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DISCRETE GRADIENT FLOWS FOR GENERAL CURVATURE
ENERGIES∗
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Abstract. We consider the numerical approximation of the L2–gradient flow of general curvature
energies

∫
G(|~κ|) for a curve in R, d ≥ 2. Here the curve can be either closed, or it can be open and

clamped at the end points. These general curvature energies, and the considered boundary conditions,
appear in the modeling of the power loss within an optical fiber. We present two alternative finite
element approximations, both of which admit a discrete gradient flow structure. Apart from being
stable, in addition, one of the methods satisfies an equidistribution property. Numerical results
demonstrate the robustness and the accuracy of the proposed methods.
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1. Introduction. The classical elastic energy of a curve is defined by the integral
of the squared norm of the curvature vector ~κ. This energy, as a model for the elastic
energy of a rod, has been first considered and analyzed by Bernoulli (1738) and
Euler (1743); see [17]. Further, and more recent, applications for this energy are
the modeling of DNA rings and other curved nanostructures (see [18, 28]) and edge
completion in computer vision; see [22].

In this paper we study the L2–gradient flow of curvature energies that depend
in a more general form on ~κ. Such energies appear, for example, when one studies
the power loss within an optical fiber that acts as a wire bond, i.e., as an interchip
connection, where data is transmitted by light between different components of the
chip; see [20]. Since these connections are long and thin, a common modeling approach
is to formulate the losses in terms of geometrical quantities of a connecting curve.
More specifically, the energy we are going to consider is defined by∫

[G(|~κ|) + λ] ,(1.1)

where G(|κ|) is the optical loss per length due to the bending of the wire bond, while
λ > 0 models the optical loss per length of the connection. If Pin and Pout denote the
incoming and outgoing power, respectively, then the loss in this model is given by

Pin − Pout

Pin
= 1− exp

(
−2

∫
[G(|~κ|) + λ]

)
,(1.2)
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and so minimizing the loss is equivalent to minimizing the energy (1.1). Examples
for functions G of interest are

G(z) = 1
p z

p , p ∈ (1,∞) ,(1.3a)

G(z) = e−α/z , α ∈ (0,∞) ,(1.3b)

G(z) =
√
z e−α/z , α ∈ (0,∞) .(1.3c)

The case (1.3a) with p = 2 leads to the classical elastic energy, while a physical in-
terpretation for (1.3a) with p ∈ (1,∞) in connection with losses in optical fibers is
given in [1, eq. (16)] and [19, p. 819] (d = 2). The choices (1.3b)–(1.3c) are in the
same connection advocated in [21, eq. (14)] for d = 2 and in [21, eq. (34)] for d = 3.
While these (approximative) formulas were originally derived for constantly curved
slabs or fibers, they are also used for trajectories with slowly varying curvature. In
applications one would provide two contact points for the wire, and a prescribed di-
rection for the wire at each endpoint. These boundary conditions are called “clamped
boundary conditions.” A more realistic model of wire bonds would include also the
“transition loss” caused by varying curvature in (1.2). However, a corresponding term
in the energy (1.1) that models the transition loss is not known to this date. In [23]
such a wire bond connection in the plane was optimized with respect to its loss by
using (1.1), but with transition losses calculated from the interpolation of precom-
puted values. In this paper we will neglect transition losses and concentrate on (1.1)
instead.

Of course, for the choice (1.3a) with p = 2 the energy (1.1) reduces to the classical
elastic energy, and its L2–gradient flow is called elastic flow. The classical case is by
now well studied both analytically and numerically. For theoretical results we refer
to [24, 16, 11, 12, 25, 7], while numerical approximations have been considered in
[16, 9, 2, 4]. Schemes for the elastic flow of inextensible curves have been proposed and
analyzed in [5, 6]. Here we stress that in [9] a first stability result for a discretization
of elastic flow was presented, together with an error analysis. In [4] an alternative
discretization was presented that can also be shown to be stable and that, in addition,
satisfies an equidistribution property.

It is the aim of this paper to extend the stability results in [9, 4] to the more
general energy (1.1). In applications one is often interested in the minimizing shape
of the curve. Here we view the L2–gradient flow as an opportune method to produce
possible candidates. We stress that, to the best of our knowledge, so far there exist
no results on the analysis or numerical analysis of gradient flows for the more general
energy (1.1). Moreover, we will present exact radial solutions for the L2-gradient
flow of (1.1) for the choices in (1.3). Once again, we believe that these are the first
such results in the literature. Finally, we remark that our theoretical and numer-
ical results reveal the qualitatively very different behavior of the evolution for the
gradient flow for general G, compared to the classical case, when G(z) = 1

2 z
2. For

example, while stationary solutions exist for (1.3a) for any p ∈ (1,∞) and λ > 0,
there are no stationary solutions in the cases (1.3b) and (1.3c) if λ is sufficiently
large.

The remainder of this paper is organized as follows. In the next section we
introduce the precise mathematical formulations of the gradient flows we would like
to study. In section 3 we state two alternative weak formulations, and in section 4
we introduce continuous-in-time semidiscrete finite element approximations based on
these formulations. We show that our approximations satisfy a stability bound and
prove an equidistribution property for one of the schemes. In section 5 we introduce
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the corresponding fully discrete versions of the semidiscrete approximations derived
in the previous section. At every time level, a nonlinear system has to be solved for
the approximations, and we give details on a possible solution procedure. In section
6 we report on numerous numerical experiments, which demonstrate the effectiveness
of our fully discrete approximations. Moreover, convergence experiments, based on
exact solutions that we derive in the appendix, show a quadratic convergence rate for
our finite element approximations.

2. Mathematical formulation. Let either I = R/Z, the periodic interval [0, 1],
or I = (0, 1). Note that in the former case we have ∂I = ∅, while in the latter case
it holds that ∂I = {0, 1}. Let ~x : I → Rd be a parametrization of the curve Γ ⊂ Rd,
d ≥ 2. Note that Γ is closed if I = R/Z and open if I = (0, 1). We also define the
function spaces V = [H1(I)]d and W = [H1

0 (I)]d, and note that W = V in the case
I = R/Z.

On assuming that

|~xρ(ρ)| ≥ c0 > 0 ∀ ρ ∈ I ,(2.1)

we introduce the arclength parameter s of the curve, i.e., ∂s = |~xρ|−1 ∂ρ, and define
the unit tangential vector field

~τ(ρ) = ~xs(ρ) =
~xρ(ρ)

|~xρ(ρ)|
.(2.2)

When we consider the evolution of open curves, we impose the clamped boundary
conditions

~x(q) = ~αq and (−1)q+1 ~τ(q) = ~ζq ∀ q ∈ ∂I ,(2.3)

for given ~α0, ~α1 ∈ Rd and ~ζ0, ~ζ1 ∈ Sd−1 = {~p ∈ Rd : |~p | = 1}. The curvature vector ~κ
of Γ is given by

~κ = ~τs = ~xss , implying ~κ · ~τ = 0 .(2.4)

Energy minimization. We are interested in minimizers of the energy

Eλ(~x) =

∫
I

[
G(|~κ|) + λ

]
|~xρ| dρ ,(2.5)

where λ ∈ R is a constant, subject to the boundary conditions (2.3), and with given
energy density G : R≥0 → R>0. Variations of (2.5) in ~κ in the direction of a vector
field ~η, yield the term

∫
I
G′(|~κ|) |~κ|−1 ~κ · ~η |~xρ| dρ, and so unless there are further

conditions on G, this term does not make sense for ~κ → ~0. A sufficient condition for
this term to be well defined is

G′(z)→ 0 as z → 0 ,(2.6)

and we make that assumption from now on. Note that it is satisfied for the examples
(1.3a)–(1.3c). Throughout this paper, we set G′(|~z|) |~z|−1 ~z = ~0 if ~z = ~0, which is
justified by (2.6).
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Gradient flow. In order to approach stationary points of (2.5) we will use a time
dependent gradient flow. We begin by deriving the strong formulation of the L2-
gradient flow of (2.5). To this end, let (Γ(t))t∈[0,T ] be a family of curves in Rd,
parameterized by ~x : I × [0, T ] → Rd, (ρ, t) 7→ ~x(ρ, t). Straightforward calculations
give, on recalling (2.4), that

(|~xρ|)t = ~xs · (~xt)ρ = ~τ · (~xt)ρ , ~τt = |~xρ|−1 P ~xρ,t = ~∇s ~xt ,(2.7)

where the normal projection P is defined by

P = Id− ~τ ⊗ ~τ and ~∇s = P ∂s .(2.8)

A weak formulation of (2.4), on noting (2.3), is given by∫
I

~κ · ~η |~xρ| dρ+

∫
I

~τ · ~ηρ dρ =
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V .(2.9)

Note that ~η(q) is well defined for ~η ∈ [H1(I)]d. Differentiating (2.9) with respect to
time yields ∫

I

~κt · ~η |~xρ| dρ+

∫
I

~κ · ~η (|~xρ|)t dρ+

∫
I

~τt · ~ηρ dρ = 0 ∀ ~η ∈ V .(2.10)

