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AbstratIn the framework of the eletromagneti approahes based on learning-by-example(LBE) tehniques, this thesis fouses on the development of a strategy for the so-lution of omplex problems by means of support vetor mahine (SVM). Theproposed instane-based lassi�ation method ompared to more traditional opti-mization tehniques solves the arising quadrati optimization problem with on-straints in a simple and reliable way leveraging on the Statistial Learning Theorywhih permits the design of optimal lassi�ers with a solid theoretial framework.A set of input/output relations representing the training dataset permits to avoidthe a-priori knowledge about the system. By exploiting the generalization apabil-ities, the robustness against noise and the real-time performane, this tehniquehas been proven to be suitable for more than one real-world appliation. Theinvestigated problems are addressed by integrating the measured eletromagneti�eld with a suitably de�ned lassi�er that is aimed at de�ning a real-time reon-strution of the observed domain. For eah appliation �eld a set of numerialresults have been reported in order to assess the e�etiveness and �exibility of theproposed approah. The real-time apabilities as well as the feasibility when deal-ing with real data have been also veri�ed by means of an experimental setup forthe passive traking of non-ooperative targets moving throughout the investigatedarea.KeywordsLearning by example (LBE), support vetor mahine (SVM), buried objet de-tetion, breast aner imaging, diretion of arrival (DOA) estimation, passiveloalization and traking.
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Struture of the Thesis
The thesis is strutured in hapters aording to the organization detailed inthe following.The �rst hapter deals with an introdution to the thesis, fousing on themain motivations and on the subjet of this work as well as a presentation of thestate-of-the-art tehniques dealing with the solution of eletromagneti problemsby means of learning-by-example strategies.Chapter 2 presents the theoretial bakground of the SVM-based lassi�er,fousing on the de�nition of the deision funtion as well as on the evaluation ofthe a-postertiori probability.In Chapter 3 the proposed method is integrated with an iterative multi-salingapproah for the detetion of three-dimensional buried objet. The �exibility ande�etiveness of suh an approah are pointed out in the numerial validation forboth single and multiple objets.The ustomization of the approah for the early breast aner imaging prob-lem is desribed and assessed in Chapter 4 as an alternative tehnique lookingfor real-time proessing. Preliminar results are presented in ase of noiseless andnoisy data.Chapter 5 deals with the presentation of the diretion of arrival estimationproblem. The SVM-based approah has been used to estimate the DOA of eaheletromagneti wave impinging on a planar antenna array.
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LIST OF FIGURESThe passive detetion and traking of non-ooperative moving targets is pre-sented in Chapter 6. The presented results show the e�etiveness and the real-time apabilities of the proposed approah when dealing with real data aquiredin time-varying senarios.Conlusions and further developments are presented in Chapter 7.
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Chapter 1Introdution and State-of-the-ArtIn this hapter, a brief overview on the tehniques presented in the state-of-the-art and regarding the solution of omplex eletromagneti problems by means oflearning-by-example methodologies is presented. Aordingly, the motivation ofthe thesis is pointed out.

1



The learning methodology has been inspired by theory of statistial learningleading up to solutions with nie mathematial properties and exellent perfor-mane. Mahine learning has largely been applied to a variety of atual problemsbut less attention has been devoted in the �eld of eletromagnetis. When losedform solutions do not exist, learning by example approahes represent an alter-native way to solve the problem at hand. By training an SVM [1℄ the solutionan be online predited. To this end, when the appliation requires real-timeperformane, the use of a mathematial tool that an be trained o�-line andthen easily implemented in embedded devies is suggested. These properties andalso other harateristis make SVM good andidate to solve optimization prob-lems in eletromagneti areas, suh as inverse sattering problems. Due to theirinherent nonlinear nature and ill-posedness, the solution to inverse problems isvery omplex. State of the art algorithms reast the original problem into anoptimization one, whih is suessively solved by means of iterative minimizationtehniques [2, 3℄. Unfortunately, suh proedures often make the reonstrutionproess unsuitable for real-time appliations. Great attention has been devotedto alternative methodology based on neural networks (NNs), both multilayerpereptron (MLP) [4℄ and radial basis funtion (RBF) [5℄ approahes have beenproposed. However, even if they show low omputational omplexity, NN-basedapproahes su�er from typial training dependent problems like over�tting re-sulting in an inability to orretly estimate the output in presene of input datawhih do not belong to the original training set. On the ontrary, SVMs allowthe ontrol of the approximating funtion and its generalization auray. Morein detail, the arising optimization problem is aimed at �nding the best tradeo�between the learning apabilities from training data and the model omplexity.Sine the model omplexity has a straightforward onsequene on the general-ization auray [6℄, this leads to the determination of models that outperformstandard NNs. In [37℄, a SVM-based tehnique has been adopted for the lo-alization of a two-dimensional ylindrial geometry with irular ross-setion.The loalization problem has been reast in a regression one where the unknowns(i.e., the position as well as the geometri and dieletri harateristis of thetarget) are diretly evaluated from the data (i.e., the values of the sattered�eld) by approximating the data-unknowns relation through an o�-line data �t-ting proess (training phase). This approah turns out to be e�etive for thedetetion of few objet sine some di�ulties our when dealing with a largenumber of unknowns. In order to overome this drawbak, Massa et al. [38℄proposed a lassi�ation approah, instead of a regression one, that moves fromthe detetion of a single objet to the de�nition of an a-posteriori probability ofpresene of objets in a two-dimensional senario. In order to de�ne the risk-map, during the test phase, the domain under investigation will be partitionedin a two-dimensional lattie in order to lassify a �nite number of ells. Thepredition model tests the unknown input data and returns the estimation ofthe ell states, that an be empty (i.e., if any satterer belongs to the ell) or2



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ARToupied. Unlike standard approahes that only lassify the input pattern, theproposed output de�nes the a posteriori probability that the objet belongs toa partiular region of the domain. In this sense, the omputational time savingprovided by this methodology justi�es some limitations like the estimation of theobjets presene or absene instead of the omplex dieletri properties. Start-ing from this theoretial bakground, the proposed approah is aimed at solvingomplex problems starting from the �eld of three-dimensional inverse satteringproblems, the real-time diretion �nding of signals impinging on a planar arrayof eletromagneti sensors, up to the passive loalization and traking of tar-gets moving throughout an area monitored by a wireless sensor network (WSN)arhiteture.
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Chapter 2SVM-based MethodologyThis hapter presents the theoretial bakground of the proposed probabilistiapproah for the de�nition of the risk map of objet presene and position inthe investigated domain. Starting from the measurement of an eletromagnetiquantity related to the onsidered appliation, the probability of ourrene oftargets is determined through a suitably de�ned lassi�er based on a SupportVetor Mahine (SVM). The proposed SVM-based lassi�ation approah is for-mulated as a two-step proedure
• Step 1: determining a deision funtion Φ̂ that orretly lassi�es an inputpattern (ΓE , m) (not-neessarily belonging to the training set);
• Step 2: mapping the deision funtion Φ̂ {(ΓE , m)} into an a-posterioriprobability Pr {χ = 1 |ΓE

}.The details of the proedure are mathematially formulated in the followingsetions.
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2.1. DEFINITION OF THE DECISION FUNCTION2.1 De�nition of the Deision FuntionAt this step, the status χm of eah ell of the lattie has to be determined. Math-ematially, suh a problem formulates in the de�nition of a suitable disriminantfuntion Φ̂ separating the two lasses, whih are labeled as χ = +1 and χ = −1.Sine these lasses are non-linearly separable, the de�nition of a non-linear (interms of the original data ΓE) disriminant funtion is usually required as wellas the solution of an optimization problem where multiple optima (also loaloptima) are present. As a matter of fat, suh a solution is implemented whenArti�ial Neural Networks (ANN) are onsidered (see [84℄ and the referenesited therein).Unlike ANN, SVM de�nes a linear deision funtion orresponding to a hyper-plane that maximizes the separating margin between the lasses and it requiresthe solution of an optimization problem where only one minimum there exists.More in detail, the linear data-�tting is not arried out in the original inputspae ℜ{ΓE}, but in a higher dimensional spae ℵ{ϕ (ΓE)
} (alled feature spae)where the original examples are mapped through a non-linear operator(1)1, ϕ (•).The nonlinear SVM lassi�er so obtained is de�ned as

Φ̂
(
ϕ (ΓE , m)

)
= w · ϕ (ΓE, m) + b m = 1, ...,M (2.1)where w and b are the parameters of Φ̂ to be determined during the trainingphase. The hyperplane so-de�ned auses the largest separation between thedeision funtion values for the �margin� training examples from the two lasses.Mathematially, suh a hyperplane an be found by minimizing the followingost funtion

Ω (w) =
1

2
‖w‖2 (2.2)subjet to the separability onstraints

w · ϕ
(
Γ
(n)
E , m

)
+ b ≥ +1 for χ

(n)
m = +1 m = 1, ...,M

w · ϕ
(
Γ
(n)
E , m

)
+ b ≤ −1 for χ

(n)
m = −1 n = 1, ..., N

(2.3)In this sense, SVM an be onsidered as a kind of regularized network, as indi-ated in [8℄.However, sine the training data in the feature spae are generally non-ompletelyseparable by a hyperplane, slak variables (denoted by ξ(n)(m)) are introdued torelax the separability onstraints in (2.3) as follows
w · ϕ

(
Γ
(n)
E , m

)
+ b ≥ 1− ξ

(n)
(m)+ for χ

(n)
m = 1 m = 1, ...,M

w · ϕ
(
Γ
(n)
E , m

)
+ b ≤ ξ

(n)
(m)− − 1 for χ

(n)
m = −1 n = 1, ..., N

(2.4)1(1)Beause of the formulation of the problem at hand, it is easy to verify [Eq. (2.9)℄ thatatually one does not need to know the ϕ (•) funtion, but only its dot produt in the featurespae aording to the so-alled �kernel trik � [1℄.6



CHAPTER 2. SVM-BASED METHODOLOGYSuh a proedure is justi�ed by the Cover's theorem, a key point in the SVMmethodology as indiated in [1℄ (p. 200).Thus, the ost funtion in (2.2) turns out to be
Ω (w) =

‖w‖2

2
+

C
∑M

m=1

{
N−

(m) +N+
(m)

}
M∑

m=1





N+
(m)∑

n=1

ξ
(n)
(m)+ +

N−

(m)∑

n=1

ξ
(n)
(m)−





(2.5)where N+
(m) and N−

(m) indiate the number of training patterns for whih χ(n)
m =

+1 and χ
(n)
m = −1, respetively. The user-de�ned hyperparameter C ontrolsthe trade-o� between the empirial risk (i.e., the training errors) and the modelomplexity [the �rst term in (2.6)℄ to avoid the over�tting. In that ase, thedeision boundary too preisely orresponds to the training data. Thereby, themethod is unable to deal with data outside the training set [1℄ (Ch. 5 and Ch.7).Moreover, to inlude a-priori knowledge about lass distributions [9℄, two weight-ing onstants an be de�ned λ+ = C∑M

m=1 N
+
(m)

and λ− = C∑M
m=1 N

−

(m)

[102℄, and Eq.(2.5) modi�es as follows
Ω (w) =

‖w‖2

2
+ λ+

M∑

m=1

N+
(m)∑

n=1

ξ
(n)
(m)+ + λ−

M∑

m=1

N−

(m)∑

n=1

ξ
(n)
(m)− (2.6)In order to minimize (2.6), it an be observed that a neessary ondition is that

w is a linear ombination of the mapped vetors ϕ(
Γ
(n)
E , m

)

w =
M∑

m=1

N∑

n=1

{
α(n)
m χ(n)

m ϕ
(
Γ
(n)
E , m

)} (2.7)where α(n)
m ≥ 0, n = 1, ..., N , m = 1, ...,M are Lagrange multipliers to be de-termined. Moreover, from the Karush-Khun-Tuker onditions at the optimality[11℄, b turns out to be expressed as follows

b =

∑M
m=1

∑Nsv

n=1

{
χ
(n)
m −

∑M
q=1

∑N
p=1

{
α
(p)
m ϕ

(
Γ
(n)
E , m

)
· ϕ

(
Γ
(p)
E , q

)}}

Nsv

(2.8)
Nsv being the number of patterns (Γ(n)

E , m
) for whih α(n)

m 6= 0 (alled supportvetors). Sine support vetors lie on the hyperplane for whih Eq. (2.4) issatis�ed with equality, they are taken into aount for the lassi�ation whilethe others are negleted. Suh an event re�ets the �sparsity� property of theSVM lassi�er allowing the use of few input patterns.7



2.2. MAPPING OF THE DECISION FUNCTION INTO THEA-POSTERIORI PROBABILITYSubstituting (2.7) and (2.8) in (2.1) yields
Φ̂
(
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(2.9)where Θ(
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(i)
E , Γ

(j)
E , p, m

)
= ϕ

(
Γ
(i)
E , p

)
·ϕ

(
Γ
(j)
E , m

) is a suitable kernel funtion[12℄. Then, the deision funtion is ompletely determined when the Lagrangemultipliers are omputed. Towards this end, the onstrained optimization prob-lem formulated in (2.6) and (2.4) is reformulated in a more pratial dual form.The solution of the dual problem, whih is equivalent to the solution of the primaloptimization problem (2.2)-(2.3), turns out to be
maxα {ΩDual (α)} =

maxα
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}(2.10)subjet to∑N
n=1

∑M
m=1 α

(n)
m χ

(n)
m = 0, α(n)

m ∈ [0, λ−] if χ(n)
m = −1 and α(n)

m ∈ [0, λ+]otherwise.Finally, sine ΩDual (α) is a onvex and quadrati funtion of the unknown param-eters α(n)
m , it is solved numerially by means of a standard quadrati programmingtehnique (e.g., the Platt's SMO algorithm for lassi�ation [13℄(2)2). More indetail, the SMO algorithm breaks the large optimization problem at hand in aseries of smaller ones haraterized by only two variables and solved throughan e�etive updating formula [13℄, thus induing non-negligible omputationalsavings.2.2 Mapping of the Deision Funtion into the A-Posteriori ProbabilityConerning standard lassi�ation, the SVM lassi�er labels an input patternaording to the following rule [14℄

