
allel architectures, but only in the last period focused on resource-
constrained platforms. As of now, there already exist some well-
performing strategies and frameworks like TinyTL [192], Progress
& Compress [193], TinyOL [194], and Train++ [195].
Furthermore, CL has already been successfully applied in a domain
of interest for our study: image classification. For instance, [196]
explores the usage of developmental memories for the damping of
forgetting, and [197] applies CL by using transfer learning and k-
nearest neighbour. While applications of CL for pattern recognition
on accelerometer sensors are still pretty new, this field has been ex-
plored only in some standard TinyML applications [198]. The stud-
ies mentioned above focus on creating memory and energy-efficient
algorithms, and on backpropagation management and parameter
manipulation. The work presented in [199] applies CL on the edge
with an exploration of federated learning, a method used for train-
ing distributed devices where ML models are trained locally and
then merged into a global model. However, CL systems are not
only related to training algorithms. For instance, Imbal-OL [200] is
a pre-processing technique that aims to remove unbalances of real-
time data streams that are often present in real-life scenarios. The
plugin can be added in between the input stream and the OL system
to perform elaboration on the inputs and quickly adapt to changes
while also preventing catastrophic forgetting.
CL strategies able to contrast catastrophic forgetting can be grouped
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into 4 categories [201]. The first consists of architectural approaches
that base their ability to overcome forgetting on the dynamics mod-
ification applied to the model’s architecture. An example is the
creation of dual memory models like the CWR algorithm, where
one weight matrix is used as short-term memory and another as
long-term memory. The second category contains regularization
approaches. These methods rely on adding some loss terms in the
error computed from inference. The goal is to use these loss terms
to redirect the backpropagation to maintain previously gathered
knowledge while adapting to changes. Some of the most used and
best-performing strategies of this kind are Elastic Weight Consol-
idation (EWC) [186], Learn Without Forgetting (LWF) [202] and
Synaptic Intelligence (SI) [203]. The last two strategy groups are
the rehearsal and generative replay approaches. This study does not
consider them because they require a high amount of memory and
computations, thus unsuitable for TinyML applications. Rehearsal
approaches are based on periodic refreshes of old data, which help
the model avoid drifting from the original context. On the other
hand, generative replay methods require using generative models to
artificially generate past data to ensure that past knowledge is not
forgotten.
CL systems can also be divided into two scenarios: multi-task (MT)
and single-incremental-task (SIT). The first consists of learning tasks
that are produced one by one in a controlled way without forgetting
the previous ones. SIT is still an unexplored scenario and consists
of neural networks that continuously expand their learning space
that depends on the input data. SIT scenarios can lead to flexi-
ble systems that can add new classes to the NN design. However,
the obtained systems are usually affected by catastrophic forget-
ting, which is a phenomenon that occurs when the knowledge re-
lated to past tasks is replaced with the newly-learned knowledge.
Our study proposes the implementation of some regularization ap-
proaches aforementioned in SIT scenarios that can overcome catas-
trophic forgetting and are directly connected to the last layer of the
NN model of interest [204].

5.1.3 System Design

We started from the release of the TinyOL implementation pre-
sented in [194]. The system can be attached to an already trained
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classification model to expand its learning capabilities. It permits
both to learn never-seen classes and to fine-tune the parameters in
the last layer in real-time. Differently from the system developed
in [194], the proposed solution completely substitutes the final layer
of the model in which the classification is performed, and it is at-
tached to a truncated version of the pre-trained model, called the
frozen model. During the continual learning procedure, if the OL
system detects a new class, it expands the dimension of the last
layer, thus creating new weights and biases dedicated to the clas-
sification of the new class. In this study, because of the limited
resources of the MCU, only the last layer is modified. The training
is performed every time a new sample is received, with the aims of:
i) fine-tuning the model to recognize and adapt to changes in old
classes (known as New Instances settings, NI), ii) learning new pat-
terns belonging to new classes never exposed to the system (known
as New Classes setting, NC), iii) minimize the catastrophic forget-
ting [205]. We propose two examples characterized by New Instance
and Classes (NIC) type data streams, meaning that the data con-
tains new categories and new instances of old classes. As described
in [204], this setting better represents a real-world application.
The OL system proposed in this work consists of the frozen model
and the OL layer. The main purpose of the frozen model is to per-
form the feature extraction of the input and later feed the elaborated
data to the classification layer, which can change shape according
to the classes it encounters. The second component is the OL layer,
composed of a matrix that contains the weights and an array for
the biases. The width and height of the weight matrix are directly
dependent on the number of classes that the model can predict and
the length of the last layer of the frozen model, while the shape of
the bias array depends only on the number of known classes. Note
that the initial values of the OL layer are not zeros or random values
but just a copy of the original classification layer computed during
the frozen model training.

Continuous Learning Algorithms

The general structure of the proposed systems is similar across all
the algorithms implemented. The training is performed in real-time
in supervised mode, meaning that each time a data array and a
ground truth label are received, a training step is performed on the
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OL layer. After this step, the data is discarded, saving memory in
the device.
As shown in Figure 5.1, the data array and the label sent to the
MCU are immediately elaborated by the frozen model. Before the
OL layer starts the training, the label is checked. The goal is to
control if the label received is already known by the system or not.
If the label is an unknown class, the shape of the OL layer is en-
larged, with a new row to the weight matrix, and a new cell to
the bias array. This is possible because the OL layer is allocated
at the boot in the RAM of the MCU, while the frozen model is
usually stored in the flash memory of the device. After the feature
extraction is performed by the frozen model, the output is fed to
the OL layer. Here, the classification is computed with the for-
mula output = W · frozen out+B and a softmax function applied
to the output. The prediction is then compared with the ground
truth label and, based on the error, the weights and biases are up-
dated according to the specific algorithm rules. This work focuses on
the performance evaluation of some state-of-the-art algorithms de-
signed for unconstrained platforms. Our contribution also includes
the optimization of low-memory microcontrollers on the selected
MCUs. The algorithms implemented are the standard NN training
methods presented in [194]. In detail, they are: i) a variation of
TinyOL, namely TinyOL v2; ii) the CWR algorithm initially pro-
posed in [206] and later improved as CWR+ in [204], and iii) the
algorithm LWF shown in [202, 204].

