
Department of Information Engineering and Computer Science

Doctoral Programme in
Information and Communication Technology

Department of Physics

Transdisciplinary Program in
Quantum Science and Technologies

Final Dissertation

Hybrid classical-quantum
algorithms for optimization

and machine learning

Advisor Student

Enrico Blanzieri Enrico Zardini

Co-Advisors

Davide Pastorello

Valter Moretti

Academic year 2022/2023

Acknowledgements

First of all, I would like to thank my supervisors, namely, Professors Enrico Blanzieri, Davide
Pastorello, and Valter Moretti, for guiding me in this journey. I would also like to thank Professor
Gabriele Cavallaro for hosting me at Forschungszentrum Jülich during my research period abroad and
the reviewers of this thesis for their precious feedback.

Then, I would like to thank my family, namely, my mother Marina, my father Michele, and my
brother Luca, for always supporting and motivating me. In addition, I would like to express my
gratitude to my grandmother Pia and all my relatives.

Last but not least, I would like to thank my friends and colleagues for being present in these years.

This thesis was supported by Q@TN, the joint lab between University of Trento, FBK-Fondazione
Bruno Kessler, INFN-National Institute for Nuclear Physics and CNR-National Research Council.
In addition, the author gratefully acknowledges the Jülich Supercomputing Center (https: // www.
fz-juelich. de/ ias/ jsc) for providing computing time on D-Wave quantum annealers and, specif-
ically, on the D-Wave Advantage™ System JUPSI through the Jülich UNified Infrastructure for Quan-
tum computing (JUNIQ). Lastly, the author gratefully acknowledges the Italian Ministry of Univer-
sity and Research (MUR), which, under the initiative ”Dipartimenti di Eccellenza 2018-2022 (Legge
232/2016)”, has provided computational resources used in the experiments.

https://www.fz-juelich.de/ias/jsc
https://www.fz-juelich.de/ias/jsc

Contents

Abstract 4

1 Introduction 5

2 Background 7

2.1 Quantum Computing . 7

2.1.1 Quantum Annealing . 7

2.1.2 Quantum Circuit Model . 8

2.2 Quadratic Unconstrained Binary Optimization . 9

2.2.1 D-Wave Annealers, Embedding, and Hybrid Solvers 9

2.3 Quantum Annealing Learning Search . 10

2.4 Bayesian Network Structure Learning . 12

2.4.1 O’Gorman’s QUBO Formulation . 13

2.5 Quantum-Trained Support Vector Machines . 15

2.5.1 Quantum Binary Support Vector Machine (QBSVM) 15

2.5.2 Quantum Multiclass Support Vector Machine (QMSVM) 16

2.6 Local Support Vector Machines . 17

2.6.1 Fast Local Kernel Support Vector Machine (FaLK-SVM) 17

3 Quantum Machine Learning on Circuit Model 19

3.1 A Brief Overview . 19

3.2 Data Encoding and SWAP Test . 20

3.3 Quantum k-Nearest Neighbors . 20

3.3.1 A Quantum k-NN in Detail . 21

3.4 Quantum Cosine Binary Classifier . 22

3.5 Quantum Euclidean Distance . 23

I Quantum Annealing 25

4 QALS Empirical Evaluation 26

4.1 Implementations . 26

4.1.1 C++ Implementation . 28

4.1.1.1 Lack of Native APIs . 29

4.1.1.2 Random Number Generation . 30

4.1.2 Python Implementation . 32

4.1.2.1 Embedding Procedure . 32

4.1.2.2 Communication with the Annealer . 33

4.2 Empirical Evaluation . 33

4.2.1 Number Partitioning Problem (NPP) . 33

4.2.1.1 Classical Algorithms for NPP . 34

4.2.1.2 Experimental Setup and Results . 34

4.2.2 Travelling Salesman Problem (TSP) . 36

4.2.2.1 Solution Refinement Procedure . 38

1

4.2.2.2 Experimental Setup and Results . 39

4.3 Discussion . 40

5 Bayesian Networks Reconstruction 42

5.1 O’Gorman’s Algorithm Implementation . 42

5.1.1 QUBO Matrix Construction . 42

5.1.2 Complexity Observations . 46

5.1.3 Execution Speedup . 46

5.2 Divide et Impera Approach . 46

5.3 Empirical Evaluation . 48

5.3.1 Bayesian Problems . 48

5.3.2 Datasets Generation . 49

5.3.3 Methods and Experimental Setup . 51

5.3.4 O’Gorman’s Algorithm Results . 52

5.3.4.1 QUBO Formulation Correctness and αijk Hyperparameters 52

5.3.4.2 Dataset Size and QUBO Matrix Construction Time 52

5.3.4.3 Number of Reads and Annealing Time (QA) 53

5.3.4.4 Performance . 53

5.3.5 Divide et Impera Results . 55

5.3.5.1 Execution Speedup and Timing . 55

5.3.5.2 Performance . 56

5.4 Discussion . 60

6 Local SVMs Training 61

6.1 Local Quantum-Trained SVMs . 61

6.1.1 Approach . 61

6.1.2 Implementation . 61

6.2 Empirical Evaluation . 62

6.2.1 Methods . 62

6.2.2 Datasets . 63

6.2.3 Experimental Setup . 63

6.2.4 Results . 65

6.2.4.1 Binary Classification . 66

6.2.4.2 Multiclass Classification . 66

6.2.4.3 Performance Scaling (Classical Methods) 67

6.2.4.4 Large Scale (Multiclass) . 68

6.3 Discussion . 69

II Universal Quantum Computing 70

7 A Local Classification Pipeline 71

7.1 Quantum Pipeline . 71

7.1.1 Components . 71

7.1.2 Implementation . 72

7.1.3 Complexity Observations . 74

7.2 Empirical Evaluation . 75

7.2.1 Methods . 75

7.2.2 Datasets . 76

7.2.3 Experimental Setup . 77

7.2.4 Results . 78

7.2.4.1 Execution Modalities Comparison (Quantum Pipeline) 78

7.2.4.2 Execution Modalities Comparison (Quantum Binary Classifier) 80

7.2.4.3 Quantum Pipeline - Quantum Binary Classifier Comparison 81

2

7.2.4.4 Dataset Sizes Comparison . 82
7.2.4.5 Distance Metrics Comparison . 82
7.2.4.6 Quantum Pipeline - Baseline Methods Comparison 83

7.3 Discussion . 85

8 A Euclidean k-NN Algorithm 87
8.1 Method . 87

8.1.1 Algorithm . 87
8.1.1.1 Data Preprocessing . 87
8.1.1.2 Initial State and Encoding(s) . 87
8.1.1.3 Bell-H Operation and Final State . 88
8.1.1.4 Measurements and Distance Estimate(s) 90
8.1.1.5 k Nearest Neighbors and Classification 91

8.1.2 Complexity Observations . 91
8.2 Implementation . 92
8.3 Empirical Evaluation . 93

8.3.1 Methods . 93
8.3.2 Datasets . 93
8.3.3 Experimental Setup . 94
8.3.4 Results . 95

8.3.4.1 Execution Modalities Comparison . 95
8.3.4.2 Encodings and Distance Estimates Comparison 98
8.3.4.3 Comparison with Baseline Methods 100
8.3.4.4 Number of Shots Analysis . 100

8.4 Discussion . 104

9 Conclusion 105

Bibliography 107

3

Abstract
Quantum computing is a form of computation that exploits quantum mechanical phenomena for
information processing, with promising applications (among others) in optimization and machine
learning. Indeed, quantum machine learning is currently one of the most popular directions of research
in quantum computing, offering solutions with an at-least-theoretical advantage compared to the
classical counterparts. Nevertheless, the quantum devices available in the current Noisy Intermediate-
Scale Quantum (NISQ) era are limited in the number of qubits and significantly affected by noise. An
interesting alternative to the current prototypes of general-purpose quantum devices is represented by
quantum annealers, specific-purpose quantum machines implementing the heuristic search for solving
optimization problems known as quantum annealing. However, despite the higher number of qubits,
the current quantum annealers are characterised by very sparse topologies. These practical issues
have led to the development of hybrid classical-quantum schemes, aiming at leveraging the strengths
of both paradigms while circumventing some of the limitations of the available devices. In this thesis,
several hybrid classical-quantum algorithms for optimization and machine learning are introduced
and/or empirically assessed, as the empirical evaluation is a fundamental part of algorithmic research.
The quantum computing models taken into account are both quantum annealing and circuit-based
universal quantum computing. The results obtained have shown the effectiveness of most of the
proposed approaches.

Keywords: hybrid classical-quantum computing, quantum annealing, quantum machine learning,
optimization, locality, empirical evaluation

4

1 Introduction
Quantum computing is a type of computation leveraging quantum mechanical phenomena for informa-
tion processing. In particular, quantum computing has the potentiality to efficiently solve optimization
and machine learning problems, which are often computationally intensive. However, in the current
Noisy Intermediate-Scale Quantum (NISQ) era [87], the quantum computers available in the market
[45, 91] are limited in the number of qubits and significantly affected by noise, restricting the problems
that can be addressed in practice.

An interesting alternative to universal quantum computing is represented by quantum annealing.
In detail, quantum annealing is a heuristic search aimed at solving optimization problems by prob-
abilistically identifying the low-energy states of a quantum system [59], and quantum annealers are
non-universal specific-purpose quantum devices that implement quantum annealing. Compared to
the available general-purpose quantum computers, the quantum annealers provided by D-Wave [49]
are characterised by a higher number of qubits (thousands versus hundreds). This has fostered ex-
pectations that, for specific problem domains, quantum annealers could potentially outperform the
classical counterparts. A promising application is, for instance, the one described by Bian et al. in
their work [8]. Nevertheless, the topology of these machines is far from being complete (namely, it is
very sparse), and quantum annealers are also subject to noise.

In the area of quantum computing, one of the most popular directions of research is represented by
Quantum Machine Learning (QML). Indeed, in the last decade, numerous interesting QML algorithms
have been introduced and theoretically characterised, with occasional empirical validation. Notable
examples are the quantum support vector machine introduced by Rebentrost et al. [89], distance-
based classifiers as the one presented by Schuld et al. [98], and quantum neural networks, whose
performance have been analysed by Abbas et al. [1]. However, quantum annealing has also been taken
into account in the development of quantum machine learning algorithms [74, 113, 118]. In particular,
the combination of quantum computation and machine learning offers solutions characterised by an
at-least-theoretical advantage compared to the classical counterparts. Moreover, QML seems a good
way to leverage the existing NISQ devices for addressing real-world problems.

The desire of practically using quantum computing has given rise to hybrid classical-quantum
approaches, delegating part of the computation to classical devices. Indeed, the current quantum
computing architectures are still immature, and hybrid schemes can effectively circumvent some of
their limitations. Additionally, it is reasonable to assume that the interplay between classical and
quantum procedures allows leveraging the strengths of both paradigms, despite the inefficient inter-
face between them. Specifically, hybrid classical-quantum approaches have been presented for both
universal quantum devices [69] and quantum annealing architectures [4]. Moreover, in the field of
QML, this represents a compelling alternative to the development of quantum algorithms capable of
fully solving machine learning tasks but requiring ideal devices.

In this thesis, several hybrid classical-quantum algorithms for optimization and machine learning
are introduced and/or empirically evaluated. Indeed, the empirical evaluation is an essential part of
algorithmic research and, although established benchmarks do not yet exist for QML, a systematic
evaluation is fundamental in order to progress. The thesis is structured as follows. Chapters 2
and 3 provide useful background information for understanding the subsequent chapters. Specifically,
Chapter 2 deals with miscellaneous topics, while Chapter 3 deals with quantum machine learning only.
Regarding the novel content, Part I, which includes Chapters 4 to 6, is devoted to quantum annealing
algorithms, while Part II, which includes Chapters 7 and 8, is devoted to algorithms for (circuit-based)
universal quantum devices. In detail, Chapter 4, which is based on the article “Quantum annealing
learning search implementations” [12], presents two implementations and the empirical evaluation of
QALS [81], a hybrid algorithm for tackling optimization problems that cannot be directly mapped on
a quantum annealer. The article in question was motivated by the absence of an empirical assessment

5

of the algorithm in the literature. Instead, Chapter 5, which is based on the article “Reconstructing
Bayesian networks on a quantum annealer” [130], presents the implementation and the empirical
evaluation of the QUBO formulation proposed by O’Gorman et al. [76] for reconstructing Bayesian
networks on the same architecture; a divide et impera approach for tackling larger problem instances
is also introduced and assessed in the same chapter. This article, as well, was motivated by the
absence of an empirical assessment of the QUBO formulation in the literature. In Chapter 6, which
is based on the article “Local Binary and Multiclass SVMs Trained on a Quantum Annealer” [129],
the local application of support vector machines trained on a quantum annealer is introduced and
empirically evaluated. In this case, the entirely classical counterpart had already proven successful [9,
104], and the considered quantum-trained models [26, 118] suffered from the limited connectivity of
the available quantum annealers, motivating the article in question. Concerning Chapter 7, which is
based on the article “Implementation and empirical evaluation of a quantum machine learning pipeline
for local classification” [128], it introduces the application of a quantum locality technique, such as
a quantum k-nearest neighbors algorithm, as a preliminary step of other quantum machine learning
models; the empirical assessment of the approach is also illustrated. This article was motivated by
the absence of quantum local classification pipelines in the literature, a successful approach in the
classical realm (as said for the previous chapter) that may also allow saving qubits in the quantum
one. Lastly, Chapter 8, which is based on the article “A quantum k-nearest neighbors algorithm based
on the Euclidean distance estimation” [127], introduces a novel quantum adaptation of the k-nearest
neighbors algorithm (based on the Euclidean distance) and its empirical evaluation. The article in
question was motivated by the absence of a quantum version of the algorithm utilizing the Euclidean
distance distance metric in the literature. The main results presented in these chapters are summarised
in Chapter 9, which also briefly describes some possible future directions of research.

6

2 Background
This chapter provides some background information about quantum computing and the topics covered
in the first part of this work (Part I). In particular, this chapter is a reworked version of different parts
of the background sections of various articles [12, 128–130].

2.1 Quantum Computing
Quantum computing is a form of computation that leverages quantum phenomena, such as state
superposition and entanglement. This field represents a significant application of quantum information
theory, delivering algorithms to efficiently solve problems that are challenging for classical computers
[75]. In this work, two different kinds of quantum computation have been exploited, namely, quantum
annealing and quantum circuits.

2.1.1 Quantum Annealing

Quantum Annealing (QA) is a heuristic search method for solving optimization problems [59]. In this
approach, the solution to a given problem corresponds to the ground state, being the least energetic
physical state, of an n-qubit system. The system’s energy is described by a problem Hamiltonian
HP , which is a 2n × 2n Hermitian matrix. In particular, the annealing process involves the quantum
system’s time evolution towards the ground state of the problem Hamiltonian. More in detail, let us
consider the time-dependent Hamiltonian

H(t) = Γ(t)HD +HP , (2.1)

where HP denotes the problem Hamiltonian and HD represents the transverse field Hamiltonian.
Specifically, HD provides the kinetic term, enabling the exploration of the solution landscape through
quantum fluctuations. Instead, Γ represents a decreasing function that reduces the kinetic term,
guiding the system towards the global minimum of the problem (represented by HP).

QA can be physically implemented by taking into account a quantum spin glass, which is a network
of qubits organized on the vertices of a graph ⟨V,E⟩, where |V | = n, and the edges E correspond to
the couplings among these qubits. The problem Hamiltonian is defined as

HP = H(Θ) =
∑︂
i∈V

θiσ
(i)
z +

∑︂
(i,j)∈E

θijσ
(i)
z σ(j)z , (2.2)

with the real coefficients θi, θij being organized into the matrix Θ. In detail, H(Θ) is an operator on

the n-qubit Hilbert space H = (C2)⊗n, while σ
(i)
z operates as the Pauli matrix

σz =

(︃
1 0
0 −1

)︃
(2.3)

on the i-th tensor factor and as the 2 × 2 identity matrix on the other tensor factors. Concerning
the coefficient matrix Θ, it is an n× n symmetric square matrix that contains real values (known as
weights) and is defined as

Θij :=

⎧⎨⎩
θi, i = j,
θij , (i, j) ∈ E,
0, (i, j) ̸∈ E,

(2.4)

where θi physically corresponds to the local field on the i-th qubit, and θij to the coupling between
the qubits i and j. Specifically, the Pauli matrix σz has two eigenvalues, {−1, 1}, corresponding to the
binary states of each qubit, i.e., spin down and spin up. Consequently, the spectrum of eigenvalues

7

of the problem Hamiltonian (Equation 2.2) includes all the potential values of the energy function of
the well-known Ising model :

E(Θ, z) =
∑︂
i∈V

θizi +
∑︂

(i,j)∈E

θijzizj , z = (z1, ..., zn) ∈ {−1, 1}|V |. (2.5)

In practice, the annealing procedure, often referred to as cooling, guides the system towards the
ground state of H(Θ). This state corresponds to the spin configuration that encodes the solution to
the problem, namely,

z∗ = argmin
z∈{−1,1}|V |

E(Θ, z). (2.6)

When given a problem, the annealer is initialized using appropriate weights Θ, and the binary variables
zi ∈ {−1, 1} are physically realized through measurements conducted on the qubits positioned at the
vertices V . In order to address a general optimization problem via QA, it is essential to determine a
suitable encoding of the objective function in relation to the cost function (2.5), a task that is generally
challenging.

2.1.2 Quantum Circuit Model

Among the different models of universal quantum computation, the most common one is the quantum
circuit model. In this framework, the primary element of quantum computation is the qubit, a two-
level physical system whose state is described by a unit vector |ψ⟩ = α |0⟩+β |1⟩ in a two-dimensional
complex Hilbert space, where |0⟩ and |1⟩ constitute an orthonormal basis. Here, | ⟩ represents a ket
in the Dirac notation, used for denoting quantum states, and |0⟩ and |1⟩ correspond to the vectors
of the standard basis in C2. The absolute squares of the complex amplitudes α and β represent
the probabilities of measuring the qubit in states 0 and 1, respectively, satisfying the normalization
condition |α|2 + |β|2 = 1. Following a measurement process, the qubit’s state collapses to either |0⟩ or
|1⟩, depending on the observed outcome. Moreover, the time evolution of isolated quantum systems,
like qubits, is described by unitary operators, which are referred to as quantum gates in the realm of
quantum computation. For instance, the Hadamard gate, which acts on a single qubit, can be defined
through the equations H |0⟩ = |+⟩ and H |1⟩ = |−⟩, where |±⟩ = 1/

√
2 · (|0⟩ ± |1⟩). Essentially, the

Hadamard gate creates a superposition state; its matrix representation and circuital symbol are

H =
1√
2

(︃
1 1
1 −1

)︃
and H .

Another fundamental quantum gate is the Controlled-NOT (CNOT) gate, which acts on two qubits
and works as follows with respect to the computational basis:

|x⟩ • |x⟩

|y⟩ |x⊕ y⟩ ,

where x, y ∈ {0, 1} and ⊕ is the sum modulo 2. In practical terms, the CNOT gate flips the state of
the target qubit only if the control qubit is in state |1⟩. Notably, by utilizing three CNOT gates in
combination, it becomes feasible to construct the SWAP gate, a 2-qubit gate designed to exchange
the input qubits, whose circuital definition is

×

×
:=

•

• • .

Instead, the controlled version of the SWAP gate, which operates on three qubits, is referred to as
the Fredkin gate. Its classical counterpart is universal for classical reversible computation, and its
circuital symbol is

8

•
×
× .

According to a fundamental axiom of quantum mechanics, a system of n qubits is mathematically
described in the space (C2)⊗n. Consequently, the space available for representing data increases expo-
nentially with the number of qubits. This exponential growth constitutes one of the key advantages of
quantum computation. In practical terms, quantum algorithms are crafted by combining the available
quantum gates in order to generate a quantum state encoding the solution to a problem of interest.
Then, the outcome is obtained by measuring the output state in the computational basis. Given the
probabilistic nature of the results of quantum computation, quantum algorithms typically need to be
repeated multiple times to provide meaningful outcomes. A significant demonstration of the efficiency
of quantum computation lies in Shor’s algorithm [107], whose time complexity for solving the integer
factoring problem, a task generally suspected to be beyond P , is polynomial.

2.2 Quadratic Unconstrained Binary Optimization
Quadratic Unconstrained Binary Optimization (QUBO) problems are optimization problems expressed
in the form

argmin
x

xTQx, (2.7)

with x being a binary vector, and Q being an upper triangular (or symmetric1) matrix composed of
real values. Specifically, let x be an n× 1 vector and Q an n× n upper triangular matrix. Then, it is
possible to reformulate the problem as

xTQx =
n∑︂

i=1

qiix
2
i +

n∑︂
i=1

n∑︂
j=i+1

qijxixj

=
n∑︂

i=1

qiixi +
n∑︂

i=1

n∑︂
j=i+1

qijxixj , (2.8)

where x2i = xi due to xi ∈ B = {0, 1}. Basically, the main diagonal of Q contains the linear coefficients
(qii), while the other cells of the matrix contain the quadratic coefficients (qij). Although QUBO
problems are inherently unconstrained, it is possible to introduce constraints as penalties. Glover et
al. [38] provide several examples of this approach.

The relevance of the QUBO formulation consists in being computationally equivalent to the Ising
model, which is the physical model on which annealers are based. The only distinction consists
in the domain of the variables: {0, 1} for the QUBO formulation and {−1,+1} for the Ising one.
Consequently, a simple conversion allows the usage of quantum annealing to solve problems expressed
as QUBO, such as optimization problems on graphs, clustering problems, set partitioning problems,
or sequencing and ordering problems [38].

2.2.1 D-Wave Annealers, Embedding, and Hybrid Solvers

D-Wave Systems [49] is a Canadian company specialized in producing quantum annealers, namely,
physical machines that implement the quantum annealing process. Currently, their flagship model
is the D-Wave Advantage, which adopts the Pegasus topology. This model is characterised by 5640
qubits, with each qubit connected to 15 other qubits. While a greater number of qubits enables the
processing of larger problems, the most significant aspect is the connectivity, as it determines the
complexity of problems that can be effectively represented and solved.

A crucial step, in order to exploit quantum annealing for solving QUBO problems, consists in
mapping the problem variables to the Quantum Processing Unit (QPU) qubits. However, due to the

1If the matrix Q is symmetric, it is sufficient to sum the corresponding elements outside the main diagonal in order
to obtain an upper triangular matrix.

9

sparseness of the annealer topology, a direct representation is often not feasible. The solution lies
in chaining together multiple physical qubits to operate as a single logical qubit. In this way, the
connectivity of the annealer graph is enhanced, although at the expense of reducing the number of
available qubits and, consequently, limiting the size of the problems that can be effectively represented.
This entire process is commonly referred to as embedding or minor embedding, in the glossary of D-
Wave [52, 53]. Specifically, D-Wave’s Ocean library offers the EmbeddingComposite class [50] to
automate the minor embedding of the QUBO matrices.

In addition, as an alternative to simulated and quantum annealing, D-Wave provides the so-called
hybrid annealing (just Hybrid from now on) [51], a framework that enables the simultaneous execution
of multiple solvers, whether classical or quantum. In detail, a branch could correspond to a classical
technique like Tabu Search or to a workflow involving a decomposer - sampler - composer structure.
In the latter case, the decomposer divides the given problem into subproblems, each solved by the
sampler. The local solutions obtained are then recomposed by the composer to produce the final
solution. Notably, the sampler component could be Simulated Annealing (SA), quantum annealing,
other classical techniques, or more complex methods.

2.3 Quantum Annealing Learning Search

Quantum Annealing Learning Search (QALS) is a guided meta-heuristic approach specifically devised
to tackle optimization problems that cannot be directly mapped onto the architecture of a quantum
annealer. The core idea of this approach, initially proposed in [81] and further elaborated in [82],
consists in initializing the quantum annealer by summing a tabu matrix S to the weight matrix Θ.
The role of the S matrix is to penalize previously explored solutions, thus preventing redundant
searches in the solution space. Suppose that we have a set of k solutions {zj}j=1,...,k to be penalized.
The matrix S is built as follows:

S =
k∑︂

j=1

(zjz
T
j − I + diag zj), (2.9)

with I being the identity matrix of size n, and diag zj being the diagonal matrix resulting from the
vector zj . By design, the tabu matrix S imposes energetic penalties on the solutions zjj=1,...,k in the
spectrum of the Hamiltonian H(Θ + S), which corresponds to the energy function z ↦→ E(Θ + S, z).

Basically, QALS operates through an iterative process involving the generation of candidate so-
lutions via QA and subsequent probabilistic acceptance or rejection. New candidate solutions are
created by perturbing the weights according to the approach presented below, while rejected solutions
contribute to the tabu matrix S. In addition, similarly to SA, the algorithm allows for suboptimal
acceptance of solutions and a decreasing temperature parameter is used to control the weight per-
turbation. Concerning the problem representation into the annealer, the matrix Q representing the
objective quadratic function fQ is deformed by means of S and mapped onto the annealer architecture
in a piecewise manner, which means that only specific elements of the QUBO matrix are chosen at
each iteration. More precisely, the mapping µ employed for solving QUBO problems is defined as
follows:

µ[fQ](z) = E(P T (Q+ λS)P ◦ A, Pz), (2.10)

where P denotes a permutation matrix of order n and P T represents its transpose, λ is a scaling
factor that modulates the contribution of the tabu matrix S (initially set to zero), A is the adjacency
matrix of the topology graph of the quantum annealer, and ◦ corresponds to the Hadamard product.
In practice, µ maps some elements of Q, deformed by S and selected by P , into the weights. It is also
worth highlighting that, in QALS, the QUBO problem variables are defined in the {−1,+1} domain.

The QALS scheme is outlined in Algorithm 1. In particular, the tabu-based encodings are generated
according to Equation (2.10). To achieve this, an auxiliary function P ↦→ g(P, p), which alters a
permutation by selecting elements for shuffling with probability p, is exploited. In practice, the
function g is responsible for generating the permutations that induce the encodings into the annealer
architecture (Algorithm 1, lines 5 and 25). In addition, the mapping process takes into account the

10

Data: Matrix Q of order n encoding a QUBO problem, annealer adjacency matrix A of order n
Input: Energy function of the annealer E(Θ, z), permutation modification function g(P, p), solution

modification function h(z), minimum probability 0 < pδ < 0.5 of permutation modification,
probability decreasing rate η > 0, candidate perturbation probability q > 0, number N of
iterations at constant p, initial balancing factor λ0 > 0, number of annealer runs k ≥ 1,
termination parameters imax, Nmax, dmin

Result: z∗ vector with n elements in {−1, 1} solution of the QUBO problem
1 function fQ(z):
2 return zTQz ;
3 P ← In;
4 p← 1;
5 P1 ← g(P, 1);P2 ← g(P, 1); // generate two permutation matrices perturbing the identity

6 Θ1 ← PT
1 QP1 ◦ A; Θ2 ← PT

2 QP2 ◦ A; // weights initialization

/* run the annealer k times with weights Θ1 and Θ2 */

7 z1 ← PT
1

ˆ︂argminz(E(Θ1, z)); z2 ← PT
2

ˆ︂argminz(E(Θ2, z)); // estimate energy argmin, PT
1 and PT

2

map back the variables

8 f1 ← fQ(z1); f2 ← fQ(z2); // evaluate fQ
/* use the best to initialize z∗ and P ∗; use the worst to initialize z′ */

9 if f1 < f2 then
10 z∗ ← z1; f∗ ← f1; P ∗ ← P1 z′ ← z2;
11 else
12 z∗ ← z2 ; f∗ ← f2; P ∗ ← P2; z′ ← z1;
13 end
14 if f1 ̸= f2 then
15 S ← z′ ⊗ z′ − In + diag(z′); // use z′ to initialize the tabu matrix S
16 else
17 S ← 0; // otherwise set all the elements of S to zero

18 end
19 e← 0; d← 0; i← 0; λ← λ0;
20 repeat
21 Q′ ← Q+ λS; // scale and add the tabu matrix

22 if N divides i then
23 p← p− (p− pδ)η;
24 end
25 P ← g(P ∗, p); // modify permutation P ∗

26 Θ′ ← PTQ′P ◦ A; // weights initialization

/* run the annealer k times with weights Θ′ */

27 z′ ← PT ˆ︂argminz(E(Θ′, z)); // estimate energy argmin, PT maps back the variables

28 with probability q z′ ← h(z′, p); // possibly perturb the candidate

29 if z′ ̸= z∗ then
30 f ′ ← fQ(z′); // evaluate fQ
31 if f ′ < f∗ then
32 swap(z′, z∗); f∗ ← f ′; P ∗ ← P ; e← 0; d← 0; // z′ is better

33 S ← S + z′ ⊗ z′ − In + diag(z′); // use z′ to update the tabu matrix S

34 else
35 d← d+ 1;

36 with probability (p− pδ)(f
′−f∗) swap(z′, z∗); f∗ ← f ′; P ∗ ← P ; e← 0;

37 end
38 update the balancing factor λ with λ ≤ λ0;

39 else
40 e← e+ 1;
41 end
42 i← i+ 1;

43 until i = imax or (e+ d ≥ Nmax and d < dmin);
44 return z∗;

Algorithm 1: Quantum Annealing Learning Search for QUBO problems (taken from [12]).

11

actual annealer topology, which is represented by the graph matrix A (Algorithm 1, lines 6 and 26).
The permutations are also exploited to map the solutions obtained from the annealer back to the
original problem’s solution space (Algorithm 1, lines 7 and 27) and to define the optimal map µ∗.
Regarding the function g, when p = 1, the generated permutation is entirely random. For 0 < p < 1,
the permutation partially resembles the input one. Instead, if p = 0, the resulting permutation would
match the input one. However, this scenario never occurs since the probability of an element being
shuffled gradually decreases to a value 0 < pδ < 0.5 with rate η (Algorithm 1, lines 22-24).

The additive interaction of the tabu matrix S, scaled by a balancing factor λ, with the QUBO
matrix Q (Algorithm 1, line 21) guides the quantum annealing search with an energy profile consistent
with Equation (2.10). The consequence is that the algorithm does not search just for solutions of sub-
problems. Indeed, S contains information about the already visited solutions with objective function
values higher than f∗ (Algorithm 1, lines 15 and 33). Additionally, the balancing factor λ, initialized
to λ0, is decreased throughout the iterations (Algorithm 1, line 38), with the purpose of preventing
the tabu matrix S from overshadowing the information about fQ carried by Q. In general, λ should
depend on the number of bad candidates penalized by S.

It is also worth highlighting that the solution returned by the annealer (Algorithm 1, line 27) could
be perturbed by the function h(z′, p), which flips any entry of z′ with probability p (Algorithm 1,
line 28). These perturbations, which occur with probability q, are necessary in order to guarantee
the convergence [81]. Furthermore, suboptimal solutions (Algorithm 1, line 36) are accepted with
probability (p− pδ)(f

′−f∗). By comparison with the acceptance rule of SA, it is possible to notice that
the parameter p is related to the temperature parameter of SA by the relationship T = −ln−1(p−pδ).
Hence, T → 0 as p→ pδ.

Eventually, the iterative process outlined in Algorithm 1 terminates either upon convergence or
when the specified number of iterations has been achieved. In particular, line 19 of Algorithm 1
establishes three distinct counters for controlling the convergence: e counts the number of consecutive
occurrences of the current best solution (Algorithm 1, line 40); d keeps track of the number of times the
current best solution and the new solution are different, yet the current solution is better (Algorithm 1,
line 35); the variable i represents the current number of iterations. The values of these counters are
compared against the input thresholds in the termination condition (Algorithm 1, line 43).

2.4 Bayesian Network Structure Learning

A Bayesian network (BN) is a directed acyclic graph (DAG) illustrating the conditional dependencies
of a collection of random variables [84]. In this representation, the nodes correspond to the variables,
while the edges represent the conditional dependencies between them. Furthermore, each node is
coupled with the conditional probability distribution of the node given its parent nodes.

The procedure presented by O’Gorman et al. [76] addresses the task of Bayesian Network Structure
Learning (BNSL), a task that has received much attention [109] and consists in identifying the Bayesian
network that most likely has generated a given dataset. In particular, O’Gorman et al. have devised
a novel QUBO formulation of the BNSL problem that is compatible with the quantum annealing
hardware, including the necessary lower bounds for penalties. It is worth noting that this problem is
NP-Complete [18] and that a polynomial speedup is expected by O’Gorman et al. when using their
quantum-annealing-based approach. Obviously, this is not the sole application of quantum computing
in the context of Bayesian networks. For instance, Ozols et al. have proposed a quantum counterpart to
the classical rejection sampling algorithm employed in Bayesian network inference [77], while Borujeni
et al. have introduced a systematic technique for designing a quantum circuit that represents a generic
discrete BN [13]. However, this section focuses on the BNSL task.

More in detail, a Bayesian network can be represented as a pair (Bs, Bp), where Bs denotes a
Directed Acyclic Graph (DAG) and Bp represents the corresponding set of conditional probabilities.
Given a database D = {xi|1 ≤ i ≤ N}, where xi represents the state of all variables, the goal is to
identify the network structure that maximizes the posterior probability distribution p(Bs|D). However,
exploiting Bayes’ theorem, which establishes the proportionality between p(Bs|D) and p(D|Bs), the
problem can be reformulated as the maximization of p(D|Bs), which is equal to

12

p(D|Bs) =
n∏︂

i=1

qi∏︂
j=1

Γ(αij)

Γ(Nij + αij)

ri∏︂
k=1

Γ(Nijk + αijk)

Γ(αijk)
, (2.11)

where Γ denotes the gamma function, qi corresponds to the number of joint states associated with
the parent set of the i-th random variable, ri represents the number of states of the i-th random
variable, Nijk stands for the number of occurrences in D where the i-th random variable is in its k-th
state and its parent set is in its j-th state, αijk is the hyperparameter of the assumed Dirichlet prior
for the node’s conditional probability distribution, Nij and αij denote the sums of the corresponding
parameter values over all possible k values.

2.4.1 O’Gorman’s QUBO Formulation

In their study [76], O’Gorman et al. introduce a Hamiltonian function tailored for the BNSL prob-
lem. Given the Hamiltonian, the QUBO matrix can be built in a straightforward way, mapping the
coefficients of the variables into the matrix entries. Specifically, the BNSL Hamiltonian is composed
of three key components: the score Hamiltonian (Hscore), which evaluates the quality of the solution
graph; the max Hamiltonian (Hmax), which penalises solutions including nodes with a number of par-
ents exceeding a certain threshold m, dictated by resource constraints; the cycle Hamiltonian (Hcycle),
further split into the consistency Hamiltonian (Hconsist) and the transitivity Hamiltonian (Htrans),
which penalise solutions that contain cycles. Consequently, the BNSL Hamiltonian (H) is given by

H(d,y, r) = Hscore(d) +Hmax(d,y) +Hcycle(d, r), (2.12)

where d denotes the n(n − 1) bits employed to represent the presence or absence of edges between
nodes, while y and r are auxiliary variables used to encode the constraints.

The score Hamiltonian (Hscore) is computed independently for each variable, and the components
are then summed together. Specifically, the score Hamiltonian for the i-th variable is defined as

H(i)
score(di) =

∑︂
J⊂{1...n}\{i}

|J |≤m

⎛⎝wi(J)
∏︂
j∈J

dji

⎞⎠ , (2.13)

where di is the vector of bits (dji) representing edges directed towards the considered node, m denotes
the maximum allowed size for the parent set, and wi is calculated as

wi(J) =

|J |∑︂
l=0

(−1)|J |−l
∑︂
K⊂J
|K|=l

si(K), (2.14)

where si is a score value obtained from Eq. (2.11) with the introduction of a logarithm for numerical
efficiency. In detail, si is given by

si(Πi(Bs)) = − log

⎛⎝ qi∏︂
j=1

Γ(αij)

Γ(Nij + αij)

ri∏︂
k=1

Γ(Nijk + αijk)

Γ(αijk)

⎞⎠ , (2.15)

where Πi(Bs) represents the parent set of the i-th node. In practical terms, the sum of the si values
corresponds to − log p(D|Bs).

Analogously, the max Hamiltonian is calculated independently for every variable as

H(i)
max(di,yi) = δ(i)max(m− di − yi)2, (2.16)

where δ
(i)
max > 0 corresponds to the penalty weight, di denotes the in-degree of the i-th node (that

is equal to
∑︁

1≤j≤n∩ j ̸=i dji), and yi ∈ Z is a slack variable (encoded through binary expansion in yi

13

employing µ bits2) that cancels H
(i)
max’s contribution if the constraint is satisfied. Indeed, H

(i)
max is zero

if the node taken into account has at most m parents, otherwise it brings a positive penalty.

Eventually, the cycle Hamiltonian is defined as the sum of two terms:

Hcycle(d, r) = Htrans(r) +Hconsist(d, r), (2.17)

with r representing n(n− 1)/2 auxiliary boolean variables that are used to encode a topological order
(rij is 1 if the i-th node precedes the j-th node, 0 otherwise). In particular, the transitivity Hamiltonian
penalises the cycles of length three in the rij values, and is calculated independently for each 3-set of
variables as

H
(ijk)
trans(rij , rjk, rik) = δ

(ijk)
trans (rik + rijrjk − rijrik − rjkrik) , (2.18)

with δ
(ijk)
trans being the positive penalty that is added if the i-th, j-th and k-th variables form a 3-cycle.

As in the other cases, the H
(ijk)
trans components are summed together to obtain the full Htrans. Regarding

the consistency Hamiltonian, it penalises the solutions for which the topological order encoded in r is
not consistent with the graph structure encoded in d. In practical terms, it disadvantages the solutions
for which rij = 1 and dji = 1, or rij = 0 and dij = 1. This Hamiltonian is computed independently
for each pair of variables as

H
(ij)
consist(dij , dji, rij) = δ

(ij)
consist(djirij + dij − dijrij), (2.19)

with δ
(ij)
consist being the positive penalty introduced in the case of an inconsistency. It is also worth

noticing that the order of the superscript indices in δ
(ijk)
trans and δ

(ij)
consist does not matter, since the set

of variables is always the same.

In practice, the QUBO formulation of the BNSL problem involves n(n− 1) binary variables (dij)
representing the graph structure, nµ = n⌈log2(m+ 1)⌉ binary slack variables (yil) associated with the
maximum parent constraint, and n(n − 1)/2 binary variables (rij) related to the absence of cycles
constraint. Thus, the QUBO encoding of n Bayesian variables necessitates O(n2) binary variables.
However, since Hscore includes multiplications with m factors, if m ≥ 3, further steps and slack
variables are required to transform the problem into a quadratic form. For instance, to reduce a

BNSL problem with m = 3 into a quadratic form, n⌊ (n−2)2

4 ⌋ binary slack variables are required [76],
raising the total number of binary variables to O(n3).

Regarding the penalty values, O’Gorman et al. have provided the following lower bounds (and
demonstrated their sufficiency):

δ(i)max > max
j ̸=i

∆ji, 1 ≤ i ≤ n, (2.20)

δ
(ij)
consist > (n− 2) max

k/∈{i,j}
δ
(ijk)
trans, 1 ≤ i < j ≤ n, (2.21)

δ
(ijk)
trans = δtrans > max

1≤i′,j′≤n
i′ ̸=j′

∆i′j′ , 1 ≤ i < j < k ≤ n, (2.22)

with ∆ji being an estimate of the largest increase in score caused by the insertion of an arc from the
j-th to the i-th node. For m = 2, it is given by

∆ji = max{0,∆′
ji}, (2.23)

∆′
ji = −wi({j})−

∑︂
1≤k≤n
k ̸=i,j

min{0, wi({j, k})}. (2.24)

Conversely, for m ≥ 3, determining ∆ji is an intractable optimization problem.

2yi =
∑︁µ

l=1 2
l−1yil, with µ = ⌈log2(m+ 1)⌉

14

2.5 Quantum-Trained Support Vector Machines
A Support Vector Machine (SVM) is a supervised machine learning algorithm for binary classification
tasks [22]. Essentially, an SVM aims at finding the optimal hyperplane separating the data samples
belonging to different classes. The term support vectors refers to the data points lying close to the
decision boundary and contributing to the prediction of new labels. Actually, SVMs are not limited to
linearly separable problems. Indeed, with the introduction of kernel functions computing the similarity
of data points in higher-dimensional feature spaces without explicitly mapping them, SVMs become
able to manage complex decision boundaries and the complexity of the problem does not increase (this
is the so-called kernel trick) [97]. For instance, the Gaussian kernel function is defined as

k(xm,xn) = e−γ∥xm−xn∥2 , (2.25)

where xm and xn are two input data points, and γ > 0 is the kernel width. Moreover, different
formulations of the SVM learning problem exist, and also extensions to multiclass classification and
regression tasks. Concerning the quantum counterparts, a fully-quantum SVM for binary classification
has been proposed by Rebentrost et al. [89]. Instead, Havĺıček et al. have introduced both a quantum
SVM based on a variational circuit and a quantum kernel estimator [43]. However, in this work, the
focus is on classical SVMs trained on a quantum annealer. In detail, the quantum-trained models for
binary and multiclass classification tasks have been taken into account here (a version for regression
also exists [78]). The QUBO formulations of the corresponding learning problems are provided below.

2.5.1 Quantum Binary Support Vector Machine (QBSVM)

The quantum-trained SVM for binary classification proposed by Willsch et al. [118], and denoted
here as QBSVM, is based on the dual formulation of the SVM. Specifically, given a dataset D =
{(xn, yn)}n=0,...,N−1, with xn ∈ Rd being a d-dimensional feature vector and yn ∈ {−1,+1} being the
corresponding class label, the dual formulation of the SVM learning problem is

min
α∈RN

1

2

∑︂
n,m

αnαmynymk(xn,xm)−
∑︂
n

αn

subject to 0 ≤ αn ≤ A and
∑︂
n

αnyn = 0, (2.26)

where α is the vector of coefficients to be found, k is the kernel function, and A is a regularization
factor3. Once the αn coefficients have been determined (the support vectors are the ones with αn ̸= 0),
the label prediction for a test instance x is obtained by taking the sign of

f(x) =
∑︂
n

αnynk(xn,x) + b,

where b can be calculated as

b =

∑︁
n αn(A− αn) [yn −

∑︁
m αmymk(xm,xn)]∑︁

n αn(A− αn)
. (2.27)

Since the solutions to the learning problem illustrated in Equation (2.26) are real-valued coeffi-
cients, a binary encoding is required for solving it with a quantum annealer. In detail, the encoding
proposed by Willsch et al. is the following:

αn =

K−1∑︂
k=0

BkaKn+k,

where K is the number of binary variables utilized for encoding αn, B is the base exploited for the
encoding, and aKn+k are binary variables. Given this encoding, the QUBO formulation of the SVM

3The regularization factor of the SVM is usually denoted as C. To avoid ambiguity with the number of classes in the
QMSVM formulation (see Section 2.5.2), C has been replaced here with A.