χm = sign
{
Φ̂
(
ϕ (ΓE , m)

)}
m = 1, ...,M (2.11)Unlike standard approahes, the proposed method is aimed at de�ning an a-posteriori probability. Consequently, some modi�ations to the standard SVM-based lassi�ation approah are needed. Towards this aim, a set of e�ientsolutions has been proposed (see, for instane, [12℄,[15℄-[17℄) either based on2(2)An optimal implementation of the SMO algorithm is the �LibSVM � tool available athttp://www.kernel-mahines.org. 8



CHAPTER 2. SVM-BASED METHODOLOGYa diret training of the SVM with a logisti link funtion and a regularizedmaximum likelihood sore or based on a-posterior �tting probability proess.The �rst lass of approahes usually leads to non-sparse kernel mahines andrequires a signi�ant modi�ation of the SVM struture. In this paper, the a-posteriori probability �tting method [17℄ is adopted sine the use of a paramet-ri model allows a diret �tting of the a-posteriori probability Pr {χ = 1 |ΓE

}.More in detail, suh a model approximates the a-posteriori probability througha sigmoid funtion
Pr {χm = 1 |(ΓE, m)} =

1

1 + exp
{
γΦ̂

(
ϕ (ΓE , m)

)
+ δ

} m = 1, ...,M(2.12)where γ and δ are unknown parameters to be determined.To estimate the optimal values for the parameters of the sigmoid funtion,a �tting proess is performed. A subset of the input patterns of the train-ing set is hosen {(ΓE , m, χm; m = 1, ...,M)(s) ; s = 1, ..., S}, where Φ̂
(s)
m =

Φ̂
(
ϕ
(
Γ
(s)
E , m

)). Then, the following ost funtion is de�ned
Υ {γ, δ} =
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1+exp
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1−χ
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2

)
log

[
exp

(
γΦ̂

(s)
m +δ

)

1+exp
(
γΦ̂

(s)
m +δ

)

]}(2.13)and suessively minimized to de�ne γ and δ aording to the numerial pro-edure proposed in [18℄(3)3 to solve the problems (i.e., the use of a kind ofLevenberg-Marquardt method for unonstrained optimization) of the implemen-tation of Platt's probabilisti outputs method pointed out in [17℄.Summarizing, the SVM optimization problem needs three suessive steps: (I )determining the hyper-parameters array (model seletion), that is C and all theparameters that de�ne the kernel funtion (e.g., the Gaussian width σ2 whenGaussian kernels are used), by onsidering the �training dataset�; (II ) determin-ing the funtional parameters α and b starting from the �training dataset� andsolving the dual problem (2.10); (III ) determining the a-posteriori �tting param-eters γ and δ starting from a subset of the �training dataset� (validation phase);(4) testing the SVM on a di�erent dataset (test phase).
3(3)Available at http://www.sie.ntu.edu.tw/~jlin/libsvmtools/.9



2.2. MAPPING OF THE DECISION FUNCTION INTO THEA-POSTERIORI PROBABILITY
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Chapter 3Three-dimensional Buried ObjetDetetionIn this hapter, a multi-resolution approah for the detetion of three-dimensionalburied objets is proposed. The geometrial features as size and position of sin-gle and multiple satterers are estimated starting from the eletromagneti �elddata. The methodology is based on a support vetor mahine lassi�er inte-grated with a iterative proedure that inreases the detetion resolution only inthose regions where target objets are supposed to be loated. The de�nition ofa multi-resolution probability map of objets presene that gives a simple andomputationally e�etive estimation of the subsurfae environment is provided.The real-time detetion apabilities as well as the urrent limitations of the ap-proah, onerned with both single and multiple objets, are veri�ed by showingseleted numerial results.
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3.1. INTRODUCTION3.1 IntrodutionThe retrival of information from underground by means of noninvasive tehniquesis of huge interest in many areas of siene and engineering suh as geology, hy-drology and environmental engineering. A variety of methods, both two- andthree-dimensional, have been provided to reonstrut geometrial and eletrifeatures of buried objets from measures of sattered �eld data olleted withdi�erent kind of sensors suh as the most widely used magnetometers, eletro-magneti indution (EMI) or ground penetrating radar (GPR) [19℄-[26℄. Depend-ing on the appliations, the reeived signal an be studied both in time domainor frequeny domain in order to pro�tably distinguish the objet signatures frompotential false detetions [27℄,[28℄. Whihever the methodology, the ommongoal an be brought bak in orretly loalize and haraterize single or multi-ple targets in a fast and e�etive way. However, standard inversion algorithmsthat utilize numerial tehniques for theoretial forward models, are auratebut more hallenging too [21℄,[29℄. Usually, these tehniques fall in the lassof pixel-based inverse methods that estimate the unknown physial propertiesof the medium over a dense disretization of the domain requiring the solutionof large sale and ill-posed problems. Alternatively, geometri inverse methodsrequire lower omputational omplexity providing only geometrial informationssuh as position, shape and size of the targets [20, 25℄. However, they still rely onaurate numerial or analytial models that tend to be time onsuming. In theframework of omputationally e�ient approahes, mahine learning provides anumber of omputational algorithms for data analysis designed to diretly tunethemselves in response to a set of available data and to be easily implementedon hardware arhitetures [30℄. In the sienti� literature, several solutions tosubsurfae problems have been proposed by applying learning-by-example teh-niques as online proessing tools, for example to haraterize geologi faies [31℄or lassify buried enexploded ordnane [32℄-[35℄.In [59℄-[38℄, proedures based on support vetor mahine (SVM) [6, 1℄ that out-perform methods based on neural networks (NNs) [both multilayer pereptron(MLP) and radial basis funtion (RBF)℄ have been shown. The subsurfae dete-tion problem has been suessfully reast both as a regression and a lassi�ationproblem in order to identify single and multiple satterers. As pointed out in[38℄, the regression-based approahes are suitable in dealing with a limited num-ber of unknowns sine SVMs have been developed to solve one-output learningproblems. On the other hand, the lassi�ation approah deals also with omplexon�gurations of multiple satterers in two-dimensional senarios.In this work, an innovative multi-resolution proedure for real-time detetionof three-dimensional buried objets is presented. The problem of objet detetionis solved by means of a suitable SVM-based lassi�er integrated with a multi stepproess [80℄ in order to inrease the resolution of the reostrutions and also tofurther derease the omputational time of the SVM test phase. More spei�ally,12



CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTION
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Figure 3.1: Three-dimensional geometry.a more preise detetion is obtained by means of an iterative syntheti zoomingperformed on those spatial regions where the objets are supposed to be loatedaording to the results obtained at the previous step. At the end of the onlineiterative proedure, a multi-resolutionmap with an high-order detetion aurayis obtained. It has to be notied that the SVM is trained only one starting froma �nite set of labeled feature vetors representing the training samples. Eahsample onnets the available a-priori information about the objet positionswith the orresponding measured data. One the learning proess is ompleted,the test data related to objets loated in unknown positions are iterativelylassi�ed aording to the o�ine generated deision funtion and the proposedmulti-resolution proedure.The remaining of the hapter is organized as follows. The mathematial for-mulation of the proposed proedure is desribed in detail Setion 3.2. Setion 3.3deals with an exhaustive numerial validation aimed at assessing the e�etivenessof the proposed tehnique. Some �nal remarks are drawn in Setion 3.4.3.2 Mathematial FormulationLet us onsider a typial three-dimensional subsurfae senario as shown inFig. 3.1 The homogeneous lossy soil is haraterized by known relative diele-tri permittivity εΩr and by a ondutivity σΩ. The investigation domain Ω =
{0 ≤ x ≤ XΩ, 0 ≤ y ≤ YΩ, 0 ≤ z ≤ ZΩ} lies in the subsurfae region and has sizeonstrained by the overall dimension of the planar array and by a maximum depth
ZΩ. A x-direted dipole loated in (xs, ys, zs), with xs = XΩ/2 and ys = YΩ/2,13



3.2. MATHEMATICAL FORMULATIONats as eletromagneti soure illuminating the senario, while a planar array of
R isotropi probes gather the data at given positions (xr, yr, zr) , r = 1, ..., R.Let Evoid (x, y, z) be the �eld olleted in a referene on�guration, i.e. withoutobjets, and Efull (x, y, z) be the �eld measured in the perturbed senario. Thislatter on�guration is haraterized by the presene of N sattering regions Θnbelonging to Ω with arbitrary shapes, permittivity ε(n)r and ondutivity σ(n),
n = 1, ..., N . The relationship between Efull and Evoid an be mathematiallyexpressed by the sattering equation, i.e.
Efull (xr, yr, zr) = Evoid (xr, yr, zr) +

+k2
∫
Ω
E (x, y, z) ·G (xr, yr, zr)Υ

{
(x, y, z) |Θn,

(
ε
(n)
r , σ(n)

)}
dxdydz

(3.1)where E (x, y, z) is the eletri �eld inside Ω for the perturbed senario, G isthe Green's funtion of the inhomogeneous medium [100℄, and Υ is the dieletripro�le de�ned as
Υ (x, y, z) =

{
ε
(n)
r − εΩr (x, y, z)− j σ

(n)−σΩ(x,y,z)
2πfǫ0

, if (x, y, z) ∈ Θn; n = 1, ..., N

0, otherwise. (3.2)Starting from the knowledge of the following di�erential quantity
Γ (xr, yr, zr) =

∣∣Efull (xr, yr, zr) · x̂
∣∣− |Evoid (xr, yr, zr) · x̂|

|Evoid (xr, yr, zr) · x̂|
; r = 1, ..., R (3.3)representing the normalized �eld ontribution sattered by Θn, n = 1, ..., N inthe r−th measurement point, r = 1, ..., R along the x̂ diretion, the detetionproblem an be reast as the de�nition of a probability map of objets preseneinside Ω. Toward this end, let us partition the investigation domain into a three-dimensional lattie of C ubi ells whose enter oordinates are (xc, yc, zc) , c =

1, ..., C and to whih a probability value of objet presene hc = Pr {χc = +1|Γ}an be assoiated, where χc = ±1 is the binary ell state, that is �oupied� (i.e.,
χc = +1) if (xc, yc, zc) ∈ Θn, n = 1, ..., N , or �empty� (i.e., χc = −1), otherwise.Starting from the input data Γ, the problem an be tought as the retrieval of theprobability presene funtion

H (x, y, z) =
C∑

c=1

hc (xc, yc, zc) Jc (x, y, z) (3.4)expressed as a linear ombination of non-overlapping basis funtions Jc (x, y, z) =
1 if (x, y, z) belongs to the c-th ubi ell, and Jc (x, y, z) = 0, otherwise.The spatial resolution of the unknown probability presene funtion is improvedby means of a three-dimensional multi-resolution (IMSA-3D) representation
H(m) (x, y, z) =

K(m)∑

k=0

C(k)∑

c(k)=1

h(m)
(
xc(k), yc(k), zc(k)

)
Jc(k) (x, y, z) m = 1, ...,Mopt(3.5)14
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m being the index of the iterative proedure that stops at the optimal step Moptwhen the requirement on the resolution level k = 0, ..., K (m) is reahed. There-fore, for a given value of k, C (k) ells identify those regions of interest (RoIs)(as shown in Fig. 3.2) where the probability of presene h(m)

(
xc(k), yc(k), zc(k)

) ishigher.3.2.1 IMSA-3D SVM-based proedureIn order to evaluate the multi-resolution representation of the unknown probabil-ity presene funtion, the proposed IMSA-3D proedure is performed by meansof a SVM-based methodology detailed in the following.Training Phase. The learning proess aims at de�ning the unknown inversemapping H(m) (x, y, z) = Ψ (Γ). Assuming the knowledge of a �nite set of T15



3.2. MATHEMATICAL FORMULATIONtraining senarios
{
[χp, (xp, yp, zp) ,Γ; p = 1, ..., P ](t) , t = 1, ..., T

}
. (3.6)

P being the number of training ells, the states χp, p = 1, ..., P are assigned as ana-priori information related to eah training on�guration. More in detail, for agiven t-th training example, a set of N satterers an reside into the investigationdomain produing a known ombination of states χp, p = 1, ..., P . The instanesonstituting the training set are alled input-output pairs. The available mea-sured data are the input α(t)
p =

{
[(xp, yp, zp) ,Γ; p = 1, ..., P ](t) , t = 1, ..., T

} andthe assoiated truth the output β(t)

p
=

{
χ
(t)
p ; p = 1, ..., P ; t = 1, ..., T

}. Startingfrom these known relations, the problem at hand turns out to be the de�nitionof the deision funtion Ψ (•) whih learns the mapping
Ψ : α(t)

p 7→ β(t)

p
; p = 1, ..., P ; t = 1, ..., T (3.7)in order to suessively lassify the unseen input test data

αtest = {(xc, yc, zc) ,Γ; c = 1, ..., C} .Aording to the statistial learning theory [6℄, let us de�ne the deision funtion
Ψ (αtest) = (w · φ (αtest)) + b (3.8)

φ (·) being the nonlinear operator mapping the input data into an higher dimen-sional spae, alled feature spae. Among all hyperplanes separating the positivetraining data α
(t)
p

∣∣∣
β(t)
p

=1
from the negative ones α(t)

p

∣∣∣
β(t)
p

=−1
there exists uniqueone yielding the maximum separating margin between the lasses. This optimalhyperplane is onstruted by solving an optimization problem, swithed to a La-grangian formulation [39℄, respet to w and b. The problem redues to �nd theoptimal solution through an expansion in terms of a subset of examples belong-ing to the training set, namely those examples whose Lagrange multipliers are

