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I N T R O D U C T I O N

This dissertation is focused on problems that are unsolved for
Class 2 graphs. To be Class 2, for a graph, is opposite to be
Class 1, and qualifies the non-existence of an edge-coloring of
the graph with a specific number of colors.
Indeed, a classical result in graph theory, namely Vizing’s The-
orem, ensures that a simple graph with maximum degree ∆
admits a proper edge-coloring either with ∆ or with ∆+ 1 col-
ors. In the former case the graph is said to be Class 1, in the
latter Class 2. To be Class 1 or Class 2 for a graph is somehow
significant in graph theory since many open and outstanding
conjectures are completely solved for Class 1 graphs, while still
unsolved for, maybe some classes, of Class 2 ones.
In this thesis we consider problems that are strongly related
to 4 of these outstanding conjectures, namely the Cycle Double
Cover Conjecture, the Berge-Fulkerson Conjecture, the Petersen
Coloring Conjecture and the Tutte’s 5-flow Conjecture. The for-
mer two of them are about covering the edge-set of a graph
with families of cycles or perfect matchings, respectively. They
are both implied by the Petersen Coloring Conjecture, which is
about coloring a graph using another graph. Finally, the Tutte’s
5-flow Conjecture is about flows in graphs and proposes a gen-
eral upper bound for the so-called flow number of a graph. All
these conjectures are still unsolved only for the Class 2 cubic
graphs.

In Chapter 1 we introduce the edge-coloring problem in gra-
phs and we survey some major results about it. We also con-
sider Class 2 regular graphs, focusing especially on cubic ones,
and we list some of their main features and classic results that
appear in literature about them. After this, in Section 1.4, we
state the problems we work on in the thesis, highlighting their
strong relation with the mentioned conjectures.

The problem considered in Chapter 2 concerns directly Cy-
cle Double Cover and Berge-Fulkerson Conjectures. We try to
determine properties of a possible minimum counterexample
to these conjectures. In both cases we want to establish if such
possible counterexamples have a high cyclic-edge-connectivity.
This is a problem that deserves attention since it is conjectured
(see [53, 59]) that highly cyclically-edge-connected Class 2 cubic
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graphs do not exist. To our aims, we apply a technique devel-
oped in [60] and what we obtain are new strong restrictions on
the structure of such possible minimum counterexamples.

Chapter 3 is devoted to the Petersen Coloring Conjecture,
and, more in general, to H-colorings of cubic and r-regular
graphs. Generalizing results of [68, 34, 35] we prove that, in
a specific sense, the Petersen graph is the only graph that could
possibly appear in the statement of the Petersen Coloring Con-
jecture, meaning that it is the only graph that could possibly
color all bridgeless cubic graphs. We also consider a general-
ization of the problem posed by the Petersen Coloring Con-
jecture for r-regular graphs, r > 3. We provide evidence that,
when r > 3, there is no possibility to have an analogous of the
Petersen Coloring Conjecture. In other words, we prove that
there is not an r-regular (multi)graph that colors all r-regular
(multi)graphs. Our evidence has been subsequently strength-
ened in [58], where it is proved that even considering subclasses
of r-regular graphs, there is no possibility to color all of them
with a single graph.

The topic of Chapter 4 is d-dimensional flows, which are
a generalization in higher dimension of the flows considered
by the Tutte’s 5-flow Conjecture. As we will highlight, while
the case d > 3 has already been considered in literature, the
case d = 2, i.e. the one of two-dimensional flows, has not.
The main purpose of our work is to state an analogous of
the Tutte’s 5-flow Conjecture in dimension 2. More specifically,
we want to propose a general upper bound for the so-called
2-dimensional flow number of a cubic graph. When dealing
with Class 1 cubic graphs, we manage to give a tight upper
bound, while for Class 2 ones, again, we have an upper bound,
but we cannot prove that it is tight. Another main focus of our
work about 2-dimensional flows concerns lower bounds for the
2-dimensional flow number of cubic graphs. Indeed, determin-
ing lower bounds for this parameter turns out to be a hard
problem, even for very small graphs like the Petersen graph.
However, with geometric arguments, we manage to give a non-
trivial lower bound for the 2-dimensional flow number of a
cubic graph in terms of its odd-girth.

The last problem we deal with in this dissertation is palette
index, in Chapter 5. The palette index of a graph G is the min-
imum number of palettes that can appear around the vertices
of G in a proper edge-coloring of the graph. Determining the
palette index of a regular graph G is a trivial problem when G
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is Class 1, while it turns out to be challenging when G is Class
2. However, despite being an edge-coloring problem, at first
sight, this problem seems deeply different from the others con-
sidered in this thesis. Instead, we will see that it can be stated in
terms of H-colorings in the context of hypergraphs. Results that
appeared in literature about palette index concern the determi-
nation of the palette index of some particular classes of graphs,
such as for example trees, complete graphs, bipartite graphs
and others, while results on general graphs do not appear. We
manage to prove a sufficient condition for a general graph to
have palette index larger its minimum degree. We also provide
a characterization of graphs having palette index at most 3 in
terms of decompositions into Class 1 regular subgraphs.

We conclude the dissertation with Chapter 6, where we sum-
marize the main results and open problems of the previous
chapters, focusing attention on new possible research lines.
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1
I N T R O D U C T I O N A N D
B A C K G R O U N D

In this dissertation we will consider a bunch of problems in
graph theory that are difficult for a specific class of graphs,
namely the cubic Class 2 regular graphs. The main reason to do
so is that in graph theory there are several outstanding conjec-
tures for which proving them to be true for this class of graphs
would imply them to be true in general. In this chapter we re-
port some major results about cubic Class 2 regular graphs that
appear in the literature and some of their known features and
properties. We conclude presenting some important conjectures
that are still open for this class of graphs and relating these con-
jectures to the problems we will consider in the next chapters.

1.1 class 1 and class 2 regular graphs

Depending on the context we consider, a graph Gmay not ad-
mit parallel edges nor loops, i.e. be simple, admit parallel edges
but no loops, i.e. be a multigraph or it may admit both paral-
lel edges and loops, i.e. be a pseudograph. Moreover G could be
directed or undirected. We will clearly specify time by time to
which class of graphs we are referring to. In this first chapter
we consider undirected multigraphs.

The leading concept we will deal with all along the disserta-
tion is the one of proper edge-coloring of a graph. More pre-
cisely, a proper edge-coloring of a graph G is an assignment of
colors to the edges of G in such a way that any pair of edges
that are incident to a common vertex receive different colors.
If a proper edge-coloring uses k distinct colors, we say that it
is a proper k-edge-coloring. If a graph admits a proper k-edge-
coloring we say that it is k-edge-colorable. From now on, we will
only consider proper edge-colorings, so that we will just write
"edge-coloring" instead of "proper edge-coloring".

The minimum integer k such that G admits a k-edge-coloring
is said to be the edge-chromatic number or chromatic index of G
and it is denoted by χ(G). Clearly, if ∆ is the maximum degree
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1.1 class 1 and class 2 regular graphs 2

of G, then χ(G) > ∆. Moreover, by a classical result of Viz-
ing [89], a graph G admits an edge-coloring with ∆+ µ colors,
where µ denotes the multiplicity of G (i.e. the maximum num-
ber of parallel edges joining two distinct vertices of the graph).
This means that χ(G) 6 ∆+ µ.
Definition 1.1. A graph G is said to be Class 1 if χ(G) = ∆, Class
2 if χ(G) > ∆.

If G is simple (µ = 1), by Vizing’s theorem we have either
χ(G) = ∆ or χ(G) = ∆ + 1, so that, according to Definition
1.1, a simple graph G is Class 1 if χ(G) = ∆ and Class 2 if
χ(G) = ∆+ 1.

Definition 1.1 partitions the class of graphs with maximum
degree ∆ into two subclasses, according to their edge-chromatic
number. This partition is useful especially when considering
regular graphs, that are graphs where every vertex has the same
degree. Here and in what follows, if every vertex of a graph
G has degree r > 0, we will say that G is an r-regular graph.
Recall that a perfect matching of a graph G is a set M of edges
of G such that every vertex of G is incident to exactly one of
the edges of M. By Definition 1.1, an r-regular graph is Class
1 if and only if it admits an r-edge-coloring, and this means
it can be decomposed into r edge-disjoint perfect matchings,
each one of them corresponding to one of the r colors in the
r-edge-coloring. Hence, Class 2 r-regular graphs are the ones
that cannot be decomposed into r edge-disjoint perfect match-
ings.

The first question that arises at this point is whether, for each
r > 0, Class 1 and Class 2 r-regular graphs exist. If r = 0 or
r = 1 every r-regular graph G is clearly Class 1, since it has
either no edges or its edges form a perfect matching themselves.
For each r > 2 there are both Class 1 and Class 2 r-regular
graphs. Indeed, for example, the complete bipartite graph Kr,r
is Class 1 and r-regular for each r. On the other side, a Class 2

r-regular graph can be constructed, for each r > 2, by applying
Theorem 1.2, a classical result by Tutte, [88]. Since we will use
this construction in Chapter 5, we describe it in some detail. IfG
is a graph and S ⊆ V(G), the graph G− S is the graph obtained
from G by deleting the vertices in S and all the edges adjacent
to a vertex in S. Moreover, we denote by q(G) the number of
odd connected components of a graph G.

Theorem 1.2 (Tutte’s theorem). A graph G has a perfect matching
if and only if, for every S ⊆ V(G), q(G− S) 6 |S|.



1.1 class 1 and class 2 regular graphs 3

Observe that in any r-regular graph G, r > 2, a sufficient
condition to be Class 2 is to not have a perfect matching. To
construct an example of an r-regular Class 2 graph, let k = b r2c.
Consider k copies of Kr,r and delete an edge e in each of them.
Connect the vertices that were previously adjacent to e in each
copy to a new vertex v by an edge. Denote this new graph by
Gv. If r is even, then Gv is r-regular and it has an odd number
of vertices, that is 2rk + 1. Hence, it comes directly from the
definition of perfect matching that it cannot have one. However,
to conclude the same, we could apply Theorem 1.2 with S = ∅,
and observe that 1 = q(G) > |S| = 0. If r is odd, consider r
copies of Gv, and connect the vertex v in each copy to a new
vertex u by an edge. The graph so obtained is r-regular, and,
by applying Theorem 1.2 with S = {u} we have r = q(G− S) >

|S| = 1, so that it does not have a perfect matching.
As a remark, we want to emphasize that the previous con-

struction relies on a sufficient condition for a graph to be Class
2, while this condition is far from being also necessary. Indeed
there are many regular graphs admitting perfect matchings that
are also Class 2, as we will see in the rest of this dissertation.

Hence, we have easily seen that both Class 1 and Class 2 r-
regular graphs exist for r > 2. The other natural question that
arises is how, given some r-regular graph G, we can determine
whether it is Class 1 or Class 2. If r = 2, the answer is straightfor-
ward, since 2-regular graphs are either cycles or disjoint union
of cycles. In this case, if the graph contains an odd cycle, the
graph is Class 2, for otherwise it is Class 1. However, if r > 3

this question seems not to have an easy answer. Indeed, it has
been proved (see [40]) that this problem is NP-complete, even
if we just consider r = 3. In Section 1.2 we give more details on
this.

Another question that arises when dealing with Class 1 and
Class 2 regular graphs is quantitative: for any given r, which is
the proportion of Class 1 r-regular graphs with respect to Class
2 ones? To answer this question, one can observe that, when r
is even, every r-regular graph G of odd order is Class 2, so that
in this case there are “many" Class 2 graphs. In the odd regular
case, there cannot be graphs of odd order, and hence it is not
that obvious to sketch an answer. The cubic case (r = 3) has
been considered in the literature and it has been proved (see
[73]) that almost all cubic graphs are Class 1. In particular, if



1.1 class 1 and class 2 regular graphs 4

Cn denotes the probability to be Class 1 for a cubic graph of or-
der 2n, as a consequence of the main result in [73], it holds that
lim
n→∞Cn = 1. Hence, in the class of cubic graphs, Class 2 ones
are very rare. The proof in [73] is probabilistic, but Class 2 cubic
graphs are very rare also in a strictly numerical sense. Indeed,
in [12], all (weakly) non-trivial Class 2 cubic graphs up to 34 ver-
tices have been generated. With (weakly) non-trivial we mean a
specific subset of Class 2 cubic graphs that are considered inter-
esting for reasons we will highlight in Section 1.3. As we see in
Table 1, for each order, there are almost no (weakly non-trivial)
Class 2 cubic graphs among all cubic graphs of that order. We
stress that for orders greater than 36, there is no known algo-
rithm that can generate all cubic graphs, and in particular Class
2 ones, of a given order, since their number is huge.

Order Cubic graphs Class 2 non-trivial cubic graphs Ratio

4 1 0 0

6 2 0 0

8 6 0 0

10 21 1 4.8× 10−2
12 94 0 0

14 540 0 0

16 4 207 0 0

18 42 110 2 4.7× 10−5
20 516 344 6 1.6× 10−5
22 7 373 924 31 4.2× 10−6
24 118 573 592 155 1.3× 10−6
26 2 103 205 738 1 297 6.2× 10−7
28 40 634 185 402 12 517 3.1× 10−7
30 847 871 397 424 139 854 1.6× 10−7
32 18 987 149 095 005 1 764 950 9.3× 10−8
34 454 032 821 688 754 3 833 587 8.4× 10−9

Table 1: Number of (connected) cubic graphs and (weakly) non-trivial
Class 2 cubic graphs for each order up to 34. Column 4 re-
ports, for each order, the ratio between the number of Class
2 non-trivial cubic graphs and the number of cubic graphs.
Data in Columns 2 and 3 are taken from [74] and [12], respec-
tively.
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As mentioned in the introduction of the chapter, cubic graphs,
and especially cubic Class 2 graphs, are of particular interest
in graph theory, since many long-lasting and important conjec-
tures are still open for this class of graphs. We devote the rest
of the chapter to explore this class of graphs in more detail.

1.2 class 2 cubic graphs are difficult to color

In this section we see in detail that determining whether a
cubic graph is Class 1 or not is NP-complete. For a wide sur-
vey and results about the theory of NP-completeness we refer
to [30], while here we just give a quick and informal introduc-
tion to it, which is enough for our aims. The reader which is
familiar with the theory of NP-completeness may skip the next
paragraph.

For our purposes, a problem is a general question to be an-
swered, where there usually are several parameters, left unspec-
ified. In order to state a problem we need a general description
of its parameters and the list of properties that the solution is
required to satisfy. When particular values are specified for all
the parameters of a problem, we have an instance of such a prob-
lem. Once an instance of a problem is given, we want to know
whether the problem has a solution for that given instance, and,
if this is the case, to explicitly know it. A general sequence of
steps, i.e. an algorithm, solves a problem if, applied to any in-
stance of that problem, is guaranteed to always produce a solu-
tion to the problem for that given instance, if there is one. We
are interested in finding the most efficient algorithm to solve a
problem, and, since time requirements are a dominant factor
to determine whether an algorithm is useful or not, an algo-
rithm can be considered efficient if it is fast. The measure of the
time requirements of an algorithm is its time complexity func-
tion, that receives in input the size of the problem instance and
calculates the biggest amount of time needed by the algorithm
to solve an instance of the problem of that size. A polynomial
time algorithm is an algorithm whose time complexity function
can be bounded from above by a polynomial function. If this
is not the case, with a slight abuse of terminology, we say that
we are dealing with exponential time algorithms. A problem can
be considered “well solved" when a polynomial time algorithm
is known for it. Otherwise, if it so hard that no polynomial



1.2 class 2 cubic graphs are difficult to color 6

time algorithm can possibly solve it, a problem is said to be
intractable. The main causes of intractability of a problem are
two. The first occurs when the problem is so difficult that an
exponential time is needed to discover a solution, and the sec-
ond occurs when the solution itself is so extensive that it cannot
be described with an expression having a polynomial lenght in
the size of the instance. This second type of intractability is sig-
nificant and it is important to recognize it when it occurs, but
in what follows we focus only on the first type of intractabil-
ity. In this first type of intractability we can further distinguish
two subclasses of problems. The undecidable ones, that are the
ones for which no algorithm at all, and in particular no polyno-
mial time algorithm, can be given for solving them. Otherwise,
we speak of decidable problems. In this class there are problems
which can be solved in polynomial time using what is called
a nondeterministic algorithm. A nondeterministic algorithm can
be viewed as composed of two separate stages. The first one
is a guessing stage and the second is a checking stage. In the
guessing stage the algorithm merely guesses a solution to the
problem, while the checking stage is an algorithm that checks
whether the guessed solution is actually a solution to the prob-
lem or not. A nondeterministic algorithm operates in polyno-
mial time if the algorithm at the checking stage is a polynomial
time algorithm. We say that a problem is in the class NP if there
exists a polynomial time nondetermistic algorithm that solves
it. A problem is said to be in the class P if there is a polynomial
time algorithm that solves it. Since every polynomial time algo-
rithm that solves a problem in P may be used as the checking
stage for a nondeterministic algorithm for the same problem,
it follows that the class P is contained in the class NP, i.e. P ⊆
NP. However, there are many reasons to believe that this inclu-
sion is proper, one of them is that a nondeterministic algorithm
has the possibility to check an arbitrary large number of pos-
sible solution in polynomial time. This leads to suspect that
nondeterministic algorithms are more powerful than standard
algorithms. Whether P 6= NP or not is an open difficult prob-
lem, namely one of the Millennium Problems proposed by the
Clay Mathematics Institute. However, if we work under the hy-
photesis that P 6= NP, the class NP − P is of particular interest.
To study it, we would like to be able to compare problems in
terms of how difficult they are. To do this we introduce the
idea of reduction of a problem to another. We say that a prob-
lem P1 reduces to a problem P2 if there is a polynomial time
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algorithm that transforms any instance of P1 in an instance of
P2, such that an instance has a solution for P1 if and only if the
transformed instance has a solution for P2. Since the reduction
of P1 to P2 happens in polynomial time, we can say that P2 is
at least as hard as P1. We say that a problem P is NP-complete
if P ∈ NP and for any other problem P ′ ∈ NP, it holds that P ′

reduces to P. Hence, NP-complete problems can be viewed as
the hardest problems in NP. It is possible to prove that, if for
two problems P1, P2 ∈ NP, P1 is NP-complete and P1 reduces
to P2, then also P2 is NP-complete. Hence, once we know that
a problem is NP-complete, we can prove that other problems
are NP-complete simply by proving they are NP and by reduc-
ing the known NP-complete problem to one of them. This is, as
said above in a very informal and quick way, all that we need
about NP-completeness for our purposes.

In particular, we need that to prove that a problem is NP-
complete, it suffices to show that it is in NP and to reduce a
known NP-complete problem to it. This is what is done in [40]
with the edge-chromatic number problem.

In [40], the NP-complete problem known as 3-SAT is reduced
to the problem of finding a 3-edge-coloring of a cubic graph.
The problem 3-SAT is defined as follows. Let U = {u1, ...,um}
be a set of Boolean variables. Let ui ∈ U, and let the negation
of ui, which is a Boolean variable which is true if and only
if ui is false, be ui. We call ui and ui literals over U. A clause
C = {l1, l2, l3} is a set of three literals over U. We say that C is
satisfied if there exists a truth assignment to the variables of U
such that at least one of l1, l2 and l3 has the value “true". An
instance of 3-SAT is a set of clauses C = {C1, ...Ct} and the prob-
lem is to determine if C is satisfiable, that is if there exists a truth
assignment to u1, ...,um such that all the clauses in C are simul-
taneously satisfied.

Example 1.3. Let U = {u1,u2,u3,u4} and let C1 = {u1,u2,u3} and
C2 = {u1,u3,u4}. Then C = {C1,C2} is an instance of 3-SAT and it
is satisfiable. Indeed, any truth assignment to the variables of U such
that u1 receives the value “true" makes both C1 and C2 satisfied. If,
instead, C1 = {u1,u1,u1}, C2 = {u3,u3,u3} and C3 = {u1,u3,u3},
then C = {C1,C2,C3} is an instance of 3-SAT which is not satisfiable.
Indeed, to satisfy C1 and C2, both u1 and u3 must receive the value

“true", but this makes C3 not satisfied.
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It is possible to reduce the so called problem SAT to 3-SAT.
The problem SAT is basically the same as 3-SAT, but each clause
has an arbitrary (finite) number of literals. In [18], it is proved
that SAT is an NP-complete problem, and hence also 3-SAT is
NP-complete, since it is also in NP.

The problem of finding the chromatic index of a cubic graph,
the chromatic index problem from now on, is clearly in NP,
since every edge-coloring of a cubic graph (instance) can be
verified in polynomial time. Here we show in detail how the
polynomial-time reduction of 3-SAT to this problem, given in
[40], is performed.

The idea is to start from a given instance C of 3-SAT and to
associate to it a certain cubic graph G which is 3-edge-colorable
if and only if C is satisfiable. To construct Gwe need three types
of components, namely inverting, variable-setting and satisfaction-
testing ones. These components will be glued together accord-
ing to the structure of C.

An inverting component is depicted in Figure 1, together
with its symbolic representation, which will be used in what
follows. An inverting component I has the property that in
any 3-edge-coloring of I, one of the pairs of the dangling edges
{a1,a2} or {b1,b2} must receive the same color, while the remain-
ing 3 dangling edges must receive pairwise different colors.

A variable-setting component is depicted in Figure 2. As the
name suggests, this component is associated to a variable ui
appearing in C. In particular, if ui and ui appear n times in C,
then, the associated variable-setting component to ui, is made
by gluing together 2n inverting components as in Figure 2, in
such a way that it has n output pairs {p1,j,p2,j}, each of them
associated to the j-th appearence of ui or ui in C. In any 3-edge-
coloring of a variable-setting component, for each output pair
{p1,j,p2,j}, the dangling edges p1,j,p2,j must receive the same
color.

Finally, a satisfaction-testing component is associated to a
clause Ci of C, and it is constructed by gluing together 3 in-
verting components where a vertex has been suppressed, as
depicted in Figure 3. This component admits a 3-edge-coloring
if and only if in at least one of the three input pairs {q1,j,q2,j},
the dangling edges q1,j and q2,j receive the same color. We say
that a pair of dangling edges in a component represents the value
T (true) if, in a 3-edge-coloring of the component, its edges re-
ceive the same color. Otherwise the pair is said to represent the
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Figure 1: (a) An inverting component.
(b) Its symbolic representation.

value F (false). Using this convention, it is clear that a clause is
satifiable if and only if its associated satisfaction-testing compo-
nent is 3-edge-colorable.

We are now in a position to exhibit the polynomial-time re-
duction from the problem 3-SAT to the chromatic index prob-
lem. Consider an instance C = {C1,C2,C3} of 3-SAT. Construct
from it a cubic graph G as follows. For each variable ui ap-
pearing in C take the associated variable-setting component Ui.
Take also, for each clause Cj ∈ C, its associated satisfaction-
testing component Sj. Let lj,k denote the k-th literal of Cj, for
k, j ∈ {1, 2, 3}. If lj,k = ui, then identify the k-th input pair of Sj
with the output pair of Ui which is associated to the considered
appeareance of ui. If lj,k = ui then insert an inverting compo-
nent between the k-th input pair of Sj and the corresponding
output pair of Ui. Denote the cubic graph with dangling edges
so obtained by H (see Figure 4 for an example). The graph G
is obtained by considering two copies of H and identifying the
remaining dangling edges in corresponding pairs. Clearly, G is
obtained from C using a polynomial-time algorithm, and more-
over, using the properties of the components described above,
it is possible to verify that G is 3-edge-colorable if and only if C
is satisfiable.
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Figure 2: The variable setting component associated to the variable
ui, when it appears three times, two as ui (labeled as ui,1
and ui,2) and one as ui (labeled as ui,3).

1.3 some features of cubic class 2 graphs

As highlighted in Sections 1.1 and 1.2, Class 2 cubic graphs
are difficult both to find, since they are very few, and to recog-
nize, since it is NP-complete to determine the chromatic index
of a graph. In this section we get more in touch with the Class
2 cubic graphs, reporting some of their known features and giv-
ing some examples of significant graphs in this class.

It is very easy to see that a cubic graph containing a bridge
(i.e. an edge whose removal disconnects the graph) is Class
2. This can be proved by observing that, since the number of
vertices of odd degree in a graph is even, each of the two com-
ponents separated by a bridge must have an odd number of
vertices. But this means that a bridge must be contained in ev-
ery perfect matching of the graph, so that the graph cannot be
Class 1.
The first bridgeless Class 2 cubic graph was found in 1898 by J.
Petersen [70], as a counterexample to a conjecture of Tait, which
claimed that all bridgeless cubic graphs are 3-edge-colorable.
This graph is the Petersen graph and it is depicted in Figure 5.
From now on, we will denote it either by its name or by P. Actu-
ally the Petersen graph appeared for the first time 12 years ear-
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Figure 3: (a) An inverting component with a vertex suppressed.
(b) The satisfaction-testing component associated to a clause
C = {l1, l2, l3}.

lier in a different context, precisely in a paper by A. B. Kempe,
[50], where he noticed it is related to the Desargues configu-
ration. During time, P revealed itself to be very significant in
graph theory: it is a counterexample for many conjectures and
it has many symmetry properties. For the interested reader, the
book [39] furnishes a wide compendium of the properties of
the Petersen graph, relating them to the various parts of graph
theory where P plays a significant role. In [20], B. Descartes
wrote:

I have often tried to find other cubic graphs which
cannot be three-coloured. I do think that the right
way to attack the Four-Colour Theorem is to classify
the exceptions to Tait’s Conjecture and see if any cor-
respond to graphs in the plane. I did find some, but
they were mere trivial modifications of the Petersen
graph, obtained by detaching the three edges meet-
ing at some vertex from one another so that the ver-
tex becomes three vertices, and joining these three
by additional edges and vertices so as to obtain an-
other cubic graph. [...] I wondered if there could be
any other exceptions to Tait’s Conjecture, besides the
Petersen graph. [...] I did eventually discover one.
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Figure 4: The graph H, associated to the instance C of 3-SAT in Exam-
ple 1.3.

Figure 5: The Petersen graph

These words, which date back to 1948, highlight that finding
bridgeless cubic Class 2 graphs significantly different from the
Petersen graph, have been a difficult challenge. Indeed, up to
1975, only four bridgeless Class 2 cubic graphs were found. This
lead M. Gardner to call them snarks, referring to the elusive
object of the poem The hunting of the snark by Lewis Carroll
[29].

In particular, after Petersen graph was discovered, in 1946

two new snarks were found, the Blanuša snarks (see Figure 6

and Figure 7), both having 18 vertices [7].
Also, in 1948, a snark on 210 vertices, the Descartes snark,

was discovered by B. Descartes in [20], and in 1973 a snark on
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Figure 6: First Blanusa snark

Figure 7: Second Blanusa snark

50 vertices, the Szekeres snark, was found [84]. Until 1975 only
these mentioned snarks were known, while in that year Isaacs
[44] proved the existence of two infinite families of snarks. One
of these is the family of the so-called flower snarks, which, ac-
cording to [39], was already discovered by Grinberg in 1972,
but never published. The Isaac snark In, for each odd n, n > 3,
is a graph on 4n vertices. I3 and I5 are depicted in Figure 8.

The other infinite family of snarks discovered by Isaacs is the
one of the so-called BDS snarks, which also includes the two
Blanuša snarks, the Szekeres and the Descartes snarks. Isaacs
discovered also another snark on 30 vertices, the Double star
snark.

After that, many other snarks and infinite families of snarks
have been discovered. Among the others we mention the Gold-
berg snarks [33], another infinite family of snarks found in 1981.
Surveys on snarks can be found in e. g. [17, 91, 92].
The family of flower snarks was constructed by Isaacs applying
the technique of the dot product (see Figure 9).

Definition 1.4. A dot product of two connected cubic graphs L and R
is a cubic graph, denoted by L·R, constructed from L and R as follows:

(1) remove a pair of adjacent vertices x and y from L
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Figure 8: The Isaacs snarks I3 and I5

(2) remove two independent edges ab and cd from R

(3) join the previous neighbours of x with a and b, and the previous
neighbours of y with c and d, or the previous neighbours of x
with c and d, and the ones of y with a and b
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Figure 9: The dot product of two cubic graphs L and R.

The dot product of two cubic graphs is not unique, it de-
pends on the choice of vertices and edges in L and R and by
the possible choice in point (3) of the definition.

In [44], it is proved that if L and R are snarks, then their dot
product L · R is a snark. This makes the dot product a useful
tecnique to generate snarks.
Another useful and more general tecnique to generate snarks
is the one known as superposition, which is due to Kochol and
appears in [56]. This tecnique is based on the idea to replace, in
a snark, its edges by snarks and its vertices by arbitrary cubic
graphs, in a way to obtain a new snark. This tecnique allows
to generate snarks with large girth (which, in a graph G, is
the length of a smallest cycle of G). As remarked in [25], the
superposition technique to construct new snarks of Kochol, is
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equivalent to a technique proposed independently by Fiol in
[23] and [24]. Other tecniques to construct snarks can be found,
e.g. in [69, 82, 83, 22].

The aforementioned techniques to construct new snarks re-
quired quite a long time to be discovered. However snarks have
some properties, that, as mentioned by Descartes in [20], are
well-known for a long time, which allow to construct snarks in
a very straightforward way. This happens, for example, when
a cubic graph has a 2-edge-cut or a non-trivial 3-edge-cut (a
k-edge-cut is a set of k edges whose removal disconnects the
graph. It is non-trivial when at least one edge remains in all the
generated connected components). It can be easily seen that if
G is a snark and it has a 2-edge-cut or a non-trivial 3-edge-cut,
then at least one of the connected components (properly com-
pleted to a cubic graph) obtained by the removal of the edge-cut
is a snark. This means that G is a snark that can be somehow
reduced to a smaller snark, and hence can be considered trivial.

Another well known property of snarks is that removing cy-
cles of length 3 or 4 does not affect the edge-uncolorability, so
that also snarks having such cycles can be considered trivial.