15

learning problem turns out to be

min
a∈RNK

1

2

∑︂
n,m,k,j

aKn+kaKm+jB
k+jynymk(xn,xm)−

∑︂
n,k

BkaKn+k +
ξ

2

⎛⎝∑︂
n,k

BkaKn+kyn

⎞⎠2

=

= min
a∈RNK

N−1∑︂
n,m=0

K−1∑︂
k,j=0

aKn+k QKn+k,Km+j aKm+j ,

where ξ is a multiplier needed to represent the second constraint in Equation (2.26), and Q is the
NK ×NK QUBO matrix. Hence, Q is defined as

QKn+k,Km+j =
1

2
Bk+jynym [k(xn,xm) + ξ]− δnmδkjBk,

with δ representing the Kronecker delta function. Regarding the first constraint in Equation (2.26), it is
automatically satisfied by the choice of the encoding. Indeed, an ≥ 0 by definition and A =

∑︁K−1
k=0 B

k.
Instead, the bias b can be computed using Equation (2.27) or adjusted afterwards.

The just described QUBO formulation might produce matrices that cannot be embedded in the
available quantum annealers. To address this issue, Willsch et al. have proposed an interesting
approach. In particular, the full dataset is split into L disjoint slices. Then, for each slice, the S best
solutions found by the annealer are combined by averaging their decision functions. In practice, the
average αn coefficients and biases are computed for each slice. Eventually, the full decision function
is defined as

F (x) =
1

L

L−1∑︂
l=0

[︄
N−1∑︂
n=0

α(l)
n y

(l)
n k(x(l)

n ,x) + b
(l)

]︄
,

where the superscript l denotes the slice, α
(l)
n is the n-th mean coefficient for the l-th slice, and b

(l)
is

the mean bias for the l-th slice. Actually, averaging the S best solution could be advantageous also in
cases where the dataset split is not necessary.

2.5.2 Quantum Multiclass Support Vector Machine (QMSVM)

The quantum-trained SVM for multiclass classification proposed by Delilbasic et al. [26], and denoted
as QMSVM in the original paper, is based on the Crammer-Singer (CS) SVM [21], a single step SVM
for multiclass classification. In detail, given a dataset D = {(xn, yn)}n=0,...,N−1, with xn ∈ Rd being
a d-dimensional feature vector and yn ∈ {0, . . . , C − 1} being the corresponding label, the learning
problem of the CS SVM is

min
T

1

2

N−1∑︂
n1,n2=0

k(xn1 ,xn2)
C−1∑︂
c=0

τn1cτn2c − β
N−1∑︂
n=0

C−1∑︂
c=0

δcynτnc

subject to

C−1∑︂
c=0

τnc = 0 ∀n and τnc ≤ 0 ∀n, ∀c ̸= yn, (2.28)

where T = (τnc)0≤n≤N−1, 0≤c≤C−1 represents the matrix of the NC coefficients to be determined, with
τnc ∈ [−1,+1], δ denotes the Kronecker delta, and β is a regularization term. Once the τnc coefficients
have been found, the label prediction for a test instance x is given by

y = argmax
0≤c≤C−1

N−1∑︂
n=0

τnck(xn,x). (2.29)

In order to solve the learning problem of Equation (2.28) using a quantum annealer, a binary
encoding of the τnc variables is required. Specifically, Delilbasic et al. have proposed the following
encoding based on the uniform sampling of the [−1,+1] interval:

16

τnc = −1 +
2

2K − 1

K−1∑︂
k=0

2kanCK+cK+k,

where K is the number of binary variables used to encode τnc, and anCK+cK+k are binary variables.
Given this encoding, the QUBO formulation of the CS SVM learning problem turns out to be

min
a∈RNCK

∑︂
n1,n2,c1,c2,k1,k2

an1CK+c1K+k1 Qn1CK+c1K+k1,n2CK+c2K+k2 an2CK+c2K+k2 ,

where the NCK ×NCK QUBO matrix Q is defined as

Qn1CK+c1K+k1,n2CK+c2K+k2 =

= δn1n2δc1c2δk1k2
2k1+1

2K − 1

(︄
−

N−1∑︂
n3=0

k(xn1 ,xn3)− δc1yn1
(β + µ)− 2Cµ+ µ

)︄
+

+ δc1c2
2k1+k2+1

(2K − 1)2
k(xn1 ,xn2) + δn1n2

2k1+k2+2µ

(2K − 1)2
,

with µ being the penalty weight associated with the constraints of Equation (2.28).

Lastly, Delilbasic et al. have proposed a method for taking advantage of the multiple solutions
returned by the annealer. In particular, given the S best solutions found by the annealer, each of them
is tested on a validation set (which can coincide with the training set). Then, a weighted average is
performed. In detail, the weights of the solutions achieving an accuracy above a certain threshold
are given by a softmax function applied to the values multiplier · accuracys, where multiplier is a real
value and accuracys is the accuracy obtained by the s-th solution. Instead, the weights of the other
solutions are set to zero. The resulting τnc mean variables are used in Equation (2.29), in the place
of τnc, to predict the new labels.

2.6 Local Support Vector Machines
Reducing the number of samples provided as input to a classical machine learning model by means of a
locality technique has already proven to be a successful strategy, providing performance enhancements
compared to the base model. Let us consider the most straightforward locality technique, i.e., the
k-Nearest Neighbors (k-NN) algorithm, which selects the data samples closest to the target instance
based on a given metric (more details about the k-NN algorithm can be found in Section 3.3). In
addition, let us restrict ourselves to the SVM as the base classification model. In 2006, Blanzieri
and Melgani have proposed and empirically evaluated the kNNSVM [9], i.e., a local SVM trained on
the data samples selected by a k-NN model, obtaining good results. Specifically, the k-NN algorithm
must return the nearest neighbors with respect to the transformed feature space where the SVM
operates, which could be an issue when using the kernel trick. However, in the case of RBF kernels
(such as the Gaussian kernel) and polynomial kernels with degree 1, the Euclidean distance can be
directly used as the distance metric for the k-NN [9]. Furthermore, local SVMs have been theoretically
characterised by, for instance, Hable [42] and Meister and Steinwart [70]. Nevertheless, despite the
accuracy improvement and the reduced training time per model (due to the lower number of samples
used for training), the kNNSVM classifier requires to train an SVM on the k-neighborhood of each test
sample (unless all nearest neighbors belong to the same class), which represents a serious bottleneck
in terms of execution time. To solve this issue, Segata and Blanzieri have developed the approach
presented below.

2.6.1 Fast Local Kernel Support Vector Machine (FaLK-SVM)

Fast Local Kernel Support Vector Machine (FaLK-SVM) [104] improves the execution time of the
kNNSVM classifier [9] by taking advantage of a data structure proposed by Beygelzimer et al. for
efficient nearest-neighbor operations, namely, the cover tree [6]. In detail, the cover tree is a data
structure with the following properties: the root is a randomly selected sample; if a data sample

17

appears in a level, it is present in all lower levels; the distance between the samples belonging to the
i-th level (levels are decreasingly indexed) is greater than bi, with b > 1; each node in the i-th level
has a parent node such that the distance between the corresponding samples is smaller than bi+1.

In practice, the idea consists in covering the training set using a set of local SVM models, and
predicting the test instance label using the most appropriate (pre-trained) local model. In more detail,
the training of the FaLK-SVM model works as follows: a cover tree is built on the training dataset; the
centres of the local SVMs are chosen by means of the cover tree, which enables the efficient retrieval
of data points that are far from each other, limiting the local models overlapping; the local SVM
models are trained as usual (if a local training set includes only one class, the training is avoided). In
particular, the selection procedure ends when each training sample belongs to the k′-neighborhood of
at least one centre, with k′ < k being a fixed hyperparameter controlling the redundancy of the local
models. Additionally, during the training phase, the association between each training point and the
centre for which the neighbor ranking of the considered training point is the smallest is pre-computed.
In this way, at evaluation time, it is sufficient to find the test-instance nearest neighbor in the training
set and run the local model with which that data point is associated. Regarding the time complexity,
the training phase has a worst-case complexity of O(kN ×max(logN, k2)), where k is the number of
nearest neighbors selected and N is the number of training points, while the prediction of a new label
has a complexity of O(max(logN, k)).

Actually, in the same article, two variants of FaLK-SVM have been also introduced. The former,
which has not been considered in this work, is FaLK-SVMc. Specifically, FaLK-SVMc has proven to be
faster than FaLK-SVM, but also less accurate. The difference lies in the policy used for selecting the
local model at prediction time. Instead, the latter, which is the one that has been used in this work, is
denoted as FaLK-SVMl. Essentially, FaLK-SVMl includes a grid-search model selection procedure that
is executed before the training of FaLK-SVM. In practice, each combination of local model parameters
is evaluated using a custom κ-fold cross-validation on m local models, whose centres are randomly
selected. In this custom validation procedure, the split into folds is applied to the k′ nearest neighbors
of the model centre; the remaining k − k′ points of the k-neighborhood are added to the training set
of each κ-fold iteration. In the end, the parameter configuration maximizing the average accuracy of
the m models is chosen and used for all local models.

18

3 Quantum Machine Learning
on Circuit Model

This chapter introduces the field of quantum machine learning, the most common data encoding
schemes, and the models and works from the literature taken into account. In particular, this chapter
is a reworked version of different parts of the background sections of various articles [127, 128].

3.1 A Brief Overview
In essence, Machine Learning (ML) is the automation of methodologies designed to extract information
from gathered data. When data analysis techniques are executed on conventional digital computers,
it falls under the realm of classical ML. Instead, if quantum machines are employed, it pertains to
quantum ML. The first quantum versions of ML algorithms were introduced approximately twenty
years ago [100, 111]. However, the surge in interest has occurred only in the last decade thanks to
the development of the first operational prototypes of quantum machines by companies like IBM [45],
Rigetti [91], and D-Wave Systems [49], and the publication of several intriguing results [7, 30, 43,
89]. Concerning practical advantages with respect to classical ML, quantum subroutines have been
embedded into ML frameworks, enabling, for instance, the efficient calculation of distances in the
feature space [98], with advantages in classification and clustering tasks. In addition, Grover-based
subroutines have been employed to locate items within unsorted databases [115], offering a quadratic
speedup compared to exhaustive searches. Such techniques find applications, for instance, in the realm
of pattern recognition. In general, there is a growing interest in hybrid approaches, where quantum
co-processors efficiently tackle specific subproblems within more complex learning schemes.

The drive behind developing novel QML approaches is summarised in the reasoning provided by
Biamonte et al. [7]: given the challenge of simulating (even small) quantum systems with classical
computers, it is reasonable to assume that (even small) quantum processors could find data structures
that are challenging to unveil classically. Consequently, QML emerges as a promising avenue towards
meaningful applications of the small-scale quantum machines available today and in the near future.
On the other hand, with strong assumptions of universality, large scale, and fault tolerance, it is
conceivable to formulate numerous QML algorithms that surpass their classical counterparts. This
holds significance for understanding the foundations of quantum computing and demonstrating the
true potential of quantum computers. However, in the pursuit of advancing quantum technologies
in the immediate future, it is useful to consider the limitations of current quantum hardware while
exploring innovative QML approaches.

From a mathematical perspective, there exists a compelling motivation for developing ML algo-
rithms tailored for quantum machines, given by a formal analogy between quantum mechanics and
ML. Both domains heavily rely on matrix operations within high-dimensional vector spaces. In prac-
tice, the Hilbert spaces used to describe physical quantum systems can serve as feature spaces for data
representations. In this context, linear algebraic operations find physical realization in the time evo-
lution of quantum states. For instance, in the circuit model of quantum computation, this evolution
is described as the action of quantum gates. Furthermore, the representation of data within quantum
states offers advantages in terms of space resources. These advantages stem from the exponential
growth of the dimensionality of the Hilbert space of a multi-qubit system with respect to the number
of qubits. Consequently, the controlled dynamics of a small number of qubits towards a target state
may correspond to applying intricate linear algebraic operations on the considered feature space.

To conclude this brief introduction to QML, it is worth highlighting that QML is probably the most
promising way for discovering effective applications of the existing small-scale quantum computers. In
addition, beyond just quantum speedup, which is not the sole advantage, other dimensions of merit

19

should be taken into account. These include enhanced accuracy in prediction, increased expressive
power, superior generalization capabilities, and the ability to avoid plateaus in training.

3.2 Data Encoding and SWAP Test
A fundamental concept in QML is quantum encoding, which denotes any method that translates clas-
sical data (such as a list of symbols) into quantum states. In detail, efficiently loading substantial
volumes of data into quantum architectures represents a significant challenge in the current state of
QML. Indeed, the state preparation necessary for running various QML algorithms can be executed
efficiently only under the strong assumption of the availability of a Quantum Random Access Mem-
ory (QRAM) [37]. To delve deeper, consider an n-qubit register and let {|i⟩}i=0,...,2n−1 be a fixed
orthonormal basis of the corresponding Hilbert space, known as the computational basis. The most
straightforward quantum encoding method is basis encoding, wherein bit strings of length n are en-
coded into the states constituting the computational basis. Thus, n qubits are employed to encode
n bits of classical information, presenting intriguing quantum possibilities, such as creating superpo-
sitions of data and enabling non-classical correlations through entanglement. Alternatively, a more
efficient quantum encoding method in terms of space resources is amplitude encoding. In this case, a
normalized complex vector x ∈ C2n representing a data instance is encoded into the coordinates (or
amplitudes) of a quantum state with respect to the computational basis, namely,

|ψ⟩ =

2n−1∑︂
i=0

xi |i⟩ (n-qubit state).

The amplitude encoding harnesses the exponential storage capability of a quantum memory. However,
the direct retrieval of the stored data is not feasible. This constraint arises because the amplitudes
cannot be observed. Indeed, only the probabilities |xi|2 can be estimated.

It is also worth introducing a simple example of quantum processing that finds practical utility in
QML, namely, the SWAP test [15]. The corresponding quantum circuit is depicted as follows:

|0⟩ H • H

|ψ⟩ ×

|φ⟩ × ,

where |ψ⟩ and |φ⟩ are n-qubit states. In detail, the SWAP gate, which operates on the quantum states
|ψ⟩ and |φ⟩, is controlled by a qubit initially prepared in state |0⟩ (this can be realized using n Fredkin
gates). Through a straightforward calculation, the probability of measuring 0 in the first qubit is given
by P(0) = 1

2

(︁
1 + | ⟨ψ|φ⟩ |2

)︁
, where ⟨ψ|φ⟩ represents the inner product between the states |ψ⟩ and |φ⟩

in the Dirac notation. Moreover, estimating P(0) with an error margin of ϵ necessitates approximately
O(ϵ−2) repetitions, as dictated by the binomial proportion confidence interval for a Bernoulli trial. In
practice, the SWAP test allows the efficient calculation of the fidelity of the quantum states |ψ⟩ and
|φ⟩. For two pure quantum states, the fidelity is defined as

F(|ψ⟩ , |φ⟩) = | ⟨ψ|φ⟩ |2 = (cos(ψ,φ) · ∥ ψ ∥ · ∥ φ ∥)2 = cos2(ψ,φ), (3.1)

with cos(ψ,φ) being the cosine similarity between |ψ⟩ and |φ⟩, and the norms of |ψ⟩ and |φ⟩ being 1
by definition. Therefore, by representing data vectors into the amplitudes of |ψ⟩ and |φ⟩, it is possible
to estimate their dot product/cosine similarity via the SWAP test.

3.3 Quantum k-Nearest Neighbors
The k-NN [34] is a classification algorithm involving three main steps: computing the distance to
the training elements; identifying the k nearest neighbors, which are the k elements closest to the
test instance; predicting the class label by majority voting. Several quantum variants employing
different distance measures have been suggested, and a shared characteristic among them is the usage

20

of a superposition state to execute parallel operations (quantum parallelism), like the simultaneous
computation of the distances values.

To begin with, quantum k-NN algorithms using the Hamming distance, which needs binary fea-
tures, have been developed by Schuld et al. [99], Wísniewska and Sawerwain [120], Ruan et al. [95],
Zhou et al. [131], and Li et al. [65]. In the first two studies, the Hamming distances are calculated by
encoding the sums of the qubits differences (differences computed by means of controlled-NOT gates)
into the amplitudes of the quantum states through a unitary operation (an approach proposed first
by Trugenberger [111]). After that, the test instance is directly classified by measuring, without the
explicit selection of the nearest neighbors. Conversely, the other works utilize Kaye’s incrementation
circuit [61] to get the distance values in basis encoding. After that, Ruan et al. [95] pick the training
data samples with distances below a specified threshold through an OR gate and a projection opera-
tion to directly classify the test element, Zhou et al. [131] utilize Dürr’s minimization algorithm [31]
to identify the k minimum distance values, and Li et al. [65] employ a new quantum search algorithm
inspired by a binary search to find the minimum.

In the realm of non-binary features, distance measures related to vector angles, such as the cosine
distance, are extensively used. For example, a quantum k-NN algorithm based on a measure of this
type has been exploited by Dang et al. [23] and Wang et al. [114] for image classification tasks. In
detail, the SWAP test [15] without measurements is employed to calculate the distances, whose values
are subsequently encoded in the qubits states via the amplitude estimation algorithm [14]. Eventually,
the nearest neighbors are identified using Dürr’s algorithm. This approach has been introduced first by
Wiebe et al. [115], even though for retrieving only the nearest neighbor. Instead, Afham et al. [2] and
Ma et al. [68] have devised a simpler variant that iterates SWAP tests and measurements to estimate
a value directly proportional to the squared cosine similarity with the training instances. Notably,
this model supports the parallel processing of multiple test instances [68]. In addition, Afham et al.
have recently presented an alternative variant [5] that takes advantage of the SWAP test, a quantum
analog-to-digital conversion algorithm [72], and a variation of Dürr’s algorithm. Hence, it does not
differ significantly from previously cited works.

For non-binary features, other widely used distance measures are the Euclidean, Mahalanobis, and
polar distances. The Euclidean distance is treated separately in Section 3.5. Concerning the others,
Gao et al. [35] have introduced a quantum k-NN employing the Mahalanobis distance, whereas Feng
et al. [33] have proposed a variant using the polar distance, which combines angle and module length
information through a tunable parameter. Specifically, the Mahalanobis distance is calculated using
the phase estimation algorithm [19], combined with Hamiltonian simulation [90], and a controlled
rotation; instead, the computation of the polar distance is performed via a SWAP test without mea-
surements and two Toffoli gates (one of which extended). Subsequently, in both cases, the distance
values are encoded into the qubits states by means of the amplitude estimation algorithm (or its
coherent version, introduced by Wiebe et al. [115]). Eventually, the nearest neighbors are obtained
by applying Dürr’s algorithm (or an algorithm based on it, introduced by Miyamoto et al. [73]). To
conclude this overview on quantum k-NN algorithms, it is worth mentioning the variant (based on a
quantum sorting subroutine) introduced by Quezada et al. [88]. Specifically, it needs a metric operator
calculating distances and encoding them into qubits states, an oracle identifying sorted sequences, and
Grover’s algorithm [41]. Similarly to other works, the test instance is directly classified without the
explicit identification of the k nearest neighbors.

3.3.1 A Quantum k-NN in Detail

Let us present in detail the quantum k-NN algorithm introduced by Afham et al. [2]. To this end, let
us consider the dataset {xi}i=0,...,N−1, where xi ∈ Rd, the test data instance x ∈ Rd, and the fidelity,
namely, the squared cosine similarity (refer to Equation 3.1), as the similarity measure. Within the
amplitude encoding, the cosine similarity between xi and x corresponds to the inner product ⟨xi|x⟩
between their respective quantum states. Additionally, without loss of generality, let N and d be
powers of 2. Now, let us take into account an index register consisting of log2N qubits, where the
indices of the training instances are stored using the basis encoding, two n-qubit registers (n = log2 d),
where the data features are encoded into the amplitudes of the quantum states, and an ancillary qubit.
These four registers are initialized in the following state:

21

1√
N

N−1∑︂
i=0

|i⟩ |xi⟩ |x⟩ |0⟩ ∈ Hindex ⊗ Hn ⊗ Hn ⊗ Ha.

It is worth noticing that the superposition of the training data and the test instance are stored into
two distinct registers. Then, a SWAP test is executed on the two n-qubit registers, with the ancillary
qubit as the control qubit, leading to the state

|Ψ⟩ =
1

2
√
N

N−1∑︂
i=0

|i⟩ [(|xi⟩ |x⟩+ |x⟩ |xi⟩) |0⟩+ (|xi⟩ |x⟩ − |x⟩ |xi⟩) |1⟩] .

The probability of obtaining the outcome α ∈ {0, 1} through a measurement process applied to the
ancillary qubit is given by

P(α) =
1

2
+ (−1)α

1

2N

N−1∑︂
i=0

|⟨xi|x⟩|2,

and the corresponding post-measurement state is

|Ψα⟩ =

∑︁N−1
i=0 |i⟩ (|xi⟩ |x⟩+ (−1)α |x⟩ |xi⟩)√︃
2
(︂
N + (−1)α

∑︁N−1
i=0 |⟨xi|x⟩|2

)︂ |α⟩ .
After measuring the ancillary qubit state (α), the probability of getting the outcome i by measuring
the index register is

P(i|α) =
1 + (−1)α|⟨x|xi⟩|2

N + (−1)α
∑︁N−1

i=0 |⟨x|xi⟩|2
.

Therefore,

Q(i) := P(i|0)− P(i|1) =
2(|⟨x|xi⟩|2 − C)

N(1− C2)
, (3.2)

where C = 1
N

∑︁
i |⟨x|xi⟩|2 is a constant value. In practical terms, Equation (3.2) is proportional to the

squared cosine similarity |⟨xi|x⟩|2 between xi and x. Hence, sampling from the index register allows
finding the indices of the vectors closest to x (they have the highest Q values). However, since Q is
proportional to the square of the cosine similarity, the sign of each data feature must be consistent in
order to avoid extracting also the instances most dissimilar to x.

3.4 Quantum Cosine Binary Classifier

Recently, Pastorello and Blanzieri have introduced a quantum binary classifier that relies on the cosine
similarity metric [79]. The classifier has a simple iterative structure, which involves the preparation of
a superposition state in which the training and test features are encoded as amplitudes, a SWAP test
that acts on single qubit states, and a final measurement. In this way, a probability value proportional
to a weighted label assignment, with the weights given by the cosine similarity, is estimated.

In detail, let us consider a training set X = {xi, yi}i=0,...,N−1, where xi ∈ Rd and yi ∈ {−1, 1} ∀i ∈
{0, ..., N − 1}. Hence, X comprises N data instances characterised by d real features and two-valued
labels. Additionally, let x ∈ Rd be a novel (test) data instance that needs to be classified as −1 or 1.
Then, let us consider the following (classical) classification model:

y(x) := sgn

(︄
N−1∑︂
i=0

yi cos(xi,x)

)︄
, (3.3)

with cos(xi,x) := xi·x
∥xi∥∥x∥ being the cosine similarity between the training vector xi and x. In this

model, every training vector plays a role in predicting the new label, with the contributions being
weighted by the cosine similarity to the test instance. Now, let us take into account a log2N -qubit

22

register for encoding the indices of the training data vectors, an n-qubit register (n = log2 d) for
storing the data features using the amplitude encoding, and a single qubit for representing the labels
according to bi = 1−yi

2 ∈ {0, 1}. At this point, let us consider the state

|X⟩ =
1√
N

N−1∑︂
i=0

|i⟩ |xi⟩ |bi⟩ ∈ Hindex ⊗ Hn ⊗ Hl, (3.4)

where Hl is the Hilbert space of the label qubit. The above state encodes the training set X, including
features and labels, as a quantum superposition. Additionally, within the same registers, let us consider
the state

|ψx⟩ =
1√
N

N−1∑︂
i=0

|i⟩ |x⟩ |−⟩ ∈ Hindex ⊗ Hn ⊗ Hl, (3.5)

with the label qubit being in state |−⟩ = 1√
2
(|0⟩ − |1⟩). As a result, the test label is initially in a

quantum superposition of the two possible classes. In order to allow the states (3.4) and (3.5) to
coexist within the same registers, let us introduce an ancillary qubit (a). The initial state is then the
following:

1√
2

(|X⟩ |0⟩+ |ψx⟩ |1⟩) ∈ Hindex ⊗ Hn ⊗ Hl ⊗ Ha. (3.6)

After preparing the initial state, let us perform a SWAP test on the qubit a and a second ancillary
qubit (b) initialized in |+⟩ = 1√

2
(|0⟩+ |1⟩). The control qubit is another ancillary qubit (c) initialized

in |0⟩. The probability of measuring 1 on the control qubit after the SWAP test is

P(1) =
1

4
(1− ⟨X|ψx⟩),

which is strictly related to the classification model taken into account. Indeed,

⟨X|ψx⟩ =
1

N
√

2

N−1∑︂
i=0

yi cos(xi,x).

As a consequence, given P(1) or an estimate of it, the label of x can be predicted (according to 3.3) as

y(x) = sgn [1− 4P(1)] . (3.7)

3.5 Quantum Euclidean Distance
The Euclidean distance is a widely used distance metric in machine learning. Here, the definition
of its squared version is supplied. Specifically, let us consider two vectors u,v ∈ Rn. The squared
Euclidean distance between them, denoted as d2(u,v), is given by

d2(u,v) = ∥u− v∥2 = ∥u∥2 − 2⟨u,v⟩+ ∥v∥2, (3.8)

with ⟨u,v⟩ being the scalar product between u and v.

The aforementioned distance metric has been exploited also in the field of QML. For example,
Lloyd et al. [66] have introduced a quantum procedure for estimating the squared Euclidean distance
between a data point and a cluster centroid, namely, the mean of the elements within a data group.
In particular, this algorithm is based on the SWAP test, which is performed on the index registers,
and does not need input vectors with unit norms. An analogous approach has been employed by
Sarma et al. [96] to develop a hybrid k–means clustering algorithm, where the centroids are classically
computed, and by Getachew et al. [36] for a hybrid version of the k-medians algorithm. In addition,
Yu et al. [123] have introduced three quantum procedures for the estimation of different similarity
measurements, all based on the squared Euclidean distance, on sets of data. These procedures do not
need unit-norm input vectors, leverage the quantum interference resulting from the change of basis,
and employ the amplitude estimation algorithm for determining the similarity measures. Eventually,

23

it is worth recalling the quantum binary classifier proposed by Schuld et al. [98]. Specifically, the
quantum circuit of the classifier comprises a Hadamard gate (required for the quantum interference),
a conditional measurement, and a final measurement. The repeated execution of the circuit allows
estimating a probability value related to the squared Euclidean distances for each of the two classes.
However, only input vectors with unit norms are taken into account.

Concerning quantum k-NN models, to the best of the author’s knowledge, the sole variant available
in the literature relying on the Euclidean distance has been proposed by Fastovets et al. [32]. The
variant in question leverages the procedure introduced by Lloyd et al. [66] for estimating the pairwise
distance values and employs Dürr’s minimization algorithm for identifying the k nearest neighbors.
A notable drawback of this method consists in the necessity of multiple iterations of each of the two
steps, as both of them include a final measurement. Additionally, Dürr’s algorithm needs an oracle,
namely, a black-box function, to be executed. Actually, the nearest neighbor algorithm introduced
by Wiebe et al. [115] accepts also the Euclidean distance as the distance metric. Nevertheless, its
workflow (described in Section 3.3) is considerably complex to be realized. Eventually, the calculation
of the single linkage, i.e., a set similarity measure taken into account by Yu et al. [123], could be
considered as a generalisation of the nearest neighbor search. Nonetheless, their quantum algorithm
utilizes the reciprocals of the input vectors, leading (theoretically) to the loss of the original distance
relationships.

24

Part I

Quantum Annealing

25

4 QALS Empirical Evaluation
This chapter is a reworked version of the article “Quantum annealing learning search implementa-
tions” [12], which was motivated by the absence of an empirical evaluation of QALS (see Section 2.3)
in the original work by Pastorello and Blanzieri [81]. In practice, in this chapter, two implemen-
tations of QALS and their empirical evaluation on two different real-world problems are presented.
Specifically, the implementations are in C++ and Python, respectively. The former aims at improving
the performance of the classical part of the algorithm, while the latter is characterised by a smooth
interaction with the quantum annealers provided by D-Wave. Concerning the problems considered,
they are the Number Partitioning Problem, which has a natural QUBO representation [63], and the
Travelling Salesman Problem, which has constraints that must be included as penalties in the QUBO
formulation. The algorithm has been compared with classical competitors and with the tools provided
by D-Wave. The results have demonstrated that QALS can tackle bigger problems with respect to
the standard D-Wave solutions.

4.1 Implementations
Two implementations of QALS, in C++ and in Python, have been developed. In both cases, some
optimizations with respect to the original mathematical formulation of QALS have been required.
In addition, in contrast to the theoretical formulation presented in Section 2.3, the QUBO problem
variables are defined in the {0, 1} domain, which is the standard domain for QUBO problems. The
pseudocode, which is valid for both implementations, is provided in Algorithm 2.

First of all, in order to avoid the usage of the quantum annealer while testing the correctness of
the implementations (the machine time at our disposal was limited), the call to the annealer has been
substituted with an exhaustive search on the same equation minimized by D-Wave. It is important
to notice that the minimization of the equation in question does not simulate the actual behavior of
a quantum annealer, since it is a probabilistic machine.

After the correctness tests, it was evident that the execution was notably slow. The main cause
was the calculation of the product of three matrices, i.e., the transposed permutation matrix P T , the
QUBO matrix Q, and the permutation matrix P . Indeed, the computation of the product P TQP
could require up to 100 seconds. Given that the permutation matrix P is a sparse matrix, a sparse
matrix representation has been adopted first. In practice, only the non-zero values are stored as
triplets (row, column, value). In this way, the execution time for this calculation was reduced to
approximately 1.5 seconds, but further optimizations were feasible.

To address this efficiency issue, both the representation of P and the way to permute the matrix
Q have been modified. Specifically, P has been substituted with a permutation vector perm. Let Pi

denote the i-th row in P , then:

P =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎦ perm = [3, 0, 4, 1, 2]

perm[0] = 3→ P0 has the value 1 in column 3

perm[1] = 0→ P1 has the value 1 in column 0

perm[2] = 4→ P2 has the value 1 in column 4

perm[3] = 1→ P3 has the value 1 in column 1

perm[4] = 2→ P4 has the value 1 in column 2.

26

Data: Matrix Q of order n encoding a QUBO problem, annealer adjacency matrix A of order n
Input: Permutation modification and mapping function g, minimum probability pδ of permutation

modification, probability decreasing rate η, candidate perturbation probability q, number N of
iterations at constant p, scaling factor λ0, number of annealer runs k, termination parameters
imax, Nmax, dmin

Result: x∗ vector with n elements in {0, 1} solution of the QUBO problem
1 function fQ(Q,x):
2 return xTQx;
3 m = 0n;
4 for i← 0 to n do
5 m[i]← i;
6 end
7 p← 1;
8 Θ1,m1 ← g(Q,A,m, p);
9 Θ2,m2 ← g(Q,A,m, p);

10 x1 ← mapback(annealer(Θ1, k),m1);
11 x2 ← mapback(annealer(Θ2, k),m2);
12 f1 ← fQ(Q,x1); f2 ← fQ(Q,x2);
13 if f1 < f2 then
14 x∗ ← x1; f∗ ← f1; m∗ ← m1; x′ ← x2;
15 else
16 x∗ ← x2; f∗ ← f2; m∗ ← m2; x′ ← x1;
17 end
18 if f1 ̸= f2 then
19 S ← x′ ⊗ x′ − In + diag(x′);
20 else
21 S ← 0n×n;
22 end
23 e← 0; d← 0; i← 0; λ← λ0;
24 repeat
25 Q′ ← Q+ λS;
26 if N divides i then
27 p← p− η(p− pδ);
28 end
29 Θ′,m← g(Q′,A,m∗, p);
30 x′ ← mapback(annealer(Θ′, k),m);
31 with probability q: x′ → h(x′, p);
32 if x′ ̸= x∗ then
33 f ′ ← fQ(Q,x′);
34 if f ′ < f∗ then
35 swap(x′,x∗); f∗ ← f ′; m∗ ← m; e← 0; d← 0;
36 S ← S + x′ ⊗ x′ − In + diag(x′);

37 else
38 d← d+ 1;

39 with probability (p− pδ)(f
′−f∗): swap(x′,x∗); f∗ ← f ′; m∗ ← m; e← 0;

40 end

41 λ← min
{︂
λ0,

λ0

2+i−e

}︂
;

42 else
43 e← e+ 1;
44 end
45 i← i+ 1;

46 until i = imax or (e+ d ≥ Nmax and d < dmin);
47 return x∗;

Algorithm 2: Implementation of QALS (taken from [12]).

27

While the permutation of the matrix P has a computational complexity of O(n2), the permutation
of the vector perm has a complexity of O(n log n), which is determined by O(n) accesses to the map
m (each one with complexity O(log n)). The usage of a hashmap would further reduce the time
complexity to O(n) on average.

After the change of representation, the way to permute only the elements that must be mapped
into the D-Wave topology has been investigated. Let us take into account an example matrix Q (that
is not a QUBO matrix), with the permutation matrix and vector from the previous example:

Q =

⎡⎢⎢⎢⎢⎣
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎤⎥⎥⎥⎥⎦ P =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎦ perm = [3, 0, 4, 1, 2].

The matrix resulting from the permutation (P TQP) is

M =

⎡⎢⎢⎢⎢⎣
7 9 10 6 8
17 19 20 16 18
22 24 25 21 23
2 4 5 1 3
12 14 15 11 13

⎤⎥⎥⎥⎥⎦ .
Now, let us examine the positions of the entries after the permutation. The objective is to find the
element mij without generating the entire matrix M . In practical terms, the indices of the values i and
j in the permutation vector perm should be exploited to find the correct entry in the Q matrix. For
example, to find the value for the entry m1,2, the indices of the values “1” and “2” in the permutation
vector must be identified: the index of “1” is “3”; the index of “2” is “4”. The first index designates
the row, whereas the second one designates the column. Consequently, the entry m1,2 corresponds to
the entry q3,4, which is equal to 20.

Searching for the index of a specific value in the permutation vector has a complexity of O(n). In
order to generate the matrix Θ, a total of O(n) searches is necessary, as D-Wave’s Pegasus topology
A is characterised by O(n) edges (with n being the number of nodes in the considered Pegasus’ sub-
graph [55]). Hence, the overall complexity is O(n2). Nevertheless, considering that the goal is to find
the index of multiple values, a more efficient approach consists in inverting indices and values. This
operation can be performed by executing a O(n) algorithm once at the beginning. As a consequence,
the complexity of the search operation becomes O(1). Let us examine the inverse vector for the
previous example:

perm = [3, 0, 4, 1, 2] inverse = [1, 3, 4, 0, 2]

inverse[0] = 1→ perm has the value 0 in position 1

inverse[1] = 3→ perm has the value 1 in position 3

inverse[2] = 4→ perm has the value 2 in position 4

inverse[3] = 0→ perm has the value 3 in position 0

inverse[4] = 2→ perm has the value 4 in position 2.

After obtaining an estimate of the solution from the quantum annealer, the solution variables must
be mapped back to the original unpermuted problem space. Due to the change of representation of P ,
the P T z operation is no longer valid. However, by leveraging the inverted permutation vector inverse,
the original values can be retrieved as x back[i] ← x[inverse[i]]. The pseudocode for this process is
given in Algorithm 3.

4.1.1 C++ Implementation

In developing the C++ implementation of QALS, two main issues have been encountered, namely,
the lack of native D-Wave APIs and the selection of a suitable random number generator.

28

Input: Solution vector x, permutation vector perm
Result: perm−1(x)

1 inverse← compute inverse(perm); // computes the inverse of perm
2 x back ← new int[n];
3 for i← 0 to n− 1 do
4 x back[i]← x[inverse[i]]; // x back[i] takes the value contained in x[inverse[i]],

so that the values are mapped back to the original unpermuted space

5 end
6 return x back

Algorithm 3: Map back variables (map back(x, perm) function) (taken from [12]).

4.1.1.1 Lack of Native APIs

At the time of writing, D-Wave offers only Python APIs to interact with the QPUs. As a consequence,
the retrieval of the current QPU topology, the submission of problems, and the acquisition of the
corresponding results are not feasible for a C++ program. To address these issues, two approaches
have been considered.

The first approach involves embedding a Python function in C++ [28]. This can be achieved
by including the Python.h header and, after generating all necessary PyObjects, running the Python
function that encapsulates the calls to the annealer. However, the Leap IDE, where the experiments
have been executed, does not supply the Python.h header.

In the second approach, the one that has been employed, the C++ executable creates a child
Python process through a fork operation at the startup. The role of this process is twofold, namely,
to provide the parent process with the current QPU topology and to submit the problems to the QPU
solver. Specifically, the Python process first obtains the current topology and transmits it to the C++
process through an anonymous pipe. This step is essential since the quantum annealer might have
inactive nodes, which must be taken into account during the embedding. After the reception of the
topology, the parent process begins forwarding problems to the child process. In detail, the parent
process transmits the row index, the column index, and the corresponding value for each entry in the
Θ matrix. Eventually, it sends a message containing a “#” character to signal that all entries of the
matrix have been transmitted. In the meanwhile, the child process consistently reads the input pipe,
storing all the information. Upon receiving the “#” character, it submits the problem to the QPU,
fetches the solution, and transmits it to the C++ process. Subsequently, it resumes reading the input
pipe for new instructions.

Algorithms 4 and 5 provide the pseudocode for two functions, i.e., init child and send to annealer,
that implement the C++ side of the approach just described. Specifically, the init child function
generates the array of arguments to be transmitted to the Python process (using dup2), redirects the
standard input and output to pipes, and substitutes the executable code with the Python code. READ
(=0) and WRITE (=1) denote positions in the fd array and are used to identify the sides of the pipe.
In detail, fd[READ] is allocated for child reading, fd[WRITE] for parent writing, fd[READ + 2] for
parent reading, and fd[WRITE + 2] for child writing. Instead, send to annealer is responsible for
transmitting each row-column-value triplet to the Python process and retrieving the solution from the
pipe.

Input: Number of measurements for each problem k (num reads)
1 args← {”python”, ”solver.py”, to string(k)};
2 dup2(fd[READ], STDIN FILENO); // replace the standard input with an

anonymous pipe

3 dup2(fd[WRITE + 2], STDOUT FILENO); // replace the standard output with an

anonymous pipe

4 close pipes(fd);
5 execvp(args[0], args); // replace the child’s executable code

Algorithm 4: Initialization of the Python child process (init child(k) function) (taken from [12]).

29

Input: Weights Θ (θedge refers to the weight associated to the edge edge)
Result: Vector with minimum estimated energy x

1 % iterate over all edges, including pairs in the form (i, i);
2 foreach edge in Θ do
3 row ← edge.u(); // store vertex u
4 col← edge.v(); // store vertex v
5 val← θedge; // store weight associated to edge (u, v)
6 write(fd[WRITE], row); // send row index

7 write(fd[WRITE], col); // send column index

8 write(fd[WRITE], val); // send value

9 end
10 write(fd[WRITE], ”#”); // notify end of transmission

11 for i← 0 to n− 1 do
12 x[i]← read(fd[READ + 2]);
13 end
14 return x
Algorithm 5: Send Θ to the Python process and retrieve the estimated solution x
(send to annealer(Θ) function) (taken from [12]).

Concerning the time required by the message exchange, it corresponds to approximately one second
when using 5000 variables, which is nearly the limit of the Pegasus architecture. This value has been
obtained by measuring the time elapsed between the initial message sent by the C++ process and
the final message received by the same process, without actually invoking the annealer (the response
has been generated and sent by the Python process). While this duration is not exaggerated, it may
nullify the benefit of using C ++ over Python.

4.1.1.2 Random Number Generation

One of the key components of QALS is the shuffling of the map m (see Algorithm 1). In particular, the
permutations of m have been generated as shown in Algorithm 6. The algorithm in question relies on
the shuffling of the map’s keys (line 6). Ideally, the shuffle algorithm should be capable of generating
all the n! permutations of the keys vector. In this work, the Fisher-Yates shuffle algorithm, which
produces unbiased permutations, has been used.

The Fisher-Yates algorithm necessitates a random number generator. The first option that has
been taken into account is the rand() function provided by C++. In detail, the rand() function
provides values between 0 and RAND MAX. Hence, if the generated numbers are restricted to the
desired range by means of the modulo operation, the values do not necessarily have equal probability.
Let us consider an example [112]. Specifically, let us assume that the desired range is [0, 2] and

Input: Map m (mk is the value of m for key k)
Result: Permuted map m

1 shuffled← map();
2 keys← new int[n];
3 foreach k in m.keys do
4 keys.append(k); // create a vector of keys

5 end
6 shuffle vector(keys); // shuffle the vector of keys

7 it← keys.begin(); // iterator

8 for pair in m do
9 shuffledpair.key ← m∗it;

10 it.next();

11 end
Algorithm 6: Shuffle map (shuffle(m) function) (taken from [12]).

30

RAND MAX = 10, thus:

• if rand() yields a value in {0, 3, 6, 9}, rand()%3 = 0. Hence, P (0) = 4
11 ;

• if rand() yields a value in {1, 4, 7, 10}, rand()%3 = 1. Hence, P (1) = 4
11 ;

• if rand() yields a value in {2, 5, 8}, rand()%3 = 2. Hence, P (2) = 3
11 .

In practical terms, the probability of the numbers between 0 and 2 is not the same. Another issue
was represented by the length of the random number generator period. For instance, to generate all
possible permutations of a deck of 52 cards (52!), a period of at least 52! is necessary. Typically, the
period of rand() is 232, although it can vary depending on the implementation. Given that QALS
involves the permutation of vectors with more than 5000 variables, rand() was not a good choice.

Another solution that has been considered is the generation of random numbers by means of
D-Wave’s quantum annealers. Given that quantum annealers are “trusted” quantum machines, the
generated numbers would be truly random. In particular, the idea consists of the following steps:
submitting problems wherein each qubit has an equal probability of collapsing to either 0 or 1; decoding
the resulting arrays of boolean values into one or more integer values. The pseudocode for this approach
is provided in Algorithm 7. In essence, line 3 sets all the diagonal values in Θ to zero. Consequently,
all 2n possible states have an equal probability of being retrieved [56]. More in detail, any call to this
algorithm allows generating ⌊n/k⌋ integer numbers, where n represents the number of qubits used,
and k denotes the number of bits per number. For instance, let us assume that the desired range of
values is [0, 127] and n = 5000. A single call would produce 714 integers (⌊5000/7⌋) in approximately
0.3 seconds. While this may seem reasonable, the cost is excessive:

• each QALS iteration requires to permute a vector whose maximum size is approximately 5436.
Therefore, for each iteration, it is necessary to generate at most 5436 numbers. In a single run,
with n = 5436 and k = 13, Algorithm 7 produces 418 numbers. As a consequence, for each
iteration, the algorithm must be run 13 times;

• each run of Algorithm 7 takes approximately 0.3 seconds on average. Consequently, the overhead
would be approximately 3.9 seconds for each QALS iteration.