0 < ι
(t)
p < C(SVM), alled support vetors (SVs). The hyperparameter C(SVM)ontrols the tradeo� between training error minimization and margin maximiza-tion. If ι(t)p = C(SVM) the orresponding SVs are alled bound support vetors(BSVs) whih lie inside the margin produing non-negative slak variables [1℄. Inthis sense, the number of BSVs is an indiation of training errors amount. More-over, many slak variables with large values mean strongly overlapped lassesand hene limited generalization apabilites. Unfortunately, the C(SVM) hyper-parameter is unintuitive and has to be alibrated as well as the other kernelparameters (e.g.: the gaussian width γ for the RBF kernel funtion) during themodel seletion phase.Test phase - Step (m = 1). At �rst, the whole domain Ω is onsidered andthe multi-resolution proedure generates a oarse estimation of the probability16



CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTIONpresene funtion with resolution level initialized to k = 0. The probability values
h(m)

(
xc(k), yc(k), zc(k)

) are evaluated by mapping the unthresholded output of thedeision funtion Ψ (αtest) into a parametri form of a sigmoid funtion
h(m)

(
xc(k), yc(k), zc(k)

)
=

1

1 + exp (ηΨ (αtest) + µ)
(3.9)

η and µ being parameters determined by solving the regularized maximum like-lihood problem as in [58℄ by means of a subset of the available training set.Test phase - Steps (m > 1) , (m < Mopt). These steps are aimed at inreasingthe resolution of the lattie, by whih the probability funtion is evaluated, onlyin those regions where the objets are supposed to be loated. The method isformulated as the following two-step proedure:A. RoIs Identi�ation: starting from the probability evaluated at the previousstep m− 1, a saled representation of the probability funtion
U (m−1) (x, y, z) =

K(m−1)∑

k=0

C(k)∑

c(k)=1

u(m−1)
(
xc(k), yc(k), zc(k)

)
Jc(k) (x, y, z) (3.10)is determined by introduing the normalized probability oe�ients

u(m−1)
(
xc(k), yc(k), zc(k)

)
=
h(m−1)

(
xc(k), yc(k), zc(k)

)
− h

(m−1)
min

h
(m−1)
max − h

(m−1)
min

,
c(k) = 1, ..., C(k),
k = 0, ..., K(m)(3.11)where h(m−1)

min = mink=0,...,K(m)

{
minc(k)=1,...,C(k)

[
h(m−1)

(
xc(k), yc(k), zc(k)

)]} and
h
(m−1)
max = maxk=0,...,K(m)

{
maxc(k)=1,...,C(k)

[
h(m−1)

(
xc(k), yc(k), zc(k)

)]}. The RoIs
O

(m)
b b = 1, ..., B(m), where B(m) is the total number of regions at step m, areidenti�ed by thresholding the normalized probability funtion and nulling thevalues smaller than the user-de�ned probability threshold ǫth. Eah RoI has anoupation volume V (m)

b , b = 1, ..., B(m) proportional to the number of adjaentbasis funtions Jc(k) whose probability u(m−1)
(
xc(k), yc(k), zc(k)

)
> ǫth.B. Multi-resolution probability evaluation: one the RoIs are identi�ed, theresolution level is inreased (k ← k + 1) when (x, y, z) ∈ O

(m)
b , b = 1, ..., B(m)and a new set of C (k) =

∑B(m)
b=1 Cb (k) smaller ells is generated in order topartition the volume of eah RoI with a number of ells

Cb (k) =
V

(m)
b∑B(m)

b=1 V
(m)
b

C (k) , b = 1, ..., B (m) . (3.12)Therefore, the probability funtion (3.5) is updated by omputing the probabilityoe�ients h(m)
(
xc(k), yc(k), zc(k)

) in the new higher-resolution ells.Test phase - Step (m =Mopt). The iterative methodology repeats the stepsA (RoIs Identi�ation) and B (Multi-resolution probability evaluation) until thetotal volume of the RoIs dereases [∑B(m−1)
b=1 V

(m−1)
b −

∑B(m)
b=1 V

(m)
b > 0℄ or theRoIs number B(m) hanges [B(m)−B(m− 1) 6= 0℄.17



3.3. NUMERICAL RESULTS3.3 Numerial ResultsThe results of a seleted set of numerial examples are reported in order toassess the e�etiveness and reliability of the proposed approah when dealingwith three-dimensional realisti senarios. In Setion 3.3.1 the training of theSVM is desribed and some onsiderations about SVM parameter alibrationare pointed out. In Setion 3.3.2 the behavior of the multi-resolution (IMSA-3D) proedure is shown and the performane are also ompared with the single-step (BARE ) approah. The validation of the methodology with noisy datais also onsidered. Set. 3.3.3 investigates the potentialities and the urrentlimitations of the IMSA-3D in deteting multiple objets. In order to verifythe reliability of the proposed methodology in orrespondene with various andrealisti subsurfae on�gurations, more omplex senarios with smaller objetsand di�erent soil harateristis are osidered (Set. 3.3.4) .With referene to the problem geometry shown in Fig. 3.1, the homogeneoussubsurfae region with dieletri parameters εΩr = 4.0 and σΩ = 4.0 × 10−3 [41℄and geometrial size XΩ = 3.66 λ, YΩ = 3.66 λ, ZΩ = 0.64 λ is onsidered, λbeing the wavelenght at the working frequeny f = 500MHz. A set of targetregions Θn, n = 1, ..., N with dieletri harateristis di�erent from those of thebakground an assume whatever shape and position inside Ω. As a preliminaryon�guration, let us onsider three-dimensional target regions as �nite-lengthlossless ylinders of radius R(n)
obj = 0.19 λ, height H(n)

obj = 0.19 λ [42℄ and withrelative permittivity ε(n)r = 2.5, n = 1, ..., N [28℄[32℄. The onsidered domain isilluminated by a x-oriented short-dipole probe loated in xs = ys = 1.83 λ at adistane zs = 0.11 λ above the air-soil interfae. At the same height is plaed aplanar array of R = 100 ideal reeivers equally spaed and overing the whole
XΩ × YΩ upper horizontal surfae of Ω.3.3.1 SVM training and parameter seletionConerning the training sets, three di�erent data sets have been onsidered,eah one omposed by T = 300 senarios and haraterized by a �xed numberof buried objets. More spei�ally, n = 1, ..., Nmax, where Nmax = 3 is themaximum number of objets, training sets have been synthetially generated.The positions of the objets have been randomly hosen and mapped into thebinary lass indexes χ(t)

p determining the states (oupied or empty) of the P =
100 training ells. The training phase is performed by adopting a RBF kernelfuntion whose gaussian width γ has to be alibrated as well as the user-de�nedSVM hyperparameter C(SVM) in order to solve the model seletion issue. Inorder to point out the in�uene of the parameters alibration on the deisionfuntion generation, Fig. 3.3(a) shows the number of SVs

NSV =
SV s

T × C
× 100 (3.13)18
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3.3. NUMERICAL RESULTSas the perentage of total training samples, and the number of BSVs [Fig. 3.3(b)℄
NBSV =

BSV s

SV s
× 100 (3.14)obtained during the grid searh over the ouple of parameters C(SVM) and γ. Inpartiular, the training set generated with Nmax = 1 has been onsidered. Thesparseness of the SVM solution depends on the number of SVs, given that small

NSV leads to a strutural simpli�ation of the lassi�er thanks to the removing ofthe irrelevant omponents. In this sense, limiting the number of SVs through theparameter seletion turns out to be a simple and e�etive solution to ontrol thegeneralization apabilities of the lassi�er. Besides the NSV as a generalizationperformane indiator, the number of BSVs is equivalent to the amount of train-ing errors. Sine the SVM-based algorithm has to tolerate a ertain fration ofoutliers, the BSVs number represents those training samples that an ruiallya�et the hyperplane. Nevertheless, the best separating funtion leads to theminimal number of training errors. As it an be seen in Fig. 3.3, in the rangeof 2−4 < γ < 22 and 26 < C(SVM) < 214 both the NSV and NBSV indiators aresmall. It means that the generated hyperplane orretly separates the positiveand negative training samples in this range of parameters. Starting from thisanalysis of SVs and BSVs, that gives a preliminary estimation of the best SVMparameters, the optimal values C(SVM) = 210 and γ = 20 have been hosen.3.3.2 Numerial validation of the IMSA-3D proedureThe �rst representative experiment deals with the detetion of a single-satterer(N = 1) in noiseless data ondition. A test set of T̄1 = 50 senarios randomlyhosen and not belonging to the training set has been onsidered. Fig. 3.4 showsthe probability maps obtained with the IMSA-3D approah for one example ofthe test set. The three orthogonal planes passing through the enter of the objetat (
x
(1)
obj = y

(1)
obj = 1.16λ, z

(1)
obj = −0.32λ

) show the probability evaluated duringthe multi-resolution proess, from the �rst step [m = 1, Fig. 3.4(a)℄ until thestationary ondition is ahieved at step m = 4 [Fig. 3.4(d)℄. At the initial step,the resolution level is set to k = 0 and the domain is partitioned into C (0) = 72ubi ells in order to evaluate a oarse estimation of the probability funtion.The following steps identify a single RoI O(m)
1 where the resolution improve from

△k = 0.61λ, k = 0 up to △3 = 7.64 × 10−2λ in the RoI O(4)
1 . In order toquantitatively evaluate the improved auray provided by the multi-resolutionproedure, let us de�ne the objet-loalization-error

υ(m)
n =

√(
x
(n)
obj − x̃

(m)
n

)2

+
(
y
(n)
obj − ỹ

(m)
n

)2

+
(
z
(n)
obj − z̃

(m)
n

)2 (3.15)20
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3.3. NUMERICAL RESULTSas the geometrial distane between the atual baryenter of the n-th objet(
x
(n)
obj , y

(n)
obj , z

(n)
obj

) and the estimated one (x̃(m)
n , ỹ

(m)
n , z̃

(m)
n

), where
x̃
(m)
n =

∑K(m)
k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))xc(k)
∑K(m)

k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))
,

ỹ
(m)
n =

∑K(m)
k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))yc(k)
∑K(m)

k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))

z̃
(m)
n =

∑K(m)
k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))zc(k)
∑K(m)

k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))

, (3.16)are alulated as the normalized average of the test ell baryenters at m-thstep weighted by the orresponding probabilities of presene h(m)
(
xc(k), yc(k), zc(k)

)
>

0. Let us also de�ne the volume-oupation
ξ(m)
n =

κ̃
(m)
n

κn
(3.17)where

κ̃(m)
n =

4

3
π





∑K(m)
k=0

∑C(k)
c(k)=1

[
h(m)(xc(k),yc(k),zc(k))υ(m)

c(k)

maxc(k){h(m)(xc(k),yc(k),zc(k))}

]

∑K(m)
k=0

∑C(k)
c(k)=1

[
h(m)(xc(k),yc(k),zc(k))

maxc(k){h(m)(xc(k),yc(k),zc(k))}

]





3 (3.18)and κn is the atual volume of the onsidered n-th objet, an analitially evalu-ated index that quantify the estimated volume in terms of probabilities, where
υ
(m)
c(k) =

√(
xc(k) − x̃

(m)
n

)2

+
(
yc(k) − ỹ

(m)
n

)2

+
(
zc(k) − z̃

(m)
n

)2

. (3.19)In suh a ase, the values of the error �gures turn out to be equal to υ(1)1 = 0.16 λand ξ
(1)
1 = 21.03 at the �rst step and both derease down to υ

(4)
1 = 0.07 λand ξ

(4)
1 = 0.68, as shown in Fig. 3.5. The onsidered test on�guration ise�etively representative if ompared with the error statistis reported in Tab.3.1, alulated by onsidering the whole test set of T̄1 = 50 on�gurations.In order to guarantee an high probability of detetion and a orrespondinglow probability of false alarm, the behavior of IMSA-3D approah has been alsoassessed in absene of objets inside Ω. It has to be notied that the free-objeton�guration is not inluded in the training set. As shown in Fig. 3.6, the SVM-based methodology did not detet any objet. The obtained probability mapshows very small and not foused values, thus on�rming the right identi�ationof the free-objets senario.The improved detetion apabilities of the multi-resolution strategy is furtherpointed out if ompared with the BARE approah (Fig. 3.7) applied on thesame test on�guration and with the same lassi�er (i.e. the same training set22
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n versus themulti-resolution steps for single buried objet (N = 1).
Method υ

(m)
1 [λ] ξ

(m)
1

min max mean min max meanIMSA
m = 1 4.68× 10−2 1.18 0.54 3.48 35.42 16.91
m = 2 2.99× 10−2 1.06 0.23 2.18 29.76 12.49
m = 3 2.32× 10−2 0.46 0.22 0.96 24.59 4.93
m = 4 2.21× 10−2 0.41 0.21 0.09 8.13 1.92BARE 9.76× 10−2 1.16 0.59 2.81 28.93 16.88Table 3.1: Single buried objet, N = 1 - Statistis of the performane indexes(objet-loalization-error υ and volume-oupation ξ) for BARE and IMSA ap-proahes.
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CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTIONand SVM hyperparameter settings). In order to ompare the results at the sameresolution level, the BARE solution has been obtained with the highest resolution
△BARE = △3 = 7.64 × 10−2λ applied to all the investigation domain instead ofto the single RoI O(m)

1 , m = 1, ...,Mopt. Besides the objet-loalization-error isslightly greater (υ(BARE)
1 = 0.21 λ), the volume-oupation is signi�antly larger(ξ(BARE)

1 = 22.48) as well as the number of deision funtion evaluations that isstritly related to the number of test ells (CBARE = 36864 vs ∑K=3
k=0 C (k) =