Actually, it has become standard (see e.g. [69]) to consider
a snark to be non-trivial when it has girth at least 5 and it is
cyclically 4-edge-connected. For a graph, to be cyclically k-edge-
connected, means that any edge-cut with less than k-edges, dis-
connects the graph leaving at least one component that does
not contain a cycle.
We remark that many of the known families of snarks are non-
trivial in this sense. Apart for the reasons explained above, one
of the main reasons that led to consider a snark non-trivial if it
has these additional properties, is that it turns out that for some
open and important conjectures (see Section 1.4), a possible
minimum counterexample must be a non-trivial snark in the
above sense. In Section 1.1, we mentioned the concept of weakly
non-trivial snark as it is in [12]: it is intended to be a cyclically
4-edge-connected snark with girth at least 4. Anyway, in this
dissertation, and according to what is done e.g. in [13, 82] and
others, we keep the concept of snark as wide as possible, and
we say that a snark is simply a bridgeless Class 2 cubic graph.
When additional properties such as cyclic-edge-connectivity or
girth are required, we will clearly specify it.

Definition 1.5. A snark is a connected, bridgeless, Class 2 cubic
graph.
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After this general introduction to Class 2 cubic graphs, the
next section is devoted to introduce some important and open
problems in which snarks are deeply involved.

1.4 open conjectures and problems in the next chap-
ters

Some classical conjectures that are unsolved for snarks re-
gard graph coverings of two main types, with cycles or with
matchings. Two of them are the Cycle Double Cover Conjecture
and the Berge-Fulkerson Conjecture, which are both considered
in Chapter 2 and presented in Section 1.4.1 and 1.4.2, respec-
tively. Also the Petersen Coloring Conjecture is presented in Sec-
tion 1.4.3. This conjecture is about edge-colorings, is unsolved
for snarks and serves as introduction to H-colorings, which we
will study in Chapter 3. Moreover, it implies both Cycle Dou-
ble Cover and Berge-Fulkerson conjectures. In Section 1.4.4 we
present another important conjecture, the Tutte 5-flow Conjecture,
which is unsolved for snarks and serves as an introduction to
the problem of d-dimensional flows on graphs, which is consid-
ered in Chapter 4. Finally, in Section 1.4.5, we introduce a more
recent parameter which is related to edge-colorings of graphs,
the palette index. In Chapter 5 we focus on the problem of de-
termining the palette index of regular graphs, which is also
unsolved only for Class 2 regular graphs.

1.4.1 Cycle Double Cover Conjecture

One of the main conjectures about coverings with cycles is
the Cycle Double Cover Conjecture. By a cycle in a graph G we
mean a connected subgraph of G where every vertex has even
degree. A cycle cover of a graph G is a collection C of cycles of
G such that every edge of G belongs to at least one cycle of
C. We say that a cycle cover C of a graph G is uniform if every
edge of G belongs to the same number k of cycles of C. If this
is the case, C is a k-cycle cover. A 2-cycle cover is also called a
cycle double cover. The Cycle Double Cover Conjecture is due to
Seymour [79] and Szekeres [84], and is stated for graphs that
could possibly have loops.

Conjecture 1.6 (Cycle Double Cover Conjecture-CDC). Every
bridgeless graph admits a cycle double cover.
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First observe that being bridgeless is a necessary condition
for a graph G to have a cycle cover. Indeed no bridge can be-
long to an even subgraph.

Now we show that a minimum possible counterexample G to
Conjecture 1.6 is a cyclically 4-edge-connected snark. By mini-
mum, in this case, we mean that G is the graph with the small-
est number of edges that does not admit a cycle double cover.

Clearly G is connected, bridgeless and has no loops by mini-
mality (if ` is a loop of G, G− {`} has a cycle double cover that
can be extended to G by adding the cycle ` twice).

Observe that if G has a vertex of degree 1 it would have a
bridge. Moreover, assume that v is a vertex of G of degree 2

and u,w are its neighbours. Remove the vertex v and create a
new edge uw: this results in a smaller graph G ′, that admits a
cycle double cover. But then it is possible to reconstruct a cycle
double cover of G by deleting the edge uw of the two cycles
passing through it and adding to them the edges uv and vw.
So that G cannot have vertices of degree smaller than 3.

The following lemma is due to Fleischner [26].

Lemma 1.7 (Splitting lemma). Let G be a connected bridgeless
graph. Suppose v ∈ V(G) such that dG(v) > 3 and x,y, z are three
edges incident with v. Form the graphs Gx,y and Gx,z by splitting
away1 the pairs {x,y} and {x, z}, respectively, and assume x and z
belong to different blocks if v is a cut vertex2 of G. Then either Gx,y
or Gx,z is connected and bridgeless.

Lemma 1.7 allows to prove that G cannot have vertices of
degree greater than 3, and hence is a cubic graph. Indeed, by
previous discussion G has no vertex of degree smaller than 3.
Assume that there exists a vertex v with degree strictly greater
than 3. It follows from Lemma 1.7 that it is possible to find two
edges e1 and e2 incident to v with the following property: by
deleting e1 and e2 and adding a new edge joining the ends of e1
and e2 distinct from v, one obtains a bridgeless graph G ′. G ′ has
a cycle double cover and to construct a cycle double cover for
G it is enough, for each one of the two cycles Ci containing the

1 The indicated splitting operations was introduced by Fleischner and works
as follows. Let G be a connected graph and v ∈ V(G) with dG(v) > 3. If
x = vv1 and y = vv2 are two edges incident with v, then splitting away the
pair {x,y} of edges from the vertex v results in a new graph Gx,y obtained
from G by deleting the edges x and y, and adding a new edge v1v2.

2 A cut vertex in a connected graph G is a vertex v such that G− {v} is not
connected.
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added edge e, to construct new cycles in G as Ci − {e}∪ {e1, e2}.
This is a contradiction, and hence we can conclude that G is
cubic.

Finally we can prove that G is cyclically 4-edge-connected.
Indeed, assume that G has an edge-cut of size 2 given by the
edges ab and cd, with vertices a and c belonging to the same
connected component of G − {ab, cd}. Remove them and add
the edges ac and bd. The obtained connected, bridgeless cubic
graphs have a cycle double cover since they are smaller than
G, and so both the edges ac and bd lies in exactly two cycles
in each component. It is then straightforward to reconstruct a
cycle double cover for G: consider one cycle C1 that contains
ac in one component and one cycle C2 containing bd in the
other one. Construct a new cycle in G as C1− {ac}∪C2− {bd}∪
{ab, cd}. Repeat the procedure for the other cycles containing ac
and bd respectively and a cycle double cover for G is obtained.
This is a contradiction, so G cannot contain any cycle separating
2-edge-cut.

Assume by contradiction that G has a non-trivial 3-edge-cut
given by the edges aa ′,bb ′ and cc ′, with a,b, c in the same
connected component of G− {aa ′,bb ′, cc ′}. By joining a,b and
c to a new vertex v and a ′,b ′, c ′ to a new vertex v ′, two cubic
bridgeless graphs G ′ and G ′′ with fewer edges than G are ob-
tained. Both G ′ and G ′′ admit a cycle double cover: observe that
if C1 and C2 are the two cycles containing the edge av, then, up
to renaming cycles, C1 contains bv and not cv and C2 contains
cv and not bv. Hence there is a cycle C3 containing bv and cv.
The same holds for three cycles C ′1,C

′
2 and C ′3 in a cycle dou-

ble cover of G ′′. Using the same technique as before to extend
cycles to G, it is straightforward to reconstruct a cycle double
cover for G, which results in a contradiction.

Moreover, G cannot be Class 1. Indeed, consider a 3-edge-
coloring c of G with colors 1,2 and 3. Observe that the edge-
induced subgraph by a pair {x,y} of colors of c, is a union of
cycles of G. Then the collection of cycles given by the pairs {1, 2},
{1, 3} and {2, 3} is a cycle double cover for G.

As a final remark, in [43] it is proved that G has girth at least
12.

Hence we have the following proposition.
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Proposition 1.8. A possible minimum counterexample to Conjecture
1.6 is a cyclically 4-edge-connected snark with girth at least 12.

Proposition 1.8 reduces the Cycle Double Cover Conjecture
to a subclass of snarks, and hence gives a strong reason to the
importance that has been given to the study of snarks during
time.

In Chapter 2 we apply a technique proposed in [60] to the
study of a minimum possible counterexample to Conjecture 1.6,
and we obtain some new restrictions on its structure.

1.4.2 Berge-Fulkerson Conjecture

Berge-Fulkerson conjecture is about coverings of graphs with
perfect matchings. It first appeared in a paper of Fulkerson [28]
and it is also attributed to Berge [78]. It suggests the following.

Conjecture 1.9. (Berge-Fulkerson, 1971) Every bridgeless cubic graph
G admits six perfect matchings such that every edge of G belongs to
exactly two of them.

Conjecture 1.9 is equivalent to another conjecture of Berge,
which appeared in [78].

Conjecture 1.10 (Berge Conjecture, 1979). Every bridgeless cubic
graph G admits 5 perfect matchings such that every edge of G belongs
to at least one of them.

It is clear that Conjecture 1.9 implies Conjecture 1.10, since it
suffices to remove one of the six perfect matching in a Berge-
Fulkerson cover to obtain a Berge cover with five perfect match-
ings. As proved in [64], Conjecture 1.10 implies Conjecture 1.9,
so that they are equivalent.

Conjecture 1.9 has numerous connections to other problems
in graph theory as well as relations with other geometric struc-
tures (see [60] for more details and references about these con-
nections). In particular, as we will mention in Chapter 3, this
conjecture, if true, would imply other weaker conjectures about
coverings with matchings in cubic graphs.

Until now only partial results have been obtained about this
conjecture: it has been verified for some explicitly defined classes
of cubic graphs, see for example [27, 37, 38, 14, 64].

In particular, as we expect, the conjecture is true for Class 1

cubic graphs. Indeed every color in a 3-edge-coloring of a Class
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1 cubic graph induces a perfect matching: to construct a family
of six perfect matchings satysfying Berge-Fulkerson condition
it is enough to repeat each of these induced perfect matchings
twice.

Hence, as it happens for the Cycle Double Cover Conjecture,
also Berge-Fulkerson Conjecture is reduced to snarks. An at-
tempt to attack the conjecture is based on another conjecture
of Jaeger and Swart which states that every snark has cyclic
edge connectivity at most 6 [48]. Indeed it is not difficult to
prove that a possible counterexample to Conjecture 1.9 must
be a cyclically 4-edge-connected snark. Moreover, in [60], the
following proposition is proved.

Proposition 1.11. A possible minimum counterexample to Conjec-
ture 1.9 is a cyclically 5-edge-connected snark with girth at least 5.

Hence, if the conjecture of Jaeger and Swart is true, a possible
counterexample to Berge-Fulkerson conjecture can only have
cyclic edge connectivity 5 or 6, and so, proving that it must
have cyclic edge connectivity at least 7 would imply the Berge-
Fulkerson conjecture.

It is considered safe enough to rely on this strategy of proof
since there are other conjectures on Hamiltonian graphs that
lead to believe that highly cyclically edge connected cubic gra-
phs are Class 1. One of these conjectures, due to C. Thomassen
(see [53, 59]), suggests that for large enough κ, every cycli-
cally κ-edge-connected cubic graph is Hamiltonian, and hence
3-edge-colorable. Jaeger and Swart conjecture is of the same
style, but it weakens Hamiltonian to 3-edge-colorable. There exists
an example of a cubic graph, the Coxeter graph, which is cycli-
cally 7-edge-connected but not Hamiltonian: hence in Thomas-
sen’s conjecture κ must be at least 8. If Thomassen’s conjecture
is valid for κ = 8, clearly there cannot exist cyclically 8-edge-
connected snarks, but since there are no counterexamples to
Jaeger and Swart conjecture of cyclic edge connectivity 7, it is
believed that the conjecture is valid also for cyclically 7-edge-
connected cubic graphs.

In Chapter 2 we rely on this proof strategy and we focus
on trying to prove that a minimum possible counterexample to
the Berge-Fulkerson Conjecture is a cyclically 6-edge-connected
snark. We obtain some new restrictions on the structure of a
possible cyclically 5-edge-connected minimum counterexample
to the conjecture.
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1.4.3 Petersen Coloring Conjecture

The Petersen Coloring Conjecture implies both the Berge-
Fulkerson Conjecture and the Cycle Double Cover Conjecture
[79, 84, 94], and it is one of the most trying and arduous conjec-
tures in graph theory.

We give some terminology in order to introduce it. Let H be
an arbitrary graph: an H-coloring of G is a proper edge-coloring
f : E(G)→ E(H) of G with edges of H, such that for each vertex
u ∈ V(G), there exists a vertex v ∈ V(H) with f(∂Gu) = ∂Hv,
where ∂Gu denotes the set of edges adjacent to u in the graph
G. If G admits an H-colouring, then we write H ≺ G and we
say that the graph H colors the graph G. Let P denote the well-
known Petersen graph. One of the most important conjectures
in graph theory is the Petersen Coloring Conjecture by Jaeger,
[46].

Conjecture 1.12 (Petersen Coloring Conjecture). For any bridge-
less cubic graph G, P ≺ G.

As it happens for Conjecture 1.6 and Conjecture 1.9, also the
Petersen Coloring Conjecture is easy for Class 1 cubic graphs
and it is still unsolved for snarks. Indeed, if G is a cubic Class
1 graph, take a 3-edge-coloring c of G with colors {1, 2, 3}, con-
sider a vertex u ∈ V(P) and set ∂Pu = {e1, e2, e3}. Let h : {1, 2, 3}→
∂Pu such that h(i) = ei for each i ∈ {1, 2, 3}. Then f = h ◦ c is a
P-coloring of G. In the case of snarks, it has been proved that,
for a graph G, to have a Petersen Coloring is equivalent to have
normal 5-edge-coloring [47]. A normal k-edge-coloring of a cubic
graph is a k-edge-coloring such that the set of colors assigned
to any edge and to the four edges adjacent to it, has cardinal-
ity either 3 or 5. In literature there are several results regarding
normal edge-colorings in cubic Class 2 graphs, see for example
[1, 36, 75, 65, 66]. In particular, in [65], it is proved that any
simple cubic graph, not necessarily bridgeless, has a normal 7-
edge-coloring, which is the best general upper bound that is
known up to now (and it is also optimal for the class of simple
cubic graphs).

In Chapter 3, generalising results contained in [68, 34, 35],
we prove that P is the only possible graph that can color all the
bridgeless cubic graphs, and some related results of the same
type regarding other weaker conjectures.
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1.4.4 Tutte 5-flow Conjecture

We introduce some definitions in order to state Tutte’s 5-flow
conjecture. The first one is that of an orientation D of a graph G,
that is an assignment of a direction to each edge.

If D is an orientation on a graph G then for each vertex v of
G it is natural to define D−(v) as the class of edges whose tail
is incident to v and D+(v) as the class of edges whose head is
incident to v.

A flow on a graph G is a pair (D, f) where D is an orientation
of G and f : E(G) → Z is a function such that for every vertex
v ∈ V(G) the Kirchhoff’s law holds, that is∑

e∈D−(v)

f(e) =
∑

e∈D+(v)

f(e)

For an integer k > 2, a nowhere-zero k-flow on a graph G is a
flow (D, f) on G such that f : E → Z, −(k− 1) 6 f(e) 6 k− 1

and f(e) 6= 0 for every edge e of G. The flow number of a graph
G is the minimum integer k such that G admits a nowhere-zero
k-flow, and it is denoted by φ(G).

Tutte’s 5-flow conjecture [86] states the following.

Conjecture 1.13 (Tutte 5-flow Conjecture). Every bridgeless graph
has a nowhere-zero 5-flow.

Hence, Tutte’s conjecture indicates a possible general upper
bound for the flow number of a bridgeless graph G, namely
φ(G) 6 5.

In the direction to prove this conjecture, in the late seven-
ties Jaeger [45] and Kilpatrick [52] proved that every bridgeless
graph admits a nowhere-zero 8-flow: this result has been im-
proved by Seymour in 1981 [77]. He proved that every bridge-
less graph admits a nowhere-zero 6-flow, so that what we have
up to now is that φ(G) 6 6 for every bridgeless graph G.

Instead, the study of possible minimum counterexamples to
Conjecture 1.13 led to the proof, in 1988, that a minimum coun-
terexample to the conjecture must be 3-edge-connected [46],
while more recent results due to Kochol [54, 55] ensures that a
possible minimum counterexample, if it exists, must be a cycli-
cally 6-edge-connected snark with girth at least 11. This means
that also Conjecture 1.13 is reduced to snarks, and adds a strong
motivation to the study of the structure of snarks. Moreover, in
[86] and [87] it is proved that, for a cubic graph G,
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• G is Class 1 if and only if it has a nowhere-zero 4-flow

• G is biparite if and only if it has a nowhere-zero 3-flow

Hence the flow number can distinguish Class 1 from Class 2

cubic graphs.

There is a well known and well studied generalization of the
concept of nowhere-zero k-flow on a graph. This is the one of
circular nowhere-zero r-flow. More precisely, if G is a graph, and
r > 2 is a real number then a circular nowhere-zero r-flow on G
is a pair (D, f) where D is an orientation of G and f : E(G)→ R

is a real valued function such that f(e) ∈ [1, r− 1] for all edges
e ∈ E(G) and the Kirchhoff’s law holds at every vertex of G.
The circular flow number of a graph G is the infimum of the
real numbers r such that G admits a circular nowhere-zero r-
flow, and it is denoted by φc(G). As a consequence of a result
in [32], it holds that φc(G) ∈ Q and it is a minimum for every
bridgeless graph G. It clearly holds that φc(G) 6 φ(G) for every
bridgeless graph G, so that Conjecture 1.13 proposes an upper
bound also for φc(G). Moreover, a result in [81], implies the
following, for a cubic graph G:

• G is bipartite if and only if φc(G) = 3

• G is Class 1 and non-bipartite if and only if φc(G) = 4

• G is Class 2 if and only if φc(G) > 4

As a remark, we point out that in [57], it is proved that for ev-
ery rational number p ∈ (4, 5], there are infinitely many snarks
with circular flow number p, so that every possible circular flow
value is actually realized by some snark.

Hence, similarly to the flow-number, the circular flow num-
ber is a parameter of a cubic graph that distinguishes if the
graph is Class 1 or Class 2.

In Chapter 4, supported by some evidence, we will propose
a general upper bound for a generalization of the concept of
circular flow number, the 2-dimensional circular flow number.
In the case of Class 1 graphs we have an upper bound which
is also optimal, while, in the case of snarks we guess an upper
bound, and we cannot say whether it is optimal or not. In this
sense, also the problem of determining the 2-dimensional flow
of a graph, is difficult for Class 2 graphs.
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1.4.5 Palette index

Consider a k-edge-coloring of a graphG. We define the palette
of a vertex v ∈ V(G), with respect to the coloring c of G, to be
the set Pc(v) = {c(e) : e ∈ E(G) and e is incident to v}. The
palette index š(G) of a graph G is the minimum number of dis-
tinct palettes, taken over all edge-colorings, occurring among
the vertices of the graph.

This parameter was formally introduced in [42] and several
results appear since then, see [9, 11, 15, 31, 41, 80]. All that
papers mainly consider the computation of the palette index in
some special classes of graphs, such as trees, complete graphs,
bipartite complete graphs, 3− and 4−regular graphs and some
others.

It is an easy consequence of the definition that a graph has
palette index equal to 1 if and only if it is a Class 1 regular
graph. Hence, the palette index of a graph is a parameter that
can distinguish Class 1 and Class 2 regular graphs. It has been
proved that there are no regular graphs with palette index 2.
Hence, when we focus on regular Class 2 graphs, we know that
they have palette index at least 3. The only other known gen-
eral fact for this problem is that, by Vizing theorem [89], it holds
that š(G) 6 r+ 1 for a Class 2 r-regular graph G. However, in
the case of cubic graphs, the problem of finding the palette in-
dex is completely solved by the following theorem.

Theorem 1.14 ([42]). Let G be a connected cubic graph.

• G is 3-edge-colorable if and only if š(G) = 1;

• G is not 3-edge-colorable with a 1-factor if and only if š(G) = 3;

• G is not 3-edge-colorable without a 1-factor if and only if š(G) =
4.

In Chapter 5 we consider this problem and we prove a suffi-
cient condition for a general graph to have palette index larger
than its minimum degree. As a consequence of this result, we
construct, for every r odd, a family of r-regular graphs with
palette index reaching the maximum admissible value, r + 1
and also the first known family of simple graphs whose palette
index grows quadratically with respect to their maximum de-
gree. Moreover, we provide a characterization of graphs having
palette index at most 3 in terms of decompositions in regular
Class 1 subgraphs.
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C Y C L E S E PA R AT I N G C U T S I N
P O S S I B L E C O U N T E R E X A M P L E S
T O T H E C Y C L E D O U B L E C O V E R
A N D T H E B E R G E - F U L K E R S O N
C O N J E C T U R E S

This chapter is based on contribution [P1].
The Cycle Double Cover Conjecture (see [79, 84]) and the Berge-
Fulkerson Conjecture (see [28, 78]) share a compelling similar-
ity rooted in their common focus on the concept of edge cov-
erings. While the former asserts that every bridgeless graph
can be covered by cycles in such a way that each edge belongs
to precisely two of them, the latter posits the existence of six
perfect matchings, each covering every edge exactly twice in a
bridgeless cubic graph. Although the Cycle Double Cover Con-
jecture is stated for general bridgeless graphs, a well-known
reduction, via the splitting lemma [26], brings it to the family
of bridgeless cubic graphs. As we already mentioned in Section
1.4.1 and Section 1.4.2, the existence of the required covering
is trivially guaranteed for both conjectures if the cubic graph
is Class 1, hence the relevant family of graphs to be studied is
that of Class 2 ones.

In this chapter, we adapt the techniques employed in [60] to
study the effect of cyclic edge-connectivity on potential min-
imum counterexamples for the Cycle Double Cover and the
Berge-Fulkerson Conjectures. Our primary focus is twofold: first,
we explore the structure of a possible minimum cyclically 4-
edge-connected counterexample for the Cycle Double Cover
Conjecture. Second, we direct our attention to the Berge-
Fulkerson Conjecture, investigating the cyclically 5-edge-
connected case (recall that in [60] it is showed that a minimum
possible counterexample to the Berge-Fulkerson Conjecture is
cyclically 5-edge-connected). Despite the inability to exclude
the existence of a minimum counterexample with the given
cyclic edge-connectivity, we provide, in both cases, new strong
restrictions on its structure.

25
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2.1 notation

We introduce notation and auxiliary results that we will use
in the following sections to prove our main results.

A multipole is a pair (V ,E) consisting of a set of vertices V
and a set of edges E. Each edge possesses two ends, each of
which may be incident with a vertex. If an edge has both ends
incident with a vertex, it is called a proper edge. If exactly one of
the ends of an edge is incident with a vertex, the edge is called
a dangling edge. Finally, if none of them is incident with a vertex,
the edge is called an isolated edge. An end of an edge which is
not incident with a vertex is called a semiedge.

A k-pole is a multipole with precisely k semiedges. An ordered
k-pole is a k-pole with a linear ordering of its semiedges.

In the following, when colorings of the edges of a k-pole are
considered, it is always implicitly assumed that if we assign a
color to a given edge, then the same color is also assigned to all
(possible) semiedges of that edge; viceversa, if we claim that a
semiedge has a certain color then the same holds for its edge
as well. Then, from now on, we indifferently say that a color is
assigned either to an edge or to a semiedge.

Let us recall that a circuit is a 2-regular connected graph,
while a cycle is a graph with at least one edge and every vertex
of even degree: when we limit our attention to cubic graphs, a
cycle is nothing but a vertex disjoint union of circuits, while it
could have vertices of larger (even) degree in the general case.
The main parameter considered along this chapter is the cyclic-
edge-connectivity. A graph G is cyclically k-edge-connected if it
does not contain an edge-cut S such that |S| < k and G− S con-
tains at least two components containing cycles. The cyclic con-
nectivity of a graph G is the greatest k such that G is cyclically
k-edge-connected. In the rest of the chapter, we often say mini-
mum counterexample, instead of possible minimum counterexample
to one of the considered conjectures, for brevity. However, we
do not intend in any way to suggest that such counterexamples
should actually exist or not.
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2.2 on 4-edge-cuts in a minimum counterexample

to cdc-conjecture

In a minimum counterexample to the Cycle Double Cover
Conjecture there cannot be 2-valent vertices and 2- or 3-edge-
cuts, and this follows by a standard argument which uses min-
imality (it is presented in Proposition 1.8). Hence, we focus on
4-edge-cuts in a minimum counterexample to the Cycle Double
Cover Conjecture, and to do so, we apply the same technique
and we use notations similar to ones used by E. Máčajová and
G. Mazzuoccolo in [60]. Note that here we consider graphs that
are not necessarily cubic, but we can repeat all arguments also
in the cubic case as we will remark at the end of this section.

Definition 2.1. Let H = (V ,E) be a multipole. A CDC-coloring of
H is a function ϕ which assigns to every element in E a 2-subset of
the set of colors {1, 2, . . . , t} for some integer t, in such a way that
any color occurs an even number of times along the edges incident to
a vertex.

It is straightforward that a CDC-coloring of a graph G is
equivalent to the existence of a set of cycles of G covering each
edge of G twice. Moreover, the edge-induced subgraph of G by
a color in {1, 2, ..., t} is a cycle in G.

Remark 2.2. A stronger version of the Cycle Double Cover Conjec-
ture suggests that it is possible to assume t at most 5 (see [16] and also
[94, 93] for a comprehensive survey on cycle covers). Clearly, it is not
guaranteed that a minimum counterexample for the stronger version
coincides with a potential minimum counterexample for the general
version. However, our arguments never require more than five colors,
so the structural restrictions of a minimum counterexample for one
conjecture extend to the other as well.

Now, we consider the behavior of a CDC-coloring on the four
semiedges of a 4-pole in more detail. Let H be an ordered 4-
pole. Each color of a CDC-coloring occurs an even number of
times on the semiedges of H. Now we show that in every CDC-
coloring of H, the pairs of colors in the semiedges can be ex-
pressed as an overlap of two colorings of the semiedges, each
of which uses at most two colors and such that each color ap-
pears in at most one of these two colorings. An edge-coloring
of the semiedges of an ordered 4-pole where ALL semiedges re-
ceive the same color is said to be of type A, while, for i = 2, 3, 4,
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an edge-coloring of the semiedges of an ordered 4-pole with
two colors such that the first semiedge has the same color as
the i-th one is said to be of type Ti.

Let ϕ be a CDC-coloring of an ordered 4-pole H. If all the
four semiedges have the same pair of colors in ϕ, H is said to
be of type AA. Otherwise, if one color appears in all semiedges,
then ϕ is of type ATi for some i ∈ {2, 3, 4}. Finally, since every
color occurs on an even number of edges, the only remaining
cases to consider are the cases when four colors are present in
ϕ on the four semiedges and each of them appears on exactly
two semiedges. In this case, we can partition the four colors in
two subsets such that the two colors in the first subset give a
coloring of type Ti and the other two colors a coloring of type
Tj. Such CDC-coloring will be denoted as of type TiTj, for some
i, j ∈ {2, 3, 4}.

Proposition 2.3. Each CDC-coloring of the semiedges of an ordered
4-pole is of type XY where X, Y ∈ {A, T2, T3, T4}.

From now on, we do not distinguish a CDC-coloring from
another by the specific set of colors used for the semiedges, but
only by the type of colorings. Moreover a CDC-coloring of type
XY and a CDC-coloring of type YX for X, Y ∈ {A, T2, T3, T4} are
always considered of the same type. Hence, we have exactly 10
types of CDC-colorings of an ordered 4-pole, namely AA, ATi
for i ∈ {2, 3, 4}, and TiTj for i, j ∈ {2, 3, 4}.

We denote by C the set of these 10 types of CDC-colorings,
and we denote by C(H) the set of admissible types of CDC-
colorings for a given ordered 4-pole H. A priori C(H) is one of
the 210 elements of the power set of C, but instead of directly
working with subset of C, we prefer to construct an auxiliary
graph M and to identify C(H) with a suitable subgraph of M.

The graph M has four vertices, denoted by A, T2, T3 and T4,
and every vertex is connected to every other vertex and to itself
by a loop. Vertices of M correspond to the four possible types
of edge-colorings of the semiedges of a 4-pole as introduced
before. Each of the ten edges (here and later we always refer to
loops as edges with two semiedges incident to the same vertex)
corresponds to a different type of CDC-coloring. More precisely,
the one obtained by the composition of the two edge-colorings
of its semiedges. Six copies of the graph M are depicted in
Figure 10. In the leftmost copy, vertices are labeled, and the
same arrangement of vertices is implicitely assumed in the sub-
sequent copies. We associate a subgraph of M, denoted by H∗,
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Figure 10: The subgraphs of M associated to some ordered acyclic 4-
poles.

to every ordered 4-pole H in the following way. Consider the
set C(H) and recall that each of its elements corresponds to an
edge of M. Then, we define H∗ as the subgraph of M induced
by all edges which correspond to an element of C(H).

We show in Figure 10 six possible ordered acyclic 4-poles
(indeed all the possible cubic 4-poles) which will be useful in
our main proof and their associated subgraphs of M. In partic-
ular, note that acyclic poles with no vertex are associated to a
dumbbell subgraph ofM, while the three acyclic poles with two
vertices are associated to a 4-cycle. It is worth noting that this
point constitutes one of the main obstruction compared to what
was obtained in [60] to rule out the existence of 4-edge-cuts in
a minimal counterexample to the Berge-Fulkerson Conjecture.
In that case, each dumbbell subgraph of M was associated to
an acyclic 4-pole, while here we have different types of admissi-
ble subgraphs which impose less restrictive conditions in what
follows.

2.2.1 Bichromatic chains

In this section we introduce a variation of the tool known
as Kempe chain. This tool was firstly introduced by A.B. Kempe
in 1879 [51], in his famous attempt to prove the Four Color
Theorem, and then widely used subsequentely in literature. In
Section 2.3.1 we propose another variation and use of this tool
of the late 19th-century.