Figure 5.1: Basic block diagram of the tinyOL system.
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TinyOL

TinyOL exploits the standard approach used in NN training but is
applied in real-time contexts [194]. Once the data passes through
the frozen model, it arrives at the OL layer. At first, the inference is
performed, and later the training is done. The method uses gradient
descent applied to the loss function, and a cross-entropy applied on
the prediction and the ground truth label. Notice that the number
of classes known from the OL system can change during runtime
depending on the labels sent to the system; thus, the memory re-
quired for the OL layer can change unpredictably.
To overcome catastrophic forgetting, a variation of this method is
implemented. We propose to exploit the information coming from
a small batch and not just from the last sample read. In this case,
the system requires the allocation of another weight matrix and bias
array of the same size. The idea is to use the OL layer for inference,
and each time a sample is received and elaborated by the model, its
backpropagation is not applied directly to the OL layer but rather
added in new containers called W and B (one for weights, the other
for biases). When k samples are received and elaborated by the
system, the OL layer can be updated using the average of the back-
propagation data saved in W and B. Note that the user tunes the
value k that defines the batch size. The updates of the weights at
each step become:

Wi,j = Wi,j + α(yi − ti) · xj (5.1)

Bi = Bi + α(yi − ti) (5.2)

At the end of each batch, the backpropagation on the training
weights is:

wi,j = wi,j −
1

batch size
·Wi,j (5.3)

bi = bi −
1

batch size
·Bi (5.4)

Where yi is the prediction obtained from the OL layer, ti is the true
label, α is the learning rate (tuned by the user), and wi,j and bi
are the weights and the biases of the OL layer, respectively. The
TinyOL method is a straightforward implementation of online train-
ing. It requires an amount of memory that depends only on the size
of the weight and bias matrices, which depend on the number of
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classes known and the height of the last layer of the frozen model.
The method allows the model to change its parameters each time
new data arrives without any constraints. This is why it cannot
efficiently contrast the catastrophic forgetting.
TinyOL with mini-batches uses the same regularization approach
but with double the memory. Unlike the TinyOL, this method tries
to average the backpropagation over the last k samples received.
With a small value of k, it is not contrasting the catastrophic for-
getting but rather is trying to optimize the weight and bias varia-
tions to create a model that better predicts the outcome of batches.
With a larger value of k, it can be possible to update weights, thus
maintaining control over the forgetting.

1. The method TinyOL v2 is a modified version of the original
TinyOL. In this case, it tackles the catastrophic forgetting of
old classes by not updating their weights and biases. This al-
gorithm behaves as the TinyOL method except that the back-
propagation is applied if the weight or bias is related to a new
class. Then, the backpropagation becomes:

wi,j = wi,j − α(yi − ti) · xj (5.5)

bi = bi − α(yi − ti) (5.6)

where i = p, p+ 1.., n and j = 0, 1, ..,m

In this case, the iterator i starts from the value p, represent-
ing the first unknown class; thus, the update is performed only
on the newest weights. The TinyOL v2 is implemented with
mini-batches to overcome catastrophic forgetting.
In conclusion, TinyOL v2 requires the same memory as the
original TinyOL method but modifies only a portion of the
OL layer to remove the catastrophic forgetting effect. How-
ever, this approach is ineffective in fine-tuning the model when
it tries to learn new patterns of the original classes. Addi-
tionally, the method does not optimize the classification layer
for the prediction but separates its behaviour into two parts
where one stays updated while the other always remains the
same, thus the weights of the last layer are not working to-
gether for the prediction. The version TinyOL v2 with mini-
batches requires an amount of memory allocated slightly less
than TinyOL mini batch because the matrix W and B are of
shape (n− p)×m and (n− p)× 1.
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2. LWF is a regularization approach that overcomes catastrophic
forgetting by balancing the backpropagation with new and old
knowledge. This method requires the usage of two classifica-
tion layers (each with a matrix of weights and an array of
biases). The first one called tl (training layer), is continuously
updated and performs the actual OL system inference. The
second one called cl (copy layer), is the copy of the original
frozen model classification layer. The idea of the algorithms
is to perform the inference with both layers and then apply
a loss function that depends on both outputs and the ground
truth label. The gradient descent backpropagation is then
implemented to this loss function:

LLWF (yi, zi, ti) = (1− λ) · Lcross(yi, ti) + λ · Lcross(yi, zi)
(5.7)

Where yi is the prediction array obtained from the layer tl,
zi is the prediction array obtained from the layer cl, ti is the
ground truth label, and λ is the variable weight that defines
which prediction has more relevance. In this algorithm, the
loss function (5.7) is composed of a weighted sum of the cross-
entropy applied to two predictions, where the first part is re-
lated to the layer tl, which is always updated, and the second
part is related to cl, which represents the original model. The
role of λ is extremely important because it defines which pre-
diction can obtain more decisional power in the classification.
The value of λ, as mentioned in [204], cannot be maintained
constant, but rather change together with the evolution of
the training. With this, the LWF algorithm is a continuous
balance between the continual learning and the original be-
haviour. This application shows experimentally that evolving
λ with a function proportional to the number of predictions
performed is a good solution. Thus, the update of the loss
function weights is the following:

λ =
100

100 + prediction counter
(5.8)

For the sake of simplicity, this implementation follows the
modification applied in [204], where the loss function (5.7)
is computed with both components being cross-entropy, and
the other knowledge distillation loss.
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A second version of the algorithm is proposed. The varia-
tion updates the values of cl every k training performed. This
allows us to have a model that is a bit more flexible concern-
ing the LWF algorithm, where the two extremes are balanced
(training layer and copy layer). The balancing is performed
between the continually updated layer and a layer stopped
in time (where its values are updated less frequently). In
this case, the experimental lambda function found is defined
by (5.9).

λ =
batch size

prediction counter
(5.9)

Both the implemented LWF methods use the same amount of
memory, which consists of two matrices of size n×m and two
arrays of size n × 1. This algorithm is more computationally
expensive because it performs two predictions, which is one of
its drawbacks. Nevertheless, the proposed method allows the
model to overcome the problem of catastrophic forgetting.