288). Even if the omputational load of a single SVM testing is very low, theBARE approah turns out to be more time onsuming, thus reduing the real-time apabilities of suh a methodology.In order to point out the generalization apabilities of the proposed IMSA-3Dapproah in dealing with noisy data, a gaussian random noise with zero-meanand variane σ2 = Pnoise is added to the total �eld Efull (xr, yr, zr) and the noisydi�erential quantity Γ̂ (xr, yr, zr) is used to generate the test set. The averagederror �gures obtained with inreasing noise amplitude have been evaluated andreported in Fig. 3.8. As it an be seen, both objet-loalization-error and volume-oupation of the IMSA-3D approah are always smaller if ompared with theBARE results, thus on�rming a stable behavior of the methodology also innoisy onditions. As a representative result, the probability map of the single-objet on�guration obtained with the BARE and IMSA-3D approahes withnoisy data (Pnoise = 0.1 V/m) are shown in Fig. 3.9(a) and 3.9(b), respetively.Even if the IMSA-3D method points out a slightly greater objet-loalization-error (υ(4)1

∣∣∣
Pnoise=0.1

= 0.11 λ) if ompared with the noiseless test ase, the atualposition of the objet still resides into the high-probability region.3.3.3 Detetion of multiple objetsThis setion is aimed at on�rming the apabilities of the proposed approahin deteting multiple satterers. As expeted, these senarios are more omplexif ompared with the single-objet test ase and the SVM-based methodologyprovides higher objet-loalization-error values even if it is still able to loalizethe objets with an aeptable degree of auray. In Figure 3.10, the averagedobjet-loalization-error [Fig. 3.10(a)℄ and volume-oupation [Fig. 3.10(b)℄ ofBARE and IMSA-3D are ompared when dealing with n = 1, .., Nmax numberof objets, where Nmax = 3 and with noisy data (Pnoise = 0.1 V/m). The barharts learly show the outperforming apabilities of the multi-resolution teh-nique in loating multiple satterers and pointing out an objet-loalization-erroralways smaller than one wavelength. Conerning the volume-oupation index,the optimal step of the IMSA-3D proedure overestimates the objet volumes ofthe most omplex senario (N = 3) with a maximum of meann

{
ξ
(3)
n

}
= 7.31respet to the widely greater volume overestimation obtained with the BAREapproah [meann

{
ξ
(BARE)
n

}
= 24.32℄. In order to better appreiate the im-25
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CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTION
(a) (b)
() (d)Figure 3.11: Numerial validation vs number of objets - Probability maps de-termined by the IMSA-3D proedures for multiple objets [N = 2 BARE (a),IMSA (b) and N = 3 BARE (), IMSA (d)℄ with noisy data [PN = 0.1 V/m℄.proved resolution and detetion apabilities of the IMSA-3D approah in mul-tiple objet senarios, the maps obtained with the BARE and IMSA-3D ap-proahes with N = 2 satterers (x(1)obj = 3.23 λ, y(1)obj = 1.61 λ, z(1)obj = −0.39 λ),(x(2)obj = 1.69 λ, y(2)obj = 1.51 λ, z(2)obj = −0.33 λ) have been ompared [Fig. 3.11(a)and Fig. 3.11(b)℄. The IMSA-3D approah orretly identi�es two RoIs andestimates the objet positions with good preision in objet-loalization-error(υ(2)1 = 0.41 λ and υ(2)2 = 0.19 λ) and a slightly overestimated volume-oupation(ξ(2)1 = 3.03 and ξ(2)2 = 1.82). On the ontrary, the BARE approah estimatesonly one dilated high-probability region with a very high volume-oupation[meann

{
ξ
(BARE)
n

}
= 29.23℄ whih ontains both the objets. The enhanedapabilities of the multi-resolution approah ompared with the single-resolutionmethod are on�rmed also when N = Nmax = 3 satterers are present. A rep-resentative result provided by the BARE and the IMSA-3D approahes dealingwith this more ritial senario are shown in Fig. 3.11() and Fig. 3.11(d),respetively. As it an be observed, the IMSA-3D is still able to detet threeRoIs and to fairly estimate the objet positions, although the objet loatedin (x(3)obj = 2.40 λ, y(3)obj = 1.20 λ, z(3)obj = −0.18 λ) is deteted with a greaterobjet-loalization-error υ(2)3 = 0.92 λ if ompared with the two remaining objets[υ(2)1 = 0.52 λ,υ(2)2 = 0.41 λ℄. One again, the performane of the multi-resolutionproedure outperforms the single-step approah apabilities in diserning multi-ple objets as learly pointed out by the very high volume-oupation index ofthe single RoI identi�ed by the BARE approah [ξ(BARE)

1 = 28.74℄.29



3.3. NUMERICAL RESULTS

(a)
(b)Figure 3.12: Complex senario - Probability maps determined by the IMSA-3D[m = Mopt = 3℄ approah with small objets (N = 2) buried in dry sandy soil(a) and dry lay soil (b).3.3.4 Complex senariosThe multiple objet detetion performane have been also tested with di�erenteletri and geometrial harateristis of the satterers and the bakground. Asan example, a more omplex senario with smaller objets (R(n)

obj = 0.1 λ and
H

(n)
obj = 0.09 λ, n = 1, ..., N) is onsidered both for training and test dataset.Figure 3.12 shows the results provided by the IMSA-3D in orrespondene oftwo di�erent bakground harateristis with multiple objets (N = 2) and noisydata (Pnoise = 0.1 V/m). The �rst example [Fig. 3.12(a)℄ refers to a on�gurationwith small objets buried into dry sandy soil (εΩr = 4.0 and σΩ = 4.0 × 10−3),while the seond [Fig. 3.12(b)℄ deals with the same objets in a soil bakgroundwith an inreased water ontent that auses an inrease in relative permittivity(εΩr = 16.0) and in ondutivity (σΩ = 3.0 × 10−2) [43℄ . The omparison interms of objet-loalization-error points out a slightly worst detetion of smallerobjets in sandy soil. Nevertheless, there is not a signi�ant hange in the errorstatistis with the onsidered soils and objets, sine the average value of objet-loalization-error remains always lower than meann

{
υ
(2)
n

}
= 0.98 λ, n = 1, 2.30



CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTION3.4 ConlusionsThe proposed method onsists of a multi-resolution approah for the real-timedetetion of three-dimensional buried objets. An SVM-based lassi�er has beensuitably trained with available labeled data in order to obtain a probabilitymap of single and multiple objets presene. Starting from a oarse resolutionmap, the iterative proedure performs a syntheti zoom on those spatial regionswhere potential objets are supposed to be loated, thus inreasing the detetionresolution only in the RoIs. The e�etiveness of the proposed methodology hasbeen preliminary assessed with di�erent subsurfae senarios, haraterized bysingle and multiple objets, both in noiseless and noisy onditions.The obtained results on�rm that the SVM-based methodology allows one toestimate the objets presene in real-time and with a good degree of aurayin terms of loalization error. The multi-resolution strategy detets and loatessingle and multiple targets not belonging to the training set and also estimatesthe objets size with outperforming preision if ompared with the single-stepapproah.
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Chapter 4Early Breast Caner ImagingMirowave imaging for breast aner sreening is an emerging tehnique as avaluable alternative to standard X-ray mammography. Usually, the solutionto the nonlinear inverse problem is provided with iterative methods whih re-quire a forward solver exeution at eah iteration and partiular attention toomputational e�ieny is fundamental. Reently, alternative tehniques basedon learning-by-example methodologies have been applied to imaging problemslooking for real-time proessing. In this hapter, a multiresolution approah forreal-time detetion of breast aner is presented. A SVM-based lassi�er is inte-grated in an iterative multistep strategy to obtain a probability map of presenewith enhaned spatial resolution where targets are supposed to be loated. Thesattering matrix measured at the output of a three-dimensional imaging systemrepresents the input data of the ustomized lassi�er. A seleted set of numerialresults is provided in order to assess the e�etiveness of the proposed approahdealing with both single and multiple inlusions. The performane of the methodin ases of noisy data is also investigated.
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4.1. INTRODUCTION4.1 IntrodutionBreast aner detetion by means of mirowave imaging has been developedrapidly in the last years beause of the well-known limitations of the standardsreening X-ray mammography in terms of sensitivity and false positive dete-tions [44℄. Among the advantages of mirowave imaging are the non-ionizing andlow-power radiation [45℄ as well as the absene of ompression that means pa-tient omfort as already proven during linial investigations [46℄. This imagingmodality is based on the ontrast between the onstitutive parameters of healthyand malignant breast tissues in the mirowave frequeny range, the reason thatwhy the detetion with high auray of small tumors is possible [47℄. In mi-rowave tomography, nonlinear inverse sattering tehniques based on Maxwell'sequations are often used [57, 60℄ and they are usually based on iterative algo-rithms in whih a full sattering problem must be solved at eah iteration leadingto onsiderable omputational load [50℄, espeially when three-dimensional ge-ometries with large number of unknowns are onsidered. Alternatively, movingfrom deterministi to stohasti methods suh as Partile Swarm Optimization(PSO) and Geneti Algorithms (GAs), the detetion problem is reast as anoptimization problem [51℄. However, even if these methodologies �nd globalminimum of a given ost funtion, the omputational load is still high.Nowadays, progress in mahine learning suggests the solution of medial imag-ing problems by means of Lerning-by-Example (LBE) methodologies [52℄-[54℄.These kind of lassi�ation or regression-based algorithms are partiularly ap-propriate for a wide-range of real-time appliations thanks to their high-speedproperties and generalization apabilities. Given a learning task and a �niteset of training samples, the inverse problem an be reast as a onstrainedquadrati optimization problem whose optimal solution an be found avoidingthe ill-posedness and nonlinearity of the inverse sattering problem.In this work, the inversion proess is reformulated as a multiresolution las-si�ation proedure based on a binary support vetor mahine (SVM) lassi�erintegrated in an iterative multistep strategy [59℄. Aordingly, a multiresolutionprobability map of pathology presene is estimated with inreased auray inthose high-probability spatial regions where the inlusions are supposed to be lo-ated. More spei�ally, starting from the knowledge of a �nite-size training setwhere the pathology is randomly positioned, the �rst step is aimed at de�ning aoarse probability map. The suessive steps iteratively identify the areas withhighest probability values where the resolution level inreases. Conerning thetraining phase, it is performed only one after an ad-ho alibration proedurethat �nds the best parameters in order to maximize the generalization apabili-ties of the optimal separating hyperplane. Numerial di�erential data have beenalulated starting from the elements of the sattering matrix available at theoutput of the onsidered multiview imaging system.This hapter is organized as follows. The geometry and the harateristis of34



CHAPTER 4. EARLY BREAST CANCER IMAGING
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the measurement system as well as the format of the simulated numerial dataare desribed in Setion 4.2. In Set. 4.3 the proposed multiresolution based ona SVM lassi�er is formulated. In order to show the e�etiveness and the urrentlimitations of the proposed approah, a seleted set of numerial results onernedwith the detetion of both single and multiple inlusions is reported (Set. 4.4).The robustness and the generalization apabilities in presene of noisy data anddi�erent breast harateristis have been also tested. Finally, some onlusionabout the innovative features of the approah are drawn in Set. 4.5.35



4.2. NUMERICAL MODEL4.2 Numerial ModelLet us onsider a three-dimensional imaging system as shown in Fig. 4.1(a). Itonsists of N monopole probes disposed in a irular array of radius rt at knownpositions (xn, yn, zn) , n = 1, ..., N . The antennas are plaed in a tank �lled witha oupling liquid in order to minimize the re�etion from air-breast skin interfae[55℄. The omplex relative dieletri properties of the oupling medium an beexpressed as
εcr = ε′r − jε

′′
r (4.1)

ε′r being the relative permittivity and ε′′r = σ
ε02πf

the out-of-phase loss fator,where σ is the ondutivity, ε0 the free-spae permittivity and f the workingfrequeny. The oupling liquid has dieletri properties similar to those of thebreast, whih is modeled as a hemispherial domain Ωb, suspended on the topof the tank and with radius rb. Assuming a referene system with origin in theentre of the hemisphere representing Ωb, a set of regions Υp ∈ Ωb, p = 1, ..., Pentered in (x, y, z)
(p)
Υ an reside into the imaging domain de�ning the dieletripro�le of the breast

Π (x, y, z) =

{
ε
(p)
r − εΩb

r (x, y, z) , if (x, y, z) ∈ Υp; p = 1, ..., P
0, otherwise (4.2)with ε(p)r , p = 1, ..., P and εΩb

r being the omplex relative dieletri onstantof Υp, p = 1, ..., P and Ωb, respetively.Eah antenna ats as transmitter and reeiver in order to perform a multiviewmeasurement of the total eletromagneti �eld
Etot (rrx|rtx) = Einc (rrx|rtx) +

+j2πfεΩb
r

∫
Ωb
G (rrx; r) · Π

{
r|Υp, ε

(p)
r

}
· E (r|rtx) · dr

(4.3)where rrx = (xrx, yrx, zrx) , rx = 1, ..., N |rx 6=tx and rtx = (xtx, ytx, ztx) , tx =
1, ..., N are the positions of the reeiving and transmitting probes, respetively.
Einc (rrx|rtx) is the �eld measured in absene of regions Υp inside Ωb, G is theGreen's funtion of the inhomogeneous medium [100℄ and E (r|rtx) is the eletri�eld inside Ωb in presene of sattering regions Υp; p = 1, ..., P .Sine a realisti imaging system is simulated, let us suppose to measure the�eld in the form of sattering parameters srx,tx, rx, tx = 1, ..., N at the ports ofthe reeiving probes (also re�etion oe�ients stx,tx, tx = 1, ..., N are available)[Fig. 1(b)℄. As formulated by Yu et al. in [57℄, the �elds Etot and Einc an berelated to the s-parameters as

stotrx,tx = C0ârx · Etot (rrx|rtx) (4.4)and
sincrx,tx = C0ârx · Einc (rrx|rtx) , (4.5)36



CHAPTER 4. EARLY BREAST CANCER IMAGINGtaking into aount the orientations [i.e., ârx℄ of the reeiving antennas anda omplex alibration parameter C0.Hene, from the knowledge of the sattering matries Stot ∈ C
N×N and