It follows from (2.10) and (2.7), and on assuming the boundary conditions (2.3), that

d

dt
Eλ(~x) =

d

dt

∫
I

[G(|~κ|) + λ] |~xρ| dρ

=

∫
I

G′(|~κ|) |~κ|−1 ~κ · ~κt |~xρ| dρ+

∫
I

[G(|~κ|) + λ] (|~xρ|)t dρ

= −
∫
I

[G′(|~κ|) |~κ|−1 ~κ]ρ · ~τt dρ+

∫
I

[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
(|~xρ|)t dρ

= −
∫
I

(
P [G′(|~κ|) |~κ|−1 ~κ]s −

[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
~τ
)
· (~xt)ρ dρ

=

∫
I

(
P [G′(|~κ|) |~κ|−1 ~κ]s −

[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
~τ
)
s
· ~xt |~xρ| dρ .(2.11)

Hence the strong form of the L2-gradient flow of (2.5), subject to (2.3), is given by

~xt = −
(
P [G′(|~κ|) |~κ|−1 ~κ]s

)
s

+
(
[G(|~κ|)−G′(|~κ|) |~κ|+ λ]~τ

)
s
.(2.12)

On noting from (2.8), ~τs · ~τ = 0, and (2.4) that

~∇2
s

(
G′(|~κ|) |~κ|−1 ~κ

)
=
[
~∇s
(
G′(|~κ|) |~κ|−1 ~κ

)]
s
−
([
~∇s
(
G′(|~κ|) |~κ|−1 ~κ

)]
s
· ~τ
)
~τ

=
[
~∇s
(
G′(|~κ|) |~κ|−1 ~κ

)]
s

+
[
G′(|~κ|) |~κ|−1 ~κ

]
s
· ~τs ~τ

=
[
~∇s
(
G′(|~κ|) |~κ|−1 ~κ

)]
s

+
[
G′(|~κ|) |~κ|−1

]
s
|~κ|2 ~τ +G′(|~κ|) |~κ|−1 (~κs · ~κ)~τ

=
[
~∇s
(
G′(|~κ|) |~κ|−1 ~κ

)]
s

+ [G′(|~κ|)]s |~κ|~τ ,

we can rewrite (2.12) as
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~xt = −
[
~∇s [G′(|~κ|) |~κ|−1 ~κ]

]
s

+
[
G(|~κ|)−G′(|~κ|) |~κ|

]
s
~τ

+
[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
~κ

= −~∇2
s

(
G′(|~κ|) |~κ|−1 ~κ

)
+
[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
~κ

+
[
G(|~κ|)−G′(|~κ|) |~κ|

]
s
~τ + [G′(|~κ|)]s |~κ|~τ

= −~∇2
s

(
G′(|~κ|) |~κ|−1 ~κ

)
+
[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
~κ

+ ([G(|~κ|)]s −G′(|~κ|) [|~κ|]s)~τ

= −~∇2
s

(
G′(|~κ|) |~κ|−1 ~κ

)
+
[
G(|~κ|)−G′(|~κ|) |~κ|+ λ

]
~κ .(2.13)

In case (1.3a) with p = 2 the above formulas (2.12) and (2.13) collapse to standard

elastic flow ~xt = −(~∇s ~κ)s − 1
2 (|~κ|2 ~τ)s + λ ~κ = −~∇2

s ~κ − 1
2 |~κ|

2 ~κ + λ ~κ; see also
[2, eq. (2.25)]. As the right-hand side in (2.13) is normal to the curve, an alternative
formulation of (2.12) is given by

P ~xt = −
(
P [G′(|~κ|) |~κ|−1 ~κ]s

)
s

+
(
[G(|~κ|)−G′(|~κ|) |~κ|+ λ]~τ

)
s
.(2.14)

3. Weak formulations. We define the first variation of a quantity A depending
on ~x, in the direction ~χ as[

δ

δ~x
A(~x)

]
(~χ) = lim

ε→0

A(~x+ ε ~χ)−A(~x)

ε
.(3.1)

For later use, on noting (3.1) and (2.2), we observe that[
δ

δ~x
|~xρ|

]
(~χ) =

~xρ · ~χρ
|~xρ|

= ~τ · ~χρ ,(3.2a) [
δ

δ~x
~τ

]
(~χ) =

[
δ

δ~x

~xρ
|~xρ|

]
(~χ) =

1

|~xρ|
P ~χρ = P ~χs ,(3.2b) [

δ

δ~x
~xρ

]
(~χ) = ~χρ ,(3.2c)

where we always assume that ~χ is sufficiently smooth so that all the quantities are
defined almost everywhere; e.g., ~χ ∈ [W 1,∞(I)]d. In addition, we note that[

δ

δ~x
A(~x)

]
(~xt) =

d

dt
A(~x) .(3.3)

For example, (2.11) can be read as [δ/δ~xEλ(~x)](~xt).

3.1. Weak formulation without tangential motion. The differential equa-
tions obtained in the previous section are first order in time but fourth order in space.
It is in view of numerical methods more convenient to write the equations in ~x and ~κ,
but coupled by (2.4), since it allows to use first order methods. The weak formulation
will then be derived from the corresponding Lagrange function. For convenience we
will denote by (·, ·) the L2-inner product on I.

Weak formulation. Given Γ(0) = ~x(I, 0), with ~x(0) ∈ V for all t ∈ (0, T ], find
Γ(t) = ~x(I, t), where ~xt(t) ∈W , ~κ(t) ∈ V and ~y(t) ∈ V , such that(

~xt, ~χ |~xρ|
)
−
(
P ~ys, ~χρ

)
+
(
G(|~κ|) + λ− ~κ · ~y, ~χρ · ~τ

)
= 0 ∀ ~χ ∈W .(3.4a) (

G′(|~κ|) |~κ|−1 ~κ − ~y, ~ξ |~xρ|
)

= 0 ∀ ~ξ ∈ [L2(I)]d ,(3.4b)

(~κ, ~η |~xρ|) + (~τ , ~ηρ) =
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V .(3.4c)
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Lagrange formalism. We derive the weak equations by using the formal calculus
of PDE constrained optimization; see, e.g., [27]. For our constrained problem we
define the Lagrangian

L1(~x, ~κ, ~y) =
(
G(|~κ|) + λ, |~xρ|

)
− (~κ, ~y |~xρ|)− (~τ , ~yρ) +

∑
q∈∂I

~ζq · ~y(q);

i.e., we consider the gradient flow of (2.5) subject to the constraint (2.9). Taking
variations ~χ ∈W in ~x and setting (~xt, ~χ |~xρ|) +

[
δ
δ~x L1

]
(~χ) = 0, we obtain that

(~xt, ~χ |~xρ|) +

(
G(|~κ|) + λ− ~κ · ~y,

[
δ

δ~x
|~xρ|

]
(~χ)

)
−
(
~yρ,

[
δ

δ~x
~τ

]
(~χ)

)
= 0 ∀ ~χ ∈W .

(3.5)

On recalling (3.2a,b), it follows from (3.5) that(
~xt, ~χ |~xρ|

)
−
(
P ~ys, ~χρ

)
+
(
G(|~κ|) + λ− ~κ · ~y, ~χρ · ~τ

)
= 0 ∀ ~χ ∈W

and thus (3.4a). Taking now variations [ δδ~κ L1](~ξ) and [ δδ~y L1](~η), for ~ξ ∈ [L2(I)]d and

~η ∈ V , and setting them to zero yields (3.4b) and (3.4c).
Stability. It follows from (3.4b) that ~y = G′(|~κ|) |~κ|−1 ~κ, and so the weak form

(3.4) reduces to (
~xt, ~χ |~xρ|

)
−
(
P [G′(|~κ|) |~κ|−1 ~κ]s, ~χρ

)
(3.6a)

+
(
[G(|~κ|)−G′(|~κ|) |~κ|+ λ]~τ , ~χρ

)
= 0 ,(

~κ, ~η |~xρ|
)

+
(
~τ , ~ηρ

)
=
∑
q∈∂I

~ζq · ~η(q)(3.6b)

for all ~χ ∈ W and ~η ∈ V . Choosing ~χ = ~xt ∈ W in (3.6a), on recalling (2.11), yields
that d

dt Eλ(~x) +
(
|~xt|2, |~xρ|

)
= 0 and thus provides the stability result d

dt Eλ(~x) ≤ 0.
We remark that in an alternative to the Lagrange formalism above, the weak

formulation (3.6) can also be obtained directly by testing (2.12) with functions in W
and using (2.9). We note that in case (1.3a) with p = 2, (3.6) collapses to the weak
formulation of [9, eqs. (2.2), (2.3)] for elastic flow.