3. CWR is an approach that exploits the usage of two classifica-
tion layers together with a weighted backpropagation method.
The first one, called tl (training layer), is updated every train-
ing step, and the second one, called cl (consolidated layer), is
updated once every batch. During a training step, the infer-
ence is done only once with the tl, and its weights and biases
are updated with the standard TinyOL method. The break-
through of the algorithm takes place at the end of a batch
with the following rule, which is applied to both weights and
biases of the layers:

cwi,j =
cwi,j · updatesi + twi,j

updatesi + 1
(5.10)

twi,j = cwi,j (5.11)

Where twi,j are the weights and biases of the training layer,
cwi,j are the weights and biases of the consolidated layer, and
updatesi is an array that behaves as a counter of labels en-
countered.
The idea is to have a layer that changes slowly during the
training and another is continuously updated. The layer tl
behaves as a short-term memory because it gets reset every
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time a batch ends, starting the training from a new point. On
the other hand, the layer cl behaves as the long-term memory
because it never gets cleaned, and its weights and biases are
updated using the tl. The update of the cl layer is the partic-
ular backpropagation rule that allows the system to fuse slow
memory and updated memory together. The method uses a
weighted average between weights where the weighting factor
depends on the number of times a specific label appeared in
the training batch. Note that the method requires the infer-
ence computation only from the tl layer, while the other is
never used. This is because while training the algorithm has
no benefit in performing inferences with the cl layer in training
mode. An inference with this layer is done only if a prediction
is requested, which happens only during testing.
CWR requires twice the memory of the TinyOL method be-
cause it allocates two matrices and two arrays of size n×m and
n×1. The number of computations during training can double
if a prediction is requested. Most times, the method executes
only one inference per sample. When requested, the method
also starts the cl prediction, which is the most accurate of the
two.

Case Studies

To test and evaluate the algorithms described above, we used two
applications. The first (experiment A) uses a Nucleo STM32 -
F401RE paired with a Nucleo shield IKS01A2 (Figure 5.2), equipped
with a 3D accelerometer sensor. This example aims to use an NN
model on the data coming from the accelerometer to classify letters
written in the air with the MCU mounted on the user’s hand. The
NN model is initially trained to recognize the vowels, later the OL
system is attached to the model allowing it to learn three new let-
ters B, R, and M. The second application (experiment B) uses an
OpenMV cam (Figure 5.2) as a visual smart sensor. It is based on
the STM32H7 and permits the implementation of vision-based ap-
plications at low power consumption. This application uses a CNN
model that was initially trained to recognize the first 6 digits from
the MNIST dataset [189]. The OL system teaches the model to
recognize the remaining digits correctly.

1. Dataset Acquisition. In experiment A, the dataset is ac-
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Figure 5.2: SMT32 F401RE paired with acclelerometer shield on
the left - OpenMV camera on the right.

quired with the same hardware described above connected via
USB to a laptop. The data is streamed in real-time via UART
(USB cable) to the laptop, saving the data received in a text
file. The acquisition of each letter lasts for 2 seconds, the
MCU is set to work on a reading frequency of 100 Hz, making
a single letter sample composed of 3 arrays (i.e., X, Y, Z ac-
celerations) of 200 values each. All the letters in the dataset
were recorded by the same user. The letters are always written
in capitals following the same general path but with accentu-
ated characteristics to make the dataset more similar to a NIC
scenario (new classes and instances). The dataset is built on
understanding 8 different letters, which are the original vowels
A, E, I, O, and U, and the additional consonants B, R, and M.
Each vowel has a total of 560 samples, while the consonants
have 760 samples each. The two groups’ unbalanced samples
are necessary because the vowels dataset is used in two pieces
of training. The first portion is used for training the frozen
model, which classifies only vowels. The remaining portion is
added to the OL system training dataset, which contains the
letters B, R, and M. The final shapes of the two datasets are
881 samples for the training of the frozen model and 4249 sam-
ples for the continual learning application. To make the data
usable by the model, each sample is reshaped from a matrix
of size 3×200 in an array of shapes 1×600. Once the datasets
are correctly generated, they are also shuffled separately.
The application on the OpenMV camera relies on the usage of
the well-known MNIST dataset [189]. The only pre-processing



112 CHAPTER 5. TINY ONLINE LEARNING

that is applied is the separation of the dataset into two groups
called low digits and high digits. The first group represents
the digits from 0 to 5, which are used for the training of the
CNN frozen model, while the remaining group represents the
rest of the digits used for the OL training. The dataset used
for the training of the frozen model contains a total of 36017
samples, while the dataset used for the OL training contains
5000 samples (500 for each digit). The reduced amount of
samples in the dataset for the OL application is due to the
time taken from the method itself. Anyway, the size selected
is enough to guarantee fair results.

2. Training and evaluation. The model used for the accelero-
meter application is an NN classification model with low com-
plexity and a low number of layers. The model structure is the
following: input layer with 600 nodes, two hidden layers with
128 nodes and ReLu, output layer with 5 nodes, and Softmax.
The frozen model is trained locally on a laptop using Tensor-
flow where the used optimizer is Adam, and the loss function
is categorical cross entropy. The model is trained for 20
epochs with a batch size of 16. The testing shows a final ac-
curacy of 96.83%. Another important step is the exportation
of the trained model file, which is done in two versions. The
first version is the simple exportation of the original model
without modifications, while the second is the exportation of
the truncated version (frozen model), where the last layer is
removed. This is necessary because the OL system requires
total control of the weights and biases of the last layer. Re-
moving these values from the model file and saving them in
a text file in matrix form makes it possible to reload those
in the code as matrices later. This allows the user to perform
the standard inference from the model and later propagate the
output through the last layer’s weights, which are now acces-
sible and editable.
The second application uses a CNN, which is more suited for
image classification. The model structure is the following: two
Conv2D 8 filters with Relu, MaxPooling 2x2, two Conv2D 8
filters with Relu, MaxPooling 2x2, Dropout 0.25, flatten, and
Dense to 6 with Softmax. The frozen model is trained with
Tensorflow with Adam optimizer, categorical cross entropy
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as loss function, 30 epochs, and a batch size of 64. The same
exporting procedure presented above is performed. Note that,
due to the limited memory on MCUs, pruning and quantiza-
tion on the trained model are always suggested. In this case,
the model structure does not require compression, but we de-
cided to use it anyway to demonstrate the performance of
these models.