Sinc ∈ CN×N measured in presene and absene of the sattering regions Υp; p =
1, ..., P , respetively, the following di�erential quantity

s∆rx,tx =
stotrx,tx − s

inc
rx,tx

sincrx,tx

rx, tx = 1, ..., N (4.6)represents the normalized ontribution sattered by Υp; p = 1, ..., P . Theinverse sattering problem an be tought as the retrieval of target positions
(x, y, z)

(p)
Υ on the basis of the known N(N−1)

2
elements

Γs =
{
s∆rx,tx; rx = 1, ..., N ; tx = 1, ..., N ; tx ≤ rx

}of the lower triangular part of S∆, sine the elements of the sattering matrix
S∆ ∈ C

N×N are supposed to be s∆rx,tx = s∆tx,rx, rx, tx = 1, ..., N . It an be prof-itably solved by means of the learning-by-example methodology that estimatesthe unknown inverse mapping following the guidelines of the multi-step strategydetailed in the following.4.3 Multi-resolution SVM-based approahThe arising problem is that of determining a probability risk-map of Ωb startingfrom the knowledge of the measured data. Towards this end, a three-dimensionaldomain enlosing Ωb is partitioned in a uniform lattie of C training ells whosebaryenters are (xc, yc, zc) , c = 1, ..., C. Eah ell an assume a binary state
αc ∈ {−1,+1} in order to reast the detetion problem in a binary lassi�ationproblem whose lasses stand for presene [αc = +1℄ and absene [αc = −1℄of the target inside the ells. One the training of the SVM-based proedureis ompleted, unseen input test data Γs an be lassi�ed and the a-posterioriprobability Pm = Pr {αm = +1|Γs} , m = 1, ...,M is evaluated, M being thenumber of test ells that an di�er from the C training ells. The training phaseof the proposed method as well as the iterative proedure for the multi-resolutionrisk-map evaluation are detailed in the following setions.4.3.1 SVM Training phaseLet us onsider a supervised binary lassi�ation problem. The training setomposed by T samples xt ∈ RL, t = 1, ..., T , L = N(N−1)

2
+3 being the dimensionof the input features spae X , is assoiated with output labels yt ∈ {−1,+1} , t =

1, ..., T and represented as
Ψ = {xt, yt; t = 1, ..., T} =

=
{
[(xc, yc, zc) ,Γs, αc; c = 1, ..., C](t) , t = 1, ..., T

}
.

(4.7)37



4.3. MULTI-RESOLUTION SVM-BASED APPROACHSine the measured data Γ(t)
s are highly linearly nonseparable as ommonlyhappens for real-world data, the input vetors are mapped with a kernel methodin a higher L′-dimensional spae X ′ (L′ > L) through the nonlinear funtion

ρ (•) in order to �nd the linear deision funtion
Φ [(xm, ym, zm) ,Γs] = w · ρ [(xm, ym, zm) ,Γs] + b, m = 1, ...,M (4.8)in the transformed spae X ′ able to orretly lassify the unseen test data

[(xm, ym, zm) ,Γs; m = 1, ...,M ]. The unknown weight vetor w ∈ RL′ and thethreshold b univoally de�ne the optimal hyperplane assoiated with Φ (•) andare evaluated through the minimization of the ost funtion
Θ
(
w, ξ

)
=

1

2
‖w‖2 + ζ

T∑

t=1

C∑

c=1

ξ(t)c

t = 1, ..., T
c = 1, ..., C

(4.9)subjet to the onstraints
α
(t)
c

(
w · ρ

[
(xc, yc, zc) ,Γ

(t)
s

]
+ b

)
≥ 1− ξ

(t)
c

ξ
(t)
c ≥ 0

(4.10)where the onstant ζ is a user-de�ned regularization parameter that ontrolsthe trade-o� between margin maximization and training errors minimization,regulated by the �rst and the seond terms of (4.9), respetively, ξ is the vetor ofslak variables used to relax the separation onstraint in (4.10) and thus allowingthe possibility of examples violating it. Making slak variables large enough, itis always possible to minimize the ost funtion in (4.9) but large values of
ξ
(t)
c are onsequenes of strongly overlapped lasses and it is possible that thehyperplane will not generalize well [1℄. The minimization of the ost funtion isan optimization problem that an be reformulated through the Lagrangian
L
(
w, b, µ

)
=

1

2
‖w‖2 −

T∑

t=1

C∑

c=1

µ(t)
c

[
α(t)
c

(
w · ρ

[
(xc, yc, zc) ,Γ

(t)
s

]
+ b

)
− 1

](4.11)with lagrange multipliers vetor µ =
(
µ
(t)
c , c = 1, ..., C; t = 1, ..., T

) that anbe found by means of a dual form of the optimization problem
maxµ

{∑T
t=1

∑C
c=1 µ

(t)
c − 1

2

∑T
t=1

∑C
c=1

∑T
t′=1

∑C
c′=1 µ

(t)
c µ

(t′)
c′ α

(t)
c α

(t′)
c′

K
[
(xc, yc, zc) ,Γ

(t)
s ; (xc′ , yc′, zc′) ,Γ

(t′)
s

]} (4.12)under the onstraints
µ
(t)
c ≥ 0∑T

t=1

∑C
c=1 µ

(t)
c α

(t)
c = 0

.38



CHAPTER 4. EARLY BREAST CANCER IMAGING
K (·; ·) being the kernel funtion. The support vetors (SV s) are those exam-ples in the training set for whih 0 < µ

(t)
c ≤ ζ . In partiular, they an be splittedin normal support vetors (NSV s) [0 < µ

(t)
c < ζ ℄ and bounded support vetors(BSV s) [µ(t)

c = ζ ℄. In partiular, the BSV s are examples that lie in margin andrepresent the aformentioned training errors.One the training phase is terminated, the deision funtion an be expressedin terms of the test data in the original input spae
Φ [(xm, ym, zm) ,Γs] =

=
∑T̂

t=1

∑Ĉ(t)
c=1 µ

(t)
c α

(t)
c K

[
(xc, yc, zc) ,Γ

(t)
s ; (xm, ym, zm) ,Γs

]
+ b, m = 1, ...,Mwhere T̂ ≤ T and Ĉ ≤ C quantify the subset of data for whih 0 < µ

(t)
c ≤ ζ ,i.e., the sum of NSV s and BSV s.4.3.2 Multi-resolution Test PhaseThe test phase is aimed at the detetion of regions Υp; p = 1, ..., P startingfrom unseen test data [(xm, ym, zm) ,Γs] , m = 1, ...,M . Aording to the Platt'sprobabilisti outputs for SVM [58℄, the output of the unthresholded deisionfuntion Φ ([(xm, ym, zm) ,Γs]) an be mapped in a sigmoid funtion in order tode�ne the probability

Pm =
1

1 + exp (aΦ [(xm, ym, zm) ,Γs] + d)
m = 1, ...,M (4.13)that the objet belongs to the m-th ell, a and d being parameters evaluatedaording to the algorithm in [58℄. The approximation of the probability distri-bution

P (x, y, z) =
M∑

m=1

PmFm (x, y, z) (4.14)is the linear ombination of non-overlapping spatial basis-funtions
Fm (x, y, z) =

{
1 if (x, y, z) ∈ m− th cell

0 otherwise
(4.15)weighted by the probability values.In order to improve the ahievable spatial resolution, the estimation of P (x, y, z)is evaluated exploiting the iterative proess [59℄ aimed at de�ning a multiresolu-tion lattie of test ells leading to the multiresolution representation

P(s) (x, y, z) =

R(s)∑

r=0

M(r)∑

m(r)=1

P
(s)
m(r)Fm(r) (x, y, z) ; s = 1, ..., S (4.16)where s = 1, ..., S is the step index of the iterative proedure that stops whenthe desired spatial resolution regulated by the resolution index r = 0, ..., R (s)39
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CHAPTER 4. EARLY BREAST CANCER IMAGINGis ahieved and R (s) = s − 1. At the r-th resolution level and s-th salingstep, m (r) = 1, ...,M (r) basis-funtions are generated, being r (s) = s − 1.Figure 2 pitorially shows the generation of the so-alled areas of interest (AoIs)
A

(s)
k , k = 1, ..., K (s), K (s) being the total AoIs at step s, at step s = 1 [Fig.4.2(a)℄ and step s = 2 [Fig. 4.2(b)℄. In order to better understand the de�nitionof the multiresolution probability funtion, the iterative lassi�ation proedureis detailed for the �rst step s = 1 and higher steps s > 1.Step s = 1 - Coarse Detetion. At the �rst step the AoI A(1)

1 is equivalentto the whole three-dimensional domain that enloses Ωb and the basis-funtionsde�ning the M (r) test ells are of the largest harateristi length sale [r = 0,Fig. 4.2(a)℄. This step provides a �rst and inaurate estimation of the a-posteriori probability upon whih the suessive steps aim at loating the smalllenght sale AoIs.Step s > 1 - AoIs Identi�ation. From the knowledge of the probabilitiesevaluated at the previous step s−1, the resolution of the lattie is inreased onlyin those ells where the probability of target presene is higher than a prede�nedthreshold ǫ. In order to obtained a suitable thresholded probability funtion, anormalized version is introdued
P(s−1)

norm (x, y, z) =

R(s−1)∑

r=0

M(r)∑

m(r)=1

Q
(s−1)
m(r) Fm(r) (x, y, z) (4.17)where

Q
(s−1)
m(r) =

P
(s−1)
m(r) − P

(s−1)
min

P
(s−1)
max − P

(s−1)
min

,
m (r) = 1, ...,M (r)
r = 0, ..., R (s)

(4.18)
P

(s−1)
min and P (s−1)

max being the minimum and maximum probability values eval-uated until step s − 1, respetively. The normalized values Q(s−1)
m(r) ≥ ǫ are theprobabilities assoiated to those ells onstituting the AoIs A(s)

k , k = 1, ..., K (s),the remaining Q(s−1)
m(r) < ǫ are nulled.Step s > 1 - Multiresolution detetion. The spatial resolution is enhanedin the identi�ed AoIs A(s)

k , k = 1, ..., K (s) by inreasing the resolution index(r ← r+1) and thus re�ning the probability funtion representation only whereneeded. To this end, (4.16) is updated by omputing the oe�ients P (s)
m(r) onlyif (x, y, z)m(r) ∈ A

(s)
k , k = 1, ..., K (s). The iterative syntheti zooming is stoppedwhen the number of the AoIs do not hange between two onseutive steps[K (s) = K (s− 1)℄ and the size hanges of the AoIs are smaller than the highestresolution level [∆Ωb
s < min

{
∆x

(s)
m(r),∆y

(s)
m(r),∆z

(s)
m(r)

}℄.41



4.4. NUMERICAL RESULTS4.4 Numerial ResultsThe presented numerial experiments deal with the three-dimensional tomo-graphi on�guration as shown in Fig. 4.1. The imaging system onsists ofa irular array omposed by N = 16 monopole antennas equally spaed ona rt = 0.27 λ radius irle, λ being the wavelength at the working frequeny
f = 1.1GHz. The probes surround the hemispherial domain Ωb of radius rb =
0.18 λ simulating a Heterogeneously Dense breast with relative dieletri onstant
εbr = 17.72−j15.41. Spherial inlusions of radius rp = 3.67×10−2 λ and eletriharateristi εpr = 53.46 − j18.26 represent the regions Υp ∈ Ωb, p = 1, ..., Pentered in (x, y, z)

(p)
Υ . The breast as well as the probes are immersed in a ou-pling liquid (εcr = 23.43− j18.48) mimiking the average onstitutive parametersof the breast.In the following setion the SVM training proedure and the parameter se-letion are desribed (Set. 4.4.1). Suessively, the advantages and the urrentlimitations of the proposed approah when dealing with single inlusion are an-alyzed (Set. 4.4.2). In suh a framework, the performanes in presene of bothnoisy data and di�erent breast harateristis are evaluated. Finally, the reli-ability of the proposed approah in orrespondene with multiple inlusions isveri�ed (Set. 4.4.3).4.4.1 Training Set and Model SeletionThe olletion of Tp = 100, p = 1, ..., P training on�gurations is obtained byrandomly varying the position of Υp, p = 1, ..., P inside Ωb, where P = 2 is themaximum number of onsidered regions. The imaging system ollets the data

Γ(t)
s , t = 1, ..., Tp for eah on�guration and the orresponding pathology posi-tions are mapped into the states αc, c = 1, ..., C, C = 108 being the number oftraining ells. Two independent SVMs has been trained for single target (P = 1)and multiple targets (P = 2) test ases. Beause of the good performanes gen-erally ahieved by nonlinear SVM with gaussian kernel, the onsidered examplesdeal with the kernel
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} (4.19)where γ represents the width. In order to optimize the performanes of theSVM-based methodology, the model seletion issue has to be solved throughthe determination of the best regularization parameter ζ and kernel parameter

γ. Frequently, the parameter seletion is done empirially leading to suboptimalperformanes of lassi�ers. In this work, a ause and e�et analysis of parametersin�uene on the deision funtion generation has been performed. In partiular,42
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Figure 4.3: SVM Parameter Calibration - Support vetor NNSV and boundedsuppor vetor NBSV analysis vs SVM Hyperparameters.
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4.4. NUMERICAL RESULTSthe number of support vetors NSV and bounded support vetors NBSV are on-sidered good indiators of SVM generalization apabilities sine small NSV leadsto a a strutural simpli�ation of the deision funtion thanks to the removal ofthe redundant elements [6℄. Moreover, small NBSV means less training errors aspreviously explained in Set. 4.3.1. Therefore, the perentage indexes
N%

SV =
NSV

(Tp × C)
× 100 (4.20)and

N%
BSV =

NBSV

NSV

× 100 (4.21)are evaluated versus the user-de�ned parameters ζ and γ as shown in Fig.4.3. As it an be seen, a range where both the indexes N%
SV and N%

