A5 UNIVERSITA Q@
" DI TRENTO TN

qOS

Department of Information Engineering and Computer Science

Doctoral Programme in
Information and Communication Technology

Department of Physics

Transdisciplinary Program in
Quantum Science and Technologies

FINAL DISSERTATION

HYBRID CLASSICAL-QUANTUM
ALGORITHMS FOR OPTIMIZATION
AND MACHINE LEARNING

Advisor Student
Enrico Zardini

Enrico Blanzieri
Co-Advisors

Davide Pastorello

Valter Moretti

Academic year 2022/2023

Acknowledgements

First of all, I would like to thank my supervisors, namely, Professors Enrico Blanzieri, Davide
Pastorello, and Valter Moretti, for guiding me in this journey. I would also like to thank Professor
Gabriele Cavallaro for hosting me at Forschungszentrum Jilich during my research period abroad and
the reviewers of this thesis for their precious feedback.

Then, I would like to thank my family, namely, my mother Marina, my father Michele, and my
brother Luca, for always supporting and motivating me. In addition, I would like to express my
gratitude to my grandmother Pia and all my relatives.

Last but not least, I would like to thank my friends and colleagues for being present in these years.

This thesis was supported by Q@TN, the joint lab between University of Trento, FBK-Fondazione
Bruno Kessler, INFN-National Institute for Nuclear Physics and CNR-National Research Council.
In addition, the author gratefully acknowledges the Jilich Supercomputing Center (https: //www.
fz—juelich. de/ias/ jsc) for providing computing time on D-Wave quantum annealers and, specif-
ically, on the D-Wave Advantage™ System JUPSI through the Julich UNified Infrastructure for Quan-
tum computing (JUNIQ). Lastly, the author gratefully acknowledges the Italian Ministry of Univer-
sity and Research (MUR), which, under the initiative ”Dipartimenti di Eccellenza 2018-2022 (Legge
282/2016)”, has provided computational resources used in the experiments.

https://www.fz-juelich.de/ias/jsc
https://www.fz-juelich.de/ias/jsc

Contents

Abstract

1 Introduction

2 Background

2.1

2.2

2.3
24

2.5

2.6

Quantum Computingo e
2.1.1 Quantum Annealing
2.1.2 Quantum Circuit Model
Quadratic Unconstrained Binary Optimization,
2.2.1 D-Wave Annealers, Embedding, and Hybrid Solvers
Quantum Annealing Learning Search o0
Bayesian Network Structure Learning
2.4.1 O’Gorman’s QUBO Formulation
Quantum-Trained Support Vector Machines
2.5.1 Quantum Binary Support Vector Machine (QBSVM)
2.5.2 Quantum Multiclass Support Vector Machine (QMSVM)
Local Support Vector Machines
2.6.1 Fast Local Kernel Support Vector Machine (FaLK-SVM)

3 Quantum Machine Learning on Circuit Model

3.1
3.2
3.3

3.4
3.5

A Brief Overview e
Data Encoding and SWAP Test
Quantum k-Nearest Neighbors oo
3.3.1 A Quantum k-NN in Detail
Quantum Cosine Binary Classifier oL
Quantum Euclidean Distance e

I Quantum Annealing

4 QALS Empirical Evaluation

4.1

4.2

Implementations e
4.1.1 CH+ Implementation

4.1.1.1 Lack of Native APIs
4.1.1.2 Random Number Generation

4.1.2 Python Implementation

4.1.2.1 Embedding Procedure
4.1.2.2 Communication with the Annealer

Empirical Evaluation
4.2.1 Number Partitioning Problem (NPP)

4.2.1.1 Classical Algorithms for NPP
4.2.1.2 Experimental Setup and Results

4.2.2 Travelling Salesman Problem (TSP)

4.2.2.1 Solution Refinement Procedure

© © 00 33N

10
12
13
15
15
16
17
17

19
19
20
20
21
22
23

25

11

4.2.2.2 Experimental Setup and Results

4.3 DISCUSSION v v e e e s

Bayesian Networks Reconstruction

5.1 O’Gorman’s Algorithm Implementation
5.1.1 QUBO Matrix Construction o
5.1.2 Complexity Observations
5.1.3 Execution Speedup

5.2 Divide et Impera Approach

5.3 Empirical Evaluationo
5.3.1 Bayesian Problems oo
5.3.2 Datasets Generationo
5.3.3 Methods and Experimental Setup L.
5.3.4 O’Gorman’s Algorithm Results

5.3.4.1 QUBO Formulation Correctness and o;j; Hyperparameters
5.3.4.2 Dataset Size and QUBO Matrix Construction Time
5.3.4.3 Number of Reads and Annealing Time (QA)
5.3.4.4 Performance
5.3.5 Divide et Impera Results
5.3.5.1 Execution Speedup and Timing
5.3.5.2 Performance
5.4 Discussion e e e

Local SVMs Training

6.1 Local Quantum-Trained SVMs L
6.1.1 Approach
6.1.2 TImplementation

6.2 Empirical Evaluation
6.2.1 Methods
6.2.2 Datasets
6.2.3 Experimental Setup
6.2.4 Results

6.2.4.1 Binary Classification o 0.
6.2.4.2 Multiclass Classification
6.2.4.3 Performance Scaling (Classical Methods)
6.2.4.4 Large Scale (Multiclass)
6.3 Discussion e e

Universal Quantum Computing

A Local Classification Pipeline

7.1 Quantum Pipeline
7.1.1 Components
7.1.2 TImplementation
7.1.3 Complexity Observations

7.2 Empirical Evaluationo
721 Methods
7.2.2 Datasets e
7.2.3 Experimental Setup
7.2.4 Results o

7.2.4.1 Execution Modalities Comparison (Quantum Pipeline)
7.2.4.2 Execution Modalities Comparison (Quantum Binary Classifier)
7.2.4.3 Quantum Pipeline - Quantum Binary Classifier Comparison

2

42
42
42
46
46
46
48
48
49
o1
52
52
52
53
593
95
95
56
60

61
61
61
61
62
62
63
63
65
66
66
67
68
69

70

71
71
71
72
74
75
75
76
7
78
78
80

7.2.4.4 Dataset Sizes Comparisono

7.2.4.5 Distance Metrics Comparison
7.2.4.6 Quantum Pipeline - Baseline Methods Comparison
7.3 Discussion e

8 A Euclidean k-NN Algorithm

8.1 Method
8.1.1 Algorithm e
8.1.1.1 Data Preprocessing

8.1.1.2 Imitial State and Encoding(s)

8.1.1.3 Bell-H Operation and Final State

8.1.1.4 Measurements and Distance Estimate(s)

8.1.1.5 k Nearest Neighbors and Classification

8.1.2 Complexity Observations

8.2 Implementation L
8.3 Empirical Evaluation L L o
8.3.1 Methods
8.3.2 Datasets
8.3.3 Experimental Setup
8.3.4 Results e
8.3.4.1 Execution Modalities Comparison

8.3.4.2 Encodings and Distance Estimates Comparison

8.3.4.3 Comparison with Baseline Methods

8.3.4.4 Number of Shots Analysis.

8.4 DiScussion e e

9 Conclusion

Bibliography

87
87
87
87
87
88
90
91
91
92
93
93
93
94
95
95
98
100
100
104

105

107

Abstract

Quantum computing is a form of computation that exploits quantum mechanical phenomena for
information processing, with promising applications (among others) in optimization and machine
learning. Indeed, quantum machine learning is currently one of the most popular directions of research
in quantum computing, offering solutions with an at-least-theoretical advantage compared to the
classical counterparts. Nevertheless, the quantum devices available in the current Noisy Intermediate-
Scale Quantum (NISQ) era are limited in the number of qubits and significantly affected by noise. An
interesting alternative to the current prototypes of general-purpose quantum devices is represented by
quantum annealers, specific-purpose quantum machines implementing the heuristic search for solving
optimization problems known as quantum annealing. However, despite the higher number of qubits,
the current quantum annealers are characterised by very sparse topologies. These practical issues
have led to the development of hybrid classical-quantum schemes, aiming at leveraging the strengths
of both paradigms while circumventing some of the limitations of the available devices. In this thesis,
several hybrid classical-quantum algorithms for optimization and machine learning are introduced
and/or empirically assessed, as the empirical evaluation is a fundamental part of algorithmic research.
The quantum computing models taken into account are both quantum annealing and circuit-based
universal quantum computing. The results obtained have shown the effectiveness of most of the
proposed approaches.

Keywords: hybrid classical-quantum computing, quantum annealing, quantum machine learning,
optimization, locality, empirical evaluation

1 Introduction

Quantum computing is a type of computation leveraging quantum mechanical phenomena for informa-
tion processing. In particular, quantum computing has the potentiality to efficiently solve optimization
and machine learning problems, which are often computationally intensive. However, in the current
Noisy Intermediate-Scale Quantum (NISQ) era [87], the quantum computers available in the market
[45, 91] are limited in the number of qubits and significantly affected by noise, restricting the problems
that can be addressed in practice.

An interesting alternative to universal quantum computing is represented by quantum annealing.
In detail, quantum annealing is a heuristic search aimed at solving optimization problems by prob-
abilistically identifying the low-energy states of a quantum system [59], and quantum annealers are
non-universal specific-purpose quantum devices that implement quantum annealing. Compared to
the available general-purpose quantum computers, the quantum annealers provided by D-Wave [49]
are characterised by a higher number of qubits (thousands versus hundreds). This has fostered ex-
pectations that, for specific problem domains, quantum annealers could potentially outperform the
classical counterparts. A promising application is, for instance, the one described by Bian et al. in
their work [8]. Nevertheless, the topology of these machines is far from being complete (namely, it is
very sparse), and quantum annealers are also subject to noise.

In the area of quantum computing, one of the most popular directions of research is represented by
Quantum Machine Learning (QML). Indeed, in the last decade, numerous interesting QML algorithms
have been introduced and theoretically characterised, with occasional empirical validation. Notable
examples are the quantum support vector machine introduced by Rebentrost et al. [89], distance-
based classifiers as the one presented by Schuld et al. [98], and quantum neural networks, whose
performance have been analysed by Abbas et al. [1]. However, quantum annealing has also been taken
into account in the development of quantum machine learning algorithms [74, 113, 118]. In particular,
the combination of quantum computation and machine learning offers solutions characterised by an
at-least-theoretical advantage compared to the classical counterparts. Moreover, QML seems a good
way to leverage the existing NISQ devices for addressing real-world problems.

The desire of practically using quantum computing has given rise to hybrid classical-quantum
approaches, delegating part of the computation to classical devices. Indeed, the current quantum
computing architectures are still immature, and hybrid schemes can effectively circumvent some of
their limitations. Additionally, it is reasonable to assume that the interplay between classical and
quantum procedures allows leveraging the strengths of both paradigms, despite the inefficient inter-
face between them. Specifically, hybrid classical-quantum approaches have been presented for both
universal quantum devices [69] and quantum annealing architectures [4]. Moreover, in the field of
QML, this represents a compelling alternative to the development of quantum algorithms capable of
fully solving machine learning tasks but requiring ideal devices.

In this thesis, several hybrid classical-quantum algorithms for optimization and machine learning
are introduced and/or empirically evaluated. Indeed, the empirical evaluation is an essential part of
algorithmic research and, although established benchmarks do not yet exist for QML, a systematic
evaluation is fundamental in order to progress. The thesis is structured as follows. Chapters 2
and 3 provide useful background information for understanding the subsequent chapters. Specifically,
Chapter 2 deals with miscellaneous topics, while Chapter 3 deals with quantum machine learning only.
Regarding the novel content, Part I, which includes Chapters 4 to 6, is devoted to quantum annealing
algorithms, while Part II, which includes Chapters 7 and 8, is devoted to algorithms for (circuit-based)
universal quantum devices. In detail, Chapter 4, which is based on the article “Quantum annealing
learning search implementations” [12], presents two implementations and the empirical evaluation of
QALS [81], a hybrid algorithm for tackling optimization problems that cannot be directly mapped on
a quantum annealer. The article in question was motivated by the absence of an empirical assessment

of the algorithm in the literature. Instead, Chapter 5, which is based on the article “Reconstructing
Bayesian networks on a quantum annealer” [130], presents the implementation and the empirical
evaluation of the QUBO formulation proposed by O’Gorman et al. [76] for reconstructing Bayesian
networks on the same architecture; a divide et impera approach for tackling larger problem instances
is also introduced and assessed in the same chapter. This article, as well, was motivated by the
absence of an empirical assessment of the QUBO formulation in the literature. In Chapter 6, which
is based on the article “Local Binary and Multiclass SVMs Trained on a Quantum Annealer” [129],
the local application of support vector machines trained on a quantum annealer is introduced and
empirically evaluated. In this case, the entirely classical counterpart had already proven successful [9,
104], and the considered quantum-trained models [26, 118] suffered from the limited connectivity of
the available quantum annealers, motivating the article in question. Concerning Chapter 7, which is
based on the article “Implementation and empirical evaluation of a quantum machine learning pipeline
for local classification” [128], it introduces the application of a quantum locality technique, such as
a quantum k-nearest neighbors algorithm, as a preliminary step of other quantum machine learning
models; the empirical assessment of the approach is also illustrated. This article was motivated by
the absence of quantum local classification pipelines in the literature, a successful approach in the
classical realm (as said for the previous chapter) that may also allow saving qubits in the quantum
one. Lastly, Chapter 8, which is based on the article “A quantum k-nearest neighbors algorithm based
on the Euclidean distance estimation” [127], introduces a novel quantum adaptation of the k-nearest
neighbors algorithm (based on the Euclidean distance) and its empirical evaluation. The article in
question was motivated by the absence of a quantum version of the algorithm utilizing the Euclidean
distance distance metric in the literature. The main results presented in these chapters are summarised
in Chapter 9, which also briefly describes some possible future directions of research.