This implies that the quantum annealer would be invoked 13 times more, reducing the number of
possible experiments and increasing the overall cost. Clearly, this approach was not feasible.

In the end, the Mersenne Twister random number generator, which is characterised by a period
of 219937 − 1, has been selected. Specifically, the Mersenne Twister is able to generate 64-bit floating
point random numbers faster than the hardware-implemented Intel Secure Key [94]. In addition, while
a large period does not ensure quality in random number generation, it allows the generation of longer
sequences. Although the period in question is not large enough to cover all possible sequences, the
Mersenne Twister represents the best tradeoff that has been found between efficiency and coverage of
the permutation space.

Input: Amount of bits reserved per number k
Result: Vector of random integers nums

1 Θ← {}; // Python dictionary

2 for i← 0 to n− 1 do
3 Θ[i][i]← 0; // initialize the diagonal with all zeros

4 end
5 x← sample qubo(Θ); // run the annealer with Θ
6 x← x.first.sample.values(); // solution vector x ∈ {0, 1}n
7 nums← to decimal(x, k); // extract ⌊n/k⌋ decimal numbers, each one from 0 to

2k − 1
8 return nums
Algorithm 7: Generation of random numbers by quantum annealing (gen(k) function) (taken
from [12]).

31

4.1.2 Python Implementation

In developing the Python implementation, no particular issue has been encountered. Here, the em-
bedding procedure and the submission of problems to the quantum annealer are described.

4.1.2.1 Embedding Procedure

In the QALS scheme, the embedding of the QUBO matrix into the annealer topology is a straightfor-
ward process. Indeed, each index of the QUBO matrix is associated with a node ∈ V , with V being
the list of active nodes in the topology, and the matrix entries are mapped accordingly. Nevertheless,
the topology graph is not complete, and some qubits are unavailable (only 97% of qubits are gen-
erally available). Hence, first of all, it is necessary to retrieve the list of working qubits and edges
using a function provided by D-Wave. In practice, rather than D-Wave’s EmbeddingComposite class,
which is effective for matrices of size up to 196 × 196, a custom embedding algorithm is employed
in QALS implementations. The pseudocode for the embedding algorithm, which is used also by the
C++ implementation, is provided in Algorithm 8. The algorithm works as follows:

1. an empty dictionary is initialized using the necessary active nodes as keys;

2. each key (active node) is associated with the list of nodes that are endpoints of active edges
outgoing from the considered node (these nodes must be keys of the same dictionary);

3. a support dictionary mapping each selected node to a QUBO matrix index is created;

4. the QUBO matrix is embedded by iterating on the nodes (corresponding to matrix rows) and
their adjacent nodes (corresponding to matrix columns).

Input: Sampler sampler, QUBO problem Q, dimension of QUBO problem n
Result: Embedded QUBO problem mapped

1 actives← dict();
2 foreach node ∈ sampler.nodelist do
3 actives[node]← list();
4 if actives.keys().size() == n then
5 break;
6 end

7 end
8 foreach edge ∈ sampler.edges do
9 if edge.node1 ∈ actives.keys() and edge.node2 ∈ actives.keys() then

10 actives[edge.node1].append(edge.node2);
11 actives[edge.node2].append(edge.node1);

12 end

13 end
14 supportn ← dict();
15 i← 0;
16 foreach node ∈ actives.keys().ordered() do
17 support[node] = i;
18 i← i+ 1;

19 end
20 mappedn×n ← 0;
21 foreach node ∈ actives.keys() do
22 foreach adjnode ∈ actives[node] do
23 mapped[node][adjnode] = Q[support[node]][support[adjnode]];
24 end

25 end
26 return mapped;

Algorithm 8: Embedding the problem in the sampler topology (taken from [12]).

32

Input: Dictionary representing the embedding of the problem in the topology Θ, sampler
sampler, number of reads k

Result: List of {0, 1}n
1 response = sampler.sample qubo(Θ, num reads = k);
2 return response.first.sample.values();
Algorithm 9: Communication with the annealer (problem submission) (taken from [12]).

4.1.2.2 Communication with the Annealer

D-Wave supplies different samplers for solving problems, and the signature of the sampling method
is common to all samplers. The pseudocode of the algorithm used for submitting problems to the
quantum annealer is provided in Algorithm 9. Its structure is really simple, but it is worth highlighting
some aspects: Θ must be a dictionary, otherwise the problem will not be correctly processed by the
sampler; k denotes the number of annealer reads (as in Algorithm 2). The k parameter is optional for
both simulated and quantum annealing samplers, while hybrid samplers do not support it.

4.2 Empirical Evaluation
QALS has been empirically evaluated on two problems, namely, the Number Partitioning Problem
(NPP) and the Travelling Salesman Problem (TSP). Specifically, for NPP, a single run has been
executed due to the limited quantum annealing time available. Conversely, for TSP, multiple runs
have been executed due to the less QPU usage per run. Here is reported a legend for the parameters
of QALS:

• pδ denotes the minimum probability of permutation modification;

• η represents the probability decreasing rate;

• q corresponds to the candidate perturbation probability;

• N is the number of iterations at constant probability;

• λ0 denotes the initial balancing factor for the tabu matrix;

• k represents the number of annealer measurements for each problem;

• Nmax represents the maximum number of consecutive times that QALS can find the current
best solution or a solution that is not better than it before stopping;

• dmin corresponds to a further condition on the number of times that QALS can find a solution
not better than the current best solution before stopping.

4.2.1 Number Partitioning Problem (NPP)

The Number Partitioning Problem (NPP) consists in dividing a set of numbers into two subsets so
that the difference between the sum in the first subset and the sum in the second subset is minimized.
The QUBO formulation that has been utilized in the experiments is the one provided by Glover et al.
[38]. Specifically, let us consider a set of numbers S = {s1, s2, ..., sn}. If si belongs to the first subset,
xi = 1; otherwise, xi = 0. Therefore, the sum of the first subset values is equal to sum1 =

∑︁n
i=1 sixi,

while the sum of the second subset values can be expressed as sum2 =
∑︁n

i=1 si−
∑︁n

i=1 sixi. Then, let
c be

∑︁n
i=1 si. Hence, the difference between the two sums is equal to

diff =
n∑︂

i=1

si − 2
n∑︂

i=1

sixi = c− 2
n∑︂

i=1

sixi. (4.1)

Rather than directly minimizing the difference, let us consider its squared value, which can be expressed
as

diff 2 =

{︄
c− 2

n∑︂
i=1

sixi

}︄2

= c2 + 4xtQx, (4.2)

33

where Q is the QUBO matrix, whose entries are given by

Qii = si (si − c) Qij = Qji = sisj . (4.3)

Since the constants (c2 and 4) can be ignored, the QUBO problem can be expressed as

QUBO : min y = xtQx.

The pseudocode for the calculation of the QUBO matrix entries is provided in Algorithm 10.

Input: Set of numbers s
Result: Matrix Q representing the QUBO formulation of the NPP problem defined by s

1 n← s.size();
2 c← sum(s); % sum over numbers in s
3 Q← new int[n][n];
4 for i← 0 to n− 1 do
5 for j ← 0 to n− 1 do
6 if i ̸= j then
7 p← s[i] · s[j];
8 Q[i][j]← p;
9 Q[j][i]← p;

10 else
11 Q[i][i]← s[i] · (s[i]− c);
12 end

13 end

14 end
15 return Q

Algorithm 10: Translation of NPP into QUBO (taken from [12]).

4.2.1.1 Classical Algorithms for NPP

Due to the NP-hard nature of NPP, an efficient algorithm that solves it does not exist (yet). However,
various heuristics have been proposed. An example is the greedy heuristic, which consists in arranging
the numbers in descending order and iteratively adding them to the subset with the smaller cumulative
value. Another heuristic is the Karmarkar-Karp (KK) approach [60], which is the basis of an exact
(exponential-time) algorithm presented by Korf [64] and evaluated by Pedroso and Kubo [86], namely,
the Complete Karmarkar-Karp algorithm (CKK).

The CKK algorithm is based on a depth-first search of a binary tree. In this tree structure, the left
branch represents the replacement of the two largest numbers at the present level with the absolute
value of their difference, implying that these numbers are placed in different subsets. Conversely,
the right branch represents their replacement them with their sum, implying that they are assigned
to the same subset. Since the numbers are not assigned to a specific subset during the search, a
linear time procedure must be run at the end of the search in order to retrieve the resulting subsets.
The algorithm’s worst-case complexity is exponential. However, the search terminates upon finding
a perfect partition, namely, the last remaining number, representing the difference between the two
subsets, is either 0 or 1. Additionally, if the biggest number is bigger than the sum of all the others,
the branching for that sub-tree can be terminated, as all the other numbers can be assigned to the
same subset. Finally, when dealing with four numbers or fewer, only the left branch is evaluated, as
the KK heuristic is exact in this situation.

In the experiments presented here, the CKK implementation provided by Pedroso and Kubo [86]
has been used as a comparison.

4.2.1.2 Experimental Setup and Results

The experiments have been executed sequentially on the Leap cloud, using the QALS parameters
reported in Table 4.2. In this case, the C++ implementation has been used to obtain the results, while

34

Table 4.1: Tests performed on the Number Partitioning Problem (taken from [12]).

Dimension Approach Range Sets Difference Time (s) # Iterations

500

QALS
100

93 2172 4000
Hybrid 1 6 -

Classical 1 0.003 -
QALS

1000
292 2157 4000

Hybrid 4 9 -
Classical 0 0.005 -
QALS

10000
2640 2151 4000

Hybrid 36 12 -
Classical 0 0.004 -
QALS

1000000
475860 1992 4000

Hybrid 2340912 14 -
Classical 0 0.005 -

1200

QALS
1000

185 1327 2000
Hybrid 1 23 -

Classical 1 0.015 -
QALS

10000
6337 1304 2000

Hybrid 225 23 -
Classical 1 0.017 -
QALS

100000
145982 1270 2000

Hybrid 186624 23 -
Classical 0 0.024 -
QALS

1000000
303833 1267 2000

Hybrid 781440 23 -
Classical 0 0.019 -

2500

QALS
1000

3108 2442 2000
Hybrid 0 62 -

Classical 0 0.072
QALS

10000
11681 2666 2000

Hybrid 25 54 -
Classical 1 0.090 -
QALS

100000
160676 2354 2000

Hybrid 6240 64 -
Classical 1 0.089 -
QALS

1000000
2731518 2341 2000

Hybrid 1151232 65 -
Classical 1 0.093 -

5436

QALS
1000

6209 9414 2000
Hybrid 1 260 -

Classical 1 0.318 -
QALS

10000
528 9413 2000

Hybrid 16 267 -
Classical 0 0.437 -
QALS

100000
4010004 9168 2000

Hybrid 12112 263 -
Classical 0 0.464 -
QALS

1000000
5497085 9507 2000

Hybrid 24576 260 -
Classical 0 0.479 -

35

Table 4.2: Values used for QALS parameters in all NPP tests (taken from [12]).

pδ η q N λ0 k Nmax dmin

0.1 0.01 0.2 10 1.5 10 100 70

the Python implementation has been employed to verify them. Regarding the annealing parameters,
like the annealing time and schedule, the default values have been employed for QALS (the system
that has been used is the Advantage 1.1) [48]. Instead, Hybrid internally manages these properties in
an automatic way.

The obtained results are shown in Table 4.1. Specifically, Range denotes the upper boundary
of the number generation interval ([1, Range]) and, therefore, the maximum possible si value. For
example, if Dimension is 500 and Range is 100, a vector of 500 integers within the range [1, 100] is
employed. Conversely, Sets Difference represents the difference between the two resulting sets. In
detail, QALS has not performed as well as expected. Indeed, Hybrid has turned out to be superior in
terms of both results achieved and time required. In addition, the classical algorithm considered for
comparison (the CKK algorithm) has exhibited notable speed and has consistently found the optimal
solution. In practice, classical algorithms for NPP are efficient despite the problem being NP-Hard.
QALS performance could be probably improved by increasing the number of annealer measurements
(k ≫ 10). Indeed, a larger output sample would increase the probability of finding a solution close
to the optimum (the D-Wave quantum annealer is characterised by noise and temperature effects).
However, the quantum annealing time at our disposal was too short.

4.2.2 Travelling Salesman Problem (TSP)

The Travelling Salesman Problem, commonly referred to as TSP, consists in determining the shortest
route among n cities, given a list of cities and their pairwise distances (actually, a city is not required
to be directly connected to all the others). In particular, each city must be visited exactly once and
the route must conclude at the starting point. Therefore, TSP is equivalent to the task of identifying,
within a graph G = (V , E), the Hamiltonian cycle characterised by the minimum cumulative weight.
This perspective is particularly significant as there exists a QUBO formulation for it [67]. In detail,
the problem Hamiltonian for TSP is defined as

H = HA +HB

HA = A

n∑︂
i=1

⎛⎝1−
n∑︂

j=1

xi,j

⎞⎠2

+A
n∑︂

j=1

(︄
1−

n∑︂
i=1

xi,j

)︄2

+A
∑︂

(uv)/∈E

n∑︂
j=1

xu,jxv,j+1

HB = B
∑︂

(uv)∈E

Wuv

n∑︂
j=1

xu,jxv,j+1, (4.4)

with xi,j being equal to 1 if the i-th node (city) is in the j-th position in the cycle (route), 0 otherwise,
xv,n+1 = xv,1, and A and B being positive constants (A,B > 0). In this context, HA encodes the
problem constraints, namely, each node must appear exactly once in the cycle (first term), there
must be exactly one node in each cycle position (second term), and the order of nodes must be valid
(third term). Conversely, HB encodes the minimization of the total weight of the cycle (route length);
specifically, Wu,v represents the weight of the (u, v) edge. Eventually, to make the violation of the
constraints energetically unfavourable, the relationship 0 < B(max(Wuv)) < A must be satisfied. In
the experiments presented here, B has been set to 1, while A was has been set to n×max(Wuv).

Given the problem Hamiltonian H, a renumbering of the xi,j variables is necessary in order to
construct the QUBO matrix Q. Specifically, the following renumbering scheme has been used here:

(x1,1, x1,2, ... x1,n, x2,1 ... xn,n)→ (x1, ... xn2). (4.5)

Then, the Qij entry of Q, for i, j ∈ {1, ...n2}, is given by the coefficient of xixj in H. The pseudocode
for the computation of the QUBO matrix entries is provided in Algorithms 11 to 14.

36

Input: Distance matrix D
Result: Matrix Q representing the QUBO formulation of the TSP problem defined by D

1 n← size(D, 0); // number of rows of D (square matrix)

2 Q← new int[n2][n2];
3 all zeros(Q);
4 A← n ·max coeff (D); // penalty set according to [67]

5 B ← 1; // multiplier set according to [67]

6 Q← add cost objective(Q,D,B);
7 Q← add time constraints(Q,A);
8 Q← add position constraints(Q,A);
9 return Q

Algorithm 11: Translation of TSP into QUBO [110] (taken from [12]).

Input: QUBO matrix Q, distance matrix D, multiplier B
Result: Matrix Q including the cost objective

1 n← size(D, 0); // number of rows of D (square matrix)

2 for t← 0 to n− 1 do
3 for i← 0 to n− 1 do
4 for j ← 0 to n− 1 do
5 r ← t · n+ i;
6 c← (t+ 1) mod n2 + j;
7 Q[r][c]← B ·D[i][j];

8 end

9 end

10 end
11 return Q
Algorithm 12: add cost objective function (computation of HB coefficients) (taken from [12]).

Input: QUBO matrix Q, constraint penalty A
Result: Matrix Q including time constraints

1 n← size(D, 0); // number of rows of D (square matrix)

2 for t← 0 to n− 1 do
3 for i← 0 to n− 1 do
4 r ← t · n+ i;
5 Q[r][r]← Q[r][r]−A;
6 for j ← 0 to n− 1 do
7 if i ̸= j then
8 c← t · n+ j;
9 Q[r][c]← 2 ·A;

10 end

11 end

12 end

13 end
14 return Q
Algorithm 13: add time constraints function (computation of part of the coefficients of HA)
(taken from [12]).

37

Input: QUBO Matrix Q, constraint penalty A
Result: Matrix Q including position constraints

1 n← size(D, 0); // number of rows of D (square matrix)

2 for i← 0 to n− 1 do
3 for t1← 0 to n− 1 do
4 r ← t1 · n+ i;
5 Q[r][r]← Q[r][r]−A;
6 for t2← 0 to n− 1 do
7 if t1 ̸= t2 then
8 c← t2 · n+ i;
9 Q[r][c]← 2 ·A;

10 end

11 end

12 end

13 end
14 return Q
Algorithm 14: add position constraints function (computation of part of the coefficients of HA)
(taken from [12]).

4.2.2.1 Solution Refinement Procedure

In the QUBO formulation of TSP, a solution is a binary vector of length n2, where n denotes the
number of nodes (cities). Alternatively, a solution can be seen as a list of n sub-sequences, each
consisting of n locations. In particular, in a valid solution, each sub-sequence contains n − 1 0s and
one 1; furthermore, the position of the value 1 within the i-th sub-sequence is unique with respect to
all sub-sequences. For example, a valid solution for three cities is

x1 = [0, 1, 0, 1, 0, 0, 0, 0, 1],

while an invalid solution is
x2 = [1, 1, 0, 1, 0, 0, 0, 0, 0].

To convert a QUBO TSP solution into a classical TSP solution, each sub-sequence is replaced with
the integer number representing the position of the value 1 inside that sub-sequence. For instance,
the classical version of x1 is

s1 = [1, 0, 2].

Conversely, x2 cannot be converted into a valid classical TSP solution unless it is refined, namely,
modified a little bit.

To transform a non-valid QUBO TSP solution into a valid classical TSP solution while preserving
the original solution as much as possible, the following procedure has been devised. Let x be the
solution vector returned by the annealer, f : Bn → Nk be a function returning a vector of size k
containing the position of all non-zero values in xi (with xi denoting the i-th sub-vector of length
n in x), and A be the set {0, ..., n − 1}. First of all, a solution vector s of length n is initialized
with -1 values, namely, s ∈ {−1}n. Let R be a vector of sets, with Ri = {f(xi)} being the set
of possible solutions (nodes) for the i-th sub-sequence, based on the solution vector x. Therefore,
si = Ri[0] ⇐⇒ sizeof(Ri) = 1. Let K denote the set of unavailable nodes.

Definition 1 An unavailable node is a node representing the solution for a specific position in the
cycle (namely, no other 1 value exists in the corresponding sub-sequence) or a node designated as
such after being randomly chosen from the available ones. In the subsequent example, the node 0 is
unavailable.

x2 = [1, 1, 0, 1, 0, 0, 0, 0, 0]

In practical terms, K = {si | si ̸= −1, i ∈ {0, ..., n − 1}}. Then, let Di be Ri \K. The subsequent
step involves computing Di for the first i in {0, ..., n−1} such that sizeof(Ri) > 1. If sizeof(Di) > 0,

38

a random value d ∈ Di is picked and the following actions are executed: si = d and K = {K ∪ d},
namely, the selected available node d is assigned to the i-th position of the solution vector, and the set
of unavailable nodes is consequently updated. This process is then iterated for all subsequent i values
that fulfill the condition on the size of Ri. After that, a vector idxi is instantiated for each node i in
{0, ..., n − 1}. Specifically, j ∈ idxi ⇐⇒ sj = i (with j ∈ {0, ..., n − 1}). Thus, idxi comprises all
the solution vector positions that contain the value i (duplicates may be present). If sizeof(idxi) > 1
for a certain i, idxi undergoes shuffling, and all sj such that j ∈ idxi and idxi.indexof(j) > 0 are set
to -1. Essentially, for each idxi, the sj corresponding to the first index after the shuffling operation
keeps the value i. In this way, duplicate nodes in the cycle are eliminated. At this point, all values in
s are either unique or equal to −1. Then, let us define L = A \K. In practice, L comprises all nodes
that have not yet been assigned to a cycle position. Eventually, for each i in {0, ..., n − 1} such that
si = −1, a random value l ∈ L is selected, and the set of remaining nodes is updated consequently,
namely, si = l and L = L \ {l}. After this last step, all the positions have an assigned node, namely,
si ̸= −1 ∀ i ∈ {0, ..., n− 1}, and the solution is valid.

It is worth observing that this refinement procedure does not modify an already valid solution. In
addition, in the case of non-valid solutions, it does not affect nodes whose position is unique within
the cycle.

4.2.2.2 Experimental Setup and Results

The experiments have been executed sequentially on the Leap cloud, employing the QALS parameters
reported in Table 4.3. In this case, the Python implementation has been used to obtain the results,
whereas the C++ implementation has been employed to verify them. In addition, to ensure a fair
comparison, an equivalent number of annealer measurements (k = 5) has been used for Embedding
Composite. Concerning the annealing parameters, such as the annealing time and schedule, the default
values have been utilized for both QALS and Embedding Composite (the system that has been used is
Advantage 1.1) [48]. Instead, as mentioned earlier, Hybrid manages these properties in an automatic
way. Eventually, it is worth mentioning that the brute force method whose results are reported here
for comparison has been implemented in C++.

Table 4.3: Values used for QALS parameters in all TSP tests (taken from [12]).

pδ η q N λ0 k Nmax dmin

0.1 0.2 0.2 5 1.5 5 100 70

In these experiments, QALS and Embedding Composite have never found solutions satisfying the
HA constraints. In particular, Embedding Composite does not ensure that either the optimal solution
or a solution satisfying the constraints will be returned. Concerning QALS, given that only part of the
entire problem (including the constraints) is mapped into the annealer topology at each iteration, the
constraints are typically not entirely encoded inside the topology. Therefore, they are satisfied only if
the optimal solution is found or in a limited number of other cases (these observations are based on
the results obtained). In order to evaluate the performance of QALS and Embedding Composite, the
refinement procedure presented in Section 4.2.2.1 has been applied to the solutions returned by them.
The results reported here are those obtained after the execution of the refinement procedure.

The results are shown in Table 4.4. Specifically, µ denotes the average TSP cost across runs,
σ represents the corresponding standard deviation, and the average time is expressed in seconds.
Regarding the TSP cost, it corresponds to the route length (namely, the cycle cumulative weight) in
the original problem space. It is also worth highlighting that, in these experiments, real numbers in the
range [0, 10] have been used as edge weights (city distances). In practice, in the smallest problem taken
into account (n = 10), QALS has outperformed Embedding Composite but has been outperformed
by both Hybrid, which has retrieved a solution close to the global minimum, and the brute force
approach. In contrast, for n = 12, Embedding Composite has achieved better results than QALS.
Concerning n = 14, the maximum dimension manageable by Embedding Composite, this method has
found once again better solutions compared to QALS. For n values ranging from 32 to 72, only QALS
and Hybrid could be applied, with Hybrid being faster and more effective than QALS. Eventually,
only Hybrid has been able to address a problem of size n = 74. In particular, this should not be

39

feasible, as the QUBO problem size exceeds the number of available qubits. Probably, in the case
of incomplete graphs, Hybrid disregards non-connected edges, saving qubits. In addition, it is worth
underscoring that the good results achieved by Hybrid are mainly related to the parallel execution
of multiple solvers. In conclusion, the performance of both Embedding Composite and QALS could
be probably improved by using a significantly higher number of annealer measurements (k ≫ 5). As
already said in Section 4.2.1.2, a larger output sample size would enhance the probability of getting a
solution close to the optimum. However, the quantum annealing time at our disposal was not enough.

Table 4.4: Tests performed on the Travelling Salesman Problem. In particular, “E.C.” stands for
embedding composite, while “S.R.” stands for solution refinement (taken from [12]).

TSP Size QUBO Size Approach µ σ Avg. Time (s) # Runs

10 100

Brute Force 35.20 0 48 10
Hybrid 36.94 1.16 13.78 3

E.C. with S.R. 55.13 3.22 94.66 10
QALS with S.R. 49.95 3.02 64.83 10

12 144

Brute Force 26.21 0 56.8 3
Hybrid 33.43 1.26 14.86 10

E.C. with S.R. 52.91 6.5 132.96 10
QALS with S.R. 54.77 4.53 265.3 10

14 196

Brute Force 33.94 0 10630 3
Hybrid 49.48 1.99 15.7 3

E.C. with S.R. 67.50 9.87 465 3
QALS with S.R. 74.58 7.87 180 10

32 1024

Brute Force - - - -
Hybrid 124.72 3.45 24.98 3

E.C. with S.R. - - - -
QALS with S.R. 157.99 10.23 588 10

64 4096

Brute Force - - - -
Hybrid 288.87 5.82 23.25 3

E.C. with S.R. - - - -
QALS with S.R. 336.94 17.9 3570 10

72 5184

Brute Force - - - -
Hybrid 331.24 16.39 37.36 3

E.C. with S.R. - - - -
QALS with S.R. 387.00 21.25 2528 3

74 5476

Brute Force - - - -
Hybrid 344.19 2.8 38.65 3

E.C. with S.R. - - - -
QALS with S.R. - - - -

4.3 Discussion
In this chapter, two implementations of QALS, in C++ and in Python, and the empirical evaluation
of the algorithm have been presented. The advantage of the C++ implementation lies in the higher
efficiency of the classical part of the algorithm. Instead, the Python implementation is characterised
by a smoother interaction with D-Wave’s APIs, which are provided only in Python. In both cases,
some changes with respect to the original pseudocode of the algorithm have been made, in order to
improve the execution efficiency. Concerning the empirical evaluation, two optimization problems with
complementary characteristics have been taken into account. In the case of NPP, which has a natural
representation as QUBO, QALS has shown poor performance. Actually, the classical exact algorithm
considered has outperformed both QALS and the hybrid solver provided by D-Wave, implying that

40

the problem can be considered practically solved in most cases despite its NP-hard nature. Instead,
in the case of TSP, which includes constraints that must be encoded as penalties, QALS has turned
out to be able to address larger problems than Embedding Composite (the standard embedding pro-
cedure). Hence, the main objective of the algorithm has been empirically fulfilled. However, among
the not-entirely classical methods tested, only D-Wave’s hybrid solver has been able to provide solu-
tions satisfying the problem constraints. In conclusion, QALS implementations could have practical
potential on hard problems for which the QUBO representation cannot be directly embedded in the
annealer topology. In addition, it is worth observing that D-Wave’s hybrid solver represents an inter-
esting baseline but cannot be considered as an effective competitor for drawing scientific conclusions,
as it involves the parallel execution of multiple algorithms.

Concerning the code availability, the C++ implementation [71] and the Python implementation [11]
are publicly available under the GPLv2 and MIT licences, respectively. Moreover, a refactored version
of the Python implementation, supporting different tabu matrix types and including minor corrections,
is available at https://github.com/ZarHenry96/QALS-variants.

41

https://github.com/ZarHenry96/QALS-variants

5 Bayesian Networks Reconstruction
This chapter is a reworked version of the article “Reconstructing Bayesian networks on a quantum
annealer” [130], which was motivated by the absence of an empirical evaluation of the quantum
annealing algorithm for the reconstruction of Bayesian networks (see Section 2.4.1) in the work by
O’Gorman et al. [76]. In practice, in this chapter, the implementation and the empirical evaluation
of that algorithm are presented, with the purpose of assessing its applicability using the current
quantum architectures. Given that the encoding of the problem and the consecutive embedding into
the quantum architecture restrict the direct application of the algorithm to approximately 18 Bayesian
variables (at the time of running the experiments), a divide et impera approach is also introduced.
Both the original algorithm and this novel scheme have been evaluated on various problem instances
characterized by an increasing number of variables, obtaining promising results.

5.1 O’Gorman’s Algorithm Implementation
O’Gorman’s algorithm has been implemented in Python, as D-Wave’s Ocean suite, which is essential
for interacting with D-Wave’s quantum annealers, provides APIs only for this programming language.
In this section, the implementation details, the complexity of the implementation, and a method to
speed up the execution are presented.

5.1.1 QUBO Matrix Construction

The pseudocode for the implementation of O’Gorman’s algorithm is provided in Algorithm 15, which
relies on Algorithms 16 to 18. Specifically, the input to the main algorithm consists of the number
of Bayesian variables n, the number of states ri for each variable, and the dataset of examples. The
output corresponds to the QUBO matrix Q representing the given BNSL problem.

Before constructing the matrix, various intermediate values must be computed. First of all, for each
Bayesian variable, all possible parent sets (Πi(Bs) in O’Gorman’s formulation) must be identified. The
maximum number of parents m has been restricted to two for the reasons presented in Section 2.4.1.
Therefore, the complexity of this step is O(n3). It is also worth mentioning that the empty set is
considered a valid parent set.

Then, the αijk hyperparameters of the Dirichlet priors are set to the uninformative value 1/(ri ·qi),

Input: number of Bayesian variables n, list r = (ri)
n
i=1 with ri being the number of states of

the ith variable, dataset examples
Result: QUBO matrix Q
/* calculation of the values needed to construct Q */

1 parentSets← calcParentSets(n);
2 α← calcAlpha(n, r, parentSets);
3 s← calcS(n, r, parentSets, α, examples); // Algorithm 16

4 w ← calcW (n, parentSets, s); // Algorithm 17

5 ∆← calcDelta(n, parentSets, w); // Eq. (2.23) and (2.24)
6 δmax ← calcDeltaMax(n,∆); // Eq. (2.20)
7 δtrans ← calcDeltaTrans(n,∆); // Eq. (2.22)
8 δconsist ← calcDeltaConsist(n, δtrans); // Eq. (5.2)
/* construction of Q */

9 Q← zeroMatrix();
10 Q← fillQ(Q,n, parentSets, w, δmax, δtrans, δconsist); // Algorithm 18

11 return Q ;
Algorithm 15: calcQUBOMatrix(n, r, examples) (taken from [130]).

42

Input: number of Bayesian variables n, list of number of states r, list of parent sets
parentSets, prior distributions hyperparameters α = (αiπjk), dataset examples

Result: s = ({si(π) s.t. π ∈ parentSets[i]})ni=1 with si(π) being the score for the Bayesian
variable i given the parent set π

1 function calcSi(i, π, r, α, examples): // Eq. (5.1)
2 qiπ ←

∏︁
p∈π rp; // qiπ = 1 if π = ∅

3 sum← 0;
4 for j ← 1 to qiπ do
5 αiπj ←

∑︁ri
k=1 αiπjk;

6 Niπj ←
∑︁ri

k=1 calcNiπjk(examples, π, i, j, k, r);
7 sum← sum+ ln Γ(αiπj)− ln Γ(αiπj +Niπj);
8 for k ← 1 to ri do
9 Niπjk ← calcNiπjk(examples, π, i, j, k, r);

10 sum← sum+ ln Γ(αiπjk +Niπjk)− ln Γ(αiπjk);

11 end

12 end
13 return -sum;

14 for i← 1 to n do
15 for π ∈ parentSets[i] do
16 si(π)← calcSi(i, π, r, α, examples));
17 end

18 end
19 return s;

Algorithm 16: calcS(n, r, parentSets, α, examples) (taken from [130]).

where ri denotes the number of states of the i-th variable, and qi (qiπ in the pseudocode) represents
the number of states in the parent set taken into account. Essentially, all αijk associated with the same
variable i and parent set π (αiπjk in the pseudocode) share the same value. Additional insights into
this choice are provided in Section 5.3.4. During this step, the αijk value must be determined for all
“variable” - “parent set” - “parent set state” - “variable state” combinations, resulting in a complexity
of O(n3r3max), with rmax denoting the maximum number of states of the Bayesian variables.

The subsequent step involves calculating the local scores s for all “Bayesian variable” - “parent
set” combinations according to Equation (2.15). However, these computations are feasible only for
very small datasets due to the factorial nature of the Γ function and the multiplications of Γ values
involved. The solution consists in moving the logarithm inside through algebraic transformations
until its argument reduces to the gamma function alone. In the implementation described here, the
natural logarithm (ln) has been employed, resulting in the following formula (which is the one used in
Algorithm 16):

si(Πi(Bs)) = −
qi∑︂
j=1

[︂
ln(Γ(αij))− ln(Γ(Nij + αij)) +

ri∑︂
k=1

[ln(Γ(Nijk + αijk))− ln(Γ(αijk))]
]︂
. (5.1)

This form allows leveraging the (natural) log-gamma function (denoted as ln Γ in the pseudocode),
which exhibits a significantly slower growth compared to the gamma one. Moreover, in this way, the
products in Equation (2.15) can be substituted with additions, further mitigating the risk of out-of-
range values. Regarding the pseudocode, the calcNiπjk procedure calculates the number of times the
variable i is in its k-th state while its parent set π is in its j-th state (for an empty parent set, only
the state of the i-th variable is taken into account). The algorithm’s complexity is O(n3Nr3max).

After the calculation of the score values s, the parent set weights w can be computed according
to Equation (2.14). The corresponding pseudocode is provided in Algorithm 17. In particular, since
the maximum number of parents has been limited to two, the pseudocode does not consider scenarios
with larger parent sets. The complexity of the algorithm that computes w is O(n3).

43

Input: number of Bayesian variables n, list of parent sets parentSets, score values s
Result: w = ({wi(π) s.t. π ∈ parentSets[i]})ni=1 with wi(π) being the weight calculated for

the Bayesian variable i given the parent set π
1 function calcWi(i, π, s): // Eq. (2.14)
2 if π = ∅ then
3 return si(∅);
4 else if size(π) = 1 then
5 return si(π)− si(∅);
6 else if size(π) = 2 then
7 p1, p2 ← π[1], π[2];
8 return si(π)− si({p1})− si({p2}) + si(∅);
9 end

10 for i← 1 to n do
11 for π ∈ parentSets[i] do
12 wi(π)← calcWi(i, π, s);
13 end

14 end
15 return w ;

Algorithm 17: calcW(n, parentSets, s) (taken from [130]).

Ultimately, the penalty values must be computed. To this end, it is necessary to calculate the
auxiliary quantities ∆ji according to Equations (2.23) and (2.24). Although the complexity of this
step would theoretically be O(n3), the complexity in the implementation is O(n4) due to the data
structures utilized to store the parent sets. Once ∆ has been calculated, all penalties can be computed.

Specifically, δ
(i)
max is calculated for each Bayesian variable according to Equation (2.20), resulting in

an overall complexity (for all δ
(i)
max) of O(n2). Conversely, the penalty bound associated with the

consistency Hamiltonian (Equation 2.21) can be simplified since δtrans is independent of its superscript
indices. The resulting penalty bound is

δconsist > (n− 2)δtrans. (5.2)

In practical terms, δtrans is calculated according to Equation (2.22) with a complexity of O(n2) (note
that δtrans is a single value). After that, δconsist is computed according to the simplified bound
(Equation 5.2) with a complexity of O(1). To satisfy the lower bounds, the boundary values plus one
have been used as penalty values.

At this point, the QUBO matrix Q can be filled as illustrated in Algorithm 18. This matrix,
whose dimensions have been detailed in Section 2.4.1, contains all zeros at the beginning (look at line
9 of Algorithm 15, which has a complexity of O(n4)). Specifically, the outermost loop, encompassing
almost all the pseudocode, iterates on the Bayesian variables. The first part of the algorithm (lines
2-12) is associated with the score Hamiltonian, i.e., Equation (2.13). For each “Bayesian variable” -
“parent set” combination, the parent set weight wi(π) (wi(J) in O’Gorman’s formulation) is summed
to the appropriate cell. Practically, the coefficients of the linear terms in Equation (2.13) (namely, the
terms involving only one QUBO variable (dji)) are added to cells of Q situated on the main diagonal.
Conversely, the coefficients of the quadratic terms, involving two QUBO variables (dxidyi), are added
to cells outside the diagonal; here, the first variable defines the row, while the second one defines
the column. The next segment of the algorithm corresponds to the max Hamiltonian (lines 13-25),
namely, Equation (2.16). The strategy for inserting the coefficients is similar to that used for the
score Hamiltonian but, in this case, there is a square in the formula. Therefore, first of all, the binary
variables in Equation (2.16) and their coefficients inside the square are identified and stored in two lists
(lines 14-15). After that, based on the square expansion, the linear and quadratic coefficients (including

the multiplication by δ
(i)
max) are added to the respective cells. The last part of the algorithm refers

to the transitivity and consistency Hamiltonians (lines 26-44), namely, Equations (2.18) and (2.19).
Since the number of terms in these formulas is small and there is no square, the procedure is quite

44

Input: zero matrix Q, number of Bayesian variables n, list of parent sets parentSets, parent set
weights w, list of penalty values δmax, penalty value δtrans, penalty value δconsist

Result: QUBO matrix Q filled according to Hscore, Hmax, Htrans, and Hconsist

1 for i← 1 to n do

/* Hscore-related terms (Eq. (2.13)) */

2 for π ∈ parentSets[i] do
3 if size(π) = 1 then // diagonal elements

4 j ← π[1];
5 row ← col← indexOf(dji);
6 Q[row][col]← Q[row][col] + wi(π);

7 else if size(π) = 2 then // out-of-diagonal elements

8 x, y ← π[1], π[2];
9 row, col← indexOf(dxi), indexOf(dyi);

10 Q[row][col]← Q[row][col] + wi(π);

11 end

12 end

/* Hmax-related terms (Eq. (2.16)) */

13 m← 2; // max. num. of parents

14 sqBinV ars← binaryV arsInSquare(); // di and yi in (2.16) are sums of binary vars

15 c← binaryV arsCoefficientsInSquare(); // the coefficients are either -1 or -2

16 for j ← 1 to size(sqBinV ars) do
17 row ← col← indexOf(sqBinV ars[j]); // diagonal elements indices

18 Q[row][col]← Q[row][col] + δ
(i)
max · c[j]2; // squared term

19 Q[row][col]← Q[row][col] + δ
(i)
max · (2 ·m · c[j]); // double product with m

20 for k ← j + 1 to size(sqBinV ars) do // out-of-diagonal elements

21 row ← indexOf(sqBinV ars[j]);
22 col← indexOf(sqBinV ars[k]);

23 Q[row][col]← Q[row][col] + δ
(i)
max · (2 · c[j] · c[k]); // double product between vars

24 end

25 end

/* Hcycle-related terms */

26 for j ← i+ 1 to n do
/* Htrans-related terms (Eq. (2.18)) */

27 for k ← j + 1 to n do
28 row ← col← indexOf(rik);
29 Q[row][col]← Q[row][col] + δtrans; // rik coefficient (diagonal element)

30 row, col← indexOf(rij), indexOf(rjk);
31 Q[row][col]← Q[row][col] + δtrans; // rij · rjk coefficient

32 row, col← indexOf(rij), indexOf(rik);
33 Q[row][col]← Q[row][col]− δtrans; // rij · rik coefficient

34 row, col← indexOf(rik), indexOf(rjk);
35 Q[row][col]← Q[row][col]− δtrans; // rik · rjk coefficient

36 end

/* Hconsist-related terms (Eq. (2.19) */

37 row, col← indexOf(dji), indexOf(rij);
38 Q[row][col]← Q[row][col] + δconsist; // dji · rij coefficient

39 row ← col← indexOf(dij);
40 Q[row][col]← Q[row][col] + δconsist; // dij coefficient (diagonal element)

41 row, col← indexOf(dij), indexOf(rij);
42 Q[row][col]← Q[row][col]− δconsist; // dij · rij coefficient

43 end

44 end
45 return Q ;

Algorithm 18: fillQ(Q, n, parentSets, w, δmax, δtrans, δconsist) (taken from [130]).

45

simple. In particular, lines 28-35 add the coefficients from Equation (2.18) to the appropriate cells for
any set of three Bayesian variables (Htrans penalties). Analogously, lines 37-42 sum the coefficients
from Equation (2.19) to the right cells for each pair of Bayesian variables (Hconsist penalties). The
overall complexity of the matrix filling procedure (Algorithm 18) is O(n3).

Eventually, it is worth highlighting that the variables in the QUBO matrix Q are arranged as
follows: first, the binary variables that encode the edges (dij); next, the binary slack variables (yil)
associated with the maximum parent constraint; and finally, the binary variables (rij) that encode the
topological order. If the variables in the quadratic terms (defining the row and column indices) are
appropriately sorted, the resulting matrix is upper triangular. Otherwise, the non-zero values below
the main diagonal should be moved to the corresponding cells above the main diagonal by summing
up the values involved.

5.1.2 Complexity Observations

The QUBO matrix construction (Algorithm 15) is characterised by an overall complexity of O(n4 +
n3Nr3max), which is influenced by different factors: the number of Bayesian variables (n) in the BNSL
problem, the dataset size (N), and the maximum number of states (rmax) of the problem variables.
Specifically, if the dataset size is bigger than the number of Bayesian variables, the term dominating
the algorithm complexity becomes n3Nr3max. This situation is the most common one. In fact, the
limitations in the number of qubits and connectivity in the current quantum annealers restrict n from
being too large, while N needs to be sufficiently large in order to have an effective learning. As a
consequence, the computation of the local score values s (Algorithm 16) is typically the most resource-
expensive operation in the construction of the QUBO matrix. Otherwise, it would be the initialization
of Q to zero, along with the computation of ∆ (given how it has been implemented). Regarding the
maximum number of states (rmax), its impact is particularly significant for Bayesian variables with
continuous states. Indeed, for these variables, a discretization is necessary, and a higher representation
accuracy corresponds to a higher execution time.

5.1.3 Execution Speedup

The QUBO matrix construction (including the computation of the intermediate values) is the most
time-consuming step in the execution. A potential speedup could be achieved by employing a different
programming language, such as C++. However, D-Wave provides only Python APIs to interact with
quantum annealers, making it unfeasible. Conversely, a viable solution consists in using Numba [46],
a just-in-time compiler for Python, to dynamically compile the code. Specifically, Numba requires the
application of a decorator to the functions that need to be compiled. Then, the first time a decorated
function is called, it is compiled into machine code, and the following calls will execute the machine
code rather than the original Python code. It is worth noting that Numba performs better on code
featuring loops, NumPy arrays and library functions. Additionally, the compilation is effective only if
a function is called multiple times; a single call within a run may result in a slower execution.

In particular, Numba has been utilized solely in the experiments concerning the divide et im-
pera approach (Section 5.3.5), as it has been introduced after concluding the experiments regarding
O’Gorman’s algorithm (Section 5.3.4). In addition, the dynamic compilation has been applied solely to
the two most frequently invoked functions in the execution, i.e., calcNiπjk and an internal procedure.

5.2 Divide et Impera Approach
Because of the limited connectivity of the available quantum annealers, a high number of qubits is
currently needed for embedding problems in the QPU topologies. In addition, the QUBO formulation
introduced by O’Gorman et al. for the BNSL problem is characterised by a dense connectivity, making
its usage infeasible even for instances with a moderate number of Bayesian variables. With these
issues in mind, a divide et impera approach has been formulated and evaluated. The corresponding
pseudocode is provided in Algorithm 19.