BSV are lowexists leading to a simple deision funtion and with few training errors. Thereported results have been obtained with training parameters belonging to theaformentioned range. In partiular, they have been set to ζ = 100 and γ = 1.4.4.2 Single Inlusion - Numerial AssessmentThis setion deals with the detetion of a single inlusion by means of the pro-posed multiresolution proedure (IMSA) ompared with the standard single res-olution probability estimation (BARE ). The performanes have been evaluatedon a test set omposed by Ttest = 50 examples and are quanti�ed by omputingthe analytial indexes
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p (4.23)representing the loalization index and the inlusion volume, respetively.The loalization index points out the geometrial distane between the atualinlusion positions (x, y, z)(p)Υ and the estimated oordinates
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4.4. NUMERICAL RESULTSwhere the inlusions are supposed to be loated. The inlusion volume indexestimates the physial volume of the reostrutions normalized to the atualinlusion volumes υp, p = 1, ..., P , whereas
ε
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+
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)2

. (4.25)As a matter of fat, the behavior of the performane indexes points out thatthe IMSA strategy iteratively inreases the detetion apabilities both in terms ofmean detetion auray (avg {ε(s)p

}) and mean volume estimation (avg{υ̃(s)p

})as shown in Fig. 4.4(a) and also that it outperforms the BARE approah[Fig. 4.4(b)℄. As a representative result, Fig. 4.5 graphially shows the es-timated probability funtion of a test on�guration with inlusion entered in
x
(1)
Υ = 2.18 × 10−4 λ , y(1)Υ = 1.34 × 10−2 λ, z(1)Υ = −2.81 × 10−2 λ. The targetreonstrution is represented by the surfae that enloses the values of the proba-bility funtion P(s−1)

norm (x, y, z) > εpr, where εpr = 0.5 is a user-de�ned probabilitythreshold. As it an be notied, the spherial region Υ1 is orretly loalized withloalization index and inlusion volume both deresing from ε
(1)
1 = 3.28× 10−2 λand υ̃(1)1 = 17.69 to ε(3)1 = 1.95× 10−2 λ and υ̃(3)1 = 1.13, respetively.As a omparative result, the BARE approah has been applied to the sametest example and starting from the same training set. The resolution level hasbeen set to the highest ahieved with the IMSA strategy, i.e., with disretization

∆x = ∆y = ∆z = ∆Ωb

3 over all the domain Ωb instead of only inside the AoI
A

(3)
1 . As it an be observed (Fig. 4.6), the volume of the reostrution is sig-ni�antly wider [υ̃(bare)1 = 16.18℄ and also the loalization index is slightly worse[ε(bare)1 = 2.43 × 10−2 λ℄. Moreover, it should be pointed out the omputationalsave provided by the multiresolution approah that evaluates the deision fun-tion twenty times less than the BARE method and results to be more e�etivein terms of real-time apabilities.4.4.2.1 Validation with Random Noise added to Syntheti DataIn order to test the robustness of the methodology in various and more realis-ti working onditions, also noisy measurements have been simulated by addinga Gaussian noise with an amplitude mimiking a noise �oor of −100 dBm [60℄.The transmission power has been varied in the range 10 dBm ≤ Ptx ≤ 30 dBm tosimulate realisti �eld measurements with di�erent signal-to-noise ratio (SNR)that depends from the hosen soure power. The behavior of the error �guresversus Ptx is shown in Fig. 4.7 in order to further on�rm the detetion a-uray of the proposed IMSA approah in dealing with noisy data. It anbe notied that the pathology is orretly loalized with small loalization in-dex avg

{
ε
(3)
1

∣∣∣
Ptx=15dBm

}
≤ 2.83 × 10−2 λ and well-estimated inlusion volume46
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(a)

(b)

()Figure 4.5: IMSA Proedure - Pathology detetion obtained by IMSA proedureat s = 1 (a), s = 2 (b), s = 3 ().
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4.4. NUMERICAL RESULTS

Figure 4.6: IMSA vs BARE Detetion - Pathology detetion determined byBARE proedure.
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CHAPTER 4. EARLY BREAST CANCER IMAGING
(a) (b)
() (d)Figure 4.8: Validation vs random noise - Pathology detetion determined byIMSA proedure with noisy data [Ptx = 30 dBm (a), Ptx = 25 dBm (b), Ptx =

15 dBm (), Ptx = 10 dBm (d)℄.[avg{ υ̃(3)1

∣∣∣
Ptx=15dBm

}
≤ 1.11 when Ptx > 15 dBm, whereas for lower Ptx valuesthe auray dereases showing maximum error values avg{ε(3)1

∣∣∣
Ptx=10dBm

}
=

5.93 × 10−2 λ and avg

{
υ̃
(3)
1

∣∣∣
Ptx=10dBm

}
= 1.36. Figure 4.8 shows, in a om-parative fashion, the inlusion reonstrutions of a noisy test example obtainedwith di�erent power values ranging from Ptx = 30 dBm [Fig. 4.8(a)℄ down to

Ptx = 10 dBm [Fig. 4.8(d)℄. Even if the redution in detetion auray is evi-dent, the methodology still identi�es the presene of the inlusion with aeptableerrors [ε(3)1

∣∣∣
Ptx=10dBm

= 5.24× 10−2 λ and υ̃
(3)
1

∣∣∣
Ptx=10dBm

= 1.09℄.4.4.2.2 Validation with Di�erent Breast PropertiesThe examples under test are onerned with breast harateristis di�erent fromthose in the training set. The aim of this setion is to verify how the performanesof a trained SVM hanges when dealing with test data that belong to di�erenttest ases. More spei�ally, in addition to the Heterogeneously Dense (H) breastadopted for training data generation, let us onsider also Fatty (F ) [εFr = 9.06−
j6.90℄ and Sattered (S) [εSr = 14.16 − j12.57℄ breast models. The eletrialharateristis of the inlusion are unhanged [εpr = 53.46 − j18.26℄, leadingto di�erent ontrasts between pathology and surrounding mediums. As for the49
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H , S) pointing out that the algorithm provides good reonstrutions even if thehange in eletrial harateristis auses an error inrease of (△ε(3)1

)F

= 47%and (
△υ̃

(3)
1

)F

= 44% for the F -breast and of (△ε(3)1

)S

= 6% and (
△υ̃

(3)
1

)S

=

4% for the S-breast respet to the H-breast initial test ase.4.4.3 Multiple Inlusions - Performane analysisThis setion aims at assessing the e�etiveness of the proposed IMSA method-ology in deteting multiple inlusions. The imaging system on�guration aswell as the harateristis of the the breast and the inlusions are unhangedrespet to the single-inlusion test ase (with Heterogeneously Dense breast).Dealing with the detetion of two equal inlusions, both in terms of eletriand geometrial harateristis, the training and test data sets have been gener-ated with the same number of regions (P = 2) and with the onstraint on therandomly-hosen positions of the regions that annot be overlapped. The gener-ated data have been still blurred with random Gaussian noise, reproduing thesame noise �oor (−100 dBm) as for the previous noisy test ases and a sourepower Ptx = 20 dBm has been used. A representative test ase has been hosenamong the test set in order to show the probability maps estimated by the IMSAapproah at di�erent steps [Fig. 4.10(a)-()℄ together with that obtained withthe single-resolution BARE lassi�ation proedure [Fig. 4.10(d)℄. In suh a50
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(a) (b)
() (d)Figure 4.10: Multiple detetion - Pathology detetions determined by IMSA pro-edure at s = 1 (a), s = 2 (b), s = 3 () and by BARE approah (d).ase, the values of the error �gures turn out to be equal to ε(3)1 = 2.91× 10−2 λ,

ε
(3)
2 = 3.08×10−2 λ and υ̃(3)1 = 0.89, υ̃(3)2 = 1.68 when IMSA approah is applied,while the BARE method provides higher loalization index ε(bare)1 = 3.12×10−2 λ,
ε
(bare)
2 = 4.14 × 10−2 λ and inlusion volume υ̃(bare)1 = 5.71, υ̃(bare)2 = 9.93. Asexpeted, the outperforming behavior of the IMSA approah in omparison withthe BARE proedure ame out for the single-inlusion analysis is on�rmed alsofor the multiple inlusions test ase. The multi-step lassi�ation proess or-retly identi�es the multiple AoIs and signi�antly enhane the resolution wherethe probability is higher. As it an be observed, the IMSA strategy avoids thelustering e�et produed by the single-step resolution that is unable to identifytwo independent areas and estimates only one high-probability region. For om-pleteness, by onsidering the whole test set, the statistis of the error �gures aregiven in Tab. 4.1.4.5 ConlusionsIn this hapter, a multiresolution approah for the detetion of breast anerbased on a SVM lassi�er has been presented. One the training phase is om-pleted, the detetion of the pathology is real-time estimated through the gener-ation of a multiresolution probability map of presene. The spatial resolution isiteratively enhaned only in those regions where the probability is higher.51



4.5. CONCLUSIONS
Method AverageError F igures

ε
(s)
1 λ υ̃

(s)
1 ε

(s)
2 λ υ̃

(s)
2

IMSA
s = 1 3.89 15.41 4.59 16.33
s = 2 3.40 7.65 4.02 6.13

s = Sopt = 3 3.05 1.13 3.79 0.96
BARE 3.77 10.49 4.31 8.92Table 4.1: Multiple detetion - Averaged error �gures when applying IMSA andBARE with noisy data.The e�etiveness of the approah has been numerially assessed showing aseleted set of experiments dealing with single and multiple inlusions. A om-parative analysis with the single resolution approah (BARE ) has been arriedout in order to underline the outperforming resolution auray provided by theIMSA multistep proedure.The generalization apabilities of the learning-by-example methodology hasbeen veri�ed by testing the SVM-based lassi�er with noisy data as well as withmeasured data related to di�erent breast harateristis respet to the trainingset.It has to be notied that three-dimensional reostrution has been obtainedstarting from the measurement performed with �xed probe height. Usually, thison�guration is typial for two-dimensional problem geometries sine a 2D planeat the same soure height is de�ned. As a matter of fat, the information enlosedin the measured sattering matrix is su�ient for the estimation of the pathologyposition in a 3D domain.
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Chapter 5Diretion of Arrival EstimationDealing with the proposed LBE approah, this hapter presents an innovativemulti-resolution approah for the real-time DOA estimation of multiple signalsimpinging on a planar array is presented. The method is based on a supportvetor lassi�er and it exploits a multi-saling proedure to enhane the angularresolution of the detetion proess in the regions of inidene of the inomingwaves. The data aquired from the array sensors are iteratively proessed witha support vetor mahine (SVM) ustomized to the problem at hand. The �nalresult is the de�nition of a map of the probability that a signal impinges on theantenna from a �xed angular diretion. Seleted numerial results, onernedwith both single and multiple signals, are provided to assess potentialities andurrent limitations of the proposed approah.
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5.1. INTRODUCTION5.1 IntrodutionIn the last deades, the tehnology of adaptive antenna arrays has been greatlyadvaned and applied to many mobile and wireless ommuniation systems [61℄[62℄.Within this framework, the antenna beam-forming plays an important role andthe estimation of the diretions of arrival (DOAs) of signals impinging on thearray is a ruial task in order to enhane the spatial diversity and onsequentlythe spetral e�ieny. As a matter of fat, suh an information enables the gen-eration or steering of the radiation pattern with a maximum towards the desiredsignals and nulls along the diretions of interfering signals [63℄[64℄. The e�ets ofinterferenes are mitigated and both the gain and the performane of the wholeommuniation system are enhaned. For suh reasons, the estimation of the
DOAs of unknown interfering and desired signals is of great interest and it isstill an open problem as on�rmed by the number of papers published on thistopi.In the sienti� literature, several methods have been proposed for the diretion�nding of multiple signals impinging on an array of narrow band sensors. Amongthem, the most widely known and used are ESPRIT (Estimation of Signal Pa-rameters via Rotational Invariane Tehnique) [65℄-[67℄ and MUSIC (MUltipleSIgnal Classi�ation) [68℄[69℄. Other approahes based on the maximum likeli-hood (ML) DOA estimation have been proposed [70℄[71℄, as well.In the last years, great attention has been also paid to the use of learning-by-examples (LBE) tehniques. LBE-based approahes are able to provide a goodtrade-o� between auray and onvergene, whih is mandatory for real timesystems where fast reations are required. Furthermore, they satisfatory dealwith unknown on�gurations (i.e., di�erent from those �learned� during the train-ing proess) thanks to their generalization apability. Within this framework, thebene�ts of using radial basis funtion neural networks (RBFNN) have been are-fully analyzed in [72℄. As a matter of fat, neural networks (NNs) are suitablein approximating non-linear funtions as those in DOAs estimation. Moreover,they an be easily implemented in analog iruits. An improved RBFNN-basedapproah has been presented by the same authors of [72℄ in [73℄ to address theproblem of traking an unknown number of multiple soures when no a-prioriinformation on the number of impinging signals is available. More spei�ally,the region above the antenna has been partitioned into angular setors and eahsetor �assigned� to a simplerNN , thus reduing with respet to [72℄ the problemomplexity as well as the omputational burden of the learning phase. Towardsthis end, eah network has been trained to detet the subset of inoming sig-nals that impinge on the orresponding angular setor. Aordingly, only those
NNs of the regions where the signals have been deteted in the �rst stage of theproess are ativated in the seond one to estimate the DOAs of the inomingsignals.More reently, some tehniques based on support vetor mahines (SVMs) [74℄56