2 Background

This chapter provides some background information about quantum computing and the topics covered
in the first part of this work (Part I). In particular, this chapter is a reworked version of different parts
of the background sections of various articles [12, 128-130].

2.1 Quantum Computing

Quantum computing is a form of computation that leverages quantum phenomena, such as state
superposition and entanglement. This field represents a significant application of quantum information
theory, delivering algorithms to efficiently solve problems that are challenging for classical computers
[75]. In this work, two different kinds of quantum computation have been exploited, namely, quantum
annealing and quantum circuits.

2.1.1 Quantum Annealing

Quantum Annealing (QA) is a heuristic search method for solving optimization problems [59]. In this
approach, the solution to a given problem corresponds to the ground state, being the least energetic
physical state, of an n-qubit system. The system’s energy is described by a problem Hamiltonian
Hp, which is a 2" x 2" Hermitian matrix. In particular, the annealing process involves the quantum
system’s time evolution towards the ground state of the problem Hamiltonian. More in detail, let us
consider the time-dependent Hamiltonian

H(t) = T(t)Hp + Hp, (2.1)

where Hp denotes the problem Hamiltonian and Hp represents the transverse field Hamiltonian.
Specifically, Hp provides the kinetic term, enabling the exploration of the solution landscape through
quantum fluctuations. Instead, I' represents a decreasing function that reduces the kinetic term,
guiding the system towards the global minimum of the problem (represented by Hp).

QA can be physically implemented by taking into account a quantum spin glass, which is a network
of qubits organized on the vertices of a graph (V, E), where |V| = n, and the edges E correspond to
the couplings among these qubits. The problem Hamiltonian is defined as

Hp=H(©) = 60!+ > 60000, (22)
eV (3,7)EE

with the real coefficients 6;, 6;; being organized into the matrix ©. In detail, H(©) is an operator on

the n-qubit Hilbert space H = (C2)®" while agi) operates as the Pauli matrix

o, = <(1) _01> (2.3)

on the i-th tensor factor and as the 2 x 2 identity matrix on the other tensor factors. Concerning
the coefficient matrix ©, it is an n X n symmetric square matrix that contains real values (known as
weights) and is defined as

E, (2.4)
E
where 0; physically corresponds to the local field on the i-th qubit, and 0;; to the coupling between

the qubits ¢ and j. Specifically, the Pauli matrix o, has two eigenvalues, {—1, 1}, corresponding to the
binary states of each qubit, i.e., spin down and spin up. Consequently, the spectrum of eigenvalues

7

of the problem Hamiltonian (Equation 2.2) includes all the potential values of the energy function of
the well-known Ising model:

E(©,2) =) Oizi+ Y Oyzz, z=(21,..,2,) € {-11}"] (2.5)

1% (i,)eE

In practice, the annealing procedure, often referred to as cooling, guides the system towards the
ground state of H(©). This state corresponds to the spin configuration that encodes the solution to
the problem, namely,

z" = argmin E(O,z). (2.6)

ze{-1,1}IVI

When given a problem, the annealer is initialized using appropriate weights ©, and the binary variables
z; € {—1,1} are physically realized through measurements conducted on the qubits positioned at the
vertices V. In order to address a general optimization problem via QA, it is essential to determine a
suitable encoding of the objective function in relation to the cost function (2.5), a task that is generally
challenging.

2.1.2 Quantum Circuit Model

Among the different models of universal quantum computation, the most common one is the quantum
circuit model. In this framework, the primary element of quantum computation is the qubit, a two-
level physical system whose state is described by a unit vector |¢)) = «|0) + 1) in a two-dimensional
complex Hilbert space, where |0) and |1) constitute an orthonormal basis. Here, |) represents a ket
in the Dirac notation, used for denoting quantum states, and |0) and |1) correspond to the vectors
of the standard basis in C?. The absolute squares of the complex amplitudes a and 3 represent
the probabilities of measuring the qubit in states 0 and 1, respectively, satisfying the normalization
condition]a!Q +|8 |2 = 1. Following a measurement process, the qubit’s state collapses to either |0) or
|1), depending on the observed outcome. Moreover, the time evolution of isolated quantum systems,
like qubits, is described by unitary operators, which are referred to as quantum gates in the realm of
quantum computation. For instance, the Hadamard gate, which acts on a single qubit, can be defined
through the equations H |0) = |+) and H |1) = |—), where |+) = 1/4/2 - (|0) & |1)). Essentially, the
Hadamard gate creates a superposition state; its matrix representation and circuital symbol are

(1) -

Another fundamental quantum gate is the Controlled-NOT (CNOT) gate, which acts on two qubits
and works as follows with respect to the computational basis:

) —o— |2)

ly) —b—lz@y) ,

where x,y € {0,1} and @ is the sum modulo 2. In practical terms, the CNOT gate flips the state of
the target qubit only if the control qubit is in state |1). Notably, by utilizing three CNOT gates in
combination, it becomes feasible to construct the SWAP gate, a 2-qubit gate designed to exchange
the input qubits, whose circuital definition is

D
3V
D
N

N
N U
Instead, the controlled version of the SWAP gate, which operates on three qubits, is referred to as
the Fredkin gate. Its classical counterpart is universal for classical reversible computation, and its
circuital symbol is

According to a fundamental axiom of quantum mechanics, a system of n qubits is mathematically
described in the space (C?)®". Consequently, the space available for representing data increases expo-
nentially with the number of qubits. This exponential growth constitutes one of the key advantages of
quantum computation. In practical terms, quantum algorithms are crafted by combining the available
quantum gates in order to generate a quantum state encoding the solution to a problem of interest.
Then, the outcome is obtained by measuring the output state in the computational basis. Given the
probabilistic nature of the results of quantum computation, quantum algorithms typically need to be
repeated multiple times to provide meaningful outcomes. A significant demonstration of the efficiency
of quantum computation lies in Shor’s algorithm [107], whose time complexity for solving the integer
factoring problem, a task generally suspected to be beyond P, is polynomial.

2.2 Quadratic Unconstrained Binary Optimization

Quadratic Unconstrained Binary Optimization (QUBO) problems are optimization problems expressed
in the form
argmin x’ Qx, (2.7)

X

with x being a binary vector, and @ being an upper triangular (or symmetric') matrix composed of
real values. Specifically, let x be an n x 1 vector and Q an n X n upper triangular matrix. Then, it is
possible to reformulate the problem as

n n n
xTQx = Zq”ﬁvf + Z Z qij Tij
i=1

i=1 j=i+1
n n n
= Z qiiTq + Z Z qile‘ifL‘j, (2.8)
i=1 i=1 j=i+1
where 2? = z; due to z; € B = {0, 1}. Basically, the main diagonal of @) contains the linear coefficients

(gii), while the other cells of the matrix contain the quadratic coefficients (g;;). Although QUBO
problems are inherently unconstrained, it is possible to introduce constraints as penalties. Glover et
al. [38] provide several examples of this approach.

The relevance of the QUBO formulation consists in being computationally equivalent to the Ising
model, which is the physical model on which annealers are based. The only distinction consists
in the domain of the variables: {0,1} for the QUBO formulation and {—1,+1} for the Ising one.
Consequently, a simple conversion allows the usage of quantum annealing to solve problems expressed
as QUBO, such as optimization problems on graphs, clustering problems, set partitioning problems,
or sequencing and ordering problems [38].

2.2.1 D-Wave Annealers, Embedding, and Hybrid Solvers

D-Wave Systems [49] is a Canadian company specialized in producing quantum annealers, namely,
physical machines that implement the quantum annealing process. Currently, their flagship model
is the D-Wave Advantage, which adopts the Pegasus topology. This model is characterised by 5640
qubits, with each qubit connected to 15 other qubits. While a greater number of qubits enables the
processing of larger problems, the most significant aspect is the connectivity, as it determines the
complexity of problems that can be effectively represented and solved.

A crucial step, in order to exploit quantum annealing for solving QUBO problems, consists in
mapping the problem variables to the Quantum Processing Unit (QPU) qubits. However, due to the

'If the matrix Q is symmetric, it is sufficient to sum the corresponding elements outside the main diagonal in order
to obtain an upper triangular matrix.

sparseness of the annealer topology, a direct representation is often not feasible. The solution lies
in chaining together multiple physical qubits to operate as a single logical qubit. In this way, the
connectivity of the annealer graph is enhanced, although at the expense of reducing the number of
available qubits and, consequently, limiting the size of the problems that can be effectively represented.
This entire process is commonly referred to as embedding or minor embedding, in the glossary of D-
Wave [52, 53]. Specifically, D-Wave’s Ocean library offers the EmbeddingComposite class [50] to
automate the minor embedding of the QUBO matrices.

In addition, as an alternative to simulated and quantum annealing, D-Wave provides the so-called
hybrid annealing (just Hybrid from now on) [51], a framework that enables the simultaneous execution
of multiple solvers, whether classical or quantum. In detail, a branch could correspond to a classical
technique like Tabu Search or to a workflow involving a decomposer - sampler - composer structure.
In the latter case, the decomposer divides the given problem into subproblems, each solved by the
sampler. The local solutions obtained are then recomposed by the composer to produce the final
solution. Notably, the sampler component could be Simulated Annealing (SA), quantum annealing,
other classical techniques, or more complex methods.

2.3 Quantum Annealing Learning Search

Quantum Annealing Learning Search (QALS) is a guided meta-heuristic approach specifically devised
to tackle optimization problems that cannot be directly mapped onto the architecture of a quantum
annealer. The core idea of this approach, initially proposed in [81] and further elaborated in [82],
consists in initializing the quantum annealer by summing a tabu matriz S to the weight matrix ©.
The role of the S matrix is to penalize previously explored solutions, thus preventing redundant
searches in the solution space. Suppose that we have a set of k solutions {z; }j=1,...,k to be penalized.
The matrix S is built as follows:

k
S = Z(zjz;‘»r — I + diagz;), (2.9)

j=1

with I being the identity matrix of size n, and diagz; being the diagonal matrix resulting from the
vector z;. By design, the tabu matrix S imposes energetic penalties on the solutions z;._, , in the
spectrum of the Hamiltonian H (O + S), which corresponds to the energy function z — E(© + S, z).

Basically, QALS operates through an iterative process involving the generation of candidate so-
lutions via QA and subsequent probabilistic acceptance or rejection. New candidate solutions are
created by perturbing the weights according to the approach presented below, while rejected solutions
contribute to the tabu matrix S. In addition, similarly to SA, the algorithm allows for suboptimal
acceptance of solutions and a decreasing temperature parameter is used to control the weight per-
turbation. Concerning the problem representation into the annealer, the matrix) representing the
objective quadratic function fg is deformed by means of S and mapped onto the annealer architecture
in a piecewise manner, which means that only specific elements of the QUBO matrix are chosen at
each iteration. More precisely, the mapping p employed for solving QUBO problems is defined as
follows:

ulfol(z) = E(PT(Q + A\S)P o A, Pz), (2.10)

where P denotes a permutation matrix of order n and PT represents its transpose, A is a scaling
factor that modulates the contribution of the tabu matrix S (initially set to zero), A is the adjacency
matrix of the topology graph of the quantum annealer, and o corresponds to the Hadamard product.
In practice, u maps some elements of (), deformed by S and selected by P, into the weights. It is also
worth highlighting that, in QALS, the QUBO problem variables are defined in the {—1, 41} domain.