The first step consists in formulating the BNSL subproblems (lines 1-3). Let n denote the number
of Bayesian variables of the original problem, r be an array specifying the number of states for each
Bayesian variable, and examples denote an N × n matrix representing the dataset. The subproblems

46

Input: number of variables of the original BNSL problem n, number of variables for each
subproblem k, list of number of states r, dataset examples

Output: adjacency matrix of the solution to the original problem sol

/* Subproblems formulation */

1 subproblems← combinations(n, k);
2 subproblemsR← filter(r, subproblems);
3 subproblemsEx← filter(examples, subproblems);

/* Subproblems solution */

4 S ← Set();
5 for i← 0 to size(subproblems) do
6 subprob, subprobR, subprobEx← subproblems[i], subproblemsR[i], subproblemsEx[i];
7 subprobQ← calcQUBOMatrix(size(subprob), subprobR, subprobEx); // Algorithm 15

8 subprobAdjMatrix← solveQUBO(subprobQ);
9 S.add(subprob, subprobAdjMatrix);

10 end

/* Original solution reconstruction */

11 C, P ← countEdgesAndPenalties(S, k);
12 sol← zeroMatrix();
13 for i← 0 to n do
14 for j ← 0 to n do
15 if i ̸= j then
16 if (Cij − Pij) > 0 and Cij > Cji then
17 sol[i][j] = 1;
18 end

19 end

20 end

21 end
22 return sol;

Algorithm 19: divideEtImpera(n, k, r, examples) (taken from [130]).

are constructed as combinations of n variables taken k at a time, with k being the desired number of
variables per subproblem. Specifically, in this algorithm, all combinations of Bayesian variables are
taken into account, and the subproblems are identified by the indices of the variables involved. The
computational complexity of this operation is O(c

(︁
n
k

)︁
), with c being the (constant) cost of generating

a list of indices. In particular, given that the minimum reasonable number of variables for the QUBO
encoding is 3 (Htrans assumes n ≥ 3), k should be set to a value equal to or greater than 3. Subse-
quently, for each combination of k variables, the r vector and the examples matrix must be filtered
in order to obtain a vector of k elements and an N × k matrix. The complexity of this last operation
is O(

(︁
n
k

)︁
(k +Nk)).

After constructing the subproblems, O’Gorman’s algorithm is applied to each of them (line 7),
yielding the corresponding QUBO matrices, which can be provided to the annealer or solved using
other methods (line 8). In this way, an adjacency matrix is obtained for each subproblem. In terms
of computational complexity, this step is linear in the number of subproblems (

(︁
n
k

)︁
).

Ultimately, the solution to the original BNSL problem is reconstructed using the subproblems
solutions (lines 11-21). Let S denote the set of subproblems solutions, with each solution including
the list of variable indices and the adjacency matrix for the corresponding graph. Here, the significant
information is the presence of edges. Hence, first of all, the occurrences of each edge in the subproblems
solutions are counted (each pair of variables appears in multiple subproblems). The output of this
counting operation, whose complexity is O(

(︁
n
k

)︁
k2), is represented by the set of counts C (with Cij being

the number of appearances of the directed edge (i, j)). Then, the reconstruction process begins. In
particular, two strategies have been devised for this purpose. The simplest strategy consists in adding

47

to the final solution every edge (i, j) that occurs at least once in a subproblem (namely, for which
Cij > 0). If both Cij and Cji are greater than 0, the edge with the highest number of occurrences
is taken, in order to avoid creating cycles of two nodes (the graph must be a DAG). In contrast, the
second strategy (detailed in the pseudocode) necessitates additional information for the reconstruction,
i.e., the penalty values Pij . Essentially, Pij corresponds to the number of subproblems, including i
and j, in which the edge (i, j) is absent. Thus, the complexity of the computation is the same as for
C. In practical terms, an edge (i, j) is added to the final solution if (i) the difference between Cij and
Pij is greater than 0 and (ii) Cij is greater than Cji. Otherwise, it is discarded. It is worth noticing
that, if these conditions are met, so are those of the first method (Cij > 0 and Cij > Cji). In the
experiments, the second strategy has been employed, as some preliminary experiments have indicated
its superiority. Regarding the overall complexity of the reconstruction step, it is O(

(︁
n
k

)︁
k2 + n2).

5.3 Empirical Evaluation
This section covers the Bayesian problems chosen, the methodology used for generating datasets, the
methods evaluated, the experimental setup, and the results obtained for both O’Gorman’s algorithm
and the divide et impera approach.

5.3.1 Bayesian Problems

Three of the four Bayesian problems considered have been taken from the Bayes Server site [106],
while the fourth one (Lung Cancer) has been picked from a different source [20]. Specifically, the
implementation of O’Gorman’s algorithm has been evaluated on the Monty Hall, Lung Cancer, and
Waste problems. Conversely, the divide et impera approach has been evaluated on the Lung Cancer,
Waste, and Alarm problems.

First of all, the Monty Hall Problem (MHP) has been selected due to its simplicity. Indeed, the
Bayesian network for this problem (see Figure 5.1, on the left) comprises three variables (n = 3),
with each variable having three possible states ({1, 2, 3}). In particular, three is also the minimum
reasonable number of variables for the QUBO formulation proposed by O’Gorman et al., as the
transitivity Hamiltonian requires the presence of at least three Bayesian variables.

Concerning the Lung Cancer problem, it has been chosen for its moderately higher number of
variables compared to the MHP. In detail, the original network (LC) comprises n = 5 variables, with
each Bayesian variable having two possible states. In addition, for a more detailed examination of
the scaling behaviour of the algorithm with respect to the problem size, a variant of LC with n = 4
variables (LC4Vars), obtained by eliminating the “Dyspnoea” node, has been taken into account.
Both networks are illustrated in Figure 5.1 (right).

Figure 5.1: Monty Hall Problem (left) and Lung Cancer (right) (taken from [130]).

Instead, the Waste problem has been selected for several reasons: it has a significantly larger size
with respect to the previous problems, it features continuous Bayesian variables, and it includes a
variable with more than two parents. Specifically, the original Bayesian network for this problem
consists of nine variables (n = 9), three of which are discrete with two states and six are continuous.
Since O’Gorman’s QUBO encoding supports only discrete variables, a discretization has been necessary
for the continuous ones. Nevertheless, due to the different mean values of these continuous variables,

48

Figure 5.2: Waste (taken from [130]).

a single discretization threshold could not be used. In practice, each continuous variable has been
converted into a discrete one with two states using the following procedure: first, the lowest and
highest values have been found by evaluating all settings of the parent variables, and the average of
these values has been taken as the discretization threshold; then, for each combination of the parent
states, the mean and the variance of the continuous variable have been determined, and the probability
of the high state H (as opposed to the low state L) has been set to the probability of a Gaussian
with these parameters having a value higher than the threshold. In particular, to identify the lowest
(highest) value, the corresponding variance has been subtracted from (summed to) the minimum
(maximum) mean value observed. In the case of a continuous variable with a continuous parent, the
parent has been discretized first, and the lowest and highest values have been employed as evidence
for the parent states L and H. The Bayesian problem resulting from this process is denoted as Waste.

Actually, different variants of the Waste problem, summarized in Figure 5.2, have been considered.
Specifically, the difference between Waste and the original problem consists in the absence of the edge
between Waste Type and Filter Efficiency, which has been cancelled by the discretization procedure.
Conversely, the edge between Waste Type and Dust Emission has been deleted in Waste2P (variant
of Waste) in order to have a maximum number of parents equal to two. In practical terms, the most
balanced probability values have been retained for the Dust Emission node. Eventually, Waste2PDep
is a modified version of Waste2P characterised by the reintroduction of the edge between Waste Type
and Filter Efficiency. To achieve this, some probability values have been manually altered in the Filter
Efficiency probability table. Additionally, in Waste2PDep, some other slight adjustments have been
made to the probability values in the Dust Emission and Metals Emission tables in order to obtain
more balanced probability distributions.

Eventually, Alarm has been chosen due to its size and the presence of a variable with four parents,
which allows evaluating the divide et impera approach’s capability to reconstruct Bayesian networks
with more than two parents. Specifically, the original problem comprises 38 Bayesian variables but
the version employed here includes only 15 of them (with their relationships preserved). Indeed,
the maximum number of Bayesian variables that can be embedded in the Pegasus topology using
O’Gorman’s formulation is approximately 18 (at the time of running the experiments). The Bayesian
network used in the experiments is illustrated in Figure 5.3.

5.3.2 Datasets Generation

For each problem, datasets with different sizes have been generated using two distinct creation meth-
ods. In detail, three different dataset sizes (N) have been utilized: 104 (10K), 105 (100K), and 106

49

F
ig

u
re

5.
3:

A
la

rm
(t

ak
en

fr
om

[1
30

])
.

50

(1M). Concerning the generation methods, the first one consists in sampling N examples from the
probability distribution of the considered network. Conversely, the goal of the second one is to pro-
duce datasets with zero variance, namely, with state combinations appearing the expected number of
times. To achieve this, the probability p of every combination of states is computed, and, for each
combination, ⌊N ∗ p⌋ samples are included in the dataset. However, for certain probability values, it
is not possible to generate an integer number of samples, and, therefore, the dataset variance is not
precisely zero. Additionally, the number of samples of the resulting dataset might be lower than the
desired one. For example, in the case of the Alarm problem, the dataset of size N = 104 generated
using the second approach contains approximately 9000 samples, since some state combinations have
too low probabilities to be represented (the other datasets are not substantially affected by this issue).
The datasets generated with the second method are denoted here as Exp.

5.3.3 Methods and Experimental Setup

O’Gorman’s algorithm provides as output a QUBO matrix encoding the BNSL problem instance
given as input. To solve the QUBO formulation of the problem, three different methods have been
considered in the experiments: quantum annealing, simulated annealing, and exhaustive search (ES).
Quantum annealing has been presented in detail in Section 2.1.1. Instead, simulated annealing is a
classical metaheuristic technique for solving optimization problems [62], and additional information
can be found here1. Lastly, the exhaustive search corresponds to an optimised brute force approach.

In particular, applying a straightforward brute force approach on the QUBO formulation would be
impractical even for moderately sized BNSL instances due to the excessive number of binary variables
involved. Therefore, ES restricts the brute force to the edge binary variables dij , evaluating only the
best configuration of yil and rij . Specifically, for each Bayesian variable i, the yil binary variables are
set such that yi (in Equation 2.16) equals the difference between m and di. In this way, penalties
from the max Hamiltonian are avoided. Clearly, this is feasible only for nodes with no more than m
parents. If the maximum number of parents constraint is violated, the minimum penalty corresponds
to yi = 0. Conversely, finding the best configuration for the rij binary variables is more difficult. In
fact, if two Bayesian variables i and j are not connected (namely, there is no path from one variable
to the other), a trivial setup for rij does not exist. For instance, setting all uncertain binary variables
to the same value might lead to the creation of a cycle. The solution that has been adopted consists
in adding one edge at a time to the graph encoded in dij , while checking that no cycle has been
produced, in order to complete the graph and be able to compute a topological order. This process
enables the proper configuration of all rij binary variables, avoiding any penalty resulting from the
cycle Hamiltonian. Clearly, the penalty cannot be avoided if the graph encoded in dij includes a cycle.
Setting yil and rij has an overall complexity of O(n3) for sparse graphs and O(n4) for dense graphs.
In conclusion, ES has still an exponential complexity with respect to the number of Bayesian variables
n, but the number of operations required is significantly reduced compared to a simple brute force.
Another enhancement introduced in ES is the parallel evaluation of the solutions.

In conducting experiments on the implementation of O’Gorman’s algorithm, different combinations
of annealing parameters (number of reads and annealing time) [48] have been evaluated for QA, with
detailed values provided in the respective results sections. Additionally, the default annealing schedule
(for the Advantage 1.1 system) has been used, and the embedding into the QPU topology has been
delegated to the EmbeddingComposite class (see Section 2.2.1). Concerning SA, the implementation
supplied by D-Wave [47] has been employed. With the exception of the number of reads, for which
different values have been used, the default configuration has been maintained, and the execution
has been performed on a local machine. Conversely, ES, which has also been run locally, does not
necessitate to configure parameters. Specifically, a machine equipped with a quad-core CPU (Intel
i5-6400) and 16 GB of RAM has been employed for the generation of the datasets, the construction
of the QUBO matrices, and the execution of the classical methods.

Regarding the divide et impera approach, a single configuration of annealing parameters has been
assessed for QA, with the rationale and values specified in the corresponding results section. In
this case, the default annealing schedule for the Advantage 4.1 system has been used, as the ear-

1https://en.wikipedia.org/wiki/Simulated_annealing

51

https://en.wikipedia.org/wiki/Simulated_annealing

lier model had already been retired. Conversely, the QPU embedding method and SA implementa-
tion/configuration have not been changed with respect to the previous experiments, except for the
number of reads for SA. Eventually, ES has not been considered for these experiments due to its
extensive time requirements. All classical operations for the divide et impera approach have been
performed on a machine equipped with a quad-core CPU (Intel i7-7700HQ) and 16 GB of RAM.

Lastly, it is worth observing that the performance-related analyses conducted for both the imple-
mentation of O’Gorman’s algorithm and the divide et impera approach exclusively focus on the Exp
datasets, since some preliminary tests have established that the variance in performance between Exp
and non-Exp datasets is negligible.

5.3.4 O’Gorman’s Algorithm Results

Various experiments have been conducted on the implementation of O’Gorman’s algorithm, and the
following paragraphs present the results obtained.

5.3.4.1 QUBO Formulation Correctness and αijk Hyperparameters

The αijk hyperparameters must be properly configured to ensure that the image (xTQx) of the ex-
pected solution is the global minimum. To verify this, the global minimum solution has been found
using ES and compared with the expected one. Specifically, the QUBO form of the expected solution
(x) has been obtained by setting the dij binary variables according to the Bayesian network used for
the dataset generation. Instead, the optimal configuration of yil and rij has been determined using
the approach exploited by ES (see Section 5.3.3).

Given that the goal is to learn the structure of a Bayesian network from a dataset, the αijk values
need to be uninformative, namely, they should not include information about the target Bayesian
network. Hence, the first αijk values that have been evaluated are N/(ri · qi) and 1, following the
proposal of Heckerman et al. [44]. The results are provided in Table 5.1. Specifically, the first alter-
native (N/(ri · qi)) has shown decent performance on the smallest problem (MHP) and has performed
poorly on all the others (with more Bayesian variables). In practical terms, this approach adds, in
Equation (2.15), N prior counts uniformly distributed among all “variable” - “parent set” state com-
binations. On the other hand, the second alternative (namely, 1) has not worked at all. Consequently,
other values have been taken into account, i.e., 1/(ri · qi) and 1/ri, which have been chosen with the
intent of minimizing their impact on the counts. As indicated in the same table, both alternatives
have exhibited the desired behaviour, and the former has been selected as the default one.

The ratios shown in Table 5.1 have been obtained employing 8 datasets for each combination
of problem and αijk value. These datasets have been generated with various sizes and using both
generation methods outlined in Section 5.3.2. In particular, four datasets with N = 104 (including
one Exp), two datasets with N = 105 (including one Exp), and two datasets with N = 106 (including
one Exp) have been employed.

Table 5.1: Ratio of the number of times in which the best and the expected solutions coincide to the
number of tests (8 for each cell), for different problems and αijk values (taken from [130]).

Problem αijk = N/(ri · qi) αijk = 1 αijk = 1/(ri · qi) αijk = 1/ri
MHP 0.75 0.00 1.00 1.00

LC4Vars 0.00 0.00 1.00 1.00
LC 0.00 0.00 1.00 1.00

5.3.4.2 Dataset Size and QUBO Matrix Construction Time

After determining the appropriate αijk values, an examination of the dataset size’s impact on the
QUBO matrix construction time has been conducted. As reported in Table 5.2, the required time
exhibits a linear increase with the dataset size, aligning with the complexityO(n4+n3Nr3max) discussed
in Section 5.1.2. Essentially, constructing the QUBO matrix with large datasets is unfeasible, especially
when dealing with problems with a high number of variables. Since a dataset size beyond N = 104

yields no performance improvement (as shown Table 5.3), it is better to use a limited dataset size.

Concerning the data presented in the tables, the time values in Table 5.2 have been acquired

52

Table 5.2: Average QUBO matrix (Q) construction time in seconds, for different problems and dataset
sizes. For each entry, 5 different datasets (of which one Exp) have been used (taken from [130]).

Problem N = 104 N = 105 N = 106

MHP 0.55 4.03 40.03
LC4Vars 0.64 5.86 58.78

LC 1.40 13.55 136.21
Waste 9.79 98.85 1010.30

Waste2P 9.74 98.78 1001.96
Waste2PDep 9.77 100.26 1007.61

Table 5.3: Average solution value found by QA in Waste2PDep on Exp datasets of different sizes. 104

reads, 20 µs of annealing time, and 10 runs (for each dataset size) have been used (taken from [130]).

Problem N = 104 N = 105 N = 106

Waste2PDep 0.963 0.960 0.965

employing one Exp and four non-Exp datasets for each combination of problem and dataset size,
resulting in five runs for each entry. On the other hand, the values reported in Table 5.3 have been
obtained using QA, with Exp datasets only, 104 reads, 20 µs of annealing time, and 10 runs for each
dataset size. The metric shown in the second table is described in detail in Section 5.3.4.4. For now,
it suffices to understand that larger values in the table correspond to better performance.

5.3.4.3 Number of Reads and Annealing Time (QA)

The number of reads, namely, measurements, and the annealing time per read are two crucial param-
eters influencing QA performance. Therefore, an extensive empirical assessment has been conducted,
with 10 runs for each configuration, and the results obtained are detailed in Table 5.4. Specifically, the
maximum permitted number of reads on D-Wave systems is 104, while the maximum annealing time
per read is 2000 µs. Nonetheless, internal constraints limit the annealing time to no more than 999 µs
with 103 reads and 99 µs with 104 reads. Upon examining the results, it becomes evident that a higher
number of reads improves the performance, and the same is true for the annealing time. However,
the impact of the number of reads is more marked. In fact, the results obtained with the maximum
permitted number of reads and an annealing time well below the joint limit are way better than those
obtained with a maximized annealing time. Therefore, the optimal configuration is represented by the
maximum allowed number of reads (104) and the joint limit annealing time (99 µs).

Table 5.4: Ratio of the number of times the global minimum is found by QA to the number of
experiments (10 for each configuration), for different numbers of reads and annealing times on the LC
Exp dataset with size N = 104 (taken from [130]).

Annealing time (µs)

reads # 1 10 20 50 99 999

103 — 0.00 — — — 0.10
104 0.00 0.20 0.20 0.40 0.50 —

5.3.4.4 Performance

Eventually, all methods outlined in Section 5.3.3 have been applied to the problems detailed in Sec-
tion 5.3.1 to compare their performance. The results obtained are shown in Table 5.5. Specifically, in
these experiments, Exp datasets with a size of N = 104 have been used. Furthermore, 104 reads have
been employed for SA, while, for QA, the optimal configuration has been used (namely, 104 reads and
an annealing time per read of 99 µs). Ten runs have been executed for both SA and QA, and the
success rate is defined as the ratio of the number of runs where the expected solution has been found
to the total number of runs. Concerning the result value, it corresponds to the ratio of the QUBO
image (xTQx) of the solution found to the QUBO image of the expected solution, averaged across runs

53

Table 5.5: Comparison of ES, SA, and QA performances on different problems, using Exp datasets of
size N = 104, 104 reads for SA, and the best setup for QA (104 reads, 99 µs annealing time). The
number of runs, for both SA and QA, is 10 (taken from [130]).

Exhaustive search Simulated annealing Quantum annealing

n Problem
Success Avg. resol. Success Average Avg. sol. Success Average Avg. resol. Average #

rate time (s) rate result time (s) rate result time (s) exp. sol.

3 MHP 1.00 0.04 1.00 1.0000 3.40 1.00 1.0000 1.76 215.90
4 LC4Vars 1.00 0.42 1.00 1.0000 5.52 1.00 1.0000 1.77 11.40
5 LC 1.00 137.53 1.00 1.0000 8.93 0.50 0.9987 1.80 0.60
9 Waste — — 0.00 1.0145 12.85 0.00 0.9898 2.09 0.00
9 Waste2P — — 0.00 0.9999 13.15 0.00 0.9754 2.17 0.00
9 Waste2PDep — — 0.00 0.9998 12.39 0.00 0.9780 2.10 0.00

(greater values indicate better performance, as the image value of the expected solution is consistently
negative). Instead, the time values comprise only the QUBO matrix resolution. In particular, for
QA, these values represent the QPU access time (refer to [54] for additional information). Ultimately,
the last column (Average # exp. sol.) corresponds to the average number of times that the expected
solution has been retrieved in a single QA run.

Essentially, ES has demonstrated superior performance compared to SA and QA in the case of
the smallest problems, namely, MHP and LC4Vars, consistently finding the global minimum in a
shorter time. Nevertheless, because of its exponential complexity, ES has been outperformed on the
LC problem (n = 5) and has proven to be excessively time-consuming for larger ones.

Regarding the other methods, QA has consistently identified the optimum solution for problems
with three and four Bayesian variables, also requiring less time than SA. Additionally, it has discovered
the global minimum multiple times in each run (the number of measurements per run is 104), suggesting
that a smaller number of reads could be sufficient for these problems. Conversely, in the case of the
five-variable problem, QA has found the global minimum (occasionally appearing more than once) only
half of the times, while SA has consistently discovered it, although in a slightly longer execution time.
Ultimately, neither QA nor SA have ever succeeded in finding the optimum solution for the largest
problems (n = 9). Nonetheless, the solutions found were generally of good quality (in terms of QUBO
image value), particularly those returned by SA, even though its execution time was again slightly
higher. In addition, it is worth observing that solutions with a superior score to that of the expected
solution have been discovered for the Waste problem. Specifically, this has consistently happened
when using SA (whose average result value is greater than 1.0), and occasionally when using QA. In
practice, the presence of a node with three parents in the expected solution penalizes it, allowing other
solutions satisfying the maximum parent constraint (m ≤ 2) to have a better score.

Moreover, the annealing time’s influence on the performance of QA in the same experiments has
been examined. The results obtained with annealing times of 1 µs and 99 µs are shown in Table 5.6.
Basically, an increased annealing time has not enhanced the performance on the smallest problem
(MHP). However, it has yielded better results on average, with only a marginal increase in execution

Table 5.6: Comparison of quantum annealing performance on several problems for different values of
annealing time, using Exp datasets of size N = 104 and 104 reads. The number of runs is 10 (taken
from [130]).

Annealing time per sample 1 µs Annealing time per sample 99 µs

n Problem
Success Average Avg. resol. Average # Success Average Avg. resol. Average #

rate result time (s) exp. sol. rate result time (s) exp. sol.

3 MHP 1.00 1.0000 0.78 304.70 1.00 1.0000 1.76 215.90
4 LC4Vars 0.90 0.9997 0.81 5.20 1.00 1.0000 1.77 11.40
5 LC 0.40 0.9980 0.87 0.50 0.50 0.9987 1.80 0.60
9 Waste 0.00 0.9619 1.15 0.00 0.00 0.9898 2.09 0.00
9 Waste2P 0.00 0.9473 1.15 0.00 0.00 0.9754 2.17 0.00
9 Waste2PDep 0.00 0.9633 1.33 0.00 0.00 0.9780 2.10 0.00

54

time, for all other problems. Specifically, for problems featuring four (LC4Vars) and five (LC) Bayesian
variables, a higher success rate and an increased number of occurrences of the optimum solution have
been also observed.

Lastly, as SA does not have restrictions on the number of reads, additional experiments have been
conducted on the Waste2PDep problem using the Exp dataset with N = 104, and 105 and 106 reads.
While the execution time has exhibited a linear increase, no significant enhancement in performance
has been noted.

5.3.5 Divide et Impera Results

As discussed in Section 5.3.1, the divide et impera approach has been evaluated on two problems
utilized for testing O’Gorman’s algorithm, i.e., LC and Waste (in their main variant), and on an
additional problem, namely, Alarm. The results obtained are described in the following sections.

5.3.5.1 Execution Speedup and Timing

First of all, an analysis of the speedup achieved through the technique outlined in Section 5.1.3 has
been conducted. Specifically, for each considered problem, a single Exp dataset with N = 104 and
one run have been employed. Concerning the number of variables for each subproblem (k), all values
ranging from three (which is the minimum reasonable value, refer to Section 5.2) to n have been
evaluated, with k = n corresponding to the direct application of the implementation of O’Gorman’s
algorithm. The results obtained are shown in Table 5.7, with the reported time values encompassing
the formulation of subproblems and the construction of the QUBO matrices (hence, both the resolution
of the subproblems and the reconstruction of the final solution are excluded). In particular, only LC
and Waste have been taken into account here, as collecting times without speedup for Alarm using the
available machine would have been unfeasible. Regarding LC, the time needed has been reduced on
average by approximately 9 times for the divide et impera approach and by approximately 5.6 times for
O’Gorman’s algorithm. In contrast, for the Waste problem, the speedup has been more pronounced
because of the presence of more variables and/or subproblems, resulting in an average speedup of
approximately 38.4 times for the divide et impera approach and about 17 times for O’Gorman’s
algorithm.

Conversely, Table 5.8 presents some statistics calculated on analogous time values, for which four
distinct non-Exp datasets with N = 104 have been used. The exclusion of the Exp datasets is due
to their potential lower number of samples, as elucidated in Section 5.3.2. In addition, since all the
time values are referred to the optimized code in this case, the Alarm problem has also been taken
into account, but the maximum k value that has been evaluated for it is 9 (the time required is still
high). Lastly, it is worth observing that the limit case, which corresponds to the direct application
of O’Gorman’s algorithm (k = n), has not been considered here. Specifically, the average time is
influenced by both the size and the number of subproblems. In fact, the average time per subproblem

Table 5.7: Speedup achieved for different k values on LC and Waste, using an Exp datasets of size
N = 104 and a single run. The time values, expressed in seconds, include the subproblems formulation
and the QUBO matrices construction. In particular, D.e.I. = divide et impera, O’G. = O’Gorman
(taken from [130]).

Problem k Subproblems # Time (no speedup) Time (with speedup) Speedup

LC
(n = 5)

3 (D.e.I.) 10 27.66 4.54 6.09x
4 (D.e.I.) 5 54.4 4.55 11.96x
5 (O’G.) 1 21.41 3.84 5.58x

Waste
(n = 9)

3 (D.e.I.) 84 237.5 10.27 23.13x
4 (D.e.I.) 126 1754.35 32.62 53.78x
5 (D.e.I.) 126 2704.54 66.02 40.97x
6 (D.e.I.) 84 2907.48 78.8 36.90x
7 (D.e.I.) 36 2186.56 54.91 39.82x
8 (D.e.I.) 9 858.57 23.97 35.82x
9 (O’G.) 1 149.58 8.8 17x

55

Table 5.8: Statistics on subproblems formulation and QUBO matrices construction time for different
k values. Specifically, 4 non-Exp datasets of size N = 104 have been used for each problem (one run
for each dataset). In addition, the time values, expressed in seconds, refer to the optimized code (i.e.,
with speedup) (taken from [130]).

Problem k Subproblems # Average time STD time CV time
Average time

per subproblem

LC
(n = 5)

3 10 1.32 0.02 0.014 0.132
4 5 1.28 0.03 0.022 0.256

Waste
(n = 9)

3 84 3.72 0.15 0.040 0.044
4 126 8.89 0.10 0.011 0.071
5 126 16.54 0.28 0.017 0.131
6 84 18.80 0.22 0.012 0.224
7 36 13.55 0.16 0.012 0.376
8 9 5.92 0.13 0.022 0.658

Alarm
(n = 15)

3 455 26.68 0.20 0.007 0.059
4 1365 203.15 0.62 0.003 0.149
5 3003 1063.36 4.00 0.004 0.354
6 5005 2952.22 7.08 0.002 0.590
7 6435 6548.12 235.37 0.036 1.018
8 6435 10361.01 489.65 0.047 1.610
9 5005 11370.70 112.19 0.010 2.272

increases with the subproblems size, as shown in the last column. Furthermore, an examination of the
standard deviation (STD) and the coefficient of variation (CV) reveals that the variance in the input
data has a negligible impact on the time values. In particular, the CV value is consistently below 0.05.

5.3.5.2 Performance

To assess the effectiveness of the divide et impera approach, the same setup has been employed for all
problems. In particular, this setup consists of a single Exp dataset with a size of N = 104, five runs,
and a number of variables per subproblem (k) ranging from three (which is the minimum reasonable
value) to n (which is the total number of Bayesian variables), with the upper limit corresponding
to the direct execution of O’Gorman’s algorithm. Concerning the methods for solving the QUBO
formulation, only SA and QA have been used in these experiments. In fact, due to the high time
requirements, the application of ES would have been unfeasible for subproblems created with a high
k value. Additionally, 100 reads and an annealing time of 1 µs have been employed for QA, given
the limited quantum resources available and the high number of subproblems to solve across all
experiments. To ensure a fair comparison, the number of reads for SA has been also set to 100.
Eventually, it is worth remarking that, in these experiments, only the second reconstruction strategy
devised for the divide et impera approach has been used, as elucidated in Section 5.2.

Beginning with LC, the obtained results are detailed in Table 5.9, accompanied by a “ROC curve”-
like plot in Figure 5.4a. Essentially, SA has outperformed QA on LC, and the divide et impera approach
has demonstrated superior performance to O’Gorman’s algorithm for both resolution methods. In
fact, higher sensitivity and specificity correspond to better results. It is worth observing that SA,
with k = 4, has identified the perfect solution (four correct edges and zero wrong ones) in all five runs.
Furthermore, an examination of the number of unique edges found across all runs (fifth column) has
revealed that, for the divide et impera approach, SA tends to consistently find the same correct and
incorrect edges, while QA exhibits more variability, as does O’Gorman’s algorithm.

Regarding the Waste problem, whose results are outlined in Table 5.10 and depicted in Figure 5.4b,
both SA and QA exhibit worse overall performance. In particular, SA has outperformed QA, except
for k = 3, where QA has achieved better results on average. Conversely, the superiority of the
divide et impera approach over the direct application of O’Gorman’s algorithm has turned out to be
less pronounced. Specifically, for SA, the divide et impera approach has outperformed O’Gorman’s
algorithm for nearly all k values. Concerning QA, despite a relatively high sensitivity compared to all

56

QA results, O’Gorman’s algorithm has achieved a low specificity. In the end, for both SA and QA,
there exists at least one k value for which the divide et impera approach has outperformed O’Gorman’s
algorithm. However, the perfect solution has never been found. In detail, SA, with k = 6, has yielded
the best results, discovering four correct edges out of nine in nearly all runs, with an average of only
two incorrect edges. Additionally, the maximum number of correct edges identified in a single run is
6 (SA with k = 4). However, it is worth highlighting that this problem has undergone a discretization
procedure and has a node with three parents. Lastly, the insights gained from LC regarding the
number of unique edges found are applicable also to the Waste problem. The only difference consists
in the correct edges found by the divide et impera approach with QA, which tend to be consistent
across runs.

Table 5.9: Results achieved by the divide et impera approach on the LC problem, for different numbers
of variables per subproblem (k) and methods (SA/QA), using an Exp dataset of size N = 104, five runs,
100 reads for SA, and 100 reads and 1 µs of annealing time for QA. The last k value (5) corresponds to
the direct application of the implementation of O’Gorman’s algorithm. In particular, D.e.I. = divide
et impera, O’G. = O’Gorman (taken from [130]).

LC (n = 5, edges = 4)

k Method Metric # for each run # unique Average # Sensitivity Specificity

SA
Correct edges 2 2 4 4 3 4 3

0.75 0.94
3 Wrong edges 2 2 0 0 1 2 1

(D.e.I.)
QA

Correct edges 1 4 4 1 2 4 2.4
0.60 0.90

Wrong edges 3 0 0 3 2 4 1.6

SA
Correct edges 4 4 4 4 4 4 4

1.00 1.00
4 Wrong edges 0 0 0 0 0 0 0

(D.e.I.)
QA

Correct edges 3 3 3 3 2 4 2.8
0.70 0.90

Wrong edges 2 2 1 1 2 5 1.6

SA
Correct edges 3 4 3 3 2 4 3

0.75 0.89
5 Wrong edges 2 0 2 2 3 4 1.8

(O’G.)
QA

Correct edges 1 2 0 2 2 3 1.4
0.35 0.74

Wrong edges 5 5 6 2 3 11 4.2

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

SA (D.e.I.)
SA (O'G.)
QA (D.e.I.)
QA (O'G.)

(a) LC.

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

SA (D.e.I.)
SA (O'G.)
QA (D.e.I.)
QA (O'G.)

(b) Waste.

Figure 5.4: Sensitivity versus (1 - Specificity) for the LC problem (a) and the Waste problem (b).
These plots result from the data reported in Tables 5.9 and 5.10, respectively (figures taken from
[130]).

57

Table 5.10: Results achieved by the divide et impera approach on the Waste problem, for different
numbers of variables per subproblem (k) and methods (SA/QA), using an Exp dataset of size N = 104,
five runs, 100 reads for SA, and 100 reads and 1 µs of annealing time for QA. The last k value (9)
corresponds to the direct application of the implementation of O’Gorman’s algorithm. In particular,
D.e.I. = divide et impera, O’G. = O’Gorman, Sens. = sensitivity, Spec. = specificity (taken from
[130]).

Waste (n = 9, edges = 9)

k Method Metric # for each run # unique Average # Sens. Spec.

SA
Correct edges 2 2 2 2 1 2 1.8

0.20 0.88
3 Wrong edges 8 7 7 8 9 10 7.8

(D.e.I.)
QA

Correct edges 1 4 3 4 2 6 2.8
0.31 0.90

Wrong edges 8 6 6 5 7 13 6.4

SA
Correct edges 2 6 2 3 2 6 3

0.33 0.94
4 Wrong edges 5 1 5 4 5 5 4

(D.e.I.)
QA

Correct edges 4 1 3 3 4 6 3
0.33 0.92

Wrong edges 4 7 4 5 5 10 5

SA
Correct edges 2 3 4 3 3 5 3

0.33 0.94
5 Wrong edges 5 4 3 2 4 7 3.6

(D.e.I.)
QA

Correct edges 3 5 2 0 1 5 2.2
0.24 0.94

Wrong edges 4 2 5 4 5 10 4.0

SA
Correct edges 4 4 4 4 3 5 3.8

0.42 0.97
6 Wrong edges 2 1 3 1 3 4 2

(D.e.I.)
QA

Correct edges 1 1 1 2 1 3 1.2
0.13 0.98

Wrong edges 1 2 1 0 2 5 1.2

SA
Correct edges 5 4 1 3 3 5 3.2

0.36 0.96
7 Wrong edges 1 1 5 3 3 6 2.6

(D.e.I.)
QA

Correct edges 0 0 0 1 0 1 0.2
0.02 0.97

Wrong edges 2 3 1 2 1 8 1.8

SA
Correct edges 2 1 4 5 2 5 2.8

0.31 0.96
8 Wrong edges 3 4 2 0 3 6 2.4

(D.e.I.)
QA

Correct edges 1 0 0 0 0 1 0.2
0.02 0.90

Wrong edges 4 8 6 6 7 25 6.2

SA
Correct edges 3 3 3 1 2 5 2.4

0.27 0.86
9 Wrong edges 9 8 8 9 9 25 8.6

(O’G.)
QA

Correct edges 2 2 3 3 4 7 2.8
0.31 0.77

Wrong edges 15 16 15 12 16 49 14.8

Eventually, the results pertaining to the Alarm problem are detailed in Table 5.11 and illustrated
in Figure 5.5. Specifically, the divide et impera approach with QA has not been assessed on this
problem due to the high number of subproblems involved and some connectivity issues resulting from
the sequential submission of a huge number of QUBO problems to D-Wave’s annealer. Similarly
to the other problems, the divide et impera approach has achieved better results than the direct
application of O’Gorman’s algorithm, except for k = 12 (not in terms of specificity). Additionally,
SA has significantly outperformed O’Gorman’s algorithm with QA. Regarding the solution quality,
SA with k = 4 has achieved the best results, identifying an average of 12.6 correct edges out of 15
(note that a variable with four parents is present). Nevertheless, the number of wrong edges, 16.4
on average, is high. This configuration has also identified the highest number of correct edges (13).
Lastly, two observations must be made: the divide et impera approach tends to find a lower number of
edges (both correct and incorrect) for higher k values; the same approach tends to consistently identify
the same correct and incorrect edges across runs (refer to the fifth column), while the behaviour of

58

Table 5.11: Results achieved by the divide et impera approach on the Alarm problem, for different
numbers of variables per subproblem (k), using an Exp dataset of size N = 104, five runs, 100 reads
for SA, and 100 reads and 1 µs of annealing time for QA. The last k value (15) corresponds to the
direct application of the implementation of O’Gorman’s algorithm. In particular, D.e.I. = divide et
impera, O’G. = O’Gorman, Sens. = sensitivity, Spec. = specificity (taken from [130]).

Alarm (n = 15, edges = 15)

k Method Metric # for each run # unique Average # Sens. Spec.

3
SA

Correct edges 10 10 11 10 10 12 10.2
0.68 0.85

(D.e.I.) Wrong edges 31 31 30 29 28 38 29.8

4
SA

Correct edges 12 13 13 12 13 13 12.6
0.84 0.92

(D.e.I.) Wrong edges 17 16 17 16 16 20 16.4

5
SA

Correct edges 12 12 12 12 13 13 12.2
0.81 0.94

(D.e.I.) Wrong edges 13 13 13 12 12 15 12.6

6
SA

Correct edges 8 7 7 7 8 8 7.4
0.49 0.93

(D.e.I.) Wrong edges 14 14 14 14 13 14 13.8

7
SA

Correct edges 6 6 6 6 6 6 6
0.40 0.93

(D.e.I.) Wrong edges 13 13 13 13 13 13 13

8
SA

Correct edges 7 6 6 7 6 7 6.4
0.43 0.94

(D.e.I.) Wrong edges 11 11 11 11 12 12 11.2

9
SA

Correct edges 7 6 7 7 6 7 6.6
0.44 0.96

(D.e.I.) Wrong edges 8 9 7 7 9 10 8.0

10
SA

Correct edges 6 6 7 7 7 7 6.6
0.44 0.96

(D.e.I.) Wrong edges 9 8 8 7 7 9 7.8

11
SA

Correct edges 6 7 7 7 6 7 6.6
0.44 0.96

(D.e.I.) Wrong edges 8 8 8 8 9 9 8.2

12
SA

Correct edges 5 6 6 5 6 6 5.6
0.37 0.95

(D.e.I.) Wrong edges 9 9 8 9 9 10 8.8

13
SA

Correct edges 5 7 6 7 6 8 6.2
0.41 0.96

(D.e.I.) Wrong edges 9 6 8 7 7 9 7.4

14
SA

Correct edges 5 7 6 7 5 9 6
0.40 0.96

(D.e.I.) Wrong edges 10 8 6 6 7 11 7.4

SA
Correct edges 4 5 6 6 9 9 6

0.40 0.92
15 Wrong edges 18 16 16 16 15 55 16.2

(O’G.)
QA

Correct edges 2 4 5 7 1 12 3.8
0.25 0.80

Wrong edges 39 41 36 40 38 128 38.8

59

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

SA (D.e.I.)
SA (O'G.)
QA (O'G.)

Figure 5.5: Sensitivity versus (1 - Specificity) for the Alarm problem. This plot results from the data
reported in Table 5.11 (taken from [130]).

O’Gorman’s algorithm is more variable. The exceptions are the wrong edges for k = 3 and the correct
edges for O’Gorman’s algorithm with SA.

5.4 Discussion
This chapter has introduced a Python implementation of O’Gorman’s algorithm for tackling BNSL
problems on quantum annealers, a divide et impera approach for handling BNSL instances with a
larger number of variables, a complexity analysis of these algorithms, and their empirical evaluation.
Specifically, to enhance the usability of O’Gorman’s algorithm, some algebraic manipulations have
been applied to the original formulation, and a simplified penalty lower bound has been presented.
Additionally, a good configuration for the model hyperparameters has been empirically found. The
results have shown the effectiveness of O’Gorman’s algorithm for Bayesian networks with small sizes
(n ≤ 5) and no more than two parents per node. For larger Bayesian networks (n = 9), good-
quality solutions in terms of QUBO image value have been found, but not the correct ones. Moreover,
quantum annealing, with optimal annealing parameters, has obtained comparable or slightly inferior
results with respect to simulated annealing, demonstrating the competitiveness of the current annealing
architectures for this task. Regarding the divide et impera approach, the results have revealed its
superiority over the direct application of O’Gorman’s algorithm. For all considered problems and
resolution methods, at least one k value for which the divide et impera approach has obtained better
results has been found (in truth, these k values are often the majority). However, the quality of the
solutions found in terms of resulting Bayesian network was not optimal. This could be attributed to
the use of non-ideal annealing parameters for QA, due to the limited resources available, and of a
reduced number of reads for SA, for a fair comparison. The non-optimal annealing setup could also be
the reason for QA being significantly outperformed by SA in this second set of experiments. Lastly,
the experiments have also proven the effectiveness of the proposed execution speedup technique.

In future work, the divide et impera approach could be evaluated on Bayesian problems exceed-
ing the maximum size embeddable in the Pegasus architecture using O’Gorman’s algorithm. Other
possibilities involve using more-performing annealing parameters, and considering only a subset of
the subproblems of size k. To conclude, both the code for the implementation of O’Gorman’s algo-
rithm [92] and the code for the divide et impera approach [27] are publicly available under the GPLv2
licence.

60

6 Local SVMs Training
This chapter is a reworked version of the article “Local Binary and Multiclass SVMs Trained on
a Quantum Annealer” [129]. In practice, in this chapter, the local application of quantum-trained
SVM models is introduced and empirically evaluated. In more detail, FaLK-SVM, a method for
efficient local SVMs (see Section 2.6.1), has been combined with two quantum-trained SVM models,
the ones detailed in Sections 2.5.1 and 2.5.2. Thus, the addressed tasks are binary and multiclass
classification. In particular, local binary SVMs have already proven to be successful compared to the
corresponding global models, and quantum-trained SVMs have shown comparable performance with
respect to their classical counterparts. However, the quantum-trained SVMs suffer from the reduced
connectivity of the available quantum annealers, which limits the size of the trainable models. The
usage of local, instead of global, quantum-trained models represents a valid solution in this sense.
For the empirical evaluation, D-Wave’s quantum annealers and real-world datasets taken from the
remote sensing domain have been employed. The results obtained demonstrate the effectiveness of the
approach, also when a multiclass SVM model is considered.

6.1 Local Quantum-Trained SVMs
This section deals with the proposed approach and the implementation details. The code is available
at https://github.com/ZarHenry96/local-qtrained-svms.