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONhave been analyzed to pro�tably exploit their solid mathematial foundation instatistial learning theory [6℄. The main advantages of those approahes lie intheir ability to deal with various and omplex eletromagneti problems [75℄[38℄,and, analogously to NNs, in an easy hardware implementation [76℄. As far asthe DOA estimation is onerned, a support vetor regression (SV R) proedurehas been presented in [77℄ when dealing with linear arrays. In suh a ase, a
SVM has been used to estimate the DOA of eah impinging eletromagnetiwave starting from a set of known input-output examples where the DOAs ofthe signals were uniformly distributed in the whole angular region above thereeiver. Despite the generalization apability of the SV R-based method, ana-priori information on the number of soures and pre-�xed angular separationsbetween the DOAs (as in [72℄) have been onsidered to inrease the reliabilityof the estimation proedure. An extension of suh a model has been presentedin [78℄ and experimentally validated in [79℄ suessively.In this paper, an innovative proedure for real-time diretion �nding of signalsimpinging on a planar array of eletromagneti sensors is presented. The problemof theDOAs estimation is formulated as a two step proedure, where the �rst stepis aimed at determining the deision funtion that orretly lassi�es whateverinput pattern by means of a SVM-based approah. In the seond step, theoutput of the deision funtion is mapped into the a-posteriori probability thata signal impinges on the antenna from a �xed diretion. In order to inreasethe auray of the estimation proess and to redue the omputational burdena�eting other DOAs proedures, the proposed two-step strategy is nested intoan iterative multi-saling proess [80℄. Aordingly, the resolution auray isimproved only in those angular regions where the unknown soures are supposedto be loated at the previous iteration. More spei�ally, the algorithm �rstdetermines a oarse probability map of the DOAs starting from a training setwhere the inoming signals are non-uniformly distributed along the elevationdiretion, θ, and the azimuthal one, φ. Then, the SVM is used to lassify theinput test dataset at suessive resolution levels by performing a kind of synthetizoom in the angular regions of interest (ARoIs) where a higher probability isdeteted and onsidering the same training set, thus performed only one ando�-line. Conerning the antenna arhiteture and unlike [73℄ and [78℄, planararrays of sensors are onsidered sine linear arrays lak the ability to san in
3D-spae and the estimation of both the elevation θ and the azimuth φ angles isruial and has many appliations in various �elds of engineering. For instane, aomplete DOA information it is possible to improve the overage of transmissionin wireless ommuniations by avoiding interferenes and enhaning the systemapaity [81℄. More spei�ally, planar arrangements are very attrative in mobileommuniations with portable devies where the main beam must be sannedin any diretion [82℄. Moreover, the number of impinging signals is unknown aswell as their diretions belonging to the whole angular range above the planarantenna system (i.e., θ ∈ [0 : 90o] and φ ∈ [0 : 360o]).57



5.2. MATHEMATICAL FORMULATION
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Figure 5.1: Planar array geometry.The hapter is organized as follows. The formulation of the iterative two-step multi-resolution DOA approah (in the following denoted by the aronym
IMSA−SVM) is desribed in Setion 5.2. In order to show the innovative fea-tures of the approah and to assess its e�etiveness, a seleted set of numerialresults onerned with both single and multiple signals is reported and disussed(Set. 5.3). Moreover, some omparisons with state-of-the-art tehniques arealso reported. Finally, some onlusions are drawn in Set. 5.4.5.2 Mathematial FormulationLet us onsider a planar array of M isotropi elements displaed on a regularand retangular grid with inter-element spaing d on the x − y plane. A set of
I eletromagneti waves impinge on the array from unknown angular diretions
(θi, φi), i = 1, ... , I, as skethed in Fig. 5.1. The signals, supposed to be narrow-band and entered at the arrier frequeny f (λ being the orresponding free-spae wavelength), are generated by a set of eletromagneti soures plaed inthe far-�eld of the reeiving antenna. The open-iruit voltage at the output ofthe m-th sensor an be expressed as [78℄

vm =

I∑

i=1

{am (θi, φi) [Ei (xm, ym) · em]}+ gm, m = 1, ...,M (5.1)where am (θi, φi) = ej
2π
λ
sinθi(xmcosφi+ymsinφi), (xm, ym) being the loation of the m-th sensor expressed in wavelength, and gm is the bakground random noise at the

m-th loations. The noise samples are supposed to be statistially independentand haraterized by a random Gaussian distribution with zero mean value.58



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONMoreover, Ei and em are the eletri �eld assoiated to the i-th impinging waveand the e�etive length of the m-th array element.Aording to the guidelines desribed in [63℄ and [64℄ about the ontrol of adap-tive/smart antennas, the solution of the DOAs estimation problem is based alsoin this work on the measurement of the total orrelation matrix, de�ned as
Φ = E {v · v∗} (5.2)where v = {vm; m = 1, ...,M} and the supersript ∗ stands for omplex onju-gation, at the output of the planar array sine it ontains su�ient informationon the reeived signals [73℄.From a statistial point of view, the problem at hand an be formulated as thede�nition of the probability map of the angular inidene of the inoming wavesstarting from the knowledge of the total orrelation matrix Φ. Towards this end,let us partition the angular region above the array into a two-dimensional lattieofH = Hθ×Hφ ells, eah one orresponding to an angular setor of sides△θ and

△φ [Fig. 5.2(a)℄. The status χh of eah ell an be empty [χh = χ (θh, φh) = −1℄,if any signal impinges on the array from the angular region identi�ed by thesame ell, or oupied [χh = χ (θh, φh) = 1℄, otherwise. Aordingly, the origi-nal problem an be stated as follows: ��nd the a-posteriori probability funtion
Q (θ, φ) given a measured value of the total orrelation matrix Φ at the reeiver �.Mathematially, Q (θ, φ)an be also expressed as the linear ombination of thenon-overlapping basis funtions Bh (θ, φ), h = 1, ..., H de�ned over the angularlattie

Q (θ, φ) =
H∑

h=1

q (θh, φh)Bh (θ, φ) (5.3)where the weighting oe�ient q (θh, φh) is the probability value that a wave im-pinges on the array from the h-th angular setor [i.e., q (θh, φh) = Pr
{
χh = 1 ;

∣∣Φ
}℄and Bh (θ, φ) = 1 if (θ, φ) belongs to the h-th ell and Bh (θ, φ) = 0 otherwise.In order to improve the ahievable angular resolution, a multi-resolution repre-sentation of the unknown funtion Q (θ, φ) is looked for [Fig. 5.2(b) - r = 1℄ byexploiting an iterative proess analogously to [80℄. More spei�ally, the proba-bility funtion is expressed at the s-th step of the iterative proedure as a twofoldsummation of shifted and dilated spatial basis funtions

Q(s) (θ, φ) =

R(s)∑

r=0

H(r)∑

h(r)=1

q(s)
(
θh(r), φh(r)

)
Bh(r) (θ, φ) ; s = 1, ..., Sopt (5.4)

r being the resolution index and R(s) = s − 1. The summation over r rangesfrom 0 [Fig. 5.2(a)℄, whih orresponds to the largest harateristi length sale,to R(s) [Fig. 5.2(b)℄, whih orresponds to the smallest angular basis-funtionsupport at the s-th saling step. For a given value of r, H (r) = H
(r)
θ ×H

(r)
φ is thenumber of non-overlapped basis funtions entered in the angular sub-domainrepresented at the r-th resolution. Aordingly, the iterative DOA detetion59



5.2. MATHEMATICAL FORMULATION
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CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONproedure is aimed at loating the terms of small length sale at those ARoIs[e.g., the yellow ells in Figs. 2(a)-2(b)℄ where the signals are supposed to impingewith higher probability.In order to pro�tably exploit the multiresolution representation of the a-posterioriprobability funtion (5.4) and solving the arising DOA problem, the followingmultistep lassi�ation proess is performed by means of a SVM-based teh-nique. More in detail,
• Step 0 - SVM Training Phase. The SVM is trained one and o�-linestarting from the knowledge of a set of known examples (i.e, input/outputrelationships)

{[
Φ, (θn, φn) , χn = χ (θn, φn) ; n = 1, ..., N

](t)
; t = 1, ... , T

} (5.5)alled training set, where T is the number of training data. The N sam-ples of eah training data are omposed by I (t) examples onerned withangular positions (θi, φi), i = 1, ..., I (t), I(t) ≤ Imax where a signal im-pinges on the array [i.e., oupied diretions - χ (θi, φi) = 1 ; i = 1, ..., I (t)℄,while the remaining F (t) = N − I (t) are related to empty diretions [i.e.,
χ (θf , φf) = −1 ; f = 1, ..., F (t)℄.Starting from the knowledge of the training set, the problem turns out tobe the de�nition of a suitable disriminant funtion ℑ̂

ℑ̂ : Φ→ [χ (θh, φh) ; h = 1, ..., H ] (5.6)that separates the two lasses χ (θ, φ) = 1 and χ (θ, φ) = −1 on the basis ofthe total orrelation matrix Φ measured at the output of the planar array.In order to approah the problem with a single lassi�er, the problem athand is reformulated as that of building the following single output funtion
ℑ̂ :

[
Φ, (θn, φn) ; n = 1, ... , N

]
→ χ (θh, φh) , h = 1, ..., H. (5.7)Towards this purpose and aording to the SVM theory [6℄, the followinglinear deision funtion is adopted

ℑ̂
{
ϕ
(
Φ, (θn, φn)

)}
= w · ϕ

(
Φ, (θn, φn)

)
+ b, n = 1, ..., N. (5.8)

ℑ̂ is determined in a spae (alled �feature spae�) with a higher dimension-ality than the original input data spae and obtained through the non-linearoperator ϕ (·) [6℄. The unknown terms w and b, whih unequivoally de�nethe deision hyperplane ℑ̂, are the normal vetor and a bias, respetively.They are omputed during the Training Phase aording to the guidelinesdesribed in [38℄; 61



5.2. MATHEMATICAL FORMULATION
• Step 1 - Low-Order DOA Estimation (s = 1). At the �rst step, a oarseprobability map [Eq. (5.4) - s = 1℄ is determined by means of the SVMlassi�er mapping the deision funtion ℑ̂ into the a-posteriori probabilityfuntion.The unknown probability oe�ients q(s) (θh, φh)

⌋
s=1

, h = 1, ..., H are ap-proximated with a sigmoid funtion [6℄ as follows
q(s) (θh, φh) =

1

1 + exp
[
γℑ̂

{
ϕ
(
Φ, (θh, φh)

)}
+ ν

] (5.9)where γ and ν are two parameters omputed aording to a �tting proess[38℄ starting from a subset of the T training data of the Training Set ;
• Step 2 - IMSA− SVM Proess (s ≥ 1).� Step 2.a - Angular Regions of Interest (ARoIs) Identi�ation (s ←

s + 1). Starting from the probability map previously (i.e., at the
s− 1-th iteration) determined, suh a step is aimed at identifying theangular setors D(s)

ℓ , ℓ = 1, ..., L(s) where the signals are supposed toimpinge in order to improve the resolution only in those regions andenhane the auray of the DOA estimation. Towards this end, �rstthe values of the funtion Q(s−1) (θ, φ) are saled, thus de�ning thefollowing new set of normalized probability oe�ients
p(s−1)

(
θh(r), φh(r)

)
=
q(s−1)

(
θh(r), φh(r)

)

qM − qm
+

qm
qm − qM

,
h(r) = 1, ..., H(r)
r = 0, ..., R(s)

.(5.10)where qM = maxr=0,...,R(s)

{
maxh(r)=1,...,H(r)

[
q(s−1)

(
θh(r), φh(r)

)]} and
qm = minr=0,...,R(s)

{
minh(r)=1,...,H(r)

[
q(s−1)

(
θh(r), φh(r)

)]}. Suessively,the new probability funtion
P (s−1) (θ, φ) =

∑R(s−1)
r=0

∑H(r)
h(r)=1 p

(s−1)
(
θh(r), φh(r)

)
Bh(r) (θ, φ)is thresholded by nulling the saled oe�ients greater than a user-de�ned threshold η. Finally, the thresholded funtion

P
(s−1)
th (θ, φ) =

R(s−1)∑

r=0

H(r)∑

h(r)=1

pth
(
θh(r), φh(r)

)
Bh(r) (θ, φ) (5.11)where pth (θh(r), φh(r)

)
= p(s−1)

(
θh(r), φh(r)

) if p(s−1)
(
θh(r), φh(r)

)
> ηand pth (θh(r), φh(r)

)
= 0 otherwise, allows one to identify the ARoIs,

D
(s)
ℓ , ℓ = 1, ..., L(s) de�ned as those angular sub-domains where P (s−1)

th (θ, φ) 6=
0; 62



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION� Step 2.b - Multiresolution DOA Estimation. A syntheti zoom isperformed by re�ning the representation of the unknown funtion
Q(s) (θ, φ) and inreasing the angular resolution (r ← r + 1) onlyin the ARoIs identi�ed at (Step 2.a). Therefore, the multiresolu-tion a-posteriori probability funtion (5.4) is updated (1)1 by setting
Q(s) (θ, φ) = P

(s−1)
th (θ, φ) and omputing the new highest resolutionoe�ients, q(s) (θh(r), φh(r)

), when (θ, φ) ∈ D
(s)
ℓ , ℓ = 1, ..., L(s) as in(5.9);

• Step 3 - Termination Criterion (s = Sopt). The sequene of operationsof Step 2 is repeated until both the dimensions and the number of ARoIsbetween two onseutive yles are stationary [i.e., L(s) = L(s−1) and thevariations of the dimensions of the ARoIs are not greater than the highestangular resolution at the s-th step, △(s)
min = min

{
△θ

(s)
R(s), △φ

(s)
R(s)

}℄.5.3 Numerial Simulations and ResultsIn order to assess the e�etiveness and reliability of the proposed approah, anexhaustive set of numerial experiments has been performed and some seletedresults will be reported in the following for illustrative purposes. The remainingof this setion will �rstly (Set. 5.3.1) illustrate the behavior of the multi-salingproedure also in omparison with other state-of-the-art approahes for DOAestimation. The seond part (Set. 5.3.2) will be devoted to analyze the poten-tialities and urrent limitations of the IMSA − SVM approah when dealingwith various and hallenging eletromagneti senarios. In suh a framework,some on�gurations in whih onventional state-of-the-art signal subspae-basedarray proessing tehniques annot be applied are also dealt with in order topoint out the enhaned range of appliability of SVM approahes. Finally, auniform array of λ
2
-dipoles is onsidered (Set. 5.3.3) to verify the suitabilityand reliability of the proposed method in orrespondene with a realisti arraymodelling.With referene to the geometry shown in Fig. 5.1, a square planar array of