The QALS scheme is outlined in Algorithm 1. In particular, the tabu-based encodings are generated
according to Equation (2.10). To achieve this, an auxiliary function P — ¢(P,p), which alters a
permutation by selecting elements for shuffling with probability p, is exploited. In practice, the
function g is responsible for generating the permutations that induce the encodings into the annealer
architecture (Algorithm 1, lines 5 and 25). In addition, the mapping process takes into account the

10

[T L B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35

36

37

38

39

40

41

42

43
44

Data: Matrix @ of order n encoding a QUBO problem, annealer adjacency matrix A of order n

Input: Energy function of the annealer E(©,z), permutation modification function g(P, p), solution
modification function h(z), minimum probability 0 < ps < 0.5 of permutation modification,
probability decreasing rate n > 0, candidate perturbation probability ¢ > 0, number N of
iterations at constant p, initial balancing factor Ag > 0, number of annealer runs k > 1,
termination parameters tmaz, Nmaz, dmin

Result: z* vector with n elements in {—1, 1} solution of the QUBO problem

function fq (z):
‘ return z7Qz ;
P+ I
p< 1L
Py + g(P,1); P, + g(P,1); // generate two permutation matrices perturbing the identity
O1 + PLQPy o A; O3 «+ PIQPs 0 A; // weights initialization

/* run the annealer k times with weights ©; and Oy */

Z1 Pfa@nz(E(@l,z)); Zg Pga@nz(E(@g,z)); // estimate energy argmin, Pl and PJ
map back the variables

fi + fo(z1); fo + fo(z2); // evaluate fq
/* use the best to initialize z* and P*; use the worst to initialize z’ */

if fi < f> then

‘ z* < z1; f* <+ f1; P* < Py 2/ + 2o

else
| 2" 2o [* 4 fo; P* < P72 24
end
if f]_ # f2 then
| S« 2z ®z — I, + diag(z'); // use 7z’ to initialize the tabu matrix S
else
‘ S« 0; // otherwise set all the elements of S to zero
end
e+ 0;d+0;i+ 0; A< A
repeat
Q'+ Q+ \S; // scale and add the tabu matrix
if N divides i then
| pp—(p—ps)m
end
P+ g(P*,p); // modify permutation P*
© «— PTQ'Po A, // weights initialization
/* run the annealer k times with weights ©' */
z' PTangnz(E(G',z)); // estimate energy argmin, PT maps back the variables
with probability ¢ 2’ < h(z',p); // possibly perturb the candidate
if z’ # z* then
I fo(z'); // evaluate fq
if f/ < f* then
swap(z',z*); f* « f'; P* «+ P; e+ 0; d <+ 0; // 7' is better
S« S+2z @z — I, +diag(z'); // use z' to update the tabu matrix S
else
d<+—d+1;
with probability (pfp(;)(fl*f*) swap(z',z*); f* « f'; P* < P; e + 0;
end
update the balancing factor A with A < Ag;
else
e+ e+ 1;
end
141+ 1;
until i = iy40 o7 (6 +d > Npar and d < dpin);
return z*;

Algorithm 1: Quantum Annealing Learning Search for QUBO problems (taken from [12]).

11

actual annealer topology, which is represented by the graph matrix A (Algorithm 1, lines 6 and 26).
The permutations are also exploited to map the solutions obtained from the annealer back to the
original problem’s solution space (Algorithm 1, lines 7 and 27) and to define the optimal map u*.
Regarding the function g, when p = 1, the generated permutation is entirely random. For 0 < p < 1,
the permutation partially resembles the input one. Instead, if p = 0, the resulting permutation would
match the input one. However, this scenario never occurs since the probability of an element being
shuffled gradually decreases to a value 0 < ps < 0.5 with rate n (Algorithm 1, lines 22-24).

The additive interaction of the tabu matrix S, scaled by a balancing factor A\, with the QUBO
matrix @ (Algorithm 1, line 21) guides the quantum annealing search with an energy profile consistent
with Equation (2.10). The consequence is that the algorithm does not search just for solutions of sub-
problems. Indeed, S contains information about the already visited solutions with objective function
values higher than f* (Algorithm 1, lines 15 and 33). Additionally, the balancing factor A, initialized
to Ag, is decreased throughout the iterations (Algorithm 1, line 38), with the purpose of preventing
the tabu matrix S from overshadowing the information about fg carried by (). In general, A should
depend on the number of bad candidates penalized by S.

It is also worth highlighting that the solution returned by the annealer (Algorithm 1, line 27) could
be perturbed by the function h(z’,p), which flips any entry of z’ with probability p (Algorithm 1,
line 28). These perturbations, which occur with probability ¢, are necessary in order to guarantee
the convergence [81]. Furthermore, suboptimal solutions (Algorithm 1, line 36) are accepted with
probability (p — ps)f '=F"). By comparison with the acceptance rule of SA, it is possible to notice that
the parameter p is related to the temperature parameter of SA by the relationship 7" = —ln_l(p —Ds)-
Hence, T'— 0 as p — ps.

Eventually, the iterative process outlined in Algorithm 1 terminates either upon convergence or
when the specified number of iterations has been achieved. In particular, line 19 of Algorithm 1
establishes three distinct counters for controlling the convergence: e counts the number of consecutive
occurrences of the current best solution (Algorithm 1, line 40); d keeps track of the number of times the
current best solution and the new solution are different, yet the current solution is better (Algorithm 1,
line 35); the variable i represents the current number of iterations. The values of these counters are
compared against the input thresholds in the termination condition (Algorithm 1, line 43).

2.4 Bayesian Network Structure Learning

A Bayesian network (BN) is a directed acyclic graph (DAG) illustrating the conditional dependencies
of a collection of random variables [84]. In this representation, the nodes correspond to the variables,
while the edges represent the conditional dependencies between them. Furthermore, each node is
coupled with the conditional probability distribution of the node given its parent nodes.

The procedure presented by O’Gorman et al. [76] addresses the task of Bayesian Network Structure
Learning (BNSL), a task that has received much attention [109] and consists in identifying the Bayesian
network that most likely has generated a given dataset. In particular, O’Gorman et al. have devised
a novel QUBO formulation of the BNSL problem that is compatible with the quantum annealing
hardware, including the necessary lower bounds for penalties. It is worth noting that this problem is
NP-Complete [18] and that a polynomial speedup is expected by O’Gorman et al. when using their
quantum-annealing-based approach. Obviously, this is not the sole application of quantum computing
in the context of Bayesian networks. For instance, Ozols et al. have proposed a quantum counterpart to
the classical rejection sampling algorithm employed in Bayesian network inference [77], while Borujeni
et al. have introduced a systematic technique for designing a quantum circuit that represents a generic
discrete BN [13]. However, this section focuses on the BNSL task.

More in detail, a Bayesian network can be represented as a pair (B, Bp), where By denotes a
Directed Acyclic Graph (DAG) and B, represents the corresponding set of conditional probabilities.
Given a database D = {x;|1 < i < N}, where x; represents the state of all variables, the goal is to
identify the network structure that maximizes the posterior probability distribution p(Bs|D). However,
exploiting Bayes’ theorem, which establishes the proportionality between p(Bs|D) and p(D|Bs), the
problem can be reformulated as the maximization of p(D|Bs), which is equal to

12

T

CYU F(Nijk + al-jk)
p(D|By) , 2.11
| 111]11 F N + OZZJ H F(Ckijk) ()

where I' denotes the gamma function, ¢; corresponds to the number of joint states associated with
the parent set of the ¢-th random variable, r; represents the number of states of the ¢-th random
variable, N;j;, stands for the number of occurrences in D where the i-th random variable is in its k-th
state and its parent set is in its j-th state, a;ji is the hyperparameter of the assumed Dirichlet prior
for the node’s conditional probability distribution, N;; and «;; denote the sums of the corresponding
parameter values over all possible k& values.

2.4.1 O’Gorman’s QUBO Formulation

In their study [76], O’Gorman et al. introduce a Hamiltonian function tailored for the BNSL prob-
lem. Given the Hamiltonian, the QUBO matrix can be built in a straightforward way, mapping the
coefficients of the variables into the matrix entries. Specifically, the BNSL Hamiltonian is composed
of three key components: the score Hamiltonian (Hgcore), which evaluates the quality of the solution
graph; the max Hamiltonian (H,,q,), which penalises solutions including nodes with a number of par-
ents exceeding a certain threshold m, dictated by resource constraints; the cycle Hamiltonian (Hcyeie),
further split into the consistency Hamiltonian (Hconsist) and the transitivity Hamiltonian (Hirans),
which penalise solutions that contain cycles. Consequently, the BNSL Hamiltonian (H) is given by

H(d7 Yy, I') = Hscore(d) + Hmaaz(da Y) + Hcycle(da I'), (212)
where d denotes the n(n — 1) bits employed to represent the presence or absence of edges between

nodes, while y and r are auxiliary variables used to encode the constraints.

The score Hamiltonian (Hgeore) is computed independently for each variable, and the components
are then summed together. Specifically, the score Hamiltonian for the i-th variable is defined as

H@ (d)= > wi(J) [dsi | (2.13)

Jc{l.n}\{i} jeJ
[J|<m

where d; is the vector of bits (d;;) representing edges directed towards the considered node, m denotes
the maximum allowed size for the parent set, and w; is calculated as

|J]
wi(J) =Y (=D Y si(K), (2.14)
=0

KcJ
|K[=

where s; is a score value obtained from Eq. (2.11) with the introduction of a logarithm for numerical
efficiency. In detail, s; is given by

T4
OKU F(Nl'jk + aijk)
s;(I1;(Bs) —1lo , 2.15

where IT;(Bs) represents the parent set of the i-th node. In practical terms, the sum of the s; values
corresponds to — log p(D|Bs).

Analogously, the max Hamiltonian is calculated independently for every variable as

H(d (d17Yl) - 5’£n)aac(m - dl - yi)27 (216)

max

where 57(,?,11 > 0 corresponds to the penalty weight, d; denotes the in-degree of the i-th node (that

is equal to >, j<n N ki dji), and y; € Z is a slack variable (encoded through binary expansion in y;

13

))

employing bitsz) that cancels Hy(,im’s contribution if the constraint is satisfied. Indeed, Hy(riam is zero
if the node taken into account has at most m parents, otherwise it brings a positive penalty.

Eventually, the cycle Hamiltonian is defined as the sum of two terms:
Hcycle(d> I‘) = Htrans(r) + Hconsist(da I‘), (217)

with r representing n(n — 1)/2 auxiliary boolean variables that are used to encode a topological order
(ri; is 1 if the i-th node precedes the j-th node, 0 otherwise). In particular, the transitivity Hamiltonian
penalises the cycles of length three in the 7;; values, and is calculated independently for each 3-set of
variables as N -

i (Tigs ks i) = Oty (i + Tig Tk = TigTik = Tiarie) (2.18)

with 51521’:35 being the positive penalty that is added if the i-th, j-th and k-th variables form a 3-cycle.
As in the other cases, the Hfﬁiil components are summed together to obtain the full Hyq,s. Regarding
the consistency Hamiltonian, it penalises the solutions for which the topological order encoded in r is
not consistent with the graph structure encoded in d. In practical terms, it disadvantages the solutions
for which r;; = 1 and dj; = 1, or r;; = 0 and d;; = 1. This Hamiltonian is computed independently
for each pair of variables as

H) s (dig, dyi, rig) = 040 o (djiriy + dij — dijrg), (2.19)

consist consist

with 5£ZQsist being the positive penalty introduced in the case of an inconsistency. It is also worth

noticing that the order of the superscript indices in 6%::38 and 5&]71)52 o does not matter, since the set
of variables is always the same.

In practice, the QUBO formulation of the BNSL problem involves n(n — 1) binary variables (d;;)
representing the graph structure, ny = nflogy(m + 1)| binary slack variables (y;;) associated with the
maximum parent constraint, and n(n — 1)/2 binary variables (r;;) related to the absence of cycles
constraint. Thus, the QUBO encoding of n Bayesian variables necessitates O(n?) binary variables.
However, since Hgcore includes multiplications with m factors, if m > 3, further steps and slack
variables are required to transform the problem into a quadratic form. For instance, to reduce a
BNSL problem with m = 3 into a quadratic form, nL%j binary slack variables are required [76],
raising the total number of binary variables to O(n?).