3.2. Weak formulation with tangential motion. In the following, based
on the techniques in [4], we will introduce an alternative weak formulation for the
L2-gradient flow of the energy (2.5), by imposing the two constraints

(~κ, ~η |~xρ|) + (~τ , ~ηρ) =
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V(3.7a)

and (~κ · ~τ , χ |~xρ|) = 0 ∀ χ ∈ L2(I) .(3.7b)

We recall that the right-hand side in (3.7a) is zero in the case I = R/Z. Here we
should stress that the finite element discretization of the constraints (3.7), building
on the ideas published in [4], will lead to an induced tangential motion that gives rise
to an equidistribution property in the semidiscrete setting (section 4). Of course, on
the continuous level the constraint (3.7b) is redundant, recall (2.4) and (2.1). We will
formally establish that solutions to this weak formulation are indeed solutions to the
L2-gradient flow of (2.5). Mimicking this stability proof on the discrete level will yield
the main result (Theorem 4.2) of this paper.
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Weak formulation. Given Γ(0) = ~x(I, 0), with ~x(0) ∈ V , for all t ∈ (0, T ] find
Γ(t) = ~x(I, t), where ~xt(t) ∈W , ~κ(t) ∈ V and ~y(t) ∈ V such that(

P ~xt, ~χ |~xρ|
)
−
(
P ~ys, ~χρ

)
+
(
[G(|~κ|) + λ− ~κ · ~y]~τ + (~y · ~τ) ~κ, ~χρ

)
= 0

∀ ~χ ∈W ,(3.8a) (
G′(|~κ|) |~κ|−1 ~κ − P ~y, ~ξ |~xρ|

)
= 0 ∀ ~ξ ∈ [L2(I)]d ,(3.8b) (

~κ, ~η |~xρ|
)

+
(
~τ , ~ηρ

)
=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V .(3.8c)

We observe that in the case (1.3a) with p = 2, the formulation (3.8), for I = R/Z,
collapses to [4, eq. (2.4)] on noting that then (3.8b) implies that ~κ = P ~y. It is
straightforward to show that sufficiently smooth solutions to (3.8) satisfy (2.14), i.e.,
that the weak formulation (3.8) is consistent with (2.14).

Lagrange formalism. We introduce Lagrange multipliers ~y ∈ V and z ∈ L2(I) for
(3.7) and define the Lagrangian

L2(~x, ~κ, ~y, z) = (G(|~κ|) + λ, |~xρ|)− (~κ, ~y |~xρ|)− (~τ , ~yρ) +
∑
q∈∂I

~ζq · ~y(q) + (~κ · ~xρ, z) .

We start by taking variations [ δδ~y L2](~η), [ δδ~κ L2](~ξ), [ δδz L2](χ) and setting them to

zero. While the first term immediately yields (3.8c), the remaining equations are(
G′(|~κ|) |~κ|−1 ~κ − ~y + z ~τ , ~ξ |~xρ|

)
= 0 ∀ ~ξ ∈ [L2(I)]d ,(3.9a)

(~κ · ~xρ, χ) = 0 ∀ χ ∈ L2(I) .(3.9b)

Taking variations ~χ ∈W in ~x and setting (P ~xt, ~χ |~xρ|) + [ δδ~x L2](~χ) = 0 yields that

(
P ~xt, ~χ |~xρ|

)
+

(
G(|~κ|) + λ− ~κ · ~y,

[
δ

δ~x
|~xρ|

]
(~χ)

)
−
(
~yρ,

[
δ

δ~x
~τ

]
(~χ)

)
+

(
z ~κ,

[
δ

δ~x
~xρ

]
(~χ)

)
= 0 ∀ ~χ ∈W .(3.10)

On recalling (3.2), it follows from (3.10) that

(
P ~xt, ~χ |~xρ|

)
+
(
G(|~κ|) + λ− ~κ · ~y, ~τ · ~χρ

)
−
(
~yρ, P ~χs

)
+
(
z ~κ, ~χρ

)
= 0 ∀ ~χ ∈W .

(3.11)

In addition, it follows from (3.9a,b) by considering the normal and tangential part
that P ~y = G′(|~κ|) |~κ|−1 ~κ and z = ~y · ~τ . With the first term we can provide (3.8b),
while inserting the second identity into (3.11) gives (3.8a).

Stability. Choosing ~χ = ~xt ∈W in (3.10) and noting (3.3) yields that(
|P ~xt|2, |~xρ|

)
+ (G(|~κ|) + λ− ~κ · ~y, (|~xρ|)t)− (~yρ, ~τt) + (z ~κ, ~xρ,t) = 0 .(3.12)

Differentiating (3.8c) with respect to time, and then choosing ~η = ~y yields

(~κt, ~y |~xρ|) + (~κ · ~y, (|~xρ|)t) + (~yρ, ~τt) = 0 .(3.13)

Differentiating (3.7b) with respect to t, and then choosing χ = z yields that

(z ~κt, ~xρ) + (z ~κ, ~xt,ρ) = 0 .(3.14)
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Choosing ~ζ = ~κt in (3.9a) yields that

(~y − z ~τ , ~κt |~xρ|) =
(
G′(|~κ|) |~κ|−1 ~κ, ~κt |~xρ|

)
= ([G(|~κ|)]t , |~xρ|) .(3.15)

Combining (3.12), (3.13), (3.14), and (3.15) yields that

d

dt
Eλ(~x, ~κ) =

d

dt
(G(|~κ|), |~xρ|) + (λ, (|~xρ|)t)

= ([G(|~κ|)]t , |~xρ|) + (G(|~κ|) + λ, (|~xρ|)t)
= (~y − z ~τ , ~κt |~xρ|) + (G(|~κ|) + λ, (|~xρ|)t)
= (G(|~κ|) + λ− ~κ · ~y, (|~xρ|)t)− (~yρ, ~τt) + (z ~κ, ~xt,ρ)
= −

(
|P ~xt|2, |~xρ|

)
≤ 0 ,

which shows that (3.8) is indeed a weak formulation of the L2-gradient flow of (2.5).

4. Semidiscrete in space finite element approximation. Let [0, 1] =
∪Jj=1Ij , J ≥ 3, be a decomposition of [0, 1] into intervals Ij = [qj−1, qj ] given by
a set of nodes qj . For simplicity, and without loss of generality, we assume that the
subintervals form an equipartitioning of [0, 1], i.e., that

qj = j h , with h = J−1 , j = 0, . . . , J .(4.1)

In case I = R/Z we identify 0 = q0 = qJ = 1 and set qJ+1 = q1.
The finite element spaces we use are given as follows:

V h = {χ ∈ C(I) : χ |Ij is linear ∀ j = 1, . . . , J} and V h = [V h]d .

Let {χj}Jj=j0 denote the standard basis of V h, where j0 = 0 if I = (0, 1) and j0 = 1
if I = R/Z. We also set j1 = J − 1 if I = (0, 1) and j1 = J if I = R/Z. Let
πh : C(I) → V h be the standard interpolation operator at the nodes {qj}Jj=0, and

similarly for ~π h : [C(I)]d → V h. Moreover, we define the spaces

Wh = V h ∩H1
0 (I) and Wh = [Wh]d .

Let πhW : C(I) → Wh be the standard Lagrange interpolation operator with zero
Dirichlet boundary conditions.

Similarly to (·, ·), the L2-inner product on I, we define the mass-lumped L2-inner
product (·, ·)h, for two piecewise continuous functions u, v, with possible jumps at
the nodes {qj}J−1

j=1 , via

(u, v)h = 1
2 h

J∑
j=1

[
(u v)(q−j ) + (u v)(q+

j−1)
]
,(4.2)

where we define u(q±j ) = lim
δ↘0

u(qj ± δ). The definition (4.2) naturally extends to

vector valued functions.
Let ~Xh : [0, T ] → V h be an approximation to ~x : [0, T ] → V . Here we make the

quite natural assumption that

(Ch1 ) ~Xh(qj , t) 6= ~Xh(qj+1, t), j = 0, . . . , J − 1 ∀ t ∈ [0, T ].
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Then, in correspondence to (2.2) and (2.8), we set

~τ h = ~Xh
s =

~Xh
ρ

| ~Xh
ρ |

and Ph = Id− ~τh ⊗ ~τh .(4.3)

Moreover, in analogy to (3.2), on noting (3.1) and (4.3), we have for all ~χ ∈ V h on
Ij , j = 1, . . . , J, that[

δ

δ ~Xh
| ~Xh

ρ |
]

(~χ) =
~Xh
ρ · ~χρ
| ~Xh

ρ |
= ~τh · ~χρ ,(4.4a)

[
δ

δ ~Xh
~τh
]

(~χ) =

[
δ

δ ~Xh

~Xh
ρ

| ~Xh
ρ |

]
(~χ) =

1

| ~Xh
ρ |
Ph ~χρ = Ph ~χs ,(4.4b) [

δ

δ ~Xh
~Xh
ρ

]
(~χ) = ~χρ .(4.4c)

Given ~Xh , ~κh ∈ V h, we define the discrete energy

Ehλ( ~Xh, ~κh) =
(
G(|~κh|) + λ, | ~Xh

ρ |
)h

.(4.5)

4.1. Semidiscrete method without tangential motion. We consider the
following semidiscrete continuous-in-time finite element approximation of (3.4).

Semidiscrete weak formulation. Let ~Xh(0) ∈ V h. For t ∈ (0, T ] find ~Xh(t), ~κh(t),
~Y h(t) ∈ V h, with ~Xh

t (t) ∈Wh, such that(
~Xh
t , ~χ | ~Xh

ρ |
)h
−
(
Ph ~Y hs , ~χs | ~Xh

ρ |
)

+
(

[G(|~κh|) + λ− ~κh · ~Y h] ~Xh
s , ~χs | ~Xh

ρ |
)h

= 0 ∀ ~χ ∈Wh ,(4.6a) (
G′(|~κh|) |~κh|−1 ~κh − ~Y h, ~ξ | ~Xh

ρ |
)h

= 0 ∀ ~ξ ∈ V h ,(4.6b) (
~κh, ~η | ~Xh

ρ |
)h

+
(
~Xh
s , ~ηs | ~Xh

ρ |
)

=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V h .(4.6c)

In case (1.3a) with p = 2, it follows from (4.6b) that ~κh = ~Y h, and so the scheme
(4.6), for the case I = R/Z, collapses to the scheme (2.9), (2.10) in [9] for the elastic
flow of closed curves in Rd.