6.1.1 Approach

Quantum-trained support vector machines have demonstrated similar performance to their classical
counterparts [25, 26, 118]. Nevertheless, the limited connectivity of the current quantum annealers
imposes limitations on the size of the trainable SVM models. To take advantage of larger training sets,
different solutions have been proposed, such as building an ensemble of SVMs [118], or weighting the
models found by the annealer based on the performance achieved on a (large) validation set [26] (more
details are available in Sections 2.5.1 and 2.5.2). The approach proposed here consists in applying
the quantum-trained SVM models locally. Indeed, in the entirely classical realm, local SVMs have
proven to be superior compared to the corresponding global models (for more information, refer to
Section 2.6). Moreover, since the local models are trained only on the k-neighborhood of the model
centre, large training sets represent no more an issue.

In practice, in this work, FaLK-SVM, the method for efficient local SVMs described in Section 2.6.1,
is combined with two quantum-trained SVM models: the quantum-trained SVM for binary classifica-
tion illustrated in Section 2.5.1 (QBSVM), and the quantum-trained SVM for multiclass classification
detailed in Section 2.5.2 (QMSVM). The resulting flow is quite straightforward. Indeed, the only
difference with respect to the standard FaLK-SVM lies in the local models used, which are trained on
a quantum annealer and executed classically. Actually, another novelty of this work is the evaluation
of FaLK-SVM with local single-step multiclass classification models like QMSVM and CS SVM, which
has been considered mainly for comparative purposes (QMSVM is based on CS SVM, as reported in
Section 2.5.2). In fact, FaLK-SVM has already been evaluated on a multiclass classification task, but
using a one-against-one (OAO) approach with local binary SVMs [105].

6.1.2 Implementation

The approach presented in the previous section has been implemented starting from the FaLK-SVM
implementation provided by Segata [103]. In particular, the programming language used for that
implementation of FaLK-SVM is C++, while the code for QBSVM [117] and QMSVM [24] is written
in Python, as it needs to interact with D-Wave’s quantum annealers via the Ocean-SDK, whose APIs
are only available in Python. Hence, in order to interface FaLK-SVM with the quantum-trained
models, a Python class named PythonSVM has been developed and embedded in the FaLK-SVM

61

https://github.com/ZarHenry96/local-qtrained-svms

C++ framework, enabling the execution of Python code within the C++ application. Specifically, the
utilities provided by the Python.h header file have been used for this purpose.

From a high-level approach-related perspective, two aspects are worth to be mentioned. First of all,
in order to reduce the training time, the reuse of the QUBO matrix embedding has been introduced.
Essentially, the first time a QUBO matrix of a certain size is submitted to the quantum annealer,
the embedding for a complete matrix of the same size is computed, applied, and stored in memory.
In all subsequent calls with QUBO matrices of the same size, the previously computed embedding
is loaded and applied. This is particularly advantageous since the size of the QUBO matrix is the
same for all local models. Secondly, two interesting features have been implemented, but not used
in the experiments presented here. The former is the local application of the strategies detailed in
Sections 2.5.1 and 2.5.2 for taking advantage of larger datasets, which allows increasing the size of
the neighborhoods used for training of the local models (that is limited by the annealer connectivity).
The latter is related to multiclass classification tasks and consists in the dynamic selection of the local
model to be used in a k-neighborhood depending on the number of classes present. Indeed, for two
classes, QBSVM requires half of the binary variables compared to QMSVM.

From a low-level model-related perspective, some changes have been made to the original codes.
On the FaLK-SVM side, the performance metrics calculation and the criterion used to check the class
balance of the m k-neighborhoods employed in the FaLK-SVMl’s local model selection procedure have
been extended to multiclass classification scenarios. Concerning the grid-search local model selection,
support for the parameters of the quantum-trained models has been added; in addition, the number
of folds κ for the internal custom κ-fold cross-validation (10 by default) and the number of samples
on which the performance of the m models are evaluated (k

′

2 by default) have been parametrized.
Lastly, a data standardization procedure has been introduced in the external canonical κ-fold cross-
validation used for evaluating the performance of FaLK-SVM. On the local models side, a post-selection
procedure has been implemented for the bias (b) of QBSVM. In practice, all values in the interval
[−10,+10], with a step of 0.1, are evaluated on the training set in order to find the best one. Some
preliminary experiments have shown that this works extremely better than applying Equation (2.27)
for computing b. Regarding CS SVM, a C implementation of the model [58] has been employed. In
the local version, the CS SVM executables are directly called from the Python code (after locally
mapping the class labels to {1, . . . , C}, if required). Obviously, more efficient solutions exist. For
instance, in the large-scale experiments presented in Section 6.2, a custom version of the CS SVM
has been utilized in the local setup. This faster version, trained using a slightly modified C code and
executed using new Python code, cannot be distributed due to the license of the original CS SVM
implementation [58].

6.2 Empirical Evaluation
This section deals with the methods evaluated, the datasets used, the experimental setup employed,
and the results obtained. In particular, the classical side of the experiments has been executed on a
shared machine equipped with an Intel Xeon Gold 6238R processor running at 2.20 GHz and 125 GB
of RAM, while the quantum side has been executed on the Advantage system 5.3/5.4 provided by
D-Wave, a quantum annealer located at Forschungszentrum Jülich.

6.2.1 Methods

Table 6.1 reports all the methods considered in this work. In detail, four local methods (Table 6.1a) and
four global methods (Table 6.1b) have been taken into account here. The local ones correspond to the
combination of FaLK-SVMl (the version of FaLK-SVM including the local model selection procedure,
see Section 2.6.1) with different local models: a binary and a multiclass classically-trained SVMs,
i.e., SVM and CS SVM, and their quantum-trained counterparts, namely, QBSVM and QMSVM.
Note that FaLK-SVMl (C) corresponds to the original FaLK-SVMl implementation; additional de-
tails on the other local methods can be found in Section 6.1. Concerning the global methods, they
consist in the global application of the just mentioned classically- and quantum-trained SVM models.
Specifically, for the standard binary SVM, the implementation provided by LibSVM [17] version 2.88
(the one integrated in the original FaLK-SVM framework) has been used. Instead, for QBSVM and

62

Table 6.1: Local (a) and global (b) methods considered (taken from [129]).

(a) Local methods.

Name Classification type Local model Local model training

FaLK-SVMl (C) Binary SVM Classical

FaLK-SVMl (QB) Binary QBSVM Quantum

FaLK-SVMl (CS) Multiclass CS SVM Classical

FaLK-SVMl (QM) Multiclass QMSVM Quantum

(b) Global methods.

Name Classification type Model training

SVM Binary Classical

QBSVM Binary Quantum

CS SVM Multiclass Classical

QMSVM Multiclass Quantum

QMSVM, the strategies for managing large datasets detailed in Sections 2.5.1 and 2.5.2 have been
applied. Otherwise, it would have not been possible to train them on the considered datasets, given
the properties of the available quantum annealers and the dataset sizes used.

6.2.2 Datasets

The methods listed in Table 6.1 have been evaluated on datasets belonging to the remote sensing
domain, a domain to which both FaLK-SVM and the quantum-trained SVMs have already been
applied with good results [16, 25, 26, 105]. In particular, the datasets used here have been generated
starting from the SemCity Toulouse [93] and ISPRS Potsdam [57] datasets, two datasets consisting of
multispectral images with multiple classes (used also in the QMSVM article [26]). Essentially, the task
consists in predicting the class to which each pixel belongs. The number of features and the classes
selected for binary and multiclass classification for both datasets are reported in Table 6.2. In the
case of multiclass classification, the number of classes has been limited to three in order to maximize
the number of samples that could be embedded in the annealer. Instead, the dataset sizes used are
specified in Section 6.2.3, as they are experiment-dependent. Concerning the datasets generation, an
equal (or almost equal, depending on the desired size and the number of classes) number of samples
for each class has been randomly sampled from tile 4 in the case of Toulouse, and tile 6.9 in the case of
Potsdam. The exception is represented by the last experiment, i.e., the large-scale one (more details
on the experiments are provided in the following section). In that case, the training set has been
generated by sampling an equal number of data points for each class from each of the 24 Potsdam
tiles labelled as training. Additionally, two different test sets have been prepared for that experiment:
the former consists of data points randomly sampled in the usual way from Potsdam tile 5.13 (which
is not a training tile); the latter, meant for visualization, includes all the data points that belong to
the classes of interest and are located inside a 1000× 1000 pixels square within the same tile.

Table 6.2: Number of features and selected classes for both basis datasets (taken from [129]).

Dataset name Features number Selected classes (binary) Selected classes (multiclass)

Toulouse 8 building, pervious surface building, pervious surface, water

Potsdam 5 low vegetation, tree building, low vegetation, tree

6.2.3 Experimental Setup

In this work, four experiments with different goals have been conducted. Specifically, in the first exper-
iment, the performance of all binary classification methods considered are evaluated and compared. In
the second experiment, the same thing is done with the multiclass classification methods. Instead, in
the third experiment, the performance scaling of only the local and global entirely classical methods
(both binary and multiclass) is analysed; the methods involving quantum-trained models have not

63

Table 6.3: Datasets sizes used in each of the four experiments. The | symbol in the last row separates
the training set size from the (two) test sets sizes (taken from [129]).

Experiment Basis datasets Datasets sizes

I - binary classification Toulouse, Potsdam 500

II - multiclass classification Toulouse, Potsdam 150, 500

III - performance scaling Toulouse, Potsdam 1000, 1500, 2000, 10000, 15000, 40000

IV - large scale (multiclass) Potsdam 11016 | (300000, 871188a)

a The occurrences of the three classes in this test set are 389900, 343438, and 137850, respectively.

been taken into account in this case as the quantum annealing resource consumption would have been
too high. In the last experiment, the performance of all multiclass classification methods, including
the ones involving quantum-trained models, are evaluated (and visualized) on a large-scale dataset.

In the first three experiments, a κ-fold cross-validation procedure with ten folds (κ = 10) has been
used to evaluate the performance of the methods. In practice, the input dataset is split into κ subsets.
Then, κ−1 folds form the training set, while the last one becomes the test set. This last step is iterated
until all folds have been used once as the test set. Specifically, the “stratified” κ-fold cross-validation,
which tries to preserve the original class ratio in the folds, has been utilized here. Additionally, for
a fair comparison, the same datasets splits have been used for the different methods. Instead, in the
last experiment, no cross-validation procedure has been utilized, as the input data was already split
into training set and test sets. The datasets sizes used in each of the four experiments are reported
in Table 6.3; as explained in Section 6.2.2, the large-scale experiment differs from the other ones in
the dataset generation method employed. Furthermore, in all experiments, a data standardization
procedure (subtraction of the mean and division by the standard deviation) has been applied to the
training and test data features before training and executing the (local/global) methods.

Concerning the parameters values used for the different methods, they are reported in Table 6.4.
Let us focus first on the binary classification methods (Table 6.4a). The size of the training neighbor-
hood (k) for the local methods has been set to a value (80) close to the maximum number of samples
embeddable in the current quantum annealers using the QBSVM QUBO formulation (given the values
of B and K, and computing the embedding for a complete matrix). Additionally, a relatively-high
level of local models overlapping (controlled by k′) has been used. Concerning FaLK-SVMl’s local
model selection, 8 local models (m) and 5 folds (κ int.) have been utilized; additionally, all k′ sam-
ples have been used in the evaluation of the m local models. In particular, the grid search has been
applied only to the Gaussian kernel width γ (see Equation 2.25), to identify the best value between

Table 6.4: Parameters values used for binary (a) and multiclass (b) classification methods. In par-
ticular, “int.” stands for internal, and the m value between parentheses in (b) is the one used in the
large-scale experiment (taken from [129]).

(a) Binary classification methods.

Method k k′ m κ (int.) Kernel γ A B K ξ S

FaLK-SVMl (C) 80 60 8 5 Gaussian −0.5, 1 3 - - - -

FaLK-SVMl (QB) 80 60 8 5 Gaussian −0.5, 1 - 2 2 1 100

SVM - - - - Gaussian 1 3 - - - -

QBSVM - - - - Gaussian 1 - 2 2 1 100

(b) Multiclass classification methods.

Method k k′ m κ (int.) Kernel γ A K µ β S

FaLK-SVMl (CS) 24 18 8 (10) 3 Gaussian −0.5, 1 1 - - - -

FaLK-SVMl (QM) 24 18 8 (10) 3 Gaussian −0.5, 1 - 2 1 1 100

CS SVM - - - - Gaussian 1 1 - - - -

QMSVM - - - - Gaussian 1 - 2 1 1 100

64

−0.5 and 1, where −0.5 corresponds to the usage of the median of the distances distribution in the
neighborhood as the kernel width. Hence, for γ = −0.5, each local SVM model might have a different
kernel width (additional details on this can be found in the FaLK-SVM article [104]). Instead, for the
global methods, γ has been set to 1 (their implementations do not support the usage of the median as
the kernel width). For a fair comparison between classically- and quantum-trained models, the SVM
cost parameter (A) has been set to 3 (in the QBSVM formulation, A is determined by B and K).
Regarding the QBSVM-related parameters, the encoding basis (B) and the number of binary vari-
ables per coefficient (K) have been kept small, to allow the embedding of a sufficiently large number
of training samples. Moreover, the penalty coefficient (ξ) has been set to 1 (the same value used for
QMSVM, where it is denoted as µ), and the best 100 solutions returned by the annealer have been
considered for averaging (S). Eventually, it is worth mentioning that, for the global application of
QBSVM, a stratified training data split has been performed, with a number of samples per slice equal
to k (except for the last slice, potentially having less samples).

Similar considerations hold for the multiclass classification methods (Table 6.4b). Indeed, the
size of the training neighborhood (k) for the local methods has been set to a value (24) close to
the maximum number of samples embeddable in the current quantum annealers using the QMSVM
QUBO formulation (given the values of C = 3 and K, and computing the embedding for a complete
matrix). Regarding the local model selection, 3 instead of 5 folds (κ int.) have been used, as the
number of samples involved is smaller. Additionally, only in the large-scale experiment, 10 instead of
8 local models (m) have been employed. Instead, the CS SVM cost parameter (A) has been set to 1
in order to have a fair comparison with the methods based on the QMSVM formulation. Indeed, the
following relationship holds: A = 1/β. Concerning the QMSVM-related parameters (K,µ, β, S), the
same configuration used for the QMSVM article [26] (where K is denoted as B) has been utilized.
Specifically, the accuracy threshold definition (thr = 0.2∗min(acc)+0.8∗max(acc)) and the multiplier
value (10) for the combination of the S best solutions found by the annealer have also been taken from
that work. Instead, the max min ratio value used for pruning the small matrix coefficients has been
set here to a high value (1000), making the pruning procedure ineffective (in this work, the embedding
is computed for a complete matrix). Lastly, it is worth observing that, for the global application of
QMSVM, a stratified random selection of the training samples has been performed, with a number of
selected samples equal to k.

The quantum annealing parameters values used in the experiments are reported in Table 6.5. In
particular, this is the same configuration that has been used in the QMSVM article [26]. With the
setup utilized in this work, the training of a single QBSVM model takes approximately 0.360 s of
quantum annealing time (the number of binary variables to embed is 160). A slightly lower time
interval is required for a QMSVM model (for which the number of binary variables to embed is 144).

Table 6.5: Quantum annealing parameters values used in the experiments (taken from [129]).

Number of reads Annealing time Chain strength

1000 200µs 1

6.2.4 Results

In this work, the performance metric considered for the methods evaluation is the classification accu-
racy, which is defined as

accuracy =
number of correctly classified instances

total number of instances
. (6.1)

Specifically, in the first three experiments, where the κ-fold cross-validation has been used, the accuracy
computed on the entire dataset (considering the predictions of the κ models) is reported. Actually,
since a stratified κ-fold cross-validation has been employed, the folds might not have exactly the same
number of elements. Consequently, the reported accuracy might not coincide exactly with the average
accuracy over folds. However, the difference is negligible. Instead, in the last experiment, the accuracy
obtained on the two test sets is shown. Additionally, for the second test set, given its imbalance in

65

terms of class occurrences, two other metrics are reported. The metrics in question are the balanced
accuracy [101], which corresponds to the average recall over classes, and the F1 score [102] (i.e., the
harmonic mean of precision and recall) averaged over classes.

6.2.4.1 Binary Classification

In the first experiment, the performance of the considered binary classification methods have been
evaluated. The results obtained are reported in Table 6.6. Essentially, in the case of Toulouse, all
methods have achieved good results, but the entirely classical methods have shown better performance
overall and the local methods have outperformed their global counterparts. Instead, in the case of
Potsdam, the methods have achieved worse results overall, with the classical SVM obtaining the best
performance and FaLK-SVMl (QB) outperforming its classical counterpart (although not by much).
Regarding QBSVM, it has performed the worst among the methods tested also in this case. Hence,
the local application of QBSVM has turned out to be effective. Indeed, it has obtained results not
too far, if not better, than those of its classical counterpart.

Table 6.6: Accuracy achieved by binary classification methods (columns) on different datasets (rows)
of size 500. For FaLK-SVMl, the average number of local models (over folds) and the size of the local
models are reported between square brackets; instead, for QBSVM, the number of models (all with
size 80, except the last one with size 50) is shown between square brackets (taken from [129]).

FaLK-SVMl (C) FaLK-SVMl (QB) SVM QBSVM

Toulouse (500) 92.4% [15.9, 80] 89.8% [15.9, 80] 91.8% 88.2% [6,]

Potsdam (500) 69.8% [16.5, 80] 70.4% [16.5, 80] 73.0% 68.6% [6,]

6.2.4.2 Multiclass Classification

In the second experiment, the performance of the multiclass classification methods taken into account
have been evaluated. The results obtained are reported in Table 6.7. Let us consider first the smaller
datasets (size 150), for which the average number of local models is comparable to that of the binary
classification methods in the previous experiment. In detail, in the case of Toulouse, the local methods
have achieved the best results and the entirely classical ones (both local and global) have outperformed
their quantum-trained counterparts. Overall, the performance obtained are good. In the case of
Potsdam, the accuracy values are lower, but the trend is similar. The only exception is represented
by FaLK-SVMl (QM), which has been outperformed not only by FaLK-SVMl (CS) but also by CS
SVM. However, when considering larger datasets (size 500), FaLK-SVMl (QM) has turned out to
be the best-performing method, achieving results better than both FaLK-SVMl (CS) and CS SVM.
Concerning the relative performance-based ordering of the other methods, it is the same. Overall,
the larger dataset size has been beneficial especially in the case of Toulouse. Lastly, also in this
second experiment, the global quantum-trained model (QMSVM) is the one that has shown the worst
performance among the methods tested. In practice, this second experiment has demonstrated the
effectiveness of applying locally both classically- and quantum-trained single-step multiclass SVMs,
with the quantum-trained ones turning out to be slightly better in the case of larger datasets.

Table 6.7: Accuracy achieved by multiclass classification methods (columns) on datasets (rows) of
two different sizes. For FaLK-SVMl, the average number of local models (over folds) and the size of
the local models are reported between square brackets; instead, for QMSVM, the size of the model is
shown between square brackets (taken from [129]).

FaLK-SVMl (CS) FaLK-SVMl (QM) CS SVM QMSVM

Toulouse (150) 79.3% [14.2, 24] 77.3% [14.2, 24] 76.0% 72.0% [, 24]

Potsdam (150) 72.0% [14.3, 24] 66.0% [14.3, 24] 70.0% 60.7% [, 24]

Toulouse (500) 85.2% [50.2, 24] 85.4% [50.2, 24] 80.8% 73.0% [, 24]

Potsdam (500) 72.6% [47.3, 24] 72.8% [47.3, 24] 71.4% 58.8% [, 24]

66

6.2.4.3 Performance Scaling (Classical Methods)

In the third experiment, a performance scaling analysis has been conducted on the classical (binary and
multiclass) local methods, considering their global counterparts for comparison. Indeed, in the first
two experiments, FaLK-SVMl (QB) and FaLK-SVMl (QM) have achieved results not too far (except
in one case) from those of their classical counterparts, which can then be exploited as indicators of
performance. Furthermore, the quantum annealing time consumption would have been too high for
the available resources.

The results obtained are reported in Tables 6.8 and 6.9. Let us focus first on binary classification
(Table 6.8). In the case of Toulouse, the performance of both FaLK-SVMl (C) and SVM have turned
out to be quite stable when increasing the dataset size, with a little worsening and a little improvement,
respectively, compared to the (baseline) size 500. In particular, the accuracy values for the dataset
of size 500 were already very high. Instead, in the case of Potsdam, where the original performance
were worse, an improvement can be observed for both FaLK-SVMl (C) and SVM when increasing
the dataset size. Moreover, the improvement is more pronounced but less constant for FaLK-SVMl
(C), and less pronounced but more constant (after an initial drop) for SVM. Concerning multiclass
classification (Table 6.9), the situation is the following: in both cases (Toulouse and Potsdam), the
performance of FaLK-SVMl (CS) almost always improves by moving from one dataset size to the next
one, while the performance of CS SVM either significantly improves at the beginning and then remains
quite stable (Toulouse) or tends to fluctuate around the initial value (Potsdam). Additionally, the
improvement for FaLK-SVMl (CS) is slightly more pronounced for Toulouse, despite the little drop
for sizes 2000 and 10000. In practice, this experiment has demonstrated that local methods can take
advantage of larger datasets, especially FaLK-SVMl (CS), which has also outperformed CS SVM in

Table 6.8: Accuracy achieved by classical binary classification methods (columns) on datasets with
different sizes (rows). For comparison, the pertinent results presented in Table 6.6 are reported here.
In particular, for FaLK-SVMl (C), the average number of local models (over folds) and the size of the
local models are reported between square brackets (taken from [129]).

(a) Toulouse (binary).

FaLK-SVMl (C) SVM

500 92.4% [15.9, 80] 91.8%

1000 92.1% [33.7, 80] 91.9%

1500 91.9% [54.4, 80] 92.4%

2000 91.5% [73.8, 80] 91.7%

10000 91.6% [423.1, 80] 92.2%

15000 91.5% [645.3, 80] 92.0%

40000 91.7% [1788.9, 80] 92.1%

(b) Potsdam (binary).

FaLK-SVMl (C) SVM

500 69.8% [16.5, 80] 73.0%

1000 73.2% [34.6, 80] 71.8%

1500 72.3% [54.6, 80] 72.3%

2000 71.5% [74.6, 80] 72.6%

10000 74.5% [400.2, 80] 74.7%

15000 74.1% [603.4, 80] 75.0%

40000 74.8% [1641.9, 80] 75.5%

Table 6.9: Accuracy achieved by classical multiclass classification methods (columns) on datasets with
different sizes (rows). For comparison, the pertinent results presented in Table 6.7 are reported here.
In particular, for FaLK-SVMl (CS), the average number of local models (over folds) and the size of
the local models are reported between square brackets (taken from [129]).

(a) Toulouse (multiclass).

FaLK-SVMl (CS) CS SVM

150 79.3% [14.2, 24] 76%

500 85.2% [50.2, 24] 80.8%

1000 87.3% [104.7, 24] 81.7%

1500 88.1% [165.9, 24] 82.1%

2000 86.4% [221.5, 24] 81.4%

10000 87.8% [1167.8, 24] 81.2%

15000 88.2% [1761.7, 24] 81.2%

40000 89.1% [4779.5, 24] 81.3%

(b) Potsdam (multiclass).

FaLK-SVMl (CS) CS SVM

150 72.0% [14.3, 24] 70%

500 72.6% [47.3, 24] 71.4%

1000 72.8% [100.8, 24] 69.2%

1500 73.1% [155.5, 24] 70.1%

2000 74.0% [211.5, 24] 70.4%

10000 77.7% [1079.9, 24] 69.8%

15000 77.9% [1646.0, 24] 69.6%

40000 79.0% [4465.1, 24] 69.4%

67

all tests. Instead, FaLK-SVMl (C) has lost almost all comparisons with SVM, although not by much,
but has demonstrated good stability when the performance have not improved (Toulouse).

6.2.4.4 Large Scale (Multiclass)

In the last experiment, the performance of all multiclass classification methods have been evaluated
(without κ-fold cross-validation) on a large-scale dataset based on Potsdam, characterised by one
training set and two test sets (prepared as explained in Section 6.2.2). The aim consists in showcasing
the performance that can be achieved by locally applying quantum-trained SVM models in a large-
scale real-world scenario. For this purpose, given the limited quantum annealing resources available,
only multiclass classification and Potsdam have been considered.

The results obtained on the first test set are reported in Table 6.10. In particular, the local methods
have achieved better results than the global ones and the entirely classical methods have outperformed
their quantum-trained counterparts. Considering the local methods, this last point seems to contradict
what has been observed in Section 6.2.4.2, with FaLK-SVMl (QM) outperforming FaLK-SVMl (CS)
for larger dataset sizes. However, the performance differences are not so big. Moreover, in this case,
no κ-fold cross-validation has been used. Indeed, the training set has been built sampling data points
from various tiles, and the test data points have been sampled from a different tile. Hence, the task is
somehow different. Apart from this aspect, these first results are in line with the expectations based
on the previous experiments outcomes. Actually, in this setup, a larger k value (100, with k′ = 75) has
also been tested for FaLK-SVM (CS). The performance have slightly worsened (accuracy = 73.6%),
but the CS SVM model has already shown that it does not really benefit from a larger training set,
especially in the case of Potsdam (see Section 6.2.4.3). Concerning the second test set, the results
obtained are reported in Table 6.11. Unexpectedly, CS SVM has achieved the highest accuracy on
this second test set, outperforming both local methods. Nevertheless, since the test set in question is
unbalanced, different performance metrics should be considered. Here, the balanced accuracy and the
average F1 score (over classes) have been taken into account (their values are provided in the same
table). Specifically, according to both these metrics, both FaLK-SVMl (CS) and FaLK-SVMl (QM)
have performed better than CS SVM, matching the trend observed for the first test set and in the
previous sections. The reason behind this phenomenon is the tendency of CS SVM to predict more
frequently the two most represented classes in the test set (building and low vegetation), misclassifying
the less represented one (tree). This can be observed in Figure 6.1, where the predictions of the
different methods are visualized. In conclusion, this last experiment has demonstrated the practical
applicability of local quantum-trained SVMs (specifically, the multiclass one) in a large-scale scenario.

Table 6.10: Accuracy achieved by multiclass classification methods (columns) on a large-scale dataset
based on Potsdam, characterised by 11016 training samples and 300000 test samples. For FaLK-SVMl,
the number of local models and the size of the local models are reported between square brackets;
instead, for QMSVM, the size of the model is shown between square brackets (taken from [129]).

FaLK-SVMl (CS) FaLK-SVMl (QM) CS SVM QMSVM

Accuracy 74.2% [1326, 24] 73.8% [1326, 24] 69.9% 55.6% [, 24]

Table 6.11: Accuracy, balanced accuracy, and average F1 score (over classes) achieved by multiclass
classification methods (columns) on a second large-scale test set based on Potsdam and consisting of
871188 samples (389900, 343438, 137850). These results have been obtained using the trained models
employed for Table 6.10. For FaLK-SVMl, the number of local models and the size of the local models
are reported between square brackets; instead, for QMSVM, the size of the model is shown between
square brackets (taken from [129]).

FaLK-SVMl (CS) FaLK-SVMl (QM) CS SVM QMSVM

Accuracy 77.7% [1326, 24] 76.6% [1326, 24] 78.6% 62.0% [, 24]

Balanced accuracy 72.4% [1326, 24] 71.7% [1326, 24] 68.5% 61.6% [, 24]

Average F1 score 71.9% [1326, 24] 70.9% [1326, 24] 69.0% 59.2% [, 24]

68

(a) Original (RGB). (b) Ground truth. (c) FaLK-SVMl (CS).

(d) FaLK-SVMl (QM). (e) CS SVM. (f) QMSVM.

Figure 6.1: Visualization of the results obtained by the multiclass classification methods on the second
test set for the large-scale experiment. The corresponding performance metrics are provided in Ta-
ble 6.11. Color legend: blue = building, light blue = low vegetation, green = tree (taken from [129]).

Indeed, the results achieved by FaLK-SVMl (QM) are quite good and not too far from those obtained
by its classical counterpart.

6.3 Discussion
In this chapter, the local application of quantum-trained SVM models, with the purpose of enabling
their usage on large datasets and improving their performance, has been proposed and empirically
evaluated. In particular, here, a method for efficient local SVMs (FaLK-SVM) has been combined
with two quantum-trained SVM models: an SVM model for binary classification (QBSVM) and an
SVM model for multiclass classification (QMSVM). Additionally, for comparison, FaLK-SVM has been
combined for the first time with a classical single-step multiclass classification model (CS SVM). Details
about the implementation (like the post-selection procedure for the bias parameter of QBSVM) and
the experimental setup have been provided. The results have shown the effectiveness of the approach,
with the local applications of QBSVM and QMSVM achieving results not too far, if not better, than
those of their classical counterparts. The local application of CS SVM has also achieved good results,
always outperforming its global counterpart. Moreover, the performance scaling analysis conducted on
the classical local methods, which can be used as indicators of performance for the quantum-trained
ones, has shown that they can take advantage of larger datasets. Eventually, the last experiment
has demonstrated the practical applicability of the local quantum-trained SVMs (in particular, the
multiclass one) in a real-world large-scale scenario.

Future work includes the evaluation of these local quantum-trained methods on different datasets,
with different parameter configurations and higher numbers of reads. Another interesting possibility
is the development of a local version of the quantum-trained support vector regression model [78].

69

Part II

Universal Quantum Computing

70

7 A Local Classification Pipeline
This chapter is a reworked version of the article “Implementation and empirical evaluation of a quan-
tum machine learning pipeline for local classification” [128]. Essentially, in this chapter, the application
of a quantum locality technique as a preliminary step of a quantum machine learning model, with
the goal of reducing its size and enhancing its performance, is introduced and empirically evaluated.
Indeed, limiting the circuit size is of great significance in the current NISQ era [87], due to the re-
stricted number of qubits available and the presence of noise, and the classical counterpart has already
proven to be successful (see Section 2.6). Specifically, the locality considered here is the locality of
data samples within the feature space, and not the spatial locality of data features utilized by quan-
tum convolutional neural networks to process images [10, 121]. In this sense, a well-known locality
technique is represented by the k-NN. In practice, the quantum pipeline taken into account comprises
a quantum k-nearest neighbors algorithm based on the squared cosine similarity (see Section 3.3.1)
and a quantum binary classifier based on the cosine similarity (see Section 3.4). Although the code
allows executing the considered quantum models on IBM’s devices, the quantum pipeline has not been
evaluated on real quantum devices, since no free large-enough device was available at the time of run-
ning the experiments. The results obtained on real-word datasets have demonstrated the effectiveness
of the approach.

7.1 Quantum Pipeline
This section introduces the implemented and tested quantum pipeline, providing details about its
components, implementation, and complexity. The source code can be accessed at https://github.
com/ZarHenry96/quantum-ml-pipeline.

7.1.1 Components

The quantum pipeline assessed here comprises a quantum k-NN algorithm followed by a quantum
binary classifier, with the quantum k-NN supplying the nearest neighbors as input to the subsequent
model. The workflow is illustrated in Figure 7.1.

Quantum k-NN Quantum
binary classifier

Training
data

Class
label

k nearest
neighbors

Test
instance

Figure 7.1: Quantum pipeline workflow overview (taken from [128]).

Regarding the quantum k-NN algorithm, numerous variants are available in the literature, as
outlined in Section 3.3. Nevertheless, certain aspects must be taken into account. Firstly, variants
based on the Hamming distance are not directly applicable to problems with real-valued features,
as the metric in question corresponds to a distance on binary strings. Secondly, lots of variants
incorporate an oracle-based algorithm derived from Grover’s, like Dürr’s or the amplitude estimation.
Consequently, they necessitate a problem-specific black-box function, which impacts their ease of use
and implementation. Furthermore, when using the amplitude estimation algorithm for transferring
distance information to qubits states, representation issues arise in the case of real-valued features.
Indeed, the estimated distances are necessarily approximated. These factors collectively make the
variant introduced by Afham et al., and detailed in Section 3.3.1, the most suitable candidate for

71

https://github.com/ZarHenry96/quantum-ml-pipeline
https://github.com/ZarHenry96/quantum-ml-pipeline

experiments involving real-valued datasets. In addition, the parallel processing of the test instances,
as suggested by Ma et al. [68], has not been considered here.

The chosen quantum binary classification model is the one elucidated in Section 3.4. Its structure
is relatively simple and resembles that of the selected quantum k-NN. In particular, the possibility of
constructing a pipeline with these quantum models was anticipated by Pastorello and Blanzieri in the
pre-print version of their article about the quantum binary classifier [80].

7.1.2 Implementation

The implementation of the quantum pipeline has been carried out using Qiskit [3], the open-source
software development kit (SDK) offered by IBM. Qiskit allows constructing quantum circuits in Python
and executing them on either simulators or real quantum devices. Specifically, IBM provides various
simulation backends, which allow getting measurement counts as in real quantum devices but also
accessing the state vector of the circuit (namely, the amplitude of each state) at any execution stage.

Basically, using Qiskit, code has been developed to dynamically initialize and construct circuits for
the considered quantum algorithms based on the dataset given as input. In addition, various execution
modes have been implemented for both models:

• classical, which runs the corresponding classical algorithm without constructing a quantum cir-
cuit;

• statevector, which corresponds to an ideal execution with an infinite number of runs and, prac-
tically, processes the final state vector of the circuit;

• simulation (referred to as local simulation in the code), which samples from the final probability
distribution of the circuit in order to provide counts;

• online simulation, which mirrors simulation but utilizes IBM’s hardware;

• quantum, which employs real quantum devices.

In the classical mode, the cosine distance metric is used for the k-NN, as the selected quantum k-NN
returns the k nearest neighbors based on the fidelity, i.e., the squared cosine similarity in the case
of pure quantum states (see Equation 3.1). For the binary classifier, Equation (3.3) is employed. In
addition, it is worth mentioning that no noise has been considered in any simulated mode (including
statevector) and that the execution mode for each component of the pipeline does not have to be the
same. Lastly, the implementation allows the retrieval of results from online executions at a later time.

The pseudocode for the quantum pipeline is outlined in Algorithm 20 and is valid for all execution
modes except classical, as it does not exploit circuits. In practice, if the classical mode is chosen for
a component, the corresponding block is substituted with the execution of the classical counterpart.
In all cases, the first step consists in the unit-norm normalization of training and test data (Line 1),
which is crucial for the amplitude encoding. Essentially, the features of each data instance are divided
by the instance norm (if the norm is equal to zero, all attribute values are replaced with 0.000001
before the normalization). This normalization procedure is executed even for a pipeline consisting of
only classical components. Furthermore, prior to the unit-norm normalization, another normalization
procedure, whose details are provided in Section 7.2.3, has been executed in the experiments as part
of the general experimental setup. In this way, the quantum k-NN requirement concerning the sign of
the data features has been satisfied.

Concerning the non-classical modalities, the subsequent step consists in building the quantum k-
NN circuit using the normalized data (Line 2). A representative circuit is provided in Figure 7.2a.
Note that the vertical barriers have been added for clarity, and, in the actual implementation, a single
barrier is placed between the measurement of the ancillary qubit and the measurement of the index
register in order to sample from the right probability distributions. In particular, a quantum k-NN
circuit can be split into three slices: registers initialization, SWAP test without measurement, and
final measurements. In the first slice, the training data index is initialized concurrently with the
encoding of the training and test features. In detail, the index (q1-q2) and the training features (q3-q4)
registers are jointly initialized for simplicity, as they are entangled. Then, the SWAP test without

72

Input: training data D, test instance x, number of nearest neighbors k, execution modalities
(not classical) for the two components exec mods

Result: class label label ∈ {−1, 1}
1 D, x← normalization(D, x);

/* Quantum k-NN */

2 circqknn ← buildQKNNCircuit(D, x, exec mods[0]); // See Figure 7.2a

3 resqknn ← execute(circqknn, exec mods[0]);
4 k nn← getKNearestNeighbors(D, k, resqknn, exec mods[0]);

/* Quantum binary classifier */

5 circqbc ← buildQBCCircuit(k nn, x, exec mods[1]); // See Figure 7.2b

6 resqbc ← execute(circqbc, exec mods[1]);
7 label← getLabel(resqbc, exec mods[1]);

8 return label;
Algorithm 20: Quantum pipeline (taken from [128]).

measurement is carried out by using two Hadamard gates and a number of controlled-SWAP gates
that increases linearly with the number of feature qubits. Specifically, the SWAP gates operate on
the training (q3-q4) and test features (q5-q6) registers. Lastly, the state of the first ancillary qubit (q0)
and the state of the index register are measured (the measurements are not present in the case of
statevector). Concerning the required number of qubits (qubitsqknn), which depends on the dataset,
it is determined by

qubitsqknn = 1 + qubitsqknn index + 2 ∗ qubitsfeatures , (7.1)

with the value 1 corresponding to the SWAP test measurement qubit (q0), qubitsqknn index denoting
the number of index qubits (q3-q4), and qubitsfeatures representing the number of feature qubits (either
q3-q4 or q5-q6).

After constructing the circuit, the quantum k-NN is run based on the specified mode (Line 3). If
the circuit involves measurements, it is executed multiple times to achieve the desired number of counts
(controlled by the parameter simulation shots, as outlined in Section 7.2.3). Then, the output of the
execution (resqknn), corresponding to either a state vector or state counts indicating the frequency
of each observed state, is processed to identify the k nearest neighbors (Line 4). Specifically, the
amplitudes/counts are utilized to estimate the P (i|0) − P (i|1) quantity, where i denotes a training
data index and 0/1 corresponds to the state of q0 (refer to Equation 3.2). Subsequently, the training
data is rearranged based on this quantity, which is proportional to the similarity to the test instance,
allowing the retrieval of the nearest neighbors.

The subsequent step consists in building the quantum binary classifier circuit according to the
selected k nearest neighbors and the normalized test instance (Line 5). A representative circuit is
provided in Figure 7.2b, where the vertical barriers have been added for clarity. The circuit can be
split into five main slices: registers initialization, configuration of training data labels, set up of the test
label, SWAP test without measurement, and final measurement. Regarding the initialization, the first
qubit undergoing the swap (q1) is prepared in the uniform superposition of 0 and 1 (|+⟩). Conversely,
the second one (q2) is entangled with the register (q3-q4) corresponding to the training data index
and the register (q5-q6) encoding both the training and test features in superposition. Therefore, for
simplicity, it is jointly initialized with all of them (from q3 to q6). Concerning the qubit encoding the
label (q7), it assumes only specific values (0, 1, and the uniform superposition of them). Hence, it
is configured separately (second and third slices) to simplify the joint initialization. In more detail,
the training data labels (second slice) are encoded in the last qubit of the circuit by means of NOT
gates (represented by Xs in the image), which allow selecting the correct index register states, and
multi-controlled NOT gates, which encode the given values. Actually, this procedure is necessary only
for one label value, i.e., −1, as it is mapped to the state 1. Additionally, the NOT gates applied to
the second SWAP qubit (q2) before and after this step are required in order to operate on the states
linked to the training data. Conversely, for the test instance (third slice), the label qubit is initialized

73

(a) Quantum k-NN.

(b) Quantum binary classifier.

Figure 7.2: Quantum pipeline circuits example. The first circuit (a) corresponds to the quantum
k-NN, the second one (b) to the quantum binary classifier. In the case of the statevector modality,
the final measurements are not present (taken from [128]).

in the |−⟩ state using a controlled NOT gate and a controlled Hadamard gate. Subsequently, a SWAP
test without measurement is executed (fourth slice), followed by the measurement of the first qubit
(q0) (last slice). In this case, as well, no final measurement is present for the statevector modality.
The number of required qubits (qubitsqbc) is given by

qubitsqbc = 3 + qubitsqbc index + qubitsfeatures + 1 . (7.2)

Specifically, the value 3 represents the qubits required by the SWAP test (q0-q1-q2), qubitsqbc index

denotes the number of index qubits (q3-q4), qubitsfeatures represents the number of feature qubits
(q5-q6), and 1 corresponds to the label qubit (q7).

After building the circuit, the quantum binary classifier is executed (Line 6), with the observations
made for the quantum k-NN holding also for the classifier. Ultimately, the output of the execution
is processed (Line 7) to predict the label of the test instance. Specifically, the amplitudes/counts
allow estimating the probability P (1) of getting 1 by measuring the qubit q0. This probability value
enables the prediction of the class label (−1 if P (1) > 0.25, 1 otherwise, as per Equation 3.7), which
is returned as the output of the pipeline (Line 8).

7.1.3 Complexity Observations

According to Afham et al. [2], the gate complexity of their quantum k-NN model is O(log2 d), where
d denotes the number of data features. Nevertheless, that complexity is not defined in terms of
elementary gates, and the initialization of the registers is not taken into account, as they assume the

74

existence of an initialization quantum oracle. Conversely, Pastorello and Blanzieri [79] define the time
complexity of their quantum binary classifier as O(ϵ−2 log2(Nd)), where ϵ is the wanted upper bound
on the prediction error, and N is the size of the training set. However, they assume the existence
of a QRAM from which the input state to the SWAP test (fourth and fifth slices of the circuit in
Figure 7.2b) can be retrieved.

Regarding the implementation of the pipeline presented here, it is possible to make several obser-
vations for the execution modalities other than classical. Firstly, the unit-norm normalization step
has a complexity of O(Nd), as it requires scanning all data features. Building the quantum k-NN
circuit has a complexity of O(2⌈log2 N⌉+⌈log2 d⌉ + ⌈log2 d⌉), where the first term accounts for the joint
index-training initialization and the second term for the SWAP test. Conversely, executing the circuit
has a complexity that depends on both the execution mode and its implementation inside Qiskit. For
non-statevector executions, it is also determined by the number of measurements. Concerning the
number of gates, it is essential to notice that the initialization of registers is a costly operation, as
generating an arbitrary target state requires finding the right sequence of elementary gates. Addi-
tionally, the number of controlled-SWAP gates, which are not elementary gates, increases with the
number of data features. The final step corresponds to the nearest neighbors extraction, which re-
quires the processing of the execution output. In particular, processing the final state vector of the
circuit has a complexity of O(21+⌈log2 N⌉+2⌈log2 d⌉), while processing the state counts has a complexity
of O(21+⌈log2 N⌉). Regardless of the execution modality, after processing the output, the k nearest
neighbors are identified by sorting the index values, which has a complexity of O(N log2N).

Focusing on the second part of the pipeline, the complexity of the quantum binary classifier depends
on the number of nearest neighbors k. Specifically, building the classifier circuit has a complexity of
O(21+⌈log2 k⌉+⌈log2 d⌉ + k 2⌈log2 k⌉), where the second term is a worst-case estimate for setting up the
training labels. Concerning the execution of the circuit and the number of gates, the considerations
made for the quantum k-NN apply also to the classifier. Indeed, although the classifier circuit includes
only one controlled-SWAP gate, there could be several (up to a maximum of k) multi-controlled CNOT
gates, which significantly affect the performance as well. Lastly, the processing of the execution output
has a complexity of O(24+⌈log2 k⌉+⌈log2 d⌉) for statevector executions, O(1) in the other cases. The
prediction of the final label also has a constant complexity.