3. TinyOL Implementation. The OL layer is composed of one
matrix for the weights and an array for the biases. These two
containers are initialized at the beginning of the code. Their
initial values are copied from a text file generated from the
training step. In this way, it is possible to have a classification
layer that starts exactly from where the Tensorflow training
stopped. The matrix and array for experiment A have an ini-
tial shape of 5× 128 and 1× 5, respectively. The matrix and
array for experiment B have an initial shape of 6 × 512 and
1 × 6, respectively. Note that in both applications, during
training, each time a new class (letter or digit) is found, the
OL system adds one row to the weights and one cell to the
biases. This increases the allocated RAM, and it is important
to ensure that the full capacity is not met.
The pseudo-test is done to test the performance of the CL
algorithm of interest at running time. It is crucial to begin
the test once a portion of the dataset has been processed to
accurately represent the training method. This type of testing
better resembles a real-world application, where the OL sys-
tem is deployed in an environment for an indefinite period, and
its performance is checked online during runtime. In experi-
ments A and B, the pseudo-testing starts when the training
surpasses the 80% of the dataset available.

4. Evaluation Metrics. We measured the accuracy, training
step time, and the maximum allocated RAM, to evaluate the
performance of the CL algorithms. The accuracy indicates
how much the model can predict incoming data and adapt
to new data. Considering that this work aims to prove the
feasibility of deploying CL algorithms in MCUs, the accuracy
can be enough to evaluate the models’ goodness. The ac-
curacy is computed with new data during testing; however,
cross-validation can be considered for a more robust test. The
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training step time gives the period that the continual learn-
ing algorithm needs to compute a prediction and update its
weights and biases. This metric assesses the algorithm’s re-
sponsiveness. Finally, the maximum allocated RAM permits
a tradeoff between the usage of resources on the MCU and the
achieved accuracy. These metrics allow a proper and efficient
selection of the best algorithm running on embedded systems.

5.1.4 Experimental Results

Before benchmarking the proposed algorithms, we show a compari-
son between results achieved on a laptop and those using the MCU.
It is necessary to confirm that the performance is comparable and
the algorithms are correctly optimized for the microcontrollers and
capable of running online training reliably. After this, the results
from the application on the OpenMV camera are shown, and the
algorithm’s accuracy is compared when new classes are added on-
line. The evolution of all the relevant parameters is stored from
both devices and compared. Parameter histories from both devices
show the same behaviour with a couple of exceptions that show a
minor magnitude difference for just a few steps. From this test, it
is possible to conclude that the MCU behaves in the same way as
the laptop, proving that a device with such limited resources can be
considered reliable and can be directly compared with the perfor-
mance of more powerful devices.
Table 5.1 summarizes the performance of all algorithms from exper-
iment A. Each test is performed with the same frozen model and
dataset in the same order. The first row clearly shows that all the
methods perform rather well, with the lowest accuracy being 86.13%
(10.7% less than the original Tensorflow training due to the addition
of the OL system). This means that a dataset of 4000 samples with
approximately 500 samples for each class is enough for adequately
training a model on three additional classes. Another important
parameter is the inference time. The frozen model always behaves
in the same way with a total inference time of 10.65 ms, no matter
the strategy adopted. However, the inference time for the OL layer
changes depending on the algorithm used. The slowest method is
the LWF algorithm, which on average, requires more than double
the time of all the other methods because it performs double the
predictions for each training step, thus doubling the computations.
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All the other methods are very close, and the small differences are
mainly due to different behaviours at the end of a batch. Another
useful comparison is the RAM allocation. Table 5.1 confirms that
the two lightweight methods are TinyOL and TinyOL v2, which al-
locate only one matrix and one array. The remaining methods use
a similar amount of memory with a small variation of 100 bytes.
Note that the Nucleo STM F401-RE MCU’s total available RAM is
96 kB.
Better conclusions can be drawn from the plot in Figure 5.3 which

Table 5.1: Accuracy, average training step time, and memory allo-
cated during training for all algorithms - STM application.

TinyOL
TinyOL
batches

TinyOL
V2

TinyOL
V2

batches
LWF

LWF
batches

CWR

Accuracy
(%)

86,13 86,26 87,98 87,98 87,61 86,50 88,47

Training
Time (ms)

0,99 1,54 1,03 1,11 3,45 3,26 2,11

Max
RAM (kB)

26,10 29,80 26,10 29,80 29,90 29,90 29,90

displays the prediction accuracy for each method. The bar plot
shows that all methods successfully perform OL training and main-
tain high accuracy. The method that shows the best overall accu-
racy is the CWR algorithm; however, the difference is small. Thus,
it is taken into account the inference time and the memory used. In
general, all classes are correctly integrated into the OL model, and
only some classification mistakes occurred in the letters R and B
because of their similar shape. Another important trend present in
all algorithms is how the accuracy is spread quite uniformly among
all classes. This confirms that all methods can perform continuous
training and include new classes in their model structure.
The overall performance of the OL systems compared to the frozen
model is reduced. This suggests that the accuracy of the original
model is sacrificed to balance the system. This behaviour can be
tested even more by enlarging the dataset, which would help to un-
derstand if the model training has been early stopped.
Another important aspect concerns the catastrophic forgetting. No
method shows a strong effect against or in favour of it. Even the
TinyOL method, which is considered the most vulnerable to the phe-
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nomenon, does not show poor behaviour, meaning that the catas-
trophic forgetting in this specific application is not particularly se-
vere. The phenomenon is probably dumped by the randomization
of the dataset, which allows the models to refresh old data and learn
new classes continuously.

Figure 5.3: Accuracy of each strategy used - STM application.