Semidiscrete Lagrange formalism. On recalling (4.5), and with a view to the
constraint (4.6c), we define the discrete Lagrangian

Lh1 ( ~Xh, ~κh, ~Y h)=
(
G(|~κh|) + λ, | ~Xh

ρ |
)h
−
(
~κh, ~Y h | ~Xh

ρ |
)h
−
(
~τh, ~Y hρ

)
+
∑
q∈∂I

~ζq · ~Y h(q) ,

where ~Y h ∈ V h is a Lagrange multiplier for (4.6c). Taking variations [ δ
δ~κh Lh1 ](~ξ) and

[ δ

δ~Y h
Lh1 ](~η), for ~ξ , ~η ∈ V h, and setting them to zero yields immediately (4.6b) and

(4.6c). Taking variations ~χ ∈ Wh in ~Xh, and setting ( ~Xh
t , ~χ | ~Xh

ρ |)h + [ δδ~x L
h
1 ](~χ) = 0

we obtain with (4.4a) that

(
~Xh
t , ~χ | ~Xh

ρ |
)h

+
(
G(|~κh|) + λ− ~κh · ~Y h, ~τh · ~χρ

)h
−
(
~Y hρ , P

h ~χs

)
= 0 ∀ ~χ ∈Wh ,

(4.7)

which is equivalent to (4.6a).
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Stability. Choosing ~χ = ~Xh
t ∈W

h in (4.7) and noting (3.3) yields that(
| ~Xh

t |2, | ~Xh
ρ |
)h

+
(
G(|~κh|) + λ− ~κh · ~Y h, (| ~Xh

ρ |)t
)h
−
(
~Y hρ , ~τ

h
t

)
= 0 .(4.8)

Differentiating (4.6c) with respect to time and then choosing ~η = ~Y h yields that(
~κht , ~Y

h | ~Xh
ρ |
)h

+
(
~κh · ~Y h, (| ~Xh

ρ |)t
)h

+
(
~Y hρ , ~τ

h
t

)
= 0 .(4.9)

Choosing ~ζ = ~κht in (4.6b) yields that(
~Y h, ~κht | ~Xh

ρ |
)h

=
(
G′(|~κh|) |~κh|−1 ~κh, ~κht | ~Xh

ρ |
)h

=
([
G(|~κh|)

]
t
, | ~Xh

ρ |
)h

.(4.10)

Combining (4.8), (4.9), and (4.10) yields that

d

dt
Ehλ( ~Xh, ~κh) =

d

dt

(
G(|~κh|), | ~Xh

ρ |
)h

+
(
λ, (| ~Xh

ρ |)t
)h

=
([
G(|~κh|)]

]
t
, | ~Xh

ρ |
)h

+
(
G(|~κh|)] + λ, (| ~Xh

ρ |)t
)h

= −
(
| ~Xh

t |2, | ~Xh
ρ |
)h
≤ 0 ,

and so a solution satisfying (4.6) is stable. In fact, we have shown the following result.

Theorem 4.1. Let G ∈ C1(R≥0,R>0) satisfy (2.6). Let ( ~Xh(t), ~κh(t),
~Y h(t))t∈(0,T ] denote a solution to (4.6), with ( ~Xh(t))t∈(0,T ] satisfying (Ch1 ). Then
it holds that

d

dt
Ehλ( ~Xh, ~κh) +

(
| ~Xh

t |2, | ~Xh
ρ |
)h

= 0 .

4.2. Semidiscrete method with tangential motion. We now derive a semi-
discrete formulation for (3.8). For this we need a few more definitions. Here we make
the mild assumption that

(Ch2 ) Let (Ch1 ) hold and let ~Xh(qj−1, t) 6= ~Xh(qj+1, t), j = 1, . . . , j1, for all t ∈ [0, T ].

Let ~θh ∈ V h be the mass-lumped L2–projection of ~τ h onto V h, i.e.,(
~θh, ~ϕ | ~Xh

ρ |
)h

=
(
~τ h, ~ϕ | ~Xh

ρ |
)

=
(
~τ h, ~ϕ | ~Xh

ρ |
)h

∀ ~ϕ ∈ V h .(4.11)

Following the notation in [4, eq. (3.3)], we then define ~ωhd (t) ∈ V h to be

~ωhd (t) =
~θh(t)

|~θh(t)|
,(4.12)

which, on noting assumption (Ch2 ), is well defined. Let

Qh(ρ, t) = Id− ~ωhd (ρ, t)⊗ ~ωhd (ρ, t) ∀ ρ ∈ [0, 1] ∀ t ∈ [0, T ] ,(4.13)

and introduce the modified operator

Qh?(ρ, t) =

{
Qh(ρ, t) ∀ ρ ∈ I ,
Id ∀ ρ ∈ ∂I .

(4.14)
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Semidiscrete weak formulation. Let ~Xh(0) ∈ V h. For t ∈ (0, T ] find ~Xh(t), ~κh(t),
~Y h(t) ∈ V h, with ~Xh

t (t) ∈Wh, such that(
Qh ~Xh

t , ~χ | ~Xh
ρ |
)h
−
(
Ph ~Y hs , ~χs | ~Xh

ρ |
)

= −
(

[G(|~κh|) + λ− ~κh · ~Y h] ~Xh
s , ~χs | ~Xh

ρ |
)h

−
(
πhW [|~θh|−1 (~Y h · ~ωhd )]~κh, ~χs | ~Xh

ρ |
)h

∀ ~χ ∈Wh ,(4.15a) (
G′(|~κh|) |~κh|−1 ~κh −Qh? ~Y h, ~ξ | ~Xh

ρ |
)h

= 0 ∀ ~ξ ∈ V h ,(4.15b) (
~κh, ~η | ~Xh

ρ |
)h

+
(
~Xh
s , ~ηs | ~Xh

ρ |
)

=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V h .(4.15c)

Discrete Lagrangian. We consider the L2-gradient flow of the discrete energy
(4.5), subject to the constraints(

~κh, ~η | ~Xh
ρ |
)h

+
(
~Xh
s , ~ηs | ~Xh

ρ |
)

=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V h(4.16a)

and
(
~κh · ~Xh

ρ , χ
)h

= 0 ∀ χ ∈Wh .(4.16b)

To this end, we define the discrete Lagrangian

Lh2 ( ~Xh, ~κh, ~Y h, Zh) =
(
G(|~κh|) + λ, | ~Xh

ρ |
)h
−
(
~κh, ~Y h| ~Xh

ρ |
)h
−
(
~τh, ~Y hρ

)
+
∑
q∈∂I

~ζq · ~Y h(q) +
(
~κh · ~Xh

ρ , Z
h
)h

,

where ~Y h ∈ V h and Zh ∈ Wh are Lagrange multipliers for (4.16a) and (4.16b),
respectively. Here the test space Wh in (4.16b) was chosen because it is sufficient to
obtain the desired equidistribution result, and this leads to the altered projection Qh?
in (4.15b). For the choice (1.3a) with p = 2, the same strategy was employed in [4].

We take variations [ δ

δ~Y h
Lh2 ](~η), [ δ

δ~κh Lh2 ](~ξ), and [ δ

δ ~Zh
Lh2 ](χ), for ~ξ , ~η ∈ V h,

χ ∈Wh, and set them to zero. This yields (4.15c),(
G′(|~κh|) |~κh|−1 ~κh − ~Y h + Zh ~τh, ~ξ | ~Xh

ρ |
)h

= 0 ∀ ~ξ ∈ V h(4.17)

and (4.16b).

Taking variations ~χ ∈Wh in ~Xh and setting (Qh ~Xh
t , ~χ | ~Xh

ρ |)h +
[
δ
δ~x L

h
2

]
(~χ) = 0

we obtain that(
Qh ~Xh

t , ~χ | ~Xh
ρ |
)h

+

(
G(|~κh|) + λ− ~κh · ~Y h,

[
δ

δ ~Xh
| ~Xh

ρ |
]

(~χ)

)h
−
(
~Y hρ ,

[
δ

δ ~Xh
~τh
]

(~χ)

)
+

(
Zh ~κh,

[
δ

δ ~Xh
~Xh
ρ

]
(~χ)

)h
= 0 ∀ ~χ ∈Wh .(4.18)

On recalling (4.4), it follows from (4.18) that(
Qh ~Xh

t , ~χ | ~Xh
ρ |
)h

+
(
G(|~κh|) + λ− ~κh · ~Y h, ~τh · ~χρ

)h
−
(
~Y hρ , P

h ~χs

)
+
(
Zh ~κh, ~χρ

)h
= 0 ∀ ~χ ∈Wh .(4.19)
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It remains to identify Zh. It follows from (4.16b) and (4.11) (recall also (4.2)) that

0 =
(
~κh · ~Xh

ρ , χ
)h

=
(
~κh, χ~τh | ~Xh

ρ |
)h

=
(
~κh, χ ~θh | ~Xh

ρ |
)h

∀ χ ∈Wh ,(4.20)

which together with (4.17) implies that

0 =
(
~Y h − Zh ~τh, χ ~θh | ~Xh

ρ |
)h

=
(
~Y h − Zh ~θh, χ ~θh | ~Xh

ρ |
)h

∀ χ ∈Wh .(4.21)

As Zh ∈Wh this shows, on recalling (4.2) and (4.12), that

Zh = πhW

[
|~θh|−2 ~Y h · ~θh

]
= πhW

[
|~θh|−1 ~Y h · ~ωhd

]
.(4.22)

Combining (4.22) with (4.17) yields that ~πh [Qh? ~Y
h] = ~πh [G′(|~κh|) |~κh|−1 ~κh]. This

gives (4.15b) and inserting Zh in (4.19) yields (4.15a).