Let ϕ be a CDC-coloring of a 4-pole H. Let s be a semiedge
of H and denote by c1 one of the two colors in ϕ(s) and by
c2 a color not in ϕ(s) (here we also admit that c2 is a color
in {1, 2, . . . , t} unused in ϕ). Consider the subgraph H ′ of H in-
duced by all the edges e such that ϕ(e) contains exactly one of
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c1 and c2. Let K be the connected component of H ′ which con-
tains the semiedge s. Clearly, K contains at least two semiedges,
let s ′ denote one different from s. Every path BC in K contain-
ing s and s ′ will be called a c1-c2-bichromatic chain . Note that it
may happen that only one of the colors c1 and c2 appears in a
c1-c2-bichromatic chain. Starting from ϕ, we can obtain a new
CDC-coloring of H by performing a color switch along the c1-c2-
bichromatic chain BC, that is an interchange of the two colors c1
and c2 for all edges (or semiedges) of BC. Note also that in case
of a cubic 4-pole, K itself is always a path beginning and ending
with dangling edges and then BC is uniquely determined.

Now, we prove some necessary conditions for a subgraph of
M associated to an ordered 4-pole.

Lemma 2.4. Let H be an ordered 4-pole. Then, the subgraph H∗ of
M has no vertex of degree 1 and no vertex whose only incident edge
is a loop.

Proof. Let X, Y be two arbitrary elements, possibly the same, of
the set {A, T2, T3, T4}. Consider the vertex of M corresponding
to the element X and assume, by contradiction, that XY is the
unique edge of M in H∗ incident to X (note that if X = Y then
XY is a loop). Consider a CDC-coloring ϕ of H of type XY.

If Y = A, without loss of generality, we can assume that ϕ
assigns color 1 to all the four semiedges of the ordered 4-pole
H. Choose a color which does not appear in the four semiedges,
say 2. Whereas, if Y = Ti for i ∈ {2, 3, 4}, assume, without loss of
generality, that the two colors which defines the edge-coloring
Y are 1 and 2. In both cases, consider a 1-2-bichromatic chain
BC in H starting from the first semiedge and ending in an-
other semiedge. By a color switch along BC we obtain a CDC-
coloring of type XZ, where, in all cases, Z is different from Y.
Hence, XY and XZ are two distinct edges of H∗ incident X, that
is X is not a vertex of degree 1 in H∗ and it is not incident
uniquely to the loop XX.

Lemma 2.5. Let H be an ordered 4-pole. If the subgraph H∗ of M
contains a loop XX with X ∈ {A, T2, T3, T4}, then at least one of the
following holds:

• the two edges XY and YY belong to H∗ for some Y 6= X;

• the edges XY,XZ and YZ belong to H∗ for two distinct Y,Z
different from X.
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Proof. Let X be an element of the set {A, T2, T3, T4} and assume
XX is an edge of H∗. By Lemma 2.4, XX cannot be the unique
edge of H∗ incident to X, then H∗ contains a further edge XY
incident to X, where Y 6= X. Consider a CDC-coloring ϕ of H of
type XX.

If X = A, without loss of generality, we can assume that ϕ
assigns color 1 and 2 to all the four semiedges of the ordered 4-
pole H. Consider two colors, say 3 and 4, which do not appear
in the four semiedges.

Consider a 1-3-bichromatic chain BC1 and a 2-4-bichromatic
chain BC2 in H both starting from the first semiedge. By a color
switch along BC1 we obtain a CDC-coloring of type XY (Y 6= X)
while by a color switch along BC2 we obtain a CDC-coloring of
type XZ (Z 6= X). Since the pairs of colors involved in the two
bichromatic chains are different, then we can perform the color
switches along BC1 and BC2 at the same time, thus obtaining
a CDC-coloring of type YZ. If Y = Z, then XY and YY belong
to H∗, otherwise XY,XZ and YZ belong to H∗ and the assertion
follows in this case.

Now we consider the case X = Ti for some i ∈ {2, 3, 4}. With-
out loss of generality, we can assume that ϕ assigns color 1, 2, 3
and 4 to the four semiedges of the ordered 4-pole H and the
first and the ith semiedges receive colors 1 and 3. Consider
a 1-2-bichromatic chain BC1 and a 3-4-bichromatic chain BC2
in H starting from the first semiedge and ending in another
semiedge. By a color switch along BC1 we obtain a CDC-colo-
ring of type XY (Y 6= X) while by a color switch along BC2 we
obtain a CDC-coloring of type XZ (Z 6= X). As before, since the
pairs of colors involved in the two bichromatic chains are dif-
ferent, then we can perform the color switches along BC1 and
BC2 at the same time, thus obtaining the assertion.

We consider a minimum counterexample G for the CDC-
Conjecture. As already observed, G must be cyclically 4-edge-
connected. Here, we show that if G admits a 4-edge-cut S sepa-
rating two circuits of G, then we can uniquely characterize the
two subgraphs of M associated to the two 4-poles separated by
S.

Theorem 2.6. Let G be a possible minimum counterexample to the
Cycle Double Cover Conjecture and let S be a 4-edge-cut separating
two circuits of G. Denote by G1 and G2 the two 4-poles separated by
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S. Then, for a suitable choice of the three distinct values of i, j,k in
{2, 3, 4}, the edge-sets of G∗1 and G∗2 are equal to

{AA,ATk,ATj, TkTj} and {TiTi, TjTj, TkTk, TiTk, TiTj}.

Proof. Assume there exists a counterexample to the Cycle Dou-
ble Cover Conjecture, and let G be one of minimum order. It is
well-known that we can assume G of minimum degree 3 and
without cycle-separating 2- and 3-edge-cuts.

Consider the two subgraphs G∗1 and G∗2 of M. First observe
that for i ∈ {1, 2},G∗i has at least one edge. Indeed, ifG∗i contains
no edge, this implies that Gi does not admit a CDC-coloring. By
glueing together Gi and an arbitrary acyclic 4-pole, we obtain a
bridgeless graph smaller than G which does not admit a CDC-
coloring, a contradiction by minimality of G.

Furthermore, since G is a counterexample to the CDC Con-
jecture, then G∗1 and G∗2 must be edge-disjoint. Otherwise, G1
and G2 admit a CDC-coloring of the same type and, up to per-
mutation of colors, we can glue such CDC-colorings together
to obtain a CDC-coloring of G.

CLAIM 1: G∗i share at least one edge with each of the sub-
graphs associated to the six acyclic ordered 4-poles depicted in
Figure 10. Proof of Claim 1: If this is not the case, let H be the
acyclic ordered 4-pole such that H∗ and G∗i are edge-disjoint.
The graph obtained by glueing together H and Gi is longer a
counterexample and it is smaller than G, a contradiction.

CLAIM 2: G∗i cannot contain all edges of a subgraph associ-
ated to one of the acyclic ordered 4-pole depicted in Figure 10.
Proof of Claim 2: Suppose there exists an acyclic ordered 4-pole
H whose edge-set is a subset of the edge-set of G∗i . The graph
obtained by glueing together H and Gj, j 6= i, is a counterexam-
ple smaller than G, a contradiction.

Now, we divide the proof in two cases according that the
loop AA of M belongs to one of the two subgraphs G∗1 and G∗2
or not.

Case I - AA does not belong to G∗i for i = 1, 2. For every
j ∈ {2, 3, 4} exactly one of the two edges ATj and TjTj should
belong to G∗1 and the other one to G∗2, otherwise the dumbbell
subgraph with vertices in A and Tj and G∗i are edge-disjoint for
at least one i, contradiction by Claim 1. Moreover, both G∗1 and
G∗2 have degree different from 1 in A by Lemma 2.4, then the
three edges ATj belong to the same subgraph, without loss of
generality say G∗1 and it follows that all three loops TjTj belong
to G∗2. At least one between G∗1 and G∗2 contains at most one
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Figure 11: The case described in the statement of Theorem 2.6.

of the three edges TjTk for j 6= k: in any case, there is either a
degree 1 vertex or an isolated loop in one of the two subgraphs,
a contradiction by Lemma 2.4.

Case II - AA belongs to one of the two subgraphs (say G∗1).
Since AA is a loop, one of the two cases in Lemma 2.5 occurs,
but by Claim 2 the first one is not possible. Then, there exist
j,k ∈ {2, 3, 4}, with j 6= k, such that ATj,ATk, TjTk are also edges
of G∗1. Let i be the unique element of {2, 3, 4} different from j and
k. The edge ATi is not in G∗2 since G∗2 cannot have a degree 1

vertex in A. Hence, all the three loops TjTj, TiTi and TkTk belong
to G∗2 by Claim 1.

Finally, both TiTj and TiTk belong to G∗2 otherwise G∗2 has an
isolated loop. The edge ATi is the unique edge of M which
does not belong to one of the two subgraphs so far. We have
already proved that it cannot belong to G∗2 and, similarly, it
cannot belong to G∗1 otherwise G∗1 has a degree 1 vertex in Ti,
contradiction by Lemma 2.4.

In order to prove that a minimum counterexample cannot
admit a 4-edge-cut, it is thus sufficient to establish that a 4-pole
of either of the two types described in Theorem 2.6 cannot exist.
We suspect that neither can exist, and we leave it as a conjecture.

Conjecture 2.7. No 4-pole has the set of CDC-coloring equal to

{AA,ATk,ATj, TkTj} or {TiTi, TjTj, TkTk, TiTk, TiTj},

respectively, for any choice of the three distinct values of i, j,k in
{2, 3, 4}.

Since all the acyclic 4-poles considered in the proof are cu-
bic, our argument can be repeated if we consider a minimum
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cubic counterexample. In this case, we can prove that if such
multipoles would exist, then they cannot be 3-edge-colorable.

Next lemma analyzes some general necessary properties of
the graph H∗ when H is a 3-edge-colorable cubic 4-pole.

Lemma 2.8. Let H be a 3-edge-colorable cubic 4-pole. Then the fol-
lowings occur:

• H∗ has an edge of type AX for some X ∈ {A, T2, T3, T4}

• if H is connected, the minimum degree of H∗ is at least 1.

Proof. Consider a 3-edge-coloring α of the edges of H with col-
ors 1, 2, 3. Clearly the three 2-factors Cij each of which induced
by the edges of H colored i and j, i 6= j, form a CDC-coloring
ϕ of H. Observe that the colors of α never appear all together
on the semiedges of H, so that there exists at least one 2-factor
Cij that encounters all the semiedges of H, so that ϕ must be of
type AX for some X ∈ {A, T2, T3, T4}.

If H is connected, then for every i ∈ {2, 3, 4} consider a path
Qi starting from the first semiedge of H and ending in the i-th
semiedge. Then the family of cycles given by {C12∆Qi, C13∆Qi,
C23∆Qi, Qi}, where A∆B indicates the symmetric difference
of the sets A and B, form a CDC-coloring of H of type TiX for
some X ∈ {A, T2, T3, T4}.

The following statement is a corollary of Lemma 2.8 and The-
orem 2.6.

Corollary 2.9. If a cubic minimum counterexample to the CDC-
Conjecture is not cyclically 5-edge-connected, then both the compo-
nents G1 and G2 separated by a 4-edge-cut must be non 3-edge-
colorable 4-poles containing at least one circuit.

Finally, also considering Remark 2.2, we can summarize all
previous considerations in the following statement.

Theorem 2.10. Let G be a graph and let S be a 4-edge-cut separating
two circuits of G. Denote by G1 and G2 the two 4-poles separated by
S. Assume G satisfies (at least) one of the followings.

1. G is a minimum counterexample to the CDC-Conjecture;

2. G is a minimum cubic counterexample to the CDC-Conjecture;

3. G is a minimum counterexample to the 5-CDC-Conjecture;

4. G is a minimum cubic counterexample to the 5-CDC-Conjecture.
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Then, for a suitable choice of the three distinct values of i, j,k in
{2, 3, 4}, the edge-sets of G∗1 and G∗2 are equal to

{AA,ATk,ATj, TkTj} and {TiTi, TjTj, TkTk, TiTk, TiTj}.

2.3 5-edge-cuts in a possible counterexample to bf-
conjecture

In this section we employ the same technique as in the pre-
vious one to the study of cyclic 5-edge-cuts in a possible min-
imum counterexample to the Berge-Fulkerson Conjecture. As
the Berge-Fulkerson Conjecture, in its basic form, is stated for
cubic graphs, multipoles studied here will be cubic.

We will use the following definition.

Definition 2.11. Let H = (V ,E) be a cubic multipole. A Berge-
Fulkerson coloring, BF-coloring for short, is a function ϕ which as-
signs to every element in E a 2-subset of the set of colors {1, 2, 3, 4, 5, 6},
in such a way that the subsets assigned to any two adjacent edges are
disjoint.

Clearly, a BF-coloring of a cubic graph G is equivalent to the
existence of six perfect matchings of G covering each edge of G
twice. Moreover, each of the six color classes induces a perfect
matching of G.

From now on, we will refer to a 5-pole, implicitly understand-
ing it to be both ordered and cubic.

Let H be a 5-pole. Then each of the six colors of a BF-coloring
of H appears an odd number of times on the semiedges of H.
Hence, a color can occur 1, 3, or 5 times. If there is one color
appearing 5 times, any other color must appear only once: we
denote this type of BF-coloring by (12345).

In all other cases, two colors appear three times and each of
the remaining four colors appears once. We will say that a BF-
coloring is of type (xy)(x ′y ′), for x < y and x ′ < y ′ belonging
to {1, 2, 3, 4, 5}, if one of the two colors which appear three times
on the semiedges is not present on the semiedges in positions
x and y, and the other one is not present in positions x ′ and
y ′. Along the chapter, we do not distinguish between the types
(xy)(x ′y ′) and (x ′y ′)(xy). Moreover, if (x,y) = (x ′,y ′), we will
denote the coloring of type of (xy)(xy) simply by [xy].



2.3 5-edge-cuts in a possible counterexample to bf-conjecture 36

Hence, there are 56 distinct types of BF-colorings: 45 of type
(xy)(x ′y ′), with either x 6= x ′ or y 6= y ′, 10 of type [xy] and, in
addition, the type (12345).

In all types of BF-colorings, we will call lonely a color of ϕ
which appears exactly once along the semiedges of the 5-pole.
With a slight abuse of terminology, we will also use the term
lonely position/semiedge, when we refer to a semiedge which
receives (at least one) a lonely color. For a given ordered 5-pole,
the set of admissible types of BF-colorings can be represented
as a subgraph of an auxiliary graphN. The set of vertices ofN is
{(xy)|x,y ∈ {1, 2, 3, 4, 5}, x < y} ∪ {(12345)}. The type (xy)(x ′y ′)
of a BF-coloring will be represented by an edge between the
two vertices (xy) and (x ′y ′) of N. The type (12345) will be rep-
resented by a loop over the vertex (12345) and, similarly, a type
[xy] is represented by a loop over the vertex (xy).

15

23
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1234535

25

24

14

13

45

34

Figure 12: The auxiliary graph N. We omit the parenthesis to make
the figure more simple.

Given a 5-pole H, denote by C(H) the set of all admissible
types of BF-colorings for H. Clearly each type in C(H) can be
represented as an edge in the auxiliary graph N and we can
denote by H∗ the subgraph of N induced by all these edges.
A priori H∗ could be any subgraph of N: hence, for a given
H, H∗ is one of the 256 possible subgraphs of N. This number
can actually be significantly reduced by using Kempe switches,
similarly as in [60].
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2.3.1 Kempe switches

Let ϕ be a BF-coloring of an ordered cubic 5-pole H. Let s
be a semiedge of H and denote by c1 one of the two colors in
ϕ(s) and by c2 one of the four colors not in ϕ(s). Consider the
subgraph of H induced by all edges e such that ϕ(e) ∩ {c1, c2}
is not empty. Let K be the connected component of such a sub-
graph which contains the semiedge s. Clearly, K is a path and
then it contains exactly two semiedges, let s ′ denote the one
different from s. Moreover, every edge of K in ϕ receives ex-
actly one of the two colors c1 and c2 and these colors alternate
along the edges of the path K. The component K will be called
a c1-c2-Kempe chain. Starting from ϕ, we can obtain a differ-
ent BF-coloring of H by performing a Kempe switch, that is an
interchange of the two colors c1 and c2 along all edges of K.

Observe that the BF-coloring so obtained is of different type
with respect to ϕ if and only if either exactly one of c1 and c2 is
a lonely color in ϕ or if both of them are not lonely and there
is exactly one semiedge receiving both c1 and c2 in ϕ.

Notice also that, given a BF-coloring ϕ on a 5-pole H, it could
be possible to perform more than one Kempe switch. For exam-
ple, consider a BF-coloring of type (xy)(x ′y ′), and denote by
1 and 4 the colors appearing three times on the semiedges, by
2 and 3 the colors in positions x and y, respectively, and by 5
and 6 the colors in positions x ′ and y ′, respectively. It is then
possible to consider two independent Kempe chains with col-
ors 1 and c with c ∈ {2, 3} and 4 and c ′ with c ′ ∈ {5, 6}, and
performing both the Kempe switches along these chains results
in another BF-coloring of H.

We remark that the exact size of the set of all types of BF-
colorings that can be obtained by performing Kempe switches
starting from ϕ in a pole H, depends on the specific BF-coloring
ϕ and on the structure of the ordered 5-pole. However, pre-
vious observations ensure that it always contains at least one
element different from ϕ.

Now we can formalize the possibility to perform Kempe swit-
ches in terms of types of BF-colorings, i.e. in terms of edges of
the auxiliary graph N. Let ϕ be a BF-coloring of a 5-pole H.
Observe that for two distinct colors c1 and c2 there exists a c1-
c2-Kempe chain beginning and ending on the dangling edges
if and only if the symmetric difference of the set of dangling
edges colored c1 and the set of dangling edges colored c2 is
non-empty (this is equivalent to the fact that it has at least two
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elements). Let us call such a pair of colors switchable. Note that,
for two colors, being switchable or not does not depend on ϕ
but only on the type of ϕ.

Let H be a 5-pole, let α be an edge of H∗ and let c1, c2, . . . , c6
be the six colors representing α. Further, let i, j,k,m ∈
{1, 2, . . . , 6} be any four pairwise distinct indices such that the
colors ci and cj are switchable and ck and cm are switchable,
and consider the corresponding ci-cj- and the ck-cm-Kempe
chains in H. Then the edge-set of H∗ contains at least:

• an edge β corresponding to a type of BF-coloring result-
ing from a Kempe switch on a ci-cj-Kempe chain K1 in H,
and

• an edge γ corresponding to a type of BF-coloring result-
ing from a Kempe switch on a ck-cm-Kempe chain K2 in
H, and

• the edge δ corresponding to the type of BF-coloring re-
sulting by performing both Kempe switches on K1 and
K2.

We will refer to this property of the edge α of H∗ by saying
that, from α, we can perform one or two Kempe switches. Notice
that, if we know α ∈ E(H∗), we cannot determine the specific
type of β,γ and δwithout the exact knowledge of the particular
5-pole and of the specific BF-coloring ϕ corresponding to α, but
we can assure that at least a β and a γ and the corresponding δ
belong to E(H∗).

Definition 2.12. Let M be a generic subgraph of the auxiliary graph
N. We say that M is closed under one or two Kempe switches if
for every α ∈ E(M) there exists β,γ and δ in E(M) obtainable via
Kempe switches as described above.

2.3.2 BF-colorings of some small 5-poles

In this subsection we highlight the types of admissible BF-
colorings of some particular poles that we need later for our
purpose. Notice that, the only acyclic 5-poles are the poles P
and Q depicted in Figure 13. In the figure, they are represented
with their induced subgraphs of N, P∗ and Q∗ respectively.

In Figure 14 the 5-pole C, whose vertex-induced subgraph is
a 5-cycle, is depicted, together with its associated subgraph C∗

of N. From now on, with a slight abuse of terminology, we will
denote such a pole simply as a 5-cycle. Observe that reordering
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Figure 13: The acyclic 5-poles P and Q and their associated graphs P∗

and Q∗.

the semiedges of these 5-poles gives raise to isomorphic sub-
graphs P∗, Q∗ and C∗ of N, but with different vertex sets.
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Figure 14: An ordered 5-pole C and its associated subgraph C∗.

2.3.3 Structural restrictions in a minimum possible counterexample
to the BF-Conjecture
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Now we consider a minimum possible counterexample G to
the BF-Conjecture. In [60] it is proved that G should be a cycli-
cally 5-edge-connected non 3-edge-colorable cubic graph. Here,
we show that if G admits a cyclic 5-edge-cut S, then the color-
ing types of the two 5-poles correspond to one of 13 possibilities
out of more than 2111. The number of possibilities is given by
the combinations with repetition by choosing 2 items from 256

objects: this number is equal to 2111 + 255.
Let R and L be the two 5-poles arising from the edge-cut S,

and let R∗ and L∗ their associated subgraphs of N, respectively.
Clearly, R∗ and L∗ must be edge-disjoint, for otherwise R and
L would admit BF-colorings ϕ1 and ϕ2 of the same type and
we could glue them together, thus obtaining a BF-coloring on G.
Moreover, to be admissible, R∗ and L∗ must satisfy the following
necessary conditions.

• L∗ and R∗ are closed under one or two Kempe switches
(see Definition 2.12).

• Both R∗ and L∗ do not have as a subgraph any of the
associated subgraphs A∗ to an acyclic 5-pole A. Indeed,
assume that R∗ does admit such a subgraph. Replacing
R with A would lead to a smaller counterexample to the
BF-Conjecture, since A∗ would remain edge-disjoint with
L∗.

• Both R∗ and L∗ are not edge-disjoint from all the associ-
ated subgraphs A∗ to an acyclic 5-pole A. Indeed, if the
complement of R∗ admits such a subgraph, replacing L
with A would lead to a smaller counterexample to the
BF-Conjecture, since A∗ would remain edge-disjoint with
R∗.

In what follows we provide a brief description of the pro-
gram we implemented to identify pairs of types of 5-poles which
can occur in a smallest counterexample to Berge-Fulkerson Con-
jecture.

First, we identified all Kempe closed subsets of K. But as |K| =
56, the number of its subsets is 256 which is too big number to
consider all of them. Therefore we proceeded as follows: We
decomposed K into four disjoint subsets:

• A = {(12345)}

• B = {(ij)(km); |{i, j,k,m}| = 4}

• C = {(ij)(im); |{i, j,m}| = 3}
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• D = {(ij)(ij); i 6= j}

It can be easily seen that |A| = 1, |B| = 15, |C| = 30, |D| = 10.
For all subsets C ′ of C, we checked if C ′ is minimal with

respect to permutation of five dangling edges. Then for all sub-
sets D ′ of D we checked if starting from a coloring in C ′ ∪D ′
and perfoming Kempe switch or Kempe double switch whether
each of the resulting colou rings is either outside C ∪D or in
C ′ ∪D ′.

If yes, we verified if does not contain a subset corresponding
to P∗ or its complement. Further we checked if C ′ ∪D ′ is min-
imal under permutation of five dangling edges. If the answer
was yes, we proceeded to identifying suitable subsets of A∪B.

For all subsets A ′ of A and B ′of B we checked whether every
in coloring of A ′ ∪ B ′ all Kempe switches and Kemple double
switches are in A ′ ∪ B ′ or outside A ∪ B. The same for the sets
B and C.

Finally we checked whether all subset A ′ ∪ B ′ ∪ C ′ ∪D ′ is
closed under Kempe swithches and does not contain Q∗ or its
complement.

We alltogether obtained 883 sets of types of coloring that ful-
fil all these requirements. Among them, after all permutation
of dangling edges, we checked that there are exactly 13 disjoint
pairs. These pairs are depicted in Figures 15 and 16.

Observe that, in cases from I to XII, R∗ (grey edges) is a copy
of K5 with loops on vertices plus the (12345) coloring, that is the
graph induced by the admissible types of BF-colorings of a 5-
cycle. Hence, by minimality of G, in these cases, we can assume
that the pole R is a 5-cycle.

In the remaining part of the section we study 3-edge-colorabi-
lity of the 5-poles R and L. In the following lemma we state
some general necessary conditions for the associated graph H∗,
when H is a 3-edge-colorable 5-pole.

In the next proposition, we extend the notion of lonely colors
to a 3-edge-coloring of a 5-pole in the natural way, that is a color
is lonely if it appears exactly one time along the semiedges in
the considered 3-edge-coloring.

Lemma 2.13. A 3-edge-colorable 5-poleHwhich has a 3-edge-coloring
with lonely colors in positions x and y admits a BF-coloring of each
of the following types: [xy], [x1y], [xy1], (xy)(x1y), (xy)(xy1) and
(x1y)(xy1), for some x1 6= x,y and y1 6= y, x.

Proof. Observe that if the pole H admits two different 3-edge-
colorings c and c ′ with lonely colors in positions x,y and x ′,y ′,



2.3 5-edge-cuts in a possible counterexample to bf-conjecture 42

I II

III IV

V VI

15

23

12

1234535

25

24

14

13

45

34

15

23

12

1234535

25

24

14

13

45

34

15

23

12

1234535

25

24

14

13

45

34

15

23

12

1234535

25

24

14

13

45

34

15

23

12

1234535

25

24

14

13

45

34

15

23

12

1234535

25

24

14

13

45

34

Figure 15: Possible pairs of subgraphs R∗ and L∗, cases I to VI

respectively, then it admits BF-colorings of types [xy], [x ′y ′] and
(xy)(x ′y ′). Indeed, the first two ones are given by an overlap of
two copies of c and c ′, respectively, and the third one is given
by the overlap of a copy of c and a copy of c ′.

Consider a 3-edge-coloring c of H with lonely colors in posi-
tions x and y, denote by x and y respectively also their colors
and denote by z the remaining color of c. Consider a Kempe
chain with colors x and z and exchange the colors along it:
since the chain ends in a semiedge in position x1, x1 6= x,y,
a 3-edge-coloring of H with lonely colors in positions x1 and
y is obtained. The same procedure with a Kempe chain of col-
ors y and z proves that H admits a 3-edge-coloring with lonely
colors in positions x and y1, where y1 6= y, x since the Kempe
chain cannot end nor in x neither in y. Hence H admits BF-
colorings of all types [xy], [x1y], [xy1], (xy)(x1y), (xy)(xy1) and
(x1y)(xy1).

As a consequence of Lemma 2.13, we obtain that, for a 3-edge-
colorable 5-pole H, in the associated subgraph H∗ there are at
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Figure 16: Possible pairs of subgraphs R∗ and L∗, cases VII to XIII. We
rearrange the labels of the vertices in case XIII for the sake
of readability.

least 3 distinct loops. Moreover, if a position i, i ∈ {1, ..., 5} ap-
pears in one of such loops, then it must appear at least another
time in a different loop. Hence, if we consider the subgraphs L∗

(black edges) in cases from I to XIII (always refer to Figures 15

and 16) to be associated to a 3-edge-colorable 5-pole L, we have
that all cases are ruled out by previous observations on loops
but II, VII, XII and XIII. Cases II and VII do not satisfy the nec-
essary condition in Lemma 2.13, since there is at least a pair of
loops [xy] and [x1y] for which (xy)(x1y) is not an edge . Hence,
we conclude that, if the pole L is 3-edge-colorable, the only pos-
sibilities for L∗ are cases XII and XIII. Finally, also the subgraph
R∗ of case XIII cannot be associated to a 3-edge-colorable pole
R, since it does not contain any loop.



2.3 5-edge-cuts in a possible counterexample to bf-conjecture 44

We summarize what have been discussed in the following
theorem.

Theorem 2.14. If G is a cyclically 5-edge-connected minimum coun-
terexample to the Berge-Fulkerson Conjecture and it is not cyclically
6-edge-connected, then every cycle separating 5-edge-cut separates
two non acyclic 5-poles L and R such that, up to interchanging the
roles of L and R,

- both L and R admit a BF-coloring and the BF-colorings for L
and R are exactly the ones of the subgraphs L∗ and R∗ of cases
from I to XIII depicted in Figures 15 and 16;

- in cases from I to XII the pole R is a 5-cycle, so that G has girth
exactly 5;

- in cases from I to XI, L is a non 3-edge-colorable pole;

- in case XIII, R is a non 3-edge-colorable pole.
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H - C O L O R I N G S

This chapter is based on contribution [P2].
We consider undirected graphs that can be either simple or
multigraphs. We recall and refine some notations we have al-
ready mentioned in Chapter 1, for the sake of completeness.
Let U ⊆ V(G). We denote the set consisting of all the edges
having exactly one endvertex in U by ∂GU, and when it is obvi-
ous which graph G we are referring to we just write ∂U. When
U consists of only one vertex, say u, we write ∂u, instead of
∂{u}, for simplicity. Let H be an arbitrary graph: an H-coloring
of G is a proper edge-coloring f : E(G)→ E(H) of G with edges
of H, such that for each vertex u ∈ V(G), there exists a vertex
v ∈ V(H) with f(∂Gu) = ∂Hv. If G admits an H-coloring, then
we write H ≺ G and we say that the graph H colors the graph
G. We will see in Chapter 5 that the concept of H-coloring of
a graph can be generalized and, in this generalized form, will
describe in a compact way the one of palette index of a graph.
As mentioned in Chapter 1, one of the most important conjec-
tures in graph theory is Conjecture 1.12, the Petersen Coloring
Conjecture [46], which we recall here.

Conjecture (Petersen Coloring Conjecture). For any bridgeless
cubic graph G, P ≺ G.

As already remarked in Chapter 1, Conjecture 1.12 implies
several other relevant conjectures in the field of graph theory
such as Conjecture 1.9, the Berge-Fulkerson Conjecture, and
Conjecture 1.6, the Cycle Double Cover Conejcture. The Berge-
Fulkerson Conjecture implies several other weaker conjectures
and results on bridgeless cubic graphs, one among the others is
the Fan-Raspaud Conjecture [21] (see also [61]), which claims
that every bridgeless cubic graph admits three perfect match-
ings with empty intersection. A result implied by Conjecture
1.9 is the S4-Theorem, [49], which states the following.

Theorem 3.1 (S4-Theorem). For every bridgeless cubic graph G,
there exist two perfect matchings such that the deletion of their union
leaves a bipartite subgraph of G.