Regarding the penalty values, O’Gorman et al. have provided the following lower bounds (and
demonstrated their sufficiency):

0 > max Aji, 1 i <n, (2.20)
JF
57) _9 §UR) | i< 591
constst > (TL) Max Oprgpss L =1 <Jj=sn, (.)
k¢{i,j}
Obtims = Ourans > max Agy, 1<i<j<k<n, (2.22)
1<d,5°<n
i'#j'

with Aj; being an estimate of the largest increase in score caused by the insertion of an arc from the
j-th to the i-th node. For m = 2, it is given by

Aji = maX{O, A;z}v (2.23)

A = —wi({j}) = D min{0,wi({j,k})}. (2.24)
1<k<n
kit

Conversely, for m > 3, determining Aj; is an intractable optimization problem.

Pyi = 3011, 21 tya, with g = [log,(m + 1)]

14

2.5 Quantum-Trained Support Vector Machines

A Support Vector Machine (SVM) is a supervised machine learning algorithm for binary classification
tasks [22]. Essentially, an SVM aims at finding the optimal hyperplane separating the data samples
belonging to different classes. The term support vectors refers to the data points lying close to the
decision boundary and contributing to the prediction of new labels. Actually, SVMs are not limited to
linearly separable problems. Indeed, with the introduction of kernel functions computing the similarity
of data points in higher-dimensional feature spaces without explicitly mapping them, SVMs become
able to manage complex decision boundaries and the complexity of the problem does not increase (this
is the so-called kernel trick) [97]. For instance, the Gaussian kernel function is defined as

k(Xm, Xp) = e MPm—xnll”, (2.25)

where x,, and x, are two input data points, and v > 0 is the kernel width. Moreover, different
formulations of the SVM learning problem exist, and also extensions to multiclass classification and
regression tasks. Concerning the quantum counterparts, a fully-quantum SVM for binary classification
has been proposed by Rebentrost et al. [89]. Instead, Havlicek et al. have introduced both a quantum
SVM based on a variational circuit and a quantum kernel estimator [43]. However, in this work, the
focus is on classical SVMs trained on a quantum annealer. In detail, the quantum-trained models for
binary and multiclass classification tasks have been taken into account here (a version for regression
also exists [78]). The QUBO formulations of the corresponding learning problems are provided below.

2.5.1 Quantum Binary Support Vector Machine (QBSVM)

The quantum-trained SVM for binary classification proposed by Willsch et al. [118], and denoted
here as QBSVM, is based on the dual formulation of the SVM. Specifically, given a dataset D =
{(%n,Yn) tn=0,. . N—1, With x,, € R¢ being a d-dimensional feature vector and y,, € {—1,+1} being the
corresponding class label, the dual formulation of the SVM learning problem is

min *g A OmYnYmk Xn,Xm § On
aeRN 2

subject to 0<a, <A and Z antn = 0, (2.26)

where « is the vector of coefficients to be found, & is the kernel function, and A is a regularization
factor?. Once the o, coefficients have been determined (the support vectors are the ones with o, # 0),
the label prediction for a test instance x is obtained by taking the sign of

Zanyn Xn, X + b,

where b can be calculated as

Zn Oén(A - Oén) [yn - Zm amymk(xma Xn)]
>n on (A —an) '

Since the solutions to the learning problem illustrated in Equation (2.26) are real-valued coeffi-

cients, a binary encoding is required for solving it with a quantum annealer. In detail, the encoding
proposed by Willsch et al. is the following;:

b= (2.27)

where K is the number of binary variables utilized for encoding «,,, B is the base exploited for the
encoding, and ag,+x are binary variables. Given this encoding, the QUBO formulation of the SVM

3The regularization factor of the SVM is usually denoted as C. To avoid ambiguity with the number of classes in the
QMSVM formulation (see Section 2.5.2), C' has been replaced here with A.

15

learning problem turns out to be

1 |
min - — Z aKn+kaKm+jBk+]ynymk(Xn,Xm)_ZBkaKn+k+g ZBkQKn+kyn =

NK 92
. n,m,k,j n,k n,k
N—-1 K-1
= min E E akn+k QKntk Km+j OKm+js
acRNK -
n,m=0k,j=0

where £ is a multiplier needed to represent the second constraint in Equation (2.26), and @ is the
NK x NK QUBO matrix. Hence, () is defined as

1 .
QKn+k,Km+j = in—Hynym [k(XnaXm) + ﬂ - 6nm6ijka

with § representing the Kronecker delta function. Regarding the first constraint in Equation (2.26), it is
automatically satisfied by the choice of the encoding. Indeed, a,, > 0 by definition and A =) kK:_Ol B*.
Instead, the bias b can be computed using Equation (2.27) or adjusted afterwards.

The just described QUBO formulation might produce matrices that cannot be embedded in the
available quantum annealers. To address this issue, Willsch et al. have proposed an interesting
approach. In particular, the full dataset is split into L disjoint slices. Then, for each slice, the S best
solutions found by the annealer are combined by averaging their decision functions. In practice, the
average «, coefficients and biases are computed for each slice. Eventually, the full decision function

is defined as
1 L—1[N-1 L
LS S a0+ 5
=0 Ln=0

(@)

where the superscript [denotes the slice, ay,’ is the n-th mean coefficient for the [-th slice, and 5(1) is
the mean bias for the I-th slice. Actually, averaging the S best solution could be advantageous also in
cases where the dataset split is not necessary.

2.5.2 Quantum Multiclass Support Vector Machine (QMSVM)

The quantum-trained SVM for multiclass classification proposed by Delilbasic et al. [26], and denoted
as QMSVM in the original paper, is based on the Crammer-Singer (CS) SVM [21], a single step SVM
for multiclass classification. In detail, given a dataset D = {(xy, Yn) }n=0,... N—1, With x,, € R? being
a d-dimensional feature vector and y, € {0,...,C — 1} being the corresponding label, the learning
problem of the CS SVM is

—1C-1
mln* Z k anxng Z TrnycTnge — B Z Z 6cyn7_nc
n177l2 0 n=0 c=0
C-1
subject to Z Tne=0 ¥Yn and 7, <0 Vn,Vec# y,, (2.28)
c=0

where T' = (Tne)o<n<N—1, 0<e<C—1 represents the matrix of the NC coefficients to be determined, with
Tne € [—1,+1], § denotes the Kronecker delta, and [is a regularization term. Once the 7, coefficients
have been found, the label prediction for a test instance x is given by

N-1

y = argmax Z Tnek (Xp, X). (2.29)
0<e<C—1 %

In order to solve the learning problem of Equation (2.28) using a quantum annealer, a binary
encoding of the 7,. variables is required. Specifically, Delilbasic et al. have proposed the following
encoding based on the uniform sampling of the [—1, +1] interval:

16

9 K-1

Tne = —1 + oK _ 1 Z 2k@nC’K+CK+k7
k=0

where K is the number of binary variables used to encode 7., and a,cx+cix+k are binary variables.
Given this encoding, the QUBO formulation of the CS SVM learning problem turns out to be

I]]Ig]l\l%l(E AnCK+c1 K+k1 Qn10K+ClK+k1,n2cK+CQK+k2 ApoCK+coK+kg»
ac n1,n2,c1,¢2,k1,k2

where the NCK x NCK QUBO matrix Q is defined as

incK+ClK+k1,n20K+62K+k2 -

ok1+1 N-1
= 5mn25c1025k’1k2ﬁ N Z k(Xn1s Xng) — 5619“1 (B+p)=2Cu+p |+
n3=0
ok1+ka+1 Qf1that2),
+d¢es mk(xnl’xnz) + 5n1n2m’

with u being the penalty weight associated with the constraints of Equation (2.28).

Lastly, Delilbasic et al. have proposed a method for taking advantage of the multiple solutions
returned by the annealer. In particular, given the S best solutions found by the annealer, each of them
is tested on a validation set (which can coincide with the training set). Then, a weighted average is
performed. In detail, the weights of the solutions achieving an accuracy above a certain threshold
are given by a softmax function applied to the values multiplier - accuracy,, where multiplier is a real
value and accuracy, is the accuracy obtained by the s-th solution. Instead, the weights of the other
solutions are set to zero. The resulting 7,. mean variables are used in Equation (2.29), in the place
of 7y, to predict the new labels.

2.6 Local Support Vector Machines

Reducing the number of samples provided as input to a classical machine learning model by means of a
locality technique has already proven to be a successful strategy, providing performance enhancements
compared to the base model. Let us consider the most straightforward locality technique, i.e., the
k-Nearest Neighbors (k-NN) algorithm, which selects the data samples closest to the target instance
based on a given metric (more details about the k-NN algorithm can be found in Section 3.3). In
addition, let us restrict ourselves to the SVM as the base classification model. In 2006, Blanzieri
and Melgani have proposed and empirically evaluated the kANNSVM [9], i.e., a local SVM trained on
the data samples selected by a k-NN model, obtaining good results. Specifically, the k-NN algorithm
must return the nearest neighbors with respect to the transformed feature space where the SVM
operates, which could be an issue when using the kernel trick. However, in the case of RBF kernels
(such as the Gaussian kernel) and polynomial kernels with degree 1, the Euclidean distance can be
directly used as the distance metric for the k-NN [9]. Furthermore, local SVMs have been theoretically
characterised by, for instance, Hable [42] and Meister and Steinwart [70]. Nevertheless, despite the
accuracy improvement and the reduced training time per model (due to the lower number of samples
used for training), the kANNSVM classifier requires to train an SVM on the k-neighborhood of each test
sample (unless all nearest neighbors belong to the same class), which represents a serious bottleneck
in terms of execution time. To solve this issue, Segata and Blanzieri have developed the approach
presented below.

2.6.1 Fast Local Kernel Support Vector Machine (FaLK-SVM)

Fast Local Kernel Support Vector Machine (FaLK-SVM) [104] improves the execution time of the
ENNSVM classifier [9] by taking advantage of a data structure proposed by Beygelzimer et al. for
efficient nearest-neighbor operations, namely, the cover tree [6]. In detail, the cover tree is a data
structure with the following properties: the root is a randomly selected sample; if a data sample

17

appears in a level, it is present in all lower levels; the distance between the samples belonging to the
i-th level (levels are decreasingly indexed) is greater than b°, with b > 1; each node in the i-th level
has a parent node such that the distance between the corresponding samples is smaller than b+1.

In practice, the idea consists in covering the training set using a set of local SVM models, and
predicting the test instance label using the most appropriate (pre-trained) local model. In more detail,
the training of the FaLK-SVM model works as follows: a cover tree is built on the training dataset; the
centres of the local SVMs are chosen by means of the cover tree, which enables the efficient retrieval
of data points that are far from each other, limiting the local models overlapping; the local SVM
models are trained as usual (if a local training set includes only one class, the training is avoided). In
particular, the selection procedure ends when each training sample belongs to the k’-neighborhood of
at least one centre, with &’ < k being a fixed hyperparameter controlling the redundancy of the local
models. Additionally, during the training phase, the association between each training point and the
centre for which the neighbor ranking of the considered training point is the smallest is pre-computed.
In this way, at evaluation time, it is sufficient to find the test-instance nearest neighbor in the training
set and run the local model with which that data point is associated. Regarding the time complexity,
the training phase has a worst-case complexity of O(kN x max(log N, k?)), where k is the number of
nearest neighbors selected and N is the number of training points, while the prediction of a new label
has a complexity of O(max(log N, k)).

Actually, in the same article, two variants of FaLK-SVM have been also introduced. The former,
which has not been considered in this work, is FaLK-SVMec. Specifically, FaLK-SVMc has proven to be
faster than FaLK-SVM, but also less accurate. The difference lies in the policy used for selecting the
local model at prediction time. Instead, the latter, which is the one that has been used in this work, is
denoted as FaLK-SVMI. Essentially, FaLK-SVMI includes a grid-search model selection procedure that
is executed before the training of FaLK-SVM. In practice, each combination of local model parameters
is evaluated using a custom k-fold cross-validation on m local models, whose centres are randomly
selected. In this custom validation procedure, the split into folds is applied to the k' nearest neighbors
of the model centre; the remaining k& — k’ points of the k-neighborhood are added to the training set
of each k-fold iteration. In the end, the parameter configuration maximizing the average accuracy of
the m models is chosen and used for all local models.

18

3 Quantum Machine Learning
on Circuit Model

This chapter introduces the field of quantum machine learning, the most common data encoding
schemes, and the models and works from the literature taken into account. In particular, this chapter
is a reworked version of different parts of the background sections of various articles [127, 128].