Stability. Choosing ~χ = ~Xh
t ∈W

h in (4.18) and noting (3.3) yields that(
|Qh ~Xh

t |2, | ~Xh
ρ |
)h

+
(
G(|~κh|) + λ− ~κh · ~Y h, (| ~Xh

ρ |)t
)h
−
(
~Y hρ , ~τ

h
t

)
+
(
Zh ~κh, ~Xh

ρ,t

)h
= 0 .(4.23)

Differentiating (4.15c) with respect to time and then choosing ~η = ~Y h yields(
~κht , ~Y

h | ~Xh
ρ |
)h

+
(
~κh · ~Y h, (| ~Xh

ρ |)t
)h

+
(
~Y hρ , ~τ

h
t

)
= 0 ,(4.24)

i.e., the same as (4.9). Differentiating (4.16b) with respect to t and then choosing
χ = Zh yields that (

Zh ~κht , ~X
h
ρ

)h
+
(
Zh ~κh, ~Xh

t,ρ

)h
= 0 .(4.25)

Choosing ~ζ = ~κht in (4.17) yields that

(
~Y h − Zh ~τh, ~κht | ~Xh

ρ |
)h

=
(
G′(|~κh|) |~κh|−1 ~κh, ~κht | ~Xh

ρ |
)h

=
([
G(|~κh|)

]
t
, | ~Xh

ρ |
)h

.

(4.26)

Combining (4.23), (4.24), (4.25), and (4.26) yields that

d

dt
Ehλ( ~Xh, ~κh) =

d

dt

(
G(|~κh|), | ~Xh

ρ |
)h

+
(
λ, (| ~Xh

ρ |)t
)h

=
([
G(|~κh|)

]
t
, | ~Xh

ρ |
)h

+
(
G(|~κh|) + λ, (| ~Xh

ρ |)t
)h

=
(
~Y h − Zh ~τh, ~κht | ~Xh

ρ |
)h

+
(
G(|~κh|) + λ, (| ~Xh

ρ |)t
)h

=
(
G(|~κh|) + λ− ~κh · ~Y h, (| ~Xh

ρ |)t
)h
−
(
~Y hρ , ~τ

h
t

)
+
(
Zh ~κh, ~Xh

t,ρ

)h
= −

(
|Qh ~Xh

t |2, | ~Xh
ρ |
)h
≤ 0 ,

and so a solution satisfying (4.15) is stable.
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Equidistribution. Next we show an equidistribution property for the scheme
(4.15). Choosing ~ξ = ~ωhd (qj)χj in (4.15b) and ~η = ~ωhd (qj)χj in (4.15c), for j =
1, . . . , j1, yields, on recalling (4.13) and (4.14), that

G′(|~κh(qj)|) |~κh(qj)|−1 ~κh(qj) · ~ωhd (qj) = 0 ,(4.27a)

~κh(qj) · ~ωhd (qj)
(
χj , | ~Xh

ρ |
)

+
(
~Xh
s , (~ω

h
d (qj)χj)ρ

)
= 0 .(4.27b)

It follows from (4.27b), on setting ~ah
j− 1

2

= ~X(qj) − ~X(qj−1) and on noting that

~ωhd (qj) =
~ah
j+1

2
+~ah

j− 1
2

|~ah
j+1

2

+~ah
j− 1

2

| , that

~κh(qj) · ~ωhd (qj)
(
χj , | ~Xh

ρ |
)

+ 1
2

(
~ah
j+ 1

2

|~ah
j+ 1

2

|
−

~ah
j− 1

2

|~ah
j− 1

2

|

)
·
~ah
j+ 1

2

+ ~ah
j− 1

2

|~ah
j+ 1

2

+ ~ah
j− 1

2

|
= 0 .(4.28)

If we assume that G′(z) 6= 0 for z > 0, then it follows from (4.27a) that |~κh(qj)| = 0
or that ~κh(qj) · ~ωhd (qj) = 0, i.e., the latter always holds. Hence it follows from (4.28)
that (

~ah
j+ 1

2

|~ah
j+ 1

2

|
−

~ah
j− 1

2

|~ah
j− 1

2

|

)
·
(
~ahj+ 1

2
+ ~ahj− 1

2

)
= 0 ,

which together with the Cauchy–Schwarz inequality implies that |~ah
j+ 1

2

| = |~ah
j− 1

2

| if

~ah
j+ 1

2

is not parallel to ~ah
j− 1

2

.

Overall we have shown the following results.

Theorem 4.2. Let G ∈ C1(R≥0,R>0) satisfy (2.6). Let ( ~Xh(t), ~κh(t),
~Y h(t))t∈(0,T ] denote a solution to (4.15), with ( ~Xh(t))t∈(0,T ] satisfying (Ch2 ). Then
it holds that

d

dt
Ehλ( ~Xh, ~κh) +

(
|Qh ~Xh

t |2, | ~Xh
ρ |
)h

= 0 .

Moreover, if G′(z) 6= 0 for z > 0, then on letting ~ah
j+ 1

2

= ~Xh(qj , t) − ~Xh(qj+1, t),

j = 0, . . . , j1, for a fixed time t ∈ (0, T ], it holds for j = 1, . . . , j1 that

|~ahj+ 1
2
| = |~ahj− 1

2
| if ~ahj+ 1

2
∦ ~ahj− 1

2
.

Remark 4.3. We note that the assumption G′(z) 6= 0 for z > 0 is satisfied for
all the choices in (1.3). The proof of the equidistribution properties highlights that a
weaker sufficient condition is given by G′(|~κh(qj)|) 6= 0, for j = 1, . . . , j1.

We also stress that the equidistribution property is what sets the approximation
(4.15) apart from (4.6), and this is what makes fully discrete variants of the former
more practical than fully discrete versions of the latter.

5. Fully discrete finite element approximation. Let 0 = t0 < t1 < · · · <
tM−1 < tM = T be a partitioning of [0, T ] into possibly variable time steps ∆tm =

tm+1− tm, m = 0→M−1. For a given ~Xm ∈ V h we let ~τm, Pm, ~θm, ~ωmd and Qm? be

the natural fully discrete analogues of (4.3), (4.11), (4.12), and (4.14), respectively.
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5.1. Fully discrete scheme without tangential motion. On recalling (4.6)

we introduce the following fully discrete approximation of (3.4). Given ~X0 ∈ V h

with ~X0(q) = ~αq for q ∈ ∂I and suitably chosen ~κ0 ∈ V h and ~Y 0 ∈ V h, find

(δ ~Xm+1, ~κm+1, ~Y m+1) ∈ Wh × V h × V h, with ~Xm+1 = ~Xm + δ ~Xm+1, such that for
m = 0, . . . ,M − 1

1

∆tm

(
δ ~Xm+1, ~χ | ~Xm

ρ |
)h
−
(
Pm ~Y m+1

s , ~χs | ~Xm
ρ |
)

= −
(

[G(|~κm|) + λ− ~κm · ~Y m] ~Xm
s , ~χs | ~Xm

ρ |
)h

∀ ~χ ∈Wh ,(5.1a) (
G′(|~κm+1|) |~κm+1|−1 ~κm+1 − ~Y m+1, ~ξ | ~Xm

ρ |
)h

= 0 ∀ ~ξ ∈ V h ,(5.1b) (
~κm+1, ~η | ~Xm

ρ |
)h

+
(
~Xm+1
s , ~ηs | ~Xm

ρ |
)

=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V h .(5.1c)

We observe that in the case (1.3a) with p = 2, it follows from (5.1b) that ~κm+1 =
~Y m+1, and so the scheme (5.1), in the case I = R/Z, collapses to a fully discrete
variant of the scheme (2.9), (2.10) in [9] for elastic flow, compare also with [2, eq. (3.7)].