45



h-colorings 46

Theorem 3.1 has been recently proved in [49], and it cor-
responds to the so–called S4-Conjecture proposed in 2013 by
Mazzuoccolo (see [63]). We remark that in [67], Mazzuoccolo
and Zerafa showed that Theorem 3.1 is equivalent to saying
that for every bridgeless cubic graph G, S4 ≺ G, where S4 is the
subcubic multigraph portrayed in Figure 17a.

(a) The multigraph S4 (b) The Sylvester graph
S10

(c) The multigraph S12

Figure 17: The multigraphs S4, S10 and S12

In the same spirit of Conjecture 1.12, Mkrtchyan [68] also pro-
posed the following two conjectures for cubic graphs, for which
connectivity conditions are relaxed. In fact, the following two
conjectures are stated for cubic graphs which are not necessar-
ily bridgeless.

Conjecture 3.2 (S12-Conjecture). For each cubic graph G admitting
a perfect matching, S12 ≺ G.

Conjecture 3.3 (S10-Conjecture). For each cubic graph G, S10 ≺ G.

The multigraph S10 is also referred to as the Sylvester graph
and is depicted together with the multigraph S12 in Figure 17

(see also [34]).
Mkrtchyan proved the following theorem (Theorem 2.4 in

[68]).

Theorem 3.4 (Mkrtchyan, 2012 [68]). If H is a connected bridgeless
cubic graph with H ≺ P, then H ' P. 1

1 Here and in the rest of the chapter, the symbol ' denotes a graph isomor-
phism
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Consequently, the following holds.

Corollary 3.5 (Mkrtchyan, 2012 [68]). If H is a connected bridge-
less cubic graph such that H ≺ G for every bridgeless cubic graph G,
then H ' P.

In other words, the previous result says that we cannot re-
place the Petersen graph in Conjecture 1.12 with any other con-
nected bridgeless cubic graph. Nevertheless, if we choose H
from the larger class of connected cubic graphs (not necessarily
bridgeless), there are other possible candidates. In particular, if
we minimise the assumptions on the graph H by considering
the class of connected graphs (not even cubic), then another
candidate is given by the graph S4.

Theorem 3.12 is one of the main results of this chapter, and
it is a generalisation of Theorem 3.4: it is obtained by remov-
ing any restriction on the degree of the vertices of the graph H
in an H-coloring of the Petersen graph. Analogously, Corollary
3.13 is the natural generalisation of Corollary 3.5, but, in order
to explain its statement, we need to introduce the following ter-
minology. Let G be a multigraph having three degree 3 vertices
and a further vertex of arbitrary degree. Denote this set of four
vertices by X. If the induced multisubgraph G[X] is isomorphic
to S4, then we say that G exposes S4 and that G[X] is an exposed
copy of S4 in G. Observe that both S10 and S12 expose (three
times) S4.

Indeed, as a consequence of Theorem 3.12 we prove that the
unique graphs that can color every bridgeless cubic graph are
exactly P and all graphs which expose S4 (see Corollary 3.13).
In a similar way, Corollary 3.16 and Corollary 3.17 in Section 3.2
are related to Conjecture 3.3 and Conjecture 3.2, respectively.

All the above mentioned conjectures deal with the question
asking whether there exists a connected graph H such that
H ≺ G for any G in a given class of cubic graphs. Table 2

summarizes the possibilities for the eventual existence of such
a graph H that we obtain as consequences of the results pre-
sented in Section 3.2. It is divided according to the cases when
H is assumed to be a simple graph or a multigraph. In this table,
we consider three classes of graphs (that may be multigraphs)
to be colored by some connected graph H: (i) bridgeless cubic
graphs, (ii) cubic graphs admitting a perfect matching, and (iii)
cubic graphs.

If the graph H that colors all the graphs in each of the corre-
sponding classes exists, then the only possibilities are the ones
presented in the table.



3.1 notation and technical lemmas 48

Cubic graphs H simple graph H with parallel edges

bridgeless H ' P (Theorem 3.12) Hf ' S4 (Theorem 3.12)

with a perfect matching @ (Remark 3.20) H ' S10 or H ' S12 (Corollary 3.19)

any @ (Remark 3.20) H ' S10 (Corollary 3.18)

Table 2: Possibilities for the eventual existence of an H-coloring for
different classes of cubic graphs

In Section 3.3 we partially answer the question dealing with
whether there exists a graph H such that H ≺ G for any r-
regular graph G, for r > 3, in a given class. The results obtained
are summarised in Table 3.

r-regular graphs, r > 3 H (multi)graph

simple graph @ for r even (Theorem 3.26)

multigraph @ for any r (Theorem 3.23)

Table 3: Non existence of an H-coloring for r-regular simple graphs
and multigraphs

3.1 notation and technical lemmas

Before continuing, we need some further definitions and no-
tation which we introduce in order to focus our study only on
the relevant part of H in a given H-coloring f of some graph
G. First, observe that, if there is no pair of distinct vertices v
and w of H such that ∂Hw = ∂Hv, then an H-coloring f of G
naturally induces the map fV : V(G)→ V(H) defined for every
vertex u of V(G) as fV(u) = v, where v is the unique vertex of H
such that f(∂Gu) = ∂Hv. In what follows, the irrelevant part of
H shall arise due to the vertices v ∈ V(H) for which v 6∈ Im(fV).

Lemma 3.6. Let G be a connected graph and let f : E(G) → E(H)

be an H-coloring of G. Then, the induced subgraph H[Im(f)] of H is
connected.

Proof. Observe that by definition of H-coloring, if e1 and e2
are two adjacent edges of G, then f(e1) is adjacent to f(e2) in
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H[Im(f)]. The result follows immediately by the connectivity
assumption on G.

By the previous lemma, from now on we can assume that H
is connected, since only the edges of one connected component
belong to the image of any H-coloring of a connected graph
G. Note that if H is connected then the map fV is well defined
for any given H-coloring f, except if H is the graph tK2 on two
vertices and with t parallel edges between them. Moreover, it
is straightforward that a graph G admits a tK2-coloring if and
only if G is t-regular and t-edge-colorable and consequently, if
and only if it admits a K1,t-coloring, where K1,t is the star on
t+ 1 vertices. Hence, it is not restrictive assuming |V(H)| > 2 in
what follows.

Let H and G be connected graphs such that H ≺ G and
|V(H)| > 2. Let f be an H-coloring of G and consider the map
fV . We denote by Hf, the edge-induced subgraph H[Im(f)] and
with a slight abuse of terminology we shall refer to the graphHf
as the image of the H-coloring f. Note that in general Im(fV) ⊆
V(Hf), since an edge uv of Hf must have at least one of its end-
vertices u and v in Im(fV), but not necessarily both of them.
Every vertex of Hf which does not belong to Im(fV) is said to
be unused.

Starting from the graph Hf, we can obtain a large variety of
connected graphs, say H ′, such that G admits an H ′-coloring.
A first easy procedure is obtained by considering an arbitrary
connected graph H ′ having Hf as an induced subgraph with
the further property that dH ′(v) = dHf(v) for every v ∈ Im(fV).
A more general way is obtained by eventually splitting in ad-
vance unused vertices of Hf in arbitrary graphs (see Figure 18

for a possible example, where splitting of vertices is also por-
trayed). Finally, we remark that if Hf has no unused vertex (that
is, Hf = H), then no connected graph H ′ different from H can
be obtained as a combination of previous operations.

Definition 3.7. Let G andH be connected graphs such that |V(H)| >
2 and H ≺ G. Let f be an H-coloring of G and let fV be the induced
map on the vertices ofG. We define the graph H̃f as the graph obtained
fromHf by splitting every unused vertex u ofHf into dHf(u) vertices
of degree 1. We refer to the graph H̃f as the splitted image of f.

In what follows, with a slight abuse of notation, we shall
always refer in the same way to a vertex u in Im(fV) indepen-
dently to whether we are considering it in H, Hf or H̃f. For
simplicity, the functions corresponding to an Hf-coloring and
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Figure 18: H, Hf, H̃f and a possible example for H ′

an H̃f-coloring of some graph G are both denoted by f as well.
An unused vertex v is referred to in the same way both in H
and in Hf, whilst the vertices of H̃f obtained by splitting v are
referred to as the vertices arising from v. Finally, we remark that
since G is connected, every two distinct vertices in Hf are the
endvertices of a path whose inner vertices all belong to Im(fV).
Consequently, H̃f is connected by Lemma 3.6.

In what follows we make use of some results contained in
Lemma 2.2 in [35]. We reproduce only the part of the lemma
that we shall need in the sequel, even if in a slightly more gen-
eral form. Moreover, we add and prove statement (d).

Lemma 3.8. Let G and H be graphs. Assume that H is connected
with H ≺ G, and let f be an H-coloring of G.

(a) If M is any matching of H, then f−1(M) is a matching of G.

(b) χ ′(G) 6 χ ′(H) (where χ ′ denotes the chromatic index of a
graph).

(c) IfM is a perfect matching of H, then f−1(M) is a perfect match-
ing of G.

(d) If G is connected, let X be an edge-cut of Hf such that Hf − X
does not contain any isolated vertex. Then f−1(X) is an edge-cut
of G.

Proof. Statements (a), (b), (c) follow from [35], so it suffices to
prove statement (d).
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(d) Let G = G− f−1(X) and H = Hf − X. Consider f : E(G) →
E(H), the restriction of f to G. Since X = f(f−1(X)), the func-
tion f is an H-coloring of G, and since Hf − X does not contain
any isolated vertex, it holds that Hf = H. Suppose that f−1(X)
is not an edge-cut of G, for contradiction. This means that G
is connected. However, by Lemma 3.6, Hf = H is connected,
contradicting X being an edge-cut of Hf.

Before we continue, we prove the following lemma which
gives statement (c) of Lemma 3.8 as a corollary. This lemma
shall also be used in Section 3.3.2.

Lemma 3.9. Let G and H be graphs, and assume H to be connected.
Let f be an H-coloring of G and let fV be the induced map on the
vertices of G. If M is a matching of H such that every vertex v ∈
Im(fV) is matched in M, then f−1(M) is a perfect matching of G.

Proof. Since M is a matching of H, by Lemma 3.8, f−1(M) is
a matching of G, so it suffices to show that f−1(M) covers all
the vertices of G. For each u ∈ V(G), fV(u) ∈ Im(fV), and so
there exists a unique edge e ∈ M such that e is incident to the
vertex fV(u) in H. This means that for every vertex u ∈ V(G),
there exists exactly one edge in ∂Gu which is colored by an
edge in M, implying that f−1(M) is a perfect matching of G, as
required.

3.2 H-colorings of cubic graphs

Before proving the main result of this section (Theorem 3.12)
we need some further technical results for the case when G is
cubic.
Remark 3.10. Consider an H-coloring f of a connected cubic graph
G. For every vertex u ∈ V(H̃f) exactly one of the following holds:

• u has degree 1 in H̃f and either it is itself an unused vertex in
Hf or it arises from an unused vertex of Hf; or

• u has degree 3 in H̃f and it is a vertex of H which belongs to
Im(fV).

Lemma 3.11. Let H be a connected graph. Let f be an H-coloring of
the Petersen graph P. If e = uv is a bridge in H̃f, then exactly one of
u and v has degree 1 in H̃f.
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Proof. Let fV be the map induced by f on the vertices of P and,
for contradiction, suppose that both u and v belong to Im(fV),
which results in both vertices having degree 3 in H̃f, by Remark
3.10. Hence, all edges in ∂Hu (and ∂Hv) belong to Im(f), that is
they belong to the edge-set of H̃f. In particular, the edge e = uv
belongs to Im(f). Let ł1 and ł2 be the two edges incident to u
in H̃f other than uv, and let r1 and r2 be the other two edges
incident to v in H̃f. Since e is an edge-cut and a matching of H̃f,
by Lemma 3.8, f−1(e) is an edge-cut and a matching of P. The
only matchings of the Petersen graph which are also edge-cuts
are perfect matchings of P. Consequently, f−1(e) is a perfect
matching of P, say M, which can be chosen arbitrarily due to
the symmetry of the Petersen graph (in a more precise terminol-
ogy we remark that the Petersen graph is 3-arc-transitive, see
for example [4]). The complement of M in the Petersen graph
consists of two disjoint 5-cycles. Without loss of generality, by
following the notation used in Figure 19, we can assume that:

• each edge uivi has color e;

• fV(ui) = u, for every vertex ui of the outer 5-cycle; and

• fV(vi) = v, for every vertex vi of the inner 5-cycle.

It follows that all the edges in the outer 5-cycle (similarly, in-
ner 5-cycle) should be alternately mapped to ł1 and ł2 (respec-
tively, r1 and r2) by f. However, this is not possible since these
two cycles have odd length. Hence, since e ∈ Im(f) implies that
at least one of u and v belongs to Im(fV), by Remark 3.10 we
conclude that exactly one of the vertices u and v belongs to
Im(fV) and, the one which does not, has degree 1.

u2

e

u1

u3u4

u5
v1

v2

v3v4

v5

e e

l1

l2

eu v

e e r1

r2

Figure 19: Steps from Lemma 3.11

Theorem 3.12. Let H be a connected graph such that H ≺ P and let
f be an H-coloring of P. Then, either H = Hf ' P or Hf ' S4.
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Proof. First, assume that H̃f is cubic. By Remark 3.10, H̃f = Hf,
and by Lemma 3.11, it follows that it is bridgeless, and so, by
Theorem 3.4, H = Hf ' P. Hence, we can assume that H̃f is not
cubic, and so, by Remark 3.10, it admits a vertex vwhose degree
is 1 and is adjacent to a vertex u whose degree is 3. Let e = uv,
and let the other two edges in H̃f incident to u be denoted
by a and b. By Lemma 3.11, the edges a and b cannot share
a further endvertex other than u, otherwise H̃f is isomorphic
to the connected 3-edge-colorable graph on four vertices with
two degree 1 vertices and two degree 3 vertices, thus implying
that the Petersen graph P is 3-edge-colorable by Lemma 3.8, a
contradiction. Therefore, a and b share exactly one endvertex
(u), and we let w and z be the two distinct vertices in V(H̃f) \ {v}
such that a = uw and b = uz.

Without loss of generality, assume that the spoke u1v1 of P is
colored by e = uv. Since v does not belong to Im(fV), fV(u1) =
fV(v1) = u, and so we can assume further that f(u1u5) =

f(v1v4) = a and f(u1u2) = f(v1v3) = b, as in Figure 20. The case
when f(u1u5) = f(v1v3) = a and f(u1u2) = f(v1v4) = b is equiv-
alent by the symmetry of P. Since P is not 3-edge-colorable, u
cannot be the only vertex in Im(fV). Hence, at least one of w
and z must also have degree equal to 3 in H̃f. By Lemma 3.11,
since H̃f cannot admit a bridge with both of its endvertices hav-
ing degree 3, the vertices w and z must both have degree 3 in
H̃f.
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e

u1

u3u4

u5
v1

v2

v3v4

v5
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a1

a2

b1

a1

a

b
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z

w

b1

b2

a2

Figure 20: The edges colored a1,a2,b1,b2 in P

Claim A. u1v1 is the unique edge with color e.
Proof of Claim A. Suppose there is another edge m in P which is
colored by e. Either m is at distance 1 from u1v1 or it is at dis-
tance 2. Then, there exists C, a 5-cycle or a 6-cycle, respectively,
of P passing through both u1v1 and m. Hence, the other edges
in C are colored by a or b, since they are all incident with some
edge which is colored by e.
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If C is a 6-cycle, the vertices of C that are not incident with
u1v1 or m, have two of their incident edges colored by a and
b, implying that they are mapped by fV into u, and thus their
third incident edges, say l1 and l2 respectively, are also colored
by e. This is a contradiction, since l1 and l2 are edges of P inci-
dent to a common vertex. If C is a 5-cycle, there exists a vertex
of C having two of its incident edges colored by a and b, im-
plying that it is mapped by fV into u and thus its third incident
edge is also colored by e. But in this case, there exists a 5-cycle
C ′ of P whose edges are incident to some edge colored by e,
implying that all edges of C ′ must be colored by a and b. This
is a contradiction since C ′ is an odd cycle. �

Let a1 and a2 be the two edges in H̃f − a which are incident
to the vertex w, and let b1 and b2 be the two edges in H̃f − b
which are incident to the vertex z. Since no edge but u1v1 has
color e in P, all the edges incident to an edge with color a
(similarly, b) receive colors a1 and a2 (respectively, b1 and b2).
Hence, without loss of generality we can assume:

• f(u4v4) = a1 and f(u4u5) = a2; and

• f(u3v3) = b1 and f(u2u3) = b2,

as in Figure 20.

Claim B. a1 = b1 and a2 = b2.
Proof of Claim B. Due to the edge u3u4 in P, there exists an
edge g in H̃f such that a1,a2,g are incident with a common
vertex, and b1,b2,g are incident with a common vertex. More-
over, since f(v1v4) = f(u1u5) = a, we have f(v2v4) = a2 and
f(u5v5) = a1. Similarly, f(v3v5) = b2 and f(u2v2) = b1. This
means that a1 and b2 share a common vertex in H̃f, and simi-
larly, a2 and b1 share a common vertex in G. Since the vertices
of H̃f can have degree 1 and 3, the only way how the above
statements can be satisfied is by having {a1,a2} = {b1,b2}. In
particular, since f(u5v5) = a1 and f(v3v5) = b2, b2 must be
equal to a2, proving our claim. �

By Claim B, H̃f ' S4, and since H̃f has a unique vertex of
degree 1, it cannot be obtained by splitting unused vertices of
some other graph, and so, H̃f = Hf, as required (in Figure 21

an S4-coloring of P is represented).

As before, since the Petersen graph is bridgeless and cubic,
the following holds.
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Figure 21: An S4-coloring of P

Corollary 3.13. If there exists a connected graph H coloring all
bridgeless cubic graphs, then either H ' P or H exposes S4.

To conclude this section we provide a generalisation of the
following two theorems, proved in [68] and [35].

Theorem 3.14 (Mkrtchyan, 2013 [68]). Let H be a connected cubic
graph with H ≺ S10. Then H ' S10.

Theorem 3.15 (Hakobyan & Mkrtchyan, 2019 [35]). Let H be a
connected cubic graph with H ≺ S12. Then, either H ' S10 or H '
S12.

More specifically, in the same way as Theorem 3.12 gener-
alises Theorem 3.4, the next corollaries generalise previous re-
sults by removing the regularity assumption on the graph H.

Corollary 3.16. Let H be a connected graph with H ≺ S10. Then,
H ' S10.

Corollary 3.17. Let H be a connected graph with H ≺ S12. Then,
either H ' S10 or H ' S12.

Both these corollaries are a direct consequence of Theorem
3.14 and Theorem 3.15. Indeed, let H be a connected graph and
let f be an H-coloring of S10 (similarly, S12). Suppose H̃f is not
cubic: then H̃f can be extended to infinitely many connected
cubic graphs by the procedure described just above Definition
3.7. All of them color S10 (respectively, S12), a contradiction to
Theorem 3.14 (respectively, Theorem 3.15). Hence, H̃f is cubic
and the statements respectively follow by Theorem 3.14 and
Theorem 3.15, once again.

As before, once we recall that S12 has a perfect matching, two
other corollaries follow from Corollary 3.16 and Corollary 3.17.
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Corollary 3.18. If there exists a connected graph H coloring all cubic
graphs, then H ' S10.

Corollary 3.19. If there exists a connected graph H coloring all cubic
graphs with a perfect matching, then either H ' S10 or H ' S12.

To obtain all the results displayed in Table 2, we need just
a final remark. It is possible to construct cubic graphs with a
perfect matching having a subgraph as in Figure 22. In [65] it
is shown that such cubic graphs have a normal 7-edge-coloring
(see Section 1.4.3), but they don’t have any normal k-edge-color-
ing with k < 7, and hence they cannot admit a Petersen coloring
(see Section 1.4.3 again). Hence, considering also our Theorem
3.12 we can state the following remark.

Figure 22: The subgraph mentioned in [65]

Remark 3.20. A connected simple graph H that colors any cubic
graph G with a perfect matching (and hence any cubic graph) does
not exist.

3.3 H-colorings in r-regular graphs , for r > 3

In this section we analyse whether there exists a connected
graphH such that every r-regular graphG admits anH-coloring,
for each r > 3. Clearly, the answer could depend on the class of
graphs from where we choose the graph G: the bigger the class,
the more unlikely it is that the same graph H would color all of
them.

In Section 3.3.1 we consider the case of G being a multigraph.
On the other hand, in Section 3.3.2 we restrict our attention to
the subclass of simple regular graphs. In the former case, we
are able to give a complete negative answer, whilst in the latter
one we give a negative answer for G having even degree, and
we leave the odd case as an open problem (see Problem 3.27).
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3.3.1 H-colorings in r-regular multigraphs, for r > 3

In this section we show that, for every even r > 3, there is no
graph H such that H ≺ G for every r-regular multigraph G. We
note that H is not necessarily simple and can be a multigraph.

In each of the multigraphs S4,S6 and S12, portrayed in Figure
23, there is a unique way how one can pair all the vertices of
each multigraph such that the vertices in each pair are adjacent.
Consequently, these three multigraphs each admit a unique per-
fect matching up to which parallel edges are chosen, shown in
bold in Figure 23. Notwithstanding whether we are referring
to S4,S6 or S12, in Section 3.3.1, we shall refer to this perfect
matching in each of these multigraphs by M. For every k > 0,
let S4 + kM (similarly, S6 + kM or S12 + kM) be the (k + 3)-
regular multigraph obtained from S4 (respectively, S6 or S12)
after adding k edges parallel to every edge in M. When k = 0,
S4 + 0M, S6 + 0M and S12 + 0M are assumed to be S4,S6 and
S12, respectively.

S4 S6

S12

Figure 23: The chosen perfect matching M for the multigraphs S4,S6
and S12

In analogy with the already introduced definition of an ex-
posed copy of S4 we define in detail what an exposed copy of
S4 + kM is, for some k > 0. Let G be a multigraph having
three vertices of degree k+ 3 and a further vertex of arbitrary
degree. Denote this set of vertices by X. If the induced multi-
subgraph G[X] is isomorphic to S4 + kM, then we say that G
exposes S4 + kM and that G[X] is an exposed copy of S4 + kM in
G.
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In the next proposition we show that for any r > 3 there
exists an r-regular multigraph G that admits only G-colorings.

Proposition 3.21. Let H be a connected graph with H ≺ S12 + kM,
for some k > 1. Then, H ' S12 + kM.

u2

uu1

u3

r2

rk+1

ℓ1ℓ2ℓk+2

m2

m1

r1

Figure 24: General labelling of an exposed copy of S4 + kM in G

Proof. Let f be an H-coloring of G, where G = S12 + kM. Let
z1, z2, z3 be the three vertices of G which induce a 3-cycle (with-
out parallel edges). Let Z1,Z2,Z3 be the three disjoint exposed
copies of S4 + kM in G, such that zi ∈ Zi, for each i ∈ {1, 2, 3}.
Additionally, in each copy of Zi, we label the vertices by ui, vi

and wi, where ui is the unique vertex adjacent to zi in Zi. The
k+ 2 edges with endvertices vi and wi are labeled by `i1, ..., `ik+2,
whilst the k+ 1 edges with endvertices ui and zi by ri1, ..., rik+1.
Finally, the two edges uivi and uiwi are denoted by m1 and m2,
respectively. In what follows, when we refer to a generic copy
of S4 + kM in G we will omit the superscripts in the labelling
of vertices and edges of G (see Figure 24), and in their images
under the action of fV .

We first show that for each copy of Zi in G, the following
holds. By the definition of H-coloring, f(`1), f(`2), . . . , f(`k+2),
f(m1), f(m2) are k+ 4 distinct edges in H since the edges `1, `2,
. . . , `k+2,m1,m2 are distinct and pairwise adjacent in G. Hence,
fV(v) 6= fV(w). Indeed, if by contradiction fV(v) and fV(w) are
equal, say to x ∈ V(H), then all the edges f(`1), f(`2), . . . , f(`k+2),
f(m1), f(m2) are incident to x since `1, `2, . . . , `k+2,m1,m2 are ex-
actly all the edges incident to v and w in G. These add up to
k + 4 edges, meaning that dH(x) = k + 4. However, dG(v) =

k + 3, that is, dH(fV(v)) 6= dG(v), a contradiction. It follows
that f(`1), f(`2), . . . , f(`k+2) are parallel edges in H with end-
vertices fV(v) = v ′ and fV(w) = w ′. In particular, f(m1) must
be incident to v ′ and f(m2) must be incident to w ′. Moreover,
since m1 and m2 are adjacent edges in G, f(m1) and f(m2)

are adjacent edges in H. Denote by u ′ ∈ V(H) − {v ′,w ′} their
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common endvertex. Consequently, fV(u) = u ′, and the edges
f(r1), . . . , f(rk+1) are incident to u ′ in H but not to v ′ and w ′.

We now prove that fV(zi) 6= fV(ui) for each i ∈ {1, 2, 3}. With-
out loss of generality, suppose that fV(z1) = fV(u

1) = u ′1,
for contradiction. Since r11, ...r1k+1 are all incident with both m1

1

and m1
2, it must be that {f(z1z2), f(z1z3)} = {f(m1

1), f(m
1
2)}. This

means that fV(z2) ∈ {u ′1, v ′1,w ′1}. If fV(z2) = u ′1, exactly one of
f(r21), ..., f(r2k+1) is an element of {f(m1

1), f(m
1
2)} \ {f(z

1z2)}, imply-
ing that fV(u2) = u ′1 as well. Since {f(m2

1), f(m
2
2)} ⊂ {f(z1z2)} ∪

{f(r11), ...f(r1k+1)}, we have that fV(u2) = fV(v
2), or fV(w2) =

fV(v
2), a contradiction, since u ′2, v ′2,w ′2 are pairwise distinct.

Therefore, fV(z2) ∈ {v ′1,w ′1}. If, without loss of generality,
fV(z

2) = v ′1, then fV(u
2) ∈ {v ′1,w ′1}. Consequently,

{fV(v
2), fV(w2)} = {u ′1, v ′1,w ′1} \ {fV(u2)}, a contradiction, since

the edges f(r21), . . . , f(r
2
k+1) are not incident to v ′1 and w ′1. Con-

sequently, fV(z1) 6= fV(u1), as required.

Hence, up to now we have proved that the induced multisub-
graph H[fV(V(Zi))] is an exposed copy of S4 + kM in H. From
now on, we denote H[fV(V(Zi))] by Z ′i, for each i ∈ {1, 2, 3}.

Claim A. Z ′1,Z
′
2,Z

′
3 are pairwise edge-disjoint.

Proof of Claim A. Without loss of generality, suppose that E(Z ′1)∩
E(Z ′2) 6= ∅, for contradiction. Since fV maps the vertices of Zi
having degree k + 3 into vertices of degree k + 3 in H, either
Z ′1 = Z ′2, or H

[
(E(Z ′1)∪ E(Z ′2)

]
' S6 + kM. First, assume that

Z ′1 = Z
′
2. In this case, fV(z1) = fV(z2), and, without loss of gen-

erality, we assume that f(r1j ) = f(r
2
j ) for every j ∈ {1, 2, . . . ,k+1}.

Moreover, all the edges f(z1z2), f(z2z3) and f(z1z3) must be pair-
wise distinct in H, and each of them must be incident to fV(z1)
(which is equal to fV(z2)). None of the edges f(z1z2), f(z2z3)
and f(z1z3) coincide with f(r1j ) (which is equal to f(r2j )) for
any j ∈ {1, 2, . . . ,k + 1}, since z1z2, z1z3 and z2z3 are all inci-
dent to at least one of r1j and r2j in G. However, this means
that dH(fV(z1)) > k + 3, a contradiction. Therefore, we must
have the other case, that is, H [E(Z1)∪ E(Z2)] ' S6 + kM. How-
ever, since H is connected, if H [E(Z1)∪ E(Z2)] ' S6 + kM, then
H ' S6+ kM, meaning that either Z ′1 = Z

′
3 or Z ′2 = Z

′
3, a contra-

diction once again. �

Hence, H contains three edge-disjoint exposed copies of S4+
kM. Let W = {z1z2, z2z3, z1z3}. Observe that f(z1z2), f(z2z3) and
f(z1z3) are pairwise distinct and pairwise adjacent in H, so that
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the possibilities for the edge-induced subgraph H[f(W)] by the
edges of W in H are: a 3-cycle (H[f(W)] ' C3), a single vertex of
degree 3, say z ′, which is adjacent to three distinct neighbours
(H[f(W)] ' K1,3), or a single vertex of degree 3, say z ′, having
two distinct neighbours.

Claim B. The only possibility for H[f(W)] is a 3-cycle, that is,
H[f(W)] ' C3.
Proof of Claim B. Indeed, in both the other cases there are at
least two pairs of edges, say, the pair {f(z1z2), f(z2z3)} and the
pair {f(z1z2), f(z1z3)}, such that the unique endvertex of the
edges in each pair is the vertex z ′ in H. This means that z1

and z2 are mapped into z ′. Since Z ′1 and Z ′2 are edge-disjoint
in H and the edge f(z1z2) must be incident to all the edges
{f(ri1), . . . , f(r

i
k+1) : i = 1, 2} of Z ′1 and Z ′2 , the vertex z ′, which

belongs to Im(fV), has degree at least 2(k+ 1) + 1, a contradic-
tion, since G is (k+ 3)-regular and 2k+ 3 > k+ 3 for k > 1. �

Moreover, for any j ∈ {1, 2, . . . ,k+ 1}, f(r1j ) must be incident
to f(z1z2) and f(z1z3), f(r2j ) with f(z1z2) and f(z2z3), and, f(r3j )
with f(z2z3) and f(z1z3). Combining Claim A and Claim B with
these last necessary properties we deduce that H is isomorphic
to G.

We are now in a position to prove the main result of this
section.

Theorem 3.22. For each r > 3, there is no connected graph H color-
ing all r-regular multigraphs admitting a perfect matching.