Concerning experiment B, the most relevant results are summarized
in Table 5.2. In this case, the test shows a higher accuracy compared
to the previous experiment, most probably due to the high-quality
dataset used. The inference performed by the frozen model stays
constant for all methods and is 15.88 ms. The increase of inference
time for the OL layer in this application is given by the increased
complexity of the frozen model. Instead, the inference time for the
CL strategies is a bit different. All the methods that do not use
batch updates are faster than their respective batch methods. Fur-
ther conclusions can be drawn from the bar plots in Figure 5.4. In
this case, the lowest accuracy is higher than the previous applica-
tion, and in particular, the OL models have a much less drop in
accuracy when compared to the Tensorflow training, from 99.35%
to 93.09%. Also, in this experiment, the catastrophic forgetting is
not severe. The most sensible method for the phenomenon (the OL
method) does not show any problem due to the continuous refresh-
ment of the old data.
Another important comparison can be made between the methods
and their respective implementation with batches. The accuracy dif-
ference in Table 5.2 is minor, but better conclusions can be drawn
with Figure 5.5, where the overall method accuracy is tested at the
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Table 5.2: Accuracy and average training step time for all algo-
rithms - OpenMV application.

TinyOL
TinyOL
batches

TinyOL
V2

TinyOL
V2

batches
LWF

LWF
batches

CWR

Accuracy
(%)

94,39 95,40 94,39 93,09 95,20 94,99 95,70

Training step
time (ms)

3,02 3,35 2,13 4,24 4,86 5,20 3,32

variation of the batch size. It is clear how the increase in batch size
does not improve the model’s accuracy. This suggests that the learn-
ing improvement (particularly for TinyOL and TinyOL v2) from just
one sample is more significant than the averaged info obtained from
a bigger group.

Figure 5.4: Accuracy of each strategy used - OpenMV application.

5.1.5 Conclusions

This work explores online learning on microcontrollers in two differ-
ent scenarios concerning the analysis of accelerometer data and the
classification of images. We adopted four state-of-the-art contin-
ual learning strategies with some improvements from our side. We
showed that continual learning on small MCUs is a feasible solu-
tion for contrasting dynamic contexts, and the results obtained can
generate self-sustainable and adaptable models. Our results demon-
strate the capability of continual learning strategies to adapt to the
extension of 4 new classes in the case of image classification or 3
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Figure 5.5: Accuracy of each class at variation of batch size -
OpenMV application.

classes in the case of gesture recognition. Models trained in these
conditions can maintain high performance with an acceptable drop
in accuracy of 10.7% for the accelerometer example and 6.3% for
the MNIST digits recognition.
The obtained results demonstrate the potential of this type of tech-
nology, especially if applied to small and constrained devices. Con-
tinual learning applied in tinyML is a good alternative and an im-
provement to the standard approach of train-and-deploy because it
permits flexible, self-adapting, and self-updating systems.

5.2 Unsupervised Online Learning on
Edge Devices

Traditional tinyML systems are widely employed because of their
limited energy consumption, fast execution, and easy deployment.
However, such systems have limited access to labelled data and need
periodic maintenance due to the evolution of data distribution (i.e.,
context drift). Continual machine learning algorithms can enable
CL on embedded systems by updating their parameters, addressing
context drift, and allowing neural networks to learn new categories
over time. However, the availability of labelled data is scarce, limit-
ing such algorithms in supervised settings. This contribution 2 over-

2The work presented in this section has been published in the following paper:

• Poletti, G., Albanese, A., Nardello, M., and Brunelli, D. (2023, Septem-
ber). Tiny Neural Deep Clustering: An Unsupervised Approach for Con-
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comes this limitation with an alternative approach which combines
supervised deep learning with unsupervised clustering to enable un-
supervised continual machine learning on the edge. The system is
deployed in an OpenMV Cam H7 Plus and tested with the MNIST
dataset reaching a classification accuracy of 92.3% and a frame rate
of 44 FPS.

5.2.1 Introduction

TinyML systems are trained on a fixed dataset and assume that the
data distribution does not change over time. In many real-world
applications, the data distribution can evolve, leading to a prob-
lem known as context drift due to changes in the environment, user
behaviour, or underlying data distribution. Context drift can be
a challenging problem for ML models deployed in real-world appli-
cations, where the input data may change over time. If a model
cannot adapt to the changing context, its performance can suf-
fer, resulting in incorrect predictions or decisions. A solution to
overcome context drift is CL. A different approach consists of ap-
plying CL to resource-constrained devices (e.g., MCUs) creating
intelligent self-updated IoT systems with high flexibility requiring
low maintenance in challenging scenarios [207, 208, 209]. Common
state-of-the-art CML strategies, such as CWR [204], LWF [203],
and tinyOL [194], can mitigate the effects of context drift; how-
ever, they need a ground truth to carry out the backpropagation
for weights and biases updates. Those approaches are usually re-
ferred to as supervised learning. Thus, the incoming data must
be labelled, making such systems unfeasible for real-world applica-
tions because of the unavailability of ground truths. Other works,
such as Online Deep Clustering [210] and Unsupervised Continual
Learning for Gradually Varying Domains [211] avoid the need for
labelled data. In the former case, the authors use a combination
of clustering and deep learning algorithms to implement a semi-
unsupervised continual learning system. In the latter, authors use
clustering as a classification system to adapt to gradually varying
domains. Even though these works show successful solutions for

tinual Machine Learning on the Edge. In International Conference on
Applications in Electronics Pervading Industry, Environment and Soci-
ety (pp. 117-123). Cham: Springer Nature Switzerland.
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unsupervised CL, they do not include embedded implementation,
which is challenging for real-world applications. So far, only the
work presented in [212] presents a solution for on-device training
with a low-memory budget. However, this solution still works in
a supervised setting, and during the on-device retraining, the data
need the ground truth. Thus, an embedded solution for implement-
ing unsupervised CL to get closer to real-world exploitation is still
missing making this work a useful contribution to prove the effec-
tiveness of unsupervised CL on the edge. Unsupervised CL on the
edge can support many domains such as industrial visual inspec-
tion [166], surveillance [22, 213], smart agriculture [111, 10], and
medical applications (e.g., histopathology) to enhance the period of
use without maintenance[214][215]. In this section, we present Tiny
Neural Deep Clustering (TinyNDC), an innovative approach that
combines supervised learning with unsupervised clustering to en-
able unsupervised CL on resource-constrained devices. The MNIST
dataset is used to evaluate the proposed algorithm. The first 6 dig-
its are used to initialize the model, while the remaining 5 are used
to test the online learning algorithm. Results show that TinyNDC
can achieve 44 FPS and a learning accuracy of 92.3% on average
among the 10 MNIST digits.