5.2. Fully discrete scheme with tangential motion. Built on (4.15) we

introduce the following fully discrete approximation of (3.8). Given ~X0 ∈ V h with
~X0(q) = ~αq for q ∈ ∂I and suitably chosen ~κ0 ∈ V h and ~Y 0 ∈ V h, find (δ ~Xm+1,

~κm+1, ~Y m+1) ∈ Wh × V h × V h, with ~Xm+1 = ~Xm + δ ~Xm+1, such that for m =
0, . . . ,M − 1

1

∆tm

(
Qm? δ ~X

m+1, ~χ | ~Xm
ρ |
)h
−
(
~Y m+1
s , ~χs | ~Xm

ρ |
)

+
(

(~Id− Pm) ~Y ms , ~χs | ~Xm
ρ |
)

= −
(

[G(|~κm|) + λ− ~κm · ~Y m] ~Xm
s , ~χs | ~Xm

ρ |
)h

−
(
πhW [|~θm|−1 (~Y m · ~ωmd )]~κm, ~χs | ~Xm

ρ |
)h

∀ ~χ ∈Wh ,(5.2a) (
G′(|~κm+1|) |~κm+1|−1 ~κm+1 −Qm? ~Y m+1, ~ξ | ~Xm

ρ |
)h

= 0 ∀ ~ξ ∈ V h ,(5.2b) (
~κm+1, ~η | ~Xm

ρ |
)h

+
(
~Xm+1
s , ~ηs | ~Xm

ρ |
)

=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V h .(5.2c)

We note that as δ ~Xm+1 ∈ Wh, it holds that Qm? in the first term in (5.2a) can be

replaced by Qm.

Remark 5.1.
• We observe that in the case (1.3a) with p = 2, it follows from (5.2b) that

~κm+1 = ~πh [Qm? ~Y m+1], and so our scheme (5.2) collapses to the linear sche-

mes (4.1), if I = R/Z, and (4.9), if I = (0, 1), in [4]. We recall from [4,
Theorems 4.1 and 4.3] that these schemes admit a unique solution, and this

is the reason for the chosen time-discretisation of the terms involving ~Y m+1

and ~Y m in (5.2a); see also [4, Remark 4.1].

• For general G, the scheme (5.2) is (mildly) nonlinear and can be solved with
the help of a Newton iterative solver. An alternative, linear scheme can be
obtained by replacing G′(|~κm+1|) |~κm+1|−1 in (5.2b) with G′(|~κm|) |~κm|−1.
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However, in practice such a scheme does not perform well, with the scheme
breaking down, for example, because |~κm+1| becomes too small. That is why
we prefer the nonlinear scheme (5.2).

• The main difference between the two schemes (5.1) and (5.2) is that the
former uses the standard discrete curvature vector ~κm+1 as a variable, which
leads to mainly normal motion for ~Xm+1. This is in the spirit of the seminal
works by Dziuk; see e.g. [13, 14, 15, 9]. The scheme (5.2), on the other hand,
enforces ~κm+1 to have no tangential components, which leads to an implicit
tangential motion in ~Xm+1 that gives equidistributed meshes, at least in the
semidiscrete limit; recall Theorem 4.2. This is in the spirit of the works by
Barrett, Garcke, and Nürnberg; see, e.g., [2, 3, 4] for the case of discrete curve
evolutions.

5.3. Solution of the nonlinear system of equations. With the obvious
abuse of notation, i.e., on letting ~Y m+1, δ ~Xm+1, κm+1 also denote the vector of
coefficients with respect to the basis functions of V h, we can write the nonlinear
systems (5.1) and (5.2) as A − 1

∆tm
M 0

0 A M
−M 0 MG(~κm+1)

 ~Y m+1

δ ~Xm+1

~κm+1

 =

~gm~fm
~0

 ,(5.3)

where the definitions of the matrices and vectors in (5.3) follow from (5.1) and (5.2).
In particular, for (5.2), and in the case I = R/Z, the block diagonal matrices M,

MG(~κm+1), and M are defined by their diagonal block entries

Mjj = Mjj Q
m
? (qj) , [MG(~κm+1)]jj = G′(|~κm+1(qj)|) |~κm+1(qj)|−1Mjj Id ,

M jj = Mjj Id , Mjj =
(
χj , | ~Xm

ρ |
)
, j = j0, . . . , J .

The Jacobian matrix of (5.3) at a Newton iterate (~Y N , δ ~XN , ~κN )T is independent of
~Y N , δ ~XN , and can be written as A − 1

∆tm
M 0

0 A M
−M 0 MdG(~κN )

 ,(5.4)

where

[MdG(~κN )]jj = Mjj

(
G′(|~κN (qj)|) |~κN (qj)|−1 Id

+
[
G′′(|~κN (qj)|)−G′(|~κN (qj)|) |~κN (qj)|−1)

]
|~κN (qj)|−2 ~κN (qj)⊗ ~κN (qj)

)
.

We note that for the cases (1.3a)–(1.3c) we have

G′(z)/z = zp−2 , G′′(z) = (p− 1) zp−2 ,(5.5a)

G′(z)/z = α z−3 e−α/z , G′′(z) = α (α− 2 z) z−4 e−α/z ,(5.5b)

G′(z)/z = 1
2 z
− 5

2 (z + 2α) e−α/z , G′′(z) = 1
4 z
− 7

2 (z2 + 4α z − 4α2) e−α/z .(5.5c)

In practice the Newton iteration for (5.3), for the schemes (5.1) and (5.2), usually
converges in only a few steps. We implemented the schemes (5.1) and (5.2) with the
help of the finite element toolbox ALBERTA; see [26]. The linear subproblems of
the Newton iteration, featuring the block matrix (5.4), are solved with the help of
the sparse factorization package UMFPACK; see [8].
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6. Numerical results. Throughout the numerical experiments we take, for
given ~X0, ~κ0 = Q0 ~k, where ~k ∈ V h is the solution to

(
~k, ~η | ~X0

ρ |
)h

+
(
~X0
s , ~ηs | ~X0

ρ |
)

=
∑
q∈∂I

~ζq · ~η(q) ∀ ~η ∈ V h ,

and then set ~Y 0 = ~πh [G′(|~κ0|) |~κ0|−1 ~κ0]. We will always employ uniform time steps,
∆tm = ∆t, m = 0, . . . ,M − 1. For the spatial resolution we will refer to hΓ0 , the
maximal edge length of Γ0. On recalling (4.5), we will refer to Ehλ( ~Xm, ~κm+1) as
the fully discrete energy for solutions of the schemes (5.1) and (5.2), respectively.
We stress that no remeshing was used in any of the experiments presented in this
section.

6.1. Numerical results for d = 2.

6.1.1. Circular solutions. For the choice (1.3a), we recall the true solution
(A.3) with (A.5) for (2.12) with λ = 0 from the appendix. It will be used for the
convergence tests for the presented schemes. To this end, we start with the initial
data

~X0(qj) = r(0)

(
cos[2π qj + 0.1 sin(2π qj)]
sin[2π qj + 0.1 sin(2π qj)]

)
, j = 1, . . . , J ;(6.1)

recall (4.1), with r(0) = 1. We compute the error

‖Γ− Γh‖L∞ = max
m=1,...,M

max
j=1,...,J

∣∣| ~Xm(qj)| − r(tm)
∣∣(6.2)

over the time interval [0, 1] between the true solution and the discrete solutions. Here
we use the time step size ∆t = 0.1h2

Γ0 . For the choices p = 2, p = 5, and p = 1.1
the computed errors, together with their experimental order of convergence (EOC),
are reported in Tables 1–3. In each case we observe that the schemes exhibit second
order convergence rates.

Table 1
Convergence test for (1.3a), p = 2, λ = 0, over the time interval [0, 1].

(5.1) (5.2)
J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 2.1279e-03 — 2.2720e-03 —
64 1.0792e-01 5.3401e-04 2.00 5.6804e-04 2.01

128 5.3988e-02 1.3363e-04 2.00 1.4201e-04 2.00
256 2.6997e-02 3.3416e-05 2.00 3.5503e-05 2.00
512 1.3499e-02 8.3546e-06 2.00 8.8759e-06 2.00

Table 2
Convergence test for (1.3a), p = 5, λ = 0, over the time interval [0, 1].

(5.1) (5.2)
J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 3.2297e-03 — 4.2993e-03 —
64 1.0792e-01 8.0173e-04 2.02 1.0631e-03 2.02

128 5.3988e-02 2.0008e-04 2.00 2.6507e-04 2.01
256 2.6997e-02 5.0001e-05 2.00 6.6227e-05 2.00
512 1.3499e-02 1.2499e-05 2.00 1.6554e-05 2.00



A2028 WILLY DÖRFLER AND ROBERT NÜRNBERG

Table 3
Convergence test for (1.3a), p = 1.1, λ = 0, over the time interval [0, 1].

(5.1) (5.2)
J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 8.9127e-04 — 1.4774e-04 —
64 1.0792e-01 2.2636e-04 1.98 3.7037e-05 2.00

128 5.3988e-02 5.6815e-05 2.00 9.2660e-06 2.00
256 2.6997e-02 1.4218e-05 2.00 2.3169e-06 2.00
512 1.3499e-02 3.5554e-06 2.00 5.7926e-07 2.00

For the choice (1.3b), we use a numerical solution of the differential equation (A.3)
with (A.6), from the appendix, for (2.12) with λ = 0. For the presented convergence
tests, we start with the initial data (6.1) with r(0) = 0.5. We compute the error (6.2)
over the time interval [0, 1]. Here we use the time step size ∆t = 0.1h2

Γ0 . For the
choice α = 4 the computed errors are reported in Table 4.

Table 4
Convergence test for (1.3b), α = 4, λ = 0, over the time interval [0, 1].