3.1 A Brief Overview

In essence, Machine Learning (ML) is the automation of methodologies designed to extract information
from gathered data. When data analysis techniques are executed on conventional digital computers,
it falls under the realm of classical ML. Instead, if quantum machines are employed, it pertains to
quantum ML. The first quantum versions of ML algorithms were introduced approximately twenty
years ago [100, 111]. However, the surge in interest has occurred only in the last decade thanks to
the development of the first operational prototypes of quantum machines by companies like IBM [45],
Rigetti [91], and D-Wave Systems [49], and the publication of several intriguing results [7, 30, 43,
89]. Concerning practical advantages with respect to classical ML, quantum subroutines have been
embedded into ML frameworks, enabling, for instance, the efficient calculation of distances in the
feature space [98], with advantages in classification and clustering tasks. In addition, Grover-based
subroutines have been employed to locate items within unsorted databases [115], offering a quadratic
speedup compared to exhaustive searches. Such techniques find applications, for instance, in the realm
of pattern recognition. In general, there is a growing interest in hybrid approaches, where quantum
co-processors efficiently tackle specific subproblems within more complex learning schemes.

The drive behind developing novel QML approaches is summarised in the reasoning provided by
Biamonte et al. [7]: given the challenge of simulating (even small) quantum systems with classical
computers, it is reasonable to assume that (even small) quantum processors could find data structures
that are challenging to unveil classically. Consequently, QML emerges as a promising avenue towards
meaningful applications of the small-scale quantum machines available today and in the near future.
On the other hand, with strong assumptions of universality, large scale, and fault tolerance, it is
conceivable to formulate numerous QML algorithms that surpass their classical counterparts. This
holds significance for understanding the foundations of quantum computing and demonstrating the
true potential of quantum computers. However, in the pursuit of advancing quantum technologies
in the immediate future, it is useful to consider the limitations of current quantum hardware while
exploring innovative QML approaches.

From a mathematical perspective, there exists a compelling motivation for developing ML algo-
rithms tailored for quantum machines, given by a formal analogy between quantum mechanics and
ML. Both domains heavily rely on matrix operations within high-dimensional vector spaces. In prac-
tice, the Hilbert spaces used to describe physical quantum systems can serve as feature spaces for data
representations. In this context, linear algebraic operations find physical realization in the time evo-
lution of quantum states. For instance, in the circuit model of quantum computation, this evolution
is described as the action of quantum gates. Furthermore, the representation of data within quantum
states offers advantages in terms of space resources. These advantages stem from the exponential
growth of the dimensionality of the Hilbert space of a multi-qubit system with respect to the number
of qubits. Consequently, the controlled dynamics of a small number of qubits towards a target state
may correspond to applying intricate linear algebraic operations on the considered feature space.

To conclude this brief introduction to QML, it is worth highlighting that QML is probably the most
promising way for discovering effective applications of the existing small-scale quantum computers. In
addition, beyond just quantum speedup, which is not the sole advantage, other dimensions of merit

19

should be taken into account. These include enhanced accuracy in prediction, increased expressive
power, superior generalization capabilities, and the ability to avoid plateaus in training.

3.2 Data Encoding and SWAP Test

A fundamental concept in QML is quantum encoding, which denotes any method that translates clas-
sical data (such as a list of symbols) into quantum states. In detail, efficiently loading substantial
volumes of data into quantum architectures represents a significant challenge in the current state of
QML. Indeed, the state preparation necessary for running various QML algorithms can be executed
efficiently only under the strong assumption of the availability of a Quantum Random Access Mem-
ory (QRAM) [37]. To delve deeper, consider an n-qubit register and let {|i)}i—o.. on—1 be a fixed
orthonormal basis of the corresponding Hilbert space, known as the computational basis. The most
straightforward quantum encoding method is basis encoding, wherein bit strings of length n are en-
coded into the states constituting the computational basis. Thus, n qubits are employed to encode
n bits of classical information, presenting intriguing quantum possibilities, such as creating superpo-
sitions of data and enabling non-classical correlations through entanglement. Alternatively, a more
efficient quantum encoding method in terms of space resources is amplitude encoding. In this case, a
normalized complex vector x € C2" representing a data instance is encoded into the coordinates (or
amplitudes) of a quantum state with respect to the computational basis, namely,

2"—1

|Y) = Z x; 1) (n-qubit state).

1=0

The amplitude encoding harnesses the exponential storage capability of a quantum memory. However,
the direct retrieval of the stored data is not feasible. This constraint arises because the amplitudes
cannot be observed. Indeed, only the probabilities |z;|?> can be estimated.

It is also worth introducing a simple example of quantum processing that finds practical utility in
QML, namely, the SWAP test [15]. The corresponding quantum circuit is depicted as follows:

0)

¥)

[)

where [1) and |p) are n-qubit states. In detail, the SWAP gate, which operates on the quantum states
|1} and |p), is controlled by a qubit initially prepared in state |0) (this can be realized using n Fredkin
gates). Through a straightforward calculation, the probability of measuring 0 in the first qubit is given
by P(0) = £ (1 + | (1|) |?), where (1)|¢) represents the inner product between the states |1) and |¢)
in the Dirac notation. Moreover, estimating P(0) with an error margin of € necessitates approximately
O(e7?) repetitions, as dictated by the binomial proportion confidence interval for a Bernoulli trial. In
practice, the SWAP test allows the efficient calculation of the fidelity of the quantum states |¢)) and
|p). For two pure quantum states, the fidelity is defined as

F([9) s 19)) = [{@le) [7 = (cos(@, @) - [¢ 1| - | ¢ [)* = cos* (¥,), (3.1)

with cos(1), ¢) being the cosine similarity between [¢)) and |¢p), and the norms of |¢)) and |¢) being 1
by definition. Therefore, by representing data vectors into the amplitudes of |¢)) and |p), it is possible
to estimate their dot product/cosine similarity via the SWAP test.

3.3 Quantum k-Nearest Neighbors

The k-NN [34] is a classification algorithm involving three main steps: computing the distance to
the training elements; identifying the k£ nearest neighbors, which are the k elements closest to the
test instance; predicting the class label by majority voting. Several quantum variants employing
different distance measures have been suggested, and a shared characteristic among them is the usage

20

of a superposition state to execute parallel operations (quantum parallelism), like the simultaneous
computation of the distances values.

To begin with, quantum k-NN algorithms using the Hamming distance, which needs binary fea-
tures, have been developed by Schuld et al. [99], Wisniewska and Sawerwain [120], Ruan et al. [95],
Zhou et al. [131], and Li et al. [65]. In the first two studies, the Hamming distances are calculated by
encoding the sums of the qubits differences (differences computed by means of controlled-NOT gates)
into the amplitudes of the quantum states through a unitary operation (an approach proposed first
by Trugenberger [111]). After that, the test instance is directly classified by measuring, without the
explicit selection of the nearest neighbors. Conversely, the other works utilize Kaye’s incrementation
circuit [61] to get the distance values in basis encoding. After that, Ruan et al. [95] pick the training
data samples with distances below a specified threshold through an OR gate and a projection opera-
tion to directly classify the test element, Zhou et al. [131] utilize Diirr’s minimization algorithm [31]
to identify the & minimum distance values, and Li et al. [65] employ a new quantum search algorithm
inspired by a binary search to find the minimum.

In the realm of non-binary features, distance measures related to vector angles, such as the cosine
distance, are extensively used. For example, a quantum k-NN algorithm based on a measure of this
type has been exploited by Dang et al. [23] and Wang et al. [114] for image classification tasks. In
detail, the SWAP test [15] without measurements is employed to calculate the distances, whose values
are subsequently encoded in the qubits states via the amplitude estimation algorithm [14]. Eventually,
the nearest neighbors are identified using Diirr’s algorithm. This approach has been introduced first by
Wiebe et al. [115], even though for retrieving only the nearest neighbor. Instead, Afham et al. [2] and
Ma et al. [68] have devised a simpler variant that iterates SWAP tests and measurements to estimate
a value directly proportional to the squared cosine similarity with the training instances. Notably,
this model supports the parallel processing of multiple test instances [68]. In addition, Afham et al.
have recently presented an alternative variant [5] that takes advantage of the SWAP test, a quantum
analog-to-digital conversion algorithm [72], and a variation of Diirr’s algorithm. Hence, it does not
differ significantly from previously cited works.

For non-binary features, other widely used distance measures are the Euclidean, Mahalanobis, and
polar distances. The Euclidean distance is treated separately in Section 3.5. Concerning the others,
Gao et al. [35] have introduced a quantum k-NN employing the Mahalanobis distance, whereas Feng
et al. [33] have proposed a variant using the polar distance, which combines angle and module length
information through a tunable parameter. Specifically, the Mahalanobis distance is calculated using
the phase estimation algorithm [19], combined with Hamiltonian simulation [90], and a controlled
rotation; instead, the computation of the polar distance is performed via a SWAP test without mea-
surements and two Toffoli gates (one of which extended). Subsequently, in both cases, the distance
values are encoded into the qubits states by means of the amplitude estimation algorithm (or its
coherent version, introduced by Wiebe et al. [115]). Eventually, the nearest neighbors are obtained
by applying Diirr’s algorithm (or an algorithm based on it, introduced by Miyamoto et al. [73]). To
conclude this overview on quantum k-NN algorithms, it is worth mentioning the variant (based on a
quantum sorting subroutine) introduced by Quezada et al. [88]. Specifically, it needs a metric operator
calculating distances and encoding them into qubits states, an oracle identifying sorted sequences, and
Grover’s algorithm [41]. Similarly to other works, the test instance is directly classified without the
explicit identification of the k nearest neighbors.

3.3.1 A Quantum k-NN in Detail

Let us present in detail the quantum k-NN algorithm introduced by Afham et al. [2]. To this end, let
us consider the dataset {x;}i—o, . ~N—_1, Where x; € R?, the test data instance x € R?, and the fidelity,
namely, the squared cosine similarity (refer to Equation 3.1), as the similarity measure. Within the
amplitude encoding, the cosine similarity between x; and x corresponds to the inner product (x;|x)
between their respective quantum states. Additionally, without loss of generality, let N and d be
powers of 2. Now, let us take into account an index register consisting of logy N qubits, where the
indices of the training instances are stored using the basis encoding, two n-qubit registers (n = log, d),
where the data features are encoded into the amplitudes of the quantum states, and an ancillary qubit.
These four registers are initialized in the following state:

21

N—
Z ‘XZ |X |0> € Hmde:c & Hn X Hn ® H
i=0
It is worth noticing that the superposition of the training data and the test instance are stored into

two distinct registers. Then, a SWAP test is executed on the two n-qubit registers, with the ancillary
qubit as the control qubit, leading to the state

Z! [(ei) [x) +)) [0) + (i) %) = [x) [xi)) [1)] -

The probability of obtaining the outcome o € {0,1} through a measurement process applied to the
ancillary qubit is given by

=

1
2N

7

Pla) = 3 +(~1)" 5 3 [l

I
o

and the corresponding post-measurement state is

1, = Zizo i) ())+ (1)) i)
\/ 2 (N + (-0 XX el

After measuring the ancillary qubit state («), the probability of getting the outcome i by measuring
the index register is

) -

L+ (1) exa)
N+ (=1)* 5)

P(i|o) =

Therefore,
2(|(x|xi)|* = ©)
N1-C?) ~’

Qi) = B(il0) — P(i[1) = (3:2)
where C' = £ >, |(x|x;)|? is a constant value. In practical terms, Equation (3.2) is proportional to the
squared cosine similarity |(x;|x)|* between x; and x. Hence, sampling from the index register allows
finding the indices of the vectors closest to x (they have the highest Q values). However, since Q is
proportional to the square of the cosine similarity, the sign of each data feature must be consistent in
order to avoid extracting also the instances most dissimilar to x.

3.4 Quantum Cosine Binary Classifier

Recently, Pastorello and Blanzieri have introduced a quantum binary classifier that relies on the cosine
similarity metric [79]. The classifier has a simple iterative structure, which involves the preparation of
a superposition state in which the training and test features are encoded as amplitudes, a SWAP test
that acts on single qubit states, and a final measurement. In this way, a probability value proportional
to a weighted label assignment, with the weights given by the cosine similarity, is estimated.