5.2.2 System Design

Combining clustering and deep learning systems can be proven a
successful solution. It mixes the flexibility of clustering in adapting
to different domains with the stability of DL in avoiding drift from
the current domain. We propose an algorithm, namely TinyNDC
that is tailored for running in an ARM Cortex M7 processor.
Figure 5.6 presents the architecture of TinyNDC and is composed
of three main components:

• Frozen model. The static part of the model which is not
updated during runtime. It can be any NN truncated in the
last layer (e.g., the Softmax classifier).

• Active model. The dynamic part of the model which is
updated during runtime. It is composed of two sub-modules,
namely the consolidated layer and the training layer. The first
acts as a memory to mitigate catastrophic forgetting, while
the latter is used for domain adaptation. The active model
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Figure 5.6: TinyNDC architecture. Data are fed to the Frozen
Model that returns a set of features. Online deep clustering clus-
ters the features, calculating the closest centroid, while the Active
Model carries out the classification. Then the active model predic-
tion is used to update the centroids of online deep clustering, and
the pseudo label produced by the clustering algorithm is used to
update the weights and biases of the active model.

can update its weights and biases and add new classes if the
current data is not associated with an already known class.

• Online deep clustering. It is fed with the output of the
frozen model and produces the pseudo-label estimation. This
label is fundamental for updating the active model. Further-
more, the clustering can update its centroids by using the pre-
diction of the active model. The clustering’s centroids need
to be initialized with a small amount of data (e.g., a hundred
samples).

5.2.3 Experimental Setup

To evaluate the performance of the proposed TinyNDC algorithm,
we use the MNIST dataset [189] and an OpenMV Cam H7 Plus
(OMV) 3 device. The frozen model is trained to classify digits from
0 to 5, while the remaining digits were used to test the CML capa-
bilities in an unsupervised scenario. Specifically, the dataset con-

3https://openmv.io/products/openmv-cam-h7-plus
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sists of a total of 60000 samples. 35000 samples are used for train-
ing the frozen model, 100 for cluster initialization (10 per class),
7000 for the online learning phase, and 1000 for assessing the CML
performances. Three different online learning algorithms, namely
CWR [204], LWF [203], and tinyOL [194], are tested as update
mechanisms for the active model. Accuracy is selected as the per-
formance metric. CWR, LWF, and tinyOL reach an accuracy of
92.3%, 91.3% and 91.7%, respectively. The experimental setup con-
sists of correctly identifying data shown to the OMV through a PC
screen. As CWR is proved to be the best-performing algorithm it
is chosen as the target update rule for performing further tests.

Frozen Model Training

TinyNDC is pre-trained in a supervised fashion on a PC to recognize
digits from 0 to 5. The frozen model generation and training are
carried out with the TensorFlow library and Python on the PC. We
used a CNN specifically designed for image processing composed of
four 2D convolutional layers. For the training phase, Adam is used
as an optimizer, categorical cross entropy as a loss function, with a
total of 40 epochs, and a batch size of 32. After the training phase,
the frozen model shows an accuracy of 99.64% on average among
the first 6 digits.

Centroids Inizialization

After the initialization of the frozen model, we moved to the centroid
initialization, needed as a preliminary step. We used 10 samples per
category, thus we extracted 100 samples from the 60000 training
images. The OMV snaps a photo of each digit that shows up on the
screen, feeds it to the trained frozen model for feature extraction,
and sends the resulting array to the PC. Finally, the PC collects the
100 arrays, where each image feature is represented by a vector of
512 samples. The brightness of the screen is fixed. The clusters are
defined by the sample labels and each centroid is calculated through
the mean of all the respective cluster samples.

5.2.4 Experimental Results

The proposed system is compared with the same system composed of
the frozen and active model, TinyCML, in a supervised setting (i.e.,
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without the clustering algorithm for estimating the pseudo-label) to
monitor performance degradation in moving from supervised to un-
supervised CL. Furthermore, a comparison is also conducted with
the clustering algorithm TinyODC, which acts as an unsupervised
CML system to ensure the stability and feasibility of the proposed
system. In this case, the clustering algorithm can classify data and
update its centroids during runtime. The comparison, presented
in Table 5.3, shows that even though our system works in a more
challenging setting (i.e., unsupervised), it reaches good performance
almost comparable with the supervised system. Furthermore, the
clustering algorithm alone performs worse than the TinyNDC, con-
firming the effectiveness of the combination of clustering and DL.
Figure 5.7(a) presents the learning curve comparison considering
the accuracy. It shows that TinyNDC starts learning with a low
accuracy level compared to TinyCML, but, after 8000 samples, it
almost reaches the learning level of TinyCML. This further confirms
the stability of clustering and DL combination, which can reach the
performance of the associated supervised learning system. It can be
argued that the best performing algorithm, as shown in Table 5.3,
is TinyCML. However, it uses a supervised learning approach that
is not feasible in real-world scenarios. On the contrary, TinyNDC
trades a mere 2% accuracy loss with the ability to work in an unsu-
pervised fashion, making it feasible to be implemented in real-world
applications.