Proof. Suppose such a graph H exists. For each fixed r > 3,
choose G = S12 + (r− 3)M, where M is the perfect matching
in S12 as in Figure 23. Since S12 + (r − 3)M is r-regular and
H ≺ S12 + (r− 3)M, by Proposition 3.21 we have that H must
be S12+(r−3)M. Now, letGr be an r-regular multigraph admit-
ting an (S12 + (r− 3)M)-coloring f. Since r > 3, S12 + (r− 3)M

contains (at least) two disjoint perfect matchings, say M1 and
M2, and consequently, f−1(M1) and f−1(M2) are two disjoint
perfect matchings of Gr, by Lemma 3.8. Hence, in order to find
an r-regular multigraph with a perfect matching and without
an (S12 + (r− 3)M)-coloring, it suffices to exhibit an r-regular
multigraph admitting a perfect matching but without two dis-
joint perfect matchings, for every r > 3. Examples of such multi-
graphs are constructed in [72] and called poorly matchable (see
also [62]). The assertion follows.



3.3 H-colorings in r-regular graphs , for r > 3 61

In the previous theorem, we consider G as an r-regular multi-
graph admitting a perfect matching. Clearly, the result holds in
the larger class of r-regular multigraphs.

Theorem 3.23. For each r > 3, there is no connected graph H color-
ing all r-regular multigraphs.

3.3.2 H-colorings in r-regular simple graphs, for r > 3

In this section our aim is to show that, for every even r > 3,
there is no connected graph H such that H ≺ G for every simple
r-regular graph G. We remark that, as in previous section, H is
not necessarily simple and can be a multigraph.

Before proceeding, let Krt denote the family of r-regular multi-
graphs of order t, whose vertices are pairwise adjacent. Note
that a graph G in Krt admits a t-clique as a spanning (simple)
subgraph of G.

Lemma 3.24. Let H be a connected graph. For every r > 1, if the
complete graph K2r+1 admits an H-coloring, then H ∈ K2rt , where t
is an odd integer and no vertex of H is unused.

Proof. Let f : E(K2r+1)→ E(H) be an H-coloring of K2r+1, and let
fV be the induced map on the vertices of K2r+1. Let v1 and v2 be
two distinct vertices in Im(fV). Note that these two vertices exist
since |Im(fV)| = 1 would imply that K2r+1 is 2r-edge-colorable.
We claim that v1v2 ∈ E(H). Let u1 and u2 be two (distinct) ver-
tices in V(K2r+1) such that fV(ui) = vi, for each i ∈ {1, 2}. Since
u1 is adjacent to u2, f(u1u2) is incident to both v1 and v2, im-
plying that v1v2 ∈ E(H). This proves our claim.

Consequently, there exists an integer t ∈ {2, 3, , . . . , 2r + 1}
such that H contains a complete graph Kt as a subgraph and
whose vertex set is Im(fV) ⊆ V(H). For simplicity, we shall re-
fer to this subgraph as Kt. Next, we claim that t must be odd.
For, suppose not, and assume that t is even. Let M be a match-
ing of H that is also a perfect matching of Kt. Consequently, M
covers all the vertices of Im(fV), since V(Kt) = Im(fV). How-
ever, by Lemma 3.9, f−1(M) is a perfect matching of K2r+1, a
contradiction, since K2r+1 does not admit a perfect matching.
Therefore, t must be odd.

We next claim that H contains a simple spanning subgraph
isomorphic to a t-clique, that is, Im(fV) = V(H). For, suppose
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not. Then, there exists an edge xy ∈ E(H), such that x ∈ Im(fV)

and y 6∈ Im(fV). Let M ′ be a matching of H with |M ′| = t−1
2

such that M ′ covers all the vertices of Im(fV) except x. Let N =

M ′ ∪ {xy}. The set of edges N is a matching of H which covers
all the vertices in Im(fV). However, by Lemma 3.9, this implies
that f−1(N) is a perfect matching of K2r+1, a contradiction once
again. Therefore, H contains a complete graph of odd order as
a simple spanning subgraph.

Let r > 1 and let K ′2r+1 be the complete graph on 2r+ 1 ver-
tices minus an edge. Let J2r be the graph obtained by consider-
ing r copies of K ′2r+1 such that all the vertices of degree 2r− 1
in these copies are adjacent to a new vertex u, resulting in a
2r-regular simple graph. We refer to the vertex u as the central
vertex of J2r, and the r copies of K ′2r+1 are denoted by R1, . . . ,Rr.

Lemma 3.25. Let r > 1 and let H be a graph such that H ≺ J2r.
Then, H 6∈ K2rt , for all possible t.

Proof. Suppose that there exists a graph H ∈ K2rt such that H ≺
J2r, for contradiction. Let f be an H-coloring of J2r and let fV be
the induced map on the vertices of J2r.

Let u1,u2 be two vertices of J2r adjacent to u and belonging
to R1 and R2, respectively. Consider a cycle C of H (possibly of
length 2) which contains the two edges f(uu1) and f(uu2) inci-
dent to fV(u). The preimage f−1(E(C)) is a 2-regular subgraph
of J2r. Indeed, if f is an H-coloring of a graph G and F is a k-
regular subgraph of H containing at least one vertex of Im(fV),
then f−1(E(F)) induces a k-regular subgraph of G. Moreover,
one of the connected components of f−1(E(C)) is a cycle pass-
ing through u and containing the two edges uu1 and uu2, a
contradiction since J2r does not have such a cycle.

By the previous two lemmas, there exist no graph which col-
ors both K2r+1 and J2r, implying our last result.

Theorem 3.26. For every r > 1, there is no connected graph H color-
ing all 2r-regular simple graphs.

The following open problem is suggested in [P2] in order
to have a complete answer to the general question asked in
Section 3.3, that is, whether there exists a graph H such that
for every r-regular graph G, G admits an H-coloring, for each
r > 3. In order to fully answer this question, by Theorem 3.23

and Theorem 3.26, it suffices to consider the following.



3.3 H-colorings in r-regular graphs , for r > 3 63

Problem 3.27. Let r > 1 be odd. Determine whether there exists a
connected graph H coloring all r-regular simple graphs.

The question whether there exists a graph H in some class
that colors any graph G in some other class has been addressed
in the cubic case considering various classes for both H and G,
for example, the class of bridgeless cubic graphs or the class
of cubic graphs having a perfect matching. The same could be
done in the case when G is assumed to be an r-graph. Let us
recall that an r-graph is a connected r-regular graph such that
|∂X| > r for every odd subset X of the vertex set. Hence, in [P2],
we also suggest the following.

Problem 3.28. Let r > 3. Determine whether there exists an r-graph
H coloring all (simple) r-graphs.

To conclude this chapter, we mention that Problem 3.28 has
recently received a negative answer in [58]. To prove this nega-
tive answer, the authors of [58] define, for any given r > 3, Hr to
be an inclusion-wise minimal set of connected r-graphs, such
that for every connected r-graph G there is a graph H ∈ Hr

such that H ≺ G. They also prove, in Corollary 3.8 of [58], that
Hr is unique for each r > 3. After that, they obtain Corollary
3.12, which states the following.

Corollary. Either H3 = {P} or H3 is an infinite set. Moreover, if
r > 4, then Hr is an infinite set.

This corollary is for multigraphs, while the negative answer
is also given in the case of simple r-graphs. This is done with
Corollary 3.20 of [58], which states the following.

Corollary. Let r > 3 and let H ′r be a set of connected r-graphs such
that every connected simple r-graph can be colored by an element of
H ′r. Then

• If the Petersen Coloring Conjecture is false, then H ′3 is an infi-
nite set.

• If r > 4, then H ′r is an infinite set.

The results of [58] mean that an infinite number of r-graphs
is needed to color all the (simple) r-graphs for any fixed r > 3.
Furthermore, if r = 3, they prove that either the Petersen graph
P colors all the 3-graphs (3-graphs coincides with bridgeless
cubic graphs), or an infinite number of 3-graphs is needed to
color all the (simple) 3-graphs. Hence, if the Petersen Coloring
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Conjecture is true, bridgeless cubic graphs would be, also from
this point of view, a very particular and singular class of regular
graphs.



4
d - D I M E N S I O N A L F L O W S

This chapter is based on contributions [P3], [P4] and [P5].
As anticipated in Chapter 1, in this chapter we focus on a

generalization of the circular flow number of a graph, i.e. the
d-dimensional flow number of a graph G. We give some introduc-
tory definitions and a literature background.

Let r > 2 be a real number and d a positive integer, a d-
dimensional nowhere-zero r-flow on a graph G, denoted (r,d)-
NZF on G, is an orientation of G together with an assignment
ϕ : E(G)→ Rd such that, for all e ∈ E(G), the (Euclidean) norm
of ϕ(e) lies in the interval [1, r− 1] and, for every vertex, the
sum of the inflow and outflow is the zero vector in Rd. The
d-dimensional flow number of a bridgeless graph G, denoted by
φd(G), is defined as the infimum of the real numbers r such
that G admits an (r,d)-NZF. Note that, by Seymour’s 6-flow
theorem [77] we have that φd(G) 6 6 for every d. Actually,
φd(G) is a minimum: due to the above upper bound, it suffices
to consider only the set of feasible d-dimensional nowhere-zero
r-flows with r 6 6, which can be represented as a compact sub-
set of Rd·|E(G)|. Moreover, the function that assigns to every fea-
sible flow the maximum norm among its components, that are
elements of Rd, is continuous.

In the above definitions it is not restrictive to assume any
graphG to be connected. So we only consider connected graphs
in the rest of the chapter.

The notion of (r,d)-NZF includes some parameters already
considered in the literature. First of all, the 1-dimensional case,
that is φ1(G), is nothing but the classical circular flow number
of a graph (see [32] and also Section 1.4.4 for the classical defi-
nition). According to our notation, Conjecture 1.13, the Tutte’s
5-flow Conjecture, can be stated as follows.

Conjecture (Tutte’s 5-flow Conjecture). LetG be a bridgeless graph.
Then, φ1(G) 6 5.

An upper bound for φd is also conjectured for d > 3. In-
deed, Jain suggested (see [96]) that every bridgeless graph ad-
mits a nowhere-zero flow with flow values taken on the unitary
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sphere S2, that is the set of unit vectors of R3. Clearly, such a
conjecture can be stated in our terminology as follows.

Conjecture 4.1 (S2-flow Conjecture). Let G be a bridgeless graph.
Then, φd(G) = 2 for every d > 2.

Let us remark that we will use the term cycle in its largest
acception of subgraph with all vertices of even degree, i.e. even
subgraph. Such a use is quite common in this context and per-
mits to simplify the presentation. It is already observed in [85]
that φ7(G) = 2 for every bridgeless graph G. This is a conse-
quence of a covering result by Bermond, Jackson and Jaeger
[6], claiming that every bridgeless graph G has seven cycles
such that every edge of G is contained in exactly four of them.
Moreover, the Berge-Fulkerson conjecture (Conjecture 1.9, see
[28, 78]), if it holds true, implies that every bridgeless cubic
graph has six cycles such that every edge is in exactly four of
them. As noted in [85], this would imply that φ6(G) = 2 for
any bridgeless cubic graph G. In a similar way, if the conjecture
of Celmins [16] and Preissmann [71] on the existence, for every
bridgeless graph, of five cycles covering each edge twice is true
(known as the 5-Cycle Double Cover Conjecture, see also [93]),
then φ5(G) = 2 for any bridgeless graph G.

Now, it is natural to ask what is a general upper bound for
the 2-dimensional case. Indeed, Conjecture 1.13 and Conjecture
4.1 do not address the case d = 2. As far as we know, such
a question was not considered in the literature before than in
[P3], and one of the main goals of the work in [P3] is proposing
a general upper bound for φ2(G). This is done in Section 4.1,
with Corollary 4.4, Theorem 4.5 and Problem 4.17.

Let us note that a 2-dimensional nowhere-zero r-flow can
be viewed as a generalization of a 1-dimensional nowhere-zero
flow where flow values are taken in the complex field C. For
this reason, from now on, we will call a 2-dimensional flow
also a complex flow and we will write φC(G) instead of φ2(G)
to denote the 2-dimensional flow number of a graph G, and we
will call it the complex flow number of G. This notion is already
considered in [85] in relation with Conjecture 4.1. Among other
results, it is proved that φ2(G) = 2 if G is 6-edge-connected, but
no discussion about a general upper bound for φ2 is proposed
by the author. Some other results on 2-dimensional nowhere-
zero r-flows are obtained in [90], where the special case of flow
values taken in the 2-dimensional unit sphere S1 is considered.
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The task of establishing good lower bounds for φC(G) is the
hardest one in the study of this parameter. In Section 4.2, which
presents the results contained in [P4], we make use of geomet-
ric and combinatorial arguments to prove a non-trivial lower
bound for φC(G) in terms of the length of a shortest odd cy-
cle (the odd-girth) of a bridgeless cubic graph G. This result is
a consequence of Theorem 4.8, which exactly determines the
complex flow number for every wheel graph Wn on n+ 1 ver-
tices.

Finally, in Section 4.3 we introduce the work of [P5]. In par-
ticular, motivated by some results of Thomassen [85], we pro-
vide a geometric description of some d-dimensional flows on
a graph G, and we prove that the existence of a suitable cycle
double cover of G is equivalent, for G, to admit such a geomet-
rically constructed (r,d)-NZF. This geometric approach allows
us to provide upper bounds for φd−2(G) and φd−1(G), assum-
ing that G admits an (oriented) d-cycle double cover.

4.1 possible upper bounds for φC(G)

In previous section we mentioned the 5-Cycle Double Cover
Conjecture by Celmins and Preissman. This is one of the many
variations on the Cycle Double Cover Conjecture (see [94] and
[93] for a comprehensive survey). Here we will consider one of
them, which is also one of the strongest formulations, known
as the Oriented 5-Cycle Double Cover Conjecture. In order to intro-
duce it, we need to recall some terminology.

If G is a graph and O is an orientation of the edges of G, we
denote by O(G) the directed graph so obtained and, for every
edge e ∈ E(G), we denote by O(e) its orientation with respect
to O. A subgraph H of O(G) is a directed cycle of O(G) if for
each vertex v of H, the indegree of v equals the outdegree of v.

The collection C = {O1(C1), . . . ,Ok(Ck)} of directed cycles of
a graph G is said to be an oriented cycle double cover of G if every
edge e of G belongs to exactly two cycles Ci and Cj and the
directions of Oi(Ci) and Oj(Cj) are opposite on e.

If we would like to stress the number of cycles in C we will
write that C is an oriented k-cycle double cover of G.

The Oriented 5-Cycle Double Cover Conjecture, which is due
to Archdeacon and Jaeger [2, 46], states the following.
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Conjecture 4.2 (Oriented 5-cycle double cover Conjecture). Each
bridgeless graph G has an oriented 5-cycle double cover.

Now, we show that if Conjecture 4.2 holds true, then we can
deduce a general upper bound for the parameter φC. We shall
obtain such a relation by the following more general result.

Theorem 4.3. Let G be a bridgeless graph and k ∈ {2, 3, 4, 5}. If G
admits an oriented k-cycle double cover, then

• φC(G) = 2, if k 6 3;

• φC(G) 6 1+
√
2, if k = 4;

• φC(G) 6 τ2, if k = 5.

where τ denotes the Golden Ratio 1+
√
5

2
1.

Proof. Let C = {O1(C1), . . . ,Ok(Ck)} be an oriented k-cycle dou-
ble cover of G. We construct a complex flow on G as follows.
Choose an arbitrary orientationO ofG and k elements p1, . . . ,pk
in R2. For every i ∈ {1, . . . ,k}, we add a flow value equal to pi
to all edges e ∈ Ci such that Oi(e) = O(e), while we add −pi
to all edges e ∈ Ci such that Oi(e) 6= O(e).

Observe that this procedure generates a complex flow, where
every edge which belongs to Ci ∩ Cj receives one of the two
vectors ±(pi − pj). In order to obtain an (r, 2)-NZF, we need
the norm of each flow value pi − pj to be at least one. Then,
we choose p1, . . . ,pk pointing at the k vertices of a regular k-
gon of side length 1. If k ∈ {2, 3}, since |pi − pj| = 1 for every
i 6= j, then φC(G) = 2. If k = 4, since |pi − pj| for every i 6= j

is either 1 or
√
2, then φC(G) 6 1+

√
2. Finally, if k = 5, the

diagonals of a regular pentagon are in the golden ratio to its
sides. Hence |pi − pj| is equal to either 1 or τ for every i 6= j,
then φC(G) 6 τ2(= 1+ τ).

Note that our choice of the vectors p1, . . . ,pk in each of the
three cases of the proof of Theorem 4.3 is known to be optimal
in order to minimize the ratio between the maximum and the
minimum length of k points in the Euclidean plane (see [5]).

Corollary 4.4. The Oriented 5-Cycle Double Cover Conjecture (Con-
jecture 4.2) implies φC(G) 6 τ2 for every bridgeless graph G.

1 To our knowledge, the Greek letter τ represented the Golden Ratio for hun-
dreds of years, up to the early 20th century. This ancient notation is used
along the chapter for the sake of a better distinction from the flow number.
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In Section 4.1.1, we will discuss the problem of finding a
graph G such that φC(G) is close to τ2.

The upper bound of τ2 is obtained by assuming true a well-
known conjecture. Now, we complete this section by proving a
general upper bound for φC(G) as a consequence of the proof
of the 6-flow theorem of Seymour.

Theorem 4.5. If G is a bridgeless graph, then φC(G) 6 1+
√
5.

Proof. In the proof of the 6-flow theorem [77, p. 133] Seymour
showed that each bridgeless graph G has an integer 2-flow ϕ2
and an integer 3-flow ϕ3 such that ϕ2(e) 6= 0 or ϕ3(e) 6= 0 for
each edge e ∈ E(G). Let ϕ be a complex flow on O(G), for an ar-
bitrary orientation O, such that ϕ(e) = (ϕ2(e),ϕ3(e)) for each
e ∈ E(O(G)). Since ϕ2 and ϕ3 are 2-flow and 3-flow, respec-
tively, we have

√
ϕ2(e)2 +ϕ3(e)2 6

√
12 + 22 =

√
5. Also, one of

the valuesϕ2(e) andϕ3(e) is nonzero, so
√
ϕ2(e)2 +ϕ3(e)2 > 1.

Thus, ϕ is indeed a (1+
√
5, 2)-NZF of G.

4.1.1 Complex flows on cubic graphs

In the case of nowhere-zero circular flows (i.e. 1-dimensional
flows) it is well known that every bridgeless graph has a
nowhere-zero r-flow if and only if every bridgeless cubic graph
has a nowhere-zero r-flow. Following the same proof, one can
get the following result.

Proposition 4.6. For all positive integers d and real numbers r > 2,
the following statements are equivalent:

• every bridgeless graph has a d-dimensional nowhere-zero r-flow;

• every bridgeless cubic graph has a d-dimensional nowhere-zero
r-flow.

By Proposition 4.6, there is a fixed constant k such that
φC(G) 6 k for all bridgeless graphs G if and only if the same
holds for all bridgeless cubic graphs. Hence, the problem of
studying d-dimensional flows of bridgeless graphs can be re-
stricted to the one of studying d-dimensional flows on cubic
graphs.

Recall that Thomassen [85] proved that a cubic graph is bipar-
tite if and only if it has an S1-flow, that is a complex nowhere-
zero 2-flow. In particular, up to a rotation, one can assume that
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the flow values are the three cube roots of unity, that is the
complex solutions of the equation z3 = 1.

As a further step in studying the complex flow numbers
of cubic graphs we consider those being 3-edge-colorable. Ob-
serve that any 3-edge-colorable cubic graph has an oriented
4-cycle double cover (see for instance [94]), hence the following
proposition follows from Theorem 4.3.

Proposition 4.7. Let G be a 3-edge-colorable cubic graph. Then
φC(G) 6 1+

√
2.

The above inequality is the best possible as one can directly
check that φC(K4) = 1 +

√
2. However, we can obtain it as a

special case (i.e. n = 3) of the following more general result
which gives an exact value for φC(Wn), where Wn is the wheel
graph of order n+ 1.

Since the proof of Theorem 4.8 is quite long and technical,
we devote Section 4.2 to it.

Theorem 4.8. Let Wn be the wheel graph of order n+ 1, for n > 3.
Then

φC(Wn) =


2 if n is even,

1+ 2 sin(π6 · n
n−1) if n ≡ 1, 3 mod 6

1+ 2 sin(π6 · n+1n ) if n ≡ 5 mod 6.

The next lemma is an immediate consequence of Theorem
4.8.

Lemma 4.9. Let G be a cubic graph containing a chordless cycle C
of length k. Then φC(G) > φC(Wk).

Proof. Suppose to the contrary that φC(G) < φC(Wk). Then G
has an (r, 2)-NZF ϕ with r < φC(Wk). Contract all the vertices
ofG that are not in C to a unique vertex v. The obtained graph is
Wk and ϕ induces on Wk an (r ′, 2)-NZF with r ′ 6 r < φC(Wk),
a contradiction.

Lemma 4.9 combined with the values given in Theorem 4.8,
gives the following.

Corollary 4.10. Let G be a cubic graph with odd-girth equal to g.
Then φC(G) > φC(Wg).

Using Corollary 4.10 we prove the following
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Proposition 4.11. Let n be odd and let Pn be the prism graph of
order 2n. Then φC(Pn) = φC(Wn).

Proof. Since Pn has odd-girth n, we have φC(Pn) > φC(Wn).
Moreover, each flow on Wn can be easily extended to a flow

on Pn using the same vectors: for every 4-cycle uu ′v ′v where
uu ′ and vv ′ are spokes of Pn, we set the flow from u to v to
be the same as the flow from v ′ to u ′. Thus we have φC(Pn) =

φC(Wn).

Also, Corollary 4.10, together with Proposition 4.7, implies
the following result.

Proposition 4.12. Let G be a 3-edge-colorable cubic graph with a
triangle. Then φC(G) = 1+

√
2.

Up to now, the unique infinite classes of non-bipartite cubic
graphs for which we are able to determine the exact value of
φC are the ones considered in Proposition 4.11 and Proposition
4.12.

4.1.2 Flow-triangulations

In the rest of the section we provide upper bounds on the
complex flow number of certain cubic graphs. To make our de-
scriptions of complex flows more compact, we show that they
can be equivalently represented in a geometric way. The main
idea of this approach is that, by the Kirchhoff’s law, the three
vectors assigned to three edges incident with the same vertex
correspond to a triangle in the Euclidean plane. Thus we can
represent a complex flow as a suitable collection of triangles.

By a triangle we mean a subset of the Euclidean plane consist-
ing of its three sides and interior points. Let s1 and s2 be sides
of triangles T1 and T2, respectively. We say that s1 and s2 are at-
tachable if we can translate T1 to T ′1 in such a way that the image
of s1 coincides with s2 and T ′1 and T2 have no common internal
points. In other words, attachable sides need to be parallel, of
the same length and they need to have their triangles on mutu-
ally opposite sides. An r-flow triangulation of a bridgeless cubic
graph G is a collection T containing a triangle Tv for each vertex
v of G such that

(i) for each v ∈ V(G), each edge incident to v corresponds to
a unique side of Tv;
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(ii) lengths of sides of all triangles from T lie in the interval
[1, r− 1];

(iii) for each edge uv ∈ E(G), the sides of the triangles Tu and
Tv corresponding to uv are attachable.

Proposition 4.13. Let G be a bridgeless cubic graph. Then G has an
r-flow triangulation if and only if G has an (r, 2)-flow.

Proof. We start with the only if part. Let O be an arbitrary orien-
tation of the edges of G. We construct a complex flow on G as
follows. Consider an oriented edge uv of O(G) and let a and b
be the vectors corresponding to the attachable sides of triangles
Tu and Tv, respectively, which are oriented in such a way that
Tu is on the right side of a and Tv is on the left side of b. Due to
the definition of attachable sides, the vectors a and b have the
same direction, so they are equal. We set to a the flow value of
the edge uv. Note that if we orient uv in the opposite direction,
it receives the opposite vector, thus we do not need any specific
orientation of G.

We prove that this assignment is an (r, 2)-NZF. Consider a
vertex v and orient all three edges incident with v as incoming.
The vectors assigned to these edges form a triangle Tv and since
all of them have Tv on the left side, they sum up to zero.

Now for the if part, assume that G has an (r, 2)-NZF. For each
vertex v of G, let e1, e2 and e3 be the oriented edges of O(G)
incident with v. For each i ∈ {1, 2, 3}, let ai be the flow value of
ei, if v is the tail of ei, and let ai be the opposite of flow value
of ei otherwise. Then, the vectors a1, a2 and a3 sum up to zero.
Moreover, we can arrange them to form an oriented triangle Tv
that is on the left side of each of a1, a2 and a3.

We prove that the triangles Tv for each v ∈ V(G) form an r-
flow triangulation. Properties (i) and (ii) are trivially satisfied.
Let uv be an oriented edge of O(G) with flow value a. Since
u is the tail and v is the head of uv, the triangle Tu lies on the
left side of a and Tv lies on the right. Thus the sides of Tu and
Tv corresponding to a are attachable. Hence Property (iii) also
holds.

For a bridgeless cubic graph G, finding the representation of
a complex flow through a flow triangulation is, in general, only
a reformulation of the original problem. However, in the fol-
lowing examples we present flow triangulations in some “nice”
way. The term nice can be understood in several ways, but per-
haps the most basic one requires that the intersection of every
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two different triangles T1 and T2, if not empty, consists either
of one vertex, or of two coinciding sides s1 and s2 of T1 and T2,
respectively. In the latter case, s1 and s2 correspond to the same
edge of G and the set of all such edges induces a connected
spanning subgraph of G. Examples of such nice flow triangula-
tions of K4 and K3,3 are depicted in Figure 25. In all our figures,
the graph is grey with its vertices placed in their correspond-
ing triangles. Bold sides are of length 1 and dashed ones are
always the sides with maximum length. Nevertheless, we do
not know whether such a “nice” flow triangulation exists for
every complex flow.

Figure 25: A (1+
√
2)-flow triangulation of K4 (left) and K3,3 (right).

4.1.3 Possible upper bounds for the complex flow number of some
Class 2 cubic graphs

We have already seen an upper bound on the complex flow
number of 3-edge-colorable cubic graphs in Proposition 4.7. As
usual, in order to prove a general bound on φC(G) for every
bridgeless cubic graph G, the hard case is when G is not 3-edge-
colorable. Therefore, we are naturally interested in the complex
flow number of the Petersen graph, which is the smallest such
graph. Let us say that determining this value appears to be a
hard problem. Here we propose an upper bound by construct-
ing a suitable flow triangulation.

Proposition 4.14. The complex flow number of the Petersen graph is
at most 1+

√
7/3.

Proof. Throughout this proof, we take all the indices modulo
3. Consider, in the real Euclidean plane, an equilateral triangle
p1p2p3 with side length 1. For i ∈ {1, 2, 3}, let qipi be the reflec-
tion of pi−1pi through pi and let q ′1, q

′
2 and q ′3 be the points
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such that q1q ′3q2q
′
1q3q

′
2 is a regular hexagon. By adding the

segments q ′ipi+1 and q ′ipi+2, for each i ∈ {1, 2, 3}, we obtain 10
triangles as depicted in Figure 26. The solid, dash-dotted and
dashed lines have lengths 1,

√
4/3 and

√
7/3, respectively. It is

easy to check that these triangles form a (1+
√
7/3)-flow trian-

gulation of the Petersen graph.

Figure 26: A (1+
√
7/3)-flow triangulation of the Petersen graph.

Supported by computational results we believe that this is
the exact complex flow number of the Petersen graph. Since we
currently have no tools for proving such high lower bounds on
complex flow numbers, we propose the following conjecture.

Conjecture 4.15. The complex flow number of the Petersen graph is
1+

√
7/3.

As we mentioned in Section 1.4.4, the 1-dimensional flow
number can distinguish Class 1 cubic graphs, which have 1-
dimensional flow number at most 4, from the bridgeless Class
2 ones, having 1-dimensional flow number greater than 4 (see
for instance [86]). However, the complex flow number does
not serve for this purpose. One of the counterexamples is the
Isaacs snark J5 (see Figure 27) for which we show that φC(J5) <

1 +
√
2 = φC(K4). We have found an (r, 2)-NZF of J5 for r =

1+ 1.387893647 with the help of a computer.

Proposition 4.16. φC(J5) 6 2.387893647 < 1+
√
2.
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Figure 27: Isaacs snark J5
Figure 28: A complex flow on

J5

Figure 28 depicts an approximation of the flow triangulation
corresponding to the found flow. We emphasise only the sides
with minimum (bold) and maximum (dashed) length.

The Petersen graph is the worst case for many other prob-
lems in this area. Surprisingly, this seems not to be the case
here. Indeed if we replace every vertex of P with a triangle, de-
noting the resulting graph by P∆, we are not able to extend our
(1+

√
7/3, 2)-NZF on P to a (1+

√
7/3, 2)-NZF on P∆. The best

(r, 2)-NZF flow on P∆ we have up to now is for r ≈ 2.59, also
found by a computer.

We wonder if τ2 ≈ 2.618 is the upper bound on the com-
plex flow number of all bridgeless graphs and also whether
this bound is reached by some graph. Therefore, we propose
the following problems.

Problem 4.17. Determine if φC(G) 6 τ2 for every bridgeless graph
G.

Problem 4.18. Establish the existence (or not) of a bridgeless cubic
graph G with φC(G) = τ

2.

We would also like to note that flow triangulations can be rep-
resented in a topological way. For instance, the (1+

√
7/3)-flow

triangulation of the Petersen graph can be described as a dual
of P embedded on a torus. Similarly, the aforementioned flow
triangulations for K4, K3,3 and J5 can be also obtained from em-
beddings on some orientable surfaces. However, since we need
to measure Euclidean distance, we avoid mentioning other sur-
faces, where the notion of distance is not clear.
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Also, we noted that it is not clear if every complex flow on a
cubic graph can be represented through a nice flow triangu-
lation. We do not know the answer even for bipartite cubic
graphs, which are perhaps the most simple family of cubic
graphs for this problem, since each 2-flow triangulation con-
sists of equilateral triangles with side length 1. Therefore, we
leave it as a further open problem.