To provide an idea of the runtimes, for a scenario where N = 168, d = 12, and k = 9, the execution
time on the machine employed in the experiments (whose specifications are outlined at the beginning
of Section 7.2) is in the order of 2-3 seconds. This applies to both statevector and simulation, with both
components executed with the same modality (actually, simulation is slightly more time-consuming).
In the considered scenario, the size of the quantum circuit is 17 qubits for the quantum k-NN and 12
qubits for the quantum binary classifier.

7.2 Empirical Evaluation
This section presents the quantum and classical algorithms considered, the selection and preparation
of datasets, the experiments setup, and the obtained results. Specifically, the experiments have been
conducted on a shared machine equipped with an Intel Xeon Gold 6238R processor operating at 2.20
GHz and 125 GB of RAM.

7.2.1 Methods

The quantum pipeline described in Section 7.1 has been evaluated with various combinations of ex-
ecution modalities, as outlined in Table 7.1a. Specifically, the objectives of these experiments were
to assess the classical pipeline’s performance, confirm the equivalence between classical and statevec-
tor modalities (the latter representing an ideal execution), and examine the impact of simulation on
performance. Actually, the original plan included also quantum executions. However, the maximum
number of qubits available for a free account was five at the time of running the experiments (due
to the retirement of the largest free machine). Consequently, the reliability of these results strictly
depends on that of Qiskit’s simulator.

The quantum binary classifier alone has been tested under the modalities outlined in Table 7.1b.
Specifically, the classical mode has not been considered due to its effective equivalence with statevector.

75

Table 7.1: Quantum pipeline modalities (a), quantum binary classifier modalities (b), and baseline
methods (c) considered (taken from [128]).

(a)

Quantum pipeline

classical - classical

statevector - classical

classical - statevector

statevector - statevector

simulation - classical

classical - simulation

simulation - simulation

(b)

Quantum classifier

statevector

simulation

(c)

Baseline methods

random forest

SVM

k-NN

k-NN + classifier

k-NN + SVM

These experiments aimed to gather data to validate any potential enhancement in the performance of
the model with the introduction of a quantum locality technique like the quantum k-NN.

Lastly, the performance of the pipeline has been compared with that of the classical baseline
methods detailed in Table 7.1c. The implementation provided by scikit-learn [85] has been used for
many of them, while others have been implemented using scikit-learn procedures. Specifically, the
default scikit-learn parameters have been utilized for the random forest, with the number of trees
being equal to 100. Instead, for the SVM, two kernels have been evaluated, namely, Gaussian and
linear kernels. Two distance metrics have also been tested for the k-NN, i.e., cosine and Euclidean
distances. Eventually, two pipelines have been taken into account. The k-NN + classifier is the
classical analogue of the quantum pipeline, with the classifier being the binary classifier based on the
cosine similarity described by Equation (3.3). Conversely, the k-NN + SVM is a pipeline that has been
considered in order to assess the benefits of using a more complex model (such as the SVM) instead of
the binary classifier. These pipelines have been evaluated with both k-NN distance metrics (cosine and
Euclidean) and both SVM kernels (Gaussian and linear). In conclusion, it is worth highlighting that
the difference between the k-NN + classifier with cosine distance metric and the classical - classical
execution of the quantum pipeline lies in the absence of the unit-norm normalization of the input data
(for the former).

7.2.2 Datasets

All datasets employed in these experiments come from the UCI Machine Learning Repository [29].
Specifically, the dataset selection has been performed according to the following criteria: the associated
task is classification (all the models taken into account are classifiers); the features are numerical and,
preferably, real-valued (the 02 transfusion dataset consists solely of integer attributes but is labeled
as real-valued on the UCI website); the number of attributes is less than or equal to 16; the number
of instances is not too big, i.e., less than one thousand.

The rationale behind the filter on the attribute type is the amplitude encoding utilized by the
quantum models taken into account. Specifically, the data must be numerical, and integer values can
be accepted thanks to the unit-norm normalization. Concerning the limitation on the features number,
it derives from the initial plan of running experiments on a real quantum device. In particular, the
free machine that would have later been retired had 15 qubits. Therefore, if the number of qubits
needed for the feature encoding (qubitsfeatures) had surpassed four (i.e., more than 16 attributes),
the training instances embeddable in the quantum k-NN circuit would have been fallen below 17
(qubitsqknn index ≤ 4), an insufficient quantity (refer to Equation 7.1). Ultimately, the constraint on
the number of instances was designed to permit the encoding of the dataset in the quantum circuit
without having to perform a drastic subsampling.

Ten datasets meeting the specified criteria were found (some have been discarded because of missing
values or unclear structure). Nevertheless, a majority of these datasets featured more than two classes,
while Pastorello and Blanzieri’s classifier (but also the SVM) operates on binary labels. Consequently,
only the two most represented classes have been kept and mapped to {−1, 1} (in case of a tie, the first
two classes have been selected); all the other instances have been discarded. Additionally, if the size

76

Table 7.2: Datasets properties (the dataset names are links that lead to the corresponding UCI pages).
Note: ”qb.” stands for qubits (taken from [128]).

Name
Original Original Features Size Size

size classes # # (15 qb.) (32 qb.)

01 iris setosa versicolor
150 3 4

100 -
01 iris setosa virginica 100 -

01 iris versicolor virginica 100 -

02 transfusion[122] 748 2 4 748 -

03 vertebral column 2C 310 2 6 310 -

04 seeds 1 2 210 3 7 140 -

05 ecoli cp im 336 8 7 220 -

06 glasses 1 2 214 6 9 80 146

07 breast tissue adi fadmasgla 106 6 9 71 -

08 breast cancer[83] 116 2 9 80 116

09 accent recognition uk us 329 6 12 80 210

10 leaf 11 9[108] 340 30 14 30 -

of the resulting dataset was still surpassing the number of instances that can be encoded in the circuit
of the quantum k-NN with 15 qubits, a random subsampling preserving the ratio between classes has
been performed. Regarding this last operation, the reduction of the dataset size due to the split into
training and test sets (accurately detailed in the subsequent section) has also been considered. The
resulting datasets and their properties are presented in Table 7.2.

Several aspects of the data presented in the table are worth to be mentioned: the dataset names in-
clude a suffix denoting the names of the chosen classes if the original number of classes exceeded two; all
possible combinations of classes have been considered for the Iris dataset (01), resulting in a total of 12
datasets; the suggested merging of three classes has been executed for 07 breast tissue adi fadmasgla.
Concerning the datasets sizes used in the experiments, they are detailed in the last two columns: the
first one (Size, 15 qb.) reports the sizes resulting from the entire process presented in the preced-
ing paragraph, while the second one (Size, 32 qb.) displays the sizes without the final subsampling
operation (only for datasets for which it was necessary). In detail, the three datasets requiring subsam-
pling (namely, 06 glasses 1 2, 08 breast cancer, and 09 accent recognition uk us) have been exploited
to study the impact of a larger training set, and the value 32 corresponds to the maximum number of
qubits for an online simulation (way less qubits are needed in these experiments).

It is also worth highlighting that the two erroneous instances documented on the Iris UCI webpage
have been corrected before executing any other operation. The datasets employed in these experiments
are publicly available [125].

7.2.3 Experimental Setup

All methods listed in Section 7.2.1 have been executed on all datasets present in Table 7.2 (for both 15
and 32 qubits limits), with the exception of the quantum binary classifier, which has not been applied
to the 02 transfusion dataset due to the need for an additional qubit (refer to Equation 7.2). The
κ-fold cross-validation has been used as model evaluation technique. In practice, the dataset is divided
into κ subsets, also known as folds. Then, κ − 1 folds constitute the training set, and the remaining
one becomes the test set. This last step is repeated κ times, ensuring that each fold is employed as
the test set exactly once. Specifically, the stratified κ-fold cross-validation, which maintains the class
ratio inside the folds as close as possible to the original one, has been used here. Lastly, it is important
to mention that the same seed has been used for the folds generation in all experiments, ensuring that
all methods have processed identical folds.

The experiments parameters are detailed in Table 7.3. Specifically, k folds denotes the number of
folds, which has been set to 5, a commonly used value in machine learning. Conversely, k represents
the selected number of nearest neighbors, a crucial parameter for the quantum pipelines, as well as
for the classical k-NN and the baseline pipelines (k-NN + classifier and k-NN + SVM). Hence, a

77

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Vertebral+Column
https://archive.ics.uci.edu/ml/datasets/seeds
https://archive.ics.uci.edu/ml/datasets/Ecoli
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra
https://archive.ics.uci.edu/ml/datasets/Speaker+Accent+Recognition
https://archive.ics.uci.edu/ml/datasets/Leaf

Table 7.3: Parameters of the experiments (taken from [128]).

Parameter Value(s)

k folds 5

k 3, 5, 7, 9

simulation shots 1024

simulation runs 5

range of odd (small) values in arithmetic progression has been tested. Regarding simulation shots, it
denotes the number of measurements (and thus circuit executions) carried out in the simulation mode,
and the same value (1024, the default provided by Qiskit) has been used for both the quantum k-NN
and the quantum binary classifier. Lastly, simulation runs denotes the number of runs performed
for experiments involving a quantum model (k-NN/classifier) in the simulation mode or the random
forest. Specifically, the chosen value (5) constitutes a trade-off between the possibility of assessing the
statistical significance of results and the computational resources needed. Moreover, no seed has been
set for these stochastic methods.

In every cross-validation iteration, a min-max data normalization method has been executed before
running the model or pipeline. Specifically, each training set attribute has been rescaled to the [0, 1]
interval by subtracting the minimum value and dividing by the range. The attributes characterised by
a zero range (constant attributes) have been set to zero. As customary, the minimum and range values
of the training set have been used for the normalization of the test instances. In the case of a test
instance attribute exceeding the interval boundaries after the normalization, a clipping operation has
been executed. Moreover, after the feature normalization, a unit-norm normalization procedure has
been applied to the input data for the quantum models (including the standalone quantum classifier),
as outlined in Section 7.1.2. It is worth observing that the min-max normalization has also ensured
consistency in attribute signs, avoiding sign-related issues for the quantum k-NN.

7.2.4 Results

The results are presented via scatter plots based on the accuracy metric, with the accuracy for a fold
being defined as

accuracy =
number of correctly classified instances in the fold

total number of instances in the fold
(7.3)

(this definition is a more specific version of the one provided in Equation 6.1). For multiple runs,
the fold average accuracy is shown. Additionally, the statistical significance of the results has been
assessed using the Wilcoxon signed-rank test [116], as the data are paired.

Specifically, the first analysis focuses on the various execution modalities of both the quantum
pipeline and the quantum binary classifier. Subsequently, a comparison of the two quantum models is
presented, and the impact of the dataset size on their performance is analysed. Lastly, an evaluation
of the distance metrics considered for the baseline methods is provided, followed by a comparison
between the quantum pipeline and the baseline methods.

7.2.4.1 Execution Modalities Comparison (Quantum Pipeline)

Figure 7.3 shows several comparisons between execution modalities for the quantum pipeline on the
15 qubits datasets. Each point in these plots corresponds to the accuracy achieved in a fold (or its
average across runs). In detail, as expected, the statevector - statevector modality, which represents an
ideal execution, is found to be equivalent to the classical - classical modality (Figure 7.3a). The few
deviations from the main diagonal stem from two factors: the two modalities utilize different policies
for selecting the nearest neighbors in the case of a distance tie; the 02 transfusion dataset includes
data points with the same features and different class labels. Despite this, the difference between the
two modalities is not statistically significant according to the Wilcoxon signed-rank test (Table 7.4).
It is important to remember that the advantage of the considered quantum models/pipelines over
their classical counterparts does not lie in the accuracy but in the execution time. Instead, the plots
showing the comparison between the classical - classical mode and the statevector - classical / classical

78

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy classical-classical pipeline

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3
k=5
k=7
k=9

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy classical-classical pipeline

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
g.

 a
cc

ur
ac

y
sim

ul
at

io
n-

cla
ss

ica
l p

ip
el

in
e

k=3
k=5
k=7
k=9

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy classical-classical pipeline

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
g.

 a
cc

ur
ac

y
cla

ss
ica

l-s
im

ul
at

io
n

pi
pe

lin
e

k=3
k=5
k=7
k=9

(c)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy classical-classical pipeline

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
g.

 a
cc

ur
ac

y
sim

ul
at

io
n-

sim
ul

at
io

n
pi

pe
lin

e

k=3
k=5
k=7
k=9

(d)

Figure 7.3: Execution modalities comparison on 15 qubits datasets for the quantum pipeline. Each
point represents the accuracy obtained in a fold (or its average across runs) (taken from [128]).

Table 7.4: Wilcoxon signed-rank test (α= 0.05) applied to the fold accuracy distributions shown in
Figure 7.3. The values reported in the table are the p-values obtained (taken from [128]).

k=3 k=5 k=7 k=9

Figure 7.3a 1.000 0.276 1.000 0.655

Figure 7.3b 8.80E-08 1.18E-07 2.46E-06 4.01E-06

Figure 7.3c 0.414 0.052 0.486 0.092

Figure 7.3d 1.04E-07 2.03E-07 2.27E-07 4.60E-07

79

Table 7.5: Average usage on dataset of the second model for the pipelines including the classical (or
statevector) k-NN with cosine distance (a) and Euclidean distance (b). The usage on dataset is 1
when the second model is always employed (taken from [128]).

(a) Cosine.

k 15 qubits 32 qubits

3 0.245 ± 0.204 0.375 ± 0.128

5 0.357 ± 0.290 0.590 ± 0.160

7 0.406 ± 0.323 0.690 ± 0.158

9 0.461 ± 0.356 0.758 ± 0.137

(b) Euclidean.

k 15 qubits 32 qubits

3 0.218 ± 0.229 0.402 ± 0.133

5 0.298 ± 0.305 0.617 ± 0.187

7 0.346 ± 0.346 0.686 ± 0.188

9 0.381 ± 0.371 0.755 ± 0.166

- statevector have not been reported here as they are identical or nearly identical (without deviant
points) to Figure 7.3a.

While the quantum pipeline is equivalent in accuracy to the classical one in an ideal scenario, this
equivalence does not hold when the pipeline is simulated (or executed on a real quantum device). Fig-
ures 7.3b and 7.3d reveal that simulating the quantum k-NN with 1024 shots (namely, measurements)
has a negative impact on the pipeline’s performance, regardless of the chosen k value. In fact, the
majority of points are positioned below the main diagonal and the difference is statistically significant
for all k values, as indicated in Table 7.4. In practical terms, the considered quantum k-NN is highly
sensitive to small fluctuations in the estimated probability values, and a higher number of repetitions
should be used to improve the results. Conversely, simulating only the quantum binary classifier with
1024 shots (Figure 7.3c) seems to not significantly affect the pipeline performance, and the difference
is not statistically significant. However, for the datasets employed here, the model following the clas-
sical (or statevector) k-NN is rarely used in practice. In most cases, the data samples selected by the
classical k-NN all belong to the same class, making it challenging to draw definitive conclusions about
the subsequent classifier. Table 7.5a reports the average usage on dataset of the second model in the
pipeline for the cosine distance metric and each k value.

7.2.4.2 Execution Modalities Comparison (Quantum Binary Classifier)

Figure 7.4 shows the comparison between statevector and simulation modes for the quantum binary
classifier on the 15 qubits datasets. The classical modality has not been considered because of its

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy statevector classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
g.

 a
cc

ur
ac

y
sim

ul
at

io
n

cla
ss

ifi
er

Figure 7.4: Execution modalities comparison on 15 qubits datasets for the quantum binary classifier.
The 02 transfusion dataset is not present, and each point represents the accuracy obtained in a fold (or
its average across runs). The p-value obtained by applying the Wilcoxon signed-rank test (α= 0.05)
to the fold accuracy distributions is 0.016 (taken from [128]).

80

equivalence with statevector. Moreover, the 02 transfusion dataset has been excluded as an extra
qubit would have been necessary (as explained in Section 7.2.3). As in the previous plots, each dot
corresponds to the accuracy achieved in a fold (or its average across runs). Basically, the quantum
binary classifier as well is influenced by probability fluctuations and by the shots number. In fact,
the accuracy achieved by simulation is generally inferior to that of statevector, and this difference is
statistically significant according to the Wilcoxon signed-rank test (p-value= 0.016).

7.2.4.3 Quantum Pipeline - Quantum Binary Classifier Comparison

Figure 7.5 shows the comparison between the quantum pipeline and the quantum binary classifier
on the 15 qubits datasets. The scatter plots are structured as those in Figure 7.3. However, the
02 transfusion dataset is absent (to enable the comparison), and the k values reported in the legend
refer exclusively to the pipeline. As illustrated in Figure 7.5a, the statevector - statevector pipeline
outperforms the statevector classifier independently of the k value, and the difference is statistically
significant (Table 7.6). Although there are folds where the classifier alone achieves a higher accuracy,
they represent a minority. This demonstrates the effectiveness of employing a quantum locality tech-
nique like the quantum k-NN as a preliminary step of a quantum classifier, and more generally, the
value of locality. Conversely, the pipeline’s superiority is less pronounced when considering the simu-
lated versions of the models (Figure 7.5b). The quantum pipeline, because of the considered quantum
k-NN, is significantly more affected by probability fluctuations with respect to the classifier alone.
Nonetheless, it demonstrates better overall performance, regardless of the k value (here, the difference
is statistically significant as well). Lastly, examining the performance of the different k values in these
two plots, no dominant one emerges. In fact, the optimal k value tends to be dataset-dependent. De-
termining the optimal value for a given dataset would require evaluating the performance of multiple
k values employing part of the dataset as a validation set, a task beyond the scope of this paper.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy statevector classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3 (pip.)
k=5 (pip.)
k=7 (pip.)
k=9 (pip.)

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Avg. accuracy simulation classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
g.

 a
cc

ur
ac

y
sim

ul
at

io
n-

sim
ul

at
io

n
pi

pe
lin

e

k=3 (pip.)
k=5 (pip.)
k=7 (pip.)
k=9 (pip.)

(b)

Figure 7.5: Quantum pipeline - quantum binary classifier comparison on common 15 qubits datasets.
Each point represents the accuracy obtained in a fold (or its average across runs); the k values refer
only to the pipeline (taken from [128]).

Table 7.6: Wilcoxon signed-rank test (α= 0.05) applied to the fold accuracy distributions shown in
Figure 7.5. The values reported in the table are the p-values obtained (taken from [128]).

k=3 k=5 k=7 k=9

Figure 7.5a 5.39E-07 7.88E-07 2.55E-06 2.98E-06

Figure 7.5b 0.042 0.001 3.35E-04 5.84E-04

81

7.2.4.4 Dataset Sizes Comparison

Figure 7.6a shows the impact of the dataset size on the performance of the quantum pipeline and
quantum binary classifier. Specifically, for this chart, only the three datasets in Table 7.2 with both
15 qubits and 32 qubits sizes have been taken into account. Furthermore, as a fold-by-fold comparison
would not be meaningful in this case, each point in the plot corresponds to the mean fold accuracy on a
dataset (or its average across runs). Lastly, the number of points for the pipelines is four times higher
compared to the classifier alone, as all k values are taken into account. In practical terms, a larger
dataset tends to positively influence the performance of the pipeline in the ideal case (statevector -
statevector) and has an overall neutral effect in the simulated case (the occurrences of improvement
and worsening are balanced). Conversely, the quantum classifier performance tends to degrade in both
cases. This demonstrates the ability of the pipeline to leverage a larger number of samples. Although
the difference is statistically significant only for the statevector - statevector pipeline, as reported in
Table 7.7a, the low number of points should also be considered.

7.2.4.5 Distance Metrics Comparison

Figure 7.6b illustrates the comparison between the cosine and Euclidean distances on the 15 qubits
datasets, considering all the baseline methods relying on the k-NN algorithm, namely, the k-NN, the

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy 15 qubits

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 3
2

qu
bi

ts

Dataset size comparison
(mean fold accuracy per dataset)

statevector-statevector
simulation-simulation (avg.)
statevector (classifier)
simulation (classifier, avg.)

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy cosine

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 e
uc

lid
ea

n

Baseline distance metric comparison
(fold accuracy, 15 qubits)

k=3
k=5
k=7
k=9

(b)

Figure 7.6: Dataset sizes (a) and distance metrics (b) comparisons. In the dataset sizes comparison
(a), each point represents the mean fold accuracy obtained on a dataset (or its average across runs); the
pipeline comparisons include all k values. In the distance metrics comparison (b), the results obtained
by the k-NN-based baseline methods (k-NN, k-NN + classifier, k-NN + SVM Gaussian, k-NN + SVM
linear) on the 15 qubits datasets are taken into account; each point represents the accuracy obtained
in a fold (taken from [128]).

Table 7.7: Wilcoxon signed-rank test (α= 0.05) applied to the mean fold accuracy distributions shown
in Figure 7.6a (a). Same test applied to the fold accuracy distributions shown in Figure 7.6b (b) (taken
from [128]).

(a) Dataset size.

p-value

statevector - statevector 0.016

simulation - simulation 0.910

statevector 0.750

simulation 0.250

(b) Distance metric.

p-value

k=3 9.85E-10

k=5 8.33E-08

k=7 7.65E-15

k=9 4.86E-08

82

k-NN + classifier, and the k-NN + SVM with both Gaussian and linear kernels. In this plot, each
point corresponds to the accuracy achieved in a fold by one of these four methods. Essentially, for all k
values, the Euclidean distance statistically outperforms the cosine distance, as reported in Table 7.7b.
Hence, having a quantum k-NN version based on the Euclidean distance metric could be advantageous.

7.2.4.6 Quantum Pipeline - Baseline Methods Comparison

Figures 7.7 and 7.8 show some comparisons between the statevector - statevector pipeline and baseline
methods on the 15 qubits datasets. In particular, each point corresponds to the accuracy achieved in a
fold (or its average across runs), and the k values reported in the legends of Figures 7.7a and 7.7b refer
exclusively to the pipeline. Basically, the random forest consistently outperforms the quantum pipeline
for all k values (Figure 7.7a), and the same trend is observed for the best-performing SVM, namely,
the SVM with the Gaussian kernel (Figure 7.7b). The differences are statistically significant in both
cases, as demonstrated by Table 7.8, with the only exception being the SVM - pipeline comparison
with k = 5. Conversely, the SVM with the linear kernel (not displayed here) achieves only marginally
better performance compared to the pipeline, and the difference is not statistically significant.

Concerning the k-NN, the version employing the cosine distance metric appears to be equivalent
in accuracy to the statevector - statevector pipeline (Figure 7.8a), with few deviations analogous to
those in Figure 7.3a. As reported in Table 7.9, the difference is not statistically significant. Hence, it
is also on par with the classical - classical pipeline (refer to Section 7.2.4.1). This implies that, for the
datasets taken into account, employing either a majority voting or the binary classifier based on the
cosine similarity after extracting the k nearest neighbors with the cosine distance metric has exactly
the same effect. In fact, the absence of unit-norm normalization in the baseline methods does not
influence the cosine distance (or the cosine similarity), as it intrinsically normalizes the data given as
input. However, the low effective usage of the second model in the pipeline must also be considered
(Table 7.5a). Conversely, the k-NN employing the Euclidean distance statistically outperforms the

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Avg. accuracy random forest

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3 (pipeline)
k=5 (pipeline)
k=7 (pipeline)
k=9 (pipeline)

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy svm gaussian

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3 (pipeline)
k=5 (pipeline)
k=7 (pipeline)
k=9 (pipeline)

(b)

Figure 7.7: Quantum pipeline - baseline methods comparison on 15 qubits datasets. The pipeline
modality is statevector - statevector, each point represents the accuracy obtained in a fold (or its
average across runs), and the k-values refer only to the pipeline (taken from [128]).

Table 7.8: Wilcoxon signed-rank test (α= 0.05) applied to the fold accuracy distributions shown in
Figure 7.7. The values reported in the table are the p-values obtained (taken from [128]).

k=3 k=5 k=7 k=9

Figure 7.7a 1.54E-04 0.001 1.24E-04 1.88E-04

Figure 7.7b 0.020 0.106 0.003 0.004

83

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy knn cosine

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3
k=5
k=7
k=9

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy knn euclidean+classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3
k=5
k=7
k=9

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy knn euclidean+svm gaussian

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 st
at

ev
ec

to
r-s

ta
te

ve
ct

or
 p

ip
el

in
e

k=3
k=5
k=7
k=9

(c)

Figure 7.8: Quantum pipeline - (k-NN-based) baseline methods comparison on 15 qubits datasets.
Each point in these plots represents the accuracy obtained in a fold (taken from [128]).

Table 7.9: Wilcoxon signed-rank test (α= 0.05) applied to the fold accuracy distributions shown in
Figure 7.8. The values reported in the table are the p-values obtained (taken from [128]).

k=3 k=5 k=7 k=9

Figure 7.8a 1.000 0.276 1.000 0.655

Figure 7.8b 0.003 0.006 5.22E-05 0.001

Figure 7.8c 0.003 0.002 2.15E-05 4.36E-04

84

quantum pipeline across all k values, and the scatter plot mirrors that of Figure 7.8b (refer to Table 7.9
for the results of the statistical test). Essentially, when utilizing the same distance metric, the k-NN
and the k-NN + classifier exhibit identical performance on the considered datasets. Consequently,
the statevector - statevector pipeline obtains the same results as the k-NN + classifier with cosine
distance metric (the scatter plot mirrors that of Figure 7.8a) and is overcome by the same model
employing the Euclidean distance independently of the k value (Figure 7.8b). Actually, due to the
previous observation on the unit-norm normalization, the k-NN + classifier with cosine distance and
the classical - classical pipeline turn out to be exactly the same model. Lastly, turning attention
to the baseline pipelines incorporating the SVM model, the best-performing among them is the k-
NN + SVM with Euclidean distance and Gaussian kernel, which achieves statistically better results
compared to the statevector - statevector pipeline regardless of the k value, as depicted in Figure 7.8c
(the results of the statistical test are provided in Table 7.9). Concerning the other versions of this
baseline pipeline, the k-NN + SVM with cosine distance and linear kernel is nearly equivalent in
accuracy to the quantum pipeline (but still winning the comparison), while the others exhibit a clear
superiority. Furthermore, in the case of the Euclidean distance, the k-NN + SVM with linear kernel
and the k-NN + classifier turn out to be on par, whereas, in the case of the cosine distance, the former
achieves slightly better results than the latter.

Since the effective usage of the model following the extraction of the nearest neighbors is quite low
(the values for the Euclidean distance can be found in Table 7.5b), definitive conclusions cannot be
drawn. Nonetheless, in the baseline pipelines, the SVM appears to achieve better results compared
to the cosine similarity classifier, particularly with a Gaussian kernel. Therefore, trying to combine a
quantum k-NN version with a quantum SVM might be beneficial. Lastly, it is worth observing that,
with the same kernel, the classical SVM generally performs better than the corresponding pipeline
with cosine distance and is either outperformed by or equivalent to (in accuracy) the corresponding
pipeline with Euclidean distance (still, the low effective usage of the SVM in the pipeline must be
considered).

7.3 Discussion
In this chapter, the introduction of a quantum locality technique as a preliminary step of a quantum
machine learning model, to improve its performance and reduce its circuit size, has been proposed
and tested. In particular, the pipeline that has been considered consists of a quantum k-NN and a
quantum binary classifier. Information concerning the pipeline’s implementation (in Python, using
Qiskit) and its complexity have been provided. The results have shown that, in the ideal case, the
quantum pipeline is equivalent in accuracy to its classical counterpart and is also able to leverage
larger datasets. Furthermore, the quantum pipeline has consistently outperformed the quantum binary
classifier in both ideal and simulated scenarios, demonstrating the power of locality in the quantum
realm. Nevertheless, the considered quantum k-NN has turned out to be highly sensitive to probability
fluctuations (the quantum binary classifier to a lesser degree), and baseline methods such as the random
forest and the SVMs have outperformed the quantum pipeline even in the ideal case. However, it
must be considered that the effective usage of the second model in the pipeline was notably low for
the datasets taken into account.

Concerning the required number of qubits, the following relationship (derived from Equations 7.1
and 7.2) holds for the considered quantum models:

qubitsqknn ≤ qubitsqbc ⇐⇒ qubitsfeatures ≤ 3 .

In practice, using the considered quantum k-NN as a preliminary step of the quantum binary classifier
proves to be advantageous (not disadvantageous) in terms of number of qubits only if the number of
attributes is less than 5 (less than 9). Nevertheless, it is important to remark that this relationship
holds for the specific quantum models taken into account here, and that the introduction of the
quantum k-NN has demonstrated to be advantageous in terms of performance.

In addition, it is worth observing that the unit-norm normalization required by the amplitude
encoding of data, which is exploited also by the considered quantum models, is characterised by a

85

significant information loss. Indeed, for example, two data samples with the same ratio between
features but different norms are mapped to the same unit vector. This issue could be addressed by
introducing additional ad hoc features, similarly to the approach presented in Chapter 8.

Possible future work includes the evaluation on more complex datasets of quantum pipelines involv-
ing more complex quantum machine learning models, such as the quantum SVM [89], as its classical
counterpart has shown better performance in the pipeline compared to the binary classifier.

86

8 A Euclidean k-NN Algorithm
This chapter is a reworked version of the article “A quantum k-nearest neighbors algorithm based on
the Euclidean distance estimation” [127], which was motivated by the absence in the literature of a
quantum version of the k-NN algorithm utilizing the Euclidean distance as the distance metric. In
practice, in this chapter, a quantum adaptation of the k-NN algorithm, wherein Euclidean distances
are computed using a novel quantum encoding with low qubit demands and a simple quantum circuit,
is introduced. Similarly to other quantum algorithms, an exponential speedup compared to classical
calculations is achieved only if a QRAM is available. Specifically, the performance of the proposed
quantum k-NN, implemented using Qiskit, have been assessed in terms of both classification accuracy
and correctness of identified nearest neighbors (measured using the Jaccard index). The empirical
evaluation on a real quantum device was impeded by the qubit requirements of the considered exper-
iments (no sufficiently large machine was available at the time of running the experiments). Among
other things, the results have shown the correctness of the formulation.

8.1 Method
In this section, the novel quantum k-NN algorithm employing the Euclidean distance metric is intro-
duced. Furthermore, a concise discussion of the algorithm’s complexity in comparison to its classical
counterpart is provided.

8.1.1 Algorithm

In the proposed quantum k-NN algorithm, a quantity related to the squared Euclidean distance
is calculated simultaneously for all training instances. This is achieved through a novel encoding
and a straightforward quantum circuit that implements a SWAP-test-like procedure without using
controlled-SWAP gates. Essentially, the algorithm leverages the quantum interference phenomenon
and encodes these values related to the distances, subsequently estimated via measurements, into the
quantum states amplitudes. It is worth underlining that the input vectors are not subjected to a
unit-norm normalization procedure, which would lead to a significant information loss (as observed in
Section 7.3). Moreover, the algorithm requires a low number of qubits and does not involve any oracle,
which makes its implementation particularly advantageous. A more in-depth and formal description
of this novel algorithm is provided in the following.

8.1.1.1 Data Preprocessing

Let us take into account a training set, denoted as U = {u0, ...,uN−1}, consisting of real-valued data
instances uj ∈ Rd, and let L = {l0, ..., lN−1} represent the set of labels associated with these instances.
Additionally, let u′ ∈ Rd be a test instance with unknown label.

In the preprocessing step of the algorithm, the features are centered and normalized into the range[︂
− 1

2
√
d
, 1
2
√
d

]︂
. This normalization ensures that the resulting vectors have a maximum norm of 1

2 and

a maximum (squared) Euclidean distance of 1.

8.1.1.2 Initial State and Encoding(s)

Let V = {v0, ...,vN−1} and v′ denote the training set and the test instance after the preprocessing
step. The quantum circuit is initialized in state

|ψ⟩ = |0⟩ ⊗
(︃

1√
2

(|0⟩ |α⟩+ |1⟩ |β⟩)
)︃
, (8.1)

where

87

|α⟩ =
1√
N

N−1∑︂
j=0

|j⟩
F−1∑︂
i=0

xji |i⟩ ,

|β⟩ =
1√
N

N−1∑︂
j=0

|j⟩
F−1∑︂
i=0

x′ji |i⟩ .

Here, F denotes a positive integer value dependent on the selected encoding, and xj = {xji}i=0,...,F−1

and x′
j = {x′ji}i=0,...,F−1 correspond to the quantum encoded forms of the preprocessed training and

test data, respectively. Consequently, the required number of qubits is 2+⌈log2N⌉+⌈log2 F ⌉. Specif-
ically, this work introduces and evaluates two encodings, extension and translation, whose advantages
are presented in the next sections. Let us examine their definitions. Concerning the extension encod-
ing, F = 2d+ 3 and

xji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3
vji

2√
3
vj(i−d)

2√
3
∥vj∥

0√︁
1− 4∥vj∥2

x′ji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2√
3
v′i 0 ≤ i < d

− 2√
3
v′(i−d) d ≤ i < 2d

2√
3
∥vj∥ i = 2d√︂
1− 4

3(2∥v′∥2 + ∥vj∥2) i = 2d+ 1

0 i = 2d+ 2,

where vji is the i-th feature of the j-th preprocessed training instance, and v′i is the i-th feature of the
preprocessed test instance. Conversely, for the translation encoding, F = 2d+ 4 and

xji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vji

vj(i−d)

∥vj∥
1
2

0√︂
3
4 − 3∥vj∥2

x′ji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−v′i 0 ≤ i < d

−v′(i−d) d ≤ i < 2d

∥vj∥ i = 2d

−1
2 i = 2d+ 1√︂
3
4 − (2∥v′∥2 + ∥vj∥2) i = 2d+ 2

0 i = 2d+ 3.

Therefore, both encodings require the same number of qubits. Lastly, it is worth observing that, in
both cases, xj (and, consequently, |α⟩) is independent of the preprocessed test instance v′, while x′

j

(and, consequently, |β⟩) is contingent on the preprocessed training set V.

8.1.1.3 Bell-H Operation and Final State

Once the initial state has been prepared, an operation denoted here as Bell-H is executed. Specifically,
the Bell-H is a SWAP-test-like procedure where the initially superimposed states of interest (|α⟩ and
|β⟩) interfere via a CNOT gate. The corresponding quantum circuit, encompassing also the preparation
of the initial state (ending at the dashed vertical line), is

|0⟩
|ψ⟩

H • H

|0⟩ State
init.|0⟩⊗I

|γ⟩ ,

⎫⎪⎬⎪⎭
with I = ⌈log2N⌉ + ⌈log2 F ⌉. Essentially, the Bell-H circuit includes a first Hadamard gate applied
to the first qubit, a CNOT gate having the first qubit as the control and the second qubit as the
target, and a second Hadamard gate applied to the first qubit. Therefore, the distinction with respect
to a standard Bell circuit, commonly employed for generating Bell states, consists in the presence of

88

the second Hadamard gate. Compared to the standard SWAP test, an advantageous aspect is the
constant number of elementary gates used (three), regardless of the size of the involved states, while
a drawback is the increased complexity of the input state preparation, particularly without a QRAM.

The resulting state, after the Bell-H operation, is

|γ⟩ =
1

2

(︃
|0⟩ ⊗

(︃
1√
2

(|0⟩ |α⟩+ |0⟩ |β⟩+ |1⟩ |β⟩+ |1⟩ |α⟩)
)︃

+

|1⟩ ⊗
(︃

1√
2

(|0⟩ |α⟩ − |0⟩ |β⟩+ |1⟩ |β⟩ − |1⟩ |α⟩)
)︃)︃

, (8.2)

and the probability of obtaining 1 by measuring the first qubit is equal to

P (1) = ∥|1⟩ ⟨1|γ⟩∥2 =

=

⃦⃦⃦⃦
1

2
|1⟩ ⊗

(︃
1√
2

(|0⟩ |α⟩ − |0⟩ |β⟩+ |1⟩ |β⟩ − |1⟩ |α⟩)
)︃⃦⃦⃦⃦2

=

=
1

8
(⟨0| ⟨α| − ⟨0| ⟨β|+ ⟨1| ⟨β| − ⟨1| ⟨α|)× (|0⟩ |α⟩ − |0⟩ |β⟩+ |1⟩ |β⟩ − |1⟩ |α⟩) =

=
1

8
(1− ⟨α|β⟩ − ⟨β|α⟩+ 1 + 1− ⟨β|α⟩ − ⟨α|β⟩+ 1) =

=
1

8
(4− 2 ⟨α|β⟩ − 2 ⟨β|α⟩) = (|α⟩ and |β⟩ have real coefficients)

=
1

8
(4− 4 ⟨α|β⟩) =

=
1

2
(1− ⟨α|β⟩).

Now, let us apply some algebraic manipulations. Given the state |γ⟩ (Equation 8.2), let us first extract
the summation over the index register |j⟩ within |α⟩ and |β⟩. This results in a state of the form

1√
N

N−1∑︂
j=0

[...] |j⟩ ,

where [...] encompasses all circuit qubits but those being part of the index register. Subsequently,
let us trace out, i.e., discard, the second circuit qubit and the features register |i⟩ within |α⟩ and
|β⟩. Mathematically, this corresponds to calculating the partial trace over these qubits of the density
operator that describes the system. In this way, a reduced version of the final state that includes only
the first circuit qubit and the index register is obtained; this reduced version can be expressed as

1√
N

N−1∑︂
j=0

[︂√︁
P (0 | j) |0⟩+

√︁
P (1 | j) |1⟩

]︂
|j⟩ .

Ultimately, let us leverage the derivation illustrated above. In practical terms, P (1 | j) is equal to
1
2(1 − ⟨xj ,x

′
j⟩), as the summation over the index register (along with its coefficient) has been pulled

out. Moreover, P (0 | j) must be equal to 1− P (1 | j) according to the law of total probability. These
considerations lead to the following definition of the reduced final state:

|δ⟩ =
1√
N

N−1∑︂
j=0

[︃√︂
1− s(vj ,v′) |0⟩+

√︂
s(vj ,v′) |1⟩

]︃
|j⟩ , (8.3)

where

s(vj ,v
′) = P (qubit1 = 1 | j) =

1

2
(1− ⟨xj ,x

′
j⟩), (8.4)

with qubit1 being the first qubit in the circuit. Essentially, s(vj ,v
′) is a similarity measure related to

the squared Euclidean distance between vj and v′. Indeed, a lower distance corresponds to a higher

89

Table 8.1: Properties of the two encodings. Notice that the range of values of s(vj ,v
′) is determined

by the preprocessed test instance v′ (taken from [127]).

Extension Translation

⟨xj ,x
′
j⟩ value 4

3(∥vj∥2 − 2⟨vj ,v
′⟩) ∥vj∥2 − 2⟨vj ,v

′⟩ − 1
4

Minimum s(vj ,v
′) range [0.333, 0.5] [0.5, 0.625]

Maximum s(vj ,v
′) range [0, 0.666] [0.25, 0.75]

s(vj ,v
′) value. Concerning ⟨xj ,x

′
j⟩, its value depends on the selected encoding (see Table 8.1).

Examining the first row of Table 8.1, two aspects become clear: ⟨xj ,x
′
j⟩ is directly related to

the squared Euclidean distance between vj and v′ (in both cases), and the term ∥v′∥2 is absent.
The latter is not a problem, as ∥v′∥2 is the same across all training instances. Instead, the second
and third rows of the same table allow elucidating the strengths of each encoding. Specifically, the
extension encoding maximises the range of values of s(vj ,v

′), enabling a more robust representation
of the similarity values, less susceptible to the presence of noise. Conversely, the translation encoding
maximises the probability of obtaining 1 by measuring the first qubit, a favorable scenario for reasons
that will be clarified in the subsequent section. Lastly, it is important to notice that the range of
s(vj ,v

′) is determined by v′. In detail, the minimum range is given by a test instance with norm 0,
while the maximum range is given by a test instance with norm 1

2 (the maximum allowed value).

8.1.1.4 Measurements and Distance Estimate(s)

After executing the Bell-H operation, the qubits present in Equation (8.3), namely, the first circuit
qubit and the index register |j⟩, are measured. More precisely, the first qubit in the circuit is the first
one to be measured. In this way, upon obtaining 1 (0), the nearest neighbors indices will have the
highest (lowest) probability values. If the index register qubits were measured first, the probability
distribution would be uniform. By repeating the execution of the circuit and the measurement process,
the joint probabilities P (0, j) and P (1, j) are estimated as relative frequencies, enabling the estimation
of the Euclidean distances. In fact, the following relationships apply:

P (0, j) =
1 + ⟨xj ,x

′
j⟩

2N
=⇒ ⟨xj ,x

′
j⟩ = 2N × P (0, j)− 1, (8.5)

P (1, j) =
1− ⟨xj ,x

′
j⟩

2N
=⇒ ⟨xj ,x

′
j⟩ = 1− 2N × P (1, j). (8.6)

Furthermore, for the extension encoding (refer to Table 8.1),

d(vj ,v
′) =

√︃
3

4
⟨xj ,x′

j⟩+ ∥v′∥2, (8.7)

with d(vj ,v
′) being the Euclidean distance between vj and v′, whereas, for the translation encoding,

d(vj ,v
′) =

√︃
⟨xj ,x′

j⟩+
1

4
+ ∥v′∥2. (8.8)

Independently of the chosen encoding, it is possible to estimate the Euclidean distances d(vj ,v
′)

starting from either P (0, j) or P (1, j). In this study, two methods for combining the information carried
by the two joint probabilities have been developed and evaluated, namely, avg and diff. Specifically,
the avg distance estimate corresponds to the mean of the Euclidean distance estimated from P (0, j)
and the Euclidean distance estimated from P (1, j). Conversely, for the diff distance estimate, the
scalar product value is determined as

⟨xj ,x
′
j⟩ = N × (P (0, j)− P (1, j)),

and the Euclidean distance is obtained through Equation (8.7) or (8.8), depending on the encoding.

90

Lastly, two aspects are worth to be mentioned. To this end, let us take into account two prepro-
cessed training instances vj1 and vj2 , with j1, j2 ∈ {0, ..., N − 1}, and the preprocessed test instance
v′. Let d0(vj1 ,v

′) and d1(vj1 ,v
′) denote the Euclidean distances from v′ estimated from the joint

probabilities P (0, j1) and P (1, j1) for vj1 (the same for vj2). The following relationships apply:

avg =
d0(vj1 ,v

′) + d1(vj1 ,v
′)

2
,

diff =

√︃
d0(vj1 ,v

′)2 + d1(vj1 ,v
′)2

2
.

The first one is the definition of the avg distance estimate, while the latter can be verified using Equa-
tion (8.7) (or 8.8, depending on the chosen encoding) in conjunction with Equations (8.5) and (8.6).
Then, the preprocessed training instances vj1 and vj2 might be arranged differently based on the avg
and diff distance estimates. Indeed, let us consider the following situation:

d0(vj1 ,v
′) = 0.5 d0(vj2 ,v

′) = 0.4

d1(vj1 ,v
′) = 0.29 d1(vj2 ,v

′) = 0.4 .