Table 5.3: Scores comparison between supervised CML (TinyCML),
unsupervised CL with only clustering (TinyODC ), and the proposed
solution TinyNDC. TinyCML uses an initial learning rate of 0.8, a
decay rate of 2, a learning rate step size of 500, and a batch size
of 16. Tests are conducted at 160 lux using 7000 samples for the
training and 1000 for the validation.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%)

TinyCML 94.3± 1.2 95.0± 1.2 94.0± 1.2 94.0± 1.2
TinyODC 90.7± 0.6 91.0± 0.6 91.0± 0.6 91.0± 0.6
TinyNDC 92.3± 1.2 93.0± 1.2 92.0± 1.2 92.0± 1.2

Finally, the proposed system is characterized by measuring the exe-
cution time of each task to ensure real-time capability and possible
employment in real-world applications. The TinyNDC tasks’ exe-
cution times are compared with supervised CML (TinyCML) and
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(a) (b)

Figure 5.7: Comparison of TinyCML, TinyODC, and TinyNDC for
(a) accuracy learning curves, and (b) tasks’ execution time.

Table 5.4: Execution times of different sections of supervised CML
(TinyCML), unsupervised CML with clustering (TinyODC ), and
TinyNDC.

Section
TinyCML

(ms)
TinyODC

(ms)
TinyNDC

(ms)

Frozen Model 16.39 16.39 16.39
Clustering - 2.18 2.18
Active Model 1.38 - 1.38
Clustering Update - 0.22 0.22
Active Model Update 2.34 - 2.34

Total 20.10 18.79 22.50

unsupervised CML with clustering (TinyODC ). As shown in Ta-
ble 5.4, TinyNDC needs more time than the other strategies to pro-
cess one sample and perform the model update. On the other hand,
as shown in Figure 5.7(b), most of the processing time is needed
by the frozen model, which requires 16.39 ms to produce the infer-
ence result, while the active model and the clustering need only 6.12
ms for inference and update. Thus, even though TinyNDC uses a
combination of clustering and DL, the processing complexity is not
increased considerably, confirming the feasibility of using TinyNDC
for real-time applications.
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5.2.5 Conclusions

Continual learning is an active research area that aims to provide
self-updating systems. This permits the usage of such algorithms in
challenging scenarios where it is difficult to perform periodic main-
tenance. However, such systems are computationally intensive, thus
too power-demanding for machine learning on the edge exploitation.
This work presents TinyNDC, an initial approach to unsupervised
learning on the edge by combining clustering with deep learning.
The algorithm is tested on an MCU-based camera, namely OpenMV
Cam H7 Plus, and evaluated against the MNIST dataset. Results
show that the system achieves a frame rate of 44 FPS and a learning
accuracy of 92.3%. Future work will employ the usage of a more
deep update by considering the inner layers and benchmarking with
real case studies.
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Chapter 6

Conclusions

The IoT revolution denotes integrating sophisticated digital tech-
nologies into common devices to support different applications such
as agriculture, manufacturing, healthcare, and consumer electron-
ics. It involves the utilization of automation, artificial intelligence,
big data, and wireless communication to establish smart devices and
revolutionize the daily lives of individuals. IoT holds the potential
for heightened efficiency, enhanced productivity, and greater flexi-
bility. It includes robotics, intelligent machines, wearable devices,
and distributed monitoring systems allowing them to support daily
and repetitive tasks, permitting humans to focus on more complex
and value-added problems. This improves overall productivity, re-
duces the likelihood of errors, and increases service quality.
Recent advancements have demonstrated that the tinyML approach
is a successful solution by bringing the neural processing (i.e., the
inference step) on the device, achieving an energy-efficient execu-
tion with a real-time frame rate. However, such systems present
challenges such as large model deployment in constrained devices
(e.g., MCUs), efficient model optimisation, and on-device learning
implementation. Furthermore, tinyML systems are affected by con-
tinuous environmental changes (e.g., light, temperature, reflection),
leading to unstable and obsolete systems. For this reason, such sys-
tems need periodic maintenance, such as model retraining, to ensure
they follow the environmental behaviour. On the other hand, main-
tenance means stopping the system operation for a limited period;
furthermore, such systems can be deployed in hard-to-reach posi-
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tions, making their preservation an expensive and difficult task.
To drastically limit maintenance, on-device learning is a success-
ful solution to obtain self-updated systems during run-time and
avoid model retraining. It represents a paradigm shift in machine
learning, allowing models to learn continuously, mimicking the hu-
man capacity for lifelong learning. Traditional offline ML appli-
cations train models to perform backpropagation on the available
dataset. This allows the model to consolidate its knowledge and op-
timize its decision-making based on the samples inside the training
batches. On-device learning applications operate on sequentially ar-
riving data streams, similar to the real-time nature of many applica-
tions. Due to this dynamic nature, data poses problems like concept
drift, in which the distribution of the underlying data changes over
time. This leads to the need for a balance between learning new
things and remembering what has already been learned. On-device
learning permits models to learn from new data while preserving
and consolidating existing knowledge. However, such algorithms are
typically computationally intensive, and on-device learning on low-
power and low-cost devices becomes a challenging task that must
be thoroughly explored.
The tinyML integration into real-world applications is still scarce
due to the development complexity and the lack of standardised
tools. Furthermore, there is not a sufficient number of successful
case studies that encourage companies to invest in tinyML systems.
This thesis overcomes the challenges introduced by tinyML and
tinyOL by providing a framework and methodologies to improve its
development and integration opening its usage in various sectors.
Furthermore, it demonstrates the feasibility and the effectiveness
of implementing tinyML in different real use cases highlighting its
benefits related to energy efficiency, real-time capability, and low-
impact memory footprint. This will enhance its employment in
mechatronics systems including fix and mobile robotics, IoT, and
industrial applications.
In particular, Chapter 2 presents a smart trap for pest detection
suitable for apple orchards in precision agriculture. It shows the
benefits of implementing tinyML in IoT end nodes by ensuring high
quality of service and the platform energy neutrality with a solar
panel of a few hundred centimetres. This system permits low main-
tenance, low cost, and optimised usage of chemicals.
Chapter 3 moves the attention to the mobile robotics field, focus-
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ing on autonomous UAVs. Also, these systems with a low payload
and energy resources can benefit from tinyML implementing in-situ
data processing for autonomous navigation using visual cues. It is
demonstrated that using object detection with deep learning algo-
rithms on the edge does not affect the flight time thanks to the
optimisation involved. Furthermore, it explores navigation under
rainy conditions, providing a possible solution to counteract adver-
sity and increase drone operability.
Chapter 4 focuses on industrial applications, in particular, visual
inspection in production lines. It presents a cyber physical system
composed of three MCU-based cameras running deep neural net-
works on the edge. It exhibits impressive performance in defect
detection as well as in responsiveness, guaranteeing the smooth op-
eration of the production line.
Finally, Chapter 5 addresses the challenge of on-device learning on
constrained devices, namely tinyOL. It provides an efficient solution
to implement learning capabilities on the edge by limiting online
learning only to the last few layers of a deep neural network. This
trade-off permits the efficient deployment of these complex systems
ensuring the successful online training of the model. Furthermore,
it shows an extension by using a combination of unsupervised learn-
ing algorithms to open its usage in many real-world applications.
Overall, the use cases analysed in this dissertation provide successful
solutions with tinyML and tinyOL. They exhibit good performance
in accuracy and frame rate, highlighting the benefits of using the
tinyML approach. This contribution can open the usage of such sys-
tems in industrial and commercial applications providing accessible
and scalable methodologies that encourage companies to use such
techniques.
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Chapter 7