4.2 complex flow number of Wn

This section is devoted to prove Theorem 4.8, which gives a
non-trivial lower bound for the complex flow number of the
wheel graphs.

For every integer n > 3, let Wn be the wheel graph with
n + 1 vertices and consider the orientation of its edges as in
Figure 29. More precisely, the n vertices of the external cycle of
Wn are labeled with v0, v1, ..., vn−1 and the central vertex with
u. All edges uvj and vj−1vj in the chosen orientation of Wn are
directed towards vj (here and in what follows indices are taken
modulo n).

Let ϕ be a (λ+ 1, 2)-NZF of Wn. Set

ϕ(uvj) = zj ∈ C, j ∈ {0, ...,n− 1},

ϕ(vjvj+1) = pj ∈ C, j ∈ {0, ...,n− 1}.

In particular, since ϕ is a (λ+ 1, 2)-NZF of Wn, the norm of
each flow value is a real number which lies in the interval [1, λ],
i.e. 1 6 |pj|, |zj| 6 λ holds. Moreover, the relation

zj = pj − pj−1 (1)

holds for every j = 0, ...,n − 1. Relation (1) suggests that the
knowledge of all values pj is sufficient to reconstruct the entire
flow. Hence, we can represent any (λ + 1, 2)-NZF of Wn as a
cyclic sequence (i.e. the first element of the sequence is consid-
ered to succeed the last one) of n points (p0, . . . ,pn−1) in the
complex plane. We often need to refer to the vectors having
ends in two consecutive points of the sequence. In particular,
we denote by pj−1pj the vector in the complex plane having its
tail in the point pj−1 and its head in the point pj. With a slight
abuse of notation, we will sometimes denote the vector pj−1pj
by zj, stressing, when necessary “vector zj”.
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Figure 29: A representation of a complex flow of W5.

On the other hand, an arbitrary cyclic sequence (p0, . . . ,pn−1)
of n points represents a (λ+ 1, 2)-NZF of Wn(see Figure 29) if:

• each point pj belongs to the circular crown between cir-
cumferences centered in the origin and of radius 1 and λ,
denoted by CI and CE respectively;

• the norm of each vector zj lies in the interval [1, λ].

In what follows, by using such a representation, we first ex-
hibit a complex flow of Wn for each odd n and then we prove
its optimality. In what follows we will consider only odd val-
ues of n, since, for even values of n, Wn has a (3, 1)-NZF, and,
therefore, by Proposition 1 in [85], φC(Wn) = 2.

4.2.1 An upper bound for the complex flow number of Wn

Let n be an odd number and set t = bn6 c. We distinguish
three cases according to the congruence of n modulo 6. We fur-
nish a geometric description of each case and then we formally
give the sequences of points representing the flows. Figure 30

represents an example of the described sequences for each pos-
sible odd congruence class modulo 6.

For n ≡ 5 (mod 6), we consider points pj as the vertices of
a regular star polygon { nt+1 } (following the standard Schläfli no-
tation, see [19]) inscribed in CI. The length of each side of the
polygon is equal to 2 sin(π6 · n+1n ). For n ≡ 1 (mod 6), we con-
struct points pj on CI as follows: starting from p0 and moving
in clockwise direction, we have p1 at distance 1 from p0. All
other points are obtained by moving on CI in anticlockwise
direction, each point at distance 2 sin(π6 · n

n−1) from the previ-
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ous one. The distance between pn−1 and p0 results to be also
2 sin(π6 · n

n−1). For n ≡ 3 (mod 6), we construct points pj on
CI except p1 which belongs to CE. Starting from p0 ∈ CI and
moving in clockwise direction, we have p1 ∈ CE at distance 1
from p0. Then, p2 ∈ CI is at distance 1 from p1, again in clock-
wise direction. All other points are obtained following CI in
anticlockwise direction, each at distance 2 sin(π6 · n

n−1) from the
previous one. Once again also the distance between pn−1 and
p0 is 2 sin(π6 · n

n−1).
Hence, the sequences of points result to be the followings.
• if n ≡ 5 (mod 6),

pj = e
ij(π3 ·n+1n ),∀j : 0 6 j 6 n− 1,

• if n ≡ 1 (mod 6),

p0 = e
iπ3 and pj+1 = eij(

π
3 · nn−1), ∀j : 0 6 j 6 n− 2,

• if n ≡ 3 (mod 6),

p0 = e
2i(π6 ·2n−3n−1 ),p1 = 2 sin

(
π

6
· n

n− 1

)
ei(

π
6 ·2n−3n−1 ) and

pj+2 = e
ij(π3 · nn−1),∀j : 0 6 j 6 n− 3.

For each n, we denote by λ∗ the maximum between the dis-
tances of two consecutive points of the corresponding sequence
and the norms of the points pj’s.
Observe that, if n ≡ 1, 3 mod 6, then λ∗ = 2 sin(π6 · n

n−1), while
if n ≡ 5 mod 6, λ∗ = 2 sin(π6 · n+1n ). Hence, for each odd n, we
have constructed a (λ∗ + 1, 2)-NZF of Wn and λ∗ + 1 gives an
upper bound for φC(Wn).

Remark 4.19. For each n > 3, φC(Wn) 6 φC(W3) 6 1+
√
2.

We will make use of this remark along the proof of Theorem
4.8 in order to guarantee a general upper bound for φC(Wn)

which will be sufficiently small for our aims.

4.2.2 A lower bound for the complex flow number of Wn

In this section we prove that, for each odd n, the value of
λ∗ determined by the corresponding sequence described in Sec-
tion 4.2.1, is indeed also a lower bound for φC(Wn).
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Figure 30: Three sequences corresponding to, from left to right, opti-
mal flows of W11, W7 and W9.

In other words, let ϕ be an optimal (λ+ 1, 2)-NZF of Wn, n
odd, then we already proved in Section 4.2.1 that λ 6 λ∗, and
we want to show that λ = λ∗.

From now on we can assume λ 6
√
2 due to Remark 4.19.

Let (p0, . . . ,pn−1) be the associated cyclic sequence of points
pj. As already remarked, we denote the vector pj−1pj by zj
for each j ∈ {0, . . . ,n − 1}, where all indices are taken mod-
ulo n. In particular, we have maxj{|zj|, |pj|} = λ since ϕ is op-
timal. If 0 6= θ ∈ (−π,π) denotes the amplitude of an angle
and θ > 0 (θ < 0), then the positive (negative) rotation is by
definition in anticlockwise (clockwise) direction. Similarly, if
pj−1 = |pj−1|e

iαj−1 and pj = |pj|e
iαj are two consecutive points

in the cyclic sequence then the vector zj is said to be positively
(negatively) oriented, or simply positive (negative), if αj −αj−1
is positive (negative). Note that αj−1 6= αj since λ 6

√
2 (< 2)

(see Remark 4.19).
First of all, let us define some geometric transformations of

the cyclic sequence (p0, . . . ,pn−1) that will be largely used in
what follows. Let θ ∈ R and h,k ∈ {0, . . . ,n− 1}. Define ρh,k(θ)

as the transformation which rotates all points ph,ph+1, . . . ,pk
around the origin by an angle of θ and fixes all the others. Note
that we are considering a cyclic sequence, hence k could be less
than h and ρh,k(θ) 6= ρk,h(θ). Indeed, if h < k, we have

ρh,k(θ)(p0, . . . ,ph, . . . ,pk, . . . ,pn−1) =

= (p0, . . . ,ph−1,pheiθ, . . . ,pkeiθ,pk+1, . . . ,pn−1),

and

ρk,h(θ)(p0, . . . ,ph, . . . ,pk, . . . ,pn−1) =

= (p0e
iθ, . . . ,pheiθ,ph+1, . . . ,pk−1,pkeiθ, . . . ,pn−1eiθ).
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Claim 4.20. Let (p0, . . . ,pn−1) be a cyclic sequence of points repre-
senting a (λ+ 1, 2)-NZF ofWn. Then, for any h 6= k ∈ {0, 1, . . . ,n−

1}, there is an angle θ such that the sequence ρh,k−1(θ)(p0, . . . ,pn−1) =
(p ′0, . . . ,p

′
n−1) satisfies |pj| = |p ′j | for all j and |zj| = |z ′j | for all

j /∈ {h,k}. Moreover, the angle θ can be chosen so that

(a) If zh and zk have the same orientation, |zh| < λ and |zk| > 1,
then λ > |z ′h| > |zh| and 1 < |z ′k| < |zk|.

(b) If zh and zk have opposite orientations and |zh|, |zk| < λ, then
λ > |z ′h| > |zh| and λ > |z ′k| > |zk|.

(c) If zh and zk have opposite orientations and |zh|, |zk| > 1, then
1 < |z ′h| < |zh| and 1 < |z ′k| < |zk|.

For j ∈ {h,k}, if |z ′j | > |zj| (|z ′j | < |zj|), we say that the transformation
lengthens (shortens) zj (by an arbitrary small factor).

Proof. From the definition of ρh,k−1(θ), it follows directly that
|pj| = |p ′j | for all j and |zj| = |z ′j | for all j /∈ {h,k}. For Case
(a) we choose θ positive or negative according to the common
orientation of the vectors zh and zk. In Cases (b) and (c), say
that zh is positive and zk is negative, we choose θ positive or
negative, respectively. In all the cases the absolute value of θ
can be chosen arbitrary small to ensure arbitrary small scale
factor and then 1 < |z ′h|, |z

′
k| < λ.

For our aims, we also need to define σh,k(θ) as the transfor-
mation which rotates the point ph around the point pk by an
angle θ and fixes any other point of the sequence.

σh,k(θ)(p0, . . . ,ph, . . . ,pn−1) =

= (p0, . . . , (ph − pk)eiθ + pk, . . . ,pn−1).

The main idea of the proof is choosing time by time an opti-
mal flow ϕ ofWn satisfying additional minimality assumptions
(explained later in details). We will show that if such a ϕ does
not correspond to one of the three sequences (up to isometries)
described in Section 4.2.1, then we can modify it to obtain a
new sequence which contradicts the minimality assumptions
on ϕ.

In the rest of the proof, we need to distinguish two cases.



4.2 complex flow number of Wn 81

CASE I: each vector zj has norm less than λ.

The first case we consider is when |zj| < λ for every j ∈
{0, 1, ...,n− 1}. In this case, consider the optimal comples flows
of Wn having the minimum number, say m1, of vectors zj with
|zj| = 1. Among them, choose ϕ as one with the minimum num-
ber, say m2, of points pj with |pj| = λ (i.e. pj ∈ CE). Moreover,
without loss of generality, we can assume that ϕ has at least
one of the vectors zj which is positive, otherwise we can simply
consider −ϕ.

First of all, we prove that by our choice of ϕ the relation
|zj| = 1 follows for every index j and that all vectors zj are
positive.

Suppose by contradiction that there exists an index h such
that |zh| > 1. By assumption |zh| < λ. If m1 > 0, then there
exists k such that |zk| = 1. According to Claim 4.20, we can
lenghten zk and shorten or lengthen zh (according to its orien-
tation) constructing a sequence of points having less than m1

vectors of norm 1, a contradiction. Then, we can assumem1 = 0.
Note that since ϕ is optimal, there exists l ∈ {0, 1, ...,n− 1} such
that pl ∈ CE. Construct a new sequence by setting p ′l = (1− ε)pl
and p ′j = pj for all j 6= l. It is possible to choose ε > 0 sufficiently
small such that 1 < |p ′l|, |z

′
l|, |z

′
l+1| < λ, so that the new sequence

still represents a complex flow of Wn. However, the new se-
quence has no vector zj of norm 1 like the original sequence,
but less than m2 points belonging to CE, a contradiction again.
Then, we have that |zj| = 1, for every index j.

Assume there exist two indices h,k such that zh is positive
and zk is negative. Applying Claim 4.20 we can lengthen both
of them to reduce the number of vectors having norm 1, a con-
tradiction with the choice of ϕ.

Then, all vectors zj are positive and with |zj| = 1. Now we
show that, for each odd n, a sequence of points pj with such
properties corresponds to a (λ+ 1, 2)-flow having λ > λ∗. This
leads to a contradiction since ϕ is chosen to be optimal. Indeed,
let αj > 0 be the angle subtended by the vector zj. It holds that∑n−1
j=0 αj = 2aπ for some positive integer a. Moreover, since

λ 6
√
2 < τ (Golden Ratio) the angle αj is at least 2 arcsin( 12λ)

which is the angle obtained with pj−1,pj ∈ CE. Hence, we have

arcsin
(
1

2λ

)
6
a

n
π.
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We look for the minimum possible λ which realizes previous
inequality. It is clearly obtained when the equality holds. More-
over, since λ > 1, arcsin( 12λ) <

π
6 holds, that is a < n

6 . So, λ is
minimum and larger than 1 for a = bn6 c. Hence, if n = 6t+ h,
we have that arcsin( 12λ) =

t
nπ and so λ = 1

2 sin( tnπ)
.

For n > 1, it follows that the relations

λ >
1

2 sin(n−1n · π6 )

and

λ∗ 6 2 sin
(

n

n− 1
· π
6

)
hold. Moreover, direct computations show that the real function

sin
(πx
6

)
sin
( π
6x

)
has maximum equal to 1

4 reached only for x = 1. Then, λ > λ∗

holds for every odd n > 1, a contradiction.

CASE II: there is a vector zj of norm λ.

Now we can assume that for some k ∈ {0, ...,n− 1}, it holds
|zk| = λ.

Without loss of generality assume that the vector zk is posi-
tive. Consider the set of optimal complex flows of Wn having
the minimum number, say m1 > 0, of vectors zj with |zj| = λ.
Among all such optimal flows, we choose ϕ in such a way that
it has the minimum number, say m2, of points pj with |pj| = λ,
that is with the minimum number of points which belong to
CE.

Claim 4.21. |zj|, |pj| ∈ {1, λ} for every j ∈ {0, . . . ,n− 1}. In particu-
lar, |zj| = λ if and only if zj is positive (and then |zj| = 1 if and only
if zj is negative).

Proof. First we prove that if the vector zj is positive then |zj| = λ.
By contradiction suppose there exists h ∈ {0, . . . ,n − 1} such
that |zh| < λ and zh is positive. By Claim 4.20 we can shorten zk
and lengthen zh yielding an optimal flow having less than m1

vectors with norm λ, a contradiction.
In a similar way we prove that if the vector zj is negative then

|zj| = 1. By contradiction assume there exists h ∈ {0, . . . ,n− 1}

such that |zh| > 1 and zh is negative. Following Claim 4.20 we
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shorten zk and zh, obtaining again a contradiction as in the
previous case on the choice of ϕ.

Hence, for every zj we have |zj| = λ if zj is positive, while
|zj| = 1 if zj is negative.

We complete the proof of the claim by showing that there
is no index h such that 1 < |ph| < λ. If this is the case, then
we will construct a new sequence of points p ′j by applying a
suitable transformation of the original sequence which leads to
a contradiction. If zh and zh+1 are both positive, we set p ′h =

(1 − ε)ph and p ′j = pj for all j 6= h, where ε > 0 is chosen
sufficiently small in such a way that 1 < |p ′h−1p

′
h| < λ and 1 <

|p ′hp
′
h+1| < λ. The new sequence corresponds to an optimal flow

with m1 − 2 vectors z ′j with norm λ, a contradiction. If zh and
zh+1 are both negative, we set p ′h = (1+ ε)ph and p ′j = pj for
all j 6= h, where ε > 0 is chosen sufficiently small in such a way
that 1 < |p ′h−1p

′
h| < λ and 1 < |p ′hp

′
h+1| < λ. Then we shorten

z ′k and z ′h as in Claim 4.20 and we obtain an optimal flow with
m1−1 vectors with norm λ, a contradiction. If zh is positive and
zh+1 is negative, then we transform the original sequence by
using σh,h+1(θ), where θ is sufficiently small and it is positive
(resp. negative) if the angle ∠ph−1phph+1 is non-negative (resp.
negative). Vice versa, if zh is negative and zh+1 is positive, then
we transform the original sequence by using σh,h−1(θ), where
θ is sufficiently small and it is negative (resp. positive) if the
angle ∠ph−1phph+1 is non-negative (resp. negative). In all cases,
the resulting sequence of points defines a complex nowhere-
zero flow on Wn with less than m1 vectors having norm λ, a
contradiction. This completes the proof of Claim 4.21.

By Claim 4.21 we have only eight different types of vectors
zj in ϕ. Indeed, zj is completely defined up to rotations once
we have its direction (and then its norm by Claim 4.21) and
the norm of pj−1 and pj, which is in {1, λ}. Then, a vector zj
can be denoted by XY∗(see Figure 31), where X, Y ∈ {I,E} and
∗ ∈ {+,−} are chosen in the following way.

• X = I if |pj−1| = 1 and X = E if |pj−1| = λ;

• Y = I if |pj| = 1 and Y = E if |pj| = λ;

• ∗ = + or ∗ = − if zj is positive or negative, respectively.

Claim 4.22. There exists an index j ∈ {0, . . . ,n− 1} such that |pj| =
1.
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EI+EE+ II+ IE+

EE− EI− II− IE−

λ

1

λ λ λ

1 1 1

1
λ

Figure 31: The eight types of vectors zj in a representation of the cho-
sen optimal flow ϕ of Wn.

Proof. By contradiction, if |pj| = λ for every index j, then all
vectors zj are of type either EE+ or EE−. Moreover, zk is of
type EE+ and at least one of them is of type EE−. Otherwise,
|pj| = λ and |zj| = λ for all j, that is impossible in an optimal
flow. In particular, there must be an index h with zh of type
EE+ and zh+1 of type EE−. The sequence is cyclic so we surely
find the sequence EE+,EE−. Hence we can construct a sequence
of points p ′j which defines a flow with less than m1 vectors of
maximum length λ by applying the transformation σh,h+1(θ),
for a sufficiently small θ > 0.

By Claim 4.22, without loss of generality, we can assume
|p0| = 1 from now on.

Claim 4.23. All positive vectors zj are of type II+.

Proof. First we prove that ϕ has no vector zj of type IE+. By
contradiction, assume zh is of type IE+. There are four possibil-
ities for the vector zh+1, namely EE+, EE−, EI+ and EI−. Since
we have λ 6

√
2 < Φ for every odd n, the mutual position of

the two vectors zh and zh+1 in each case is like the ones repre-
sented in Figure 32. In all these cases, by applying σh,h−1(θ) for
a sufficiently small θ > 0 we obtain a new sequence of points
p ′j which corresponds to an optimal flow with either less than
m1 vectors of norm λ (if zh+1 is positive) or m1 vectors of norm
λ but less than m2 points on CE (if zh+1 is negative), a contra-
diction in both cases.

Moreover, ϕ has no vector of type EE+. Indeed, note that the
angle subtended at the centre by a vector of type EE+ on CE is
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Figure 32: Mutual position of zh and zh+1.

equal to π
3 . Then, it is the same angle subtended at the centre by

a vector of type II+ on CI. If zh is of type EE+ (note that h > 2

since p0 ∈ CI), then we can construct a new sequence of points
(p ′0, ...,p ′n−1) in the following way:

- p ′0 = p0

- |p ′0p
′
1| = 1 and p ′1 ∈ CI

- p ′j−1p
′
j is of the same type as pj−2pj−1 for 2 6 j 6 h

- p ′j−1p
′
j is of the same type as pj−1pj for h < j 6 n− 1.

Since we replaced a vector ph−1ph of type EE+ with a vector
p ′0p

′
1 of type II+ which subtends the same angle, while main-

taining all the other vectors of the same type, the new sequence
of points has less than m1 vectors having norm λ, a contradic-
tion.

Finally, we prove that ϕ has no vectors of type EI+. Indeed,
if zh is of type EI+ with h > 0, then zh−1 cannot be positive
because both vectors of type EE+ and IE+ are already excluded.
Then, it could be either of type IE− or EE−. Since λ 6

√
2 the

mutual position of the points ph−2,ph−1 and ph is like the ones
in Figure 33.

In both these cases, by applying σh−1,h−2(θ) for a sufficiently
small θ < 0, we obtain a new configuration of points p ′j which
corresponds to an optimal flow with less than m1 vectors z ′j
of norm λ, a contradiction. This completes the proof of Claim
4.23.
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Figure 33: Mutual position of the points ph−2,ph−1 and ph.

In what follows we will make use of the measure of some an-
gles depicted in Figure 34. We denote by 2α and 2β the angles
subtended at the centre by a chord of length 1 on CE and of
length λ on CI, respectively. The following relations hold.

α = arcsin
(
1

2λ

)
, β = arcsin

(
λ

2

)
.

Figure 34: The angles subtended at the centre by all different types of
vectors having norm 1 and λ.

Since 1 < λ 6
√
2, it follows

arcsin (

√
2

4
) 6 α <

π

6
,

π

6
< β 6

π

4
.

Moreover, we prove the inequality α+ β > π
3 which will be

used in what follows.

cos(α+β) = cosα cosβ− sinα sinβ =

=

√(
1−

1

4λ2

)(
1−

λ2

4

)
−
1

4
.
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Since α+ β is not larger than 5π
3 , then α+ β > π

3 if and only

if
√(

1− 1
4λ2

)(
1− λ2

4

)
− 1
4 <

1
2 .

This inequality easily leads to 4(λ2 − 1)2 > 0 which is always
satisfied.

Finally, we denote by α ′ = π
2 −α and β ′ = π

2 −β the comple-
ment angles of α and β, respectively.

Claim 4.24. No vector zj is of type EE−.

Proof. By Claim 4.23 and since p0 ∈ CI, to prove this claim it
suffices to show that the two ordered sequences of three con-
secutive vectors of types IE−,EE−,EI− and IE−,EE−,EE− can-
not appear in ϕ.

We first prove that a subsequence of type IE−,EE−,EI− can-
not appear. Assume that the points pj corresponding to the sub-
sequence IE−,EE−,EI− are pj,pj+1,pj+2 and pj+3 as in Figure 35.
Observe that the angle subtended at the centre by pjpj+3 is

β ′+ 2α+β ′ = 2β ′+ 2α = 2
(π
2
−β

)
+ 2α = π− 2(β−α) < π

(2)

where the last inequality holds since β > α for every λ ∈ [1,
√
2].

Figure 35: Configuration of points pj,pj+1,pj+2 and pj+3 corre-
sponding to the subsequence of types IE−,EE−,EI−.

Replace pj+1 and pj+2 by p ′j+1,p
′
j+2 ∈ CI, respectively, in such

a way that pjp ′j+1,p
′
j+1p

′
j+2 and p ′j+2pj+3 are all positive vectors

with |pjp
′
j+1| = |p ′j+1p

′
j+2| = |pj+2p

′
j+3| = ` (see Figure 35). Let us

prove that 1 < ` < λ. Indeed, we have

γ = 2π− (2α+ 2β ′) = π− 2α+ 2β
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Recalling that α+ β > π
3 and β > π

6 , we obtain 2α+ 4β > π,
that is 6β > π − 2α + 2β = γ and so γ

3 < 2β. Hence, ` < λ.
Moreover, since γ > π, and so γ

3 >
π
3 , by (2), we have also that

` > 1. Hence, the new sequence of points corresponds to an
optimal flow with the same number m1 of vectors of norm λ,
but less than m2 points on CE, a contradiction.

In a very similar way we prove that the subsequence of types
IE−, EE−,EE− cannot appear in a representation of ϕ. Again,
assume that the points pj corresponding to the subsequence
IE−,EE−,EE− are pj,pj+1,pj+2 and pj+3.

Figure 36: Configuration of points pj,pj+1,pj+2 and pj+3 corre-
sponding to the subsequence of types IE−,EE−,EE−.

Again we replace the points pj+1 and pj+2 of the sequence
by two new points p ′j+1,p

′
j+2 ∈ CI in such a way that |pjp ′j+1| =

|p ′j+1p
′
j+2| = |p ′j+2pj+3| = `, as shown in Figure 36. We prove that

1 < ` < λ. Denote by γ1 the angle subtended at the centre by
pjp

′
j+2 and by γ2 the angle subtended by p ′j+2pj+3. Then, ` is

such that β ′ + 4α+ γ1 + γ2 = 2π holds.
In order to prove ` < λ, it suffices to show that the sum of the

angles obtained with |pjp
′
j+1| = |p ′j+1p

′
j+2| = |p ′j+2pj+3| = λ, that

is β ′ + 4α+ 4β+α ′, is strictly larger than 2π. Since

β ′ + 4α+ 4β+α ′ =
π

2
−β+ 4α+ 4β+

π

2
−α = π+ 3(α+β),

it follows that β ′+ 4α+ 4β+α ′ > 2π if and only if α+β > π
3 ,

which is already proved to be satisfied.
In order to prove ` > 1, it suffices to show that the sum of the

angles obtained with |pjp
′
j+1| = |p ′j+1p

′
j+2| = |p ′j+2pj+3| = 1, that

is β ′ + 4α+ 2π3 +β
′, is strictly smaller than 2π. Since

β ′ + 4α+ 2
π

3
+β ′ = π− 2β+ 4α+

2

3
π,
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it follows that β ′ + 4α+ 2π3 +β
′ < 2π if and only if 2α−β <

π
6 .

Recalling that α + β > π
3 and α < π

6 , we have 2α − β =

3α− (α+β) < π
2 −

π
3 = π

6 .
Hence, the new sequence of points corresponds to an opti-

mal flow having m1− 1 vectors of norm λ, a contradiction once
again. This completes the proof of Claim 4.24.

Now we are going to rotate some points of the sequence
(p0, ...,pn−1) associated with ϕ to obtain a new sequence de-
noted by (q0, ...,qn−1), in such a way that for every vector zh =

ph−1ph there exists a unique vector wk = qk−1qk such that wk
is obtained by a suitable rotation of the vector zh around the
origin. By definition, the sequence of types of the vectors wj
is a permutation of the sequence of the types of the vectors zj.
Hence, the values of m1 and m2 do not change for this new
sequence.

By previous claims such a sequence can contain only the fol-
lowing four types of vectors: IE−,EI−, II− and II+. Moreover, if
a vector of type IE− appears in the sequence, then it is neces-
sarily followed by a vector of type EI−. We choose (q0, ...,qn−1)
in such a way that p0 ≡ q0 and all pairs IE−,EI−, if present, ap-
pear at the beginning of the sequence. They are followed by all
vectors of type II−, if present, and finally by all vectors of type
II+ (note that at least one positive vector appears by our as-
sumptions). The sequence of types can be described in general
by the following ordered sequence.

(IE−,EI−, ..., IE−,EI−, II−, . . . , II−, II+, ..., II+)

Now we prove that some specific subsequences cannot ap-
pear in the sequence associated to (q0, . . . ,qn−1).

Claim 4.25. The subsequences of consecutive vectors of types

(a) IE−,EI−, IE−

(b) IE−EI−, II−

(c) II−, II−

cannot appear in the ordered sequence of types associated to (q0, ...,qn).

Proof. (a) We argue similarly to what we did in the proof of
Claim 4.24. Assume that the four consecutive points correspond-
ing to the subsequence IE−,EI−, IE− are qj,qj+1,qj+2 and qj+3.
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We obtain a new sequence by replacing the two points qj+1,qj+2
by the points q ′j+1,q

′
j+2 ∈ CI such that |qjq ′j+1| = |q ′j+1q

′
j+2| and

1 < |q ′j+2qj+3| < λ (see Figure 37). Let us show that such a
choice is admissible.

Figure 37: Configuration of points qj,qj+1,qj+2 and qj+3 corre-
sponding to the subsequence of types IE−,EI−, IE−.

Denote by γ and γ ′ the angles subtended at the centre by
qjq

′
j+2 and q ′j+2qj+3, respectively. Let |q ′j+2qj+3| > 1, which is

possible since 3β ′ < π, so that γ ′ > β ′. Hence, γ = 2π− 3β ′ −
γ ′ < 2π− 4β ′ = 4 arcsin(λ2) = 4β.

Since β ′ < π/3, 2π − 4β ′ > 2
3π. Note that, γ ′ = β ′ + ε, for

a certain ε > 0. We choose ε sufficiently small in such a way
that γ = 2π − 3β ′ − γ ′ = 2π − 4β ′ − ε > 2

3π. So |qjq
′
j+1| > 1.

Moreover, γ = 2π − 3β ′ − γ ′ < 2π − 4β ′ = 4β implies that
|qjq

′
j+1| < λ.

The new sequence of points has m1 vectors of norm λ, but
less than m2 points which belongs to CE, a contradiction.

(b) Assume that the four consecutive points corresponding
to the subsequence IE−,EI−, II− are qj,qj+1,qj+2 and qj+3. De-
note by γ the explement angle of the angle subtended at the
centre by qjqj+3. We obtain a new sequence by replacing the
two points qj+1,qj+2 by the points q ′j+1,q

′
j+2 ∈ CI such that

|qjq
′
j+1| = |q ′j+1q

′
j+2| = |q ′j+2qj+3| (see Figure 38). Since β ′ < π

3 ,
we have 2β ′ + π

3 < π, then |qjq
′
j+1| > 1.

Moreover, since λ > 1, γ = 2π− (π3 + 2β
′) = 2

3π+ 2β < 6β.
Hence, |qjq ′j+1| < λ.

The new sequence of points corresponds to an optimal flow
havingm1 vectors of maximum norm λ, but less thanm2 points
qi on CE, a contradiction.

(c) Let wj and wj+1 be the last two vectors of type II− in
the sequence, that is wj+2 is of type II+. We obtain a new se-
quence by replacing the two points qj+1,qj+2 ∈ CI by the points
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Figure 38: Configuration of points qj,qj+1,qj+2 and qj+3 corre-
sponding to the subsequence of types IE−,EI−, II−.

q ′j+1,q
′
j+2 such that q ′j+1 = (1+ ε)qj+1 and q ′j+2 = qj+2e

iθ, where
ε > 0 and θ > 0 are chosen sufficiently small and in such a way
that |q ′j+1q

′
j+2| = 1 and 1 < |q ′j+2qj+3| < λ. The new sequence

of points corresponds to an optimal flow having less than m1

vectors of maximum norm λ, a contradiction. This completes
the proof of Claim 4.25.