(5.1) (5.2)
J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 2.1544e-01 4.5099e-04 — 2.1356e-04 —
64 1.0792e-01 1.1368e-04 1.99 5.3519e-05 2.00

128 5.3988e-02 2.8479e-05 2.00 1.3156e-05 2.03
256 2.6997e-02 7.1234e-06 2.00 2.2891e-06 2.52
512 1.3499e-02 1.7811e-06 2.00 5.7227e-07 2.00

For (1.3c), we now investigate the behavior of circles close to stationary radial

solutions with radius r such that r−
1
2 e−α r ( 1

2 − α r) + λ = 0; recall (A.8) in the
appendix. To this end, we numerically compute the stationary radius r ≈ 0.55617
for α = 4 and λ = 0.25; see Figure 11 (right). On noting (A.8) we observe that
this stationary solution is stable. Indeed, starting with the initial data (6.1) with
r(0) = 0.4 and J = 128, we use the scheme (5.2) to compute the evolution shown in
Figure 1. Here we use the very small time step size ∆t = 10−7, since for larger values
the Newton iteration to solve the nonlinear equations arising at each time step does
not converge. With the chosen ∆t, the maximum number of Newton iterations per
time step was 2. We note that at the final time the discrete curve has a diameter of
1.112, which is approximately twice the expected radius of the stationary solution.
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Fig. 1. (1.3c) with α = 4, λ = 0.25. Left: Plots of the curve at times t = 0, 1, 2, 5. Right: t
versus discrete energy on [0, 5].
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6.1.2. Clamped boundary conditions. In order to test the convergence of
the schemes in the presence of clamped boundary conditions, we consider the stable
stationary solution for (1.3a) with r = 1 and λ = p−1

p ; recall (A.8) in the appendix.

Similarly to (6.1), we choose the initial data

~X0(qj) =

(
sin[(qj − 1

2 )π + 0.1 cos((qj − 1
2 )π)]

cos[(qj − 1
2 )π + 0.1 cos((qj − 1

2 )π)]

)
, j = 0, . . . , J ,

and provide the boundary conditions defined by X0 and ~ζ0 = ~ζ1 = −~e2. On com-
puting the solution until time t = 1, with ∆t = 0.1h2

Γ0 , we compute the maximal

distance between ~XM (qj) and the unit semicircle. For the choice p = 4, the results
are presented in Table 5. As we start the simulations with an interpolation of the true
steady state solution, we observe some superconvergence for large hΓ0 . But eventually
the convergence rates seem to settle on second order.

Table 5
Convergence test for clamped boundary conditions for (1.3a), p=4, with λ= 3

4
and ~ζ0 =~ζ1 =−~e2.

(5.1) (5.2)
J hΓ0 ‖Γ(1)− ΓM‖ EOC ‖Γ(1)− ΓM‖ EOC

32 1.0792e-01 3.0545e-05 — 2.7926e-05 —
64 5.3988e-02 4.1892e-06 2.87 3.6824e-06 2.93

128 2.6997e-02 6.1270e-07 2.77 5.0761e-07 2.86
256 1.3499e-02 9.9239e-08 2.63 7.5317e-08 2.75
512 6.7495e-03 1.8154e-08 2.45 1.2393e-08 2.60

For the same setup as for Table 5, we now present a simulation each with λ < 3
4

and λ > 3
4 , so that the unit semicircle is no longer a stationary solution. The plots of

the obtained numerical steady state solutions, for the scheme (5.2) with J = 128 and
∆t = 10−3, are shown in Figure 2.
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Fig. 2. Steady state solutions for (1.3a) with p = 4 and clamped boundary conditions
~ζ0 = ~ζ1 = −~e2. Left: λ = 0.01. Right: λ = 10.

In the next experiment, we connect two horizontal lines by a minimizing curve.
In Figure 3, we show the comparison of the obtained discrete approximations to the
minimizers for the energy (2.5), with λ = 0.1, for (1.3a) with p ∈ {1.6, 2, 4, 15}. Here
we use the scheme (5.2) with J = 128 and ∆t = 10−5. We note that for p < 2 the
steady state solution becomes more straight, while for p > 2 the shape is more curved.
In other words, for p < 2 the maximal curvature and the length of the curve become
smaller, while for p > 2 both become larger. The discrete energies for the displayed
solutions are 0.963, 0.791, 0.421, and 0.236, respectively.

In order to allow simulations of the situation in Figure 3 for the choice (1.3b), we
apply a regularization term and consider
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Fig. 3. Steady state solutions for (1.3a) with p = 1.6 (black), p = 2 (red), p = 4 (green) and

p = 15 (blue), λ = 0.1 and clamped boundary conditions ~ζ1 = −~ζ0 = ~e1. A closeup around the point
(0, 0.5)T on the right. Color refers to online figures.

G(z) = e−α/z + 1
2 ε z

2 with ε = 10−12 .(6.3)

This is purely to help overcome numerical difficulties when |z| is small, and, as far
as we can establish, this has no major influence on the computed evolution. For
example, the errors in Table 4 for the scheme (5.2), but with (1.3b) replaced by (6.3),
are given by 2.1361e-04, 5.3522e-05, 1.3388e-05, 3.3475e-06, 8.3687e-07. In Figure 4,
we show the comparison of the obtained discrete approximations to the minimizers
for the energy (2.5), with λ = 0.1, for (6.3) with α ∈ {3, 4, 9, 15}. Here we use the
scheme (5.2) with J = 128 and ∆t = 10−5. We observe that, in contrast to Figure 3,
the arrangements of the stationary curves is not monotone in the parameter α. In
particular, the curve for α = 3 lies between the curves for α = 4 and α = 9. In fact,
further numerical investigations suggest that α = 4 is approximately the value that
leads to the largest deformation of the stationary curve. The discrete energies for the
solutions displayed in Figure 4 are 0.271, 0.243, 0.228, and 0.226, respectively.
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Fig. 4. Left: Steady state solutions for (6.3) with α = 3 (black), α = 4 (red), α = 9 (green) and

α = 15 (blue), λ = 0.1 and clamped boundary conditions ~ζ1 = −~ζ0 = ~e1. Right: A closeup around
the point (0, 0.5)T . Color refers to online figures.

6.2. Numerical results for d = 3. Here we only consider clamped bound-
ary conditions, since we expect stationary closed curves to lie within two-dimensional
hyperplanes. Throughout this subsection, we let λ = 1 and choose the discretiza-
tion parameters J = 512 and ∆t = 10−4. Unless otherwise stated, we employ the
scheme (5.2).

We begin with an evolution for a segment of a helix, parameterized by ~x0(ρ) =[
ρ, sin(2πρ), cos(2π ρ)

]T
for ρ ∈ [0, 1], for the clamped boundary conditions (2.3)

given by ~x0 and ~ζ1 = −~ζ0 = ~e2. For the energy induced by (1.3a) with p = 1.5,
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Fig. 5. Evolution of a helical curve. (1.3a) with p = 1.5, λ = 1, ~ζ1 = −~ζ0 = ~e2. Left: Plots of
the curve at times t = 0, 0.5, . . . , 2.5, with the almost stationary (planar) curve at time t = 2.5 in
red. Right: t versus discrete energy on [0, 3]. Color refers to online figures.

the initially three-dimensional curve collapses to a curve that lies in a hyperplane
parallel to the x − y–plane. See Figure 5 for the evolution. The energy plot nicely
illustrates the rapid decay of the energy as the curve settles into the two-dimensional
hyperplane, where it appears to have reached a steady state. The discrete energy for
the final solution in Figure 5 is 7.71.

For (1.3a) with p ∈ {2, 4, 15}, however, the curve remains three-dimensional
throughout, until it settles on a stationary shape; see Figure 6. Similarly to Fig-
ure 3, we observe that larger values of p lead to curves with higher maximal curvature
and greater overall length. The discrete energies for the solutions displayed in Figure
6 are 8.67, 7.70, and 6.65, respectively. We remark that starting the evolution from
the final shape in Figure 5, for p = {2, 4, 15}, still leads to the stationary solutions
displayed in Figure 6. Hence we conjecture that these solutions are indeed discrete
approximations to the global minimizer for the considered curvature energy and the
prescribed clamped boundary conditions.
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Fig. 6. Nonplanar steady state solutions for (1.3a) with λ = 1, ~ζ1 = −~ζ0 = ~e2 and p = 2 (red),
p = 4 (green) and p = 15 (blue). Color refers to online figures.

Moreover, we conjecture that the global minimizer changes from a planar to a
nonplanar shape for a critical value of p. As an explanation we can state that for
the given setup the curvature’s contribution to the energy, 1

p

∫
|~κ|p, for any planar

connection between the two clamped endpoints increases strongly with p, and it will
start to dominate the term that penalizes the length of the curve. Eventually, for
p sufficiently large, a longer, nonplanar, circle-like connection will have a smaller
overall energy

∫
[ 1
p |~κ|

p + 1]. To study this further, we computed for a set of p values

in [1.5, 2], and for two possible initial curves (either planar (two-dimensional), or
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Fig. 7. A plot of ∆z = maxj,`=0,...,J |( ~XM (qj) − ~XM (q`)) · ~e3| (left) and the discrete energy

Ehλ (right) against p in (1.3a). Here we show a curve each for two-dimensional (red) and three-
dimensional (blue) initial data, respectively. Color refers to online figures.

nonplanar (three-dimensional)), the diameter in z-direction of the stationary solution;
see Figure 7. It can be seen that for values p ∈ [1.55, 1.81], two different stationary
states appear to exist (planar and nonplanar), and the initial data critically determines
which state is reached. Moreover, by comparing the energy of the final states, we
conjecture that the planar stationary state is the minimizer for p < 1.63, while the
nonplanar curve is the minimizer for p > 1.64.