PhD Activities

During this research experience, starting from November 2020 with
a research fellowship, following a PhD in November 2021, I had the
opportunity to carry out the following activities.

Journal Papers

• Brunelli, D., Albanese, A., d’Acunto, D., and Nardello, M.
(2019). Energy neutral machine learning based iot device
for pest detection in precision agriculture. IEEE Internet of
Things Magazine, 2(4), 10-13.

• Albanese, A., Nardello, M., and Brunelli, D. (2021). Auto-
mated pest detection with DNN on the edge for precision
agriculture. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 11(3), 458-467.

• Albanese, A., Nardello, M., and Brunelli, D. (2022). Low-
power deep learning edge computing platform for resource con-
strained lightweight compact UAVs. Sustainable Computing:
Informatics and Systems, 34, 100725.

• Albanese, A., Nardello, M., Fiacco, G., and Brunelli, D. (2022).
Tiny machine learning for high accuracy product quality in-
spection. IEEE Sensors Journal, 23(2), 1575-1583.

• Albanese, A., and Brunelli, D. (2023). Industrial Visual In-
spection with TinyML for High-Performance Quality Control.
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IEEE Instrumentation and Measurement Magazine, 26(8), 17-
22.

• Albanese, A., Wang, Y., Brunelli, D., and Boyle, D. (2024).
Analysis and Estimation with DNNs of Adverse Rainy Condi-
tions in Visual Odometry for UAV Autonomous Navigation.
Under review in the IEEE IoT Journal.

Conference Papers

• Albanese, A., d’Acunto, D., and Brunelli, D. (2020). Pest de-
tection for precision agriculture based on iot machine learning.
In Applications in Electronics Pervading Industry, Environ-
ment and Society: APPLEPIES 2019 7 (pp. 65-72). Springer
International Publishing.

• Avi, A., Albanese, A., and Brunelli, D. (2022, July). Incre-
mental online learning algorithms comparison for gesture and
visual smart sensors. In 2022 International Joint Conference
on Neural Networks (IJCNN) (pp. 1-8). IEEE.

• Albanese, A., Taccioli, T., Apicella, T., Brunelli, D., and Ra-
gusa, E. (2022, September). Design and deployment of an
efficient landing pad detector. In International Conference on
System-Integrated Intelligence (pp. 137-147). Cham: Springer
International Publishing.

• Torrisi, A., Doglioni, M., Gemma, L., Albanese, A., Santoro,
L., Nardello, M., and Brunelli, D. (2022, September). Bat-
teryless Soil EIS Sensor Powered by Microbial Fuel Cell. In
Annual Meeting of the Italian Electronics Society (pp. 277-
282). Cham: Springer Nature Switzerland.

• Santoro, L., Albanese, A., Canova, M., Rossa, M., Fontanelli,
D., and Brunelli, D. (2023, June). A Plug-and-Play TinyML-
based Vision System for Drone Automatic Landing. In 2023
IEEE International Workshop on Metrology for Industry 4.0
and IoT (MetroInd4.0andIoT) (pp. 293-298). IEEE.

• Poletti, G., Albanese, A., Nardello, M., and Brunelli, D. (2023,
September). Tiny Neural Deep Clustering: An Unsupervised
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Approach for Continual Machine Learning on the Edge. In In-
ternational Conference on Applications in Electronics Pervad-
ing Industry, Environment and Society (pp. 117-123). Cham:
Springer Nature Switzerland.

• Albanese, A., Gotta, D., and Brunelli, D. (2024, September).
A tinyML-based IoT Device for Advanced Shipping Monitor-
ing. In International Conference on Applications in Electron-
ics Pervading Industry, Environment and Society.

Patent

The following patent application has been submitted with a positive
first draft of review:

• Albanese, A., Barchi, F., Brunelli, D., Elia, N., and Gotta, D.
(2023). Method and System for Controlling a Shipment.

Experience Abroad

• Young Fellow Student at the 59th Design Automation Con-
ference (DAC), July 2022, San Francisco, California, USA.
Poster presentation: “UAVs Autonomous Navigation with
TinyML and Incremental Online Learning Algorithms”

• Visiting PhD student at the Dyson School of Design Engineer-
ing, Imperial College London, London, United Kingdom, from
September 2023 to February 2024.
Research project: “Analysis and Estimation with DNNs of
Adverse Rainy Conditions in Visual Odometry for UAV Au-
tonomous Navigation”
Supervisor: Prof. David Boyle

Teaching Activities

During the PhD, I had the opportunity to assist in the following
teaching activities with laboratory classes:

• “Computer Science” at the bachelor’s degree in “Industrial
Engineering”

• “Laboratory of Internet of Things” at the master’s degree in
“Mechatronics Engineering”
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• “Embedded Systems” at the master’s degree in “Mechatronics
Engineering”
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[109] A. Koubâa and B. Qureshi, “Dronetrack: Cloud-based real-
time object tracking using unmanned aerial vehicles over the
internet,” IEEE Access, vol. 6, pp. 13 810–13 824, 2018.

[110] J. Lee, J. Wang, D. Crandall, S. Šabanović, and G. Fox, “Real-
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