In the considered scenario, the avg distance estimates for vj1 and vj2 are 0.395 and 0.4, respectively,
whereas the diff distance estimates are 0.409 and 0.4, respectively. Therefore, vj1 is closer than
vj2 (to v′) according to avg but further according to diff. Secondly, assuming that d0(vj1 ,v

′) and
d1(vj1 ,v

′) can be mathematically calculated, i.e., the arguments of the square root in Equation (8.7)
(or 8.8, depending on the chosen encoding) are non-negative, the avg distance estimate is consistently
lower than or equal to the corresponding diff estimate. Indeed, the contrary would be true only if
(d0(vj1 ,v

′)− d1(vj1 ,v
′))2 < 0, which is not feasible. In cases where the assumption about the square

root arguments does not hold because of the state counts obtained, it is possible for the avg distance
estimate to be higher than the corresponding diff estimate due to the policy adopted in the current
implementation (which is presented in Section 8.2).

8.1.1.5 k Nearest Neighbors and Classification

After estimating all the Euclidean distances d(vj ,v
′), the training samples are classically sorted based

on them. Subsequently, the k nearest neighbors are determined, and the test instance is classified
through a majority voting based on the nearest neighbors labels.

8.1.2 Complexity Observations

In terms of complexity, the proposed quantum k-NN algorithm differs from its classical counterpart
in the estimation/computation of the Euclidean distances. In fact, the preprocessing of data, the
identification of the k nearest neighbors (by means of a distance sorting operation), and the label
prediction are executed classically in both instances.

The classical k-NN algorithm computes the exact Euclidean distances with a complexity of O(Nd).
In contrast, the quantum k-NN algorithm only estimates the Euclidean distances. To do this, multiple
shots, i.e., measurements, iterations, are required. Specifically, each iteration involves preparing the
initial state, executing the Bell-H quantum circuit, and measuring the qubits state. The complexity of
the initial state preparation depends on the availability of a QRAM. Indeed, with a QRAM, assuming
that the real values xji and x′ji are stored as classical floating point numbers, the preparation of
the initial state has a complexity of O(log(NF)). This results from the possibility of retrieving
the states |α⟩ and |β⟩ from the QRAM with a complexity of O(log(NF)). In the absence of a

QRAM, the desired state must be prepared starting from |0⟩⊗(1+I), and the required number of
gates varies depending on the quantum processor’s architecture. On the other hand, the Bell-H
quantum circuit involves a constant number of elementary gates, resulting in a complexity of O(1).
The complexity of the measurement step is also constant, as the measurements are simultaneous.
Eventually, provided the state counts, computing the distance estimates has a complexity of O(N).
Therefore, if a QRAM is available, the overall complexity becomes O(shots × log(NF) + N), which
corresponds to O(shots × (logN + log d) + N). It is important to observe that as N increases, the
number of shots required for properly estimating the Euclidean distances also increases. In conclusion,

91

assuming a fixed value of shots, estimating the Euclidean distances in the quantum k-NN algorithm
has a complexity of O(log d+N), which is less than O(Nd). Conversely, assuming that shots depends
logarithmically on N , the complexity is O(logN log d+N), thus still lower than O(Nd).

8.2 Implementation
This section provides details about the implementation of the Euclidean distance quantum k-NN
algorithm introduced in Section 8.1. Specifically, the algorithm has been implemented in Python
using Qiskit, i.e., the open-source software development kit supplied by IBM [3]. The code, available
at https://github.com/ZarHenry96/euclidean-quantum-k-nn, supports various execution modes,
including:

• classical, which, after performing the preprocessing step described in Section 8.1.1.1, executes
a classical k-NN algorithm with the Euclidean distance metric. Thus, it does not involve any
quantum circuit;

• statevector, representing an ideal execution with infinite iterations. In practice, the final state
vector of the circuit is processed in order to provide the output. Hence, no measurement is
performed in this case;

• simulation, called local simulation in the code, which provides state counts by sampling from
the final probability distribution of the circuit.

No noise is considered in these modalities, and a representative circuit for the simulation mode is
provided in Figure 8.1.

The implementation of the algorithm follows the description provided in Section 8.1.1, but some
technical details are worth to be mentioned. Regarding the preprocessing step, the normalization of
each data feature is performed by subtracting the mean of the maximum and minimum feature values
in the training set, and dividing by the feature range (calculated on the training data, and set to 1
in the case of a constant feature) multiplied by

√
d. Additionally, a clipping operation is applied to

test instance features exceeding the target range. Now, let us consider the execution modes involving
quantum circuits, as the classical one is straightforward. In detail, the initial state preparation is
accomplished by computing the amplitudes of all qubits except the first one (being in state |0⟩ by
default) and providing them as input to Qiskit’s initialization function. Concerning the indices not
corresponding to training instances (present when N is not a power of 2), they are retained in the joint
probabilities estimation and excluded in the distance values calculation. Furthermore, if the square

q0

q1

q2

q3

q4

q5

q6

3
c

0

1

2

3

4

5

[0.144, 0.0217, 0, 0.0217, − 0.144, 0.0217, 0.0794, 0.0217, 0.144, 0.0361, 0, 0.0361, − 0.144, 0.0361, 0.123, 0.0361, . . .]

State init.

H H

0 1 2

Figure 8.1: Example of quantum circuit for the quantum k-NN based on the Euclidean distance. In
this case, N = 4, d = 2, and the execution modality is simulation (statevector does not include the
final measurements) (taken from [127]).

92

https://github.com/ZarHenry96/euclidean-quantum-k-nn

root argument in Equation (8.7) or (8.8) is negative or exceeds 1 because of the state counts obtained,
the distance value is set to 0 and 1, respectively. Lastly, training instances with the same Euclidean
distance are arranged by increasing training set index (this also applies to the classical execution
modality).

In conclusion, it is worth mentioning that, in the simulation mode, Laplace smoothing [119] has
been used in the joint probabilities estimation. Basically, for a given number of counts c for the state
|a⟩ |j⟩, with a ∈ {0, 1}, the probability value P (a, j) is estimated as

P (a, j) =
c+ p

shots + 2Np
,

with p being the number of pseudocounts introduced for each state, and shots being the total number
of measurements (iterations). Specifically, pseudocounts are added only to the counts of the significant
indices, namely, the indices corresponding to existing training instances.

8.3 Empirical Evaluation

In this section, the evaluated methods, the chosen datasets, the experimental setup used, and the
obtained results are described. Specifically, the experiments have been executed on a shared machine
equipped with an Intel Xeon Gold 6238R processor running at 2.20 GHz and 125 GB of RAM.

8.3.1 Methods

The Euclidean distance quantum k-NN presented in Section 8.1 has been evaluated under different
execution modalities and (encoding, distance estimate) configurations, as detailed in Table 8.2. Exper-
iments on real quantum machines have not been executed since large-enough free-access devices were
not available at the time of running the experiments. Additionally, for comparison purposes, a few
classical baseline methods (enumerated in the same table) have been taken into account. Specifically,
the results data for these last methods have been taken from the work by Zardini et al. [128] (more
precisely, from the associated figshare repository [126]), thus they are the same results data presented
in Section 7.2.4.6.

Table 8.2: Methods tested (taken from [127]).

Quantum k-NN with Euclidean distance

Execution modality Encoding Distance estimate

classical - -

statevector extension, translation avg, diff

simulation extension, translation avg, diff

Baseline methods

k-NN with cosine distance

random forest (100 trees)

SVM with {Gaussian, linear} kernel

8.3.2 Datasets

The datasets employed in these experiments have been fetched from the work by Zardini et al. [128]
(specifically, from the associated figshare repository [125]), primarily to ensure the comparability with
the baseline methods results. Hence, details about the selection criteria and the preprocessing steps
can be found in Section 7.2.2, as it is based on that article. In particular, the datasets employed here,
which have also been uploaded to a dedicated figshare repository [124], correspond to the versions
without subsampling listed in Table 7.2. For the sake of convenience, their properties are reported in
Table 8.3.

93

Table 8.3: Properties of the datasets used. Note that the dataset names are links leading to the UCI
pages of the original versions of the datasets (taken from [127]).

Name Classes Size Features

01 iris setosa versicolor 2 100 4

01 iris setosa virginica 2 100 4

01 iris versicolor virginica 2 100 4

02 transfusion [122] 2 748 4

03 vertebral column 2C 2 310 6

04 seeds 1 2 2 140 7

05 ecoli cp im 2 220 7

06 glasses 1 2 2 146 9

07 breast tissue adi fadmasgla 2 71 9

08 breast cancer [83] 2 116 9

09 accent recognition uk us 2 210 12

10 leaf 11 9 [108] 2 30 14

8.3.3 Experimental Setup

In these experiments, the stratified κ-fold cross-validation has been chosen as the validation technique.
Essentially, each dataset is partitioned into κ folds (subsets). Subsequently, κ− 1 folds are designated
as the training set, while the remaining one represents the test set. This last step is iterated κ times,
ensuring that each subset is employed once as the test set. The term “stratified” indicates that the
class ratio in the folds is maintained as close as possible to that of the original dataset. Moreover, the
same seed has been used for the folds generation across all experiments, guaranteeing that all methods
have been tested on the same folds.

The parameter setup used for the quantum k-NN experiments is detailed in Table 8.4. Specifi-
cally, for all execution modes, the number of folds (folds) has been set to 5, a typical choice in ML.
Additionally, four distinct values for the number of nearest neighbors selected (k) have been assessed.
Regarding the simulation mode, all (encoding, distance estimate) configurations have been evaluated
with 1024 measurements (shots), the default value in Qiskit, and only the best-performing one has
been tested with other values. The number of pseudocounts for Laplace smoothing has been arbi-
trarily established at 10, and 5 runs (with distinct seeds) have been executed for obtaining statistical
evidence. In particular, the simulation seed for each test sample has been randomly generated from
a “root” run seed. Lastly, it is important to mention that the evaluation of the different k values
has been performed using distinct seeds, while the avg and diff distance estimates have been assessed
on the same seeds (i.e., for each test sample, the two distance estimates have been calculated with
identical state counts).

Concerning the baseline methods taken into account for comparison, as explained in Section 7.2.3,
a standard min-max normalization procedure had been applied to the input data features, resulting
in an output range of [0, 1]. In addition, the classical k-NN with cosine distance metric had been
evaluated using the same number of folds, folds generation seed, and k values used for the quantum
k-NN. Given its stochastic nature, five runs had also been executed for the random forest.

Table 8.4: Parameter setup for the quantum k-NN experiments (taken from [127]).

Common parameters

folds 5

k 3, 5, 7, 9

Simulation parameters

shots 512a, 1024, 2048a, 4096a, 8192a

pseudocounts 10

runs 5

a Only the best (encoding, distance estimate) configuration of the quantum k-NN has been tested with this

number of shots.

94

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Vertebral+Column
https://archive.ics.uci.edu/ml/datasets/seeds
https://archive.ics.uci.edu/ml/datasets/Ecoli
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra
https://archive.ics.uci.edu/ml/datasets/Speaker+Accent+Recognition
https://archive.ics.uci.edu/ml/datasets/Leaf

8.3.4 Results

The results are presented using scatterplots and boxplots. Specifically, the quantum k-NN’s perfor-
mance have been assessed in terms of both classification accuracy and correctness of the identified
nearest neighbors, while, for the baseline methods, only the classification accuracy has been taken into
account. In more detail, for given a fold, the accuracy is defined as

accuracy =
number of correctly classified instances in the fold

total number of instances in the fold

(this definition coincides with the one provided in Equation 7.3). In cases involving multiple runs, the
average value across runs is reported. Concerning the correctness of the identified nearest neighbors,
the Jaccard index and the Average Jaccard score [40] have been considered. In detail, for a given test
instance, the Jaccard index (JI) is defined as

Jaccard index (JI) =
|Sc ∩ Sf |
|Sc ∪ Sf |

,

with Sc denoting the (classically computed) set of correct nearest neighbors, and Sf representing the
set of identified nearest neighbors. Since each test sample has a corresponding Jaccard index value,
the mean value has been taken into account for each fold, and the average of these average values
across runs is reported. The same approach has been applied for the Average Jaccard (AJ) score,
which, for a given test sample, is defined as

Average Jaccard (AJ) =
1

k

k∑︂
m=1

h(Scm,Sfm) ,

with k being the number of nearest neighbors selected, h being the function that calculates the Jaccard
index, and Scm being the set that comprises the correct nearest neighbors up to the m-th most similar
element (the same holds for Sfm). Lastly, the statistical significance of the results has been evaluated
via the Wilcoxon signed-rank test [116], given the paired nature of the data. In certain cases (difference
boxplots), the one-sample T-test [39] has also been considered.

8.3.4.1 Execution Modalities Comparison

Let us focus first on the classical and statevector execution modalities. According to Figure 8.2, these
modalities are equivalent in terms of accuracy (Figure 8.2a), Jaccard index (Figure 8.2b), and Average
Jaccard score (Figure 8.2c). This is also confirmed by the Wilcoxon signed-rank test, whose results are
reported in Table 8.5. In particular, only one statevector configuration, namely, (extension, avg), is
showcased here. However, the results are the same for all of them1. This demonstrates the correctness
of the algorithm introduced in Section 8.1, as it achieves identical results to its classical counterpart
in the ideal case. It is also crucial to recall that the quantum algorithm’s advantage over its classical
counterpart consists in the execution time.

Next, let us consider the statevector and simulation execution modalities. Figure 8.3 displays the
comparison in terms of accuracy (Figure 8.3a), Jaccard index (Figure 8.3b), and Average Jaccard score
(Figure 8.3c) for the (extension, avg) configuration. In practice, statevector statistically outperforms
simulation with 1024 shots in both classification accuracy and correctness of the identified nearest
neighbors, as confirmed by Table 8.6, demonstrating a significant drop in performance when simulating
the algorithm with a limited number of shots. Specifically, the degradation is more pronounced for the
Jaccard index and the Average Jaccard score. These findings are valid also for the other (encoding,
distance estimate) configurations, as shown in Figures 8.4 to 8.6 and Tables 8.7 to 8.9.

1Actually, in the case of the translation encoding, the Average Jaccard score for a single fold of a single dataset has
turned out to be lower than that of classical. The reason is the swap, for some test samples, of two nearest neighbors,
caused by the numerical approximation of the distance values. Nevertheless, the difference is not statistically significant
(p-value=0.317 for all k values).

95

0.2 0.4 0.6 0.8 1.0

Accuracy classical

0.2

0.4

0.6

0.8

1.0
A

c
c
u
ra

c
y
 s

ta
te

v
e
c
to

r
(e

x
te

n
s
io

n
,

a
v
g
)

k=3

k=5

k=7

k=9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Average JI classical

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 J
I
s
ta

te
v
e
c
to

r
(e

x
te

n
s
io

n
,

a
v
g
)

k=3

k=5

k=7

k=9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Average AJ classical

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 A

J
s
ta

te
v
e
c
to

r
(e

x
te

n
s
io

n
,

a
v
g
)

k=3

k=5

k=7

k=9

(c)

Figure 8.2: Comparison between classical and statevector execution modalities in terms of accuracy
(a), Jaccard index (b), and Average Jaccard score (c). The configuration used for statevector is
(extension, avg), but the results are the same for all configurations. Each point is related to a dataset
fold (taken from [127]).

Table 8.5: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.2. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.2a 1.000 1.000 1.000 1.000

Figure 8.2b 1.000 1.000 1.000 1.000

Figure 8.2c 1.000 1.000 1.000 1.000

0.2 0.4 0.6 0.8 1.0

Accuracy statevector (extension, avg)

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

e
x
te

n
s
io

n
,

a
v
g
)

k=3

k=5

k=7

k=9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Average JI statevector (extension, avg)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 J
I
s
im

u
la

ti
o
n
 (

e
x
te

n
s
io

n
,

a
v
g
)

k=3

k=5

k=7

k=9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Average AJ statevector (extension, avg)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 A

J
s
im

u
la

ti
o
n
 (

e
x
te

n
s
io

n
,

a
v
g
)

k=3

k=5

k=7

k=9

(c)

Figure 8.3: Comparison between statevector (extension, avg) and simulation (extension, avg) in terms
of accuracy (a), Jaccard index (b), and Average Jaccard score (c). The number of shots for simulation
is 1024, and each point is related to a dataset fold (taken from [127]).

Table 8.6: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.3. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.3a 1.624E-10 1.622E-10 5.140E-10 1.608E-09

Figure 8.3b 1.626E-11 1.630E-11 1.629E-11 1.630E-11

Figure 8.3c 1.629E-11 1.630E-11 1.630E-11 1.630E-11

96

0.2 0.4 0.6 0.8 1.0

Accuracy statevector (extension, diff)

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

e
x
te

n
s
io

n
,

d
if
f) k=3

k=5

k=7

k=9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Average JI statevector (extension, diff)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 J
I
s
im

u
la

ti
o
n
 (

e
x
te

n
s
io

n
,

d
if
f)

k=3

k=5

k=7

k=9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Average AJ statevector (extension, diff)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 A

J
s
im

u
la

ti
o
n
 (

e
x
te

n
s
io

n
,

d
if
f)

k=3

k=5

k=7

k=9

(c)

Figure 8.4: Comparison between statevector (extension, diff) and simulation (extension, diff) in terms
of accuracy (a), Jaccard index (b), and Average Jaccard score (c). The number of shots for simulation
is 1024, and each point is related to a dataset fold (taken from [127]).

Table 8.7: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.4. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.4a 1.106E-10 1.106E-10 7.530E-11 1.719E-10

Figure 8.4b 1.628E-11 1.629E-11 1.630E-11 1.630E-11

Figure 8.4c 1.630E-11 1.630E-11 1.630E-11 1.630E-11

0.2 0.4 0.6 0.8 1.0

Accuracy statevector (translation, avg)

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Average JI statevector (translation, avg)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 J
I
s
im

u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Average AJ statevector (translation, avg)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 A

J
s
im

u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(c)

Figure 8.5: Comparison between statevector (translation, avg) and simulation (translation, avg) in
terms of accuracy (a), Jaccard index (b), and Average Jaccard score (c). The number of shots for
simulation is 1024, and each point is related to a dataset fold (taken from [127]).

Table 8.8: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.5. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.5a 1.234E-10 3.492E-10 3.492E-10 6.149E-10

Figure 8.5b 1.628E-11 1.630E-11 1.630E-11 1.630E-11

Figure 8.5c 1.630E-11 1.630E-11 1.630E-11 1.630E-11

97

0.2 0.4 0.6 0.8 1.0

Accuracy statevector (translation, diff)

0.2

0.4

0.6

0.8

1.0
A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

d
if
f)

k=3

k=5

k=7

k=9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Average JI statevector (translation, diff)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 J
I
s
im

u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

d
if
f)

k=3

k=5

k=7

k=9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Average AJ statevector (translation, diff)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 A

J
s
im

u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

d
if
f)

k=3

k=5

k=7

k=9

(c)

Figure 8.6: Comparison between statevector (translation, diff) and simulation (translation, diff) in
terms of accuracy (a), Jaccard index (b), and Average Jaccard score (c). The number of shots for
simulation is 1024, and each point is related to a dataset fold (taken from [127]).

Table 8.9: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.6. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.6a 1.379E-10 1.712E-10 7.516E-11 2.523E-10

Figure 8.6b 1.627E-11 1.629E-11 1.630E-11 1.630E-11

Figure 8.6c 1.629E-11 1.630E-11 1.630E-11 1.630E-11

8.3.4.2 Encodings and Distance Estimates Comparison

This analysis focuses solely on the simulation modality (with 1024 shots) as all (encoding, distance
estimate) configurations have obtained identical results in the case of the statevector modality (the dis-
tance estimates are exact in the ideal case). Specifically, the comparisons are illustrated via difference
boxplots, in which each point depicts the difference for a (dataset fold, k value) pair. The comparisons
in terms of accuracy, Jaccard index, and Average Jaccard score are provided in Figure 8.7.

Regarding the classification accuracy (Figure 8.7a), the best results have been obtained by the
(translation, avg) configuration, which has statistically outperformed all the others, as reported in
Table 8.10a. Overall, the translation encoding has demonstrated superior performance compared to
the extension encoding in terms of accuracy. In addition, with the same encoding, the avg distance
estimate has exhibited better performance than the diff distance estimate. Eventually, it is worth
observing that all the differences are statistically significant with respect to both median (Wilcoxon
signed-rank test) and mean (one-sample T-test), excluding the (extension, avg) - (translation, diff)
comparison in terms of median.

Unexpectedly, the configuration that has achieved the highest classification accuracy differs from
the configuration that has identified the best nearest neighbors. In fact, as shown in Figure 8.7b,
the configuration that has performed the best in terms of Jaccard index is (extension, avg), and
its difference with respect to the other configurations is almost always significant, as indicated in
Table 8.10b. Overall, the extension encoding has performed better than the translation encoding
in terms of Jaccard index. Instead, no distance estimate has clearly outperformed the other one in
this case. Indeed, with the extension encoding, the avg distance estimate has achieved better results,
while, with the translation encoding, the diff distance estimate has performed better. The majority of
the differences are statistically significant in both median and mean, with a few exceptions such as the
(extension, avg) - (extension, diff) comparison in mean, and the (translation, avg) - (translation, diff)
comparison for both statistics. Concerning the Average Jaccard score (Figure 8.7c), a similar trend
is observed, with (extension, avg) emerging as the best configuration. Nevertheless, in this case, the
extension encoding with the diff distance estimate has achieved the worst results. This means that,
among the k nearest neighbors returned by this configuration, the correct ones are the most dissimilar

98

(extension, avg)
-

(extension, diff)

(extension, avg)
-

(translation, avg)

(extension, avg)
-

(translation, diff)

(extension, diff)
-

(translation, avg)

(extension, diff)
-

(translation, diff)

(translation, avg)
-

(translation, diff)

Configurations compared

−0.4

−0.2

0.0

0.2

0.4

D
if
fe

re
n
c
e
 i
n
 a

v
e
ra

g
e
 a

c
c
u
ra

c
y

mean

median

zero diff.

(a)

(extension, avg)
-

(extension, diff)

(extension, avg)
-

(translation, avg)

(extension, avg)
-

(translation, diff)

(extension, diff)
-

(translation, avg)

(extension, diff)
-

(translation, diff)

(translation, avg)
-

(translation, diff)

Configurations compared

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

D
if
fe

re
n
c
e
 i
n
 a

v
e
ra

g
e
 J
I

mean

median

zero diff.

(b)

(extension, avg)
-

(extension, diff)

(extension, avg)
-

(translation, avg)

(extension, avg)
-

(translation, diff)

(extension, diff)
-

(translation, avg)

(extension, diff)
-

(translation, diff)

(translation, avg)
-

(translation, diff)

Configurations compared

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

D
if
fe

re
n
c
e
 i
n
 a

v
e
ra

g
e
 A

J

mean

median

zero diff.

(c)

Figure 8.7: Comparison of (encoding, distance estimate) configurations in terms of accuracy (a),
Jaccard index (b), and Average Jaccard score (c) for the simulation execution modality. The number
of shots is 1024, and each data point corresponds to the difference for a (dataset fold, k value) pair
(taken from [127]).

99

Table 8.10: Wilcoxon signed-rank test and one-sample T-test applied to the distributions shown
in Figure 8.7a (a), Figure 8.7b (b), and Figure 8.7c (c). Each column corresponds to a different
comparison, and the first letter identifies the encoding (E=extension, T=translation), while the second
letter identifies the distance estimate (A=avg, D=diff). The values reported in the tables are the p-
values obtained (α= 0.05) (taken from [127]).

(a)

EA-ED EA-TA EA-TD ED-TA ED-TD TA-TD

Wilcoxon 9.378E-26 3.019E-05 0.069 1.771E-24 1.539E-21 1.084E-09

T-test 1.236E-27 3.706E-07 0.001 1.404E-20 2.037E-18 2.492E-09

(b)

EA-ED EA-TA EA-TD ED-TA ED-TD TA-TD

Wilcoxon 0.003 8.888E-09 1.917E-07 0.010 0.043 0.104

T-test 0.054 6.775E-07 1.102E-05 0.001 0.005 0.054

(c)

EA-ED EA-TA EA-TD ED-TA ED-TD TA-TD

Wilcoxon 1.556E-07 0.002 0.008 0.315 0.111 0.043

T-test 6.693E-07 0.057 0.202 0.735 0.374 0.123

ones. Moreover, in the case of the Average Jaccard score, few differences turn out to be statistically
significant, as detailed in Table 8.10c. Notably, the (extension, avg) configuration has statistically
outperformed all the others in median and (extension, diff) also in mean.

8.3.4.3 Comparison with Baseline Methods

Several classical baseline methods have been considered for comparison. In particular, Figure 8.8
displays the comparison in terms of classification accuracy between the baseline methods and the
statevector modality in the (translation, avg) configuration. However, it is worth noting that the
configuration chosen for statevector is irrelevant, as elucidated in the preceding sections. Essentially,
in the ideal case, the Euclidean distance quantum k-NN statistically outperforms both the classical
k-NN with the cosine distance metric (Figure 8.8a) and the SVM with the linear kernel (Figure 8.8d),
as reported in Table 8.11. Conversely, both the random forest (Figure 8.8b) and the SVM with
the Gaussian kernel (Figure 8.8c) perform better than it. However, the only statistically significant
difference observed is the one with the SVM with the Gaussian kernel, for k = 3.

Analogous plots for the simulation modality in the (translation, avg) configuration, which has
obtained the best results in classification accuracy, are provided in Figure 8.9. In detail, all the
considered baseline methods have statistically outperformed the proposed quantum k-NN in the sim-
ulation modality, as reported in Table 8.12.

8.3.4.4 Number of Shots Analysis

This final analysis explores the correlation between number of shots (measurements) and performance
for the simulation modality. Specifically, in this case, only the best-performing quantum k-NN config-
uration, namely, the (extension, avg) configuration, has been taken into account. Indeed, the primary
objective of the quantum k-NN is to accurately identify the k nearest neighbors, and the configura-
tion in question has obtained the highest Jaccard index and Average Jaccard score, as illustrated in
Section 8.3.4.2. The results are shown in Figure 8.10, utilizing difference boxplots with 512 as the
baseline number of shots.

In practical terms, the higher the number of shots, the better the performance of the quantum
k-NN. Specifically, this trend is more pronounced for both the Jaccard index (Figure 8.10b) and
the Average Jaccard score (Figure 8.10c). However, the differences in absolute value are smaller
when compared to those related to the accuracy (Figure 8.10a). Moreover, almost all differences are
statistically significant in both median (Wilcoxon signed-rank test) and mean (one-sample T-test), as

100

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy k-NN cosine

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 s

ta
te

v
e
c
to

r
(t

ra
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average accuracy random forest

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 s

ta
te

v
e
c
to

r
(t

ra
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy SVM Gaussian

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 s

ta
te

v
e
c
to

r
(t

ra
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(c)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy SVM linear

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 s

ta
te

v
e
c
to

r
(t

ra
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(d)

Figure 8.8: Comparison between some classical baseline methods and statevector in terms of accu-
racy. The configuration used for statevector is (translation, avg), but the results are the same for all
configurations. Each point is related to a dataset fold (taken from [127]).

Table 8.11: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.8. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.8a 0.003 0.001 6.502E-05 8.149E-05

Figure 8.8b 0.074 0.165 0.095 0.258

Figure 8.8c 0.046 0.407 0.103 0.062

Figure 8.8d 0.045 0.005 0.012 0.007

101

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy k-NN cosine

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average accuracy random forest

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy SVM Gaussian

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(c)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy SVM linear

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 s

im
u
la

ti
o
n
 (

tr
a
n
s
la

ti
o
n
,

a
v
g
)

k=3

k=5

k=7

k=9

(d)

Figure 8.9: Comparison between some classical baseline methods and simulation (translation, avg) in
terms of accuracy. The number of shots for simulation is 1024, and each point is related to a dataset
fold (taken from [127]).

Table 8.12: Wilcoxon signed-rank test (α= 0.05) applied to the distributions shown in Figure 8.9. The
values reported in the table are the p-values obtained (taken from [127]).

k=3 k=5 k=7 k=9

Figure 8.9a 2.147E-10 5.660E-10 8.949E-10 1.210E-09

Figure 8.9b 1.105E-10 2.521E-10 3.705E-10 6.632E-10

Figure 8.9c 1.105E-10 2.380E-10 3.494E-10 3.500E-10

Figure 8.9d 3.172E-10 3.976E-10 1.299E-09 3.502E-10

102

1024 2048 4096 8192

Number of shots s compared with 512 (s - 512)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

D
if
fe

re
n
c
e
 i
n
 a

v
e
ra

g
e
 a

c
c
u
ra

c
y

mean

median

zero diff.

(a)

1024 2048 4096 8192

Number of shots s compared with 512 (s - 512)

−0.2

−0.1

0.0

0.1

0.2

0.3

D
if
fe

re
n
c
e
 i
n
 a

v
e
ra

g
e
 J
I

mean

median

zero diff.

(b)

1024 2048 4096 8192

Number of shots s compared with 512 (s - 512)

−0.2

−0.1

0.0

0.1

0.2

0.3

D
if
fe

re
n
c
e
 i
n
 a

v
e
ra

g
e
 A

J

mean

median

zero diff.

(c)

Figure 8.10: Comparison of different numbers of shots in terms of accuracy (a), Jaccard index (b), and
Average Jaccard score (c) for the simulation execution modality in the (extension, avg) configuration.
Each data point corresponds to the difference for a (dataset fold, k value) pair (taken from [127]).

103

Table 8.13: Wilcoxon signed-rank test and one-sample T-test applied to the distributions shown in
Figure 8.10a (a), Figure 8.10b (b), and Figure 8.10c (c). The values reported in the tables are the
p-values obtained (α= 0.05) (taken from [127]).

(a)

1024-512 2048-512 4096-512 8192-512

Wilcoxon 0.001 3.131E-07 2.432E-11 6.830E-11

T-test 0.473 5.648E-05 3.016E-08 7.904E-11

(b)

1024-512 2048-512 4096-512 8192-512

Wilcoxon 1.151E-17 5.672E-33 4.761E-38 1.393E-40

T-test 4.330E-17 5.712E-26 1.955E-30 1.561E-38

(c)

1024-512 2048-512 4096-512 8192-512

Wilcoxon 1.977E-11 8.804E-30 2.327E-37 1.030E-39

T-test 3.037E-09 6.719E-23 1.862E-27 3.622E-33

indicated in Table 8.13, with the only exception being the 1024−512 comparison in terms of mean for
the accuracy. Lastly, it is important to mention that, for a larger dataset, a higher number of shots is
necessary to properly estimate the joint probability values.

8.4 Discussion
In this chapter, a new Euclidean distance quantum k-NN algorithm has been proposed and empirically
evaluated. Specifically, two novel (and different) encodings of the input data into the quantum states
amplitudes, not necessitating unit-norm normalization and requiring a low number of qubits, have been
introduced. The quantum circuit used, not involving oracles, implements a SWAP-test-like procedure
with a fixed number of elementary gates, enabling the parallel computation of quantities related to
the pairwise Euclidean distances. In addition, two methods for estimating the Euclidean distance
values, given the state counts resulting from the repeated measurements, have been presented. The
final steps, namely, the training data sorting and the classification, are performed classically.

Concerning the empirical evaluation, the algorithm has been implemented in Python, using Qiskit,
and tested on real-world datasets. The results have shown that, in the ideal case, the proposed
quantum k-NN is equivalent to its classical counterpart in terms of both classification accuracy and
nearest neighbors extraction, demonstrating the correctness of the formulation (the advantage of the
proposed algorithm lies in the execution time). However, when simulating the algorithm with a finite
number of measurements (1024), a significant drop in performance has been observed, regardless of
the (encoding, distance estimate) configuration used. Among the tested configurations, (extension,
avg) has turned out to be the best one. Indeed, although (translation, avg) has achieved the highest
classification accuracy, the main objective of the algorithm is to identify the nearest neighbors, task
in which (extension, avg) has obtained the best results (note that the distance estimate is avg in both
cases). Concerning the classical baseline methods taken into account, half of them have outperformed
the quantum k-NN in the ideal case, while all of them have outperformed the simulated version with
1024 shots. Lastly, the analysis regarding the number of measurements has confirmed that it is possible
to enhance the algorithm’s performance, when simulated, by increasing the number of shots.

Future investigations could involve evaluating the proposed model on different datasets, using a
higher number of shots, and on real quantum devices, where noise is present.

104

9 Conclusion
In this thesis, several hybrid classical-quantum algorithms have been introduced and/or empirically
evaluated. Indeed, the empirical evaluation is a fundamental part of the algorithmic research. Specif-
ically, both quantum annealing and universal quantum computing have been addressed here, ranging
from generic optimization to machine learning tasks.

On the quantum annealing side, the performance of QALS, a meta-heuristic approach for tackling
QUBO optimization problems not directly mappable on the annealer topology, have been investigated
first. Two efficient implementations, with different pros and cons, have been presented, and two
complementary optimization problems have been considered for the empirical evaluation. The results
have shown that, whenever a problem cannot be efficiently solved with classical methods, QALS allows
processing larger instances than the standard embedding procedure provided by D-Wave, although
the solutions found do not necessarily satisfy the problem constraints. Then, the QUBO formulation
proposed by O’Gorman et al. for Bayesian network reconstruction has been implemented and empir-
ically assessed on real-world problems. The formulation in question, with some minor improvements,
has turned out to be successful for networks of small sizes and with no more than two parents per
node, but good-quality solutions (in terms of energy) have also been found for larger networks. Addi-
tionally, for handling bigger BNSL instances, a divide et impera approach has been introduced. The
experiments have demonstrated its superiority over the direct application of O’Gorman’s formulation,
although the solutions found were generally non-optimal, probably due to the non-ideal annealing
setup used. Lastly, the local application of quantum-trained SVM models has been proposed and em-
pirically evaluated in the remote sensing domain. To do this, FaLK-SVM, the framework for efficient
local SVMs, has been extended, incorporating quantum-trained SVM models for binary and multiclass
classification. The results have shown the efficacy of the approach, with the local quantum-trained
methods achieving performance close to their classical counterparts and always better than their global
counterparts. In addition, the scalability of the approach has been classically verified, and, using the
multiclass models, its practical applicability in a large-scale scenario has been demonstrated.

On the universal quantum computing side, locality (of data samples in the feature space) has been
the leitmotiv. Indeed, first, the application of a quantum locality technique as a preliminary step of a
quantum machine learning model has been proposed and empirically evaluated. Specifically, a pipeline
consisting of a quantum k-NN and a quantum binary classifier (based on the cosine similarity) has been
considered and implemented. The approach has turned out to be effective, with the quantum pipeline
consistently outperforming the quantum binary classifier in the experiments despite the high sensitivity
of the considered quantum k-NN to probability fluctuations. Some classical baseline methods have
achieved better results, but the actual usage of the second model in the pipeline was very low for
the real-world datasets taken into account. Then, a quantum k-NN algorithm based on the Euclidean
distance estimation, still missing in the literature and characterised by a really simple quantum circuit,
has been introduced and empirically evaluated on similar datasets. In particular, two novel data
encoding schemes and two ways of estimating the distances have been presented. The results have
demonstrated the correctness of the formulation and the algorithm’s competitiveness with respect to
some classical baseline methods in the ideal case. However, a significant drop in performance when
using a limited number of measurements has also been observed.

Future directions of research include evaluating the aforementioned quantum annealing algorithms
using more performing annealing parameters. Additionally, the divide et impera approach for BNSL
could be assessed on larger problems, considering different strategies for the subproblems generation.
Concerning the local quantum-trained SVMs, datasets from different domains and different model
parameters could be taken into account. Moreover, a local version of the quantum-trained support
vector regression model, not considered here, could be developed. Regarding the algorithms for uni-
versal quantum devices, they could be assessed on real machines, considering more complex datasets

105

and a higher number of measurements. Additionally, more complex models like the quantum SVM
could be taken into account for the locality-based quantum machine learning pipelines. Lastly, the
proposed quantum k-NN could be slightly modified in order to obtain a quantum binary classifier
based on the Euclidean distance.

To conclude, most of the proposed hybrid approaches have turned out to be effective. However, in
order to be competitive against fully classical methods, less noisy quantum architectures are required.
Additionally, the physical realization of a QRAM would also be of great importance for universal
quantum computing. Hence, these approaches are currently limited by the available hardware. Nev-
ertheless, it is fundamental to carry on the algorithmic research so that when more mature hardware
is available, the algorithms will be ready.

106

Bibliography

[1] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Wo-
erner. “The power of quantum neural networks”. In: Nature Computational Science 1.6 (June
2021), pp. 403–409. issn: 2662-8457. doi: 10.1038/s43588- 021- 00084- 1. url: https:

//doi.org/10.1038/s43588-021-00084-1.

[2] A. Afham, Afrad Basheer, and Sandeep K. Goyal. Quantum k-nearest neighbor machine learning
algorithm. 2020. url: https://arxiv.org/abs/2003.09187v1.

[3] Md S. Anis, Héctor Abraham, AduOffei, Rochisha Agarwal, Gabriele Agliardi, Merav Aharoni,
et al. Qiskit: An Open-source Framework for Quantum Computing. 2021. doi: 10.5281/zenod
o.2573505.

[4] Ramin Ayanzadeh, Milton Halem, and Tim Finin. “Reinforcement Quantum Annealing: A
Hybrid Quantum Learning Automata”. In: Scientific Reports 10.1 (May 2020), p. 7952. issn:
2045-2322. doi: 10.1038/s41598-020-64078-1. url: https://doi.org/10.1038/s41598-
020-64078-1.

[5] Afrad Basheer, A. Afham, and Sandeep K. Goyal. Quantum k-nearest neighbors algorithm.
2021. url: https://arxiv.org/abs/2003.09187.

[6] Alina Beygelzimer, Sham Kakade, and John Langford. “Cover Trees for Nearest Neighbor”. In:
Proceedings of the 23rd International Conference on Machine Learning. ICML ’06. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, 2006, pp. 97–104. isbn: 1595933832.
doi: 10.1145/1143844.1143857. url: https://doi.org/10.1145/1143844.1143857.

[7] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth
Lloyd. “Quantum machine learning”. In: Nature 549.7671 (Sept. 2017), pp. 195–202. issn:
1476-4687. doi: 10.1038/nature23474. url: https://doi.org/10.1038/nature23474.

[8] Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy, Roberto Sebastiani, and Ste-
fano Varotti. “Solving SAT (and MaxSAT) with a quantum annealer: Foundations, encod-
ings, and preliminary results”. In: Information and Computation 275 (2020), p. 104609. issn:
0890-5401. doi: https://doi.org/10.1016/j.ic.2020.104609. url: https://www.

sciencedirect.com/science/article/pii/S0890540120300973.

[9] Enrico Blanzieri and Farid Melgani. “An Adaptive SVM Nearest Neighbor Classifier for Re-
motely Sensed Imagery”. In: 2006 IEEE International Symposium on Geoscience and Remote
Sensing. 2006, pp. 3931–3934. doi: 10.1109/IGARSS.2006.1008.

[10] Denis Bokhan, Alena S. Mastiukova, Aleksey S. Boev, Dmitrii N. Trubnikov, and Aleksey K.
Fedorov. “Multiclass classification using quantum convolutional neural networks with hybrid
quantum-classical learning”. In: Frontiers in Physics 10 (2022). issn: 2296-424X. doi: 10.

3389/fphy.2022.1069985. url: https://www.frontiersin.org/articles/10.3389/fphy.
2022.1069985.

[11] Andrea Bonomi. Python Quantum Annealing Learning Search. https://github.com/bonom/
Quantum-Annealing-for-solving-QUBO-Problems. 2021.

[12] Andrea Bonomi, Thomas De Min, Enrico Zardini, Enrico Blanzieri, Valter Cavecchia, and
Davide Pastorello. “Quantum annealing learning search implementations”. In: Quantum Infor-
mation and Computation 22.3&4 (Feb. 2022), pp. 181–208. doi: 10.26421/qic22.3-4-1. url:
https://doi.org/10.26421%2Fqic22.3-4-1.

107

https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://arxiv.org/abs/2003.09187v1
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1038/s41598-020-64078-1
https://doi.org/10.1038/s41598-020-64078-1
https://doi.org/10.1038/s41598-020-64078-1
https://arxiv.org/abs/2003.09187
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/https://doi.org/10.1016/j.ic.2020.104609
https://www.sciencedirect.com/science/article/pii/S0890540120300973
https://www.sciencedirect.com/science/article/pii/S0890540120300973
https://doi.org/10.1109/IGARSS.2006.1008
https://doi.org/10.3389/fphy.2022.1069985
https://doi.org/10.3389/fphy.2022.1069985
https://www.frontiersin.org/articles/10.3389/fphy.2022.1069985
https://www.frontiersin.org/articles/10.3389/fphy.2022.1069985
https://github.com/bonom/Quantum-Annealing-for-solving-QUBO-Problems
https://github.com/bonom/Quantum-Annealing-for-solving-QUBO-Problems
https://doi.org/10.26421/qic22.3-4-1
https://doi.org/10.26421%2Fqic22.3-4-1

[13] Sima E. Borujeni, Saideep Nannapaneni, Nam H. Nguyen, Elizabeth C. Behrman, and James
E. Steck. “Quantum circuit representation of Bayesian networks”. In: Expert Systems with
Applications 176 (2021), p. 114768. issn: 0957-4174. doi: https://doi.org/10.1016/j.
eswa.2021.114768.

[14] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. “Quantum amplitude amplifi-
cation and estimation”. In: Contemporary Mathematics 305 (2002), pp. 53–74.

[15] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. “Quantum Fingerprint-
ing”. In: Phys. Rev. Lett. 87 (16 Sept. 2001), p. 167902. doi: 10.1103/PhysRevLett.87.167902.
url: https://link.aps.org/doi/10.1103/PhysRevLett.87.167902.

[16] Gabriele Cavallaro, Dennis Willsch, Madita Willsch, Kristel Michielsen, and Morris Riedel.
“Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines
on the D-Wave Quantum Annealer”. In: IGARSS 2020 - 2020 IEEE International Geoscience
and Remote Sensing Symposium. 2020, pp. 1973–1976. doi: 10.1109/IGARSS39084.2020.
9323544.

[17] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector machines”. In:
ACM Transactions on Intelligent Systems and Technology 2 (3 2011). Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

[18] David M. Chickering. “Learning Bayesian Networks is NP-Complete”. In: Learning from Data:
Artificial Intelligence and Statistics V. New York, NY: Springer New York, 1996, pp. 121–130.
isbn: 978-1-4612-2404-4. doi: 10.1007/978-1-4612-2404-4_12. url: https://doi.org/10.
1007/978-1-4612-2404-4_12.