We remark that the scheme (5.1) is not able to integrate the evolution in Figure 5
with the same discretization parameters. Even if we choose the much smaller time
step size ∆t = 10−6, the scheme (5.1) can only compute the evolution until about
t = 1.4, at which point the scheme breaks down due to coalescence of mesh points.
In Figure 8 we compare the element ratio

rm =
maxj=1→J | ~Xm(qj)− ~Xm(qj−1)|
minj=1→J | ~Xm(qj)− ~Xm(qj−1)|

(6.4)

for the schemes (5.1) and (5.2) for this simulation with ∆t = 10−6 until time t = 1. It
can be clearly seen that for the scheme (5.1) the ratio increases dramatically, while for
the scheme (5.2) the ratio converges to 1, meaning an equidistribution of the vertices.

Finally, for (1.3a) with p ∈ {1.5, 4}, we show some more involved evolutions
towards the steady states shown in Figures 5 and 6. To this end, we choose as initial
data a discretisation of

~x0(ρ) =
[
ρ, sin(4πρ), cos(4π ρ)

]T ∀ ρ ∈ [0, 1] ,

i.e., a helix with two turns. The computed evolutions are shown in Figures 9 and 10.
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Fig. 8. The time evolution of the ratio (6.4) for the schemes (5.1) (red) and (5.2) (blue) for
the experiment as in Fig. 5 with ∆t = 10−6. Color refers to online figures.
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Fig. 9. Evolution of a double-winded helical curve. (1.3a) with p = 1.5, λ = 1, ~ζ1 = −~ζ0 = ~e2.
The convergence is towards the steady state solution shown in Fig. 5. The curve is shown at times
t = 0, 1, 2, 5 (from left to right).
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Fig. 10. (1.3a) with p = 4, λ = 1, ~ζ1 = −~ζ0 = ~e2. Evolution of a clamped helix towards the
steady state solution shown in Fig. 6. The curve is shown at times t = 0, 5, 10, 20.

Conclusion. We have presented two continuous-in-time semidiscrete finite ele-
ment discretizations for the approximation of the L2-gradient flow of general curvature
energies of the form (2.5), featuring a general energy density G. Here we have consid-
ered closed and open curves, taking into account clamped boundary conditions in the
case of open curves. Both schemes can be shown to be stable, and the second vari-
ant satisfies, in addition, an equidistribution property. The introduced corresponding
fully discrete approximations, (5.1) and (5.2), are in general mildly nonlinear, due to
the possible nonlinearities present in G′. In practice both schemes perform well in
convergence tests, using exact radial solutions developed in the appendix and exhibit
good stability properties. The scheme (5.2) proved to be more robust in practice, as
(5.1) could at times not compute evolutions unless the time discretization parameter
was chosen sufficiently small. Moreover, the scheme (5.1) can suffer from coalescence
in practice, while the vertices for scheme (5.2) are always well distributed.

Appendix A. Exact radial solutions for d = 2.
General planar curves. For a closed curve in the case d = 2 we can define the

normal to the curve via ~ν = −~τ⊥, where (·)⊥ denotes a clockwise rotation by π
2 . Then

we can introduce the curve’s scalar curvature via

κ ~ν = ~κ = ~τs = ~xss;(A.1)

see, e.g., [10]. On noting that

~∇2
s

(
G′(|~κ|) |~κ|−1 ~κ

)
= ~∇2

s

(
G′(|κ|) |κ|−1 κ ~ν

)
=
[
(G′(|κ|) |κ|−1 κ ~ν)s · ~ν ~ν

]
s
· ~ν ~ν

=
[
(G′(|κ|) |κ|−1 κ)s ~ν

]
s
· ~ν ~ν = (G′(|κ|) |κ|−1 κ)ss ~ν ,
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it is straightforward to establish that (2.13), for d = 2, can be formulated as

~xt · ~ν = −(G′(|κ|) |κ|−1 κ)ss +
[
G(|~κ|)−G′(|κ|) |κ|

]
κ + λκ .(A.2)

For the special case (1.3a) with p = 2, (A.2) reduces to ~xt · ~ν = −κss − 1
2 κ3 + λκ,

the standard elastic flow in the plane.
We now make the ansatz

~x(ρ, t) = r(t) [cos(2πρ)~e1 + sin(2πρ)~e2] ∀ ρ ∈ I ,(A.3)

with r(t) > 0 for all t ∈ [0, T ]. It follows from (A.1) that κ(ρ, t) = [r(t)]−1 and
~xt(ρ, t) · ~ν(ρ, t) = −r′(t), for all ρ ∈ I and t ∈ [0, T ]. Hence a solution of the form
(A.3) for the flow (A.2) needs to satisfy

1
2

d

dt
r2(t) = G′

(
1
r(t)

)
1
r(t) −G

(
1
r(t)

)
− λ .(A.4)

The case (1.3a). Here we obtain the ordinary differential equation

1
2

d

dt
r2(t) =

[
1
r(t)

]p−1 1
r(t) −

1
p

[
1
r(t)

]p − λ =
(
1− 1

p

)[
1
r(t)

]p − λ .
It is easy to verify that the solution in the case of λ = 0 is

r(t) =
[

(p−1) (p+2)
p t+ r(0)p+2

] 1
p+2

.(A.5)

In particular, for p ∈ (1,∞), the solution (A.5) represents expanding circles. For
p = 2, we obtain the well-known expanding circle solution with radius r(t) = (2 t +

r(0)4)
1
4 for the elastic flow in the plane.

The case (1.3b). The differential equation (A.4) implies

1
2

d

dt
r2(t) = (α r(t)− 1) e−α r(t) − λ ,

which for λ = 0 yields

r′(t) =
(
α− 1

r(t)

)
e−α r(t) .(A.6)

We note that a circle with radius r = 1
α is an unstable steady state solution to (A.6);

see also the final paragraph below. Circles with a larger radius will (unboundedly)
expand, while circles with a smaller radius will shrink (to 0).

If we let A′(y) = y [α y − 1]−1 eαy, we find its antiderivative to be A(y) =
α−2 (eEi(α y − 1) + eαy), where Ei(z) = −

∫∞
−z u

−1 e−u du denotes the well-known

exponential integral. Then a solution to (A.6), with r(t) > 1
α , satisfies d

dt A(r(t)) =
r′(t)A′(r(t)) = 1, which means that a solution to (A.6) satisfies the nonlinear equation

A(r(t)) = t+A(r(0)) ,

which can be solved numerically to find r(t).
The case (1.3c). The differential equation (A.4) implies

1
2

d

dt
r2(t) =

(
α r(t)− 1

2

) [
1
r(t)

] 1
2 e−α r(t) − λ ,

which for λ = 0 yields

r′(t) =
(
α− 1

2
1
r(t)

) [
1
r(t)

] 1
2 e−α r(t) .(A.7)

We note that a circle with radius r = 1
2α is an unstable steady state solution to (A.7);

see also the final paragraph below. Circles with a larger radius will expand, while
circles with a smaller radius will shrink.
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Stability of stationary solutions. We observe that for our examples in (1.3) circles
of radius r = |~x| have energy

Eλ(~x) = 2π
(
G
(

1
r

)
+ λ
)
r = 2π gλ(r) , gλ(r) =


1
p r

1−p + λ r (1.3a),

r e−α r + λ r (1.3b),
√
r e−α r + λ r (1.3c).

In particular, if r → 0, then only in the case (1.3a) the energy grows unbounded. For
the other two cases, circles with radius r → 0 are a minimizing sequence for (2.5) if
λ ≥ 0.

The radii of stationary radial solutions are now simply the stationary points of gλ.
Their stability can be inferred from the sign change of g′λ, or from the sign of g′′λ, where

g′λ(r) =


1−p
p r−p + λ,

e−α r (1− α r) + λ,

r−
1
2 e−α r ( 1

2 − α r) + λ,

and g′′λ(r) =


(p− 1) r−(p+1) (1.3a),

α e−α r (α r − 2) (1.3b),

r−
3
2 e−α r (α r2 − α r − 1

4 ) (1.3c).

(A.8)

In particular, if r is the radius of a stationary radial solution, i.e., g′λ(r) = 0, then
for (1.3a) this stationary solution is always stable. For the choice (1.3b) it is stable if

r > 2
α , while for (1.3c) it is stable if r > 1

2 ([1+ 1
α ]

1
2 −1). We reformulate the equation

g′λ(r) = 0 for the stationary radii in the form f(r, α) = λ (for examples (1.3b) and
(1.3c)) and provide the graph of f(·, α) in Figure 11 for some values of α. It can be
seen that there exist no stationary solutions for the cases (1.3b) and (1.3c) and the
chosen values of α if λ > 0 is too large.

Fig. 11. Stationary radial solutions as the intersection of f(·, α), for α ∈ {2, 4, 8}, with the line
λ =const (dotted line). The two solutions for α = 4 are marked with a circle. The left solution is
unstable while the right one is stable. Note that there are no stationary solutions for even moderate
λ > 0. Left: Example (1.3b) with λ = 0.08. Right: Example (1.3c) with λ = 0.25. Color refers to
online figures.
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