By previous claims there exists an optimal flow of Wn such
that the types of its vectors respect one of the following three
sequences.

(i) (IE−,EI−, II+, ..., II+)

(ii) (II−, II+, ..., II+)

(iii) (II+, ..., II+)

For each given n odd, the maximum among all values |zj|

and |pj| is completely determined once we know which of the
three sequences we are considering. The exact values in each
of these cases are summarized in Table 4. We give here an ex-
ample of direct computation of the values in the last column
of the table. The remaining values are computed similarly. In
this particular sequence, every vector zj has the same norm λ,
while all points pj belong to CI. Hence, the angle subtended at
the centre by each zj on CI is exactly 2β = 2 arcsin(λ2). Hence,
for some integer k > 0, we have 2n arcsin λ

2 = 2kπ, that is

λ = 2 sin
(
k

n
π

)
.

We are looking for the minimum possible λ > 1. Then, k is
chosen as the smallest integer such that knπ >

π
6 , that is k = dn6 e.
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Set n = 6t+ h, for h = 1, 3, 5. We obtain λ = 2 sin
(
π(t+1)
6t+h

)
=

2 sin
(
π
6 · 6t+66t+h

)
= 2 sin

(
π
6 ·

n+(6−h)
n

)
.

Finally, comparing for each congruence of n the three pos-
sible values for λ, it turns out that the minimum λ is obtained
with configuration (ii) if n ≡ 1 mod 6, configuration (i) if n ≡ 3
mod 6 and configuration (iii) if n ≡ 5 mod 6. Observe that
such optimal configurations are exactly the ones presented in
Section 4.2.1.

IE−,EI−, II+, ..., II+ II−, II+, ..., II+ II+, ..., II+

n ≡ 1 mod 6 2 sin
(
π
6 · n+2n−1

)
2 sin

(
π
6 ·

n
n−1

)
2 sin

(
π
6 · n+5n

)
n ≡ 3 mod 6 2 sin

(
π
6 ·

n
n−1

)
2 sin

(
π
6 · n+4n−1

)
2 sin

(
π
6 · n+3n

)
n ≡ 5 mod 6 2 sin

(
π
6 · n+4n−1

)
2 sin

(
π
6 · n+2n−1

)
2 sin

(
π
6 ·

n+1
n

)
Table 4: Exact values for the maximum norm in configurations (i), (ii)

and (iii), according to the congruence of n modulo 6. In bold
the value λ∗ for each of the three cases.

Recall that, if n is even, then φC(Wn) = 2. Therefore, Theo-
rem 4.8, which we recall here, follows.

Theorem 4.26. Let Wn be the wheel graph of order n+ 1, for n > 3.
Then,

φC(Wn) =


2 if n is even,

1+ 2 sin(π6 · n
n−1) if n ≡ 1, 3 mod 6,

1+ 2 sin(π6 · n+1n ) if n ≡ 5 mod 6.

4.2.3 A general lower bound for φC

The value φC(Wn), for each odd n, gives a general non-trivial
lower bound for φC(G), where G is a bridgeless cubic graph, in
terms of its odd-girth. This is a straightforward consequence of
the following standard observation. If C is an odd cycle of mini-
mum length in G, then C is chordless. Contract all vertices of G
not belonging to C to a unique vertex, thus obtaining a wheel
graph whose complex flow number cannot be more than the
complex flow number of G. Then, by Theorem 4.8 we deduce
the following general result.
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Theorem 4.27. Let G be a non-bipartite cubic graph and let g be its
odd-girth. Then,

φC(G) >

1+ 2 sin(π6 ·
g
g−1) if g ≡ 1, 3 mod 6,

1+ 2 sin(π6 ·
g+1
g ) if g ≡ 5 mod 6.

Let us remark that lower bounds in Theorem 4.27 are tight
due to the prism graph Pn of order 2n. Indeed, it is easy to
see that each complex φC(Wn)-flow on Wn can be extended to
a complex φC(Wn)-flow on Pn by a symmetry argument (see
Proposition 4.11).

4.3 a geometric description of d-dimensional flows

The aim of this section is to give a geometric description of d-
dimensional nowhere-zero r-flows in finite graphs and to prove
more connections with the (Oriented) Cycle Double Cover Con-
jecture.

For brevity, from now on, an (r,d)-NZF using only vectors
from a set X will be called an X-flow.

Motivated by some results of Thomassen [85], in what fol-
lows we provide a geometric interpretation of (r,d)-NZFs. More
precisely, in [85] the following proposition is proved (see Propo-
sition 1 in [85]).

Proposition 4.28. LetG be a graph. Then (a) and (b) below are equiv-
alent, and they imply (c) where

(a) G has a nowhere zero 3-flow.

(b) G has an R3-flow.

(c) G has an S1-flow.
If G is cubic the three statements are equivalent, and G satisfies (a),

(b), (c) if and only if G is bipartite.

In particular, it is shown that a bridgeless graph G has a (3, 1)-
NZF if and only if G has an R3-flow, i.e. a flow with elements
in R3 = {z ∈ C : z3 = 1}. This is equivalent to having an S1-flow,
when G is cubic. Moreover, it is also shown that a bridgeless
graph G has a 3-cycle double cover if and only if G has a T -
flow, i.e. a flow with elements in T = {(1, 1, 0), (0, 1, 1), (1, 0, 1)
, (1,−1, 0), (0, 1,−1), (1, 0,−1)}. A natural generalization of T to
a suitable set of elements Td in Rd gives the equivalence be-
tween the existence of a Td-flow on G and a d-cycle double
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cover of G. We also consider oriented cycle double covers and
we show that, for every d > 3, a graph G has an oriented d-
cycle double cover if and only if it admits a flow with values
in the set Hd, which is a slight variation of the set Td. We also
give an alternative description of Hd in terms of the line graph
of a crown graph. Finally, using a geometric argument, we give
an upper bound on φd−1(G) and φd−2(G), assuming that G ad-
mits a d-cycle double cover (not necessarily oriented) and an
oriented d-cycle double cover, respectively.

4.3.1 Hd-flows

Let Rk be the set of the k-th roots of unity, that is the solutions
to the complex equation zk = 1. It is straightforward to see that
if a graph admits an R3-flow then it admits an S1-flow. DeVos
[96] suggested that the converse could also be true. Thomassen
[85] showed that this is true for cubic graphs, but does not hold
in general.

Tutte’s 3-flow Conjecture claims that every 4-edge-connected
graph has a (3, 1)-NZF. Together with Thomassen’s result this
implies that every 4-edge-connected graph has an S1-flow. In
our terminology this is equivalent to saying that φC(G) = 2 for
every 4-edge-connected graph G.

In this section, we would like to look at an (r,d)-NZF from a
slightly different point of view. We modify a bit the notation in
order to obtain an easier generalization to higher dimensions.
Instead of considering flow values in R3, we consider flow val-
ues in H = R3 ∪−R3, which is clearly equivalent because of the
possibility of reorienting any edge in the opposite direction if
needed. The points of H are the vertices of a regular hexagon in
the complex plane, and so they are all points of S1. Note that, up
to rigid movements and a normalization, every nowhere-zero
flow having as flow values the six vertices of an arbitrary reg-
ular hexagon centered in the origin of Rd, can be transformed
into an H-flow (and then in an R3-flow).

For every d > 3, we consider the following subsets of Rd:

Σd = {(x1, . . . , xd) ∈ Rd :

d∑
i=1

xi = 0,
d∑
i=1

x2i = 2},

Hd = Σd ∩Zd.
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The set Σd is a sphere of dimension d− 2 embedded in Rd.
Thus we have the following.

Remark 4.29. A graph admits a Σd-flow if and only if it admits an
Sd−2-flow.

Since Hd is the set of points of Σd having integer coordinates,
we can describe Hd as the set of points of Rd having exactly one
coordinate equal to 1, exactly one equal to −1 and all remaining
coordinates equal to 0. For instance, we have

H3 = {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)}

It is easy to check that such six points are the vertices of a regular
hexagon embedded in R3. Then, as already observed, a graph admits
an R3-flow if and only if it admits an H3-flow.

The notation introduced above permits to prove the following more
general equivalence.

Theorem 4.30. A graph G admits an Hd-flow if and only if G admits an
oriented d-cycle double cover.

Proof. Let C = {O1(C1), . . . ,Od(Cd)} be an oriented d-cycle double
cover of G. Choose an arbitrary orientation O for the graph G and
consider e ∈ E(G). Since C is an oriented d-cycle double cover of G
there exist exactly two different indices h,k ∈ {1, 2, ...,d} such that
e ∈ Ch ∩ Ck and Oh(e) = O(e) 6= Ok(e). We assign to the edge e
the d-tuple ϕ(e) having 1 in the entry h, −1 in the entry k and 0 in
all other entries. Note that, for i ∈ {1, . . . ,d}, the i-th component of ϕ
defines a nowhere-zero 2-flow on Ci with respect to O. Hence, ϕ is
an Hd-flow on G with respect to the chosen orientation O.

For the converse, let ϕ be an Hd-flow on G with respect to the
orientation O of G. Construct an oriented d-cycle double cover of G
as follows. For each i ∈ {1, ...,d}, let Ci be the subgraph of G induced
by the edges e ∈ E(G) such that ϕ(e) 6= 0 in the i-th entry. Note that
Ci is a cycle of G. Indeed, since ϕ is an Hd-flow on G, for every vertex
v ∈ V(G) there is an even number, eventually 0, of edges incident to v
with a non-zero value of ϕ in the i-th entry. Construct an orientation
Oi on Ci by assigning Oi(e) = O(e) on every edge e of Ci such
that ϕ(e) = 1, and letting Oi(e) be opposite to O(e) otherwise. By
construction of Oi, for every vertex v ∈ V(Ci), the indegree of v
with respect to Oi is equal to the outdegree of v with respect to Oi,
since ϕ is an Hd-flow on G with respect to the orientation O. Hence,
Oi(Ci) is a directed cycle of G. Moreover, note that, for every edge e ∈
E(G), ϕ(e) has exactly two non-zero entries and that such entries have
opposite values. Therefore, the collection C = {O1(C1) . . . ,Od(Cd)} is
an oriented d-cycle double cover of G.
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The following result is a consequence of Proposition 4.28 and pre-
vious results.

Corollary 4.31. Let G be a graph. The following assertions are equivalent:

1. G has a nowhere-zero 3-flow;

2. G has an R3-flow;

3. G has an H3-flow;

4. G has an oriented 3-cycle double cover.

Hence, in our terminology, Thomassen shows that the existence
of an H3-flow for a graph G implies the existence of a Σ3-flow for
a graph G. Notice that, from our definition of H3, this implication
is straightforward. In [85] it is shown that the converse is not true
unless G is a cubic graph. Indeed, as already remarked, Thomassen
presented examples of graphs admitting a Σ3-flow but without an
H3-flow.

The Petersen graph P is an example of a graph that admits a Σ4-
flow but, since it is not Class 1, without an oriented 4-cycle double
cover, and hence without an H4-flow. Indeed, observe that P admits
a Σ4-flow since it admits an S2-flow (Remark 4.29), which is depicted
in Figure 39. In this figure, the vectors z1, z2, z3, z4, and z5 are unit
vectors. They are arranged to form a pentagon and a star lying in
parallel planes and having their vertices on the unitary sphere.

Figure 39: An S2-flow on the Petersen Graph.

By previous considerations it seems natural to ask whether there
exists a graph G having a Σ5-flow but without an H5-flow. We remark
that such graph might not even exist as, by Theorem 4.30, it would be
a counterexample to the Oriented 5-Cycle Double Cover Conjecture.
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4.3.2 A description of Hd as vertex set of a line graph

Note that H4 can be viewed as the set of vertices of a cuboctahe-
dron (see [19]) embedded in R4. Analogously, H5 is the set of vertices
of a runcinated 5-cell in R5 (see [95] for a definition), and more in gen-
eral polytopes of dimension d− 1 embedded in Rd can be obtained,
for every set Hd, by connecting two elements of Hd with an edge if
and only if their difference is still an element of Hd. For every d > 4,
all these polytopes can be viewed as a sort of generalization of the reg-
ular hexagon: indeed, as it happens in the regular hexagon, all their
edges have the same length and such length is equal to the distance
between the origin and each vertex.

In terms of graphs, we prove that the graph Gd corresponding to
the (d− 1)-dimensional polytope described above is nothing but the
line graph of the crown graph Cr(2d) on 2d vertices. Recall that the
crown graph Cr(2d) can be described as a complete bipartite graph
from which the edges of a perfect matching have been removed.

Proposition 4.32. Consider the graphs Gd and Cr(2d) described above.
Then Gd ∼= L(Cr(2d)).

Proof. By definition of Gd we have V(Gd) = Hd and E(Gd) = {ab |

a,b ∈ Hd, ±(a−b) ∈ Hd}. Denote the vertices of Cr(2d) by u1, ...,ud,
v1, ...vd, where the vertices ui are in an independence class of Cr(2d)
and the vertices vi in the other one. Let E(Cr(2d)) = {uivj | i 6= j} and
use the same notation for the edges of Cr(2d) and the vertices of its
line graph.

Associate to any uivj ∈ V(L(Cr(2d))) the d-tuple with 1 in the i-th
entry, −1 in the j-th entry and 0 in all the other entries. This asso-
ciation gives a bijective map between the vertices of L(Cr(2d)) and
Hd = V(Gd). Observe that a vertex uivj ∈ V(L(Cr(2d))) is adjacent
to any other vertex ulvm such that either i = l or j = m. Moreover,
the edge-set of Gd can be also described as the set of (unordered)
pairs (a,b) such that a,b ∈ Hd and a and b are equal in exactly one
non-zero entry. Hence the bijective map described above induces a
bijection also between E(L(Cr(2d))) and E(Gd).

4.3.3 Upper bounds for φd−1(G) and φd−2(G)

At the beginnning of this chapter, we noted that if a graph G ad-
mits a 5-cycle double cover, then φ5(G) = 2. If we make a stronger
hypothesis on G, that is that G admits an oriented 5-cycle double
cover, then we obtain that φ4(G) = 2. Indeed, by Theorem 4.30, this
is equivalent, for G, to have an H5-flow. Hence, G admits also a Σ5-
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flow, and by Remark 4.29, also an S3-flow. In particular, it holds that
φ4(G) = 2.

Hence the following holds true.

Proposition 4.33. The Oriented 5-Cycle Double Cover Conjecture (Conjec-
ture 4.2) implies the S2-flow Conjecture (Conjecture 4.1) for d > 4.

More in general, arguing as above, it holds that if a graph G has
an oriented d-cycle double cover, it has an Sd−2-flow, implying that
φd−1(G) = 2.

If we assume G to only admit a d-cycle double cover, not necessar-
ily oriented, we obtain the following upper bound on φd−1(G).

Proposition 4.34. For every d > 3, if a graph G has a d-cycle double cover
C, then φd−1(G) 6 1+

√
d/(d− 2).

Proof. We can assume that C = {C1, . . . ,Cd}. We now consider d
points a1, ...,ad ∈ Rd−1. More precisely, for i ∈ {1, . . . ,d − 1}, let
ai ∈ Rd−1 have the value d

√
d−2

√
d−1 in its i-th entry and −

√
d−1

in all the other entries. Let ad ∈ Rd−1 have d− 1 in all its entries. Let
O be an orientation of G and, for each i ∈ {1, . . . ,d}, fix an eulerian
orientation Oi on Ci.

For all i ∈ {1, . . . ,d}, add the flow value ai, resp. −ai, to all edges
e ∈ Ci such that Oi(e) = O(e), resp. Oi(e) 6= O(e).

Note that every edge of G is contained in exactly two members of
C. Then, every edge of G receives a vector with a norm |ai + aj| =

(d− 1)
√
2(d− 2) or |ai − aj| = (d− 1)

√
2d, for 1 6 i 6= j 6 d. After

normalizing, we obtain a (1+
√
d/(d− 2),d− 1)-NZF on G.

Observe that the upper bound of Proposition 4.34 approaches 2 as
d grows. We give a similar result for φd−2.

In [5], the authors claim that very likely the ratio between the maxi-
mum and the minimum distance for a set of d points in Rd−2 is larger
than

√
4/3. That was proved to be false by Seidel in 1969. Example 2.3

and Example 2.4 in [76] are proved to be optimal in order to minimize
such a ratio. By using Seidel’s examples we obtain the following.

Proposition 4.35. For every d > 3, if a graph G admits an oriented d-cycle
double cover C, then

φd−2(G) 6

1+
√

d
d−2 if d even,

1+
√

d2−1
d2−2d−1

if d odd.

.

Proof. If d = 3 the statement follows from Corollary 4.31.
Let d > 4 and let C = {C1, . . . ,Cd}. Set d1 6 d2 such that d1 +

d2 = d− 2 and |d1 − d2| 6 1. Let U1 and U2 be two orthogonal and
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complementary subspaces of Rd−2 passing through the origin, and
having dimensions d1 and d2, respectively. For i = 1, 2, consider a
regular di-dimensional simplex Fi in Ui and centered in the origin.
Choose F1 and F2 having the same side length equal to

√
d− 2 if d

even, and
√
d− 1

d − 2, if d odd.
Denote by P1,P2, ...,Pd the union of the vertices of F1 and F2.
As in the proof of Proposition 4.34, let O be an orientation of G

and, for each i ∈ {1, . . . ,d}, fix an eulerian orientation Oi on Ci. For
all i ∈ {1, . . . ,d}, add the flow value Pi, resp. −Pi, to all edges e ∈ Ci
such that Oi(e) = O(e), resp. Oi(e) 6= O(e).

If d is even, see also Example 2.3 in [76], the distance between two
points Pi and Pj is either

√
d or

√
d− 2. If d is odd, see also Example

2.4 in [76], the distance between two points Pi and Pj is either
√
d− 1

d

or
√
d− 1

d − 2. Thus, in the former case the ratio between maximum

and minimum norm of flow values is
√
d/d− 2 and in the latter case

is
√
(d2 − 1)/(d2 − 2d− 1).

4.4 2-dimensional flows with p-norms

This section is based on a recent collaboration with Prof. Sascha
Kurz, from University of Bayreuth and my supervisor, Prof. Giuseppe
Mazzuoccolo.

The idea underlying this work is to consider 2-dimensional flows
on graphs with respect to norms other than the Euclidean norm.
In particular, the norms we consider are the so-called p-norms. We
briefly recall their definition in a 2-dimensional real vector space. Let
p > 1 be a real number, and let x = (x1, x2) be a 2-dimensional vector.
Then ‖x‖p = p

√
|x1|p + |x2|p is the p-norm of x. Clearly, the 2-norm

coincides with the Euclidean norm. We also consider the so-called in-
finity norm of x, which is ‖x‖∞ = max{|x1|, |x2|} (as widely accepted,
we will denote it as the p-norm with p = ∞). A 2-dimensional r-flow
of a graph G with respect to a p-norm is defined as a (r, 2)-NZF of
G, where the norm of each flow value is the corresponding p-norm
instead of the Euclidean one. We will denote the 2-dimensional flow
number of a graph G with respect to a p-norm as ϕp2 (G).

In this context we manage to prove some non-trivial lower bounds
for ϕp2 (P), for each p, see Proposition 4.36. Moreover in the case of
p = ∞ we are able to give the exact value of ϕ∞

2 (P), see Proposition
4.37.

Proposition 4.36. Let P denote the Petersen graph, and let p > 1 a real

number. Then ϕp2 (P) > 1+
3
2
p

√
1
2 .
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Proof. Assume by contradiction that there exists a 2-dimensional flow
ϕ of P such that ϕ = (ϕ1(e),ϕ2(e)) for each edge e ∈ E(P), with

‖ϕ(e)‖p > 1 and ϕi(e) ∈
(
−32

p

√
1
2 , 32

p

√
1
2

)
for i = 1, 2.

We say an edge e ∈ E(P) to be good with respect to ϕi if |ϕi(e)| ∈[
p

√
1
2 , 32

p

√
1
2

)
, bad otherwise. Observe that an edge e can be good with

respect to both ϕ1 and ϕ2, but it cannot be bad with respect to both
ϕ1 and ϕ2, for otherwise

‖ϕ(e)‖p = p
√
|ϕ1(e)|p + |ϕ2(e)|p <

p

√(
p

√
1

2

)p
+
(
p

√
1

2

)p
= 1.

Denote by Bi the subgraph of P induced by the bad edges with
respect to ϕi and by Gi the one induced by the good edges with re-
spect to ϕi, i = 1, 2. By previous observation at least one between B1
and B2 has at most 7 (less than |E(P)|

2 ) edges, say B1.

Claim 1: Bi is a spanning subgraph of P and ∆(Bi) 6 2, for i = 1, 2.

Proof. Observe that ∆(Gi) 6 2, because the sum of three real numbers

all with absolute value in the interval
[
p

√
1
2 , 32

p

√
1
2

)
cannot give 0 as

a result, making the Kirkoff’s law impossible to be satisfied by ϕ

around a vertex of P. Hence Bi is spanning, for otherwise ∆(Gi) = 3
and ∆(Bi) 6 2, for otherwise ∆(Gj) = 3 when j 6= i.

Claim 2: A path of length 2 cannot be a connected component of
Bi, for i = 1, 2.

Proof. Consider the situation depicted in Figure 40, where the edges
e and f are assumed to be bad with respect to ϕi, and all the other
depicted edges are good with respect to φi. Then, |ϕi(e)|, |ϕi(f)| <

Figure 40: A path of length two with two bad edges
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1
2
p

√
1
2 , since they are the difference of two values both in the interval[

p

√
1
2 , 32

p

√
1
2

)
. Hence the edge d cannot be good with respect to ϕi,

since it is the sum of two values with modulo strictly less than 1
2
p

√
1
2 ,

a contradiction.

Claim 3: E(Bi) cannot contain a perfect matching of P, for i = 1, 2.

Proof. For otherwise, also E(Gj), with j 6= i, would contain a perfect
matchingM of P. Without loss of generality we can assume ϕj(e) > 0
for every edge e of M and fixed j, otherwise we can reorient edges
with negative values. Since every perfect matching of P is an edge cut
of P, we have that the sum of the inflow and the outflow on each of the
two connected components separated by M must be 0. Observe that,
with respect to one of these two components, say C, we have three
possible cases: all the edges of M are directed towards C, exactly
4 edges of M are directed towards C or exactly 3 edges of M are

directed towards C. In the first case, the inflow to C is at least 5 p
√
1
2 ,

and there is no outflow from C, a contradiction. In the second case
the inflow to C is at least 4 p

√
1
2 while the outflow is at most 32

p

√
1
2 ,

a contradiction. In the third case, the inflow is at least 3 p
√
1
2 , while

the outflow is at most 3 · 32 p

√
1
2 , a contradiction once again. Hence we

have the statement.

Figure 41: A (1 + 3
2 , 2)-NZF of P with respect to the ∞-norm, con-

structed by components with the flows f1 and f2. The max-
imum of the ∞-norm of the values of f = (f1, f2) is 3, while
the minimum is 2, so that the ratio is 32 .

By Claim 1, |E(B1)| > 5, and, by Claim 3, we have that |E(B1)| > 5.
Hence, since we have already observed that |E(B1)| 6 7, we have
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either |E(B1)| = 6 or |E(B1)| = 7. If B1 contains cycles, they would be
of length at least 5 (which is the girth of P) and this would prevent
B1 from being spanning, since |E(B1)| 6 7. Hence, B1 is a spanning
forest. Moreover, again by Claim 1, since ∆(B1) 6 2, B1 is a disjoint
union of paths, with no one of them of length 2, by Claim 2. All these
considerations mean that B1 can contain either 3 paths of length 1 and
one path of length 3, or 2 paths of length 1 and 1 path of length 5. But
in these two remaining cases, B1 would contain a perfect matching of
P, a contradiction with Claim 3. This concludes our proof.

Proposition 4.37. Let P be the Petersen graph. Then ϕ∞
2 (P) = 1+

3
2 .

Proof. A (1+ 3
2 , 2)-NZF of Pwith respect to the ∞-norm is constructed

by components f1 and f2 in Figure 41. The proof that this flow is opti-
mal works as the proof of Proposition 4.36. In particular we assume by
contradiction that there exists a 2-dimensional flow ϕ of P such that
ϕ = (ϕ1(e),ϕ2(e)) for each edge e ∈ E(P), with ‖ϕ(e)‖∞ > 1 and
ϕi(e) ∈

(
−32 , 32

)
for i = 1, 2. We define an edge e to be good with re-

spect to ϕi if |ϕi(e)| ∈
[
1, 32) and bad otherwise. After this, the proof

repeats exactly the reasoning of the one of Proposition 4.36.



5
PA L E T T E I N D E X

This chapter is based on contributions [P6] and [P7].
We devote this chapter to the palette index of graphs, which is a

parameter related to colorings of the edges. As it happens for the
other problems considered in this thesis, also the determination of
the palette index is a difficult problem for Class 2 graphs, while it
turns out to be elementary for Class 1 regular graphs. We recall the
definition and some basic properties of the palette index of a graph,
some of which are already mentioned in Section 1.4.5. This is done in
order to make the chapter self-contained. Let c be an edge-coloring
of a graph G. We define the palette of a vertex v ∈ V(G) with respect
to c to be the set Pc(v) = {c(e) : e ∈ E(G) and e is incident to v}
(note that if v is an isolated vertex of G then Pc(v) is the empty set
for each edge-coloring c). The palette index š(G) of a graph G is the
minimum number of distinct palettes, taken over all edge-colorings,
occurring among the vertices of the graph. This parameter was in-
troduced in 2014 [42] and several results have appeared since then,
see [9, 11, 15, 31, 41, 80]. All mentioned contributions mainly con-
sider the computation of the palette index in some special classes of
graphs, such as trees, complete graphs, complete bipartite graphs, 3−
and 4−regular graphs and some others. Furthermore, it turns out that
the palette index can be used to model some problems related to the
self-assembly of DNA structure, see [10].

It is an easy consequence of the definition of palette index that a
graph has palette index equal to 1 if and only if it is a k-regular and
Class 1 graph. Moreover, it is proved in [42] that no regular graph
has palette index equal to 2. The situation is less understood when
we ask for r-regular graphs with a large palette index. The case of
cubic graphs (i.e. r = 3) is completely solved by Theorem 1.14 in [42],
which we recall here.

Theorem. Let G be a connected cubic graph.

• G is 3-edge-colorable if and only if š(G) = 1;

• G is not 3-edge-colorable with a 1-factor if and only if š(G) = 3;

• G is not 3-edge-colorable without a 1-factor if and only if š(G) = 4.

Moreover, it is a trivial observation that š(G) 6 r + 1 for an r-
regular graph G: indeed, every (r + 1)-edge-coloring (such a color-
ing does exist by Vizing’s theorem [89], see Section 1.1) has at most

103
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r+ 1 distinct palettes. Theorem 1.14 shows an infinite family of cubic
graphs with palette index 4, and an example of a 4-regular graph with
palette index 5 is constructed in [11]. The general question about the
existence of an r-regular graph G with the maximum possible palette
index, i.e. š(G) = r+ 1, is open for every r > 4. In [P6], we give a
complete answer to this question for every r odd.

We devote Section 5.1 to the general problem of finding gra-
phs with large palette index. In particular, we present the main con-
tribute of [P6], which is Theorem 5.2, a general result which gives
a sufficient condition for an arbitrary graph G to have š(G) larger
than its minimum degree. In the special case that G is an odd regular
graph, Theorem 5.2 furnishes a very strong restriction for the value
of the palette index of G, as we can see in Corollary 5.3. In Section
5.1.1 we make use of such result to construct, for every positive inte-
ger k, a family of (2k+ 1)-regular graphs with š(G) = 2k+ 2, while
in Section 5.1.2, we move our attention to the non-regular case. As
far as we know, no family of graphs with palette index which grows
faster than ∆ log(∆) was known before our work in [P6], where ∆
denotes the maximum degree of G. In [3], a family of multigraphs
whose palette index is expressed by a quadratic polynomial in ∆ is
presented. Problem 5.1 in [3] asks for the construction of a family of
graphs without multiple edges with the same property. We give a
complete answer to such a problem. Indeed, as a by-product of our
result for odd regular graphs, we show a family of simple graphs
having palette index which grows quadratically in ∆.

In the second part of the chapter, which corresponds to Section 5.2,
in the very same spirit as in Section 5.1, we focus on the problem of
relating the palette index of a graph G to some structural properties
of G. We introduce a description of the set of palettes induced by
an edge-coloring on a graph in terms of an associated hypergraph
H. This description allows to describe the palette index of a graph in
terms of H-colorings, as will be highlighted in Section 5.2. Moreover,
this description will be very practical in proving our main results in
Section 5.2.1, where we present a complete characterization of graphs
having palette index at most 3 in terms of the existence of some graph
decompositions into Class 1 regular subgraphs.

5.1 graphs with large palette index

In this section we prove a sufficient condition for a graph to have
palette index larger than its minimum degree. Before going to the
main result we give some preliminary definitions. Let G be a graph,
we denote by ∆(G) and δ(G) the maximum and minimum degree of
G, respectively. Moreover, for every vertex v of G we denote by dG(v)
the degree of v in G.
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A subgraph K of G is an even subgraph of G if every vertex has even
degree in K. A spanning even subgraph of G is an even subgraph K of
G such that V(K) = V(G).

Let c be an edge-coloring of a graph G with colors in the set C

and generating palettes P1, . . . ,Pt. We consider a map φc : P(C) →
(Zt2,+), associated to c, where P(C) denotes the power set of C and
(Zt2,+) denotes the elementary abelian group of order 2t whose el-
ements are all strings of length t with values 0 and 1, and + de-
notes the addition modulo 2. For every subset A of C we define
φc(A) = (p1, . . . ,pt), where we set

pi =

0 if |Pi ∩A| even,

1 if |Pi ∩A| odd,

for every i ∈ {1, . . . , t}.
In other words, the map φc establishes the parity of the cardinality

of the intersection between A and every palette of c.
For every subset A of C we consider the subgraph GA induced

by all edges with a color in A in the edge-coloring c. The following
remark is straightforward.
Remark 5.1. Let c be an edge-coloring of G and let A be a subset of the
set of colors. The subgraph GA of G is an even subgraph of G if and only if
φc(A) = (0, . . . , 0).