In detail, let us consider a training set X = {x;, y; }i=0,... N—1, where x; € R? and y € {—1,1} Vi €
{0,..., N — 1}. Hence, X comprises N data instances characterised by d real features and two-valued
labels. Additionally, let x € R? be a novel (test) data instance that needs to be classified as —1 or 1.
Then, let us consider the following (classical) classification model:

N-1
y(x) := sgn (Z Yi cos(xi,x)> , (3.3)

1=0

with cos(x;,x) := W being the cosine similarity between the training vector x; and x. In this
model, every training vector plays a role in predicting the new label, with the contributions being
weighted by the cosine similarity to the test instance. Now, let us take into account a log, N-qubit

22

register for encoding the indices of the training data vectors, an n-qubit register (n = logyd) for
storing the data features using the amplitude encoding, and a single qubit for representing the labels
according to b; = l_zyi € {0,1}. At this point, let us consider the state

N-1
1
‘X> \/> Z ‘ ‘XZ ’b> € Hindex @ Hp @ Hy, (3.4)

where H; is the Hilbert space of the label qubit. The above state encodes the training set X, including
features and labels, as a quantum superposition. Additionally, within the same registers, let us consider
the state
| Nl
‘¢x = 7= Z |Z |X |_ € Hinder ® Hy @ Hy, (3-5)
\/7 =0
with the label qubit being in state |—) = ﬁ(‘m —|1)). As a result, the test label is initially in a
quantum superposition of the two possible classes. In order to allow the states (3.4) and (3.5) to
coexist within the same registers, let us introduce an ancillary qubit (a). The initial state is then the
following:

1
\ﬁ (‘X> ‘O> + |’¢X> |1>) € Hindem & Hn & Hl & Ha- (36)
After preparing the initial state, let us perform a SWAP test on the qubit a and a second ancillary
qubit (b) initialized in |+) = %(\O) +[1)). The control qubit is another ancillary qubit (¢) initialized
in |0). The probability of measuring 1 on the control qubit after the SWAP test is

L= (X1,

B(1) = 5

which is strictly related to the classification model taken into account. Indeed,

(XJi) = fzyzcos X, X).

As a consequence, given P(1) or an estimate of it, the label of x can be predicted (according to 3.3) as

y(x) =sgn[l —4P(1)]. (3.7)

3.5 Quantum Euclidean Distance

The Euclidean distance is a widely used distance metric in machine learning. Here, the definition
of its squared version is supplied. Specifically, let us consider two vectors u,v € R™. The squared
Euclidean distance between them, denoted as d?(u,v), is given by

d*(u,v) = [[u—v[* = [[u]]* - 2(u,v) + [|v]?, (3.8)

with (u,v) being the scalar product between u and v.

The aforementioned distance metric has been exploited also in the field of QML. For example,
Lloyd et al. [66] have introduced a quantum procedure for estimating the squared Euclidean distance
between a data point and a cluster centroid, namely, the mean of the elements within a data group.
In particular, this algorithm is based on the SWAP test, which is performed on the index registers,
and does not need input vectors with unit norms. An analogous approach has been employed by
Sarma et al. [96] to develop a hybrid k—means clustering algorithm, where the centroids are classically
computed, and by Getachew et al. [36] for a hybrid version of the k-medians algorithm. In addition,
Yu et al. [123] have introduced three quantum procedures for the estimation of different similarity
measurements, all based on the squared Euclidean distance, on sets of data. These procedures do not
need unit-norm input vectors, leverage the quantum interference resulting from the change of basis,
and employ the amplitude estimation algorithm for determining the similarity measures. Eventually,

23

it is worth recalling the quantum binary classifier proposed by Schuld et al. [98]. Specifically, the
quantum circuit of the classifier comprises a Hadamard gate (required for the quantum interference),
a conditional measurement, and a final measurement. The repeated execution of the circuit allows
estimating a probability value related to the squared Euclidean distances for each of the two classes.
However, only input vectors with unit norms are taken into account.

Concerning quantum k-NN models, to the best of the author’s knowledge, the sole variant available
in the literature relying on the Euclidean distance has been proposed by Fastovets et al. [32]. The
variant in question leverages the procedure introduced by Lloyd et al. [66] for estimating the pairwise
distance values and employs Diirr’s minimization algorithm for identifying the k nearest neighbors.
A notable drawback of this method consists in the necessity of multiple iterations of each of the two
steps, as both of them include a final measurement. Additionally, Diirr’s algorithm needs an oracle,
namely, a black-box function, to be executed. Actually, the nearest neighbor algorithm introduced
by Wiebe et al. [115] accepts also the Euclidean distance as the distance metric. Nevertheless, its
workflow (described in Section 3.3) is considerably complex to be realized. Eventually, the calculation
of the single linkage, i.e., a set similarity measure taken into account by Yu et al. [123], could be
considered as a generalisation of the nearest neighbor search. Nonetheless, their quantum algorithm
utilizes the reciprocals of the input vectors, leading (theoretically) to the loss of the original distance
relationships.

24

Part 1

Quantum Annealing

25

4 QALS Empirical Evaluation

This chapter is a reworked version of the article “Quantum annealing learning search implementa-
tions” [12], which was motivated by the absence of an empirical evaluation of QALS (see Section 2.3)
in the original work by Pastorello and Blanzieri [81]. In practice, in this chapter, two implemen-
tations of QALS and their empirical evaluation on two different real-world problems are presented.
Specifically, the implementations are in C++ and Python, respectively. The former aims at improving
the performance of the classical part of the algorithm, while the latter is characterised by a smooth
interaction with the quantum annealers provided by D-Wave. Concerning the problems considered,
they are the Number Partitioning Problem, which has a natural QUBO representation [63], and the
Travelling Salesman Problem, which has constraints that must be included as penalties in the QUBO
formulation. The algorithm has been compared with classical competitors and with the tools provided
by D-Wave. The results have demonstrated that QALS can tackle bigger problems with respect to
the standard D-Wave solutions.

4.1 Implementations

Two implementations of QALS, in C++ and in Python, have been developed. In both cases, some
optimizations with respect to the original mathematical formulation of QALS have been required.
In addition, in contrast to the theoretical formulation presented in Section 2.3, the QUBO problem
variables are defined in the {0,1} domain, which is the standard domain for QUBO problems. The
pseudocode, which is valid for both implementations, is provided in Algorithm 2.

First of all, in order to avoid the usage of the quantum annealer while testing the correctness of
the implementations (the machine time at our disposal was limited), the call to the annealer has been
substituted with an exhaustive search on the same equation minimized by D-Wave. It is important
to notice that the minimization of the equation in question does not simulate the actual behavior of
a quantum annealer, since it is a probabilistic machine.

After the correctness tests, it was evident that the execution was notably slow. The main cause
was the calculation of the product of three matrices, i.e., the transposed permutation matrix P, the
QUBO matrix @, and the permutation matrix P. Indeed, the computation of the product PTQP
could require up to 100 seconds. Given that the permutation matrix P is a sparse matrix, a sparse
matrix representation has been adopted first. In practice, only the non-zero values are stored as
triplets (row, column, wvalue). In this way, the execution time for this calculation was reduced to
approximately 1.5 seconds, but further optimizations were feasible.

To address this efficiency issue, both the representation of P and the way to permute the matrix
@ have been modified. Specifically, P has been substituted with a permutation vector perm. Let P;
denote the i-th row in P, then:

00010

10 0 0O
P=1]10 0 0 0 1 perm = [3,0,4,1,2]

01 000

00100
perm|0] = 3 — Py has the value 1 in column 3
perm[l] =0 — P; has the value 1 in column 0
perm|2] = 4 — P» has the value 1 in column 4
perm[3] =1 — P3 has the value 1 in column 1
perm|4] = 2 — Py has the value 1 in column 2.

26

© 00 N o ok~ W N

w @ o W W W NN NN NNDNNNDN R RE H B B B R R R
4 28 ERVE S ®» IS AR o NS0 ® I 6 O A BN R O

39

40

41

42
43
44
45
46
a7

Data: Matrix @ of order n encoding a QUBO problem, annealer adjacency matrix A of order n
Input: Permutation modification and mapping function g, minimum probability ps of permutation
modification, probability decreasing rate 1, candidate perturbation probability ¢, number N of
iterations at constant p, scaling factor Ay, number of annealer runs k, termination parameters
iTTLLL.’I)? N7na.7;7 d’min
Result: x* vector with n elements in {0, 1} solution of the QUBO problem
function fg (Q,x):
‘ return x7 Qx;
m = Op;
for i < 0 to n do
| m[i] « 4
end
p< 1L
@1,m1 — g(Q7A7map);
B2, my + g(Q, A,m,p);
x1 < mapback(annealer(©1, k), my);
X3 < mapback(annealer(O2, k), ma);
1+ fo(Q,x1); fa + fo(Q,%2);
if f1 < f then
| X" X f* e f1m® e ma X xo;
else
‘ x* < Xo; f* < fo; m* < ma; X' xq;
end
if f1 # f2 then
| S+ x @x' — I, + diag(x');
else
‘ S = Onxns
end
e 0;d0;i<¢ 0; A Ao
repeat
Q'+ Q+ \S;
if N divides i then
| pp—nlp—ps);
end
O m g(Q', Am*, p);
x' + mapback(annealer(®', k), m);
with probability ¢: x' — h(x’,p);
if x' # x* then
I folQ.x);
if f/ < f* then
swap(x',x*); f* « f'sm* < m; e + 0; d + 0;
S+ S+x'@x' — I, + diag(x');
else
d+d+1;
with probability (p —p(s)(fl_f*): swap(x',x*); f* < f';m* «+m; e+ 0;
end
A min{)\o, ﬁ},
else
‘ e+ e+ 1;
end
141+ 1;
until i = i, 07 (6 +d > Npao and d < dipin);
return x*;

Algorithm 2: Implementation of QALS (taken from [12]).

27

While the permutation of the matrix P has a computational complexity of O(n?), the permutation
of the vector perm has a complexity of O(n logn), which is determined by O(n) accesses to the map
m (each one with complexity O(logn)). The usage of a hashmap would further reduce the time
complexity to O(n) on average.

After the change of representation, the way to permute only the elements that must be mapped
into the D-Wave topology has been investigated. Let us take into account an example matrix @ (that
is not a QUBO matrix), with the permutation matrix and vector from the previous example:

1 2 3 4 5
6 7 8 9 10
Q=11 12 13 14 15 P =
16 17 18 19 20
21 22 23 24 25

perm = [3,0,4,1,2].

(el =]
o= O O O
_ o O O O
o O O o
OO = OO

The matrix resulting from the permutation (PTQP) is

7T 9 10 6 8
17 19 20 16 18
M=122 24 25 21 23
2 4 5 1 3
12 14 15 11 13

Now, let us examine the positions of the entries after the permutation. The objective is to find the
element m;; without generating the entire matrix M. In practical terms, the indices of the values ¢ and
j in the permutation vector perm should be exploited to find the correct entry in the) matrix. For
example, to find the value for the entry m; 2, the indices of the values “1” and “2” in the permutation
vector must be identified: the index of “1” is “3”; the index of “2” is “4”. The first index designates
the row, whereas the second one designates the column. Consequently, the entry mj o corresponds to
the entry ¢34, which is equal to 20.

Searching for the index of a specific value in the permutation vector has a complexity of O(n). In
order to generate the matrix O, a total of O(n) searches is necessary, as D-Wave’s Pegasus topology
A is characterised by O(n) edges (with n being the number of nodes in the considered Pegasus’ sub-
graph [55]). Hence, the overall complexity is O(n?). Nevertheless, considering that the goal is to find
the index of multiple values, a more efficient approach consists in inverting indices and values. This
operation can be performed by executing a O(n) algorithm once at the beginning. As a consequence,
the complexity of the search operation becomes O(1). Let us examine the inverse vector for the
previous example:

perm = [3,0,4,1, 2] inverse = [1,3,4,0, 2]

inverse|0] = 1 — perm has the value 0 in position 1
inverse|l| = 3 — perm has the value 1 in position 3

]

]

2] =4 — perm has the value 2 in position 4

inverse[3] = 0 — perm has the value 3 in position 0
]

[
[
inverse|
[
[

inversel4| = 2 — perm has the value 4 in position 2.

After obtaining an estimate of the solution from the quantum annealer, the solution variables must
be mapped back to the original unpermuted problem space. Due to the change of representation of P,
the PT 2 operation is no longer valid. However, by leveraging the inverted permutation vector inverse,
the original values can be retrieved as x_back[i] < z[inverse[i]]. The pseudocode for this process is
given in Algorithm 3.

4.1.1 C++ Implementation
In developing the C++ implementation of QALS, two main issues have been encountered, namely,
the lack of native D-Wave APIs and the selection of a suitable random number generator.

28

Input: Solution vector x, permutation vector perm
Result: perm~=!(z)

1 inverse < compute_inverse(perm); // computes the inverse of perm

2 z_back < new int[n];

3 fori+<0ton—1do

4 | x-backli] < x[inverseli]]; // wz_back[i] takes the value contained in z[inverse[i]],
so that the values are mapped back to the original unpermuted space

5 end

6 return x_back
Algorithm 3: Map back variables (map_back(z, perm) function) (taken from [12]).