[19] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. “Quantum algorithms
revisited”. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences 454.1969 (Jan. 1998), pp. 339–354. issn: 1471-2946. doi: 10.1098/
rspa.1998.0164. url: http://dx.doi.org/10.1098/rspa.1998.0164.

[20] Elon S. Correa, Alex A. Freitas, and Colin G. Johnson. “Particle Swarm and Bayesian Networks
Applied to Attribute Selection for Protein Functional Classification”. In: Proceedings of the
9th Annual Conference Companion on Genetic and Evolutionary Computation. GECCO ’07.
London, United Kingdom: Association for Computing Machinery, 2007, pp. 2651–2658. isbn:
9781595936981. doi: 10.1145/1274000.1274081.

[21] Koby Crammer and Yoram Singer. “On the Algorithmic Implementation of Multiclass Kernel-
Based Vector Machines”. In: Journal of Machine Learning Research 2 (Mar. 2002), pp. 265–
292. issn: 1532-4435.

[22] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000. doi: 10.1017/CBO
9780511801389.

[23] Yijie Dang, Nan Jiang, Hao Hu, Zhuoxiao Ji, and Wenyin Zhang. “Image classification based
on quantum K-Nearest-Neighbor algorithm”. In: Quantum Information Processing 17.9 (Aug.
2018), p. 239. issn: 1573-1332. doi: 10.1007/s11128-018-2004-9. url: https://doi.org/
10.1007/s11128-018-2004-9.

[24] Amer Delilbasic. QMSVM implementation. https://gitlab.jsc.fz-juelich.de/sdlrs/
qmsvm. Last access on 15 Dec 2023. 2023.

[25] Amer Delilbasic, Gabriele Cavallaro, Madita Willsch, Farid Melgani, Morris Riedel, and Kristel
Michielsen. “Quantum Support Vector Machine Algorithms for Remote Sensing Data Classi-
fication”. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.
2021, pp. 2608–2611. doi: 10.1109/IGARSS47720.2021.9554802.

[26] Amer Delilbasic, Bertrand Le Saux, Morris Riedel, Kristel Michielsen, and Gabriele Cavallaro.
“A Single-Step Multiclass SVM Based on Quantum Annealing for Remote Sensing Data Clas-
sification”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing (2023), pp. 1–12. doi: 10.1109/JSTARS.2023.3336926.

108

https://doi.org/https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/10.1103/PhysRevLett.87.167902
https://link.aps.org/doi/10.1103/PhysRevLett.87.167902
https://doi.org/10.1109/IGARSS39084.2020.9323544
https://doi.org/10.1109/IGARSS39084.2020.9323544
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1007/978-1-4612-2404-4_12
https://doi.org/10.1007/978-1-4612-2404-4_12
https://doi.org/10.1007/978-1-4612-2404-4_12
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1145/1274000.1274081
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1007/s11128-018-2004-9
https://doi.org/10.1007/s11128-018-2004-9
https://doi.org/10.1007/s11128-018-2004-9
https://gitlab.jsc.fz-juelich.de/sdlrs/qmsvm
https://gitlab.jsc.fz-juelich.de/sdlrs/qmsvm
https://doi.org/10.1109/IGARSS47720.2021.9554802
https://doi.org/10.1109/JSTARS.2023.3336926

[27] Sebastiano Dissegna. Implementation of the divide et impera approach. https://github.com/
sebdisdv/BNSL. 2021.

[28] Jun Du. Embedding Python in C/C++. https://www.codeproject.com/Articles/11805/
Embedding-Python-in-C-C-Part-I. Last access on 24 February 2021. 2005.

[29] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http://archive.
ics.uci.edu/ml.

[30] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. “Quantum-Enhanced Machine Learn-
ing”. In: Phys. Rev. Lett. 117 (13 Sept. 2016), p. 130501. doi: 10.1103/PhysRevLett.117.
130501. url: https://link.aps.org/doi/10.1103/PhysRevLett.117.130501.

[31] Christoph Dürr and Peter Høyer. A Quantum Algorithm for Finding the Minimum. Jan. 1999.
url: https://arxiv.org/abs/quant-ph/9607014.

[32] Dmitriy V. Fastovets, Yurii I. Bogdanov, Boris I. Bantysh, and Vladimir F. Lukichev. “Machine
learning methods in quantum computing theory”. In: International Conference on Micro- and
Nano-Electronics 2018. Vol. 11022. International Society for Optics and Photonics. Zvenigorod,
Russia: SPIE, 2019, pp. 752–761. url: https://doi.org/10.1117/12.2522427.

[33] Congcong Feng, Bo Zhao, Xin Zhou, Xiaodong Ding, and Zheng Shan. “An Enhanced Quan-
tum K-Nearest Neighbor Classification Algorithm Based on Polar Distance”. In: Entropy 25.1
(2023). issn: 1099-4300. doi: 10.3390/e25010127. url: https://www.mdpi.com/1099-

4300/25/1/127.

[34] Evelyn Fix and Joseph L. Hodges. Discriminatory Analysis, Nonparametric Discrimination:
Consistency Properties. Tech. rep. 4. USAF School of Aviation Medicine, Randolph Field,
1951.

[35] Li-Zhen Gao, Chun-Yue Lu, Gong-De Guo, Xin Zhang, and Song Lin. “Quantum K-nearest
neighbors classification algorithm based on Mahalanobis distance”. In: Frontiers in Physics 10
(2022). issn: 2296-424X. doi: 10.3389/fphy.2022.1047466. url: https://www.frontiersi
n.org/articles/10.3389/fphy.2022.1047466.

[36] Amanuel T. Getachew. Quantum K-medians Algorithm Using Parallel Euclidean Distance Esti-
mator. 2020. doi: 10.48550/ARXIV.2012.11139. url: https://arxiv.org/abs/2012.11139.

[37] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum Random Access Memory”.
In: Phys. Rev. Lett. 100 (16 Apr. 2008), p. 160501. doi: 10.1103/PhysRevLett.100.160501.
url: https://link.aps.org/doi/10.1103/PhysRevLett.100.160501.

[38] Fred Glover, Gary Kochenberger, and Yu Du. “Quantum Bridge Analytics I: a tutorial on
formulating and using QUBO models”. In: 4OR - A Quarterly Journal of Operations Research
17.4 (Dec. 2019), pp. 335–371. issn: 1614-2411. doi: 10.1007/s10288-019-00424-y. url:
https://doi.org/10.1007/s10288-019-00424-y.

[39] William S. Gosset. “The Probable Error of a Mean”. In: Biometrika 6.1 (Mar. 1908). Originally
published under the pseudonym “Student”, pp. 1–25. url: http://dx.doi.org/10.2307/
2331554.

[40] Derek Greene, Derek O’Callaghan, and Pádraig Cunningham. “How Many Topics? Stability
Analysis for Topic Models”. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa Meo. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 498–513. isbn: 978-3-662-44848-9.

[41] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In: Proceedings of
the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’96. Philadel-
phia, Pennsylvania, USA: Association for Computing Machinery, 1996, pp. 212–219. isbn:
0897917855. doi: 10.1145/237814.237866. url: https://doi.org/10.1145/237814.237866.

[42] Robert Hable. “Universal Consistency of Localized Versions of Regularized Kernel Methods”.
In: Journal of Machine Learning Research 14.5 (2013), pp. 153–186. url: http://jmlr.org/
papers/v14/hable13a.html.

109

https://github.com/sebdisdv/BNSL
https://github.com/sebdisdv/BNSL
https://www.codeproject.com/Articles/11805/Embedding-Python-in-C-C-Part-I
https://www.codeproject.com/Articles/11805/Embedding-Python-in-C-C-Part-I
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1103/PhysRevLett.117.130501
https://doi.org/10.1103/PhysRevLett.117.130501
https://link.aps.org/doi/10.1103/PhysRevLett.117.130501
https://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1117/12.2522427
https://doi.org/10.3390/e25010127
https://www.mdpi.com/1099-4300/25/1/127
https://www.mdpi.com/1099-4300/25/1/127
https://doi.org/10.3389/fphy.2022.1047466
https://www.frontiersin.org/articles/10.3389/fphy.2022.1047466
https://www.frontiersin.org/articles/10.3389/fphy.2022.1047466
https://doi.org/10.48550/ARXIV.2012.11139
https://arxiv.org/abs/2012.11139
https://doi.org/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://doi.org/10.1007/s10288-019-00424-y
https://doi.org/10.1007/s10288-019-00424-y
http://dx.doi.org/10.2307/2331554
http://dx.doi.org/10.2307/2331554
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
http://jmlr.org/papers/v14/hable13a.html
http://jmlr.org/papers/v14/hable13a.html

[43] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala,
Jerry M. Chow, et al. “Supervised learning with quantum-enhanced feature spaces”. In: Nature
567.7747 (Mar. 2019), pp. 209–212. issn: 1476-4687. doi: 10.1038/s41586-019-0980-2. url:
https://doi.org/10.1038/s41586-019-0980-2.

[44] David Heckerman, Dan Geiger, and David M. Chickering. “Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data”. In: Machine Learning 20.3 (Sept. 1995),
pp. 197–243. issn: 1573-0565. doi: 10.1023/A:1022623210503.

[45] IBM. International Business Machines Corporation. https://www.ibm.com/quantum-comput
ing. Last access on 29 Apr 2022. 2022.

[46] Anaconda Inc. et al. Numba, compiling Python code with @jit. https://numba.readthedocs.
io/en/stable/user/jit.html. Last access on 12 August 2021.

[47] D-Wave Systems Inc. D-Wave simulated annealing sampler. https://docs.ocean.dwavesys.
com/projects/neal/en/latest/reference/sampler.html. Last access on 29 November
2021.

[48] D-Wave Systems Inc. D-Wave solver parameters. https://docs.dwavesys.com/docs/latest/
c_solver_parameters.html. Last access on 20 October 2021. 2021.

[49] D-Wave Systems Inc. D-Wave Systems. https://www.dwavesys.com. Last access on 29 Apr
2022. 2022.

[50] D-Wave Systems Inc. Embedding Composite. https : / / docs . ocean . dwavesys . com / en /

stable/docs_system/reference/composites.html#embeddingcomposite. Last access on 20
October 2021. 2021.

[51] D-Wave Systems Inc. Leap’s Hybrid Solvers. https://docs.dwavesys.com/docs/latest/
doc_leap_hybrid.html#doc-leap-hybrid. Last access on 25 October 2023. 2023.

[52] D-Wave Systems Inc. Minor embedding. https://docs.dwavesys.com/docs/latest/c_gs_
3.html#minor-embedding. Last access on 20 October 2021. 2021.

[53] D-Wave Systems Inc. Minor embedding example. https://docs.dwavesys.com/docs/latest/
c_gs_7.html#getting-started-embedding. Last access on 20 October 2021. 2021.

[54] D-Wave Systems Inc. Operation and Timing. https://docs.dwavesys.com/docs/latest/c_
qpu_timing.html. Last access on 13 December 2021.

[55] D-Wave Systems Inc. Pegasus topology. https://docs.dwavesys.com/docs/latest/c_gs_4.
html#pegasus-graph. Last access on 24 February 2021. 2021.

[56] Ridgeback Network Defense Inc. D-Wave random coin flip. https://github.com/ridgebac
knet/dwave-tutorials/blob/master/fun/fun-coin.py. Last access on 26 February 2021.
2018.

[57] ISPRS. 2D Semantic Labeling Contest - Potsdam. https://www.isprs.org/education/

benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx. Last access on 19 Dec 2023.

[58] Thorsten Joachims. SVM-Multiclass: Multi-Class Support Vector Machine. https://www.cs.
cornell.edu/people/tj/svm_light/svm_multiclass.html. Last access on 15 Dec 2023.
2008.

[59] Tadashi Kadowaki and Hidetoshi Nishimori. “Quantum annealing in the transverse Ising model”.
In: Phys. Rev. E 58 (5 Nov. 1998), pp. 5355–5363. doi: 10.1103/PhysRevE.58.5355. url:
https://link.aps.org/doi/10.1103/PhysRevE.58.5355.

[60] Narenda Karmarkar and Richard M. Karp. The Differencing Method of Set Partitioning. Tech.
rep. UCB/CSD-83-113. EECS Department, University of California, Berkeley, 1983. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html.

[61] Phillip Kaye. Reversible addition circuit using one ancillary bit with application to quantum
computing. 2004. doi: 10.48550/ARXIV.QUANT-PH/0408173. url: https://arxiv.org/abs/
quant-ph/0408173.

110

https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1023/A:1022623210503
https://www.ibm.com/quantum-computing
https://www.ibm.com/quantum-computing
https://numba.readthedocs.io/en/stable/user/jit.html
https://numba.readthedocs.io/en/stable/user/jit.html
https://docs.ocean.dwavesys.com/projects/neal/en/latest/reference/sampler.html
https://docs.ocean.dwavesys.com/projects/neal/en/latest/reference/sampler.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://www.dwavesys.com
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/composites.html#embeddingcomposite
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/composites.html#embeddingcomposite
https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html#doc-leap-hybrid
https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html#doc-leap-hybrid
https://docs.dwavesys.com/docs/latest/c_gs_3.html#minor-embedding
https://docs.dwavesys.com/docs/latest/c_gs_3.html#minor-embedding
https://docs.dwavesys.com/docs/latest/c_gs_7.html#getting-started-embedding
https://docs.dwavesys.com/docs/latest/c_gs_7.html#getting-started-embedding
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html#pegasus-graph
https://docs.dwavesys.com/docs/latest/c_gs_4.html#pegasus-graph
https://github.com/ridgebacknet/dwave-tutorials/blob/master/fun/fun-coin.py
https://github.com/ridgebacknet/dwave-tutorials/blob/master/fun/fun-coin.py
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
https://doi.org/10.1103/PhysRevE.58.5355
https://link.aps.org/doi/10.1103/PhysRevE.58.5355
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html
https://doi.org/10.48550/ARXIV.QUANT-PH/0408173
https://arxiv.org/abs/quant-ph/0408173
https://arxiv.org/abs/quant-ph/0408173

[62] Scott Kirkpatrick, Charles D. Gelatt Jr., and Mario P. Vecchi. “Optimization by Simulated
Annealing”. In: Science 220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.4598.671.

[63] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo Wang, et al.
“The unconstrained binary quadratic programming problem: a survey”. In: Journal of Com-
binatorial Optimization 28.1 (July 2014), pp. 58–81. issn: 1573-2886. doi: 10.1007/s10878-
014-9734-0. url: https://doi.org/10.1007/s10878-014-9734-0.

[64] Richard E. Korf. “A complete anytime algorithm for number partitioning”. In: Artificial In-
telligence 106.2 (1998), pp. 181–203. issn: 0004-3702. doi: https://doi.org/10.1016/

S0004-3702(98)00086-1. url: https://www.sciencedirect.com/science/article/pii/
S0004370298000861.

[65] Jing Li, Song Lin, Kai Yu, and Gongde Guo. “Quantum K-nearest neighbor classification
algorithm based on Hamming distance”. In: Quantum Information Processing 21.1 (Dec. 2021),
p. 18. issn: 1573-1332. doi: 10.1007/s11128-021-03361-0. url: https://doi.org/10.
1007/s11128-021-03361-0.

[66] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised
and unsupervised machine learning. 2013. doi: 10.48550/ARXIV.1307.0411. url: https:
//arxiv.org/abs/1307.0411.

[67] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in Physics 2 (2014).
issn: 2296-424X. doi: 10.3389/fphy.2014.00005. url: https://www.frontiersin.org/
articles/10.3389/fphy.2014.00005.

[68] Yan-zhu Ma, Hong-fei Song, and Jun Zhang. “Quantum Algorithm for K-Nearest Neighbors
Classification Based on the Categorical Tensor Network States”. In: International Journal of
Theoretical Physics 60.3 (Mar. 2021), pp. 1164–1174. issn: 1572-9575. doi: 10.1007/s10773-
021-04742-y. url: https://doi.org/10.1007/s10773-021-04742-y.

[69] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. “The theory
of variational hybrid quantum-classical algorithms”. In: New Journal of Physics 18.2 (Feb.
2016), p. 023023. issn: 1367-2630. doi: 10.1088/1367- 2630/18/2/023023. url: http:

//dx.doi.org/10.1088/1367-2630/18/2/023023.

[70] Mona Meister and Ingo Steinwart. “Optimal Learning Rates for Localized SVMs”. In: Journal of
Machine Learning Research 17.194 (2016), pp. 1–44. url: http://jmlr.org/papers/v17/14-
023.html.

[71] Thomas De Min. C++ Quantum Annealing Learning Search. https://github.com/tdemin16/
QALS-cpp. 2021.

[72] Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii. “Quantum analog-digital conversion”.
In: Phys. Rev. A 99 (1 Jan. 2019), p. 012301. doi: 10.1103/PhysRevA.99.012301. url:
https://link.aps.org/doi/10.1103/PhysRevA.99.012301.

[73] Kohei Miyamoto, Masakazu Iwamura, and Koichi Kise. A Quantum Algorithm for Finding k-
Minima. 2019. doi: 10.48550/ARXIV.1907.03315. url: https://arxiv.org/abs/1907.
03315.

[74] Rajdeep K. Nath, Himanshu Thapliyal, and Travis S. Humble. “A Review of Machine Learning
Classification Using Quantum Annealing for Real-World Applications”. In: SN COMPUT. SCI
365 (2 July 2021). url: https://doi.org/10.1007/s42979-021-00751-0.

[75] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.

[76] Bryan O’Gorman, Ryan Babbush, Alejandro Perdomo-Ortiz, Alan Aspuru-Guzik, and Vadim
Smelyanskiy. “Bayesian network structure learning using quantum annealing”. In: The Euro-
pean Physical Journal Special Topics 224.1 (Feb. 2015), pp. 163–188. issn: 1951-6401. doi:
10.1140/epjst/e2015-02349-9. url: https://doi.org/10.1140/epjst/e2015-02349-9.

111

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/https://doi.org/10.1016/S0004-3702(98)00086-1
https://doi.org/https://doi.org/10.1016/S0004-3702(98)00086-1
https://www.sciencedirect.com/science/article/pii/S0004370298000861
https://www.sciencedirect.com/science/article/pii/S0004370298000861
https://doi.org/10.1007/s11128-021-03361-0
https://doi.org/10.1007/s11128-021-03361-0
https://doi.org/10.1007/s11128-021-03361-0
https://doi.org/10.48550/ARXIV.1307.0411
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1307.0411
https://doi.org/10.3389/fphy.2014.00005
https://www.frontiersin.org/articles/10.3389/fphy.2014.00005
https://www.frontiersin.org/articles/10.3389/fphy.2014.00005
https://doi.org/10.1007/s10773-021-04742-y
https://doi.org/10.1007/s10773-021-04742-y
https://doi.org/10.1007/s10773-021-04742-y
https://doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://jmlr.org/papers/v17/14-023.html
http://jmlr.org/papers/v17/14-023.html
https://github.com/tdemin16/QALS-cpp
https://github.com/tdemin16/QALS-cpp
https://doi.org/10.1103/PhysRevA.99.012301
https://link.aps.org/doi/10.1103/PhysRevA.99.012301
https://doi.org/10.48550/ARXIV.1907.03315
https://arxiv.org/abs/1907.03315
https://arxiv.org/abs/1907.03315
https://doi.org/10.1007/s42979-021-00751-0
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1140/epjst/e2015-02349-9
https://doi.org/10.1140/epjst/e2015-02349-9

[77] Maris Ozols, Martin Roetteler, and Jérémie Roland. “Quantum Rejection Sampling”. In: ACM
Transactions on Computation Theory (TOCT) 5.3 (Aug. 2013). issn: 1942-3454. doi: 10.1145/
2493252.2493256.

[78] Edoardo Pasetto, Amer Delilbasic, Gabriele Cavallaro, Madita Willsch, Farid Melgani, Morris
Riedel, et al. “Quantum Support Vector Regression for Biophysical Variable Estimation in
Remote Sensing”. In: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing
Symposium. 2022, pp. 4903–4906. doi: 10.1109/IGARSS46834.2022.9883963.

[79] Davide Pastorello and Enrico Blanzieri. “A Quantum Binary Classifier based on Cosine Similar-
ity”. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).
2021, pp. 477–478. doi: 10.1109/QCE52317.2021.00086.

[80] Davide Pastorello and Enrico Blanzieri. A quantum binary classifier based on cosine similarity.
https://arxiv.org/abs/2104.02975. 2021. doi: 10.48550/ARXIV.2104.02975.

[81] Davide Pastorello and Enrico Blanzieri. “Quantum annealing learning search for solving QUBO
problems”. In: Quantum Information Processing 18.10 (Aug. 2019), p. 303. issn: 1573-1332.
doi: 10.1007/s11128-019-2418-z. url: https://doi.org/10.1007/s11128-019-2418-z.

[82] Davide Pastorello, Enrico Blanzieri, and Valter Cavecchia. “Learning adiabatic quantum algo-
rithms over optimization problems”. In: Quantum Machine Intelligence 3.1 (Jan. 2021), p. 2.
issn: 2524-4914. doi: 10.1007/s42484-020-00030-w. url: https://doi.org/10.1007/
s42484-020-00030-w.

[83] Miguel Patŕıcio, José Pereira, Joana Crisóstomo, Paulo Matafome, Manuel Gomes, Raquel
Seiça, et al. “Using Resistin, glucose, age and BMI to predict the presence of breast cancer”.
In: BMC Cancer 18.1 (Jan. 2018), p. 29. issn: 1471-2407. doi: 10.1186/s12885-017-3877-1.
url: https://doi.org/10.1186/s12885-017-3877-1.

[84] Judea Pearl. “Bayesian Networks: A Model of Self-Activated Memory for Evidential Reason-
ing”. In: Proceedings of the 7th conference of the Cognitive Science Society (CSS-7). 1985,
pp. 15–17.

[85] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
O. Grisel, et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[86] João P. Pedroso and Mikio Kubo. “Heuristics and exact methods for number partitioning”.
In: European Journal of Operational Research 202.1 (2010), pp. 73–81. issn: 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2009.04.027. url: https://www.sciencedirect.com/
science/article/pii/S0377221709003002.

[87] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (2018),
p. 79.

[88] Luis F. Quezada, Guo-Hua Sun, and Shi-Hai Dong. “Quantum Version of the k-NN Classifier
Based on a Quantum Sorting Algorithm”. In: Annalen der Physik 534.5 (2022), p. 2100449.
doi: https://doi.org/10.1002/andp.202100449. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/andp.202100449.

[89] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum Support Vector Machine for
Big Data Classification”. In: Phys. Rev. Lett. 113 (13 Sept. 2014), p. 130503. doi: 10.1103/
PhysRevLett.113.130503. url: https://link.aps.org/doi/10.1103/PhysRevLett.113.
130503.

[90] Patrick Rebentrost, Adrian Steffens, Iman Marvian, and Seth Lloyd. “Quantum singular-value
decomposition of nonsparse low-rank matrices”. In: Phys. Rev. A 97 (1 Jan. 2018), p. 012327.
doi: 10.1103/PhysRevA.97.012327. url: https://link.aps.org/doi/10.1103/PhysRevA.
97.012327.

[91] Rigetti. Rigetti Computing. https://www.rigetti.com/what-we-build. Last access on 29
Apr 2022. 2022.

112

https://doi.org/10.1145/2493252.2493256
https://doi.org/10.1145/2493252.2493256
https://doi.org/10.1109/IGARSS46834.2022.9883963
https://doi.org/10.1109/QCE52317.2021.00086
https://arxiv.org/abs/2104.02975
https://doi.org/10.48550/ARXIV.2104.02975
https://doi.org/10.1007/s11128-019-2418-z
https://doi.org/10.1007/s11128-019-2418-z
https://doi.org/10.1007/s42484-020-00030-w
https://doi.org/10.1007/s42484-020-00030-w
https://doi.org/10.1007/s42484-020-00030-w
https://doi.org/10.1186/s12885-017-3877-1
https://doi.org/10.1186/s12885-017-3877-1
https://doi.org/https://doi.org/10.1016/j.ejor.2009.04.027
https://www.sciencedirect.com/science/article/pii/S0377221709003002
https://www.sciencedirect.com/science/article/pii/S0377221709003002
https://doi.org/https://doi.org/10.1002/andp.202100449
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.202100449
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.202100449
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevA.97.012327
https://link.aps.org/doi/10.1103/PhysRevA.97.012327
https://link.aps.org/doi/10.1103/PhysRevA.97.012327
https://www.rigetti.com/what-we-build

[92] Massimo Rizzoli. Implementation of O’Gorman’s algorithm. https://github.com/massimo-
rizzoli/BNSL-QA-python. 2021.

[93] Ribana Roscher, Michele Volpi, Clément Mallet, Lukas Drees, and Jan D. Wegner. “SEM-
CITY TOULOUSE: A BENCHMARK FOR BUILDING INSTANCE SEGMENTATION IN
SATELLITE IMAGES”. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences V-5-2020 (2020), pp. 109–116. doi: 10.5194/isprs-annals-V-5-2020-
109-2020. url: https://isprs-annals.copernicus.org/articles/V-5-2020/109/2020/.

[94] Matthew Route. “Radio-flaring Ultracool Dwarf Population Synthesis”. In: The Astrophysical
Journal 845.1 (Aug. 2017), p. 66. doi: 10.3847/1538-4357/aa7ede. url: https://dx.doi.
org/10.3847/1538-4357/aa7ede.

[95] Yue Ruan, Xiling Xue, Heng Liu, Jianing Tan, and Xi Li. “Quantum Algorithm for K-Nearest
Neighbors Classification Based on the Metric of Hamming Distance”. In: International Journal
of Theoretical Physics 56.11 (Nov. 2017), pp. 3496–3507. issn: 1572-9575. doi: 10.1007/

s10773-017-3514-4. url: https://doi.org/10.1007/s10773-017-3514-4.

[96] Abhijat Sarma, Rupak Chatterjee, Kaitlin Gili, and Ting Yu. “Quantum unsupervised and su-
pervised learning on superconducting processors”. In: Quantum Information and Computation
20.7–8 (2020), pp. 541–552. issn: 1533-7146. doi: 10.26421/QIC20.7-8-1.

[97] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[98] Maria Schuld, Mark Fingerhuth, and Francesco Petruccione. “Implementing a distance-based
classifier with a quantum interference circuit”. In: Europhysics Letters 119.6 (Dec. 2017),
p. 60002. doi: 10.1209/0295-5075/119/60002. url: https://dx.doi.org/10.1209/0295-
5075/119/60002.

[99] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. “Quantum Computing for Pattern
Classification”. In: PRICAI 2014: Trends in Artificial Intelligence. Ed. by Duc-Nghia Pham
and Seong-Bae Park. Cham: Springer International Publishing, 2014, pp. 208–220.

[100] Ralf Schützhold. “Pattern recognition on a quantum computer”. In: Phys. Rev. A 67 (6 June
2003), p. 062311. doi: 10.1103/PhysRevA.67.062311. url: https://link.aps.org/doi/10.
1103/PhysRevA.67.062311.

[101] Scikit-learn. Balanced accuracy. https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.balanced_accuracy_score.html. Last access on 21 Dec 2023.

[102] Scikit-learn. F1 score. https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.f1_score.html. Last access on 21 Dec 2023.

[103] Nicola Segata. FaLKM-lib v1.0: a Library for Fast Local Kernel Machines. Tech. rep. DISI-09-
025. Software available at http://disi.unitn.it/~segata/FaLKM-lib. DISI, University of
Trento, Italy, 2009.

[104] Nicola Segata and Enrico Blanzieri. “Fast and Scalable Local Kernel Machines”. In: Journal
of Machine Learning Research 11.64 (2010), pp. 1883–1926. url: http://jmlr.org/papers/
v11/segata10a.html.

[105] Nicola Segata, Edoardo Pasolli, Farid Melgani, and Enrico Blanzieri. “Local SVM approaches
for fast and accurate classification of remote-sensing images”. In: International Journal of
Remote Sensing 33.19 (2012), pp. 6186–6201. doi: 10.1080/01431161.2012.678947. url:
https://doi.org/10.1080/01431161.2012.678947.

[106] Bayes Server. Bayesian network examples. https://www.bayesserver.com/examples. Last
access on 22 June 2021.

[107] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In:
Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994, pp. 124–134.
doi: 10.1109/SFCS.1994.365700.

113

https://github.com/massimo-rizzoli/BNSL-QA-python
https://github.com/massimo-rizzoli/BNSL-QA-python
https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020
https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020
https://isprs-annals.copernicus.org/articles/V-5-2020/109/2020/
https://doi.org/10.3847/1538-4357/aa7ede
https://dx.doi.org/10.3847/1538-4357/aa7ede
https://dx.doi.org/10.3847/1538-4357/aa7ede
https://doi.org/10.1007/s10773-017-3514-4
https://doi.org/10.1007/s10773-017-3514-4
https://doi.org/10.1007/s10773-017-3514-4
https://doi.org/10.26421/QIC20.7-8-1
https://doi.org/10.1209/0295-5075/119/60002
https://dx.doi.org/10.1209/0295-5075/119/60002
https://dx.doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1103/PhysRevA.67.062311
https://link.aps.org/doi/10.1103/PhysRevA.67.062311
https://link.aps.org/doi/10.1103/PhysRevA.67.062311
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
http://disi.unitn.it/~segata/FaLKM-lib
http://jmlr.org/papers/v11/segata10a.html
http://jmlr.org/papers/v11/segata10a.html
https://doi.org/10.1080/01431161.2012.678947
https://doi.org/10.1080/01431161.2012.678947
https://www.bayesserver.com/examples
https://doi.org/10.1109/SFCS.1994.365700

[108] Pedro F. B. Silva, André R. S. Marçal, and Rubim M. Almeida da Silva. “Evaluation of Features
for Leaf Discrimination”. In: Springer Lecture Notes in Computer Science 7950 (2013), pp. 197–
204.

[109] Peter Spirtes and Christopher Meek. “Learning Bayesian Networks with Discrete Variables
from Data”. In: Proceedings of the First International Conference on Knowledge Discovery and
Data Mining. KDD’95. AAAI Press, 1995, pp. 294–299.

[110] M. Stȩchly and P. Korponaić. Quantum TSP. https://github.com/BOHRTECHNOLOGY/quant
um_tsp. Last access on 27 June 2021. 2018.

[111] Carlo A. Trugenberger. “Quantum Pattern Recognition”. In: Quantum Information Processing
1.6 (Dec. 2002), pp. 471–493. issn: 1573-1332. doi: 10.1023/A:1024022632303. url: https:
//doi.org/10.1023/A:1024022632303.

[112] user1413793. C++ rand(). https://stackoverflow.com/questions/10984974/why-do-
people-say-there-is-modulo-bias-when-using-a-random-number-generator. Last
access on 24 February 2021. 2016.

[113] Haibo Wang, Wendy Wang, Yi Liu, and Bahram Alidaee. “Integrating Machine Learning Al-
gorithms With Quantum Annealing Solvers for Online Fraud Detection”. In: IEEE Access 10
(2022), pp. 75908–75917. doi: 10.1109/ACCESS.2022.3190897.

[114] Yuxiang Wang, Ruijin Wang, Dongfen Li, Daniel Adu-Gyamfi, Kaibin Tian, and Yixin Zhu.
“Improved Handwritten Digit Recognition using Quantum K-Nearest Neighbor Algorithm”. In:
International Journal of Theoretical Physics 58.7 (July 2019), pp. 2331–2340. issn: 1572-9575.
doi: 10.1007/s10773-019-04124-5. url: https://doi.org/10.1007/s10773-019-04124-5.

[115] Nathan Wiebe, Ashish Kapoor, and Krysta M. Svore. “Quantum algorithms for nearest-
neighbor methods for supervised and unsupervised learning”. In: Quantum Information and
Computation 15.3–4 (Mar. 2015), pp. 316–356. issn: 1533-7146. doi: 10.26421/QIC15.3-4-7.

[116] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics Bulletin 1.6
(1945), pp. 80–83. issn: 00994987. url: http://www.jstor.org/stable/3001968.

[117] Dennis Willsch, Gabriele Cavallaro, and Madita Willsch. QA SVM implementation. https:
//gitlab.jsc.fz-juelich.de/sdlrs/quantum-svm-algorithms-for-rs-data-classific

ation/-/tree/master/experiments/QA_SVM?ref_type=heads. Last access on 15 Dec 2023.
2021.

[118] Dennis Willsch, Madita Willsch, Hans De Raedt, and Kristel Michielsen. “Support vector ma-
chines on the D-Wave quantum annealer”. In: Computer Physics Communications 248 (2020),
p. 107006. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2019.107006. url:
https://www.sciencedirect.com/science/article/pii/S001046551930342X.

[119] Edwin B. Wilson. “Probable Inference, the Law of Succession, and Statistical Inference”. In:
Journal of the American Statistical Association 22.158 (1927), pp. 209–212. doi: 10.1080/
01621459.1927.10502953. url: https://www.tandfonline.com/doi/abs/10.1080/

01621459.1927.10502953.

[120] Joanna Wísniewska and Marek Sawerwain. “Recognizing the pattern of binary Hermitian ma-
trices by quantum kNN and SVM methods”. In: Vietnam Journal of Computer Science 5.3
(Sept. 2018), pp. 197–204. issn: 2196-8896. doi: 10.1007/s40595-018-0115-y. url: https:
//doi.org/10.1007/s40595-018-0115-y.

[121] Jindi Wu, Zeyi Tao, and Qun Li. “wpScalable Quantum Neural Networks for Classification”. In:
2022 IEEE International Conference on Quantum Computing and Engineering (QCE). 2022,
pp. 38–48. doi: 10.1109/QCE53715.2022.00022.

[122] I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting. “Knowledge Discovery on RFM Model
Using Bernoulli Sequence”. In: Expert Syst. Appl. 36.3 (Apr. 2009), pp. 5866–5871. doi: 10.
1016/j.eswa.2008.07.018. url: https://doi.org/10.1016/j.eswa.2008.07.018.

114

https://github.com/BOHRTECHNOLOGY/quantum_tsp
https://github.com/BOHRTECHNOLOGY/quantum_tsp
https://doi.org/10.1023/A:1024022632303
https://doi.org/10.1023/A:1024022632303
https://doi.org/10.1023/A:1024022632303
https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-generator
https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-generator
https://doi.org/10.1109/ACCESS.2022.3190897
https://doi.org/10.1007/s10773-019-04124-5
https://doi.org/10.1007/s10773-019-04124-5
https://doi.org/10.26421/QIC15.3-4-7
http://www.jstor.org/stable/3001968
https://gitlab.jsc.fz-juelich.de/sdlrs/quantum-svm-algorithms-for-rs-data-classification/-/tree/master/experiments/QA_SVM?ref_type=heads
https://gitlab.jsc.fz-juelich.de/sdlrs/quantum-svm-algorithms-for-rs-data-classification/-/tree/master/experiments/QA_SVM?ref_type=heads
https://gitlab.jsc.fz-juelich.de/sdlrs/quantum-svm-algorithms-for-rs-data-classification/-/tree/master/experiments/QA_SVM?ref_type=heads
https://doi.org/https://doi.org/10.1016/j.cpc.2019.107006
https://www.sciencedirect.com/science/article/pii/S001046551930342X
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/abs/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/abs/10.1080/01621459.1927.10502953
https://doi.org/10.1007/s40595-018-0115-y
https://doi.org/10.1007/s40595-018-0115-y
https://doi.org/10.1007/s40595-018-0115-y
https://doi.org/10.1109/QCE53715.2022.00022
https://doi.org/10.1016/j.eswa.2008.07.018
https://doi.org/10.1016/j.eswa.2008.07.018
https://doi.org/10.1016/j.eswa.2008.07.018

[123] Kai Yu, Gong-De Guo, Jing Li, and Song Lin. “Quantum Algorithms for Similarity Measure-
ment Based on Euclidean Distance”. In: International Journal of Theoretical Physics 59.10
(Oct. 2020), pp. 3134–3144. issn: 1572-9575. doi: 10.1007/s10773- 020- 04567- 1. url:
https://doi.org/10.1007/s10773-020-04567-1.

[124] Enrico Zardini. Euclidean Quantum k-NN Data. 2023. doi: 10.6084/m9.figshare.22598455.
v1. url: https://figshare.com/articles/dataset/Euclidean_Quantum_k-NN_Data/
22598455.

[125] Enrico Zardini. QML Pipeline Datasets. 2023. doi: 10.6084/m9.figshare.22333102.v1. url:
https://figshare.com/articles/dataset/QML_Pipeline_Datasets/22333102.

[126] Enrico Zardini. QML Pipeline Raw Results. 2023. doi: 10.6084/m9.figshare.22333147.v1.
url: https://figshare.com/articles/dataset/QML_Pipeline_Raw_Results/22333147.

[127] Enrico Zardini, Enrico Blanzieri, and Davide Pastorello. A quantum k-nearest neighbors algo-
rithm based on the Euclidean distance estimation. Accepted by Quantum Machine Intelligence.
2023. arXiv: 2305.04287 [cs.ET].

[128] Enrico Zardini, Enrico Blanzieri, and Davide Pastorello. “Implementation and empirical eval-
uation of a quantum machine learning pipeline for local classification”. In: PLOS ONE 18.11
(Nov. 2023), pp. 1–28. doi: 10.1371/journal.pone.0287869. url: https://doi.org/10.
1371/journal.pone.0287869.

[129] Enrico Zardini, Amer Delilbasic, Enrico Blanzieri, Gabriele Cavallaro, and Davide Pastorello.
Local Binary and Multiclass SVMs Trained on a Quantum Annealer. 2024. arXiv: 2403.08584
[cs.ET].

[130] Enrico Zardini, Massimo Rizzoli, Sebastiano Dissegna, Enrico Blanzieri, and Davide Pastorello.
“Reconstructing Bayesian networks on a quantum annealer”. In: Quantum Information and
Computation 22.15&16 (Nov. 2022), pp. 1320–1350. doi: 10.26421/qic22.15-16-4. url:
https://doi.org/10.26421%2Fqic22.15-16-4.

[131] Nan-Run Zhou, Xiu-Xun Liu, Yu-Ling Chen, and Ni-Suo Du. “Quantum K-Nearest-Neighbor
Image Classification Algorithm Based on K-L Transform”. In: International Journal of Theo-
retical Physics 60.3 (Mar. 2021), pp. 1209–1224. issn: 1572-9575. doi: 10.1007/s10773-021-
04747-7. url: https://doi.org/10.1007/s10773-021-04747-7.

115

https://doi.org/10.1007/s10773-020-04567-1
https://doi.org/10.1007/s10773-020-04567-1
https://doi.org/10.6084/m9.figshare.22598455.v1
https://doi.org/10.6084/m9.figshare.22598455.v1
https://figshare.com/articles/dataset/Euclidean_Quantum_k-NN_Data/22598455
https://figshare.com/articles/dataset/Euclidean_Quantum_k-NN_Data/22598455
https://doi.org/10.6084/m9.figshare.22333102.v1
https://figshare.com/articles/dataset/QML_Pipeline_Datasets/22333102
https://doi.org/10.6084/m9.figshare.22333147.v1
https://figshare.com/articles/dataset/QML_Pipeline_Raw_Results/22333147
https://arxiv.org/abs/2305.04287
https://doi.org/10.1371/journal.pone.0287869
https://doi.org/10.1371/journal.pone.0287869
https://doi.org/10.1371/journal.pone.0287869
https://arxiv.org/abs/2403.08584
https://arxiv.org/abs/2403.08584
https://doi.org/10.26421/qic22.15-16-4
https://doi.org/10.26421%2Fqic22.15-16-4
https://doi.org/10.1007/s10773-021-04747-7
https://doi.org/10.1007/s10773-021-04747-7
https://doi.org/10.1007/s10773-021-04747-7

	Abstract
	Introduction
	Background
	Quantum Computing
	Quantum Annealing
	Quantum Circuit Model

	Quadratic Unconstrained Binary Optimization
	D-Wave Annealers, Embedding, and Hybrid Solvers

	Quantum Annealing Learning Search
	Bayesian Network Structure Learning
	O'Gorman's QUBO Formulation

	Quantum-Trained Support Vector Machines
	Quantum Binary Support Vector Machine (QBSVM)
	Quantum Multiclass Support Vector Machine (QMSVM)

	Local Support Vector Machines
	Fast Local Kernel Support Vector Machine (FaLK-SVM)

	Quantum Machine Learning on Circuit Model
	A Brief Overview
	Data Encoding and SWAP Test
	Quantum k-Nearest Neighbors
	A Quantum k-NN in Detail

	Quantum Cosine Binary Classifier
	Quantum Euclidean Distance

	I Quantum Annealing
	QALS Empirical Evaluation
	Implementations
	C++ Implementation
	Lack of Native APIs
	Random Number Generation

	Python Implementation
	Embedding Procedure
	Communication with the Annealer

	Empirical Evaluation
	Number Partitioning Problem (NPP)
	Classical Algorithms for NPP
	Experimental Setup and Results

	Travelling Salesman Problem (TSP)
	Solution Refinement Procedure
	Experimental Setup and Results

	Discussion

	Bayesian Networks Reconstruction
	O'Gorman's Algorithm Implementation
	QUBO Matrix Construction
	Complexity Observations
	Execution Speedup

	Divide et Impera Approach
	Empirical Evaluation
	Bayesian Problems
	Datasets Generation
	Methods and Experimental Setup
	O'Gorman's Algorithm Results
	QUBO Formulation Correctness and aijk Hyperparameters
	Dataset Size and QUBO Matrix Construction Time
	Number of Reads and Annealing Time (QA)
	Performance

	Divide et Impera Results
	Execution Speedup and Timing
	Performance

	Discussion

	Local SVMs Training
	Local Quantum-Trained SVMs
	Approach
	Implementation

	Empirical Evaluation
	Methods
	Datasets
	Experimental Setup
	Results
	Binary Classification
	Multiclass Classification
	Performance Scaling (Classical Methods)
	Large Scale (Multiclass)

	Discussion

	II Universal Quantum Computing
	A Local Classification Pipeline
	Quantum Pipeline
	Components
	Implementation
	Complexity Observations

	Empirical Evaluation
	Methods
	Datasets
	Experimental Setup
	Results
	Execution Modalities Comparison (Quantum Pipeline)
	Execution Modalities Comparison (Quantum Binary Classifier)
	Quantum Pipeline - Quantum Binary Classifier Comparison
	Dataset Sizes Comparison
	Distance Metrics Comparison
	Quantum Pipeline - Baseline Methods Comparison

	Discussion

	A Euclidean k-NN Algorithm
	Method
	Algorithm
	Data Preprocessing
	Initial State and Encoding(s)
	Bell-H Operation and Final State
	Measurements and Distance Estimate(s)
	k Nearest Neighbors and Classification

	Complexity Observations

	Implementation
	Empirical Evaluation
	Methods
	Datasets
	Experimental Setup
	Results
	Execution Modalities Comparison
	Encodings and Distance Estimates Comparison
	Comparison with Baseline Methods
	Number of Shots Analysis

	Discussion

	Conclusion
	Bibliography