We are now in position to prove our main result.

Theorem 5.2. Let G be a graph such that ∆(G) > 2 and G has no spanning
even subgraph without isolated vertices. Then, š(G) > δ(G).

Proof. First of all, we observe that if δ(G) = 0 the relation š(G) > 0

trivially holds for every graph G. Hence, we can assume δ(G) > 0

from now on. Let us prove that the number of colors in any edge-
coloring of G is larger than δ(G). If G is not regular, this follows
immediately since the number of colors is at least ∆(G) > δ(G). If G
is an r-regular graph with r > 1, then r is odd, otherwise G itself is a
spanning even subgraph without isolated vertices. In this case G has
not a perfect matching M, otherwise the complement of M would be
a spanning even subgraph of minimum degree r− 1, a contradiction.
Then, G cannot admit an r-edge-coloring.

By contradiction we assume that G admits an edge-coloring c with
colors in C which induces t palettes and t 6 δ(G). As already proved,
we have |C| > δ(G). Now we prove the existence of a subset of C

which induces a spanning even subgraph K of G with δ(K) > 2, thus
obtaining a contradiction.

Let A be a largest subset of C such that GA is an even subgraph of
G. Note that such a subset does exist since the empty set induces an
even subgraph of G.
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We only need to prove that δ(GA) > 2. Assume that this is not the
case, then GA has an isolated vertex v. Let Pj be the palette of v in the
edge-coloring c. Since dGA(v) = 0, Pj ∩A = ∅ holds.

Clearly |Pj| > δ(G) holds and we proved that |C| > δ(G). Hence, we
can construct a subset Rj of C by choosing δ(G) arbitrary elements
from Pj and an additional color in C, denoted by α. We have the
following two cases:

1. α /∈ A (i.e. A∩ Rj = ∅);

2. α ∈ A (i.e. A∩ Rj = {α}).

The number of non-empty subsets of Rj is 2δ(G)+1 − 1, while the
possible images of these subsets under the action of φc are at most
2t, that is the order of the elementary abelian group Zt2. Since we
assumed t 6 δ(G), there exist two distinct subsets I1 and I2 of Rj
such that φc(I1) = φc(I2).

Consider the symmetric difference I = I14I2 ⊆ Rj. The following
holds:

φc(I) = φc(I14I2) = φc(I1) +φc(I2) = (0, . . . , 0),

where + denote the addition in the group Zt2.
Finally we obtain a contradiction by proving that the set A4I is a

set of colors larger than A which induces an even subgraph of G.
If A∩Rj = ∅, then A and I are disjoint sets and I is not empty, then

A4I = A∪ I is larger than A.
If A∩ Rj = {α}, then we prove that I contains at least two elements

different from α. Indeed, note that I contains at least one element of
Pj. Otherwise, I = {α} and, if P is a palette that contains α, I1 ∩ P can-
not have the same parity of I2 ∩ P, contradicting φc(I1) = φc(I2).
Therefore, since I contains an even number of elements of Pj by
φc(I) = (0, . . . , 0), we have that I contains at least two elements of
Pj. Moreover, A∩ I ⊆ {α} holds since α is the unique possible element
of A which could belong to I. Then, |A4I| = |A|+ |I|− 2|A ∩ I| > |A|

where the last inequality holds since |I| > 2 whenever A ∩ I = {α}.
Then, A4I is larger than A again. Finally,

φc(A4I) = φc(A) +φc(I) = (0, . . . , 0),

since φc(A) = (0, . . . , 0) by assumption and φc(I) = (0, . . . , 0) as al-
ready proved. Then, A4I induces an even subgraph of G and it is
larger than A, a contradiction again. It follows that GA is a span-
ning even subgraph of G without isolated vertices and the assertion
is proved.
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5.1.1 Regular graphs with palette index as large as possible

In this section we construct families of r-regular graphs having
palette index equal to r+ 1.

First of all, we deduce the following easy consequence of Theorem
5.2 in the case of odd regular graphs.

Corollary 5.3. For every positive integer k, let G be a (2k + 1)-regular
graph with no spanning even subgraph without isolated vertices. Then, š(G) =
2k+ 2.

Proof. As already observed, the palette index of a (2k + 1)-regular
graph cannot be larger than 2k + 2. Then, it suffices to prove that
š(G) > 2k+ 1. The relation δ(G) = ∆(G) = 2k+ 1 > 1 holds and G
has no spanning even subgraph without isolated vertices. Then G has
palette index larger than 2k+ 1 by Theorem 5.2.

Corollary 5.3 gives a sufficient condition for an odd regular graph
to have maximum possible palette index. Theorem 1.14 says that this
sufficient condition is also necessary in the cubic case (i.e. k = 1).
Indeed, when k = 1, the non-existence of a spanning even subgraph
without isolated vertices is equivalent to the non-existence of a perfect
matching in G.

In [P6], we wonder if the same holds for k > 1 and we leave it as
an open problem.

Problem 5.4. Prove (or disprove) that if G is a (2k+ 1)-regular graph such
that š(G) = 2k+ 2, then G has no spanning even subgraph without isolated
vertices.

We complete this section by showing, for every integer k, a family
of (2k + 1)-regular graphs which satisfy the condition of Corollary
5.3, and thus having palette index 2k+ 2.

It suffices to consider a (2k+ 1)-regular graph G with a vertex v
such that every edge incident to v is a bridge of G (see Figure 42,
where the graph depicted has the same structure of the Class 2 regu-
lar graphs constructed in Section 1.1). Clearly, G cannot have a span-
ning even subgraph K with δ(K) at least 2, since K should contain at
least two of the 2k+ 1 bridges incident to v, but an even subgraph
cannot contain any bridge of G.

Then, we can state the following proposition which gives an an-
swer, for odd regular graphs, to an open problem in [11], where Bon-
vicini and Mazzuoccolo wondered about the existence of an r-regular
graph with palette index r+1 for every r > 4. Observe that the graphs
we propose as a solution to the question may be both simple or multi-
graphs, depending only on how it is choosen to complete the graph.
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v

Figure 42: The structure of a 5-regular graph with palette index 6.

Proposition 5.5. For every positive integer k, let G be a (2k+ 1)-regular
graph admitting a vertex v such that every edge incident to v is a bridge of
G. Then, š(G) = 2k+ 2.

The problem of establishing the existence of a 2k-regular graph
with palette index 2k+ 1, for k > 2, instead, remains open.

5.1.2 Simple graphs with palette index growing quadratically with
respect to their maximum degree

In [3], the authors present a family of multigraphs whose palette
index is expressed by a quadratic polynomial in ∆. They leave the
construction of a family of simple graphs with the same property
as an open problem. We use our main result in previous section to
obtain such a family of graphs in a very straightforward way.

For every positive integer i, let Gi be a (2i+ 1)-regular graph with
š(Gi) = 2i+ 2 (see Corollary 5.5). Moreover, for every positive integer
k, let Hk be the disjoint union of G1,G2, . . . ,Gk.

Clearly, ∆(Hk) = ∆(Gk) = 2k+ 1 holds. Moreover, every connected
component of Hk has vertices of degree different from the degree of
the vertices in every other component. Hence, it follows

š(Hk) =

k∑
i=1

š(Gi) =

k∑
i=1

(2i+ 2) = k2 + 3k =
∆2 + 4∆− 5

4
.

It is not hard to construct examples of graphs with the same prop-
erty and also connected. Starting from Hk, we add a new extra vertex
which is declared to be adjacent to exactly one vertex in each con-
nected component of Hk; the choice of the vertex in each component
is unrelevant. The graph so obtained is connected and it has maxi-
mum degree one more than Hk. Moreover, it is an easy check that its
palette index is larger than š(Hk). Then, we have an infinite family of



5.2 graphs with small palette index 109

simple graphs whose palette index grows quadratically with respect
to their maximum degrees.

5.2 graphs with small palette index

Along the section we will make use both of graphs and hyper-
graphs. Since we never mentioned the concept of hypergraph before,
we just recall that an hypergraph is a pair (V ,E), where V is the set of
vertices and E the set of hyperedges. A hyperedge h ∈ E, is a subset
of V of arbitrary cardinality. According to this definition, a graph is
nothing but a hypergraph having all edges of cardinality one or two.
Every time we refer to a hypergraph, we mean that it may admit both
parallel hyperedges (i.e. hyperedges on the same subset of vertices)
and loops (i.e. hyperedges of cardinality one), whereas we consider
only graphs without loops, i.e. multigraphs. For other notation not
explicitely defined here, we refer to [8].

Recall that a decomposition of a graph G is a family {Hi}i∈I of sub-
graphs of G such that E(Hi) 6= ∅ for every i ∈ I, ⋃i∈I E(Hi) = E(G)

and E(Hi)∩ E(Hj) = ∅ for every i 6= j ∈ I.
We denote by C = {1, 2, ...,k} the set of colors and by Pc = {P1,P2, ...,

Pt} the set of distinct palettes that an edge-coloring c induces among
the vertices of G. Observe that the empty palette belongs to the set
Pc if and only if G has some isolated vertices. For each color i ∈ C

we define Ei = {e ∈ E(G) | c(e) = i}, and for each palette Pj ∈ Pc we
define Vj = {v ∈ V(G) | Pc(v) = Pj}. Finally, if ∅ 6= X ⊆ C, we denote
by G[X] the subgraph of G induced by all the edges e ∈ E(G) such
that c(e) ∈ X. Then the following remark is straightforward.

Remark 5.6. Let ∅ 6= X ⊆ C. The following statements are equivalent:

• G[X] is an |X|-regular Class 1 subgraph of G

• for all v ∈ V(G[X]), X ⊆ Pc(v).
The following definition will be largely used in what follows.

Definition 5.7. A k-edge-coloring c of G is š-minimal if its associated set
of palettes Pc has cardinalty š and there is no k ′-edge-coloring c ′ of G with
an associated set of palettes such that |Pc ′ | = |Pc| and k ′ < k.

In other words, an edge-coloring of a graph G is š-minimal if it has
the minimum number of colors among all edge-colorings minimizing
the number of palettes. Such a parameter was firstly considered in
[3]. Moreover, it is remarked in [42] that an š-minimal edge-coloring
could need a number of colors larger than the chromatic index of the
graph.

As mentioned, it will be practical in what follows to associate a
hypergraph to an edge-coloring of a graph G. Hence, let c be a k-
edge-coloring of a graph G. We define HcG as the hypergraph having
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Pc as set of vertices and k hyperedges h1,h2, ...,hk, where hi = {P ∈
Pc | i ∈ P} (see at the top of Figure 43 for an example). Moreover,
when (almost) all hyperedges of HcG have size 1 or 2, we will depict
them as loops and edges of a multigraph, for the sake of clarity (see
at the bottom of Figure 43).

P1

P3P4

P5 P2

P2P2P1

Figure 43: Edge-colorings and their associated hypergraphs

Observe that if c is an š-minimal edge-coloring of G, and hα,hβ ∈
E(HcG), then there must exist a vertex v ∈ V(HcG) such that both hα
and hβ are incident with v. For otherwise, if hα and hβ are indepen-
dent hyperedges in HcG, there does not exist a palette P ∈ Pc with
{α,β} ⊆ P. Hence, the subgraph of G induced by {e ∈ E(G) | c(e) ∈
{α,β}} is 1-regular. Therefore, it is possible to recolor the edges that
receive color β in c with α, thus constructing a new edge-coloring
of G with the minimum number of palettes š and less than k colors,
contradicting the š-minimality of c. Hence we have the following

Remark 5.8. If c is an š-minimal edge-coloring of G, then any two hyper-
edges hi,hj ∈ E(HcG) are incident with some common vertex.

We conclude this section by showing an interesting relation be-
tween the hypergraph HcG and the concept of H-coloring of a graph
G (see also Chapter 3 and Chapter 1).

Observe that there is no obstruction to define ∂H(v) as the set of all
hyperedges incident with the vertex v of a hypergraph H. Then, we
can also assume H to be a hypergraph in the definition of H-coloring.
Although we are not aware of any paper where this more general
formulation is considered, it naturally works in the same way.

In our context, it is straightforward that the map f : E(G)→ E(HcG),
such that f(e) = hc(e), is an HcG-coloring of G. Then, an alternative
description of the palette index of a graph directly follows.
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Proposition 5.9. The palette index š(G) of a graph G is equal to the order
of a smallest hypergraph H such that G admits an H-coloring.

5.2.1 Graphs with palette index at most 3

In this section we provide a complete characterization of
graphs having palette index at most 3. First of all, in Theorem 5.10,
we characterize graphs having palette index equal to 2 and then, in
Theorem 5.11, we characterize graphs with palette index at most 3.
Both characterizations are given with respect to the existence of a
suitable decomposition of the graph G in Class 1 regular subgraphs.
Note that the number of such subgraphs depends on the graph G
itself and, in particular, it is not uniquely determined by its palette
index. In what follows we consider families of graphs with given
palette index. Therefore, we need to consider decompositions in "at
most” a certain number of subgraphsHi’s, where by at most we mean
that not all Hi’s always appear in the decomposition of a certain G
in the considered family. In order to improve the readability of the
following proofs, we always describe each subgraph Hi, but we omit
to specify every time in what instances such an Hi is actually present
in the decomposition.

Theorem 5.10. Let G be a graph, and let ∆ and δ denote its maximum and
minimum degree respectively. Then, š(G) = 2 if and only if ∆ > δ and G
can be decomposed into at most two Class 1 regular subgraphs H0 and H1
such that

- H0 is spanning and δ-regular;

- H1 is (∆− δ)-regular.

Proof. Let G be a graph with palette index 2. We show that G has the
required decomposition.

Since regular graphs with palette index 2 do not exists (see [42]),
G is not regular and therefore ∆ > δ. Let c : E(G) → {1, 2, ...,k} be
an š-minimal edge-coloring of G, with Pc = {P1,P2}. Its associated
hypergraph HcG is of order two and may admit only two types of
hyperedges: hyperedges both incident with P1 and P2, and loops in-
cident with a unique palette. Since c is š-minimal, by Remark 5.8, all
loops must be incident with the same palette, say P1. If there is no
hyperedge in HcG having cardinality two, then P2 is the empty palette,
meaning that G has some isolated vertices, that is δ = 0. Since C 6= ∅,
we define H1 = G[C]. Since V(G[C]) = V1 and C = P1, by Remark
5.6, H1 is a ∆-regular Class 1 subgraph of G. Clearly E(H1) = E(G)

so that {H1} is a decomposition of G as required in the statement.
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If HcG has hyperedges h1, . . . ,ht, t > 0, of cardinality two with ver-
tices P1 and P2, without loss of generality we denote by ht+1, . . . ,hk
the remaining loops on P1. Observe that k > t, for otherwise, we
would have that P1 = P2, so that š(G) = 1 and |V(HcG)| = 1 since c
is š-minimal. The hypergraph HcG is depicted in Figure 44. Note that
P2 = {1, 2, ..., t} ⊂ P1 = {1, 2, ...,k}.

P2P1

h1

hk ht
ht+1

Figure 44: The hypergraph HcG associated to a š-minimal edge-
coloring of a graph with š(G)=2.

Hence V(G[P2]) = V1 ∪ V2 = V(G) and for all v ∈ V(G), P2 ⊂ Pc(v).
Set H0 = G[P2]. By Remark 5.6, the subgraph H0 is a spanning t-
regular Class 1 subgraph of G. Moreover, t = δ. Let X = C \ P2 =

{t+ 1, ...,k} and set H1 = G[X]. It follows V(H1) = V1, and, for every
v ∈ V(G)∩ V1, X ⊆ P1. By Remark 5.6, H1 is a (k− t)-regular Class 1

subgraph of G. Moreover, k = ∆ and then k− t = ∆− δ holds. Since
C = P2 ∪ X, E(H0) ∪ E(H1) = E(G) follows. Moreover P2 ∩ X = ∅, so
that {H0,H1} is a decomposition of G as required in the statement.

Conversely, assume to have a decomposition of G into at most two
subgraphs H0 and H1 as in the statement. Since G is not regular, then
š(G) > 2. It remains to prove that š(G) 6 2. To this aim, observe
that, if δ > 0, H0 is a δ-regular Class 1 subgraph and then it admits
a δ-edge-coloring c0 with colors {1, 2, ..., δ}. For the same reason, H1
is (∆− δ)-regular and admits a (∆− δ)-edge-coloring c1 with colors
{δ+ 1, ...,∆}. Define the edge-coloring c : E(G)→ {1, 2, ...,∆} as

c(e) =

c0(e) if e ∈ E(H0),
c1(e) if e ∈ E(H1).

For every vertex v ∈ V(G), ∂G(v) = ∂H0(v) ∪ ∂H1(v). Hence, either
Pc(v) = {1, 2, ..., δ} or Pc(v) = {1, 2, ...., δ, δ+ 1, ...,∆}, i.e. š(G) 6 2.

Next result gives a complete characterisation of graphs having palette
index at most 3.

Theorem 5.11. Let G be a graph. Then š(G) 6 3 if and only if there
exists a decomposition of G in at most four Class 1 regular subgraphs
H0,H1,H2,H3 with the following properties:

• H0 is spanning

• there exists a partition of V(G) in at most three subsets A1,A2,
A3 such that V(H1) = A2 ∪ A3, V(H2) = A1 ∪ A3 and either
V(H3) = A3 or V(H3) = A1 ∪A2.
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Proof. Assume that š(G) 6 3 and let c be an š-minimal coloring of G.
If š = 1, G is Class 1 and regular. If E(G) = ∅, each vertex is

associated with the empty palette. Let E(G) 6= ∅, then we set H0 = G,
A1 = V(G). Hence {H0} is the required decomposition of G.

If š = 2, then G is non regular with palettes P1 and P2. By Theorem
5.10, G admits a decomposition into at most two subgraphs H0 and
H1. Let A1 = A3 = ∅ and A2 = V1. Then, {H0,H1} is the required
decomposition.

If š = 3, let P = {P1,P2,P3}. Up to the existence of some colors
which belongs to all the three palettes, the only possibilities for the
associated hypergraph HcG are the four depicted in Figure 45.

P2P3

P1

P2

P1

P2P3 P2P3

P1

P3

P1

Figure 45: The four possibilities for the associated hypergraph HcG
when š = 3 (up to relabelling palettes).

We set Ai = Vi, for all i = 1, 2, 3. Since c is š-minimal, for every
i 6= j 6= k ∈ {1, 2, 3} the set of colors lying in (Pi ∩ Pj) \ Pk and the set
of colors lying in Pk \ (Pi ∪Pj) cannot be both non-empty. In addition
to this, among the three sets Pk \ (Pi ∪ Pj), i 6= j 6= k, at most one
can be non-empty. If P1 ∩ P2 ∩ P3 6= ∅, set H0 = G[P1 ∩ P2 ∩ P3]. Since
P1 ∩ P2 ∩ P3 ⊆ Pc(v) for all v ∈ V(G), H0 is regular Class 1 and
spanning, by Remark 5.6.

We must now distinguish two cases:

• Pk \ (Pi ∪ Pj) = ∅, for all i 6= j 6= k ∈ {1, 2, 3}

In this case, if (Pi ∩ Pj) \ Pk 6= ∅, set Hk = G[(Pi ∩ Pj) \ Pk], for all i 6=
j 6= k ∈ {1, 2, 3}. Note that the non-empty sets (Pi ∩ Pj) \ Pk, together
with P1 ∩ P2 ∩ P3, form a partition of C, so that {H0,H1,H2,H3} is a
decomposition of G. Observe also that V(Hk) = Ai ∪Aj and for all
v ∈ Ai ∪Aj, either Pc(v) = Pi or Pc(v) = Pj. This implies that (Pi ∩
Pj) \ Pk ⊆ Pc(v), so that each Hk is Class 1 and regular by Remark
5.6. Hence {H0,H1,H2,H3} is the required decomposition of G.
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• Pk \ (Pi ∪ Pj) 6= ∅ for some i 6= j 6= k
Without loss of generality, since at most one among the three sets Pk \
(Pi ∪ Pj) can be non-empty, suppose that P3 \ (P1 ∩ P2) 6= ∅. Then we
set: H1 = G[(P2 ∩ P3) \ P1] if (P2 ∩ P3) \ P1 6= ∅, H2 = G[(P1 ∩ P3) \ P2]
if (P1 ∩ P3) \ P2 6= ∅ and H3 = G[P3 \ (P1 ∪ P2)].

Since {(P3 \ (P1 ∪ P2), (P1 ∩ P3) \ P2, (P2 ∩ P3) \ P1,P1 ∩ P2 ∩ P3)} is
a partition of C, we conclude that {H0,H1,H2,H3} is a decomposition
of G. Observe also that V(H1) = A2 ∪ A3, V(H2) = A1 ∪ A3 and
V(H3) = A3, and that, by Remark 5.6, every Hi, i = 1, 2, 3 is regular
and Class 1. Hence {H0,H1,H2,H3} is the required decomposition of
G.

Vice versa, let {H0,H1,H2,H3} a decomposition of G as in the state-
ment. Let ci be a minimal edge-coloring of Hi, for each i = 0, 1, 2, 3.
We define an edge-coloring c of G as follows. Since for every e ∈ E(G)
there is a unique i ∈ {0, 1, 2, 3} such that e ∈ E(Hi), let c(e) = ci(e).
It suffices to show that c defines at most three distinct palettes on
the graph G. By hypothesis A1,A2,A3 is a partition of V(G), then for
all u, v ∈ Ai, we have that u and v belong to exactly the same set of
subgraphs Hi, implying that Pc(u) = Pc(v). Thus c induces at most
three palettes.

Recall that a graph has palette index 1 if and only if it is regular
and Class 1. Then Theorem 5.11 in combination with Theorem 5.10

implicitly permits to describe graphs with palette index exactly equal
to three. In particular, a compact description is possible in the regular
case.

Corollary 5.12. Let G be a k-regular graph. Then š(G) = 3 if and only if G
is Class 2 and it can be decomposed in three Class 1 k−r2 -regular subgraphs,
for 0 6 r < k, and, if r > 0, a Class 1 r-regular spanning subgraph.

Proof. Since G is regular, š(G) = 1 if and only if G is a Class 1 graph.
Moreover, again, if since G is regular, š(G) 6= 2 (see [42]). Assume
š(G) = 3. Then, G is a Class 2 graph. By Theorem 5.11, G can be
decomposed in at most four Class 1 regular subgraphs H0,H1,H2
and H3, where H0, if r > 0, is a spanning Class 1 r-regular subgraph
of G. Let A1,A2 and A3 be a partition of V(G) as in the statement
of Theorem 5.11. The case V(H3) = A3 cannot occur, otherwise every
vertex in A3 belongs to all four subgraphs Hi’s, while all vertices in
A1 and A2 do not. A contradiction by regularity of G and Hi’s. Then,
V(H3) = A1 ∪A2 holds. Denote by di the common degree of every
vertex in Hi, for i = 1, 2, 3. It follows that for every vertex v ∈ Ai,

k = dG(v) = r+
∑
j6=i

dj.

Hence the following relation holds for each i = 1, 2, 3,

k− r =
∑
j6=i

dj.
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Figure 46: A decomposition of K7 in three Class 1 cubic graphs.

It follows that H1,H2 and H3 are all k−r2 -regular graphs.
Conversely, the graphs in the statement give a decomposition which

satisfy the conditions in the statement of Theorem 5.11. Then, š(G) 6
3. Since G is regular and Class 2, the relation š(G) < 3 does not hold
and the assertion follows.

Note that the spanning subgraph H0 could not appear in the de-
composition described in Corollary 5.12 (or if you prefer it can be
considered as an empty subgraph). This happens, for instance, in Fig-
ure 46 where we present a decomposition of the complete graph K7
in two copies of K4 and a copy of K3,3.

Figure 47: A decomposition of a 4-regular graph in 3 Class 1 2-regular
graphs

One could be tempted to think that H0 can always be chosen as
the largest Class 1 regular subgraph of G in order to obtain a decom-
position such as the one described in Corollary 5.12. We conclude
the section by showing that this is not the case. In other words, the
choice of H0 as the largest Class 1 spanning regular subgraph of G
could leave a subgraph of G which does not admit a decomposition
in three Class 1 regular subgraphs, while the graph G itself could
admit such a decomposition.

We consider the 4-regular graph depicted in Figure 47. As already
shown in [11], such graph has a decomposition in three Class 1 2-
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regular subgraphs and then it has palette index equal to 3. On the
other hand, even if it admits a perfect matching, it does not admit
two disjoint perfect matchings. Then, the complement of any perfect
matching is a cubic graph without a perfect matching, that is by The-
orem 1.14 a cubic graph with palette index equal to 4. It follows that
such a cubic graph cannot be decomposed in three Class 1 regular
subgraphs as required.



6
F I N A L R E M A R K S A N D
F U RT H E R R E S E A R C H

This final part of the dissertation is devoted to recall the main results
presented in the previous chapters, in order to highlight them under
the perspective of the general spirit of the thesis. We also recall the
main possible open problems arising from our work.

As we saw, in this thesis we consider problems that appear to be
hard to solve for Class 2 graphs.

In Chapter 2 our main results are Theorem 2.10 and Theorem 2.14

which give some structural necessary properties of a possible mini-
mum counterexample to the Cycle Double Cover Conjecture and the
Berge-Fulkerson Conjecture, respectively. We recall that such coun-
terexamples, if they exist, are snarks, that are particular Class 2 cubic
graphs. The technique used in Chapter 2 aims to prove that such pos-
sible minimum counterexamples have high cyclic-edge-connectivity,
namely 5 and 6 for possible counterexamples to the Cycle Double
Cover Conjecture and to the Berge-Fulkerson Conjecture, respectively.
However, this technique seems to give no further information on the
structure of such possible counterexamples, at least not in a straight-
forward way. Indeed, it is conjectured (see [48]) that snarks have
cyclic-edge-connectivity at most 6, and hence, further progress using
this technique would reasonably mean a big step towards a complete
proof of such conjectures.

In Chapter 3 we focus on the Petersen Coloring Conjecture, for
which, again, Class 2 cubic graphs are the only open case. In Corol-
lary 3.13 we strengthen a result of V. Mkrtchyan, Corollary 3.5, by
proving that the Petersen graph is, in a specific sense, the only pos-
sible graph that could color every bridgeless cubic graph. Our result
has been further strengthened in [58], where the authors prove that
either the Petersen graph colors all bridgeless cubic graphs or an in-
finite number of graphs is needed to color all the bridgeless cubic
graphs. We considered also H-colorings of r-regular graphs, and we
proved that the Petersen Coloring Conjecture does not admit a gener-
alization in r-regular graphs, for r > 3 (see Table 3). As mentioned in
Section 3.3.2, further research on this topic could be carried on by try-
ing to answer Problem 3.27, while Problem 3.28 has been completely
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answered in [58].

In Chapter 4 we consider 2-dimensional flows on graphs and a
parameter related to them, the complex flow number of a graph G,
namely ϕC(G). In particular, as the Tutte’s 5-flow Conjecture does for
the 1-dimensional case, we propose some possible upper bounds for
ϕC(G) when G is a bridgeless graph. If G is a cubic Class 1 graph, we
prove that ϕC(G) 6 1+

√
2 and that ϕC(K4) = 1+

√
2, so that in the

case of Class 1 cubic graphs, our upper bound is tight. The same does
not hold for the proposed upper bound for general cubic graphs, that
is 1+ τ, where τ denotes the Golden Ratio. The problem to establish
whether this upper bound is tight appears to be challenging, and
without surprise, regards Class 2 cubic graphs.

We also focus on determining lower bounds for ϕC(G), which
seems to be a very hard task even for very small graphs like the
Petersen graph. In Theorem 4.27 we determine a non-trivial lower
bound for ϕC(G) when G is a cubic graph, in terms of its odd girth.
In collaboration with Prof. S. Kurz, from University of Bayreuth, we
tried to develop further research on this topic by considering complex
flows with respect to different norms instead of the Euclidean norm.
In this context we manage to prove non-trivial lower bounds for the
2-dimensional flow number of the Petersen graph with respect to all
the p-norms. However, this approach is still widely inexplored and
further research can be carried out on it.

Finally, in Chapter 5 we focus on the palette index of graphs, which
is an index related to edge-colorings. As we saw, determining the
palette index for Class 1 regular graphs is a trivial task, while for
Class 2 ones there are very few general results. The main result of
our work is Theorem 5.2, which gives a sufficient condition for a
general graph to have palette index larger than its minimum degree.
When considering regular graphs, this condition is sufficient, for a
graph, to have the maximum admissible value of the palette index,
while for a cubic graph, this condition is also necessary. The main
open question we propose in Problem 5.4 is whether this sufficient
condition is also necessary, for an r-regular graph, r > 3, to have the
maximum admissible value of the palette index.
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number of palettes in edge colorings", Graphs Combin. 30 (2014),
619-626.

[43] A. Huck, "Reducible configurations for the cycle double cover
conjecture", Discrete Appl. Math. 99 (2000), 71-90.

[44] R. Isaacs, "Infinite Families of Nontrivial Trivalent Graphs Which
Are Not Tait Colorable.", Am. Math. Mon. 82 (1975), 221-239

[45] F. Jaeger, "Flows and generalized coloring theorems in graphs",
J. Combin. Theory Ser. B 26 (1979), 205–216.



References 122

[46] F. Jaeger, "Nowhere-zero flow problems", in: L.W. Beineke, R.J.
Wilson (Eds.), Selected Topics in Graph Theory 3, Academic Press,
New York (1988), 71–95.

[47] F. Jaeger, "On five-edge-colorings of cubic graphs and nowhere-
zero flow problems", Ars Comb. 20-B (1985), 229–244.

[48] F. Jaeger, T. Swart, Conjecture 1 in: "Combinatorics 79" Problem
Session, Ann. Discrete Math. 9 (1980), 305.
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