4.1.1.1 Lack of Native APIs

At the time of writing, D-Wave offers only Python APIs to interact with the QPUs. As a consequence,
the retrieval of the current QPU topology, the submission of problems, and the acquisition of the
corresponding results are not feasible for a C++ program. To address these issues, two approaches
have been considered.

The first approach involves embedding a Python function in C++ [28]. This can be achieved
by including the Python.h header and, after generating all necessary PyObjects, running the Python
function that encapsulates the calls to the annealer. However, the Leap IDE, where the experiments
have been executed, does not supply the Python.h header.

In the second approach, the one that has been employed, the C++ executable creates a child
Python process through a fork operation at the startup. The role of this process is twofold, namely,
to provide the parent process with the current QPU topology and to submit the problems to the QPU
solver. Specifically, the Python process first obtains the current topology and transmits it to the C++
process through an anonymous pipe. This step is essential since the quantum annealer might have
inactive nodes, which must be taken into account during the embedding. After the reception of the
topology, the parent process begins forwarding problems to the child process. In detail, the parent
process transmits the row index, the column index, and the corresponding value for each entry in the
© matrix. Eventually, it sends a message containing a “#” character to signal that all entries of the
matrix have been transmitted. In the meanwhile, the child process consistently reads the input pipe,
storing all the information. Upon receiving the “#” character, it submits the problem to the QPU,
fetches the solution, and transmits it to the C++ process. Subsequently, it resumes reading the input
pipe for new instructions.

Algorithms 4 and 5 provide the pseudocode for two functions, i.e., init_child and send_to_annealer,
that implement the C++4 side of the approach just described. Specifically, the init_child function
generates the array of arguments to be transmitted to the Python process (using dup2), redirects the
standard input and output to pipes, and substitutes the executable code with the Python code. READ
(=0) and WRITE (=1) denote positions in the fd array and are used to identify the sides of the pipe.
In detail, fd[READ] is allocated for child reading, fd][WRITE)] for parent writing, fd[READ + 2| for
parent reading, and fd[WRITE + 2] for child writing. Instead, send_to_annealer is responsible for
transmitting each row-column-value triplet to the Python process and retrieving the solution from the

pipe.

Input: Number of measurements for each problem k (num_reads)

1 args < {"python”, " solver.py”, to_string(k)};

2 dup2(fd[READ], STDIN _FILENO); // replace the standard input with an
anonymous pipe

3 dup2(fd[WRITE + 2], STDOUT_FILENO); // replace the standard output with an
anonymous pipe

a4 close_pipes(fd);

5 execvp(args|0], args); // replace the child’s executable code

Algorithm 4: Initialization of the Python child process (init_child(k) function) (taken from [12]).

29

Input: Weights © (0cqqe refers to the weight associated to the edge edge)
Result: Vector with minimum estimated energy =

1 % iterate over all edges, including pairs in the form (7,1);

2 foreach edge in © do

3 row + edge.u(); // store vertex u
4 col + edge.v(); // store vertex v
5 val < bedge; // store weight associated to edge (u, v)
6 write(fd]WRITE], row); // send row index
7 write(fd]WRITE], col); // send column index
8 write(fd]WRITE], val); // send value
9 end

10 write(fd[WRITE], ”#”); // notify end of transmission
11 fori<-0ton—1do

=
N

‘ x[i] - read(fd[READ + 2]);
end
14 return x

Algorithm 5: Send © to the Python process and retrieve the estimated solution =z
(send_to_annealer(©) function) (taken from [12]).

=
w

Concerning the time required by the message exchange, it corresponds to approximately one second
when using 5000 variables, which is nearly the limit of the Pegasus architecture. This value has been
obtained by measuring the time elapsed between the initial message sent by the C++ process and
the final message received by the same process, without actually invoking the annealer (the response
has been generated and sent by the Python process). While this duration is not exaggerated, it may
nullify the benefit of using C ++ over Python.

4.1.1.2 Random Number Generation

One of the key components of QALS is the shuffling of the map m (see Algorithm 1). In particular, the
permutations of m have been generated as shown in Algorithm 6. The algorithm in question relies on
the shuffling of the map’s keys (line 6). Ideally, the shuffle algorithm should be capable of generating
all the n! permutations of the keys vector. In this work, the Fisher-Yates shuffle algorithm, which
produces unbiased permutations, has been used.

The Fisher-Yates algorithm necessitates a random number generator. The first option that has
been taken into account is the rand() function provided by C++. In detail, the rand() function
provides values between 0 and RAND_MAX. Hence, if the generated numbers are restricted to the
desired range by means of the modulo operation, the values do not necessarily have equal probability.
Let us consider an example [112]. Specifically, let us assume that the desired range is [0,2] and

Input: Map m (my is the value of m for key k)
Result: Permuted map m
shuf fled < map();
keys « new int[n];
foreach k in m.keys do
‘ keys.append(k); // create a vector of keys
end
shuf fle_vector(keys); // shuffle the vector of keys
it « keys.begin(); // iterator
for pair in m do
Shuffledpair.key S Mt
it.next();
end

© 0 N O O W N =

o
= o

Algorithm 6: Shuffle map (shuffle(m) function) (taken from [12]).

30

RAND_MAX = 10, thus:

e if rand() yields a value in {0,3, 6,9}, rand()%3 = 0. Hence, P(0) = ;

e if rand() yields a value in {1,4, 7,10}, rand()%3 = 1. Hence, P(1) = %;

e if rand() yields a value in {2,5,8}, rand()%3 = 2. Hence, P(2) = .
In practical terms, the probability of the numbers between 0 and 2 is not the same. Another issue
was represented by the length of the random number generator period. For instance, to generate all
possible permutations of a deck of 52 cards (52!), a period of at least 52! is necessary. Typically, the
period of rand() is 232, although it can vary depending on the implementation. Given that QALS
involves the permutation of vectors with more than 5000 variables, rand() was not a good choice.

Another solution that has been considered is the generation of random numbers by means of
D-Wave’s quantum annealers. Given that quantum annealers are “trusted” quantum machines, the
generated numbers would be truly random. In particular, the idea consists of the following steps:
submitting problems wherein each qubit has an equal probability of collapsing to either 0 or 1; decoding
the resulting arrays of boolean values into one or more integer values. The pseudocode for this approach
is provided in Algorithm 7. In essence, line 3 sets all the diagonal values in © to zero. Consequently,
all 2" possible states have an equal probability of being retrieved [56]. More in detail, any call to this
algorithm allows generating |n/k| integer numbers, where n represents the number of qubits used,
and k denotes the number of bits per number. For instance, let us assume that the desired range of
values is [0, 127] and n = 5000. A single call would produce 714 integers (|5000/7]) in approximately
0.3 seconds. While this may seem reasonable, the cost is excessive:

e cach QALS iteration requires to permute a vector whose maximum size is approximately 5436.
Therefore, for each iteration, it is necessary to generate at most 5436 numbers. In a single run,
with n = 5436 and k = 13, Algorithm 7 produces 418 numbers. As a consequence, for each
iteration, the algorithm must be run 13 times;

e cach run of Algorithm 7 takes approximately 0.3 seconds on average. Consequently, the overhead
would be approximately 3.9 seconds for each QALS iteration.

This implies that the quantum annealer would be invoked 13 times more, reducing the number of
possible experiments and increasing the overall cost. Clearly, this approach was not feasible.

In the end, the Mersenne Twister random number generator, which is characterised by a period
of 219937 _ 1 has been selected. Specifically, the Mersenne Twister is able to generate 64-bit floating
point random numbers faster than the hardware-implemented Intel Secure Key [94]. In addition, while
a large period does not ensure quality in random number generation, it allows the generation of longer
sequences. Although the period in question is not large enough to cover all possible sequences, the
Mersenne Twister represents the best tradeoff that has been found between efficiency and coverage of
the permutation space.

Input: Amount of bits reserved per number &
Result: Vector of random integers nums

1 0+ {}; // Python dictionary
2 fori<0ton—1do

3 ‘ Oli][i] < 0; // initialize the diagonal with all zeros
4 end

5 x < sample_qubo(O); // run the annealer with ©
6 x < x.first.sample.values(); // solution vector z € {0,1}"
7 nums < to_decimal(x, k); // extract |n/k| decimal numbers, each one from O to

2k —1

8 return nums
Algorithm 7: Generation of random numbers by quantum annealing (gen(k) function) (taken
from [12]).

31

4.1.2 Python Implementation
In developing the Python implementation, no particular issue has been encountered. Here, the em-
bedding procedure and the submission of problems to the quantum annealer are described.

4.1.2.1 Embedding Procedure

In the QALS scheme, the embedding of the QUBO matrix into the annealer topology is a straightfor-
ward process. Indeed, each index of the QUBO matrix is associated with a node € V, with V being
the list of active nodes in the topology, and the matrix entries are mapped accordingly. Nevertheless,
the topology graph is not complete, and some qubits are unavailable (only 97% of qubits are gen-
erally available). Hence, first of all, it is necessary to retrieve the list of working qubits and edges
using a function provided by D-Wave. In practice, rather than D-Wave’s EmbeddingComposite class,
which is effective for matrices of size up to 196 x 196, a custom embedding algorithm is employed
in QALS implementations. The pseudocode for the embedding algorithm, which is used also by the
C++ implementation, is provided in Algorithm 8. The algorithm works as follows:

1. an empty dictionary is initialized using the necessary active nodes as keys;

2. each key (active node) is associated with the list of nodes that are endpoints of active edges
outgoing from the considered node (these nodes must be keys of the same dictionary);

3. a support dictionary mapping each selected node to a QUBO matrix index is created;
4. the QUBO matrix is embedded by iterating on the nodes (corresponding to matrix rows) and

their adjacent nodes (corresponding to matrix columns).

Input: Sampler sampler, QUBO problem (), dimension of QUBO problem n
Result: Embedded QUBO problem mapped

1 actives < dict();

2 foreach node € sampler.nodelist do

3 actives[node] «+ list();

4 if actives.keys().size() == n then

5 ‘ break;

6 end

7 end

8 foreach edge € sampler.edges do

9 if edge.nodel € actives.keys() and edge.node2 € actives.keys() then
10 actives[edge.nodel].append(edge.node2);
11 activesledge.node2).append(edge.nodel);
12 end
13 end
14 support, + dict();
15 1 < 0;
16 foreach node € actives.keys().ordered() do

support[node] = i;
141+ 1;
end
mapped,xn < 0;
foreach node € actives.keys() do
foreach adjnode € actives[node] do
mapped[node][adjnode] = Q[support[nodel][supportadjnode]];
end

=
]

NN N R e
B o N R O ©

end
return mapped;
Algorithm 8: Embedding the problem in the sampler topology (taken from [12]).

N N
[< IS

32

Input: Dictionary representing the embedding of the problem in the topology O, sampler
sampler, number of reads k
Result: List of {0,1}"
1 response = sampler.sample_qubo(O, num_reads = k);
2 return response. first.sample.values();
Algorithm 9: Communication with the annealer (problem submission) (taken from [12]).

4.1.2.2 Communication with the Annealer

D-Wave supplies different samplers for solving problems, and the signature of the sampling method
is common to all samplers. The pseudocode of the algorithm used for submitting problems to the
quantum annealer is provided in Algorithm 9. Its structure is really simple, but it is worth highlighting
some aspects: © must be a dictionary, otherwise the problem will not be correctly processed by the
sampler; k denotes the number of annealer reads (as in Algorithm 2). The k parameter is optional for
both simulated and quantum annealing samplers, while hybrid samplers do not support it.

4.2 Empirical Evaluation

QALS has been empirically evaluated on two problems, namely, the Number Partitioning Problem
(NPP) and the Travelling Salesman Problem (TSP). Specifically, for NPP, a single run has been
executed due to the limited quantum annealing time available. Conversely, for TSP, multiple runs

have been executed due to the less QPU usage per run. Here is reported a legend for the parameters
of QALS:

ps denotes the minimum probability of permutation modification;
e 1) represents the probability decreasing rate;

e ¢ corresponds to the candidate perturbation probability;

N is the number of iterations at constant probability;

Ao denotes the initial balancing factor for the tabu matrix;

e k represents the number of annealer measurements for each problem;

Ninaz represents the maximum number of consecutive times that QALS can find the current
best solution or a solution that is not better than it before stopping;

dmin corresponds to a further condition on the number of times that QALS can find a solution
not better than the current best solution before stopping.

4.2.1 Number Partitioning Problem (NPP)

The Number Partitioning Problem (NPP) consists in dividing a set of numbers into two subsets so
that the difference between the sum in the first subset and the sum in the second subset is minimized.
The QUBO formulation that has been utilized in the experiments is the one provided by Glover et al.
[38]. Specifically, let us consider a set of numbers S = {s1, s, ..., sp}. If s; belongs to the first subset,
x; = 1; otherwise, x; = 0. Therefore, the sum of the first subset values is equal to sum; = Z?:l Sixi,
while the sum of the second subset values can be expressed as sumgy = Z?:l S; — 2?21 s;x;. Then, let
cbe > " | s;. Hence, the difference between the two sums is equal to

n n n
diﬁ:ZSi—QZsixi:c—ZZSixi. (4.1)
i=1 i=1 i=1

Rather than directly minimizing the difference, let us consider its squared value, which can be expressed
as

n 2
diff* = {c -2 Z sia:z} = % 4 42'Qu, (4.2)
i=1

33

where @ is the QUBO matrix, whose entries are given by
Qii = si(si—c¢) Qi = Qji = 8i8;. (4.3)
Since the constants (c? and 4) can be ignored, the QUBO problem can be expressed as
QUBO : min y = 2'Qx.
The pseudocode for the calculation of the QUBO matrix entries is provided in Algorithm 10.

Input: Set of numbers s

Result: Matrix @ representing the QUBO formulation of the NPP problem defined by s
1 n « s.size();
2 ¢ < sum(s); % sum over numbers in s
Q <+ new int[n][n];

w

4 fori<+ 0ton—1do

5 for j < 0ton—1do
6 if i # j then

. p < sli] - sljl;

8 Qli][j] < p;

9 QU < p;

10 else

11 | QU] + sli] - (s[i] - ¢);
12 end
13 end
14 end

15 return Q)
Algorithm 10: Translation of NPP into QUBO (taken from [12]).

4.2.1.1 Classical Algorithms for NPP

Due to the NP-hard nature of NPP, an efficient algorithm that solves it does not exist (yet). However,
various heuristics have been proposed. An example is the greedy heuristic, which consists in arranging
the numbers in descending order and iteratively adding them to the subset with the smaller cumulative
value. Another heuristic is the Karmarkar-Karp (KK) approach [60], which is the basis of an exact
(exponential-time) algorithm presented by Korf [64] and evaluated by Pedroso and Kubo [86], namely,
the Complete Karmarkar-Karp algorithm (CKK).

The CKK algorithm is based on a depth-first search of a binary tree. In this tree structure, the left
branch represents the replacement of the two largest numbers at the present level with the absolute
value of their difference, implying that these numbers are placed in different subsets. Conversely,
the right branch represents their replacement them with their sum, implying that they are assigned
to the same subset. Since the numbers are not assigned to a specific subset during the search, a
linear time procedure must be run at the end of the search in order to retrieve the resulting subsets.
The algorithm’s worst-case complexity is exponential. However, the search terminates upon finding
a perfect partition, namely, the last remaining number, representing the difference between the two
subsets, is either 0 or 1. Additionally, if the biggest number is bigger than the sum of all the others,
the branching for that sub-tree can be terminated, as all the other numbers can be assigned to the
same subset. Finally, when dealing with four numbers or fewer, only the left branch is evaluated, as
the KK heuristic is exact in this situation.

In the experiments presented here, the CKK implementation provided by Pedroso and Kubo [86]
has been used as a comparison.

4.2.1.2 Experimental Setup and Results

The experiments have been executed sequentially on the Leap cloud, using the QALS parameters
reported in Table 4.2. In this case, the C++ implementation has been used to obtain the results, while

34

Table 4.1: Tests performed on the Number Partitioning Problem (taken from [12]).

Dimension | Approach | Range | Sets Difference | Time (s) | # Iterations
QALS 93 2172 4000
Hybrid 100 1 6 -
Classical 1 0.003 -
QALS 292 2157 4000
Hybrid 1000 4 9 -
500 Classical 0 0.005 -
QALS 2640 2151 4000
Hybrid 10000 36 12 -
Classical 0 0.004 -
QALS 475860 1992 4000
Hybrid 1000000 2340912 14 -
Classical 0 0.005 -
QALS 185 1327 2000
Hybrid 1000 1 23 -
Classical 1 0.015 -
QALS 6337 1304 2000
Hybrid 10000 225 23 -
1200 Classical 1 0.017 -
QALS 145982 1270 2000
Hybrid 100000 186624 23 -
Classical 0 0.024 -
QALS 303833 1267 2000
Hybrid 1000000 781440 23 -
Classical 0 0.019 -
QALS 3108 2442 2000
Hybrid 1000 0 62 -
Classical 0 0.072
QALS 11681 2666 2000
Hybrid 10000 25 54 -
92500 Classical 1 0.090 -
QALS 160676 2354 2000
Hybrid 100000 6240 64 -
Classical 1 0.089 -
QALS 2731518 2341 2000
Hybrid 1000000 1151232 65 -
Classical 1 0.093 -
QALS 6209 9414 2000
Hybrid 1000 1 260 -
Classical 1 0.318 -
QALS 528 9413 2000
Hybrid 10000 16 267 -
5436 Classical 0 0.437 -
QALS 4010004 9168 2000
Hybrid 100000 12112 263 -
Classical 0 0.464 -
QALS 5497085 9507 2000
Hybrid 1000000 24576 260 -
Classical 0 0.479 -

35

Table 4.2: Values used for QALS parameters in all NPP tests (taken from [12]).

Ds n q N)\0 k Nmaz dmin
0.1]00102]|10 15110 100 70

the Python implementation has been employed to verify them. Regarding the annealing parameters,
like the annealing time and schedule, the default values have been employed for QALS (the system
that has been used is the Advantage 1.1) [48]. Instead, Hybrid internally manages these properties in
an automatic way.

The obtained results are shown in Table 4.1. Specifically, Range denotes the upper boundary
of the number generation interval ([1, Range]) and, therefore, the maximum possible s; value. For
example, if Dimension is 500 and Range is 100, a vector of 500 integers within the range [1,100] is
employed. Conversely, Sets Difference represents the difference between the two resulting sets. In
detail, QALS has not performed as well as expected. Indeed, Hybrid has turned out to be superior in
terms of both results achieved and time required. In addition, the classical algorithm considered for
comparison (the CKK algorithm) has exhibited notable speed and has consistently found the optimal
solution. In practice, classical algorithms for NPP are efficient despite the problem being NP-Hard.
QALS performance could be probably improved by increasing the number of annealer measurements
(k > 10). Indeed, a larger output sample would increase the probability of finding a solution close
to the optimum (the D-Wave quantum annealer is characterised by noise and temperature effects).
However, the quantum annealing time at our disposal was too short.

4.2.2 Travelling Salesman Problem (TSP)

The Travelling Salesman Problem, commonly referred to as TSP, consists in determining the shortest
route among n cities, given a list of cities and their pairwise distances (actually, a city is not required
to be directly connected to all the others). In particular, each city must be visited exactly once and
the route must conclude at the starting point. Therefore, TSP is equivalent to the task of identifying,
within a graph G = (V, F), the Hamiltonian cycle characterised by the minimum cumulative weight.
This perspective is particularly significant as there exists a QUBO formulation for it [67]. In detail,
the problem Hamiltonian for TSP is defined as

H=Hj,+ Hp
HA:AZ 1—2%,‘7]‘ +AZ<1—ZHZ1‘,]‘> +A Z qu,jmv,j-&-l
i=1 j=1 j=1 i=1 (uv)¢E j=1
n
Hp =108 Z Wy qu,jmv,j—i-la (4'4)
(wv)eE Jj=1

with x; ; being equal to 1 if the i-th node (city) is in the j-th position in the cycle (route), 0 otherwise,
ZTynt1l = Ty, and A and B being positive constants (A, B > 0). In this context, H4 encodes the
problem constraints, namely, each node must appear exactly once in the cycle (first term), there
must be exactly one node in each cycle position (second term), and the order of nodes must be valid
(third term). Conversely, Hp encodes the minimization of the total weight of the cycle (route length);
specifically, W, represents the weight of the (u,v) edge. Eventually, to make the violation of the
constraints energetically unfavourable, the relationship 0 < B(max(W,,)) < A must be satisfied. In
the experiments presented here, B has been set to 1, while A was has been set to n x maz(Wyy,).
Given the problem Hamiltonian H, a renumbering of the x;; variables is necessary in order to
construct the QUBO matrix). Specifically, the following renumbering scheme has been used here:

(1:171, 21,2y -+ T1ny T21 --- xn,n) — (1‘1, l‘nz). (4.5)

Then, the Q;; entry of Q, for i, j € {1,...n%}, is given by the coefficient of z;z; in H. The pseudocode
for the computation of the QUBO matrix entries is provided in Algorithms 11 to 14.

36

Input: Distance matrix D
Result: Matrix) representing the QUBO formulation of the TSP problem defined by D
n <« size(D,0); // number of rows of D (square matrix)
Q + new int[n?|[n?);
all_zeros(Q);
A < n - maz_coeff (D); // penalty set according to [67]
B+ 1; // multiplier set according to [67]
Q < add_cost_objective(Q, D, B);
Q < add_time_constraints(Q, A);
Q < add_position_constraints(Q, A);
return Q)
Algorithm 11: Translation of TSP into QUBO [110] (taken from [12]).

© W N O A W

Input: QUBO matrix @, distance matrix D, multiplier B
Result: Matrix) including the cost objective

1 n + size(D,0); // number of rows of D (square matrix)
2 fort<0ton—1do

3 fori < 0ton—1do

4 for j < 0ton—1do

5 rt-n+4i;

6 ¢+ (t+1) mod n? + j;

7 Q[r][c] « B - D[i[jl;

8 end

9 end

10 end

11 return Q)
Algorithm 12: add_cost_objective function (computation of Hp coefficients) (taken from [12]).

Input: QUBO matrix), constraint penalty A

Result: Matrix () including time constraints
1 n «+ size(D,0); // number of rows of D (square matrix)
2 fort<0ton—1do

3 for i< 0ton—1do
4 r<t-n+i;
5 Q[r][r] + QIrl[r] — 4;
6 for j < 0ton—1do
7 if © # j then
8 c+—t-n+y;
9 Qlr]ld « 2+ 4
10 end
11 end
12 end
13 end

14 return @
Algorithm 13: add_time_constraints function (computation of part of the coefficients of Hy)
(taken from [12]).

37

Input: QUBO Matrix @), constraint penalty A

Result: Matrix () including position constraints
1 n < size(D,0); // number of rows of D (square matrix)
2 fori+0ton—1do

3 for t1<+ 0 ton—1do
4 r<tl-n+47;

5 QIrllr] < QIrllr] — A;
6 for t2+ 0 ton—1do
7 if t1 # t2 then

8 c+12-n+1;
0 QIrlle] < 2- A;
10 end

11 end

12 end

13 end

14 return Q)
Algorithm 14: add_position_constraints function (computation of part of the coefficients of H4)
(taken from [12]).

4.2.2.1 Solution Refinement Procedure

In the QUBO formulation of TSP, a solution is a binary vector of length n?, where n denotes the
number of nodes (cities). Alternatively, a solution can be seen as a list of n sub-sequences, each
consisting of n locations. In particular, in a valid solution, each sub-sequence contains n — 1 Os and
one 1; furthermore, the position of the value 1 within the i-th sub-sequence is unique with respect to
all sub-sequences. For example, a valid solution for three cities is

21 =[0,1,0, 1,0,0, 0,0,1],

while an invalid solution is
x9 =[1,1,0, 1,0,0, 0,0,0].

To convert a QUBO TSP solution into a classical TSP solution, each sub-sequence is replaced with
the integer number representing the position of the value 1 inside that sub-sequence. For instance,

the classical version of x7 is
S1 = [1, 0, 2]

Conversely, z2 cannot be converted into a valid classical TSP solution unless it is refined, namely,
modified a little bit.

To transform a non-valid QUBO TSP solution into a valid classical TSP solution while preserving
the original solution as much as possible, the following procedure has been devised. Let x be the
solution vector returned by the annealer, f : B" — NF be a function returning a vector of size k
containing the position of all non-zero values in z; (with z; denoting the i-th sub-vector of length
n in x), and A be the set {0,...,n — 1}. First of all, a solution vector s of length n is initialized
with -1 values, namely, s € {—1}". Let R be a vector of sets, with R; = {f(x;)} being the set
of possible solutions (nodes) for the i-th sub-sequence, based on the solution vector z. Therefore