M = 16 isotropi radiators spaed by d = λ
2
is onsidered. The power of theimpinging signals has been set to Pi = 30 dB, i = 1, ..., I above the level of thebakground noise.Conerning the training set, the following setup T = 400 and Imax = 4 has beenassumed and the SVM lassi�er has been trained one and o�-line on the samedata set whatever the test experiment. As regards to the T =

∑Imax

i=1 Ti trainingexamples, di�erent senarios have been onsidered, Ti = 100 being the number1 (1)It is worth noting that at the s-th step of the multi-saling proedure only the angularranges belonging to the ARoIs are proessed by the SVM lassi�er with a non-negligible savingof omputational resoures. 63



5.3. NUMERICAL SIMULATIONS AND RESULTS
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(b)Figure 5.3: Single signal senario, I = 1 - Probability map determined by the
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CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONof on�gurations with i signals. Moreover, the atual DOAs of the signals of thetraining data have been randomly hosen in a disrete grid of loations (θn, φn),
n = 1, ..., N belonging to the the angular region above the antenna




θn = θ0 +
⌊
n−1√
N

⌋
∆θ

φn = φ0 +
⌈
n−1√
N

⌉
∆φ

, n = 1, ..., N (5.12)
⌊·⌋ and ⌈·⌉ being the �oor funtion and the eiling funtion, respetively. More-over, in order to fully assess the generalization properties of the SVM-basedapproah, the DOAs of the test examples are di�erent from those of the trainingdataset.5.3.1 Single Signal Senario - Comparative AssessmentThe �rst experiment deals with the DoA detetion of a single signal and a testset of T (test)

1 = 100 examples related to the single-signal senario has been onsid-ered. An illustrative desription of the behavior of the proposed IMSA−SVMapproah is shown in Fig. 5.3 dealing with the �representative� (of the methodperformane on the whole test dataset) on�guration of a signal oming from
(θ1 = 53o, φ1 = 260o). At the �rst step (s = 1), the planar angular region D(1) ispartitioned into H(s) = 81 ells (being ∆θ

(s)
(r) = 10o and ∆φ

(s)
(r) = 40o, r = 0, theangular steps along the elevation diretion, θ, and the azimuthal one, φ, respe-tively) and a oarse DOA probability map is determined following the proeduredesribed in Set. ?? (Step 1 ). Then, the multi-saling proedure takes plae(s ≥ 2). The ARoIs are identi�ed and partitioned into H

(2)
R(s)

⌋
R(s)=s−1

= 81ells with an angular resolution of ∆θ(2)(1) = 5o and ∆φ
(2)
(1) = 20o. For the sakeof spae, only the DOA probability map obtained at the end of the seond step(s = 2) is shown in Fig. 5.3(a). The proedure is then iterated until s = Sopt = 4[R(Sopt) = 3℄ with the �nal result reported in Fig. 5.3(b) haraterized by anangular resolution in D(4)

1 equal to ∆θ
(4)
(3) = 1.25o and ∆φ

(4)
(3) = 5o. As it an beobserved (Fig. 5.3), the region with higher probability of inidene turns out tobe loser and loser to the atual angular loation of the signal when inreasingthe step number. Quantitatively suh an event an be analytially quanti�ed byomputing the values of the loation index ς(s) (Fig. 5.2) and of the inidenearea ψ(s) de�ned as follows

ς(s) =
Φ(s)

max {Φ(s)}
× 100 (5.13)where

Φ(s) ,

√(
sinθcosφ− sinθ̂(s)cosφ̂(s)

)2
+

(
sinθsinφ− sinθ̂(s)sinφ̂(s)

)2
+

(
cosθ − cosθ̂(s)

)265



5.3. NUMERICAL SIMULATIONS AND RESULTSand
ψ(s) = π





∑R(s)
r=0

∑H(r)
h(r)=1

{
ς
(s)
h(r)

q(s)(θh(r),φh(r))
maxh(r){q(s)(θh(r),φh(r))}

}

∑R(s)
r=0

∑H(r)
h(r)=1

{
q(s)(θh(r),φh(r))

maxh(r){q(s)(θh(r),φh(r))}

}





2 (5.14)being ς(s)
h(r) =

[(
sinθh(r)cosφh(r) − sinθ̂

(s)cosφ̂(s)
)2

+
(
sinθh(r)sinφh(r) − sinθ̂

(s)sinφ̂(s)
)2

+

(
cosθh(r) − cosθ̂

(s)
)2
] 1

2 , (θ, φ) are the atual oordinates of the signal inidenepoint, whereas (θ̂, φ̂)
θ̂(s) =

∑R(s)
r=0

∑H(r)
h(r)=1{θh(r)q

(s)(θh(r),φh(r))}
∑R(s)

r=0

∑H(r)
h(r)=1{q(s)(θh(r),φh(r))}

φ̂(s) =

=
∑R(s)

r=0

∑H(r)
h(r)=1{φh(r)q

(s)(θh(r),φh(r))}
∑R(s)

r=0

∑H(r)
h(r)=1{q(s)(θh(r),φh(r))}

(5.15)identify the enter of the ℓ-th ARoI where the signal/signals is/are supposed toimpinge. As a matter of fat, the value of the loation index redues from ς(1) =
13.17 down to ς(Sopt) = 2.53 (being ς(2) = 4.10 and ς(3) = 2.87). Analogously,
ψ(1) = 2.74, ψ(2) = 0.94, ψ(3) = 0.36, until ψ(Sopt) = 0.14. As regards to the wholeset of test examples, the statistis of the �onvergene� values of the indexes (5.13)and (5.14) are given in the �rst blok of Tab. 5.2.In order to get an insight into the advantages of the proposed multi-resolutionapproah over the lassi�ation single-step tehniques, a bare DOA SVM-basedmethod has been onsidered and applied to the same test example. To fairly om-pare the two methods, the same training dataset has been used. Moreover, thesame angular resolution has been adopted in both ases. Towards this purpose,an angular lattie haraterized by a uniform grid whose ell side was equal tothe �nest disretization of the multi-resolution proedure (i.e., ∆θ = ∆θ

(4)
(3) and

∆φ = ∆φ
(4)
(3)), has been de�ned over the whole angular investigation domain ofthe single step SVM approah. As it an be observed [Fig. 5.4(a)℄, although thevalue of ς is quite lose to that of the IMSA strategy (i.e., ς⌋IMSA−SVM = 2.53vs. ς⌋SVM = 3.14), the extension of the inidene area turns out to be signi�-antly wider (ψ⌋IMSA−SVM = 0.14 vs. ψ⌋SVM = 2.79). On the other hand, itannot be negleted that the CPU-time of the test phase of the bare proedureis approximately �fty times the one of the IMSA−SVM beause of the need toobtain a detailed map in the whole investigation area D(1)

1 instead of in a limited
ARoI, D(Sopt)

1 , only. As a matter of fat, the number of test points used by the
IMSA approah turns out to be widely redued.For ompleteness, the results from other standard nonlinear lassi�ation meth-ods, suh as the multilayer pereptron (MLP ) and the radial basis funtions(RBF ) neural network, have been analyzed, as well. More spei�ally, the DOA66
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5.3. NUMERICAL SIMULATIONS AND RESULTS
Min Max Avg V ar
Single Signal (I = 1)

ς̂ 0.16 43.25 2.81 8.76

ψ̂ 0.02 9.14 0.25 1.35
Multiple Signals (I = 2)

ς̂ 0.31 58.47 4.51 8.56

ψ̂ 0.007 11.05 0.28 1.54
Multiple Signals (I = 3)

ς̂ 0.38 17.35 5.55 2.14

ψ̂ 0.009 0.37 0.15 0.34
Multiple Signals (I = 4)

ς̂ 0.47 70.72 17.29 13.58

ψ̂ 0.005 1.89 0.17 0.69Table 5.1: Statistis of the averaged performane indexes (ς̂ =
∑I

i=1 ς
(i) and

ψ̂ =
∑I

i=1 ψ
(i)) for di�erent signal on�gurations (I = 1, 2, 3, 4).probability maps obtained with the MLP -based and RBFNN-based lassi�ersare reported in Figs. 5.4(b) and 5.4(), respetively. Whatever the method, theahieved estimate does not appear to be adequate and ertainly not omparableneither with that of the IMSA− SVM [Figs. 5.4(b)-5.4() vs. Fig. 5.3(b)℄ norwith that of the bare SVM [Figs. 5.4(b)-5.4() vs. Fig. 5.4(a)℄ as also on�rmedby the values of the loation index: ς⌋RBF = 10.21 and ς⌋MLP = 25.91.The last analysis is onerned with the omparison between the IMSA− SVMand those state-of-the-art methods for DOA estimation aimed at determiningthe angular inidene of the signals, namely MUSIC, ESPRIT (i.e., two one-dimensional ESPRIT s independently-applied to the arrays followed by an align-ment proedure to assoiate the estimated azimuth and elevation angle), 2D-unitary ESPRIT [67℄, and a support vetor regression-based (SV R) approah.Towards this end, the azimuthal diretion of the atual signal has been �xed to

φ = 260o, while the elevation angle has been varied in the range θ ∈ [20o ÷ 80o].Moreover, the SV R algorithm has been previously trained with a dataset om-posed by T = T1 = 100 examples onerned with only one signal (I = 1). Themethods are then ompared by means of the resulting signal loation error, ς.Beause of the planar array of isotropi elements and as expeted [83℄, the per-formanes of the DOA tehniques in θ elevation-estimation turn out to better athigh elevations (θ→ 0o) [Tab. II℄, while the φ azimuth-estimation is greatest atlow elevations (θ → 90o). Moreover, the values of the estimation indexes pointout that the IMSA − SVM (last olumn - Tab. 4.1) is able to obtain similar68
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DOA Method

θ1 ESPRIT 2DESPRIT MUSIC SV R IMSA− SVM (unif) IMSA− SVM

20o 0.16 0.08 0.34 1.21 0.75 0.52

40o 0.51 0.22 0.59 1.38 1.17 0.83

60o 0.51 0.27 0.68 1.64 1.52 2.22

80o 0.68 0.36 0.74 1.56 1.64 4.93

Table5.2:Singlesignalsenario,
I
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loationindex
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results, in terms of angular resolution, than those provided by the SV R and ofthe same order in magnitude of MUSIC and ESPRIT s exept for wider angles(θ ≥ 60o), even though these latter need more CPU-time (i.e., an optimized
IMSA − SVM implementation just needs few milliseonds on a PC equippedwith a 3.0GHz proessor and 2GHz of RAM). As regards to the growing of theloation index around 60o, its mainly depends on the training set. As a matter offat, it an be avoided by modifying the o�-line training phase. For instane, thehoie of a uniform angular distribution of the training samples (Fig. 5.5), in-stead of a non-uniform arrangement, allows one to obtain a behavior of ς almostinvariant to θ for medium-high elevations.In order to point out the generalization apabilities of the proposed approahas well as its robustness to the model toleranes [74℄[84℄, the e�et of the arrayfailure has been evaluated and the arising results ompared to those with 2D-unitary ESPRIT whih demonstrated several advantages overMUSIC and thestandard ESPRIT implementation. Towards this end, an inreasing number ofarray elements has been swithed o�. Moreover, the a-priori information on thefailure of some array elements has not been exploited through the de�nition ofan ad-ho training set, but the same non-uniform set of input-output examplesonerned with the unperturbed array struture has been used. The results ofthe omparative assessment when (θ1 = 53o, φ1 = 260o) are reported in Fig. 5.6.70
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SVM in deteting the DOAs of multiple signals.Dealing with the detetion of two di�erent inidene points, the �rst example isonerned with test signals oming from (θ1 = 12o, φ1 = 165o) and (θ2 = 82o, φ2 = 165o),respetively. The probability maps estimated by the IMSA−SVM at di�erentsteps are shown in Fig. 7 together with those obtained with the single-step SVMlassi�ation proedure [Fig. 5.8(d)℄, the MLP -based approah [Fig. 5.8(e)℄,and the RBF tehnique [Fig. 5.8(f )℄. As expeted and on�rming the outomesfrom the study of the single-signal detetion, the multi-saling proess allowsone to signi�antly enhane the performanes of the single-step lassi�ation ap-proahes as pitorially shown in Fig. 5.7 and quantitatively on�rmed by theindexes in Tab. 5.3. Moreover, it is worth noting that this onlusion is not lim-ited to a partiular on�guration of inidene angles, but it holds true whateverthe two-signals senario under test.In order to assess the stability of the proposed approah, a test set omposedby T (test)

2 = 100 examples has been onsidered. The results obtained with the
IMSA − SVM are summarized in Tab. 5.1 (seond blok). As expeted, themean values of the averaged performane indexes (ς̂I ,

∑I
i=1 ς

(i) and ψ̂I ,∑I

i=1 ψ
(i)) turn out to be very lose to those of the previous test example [i.e.,

avg (ς̂2) = 4.51, avg (ψ̂2

)
= 0.28 versus ς(Sopt)

1 = 4.55, ψ(Sopt)
1 = 0.23 and ς(Sopt)

2 =

3.90, ψ(Sopt)
2 = 0.25℄.The seond numerial experiment, onerned with multiple inidenes, onsiders71
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5.3. NUMERICAL SIMULATIONS AND RESULTS
Method DOA Indexes

ς1 ψ1 ς2 ψ2

IMSA− SVM
s = 1 8.91 2.33 10.27 3.08
s = 2 5.90 0.54 8.46 0.82

s = Sopt = 3 4.55 0.23 3.90 0.25
Bare SVM 6.04 0.67 16.78 3.78

MLP 17.54 0.27 30.53 2.21
RBF 17.19 0.28 27.77 0.99Table 5.3: Multiple signals senario, I = 2. Performane indexes when applying

IMSA−DOA, single-step SVM , multi layer pereptron (MLP ) neural network,and radial basis funtion (RBF ) neural network.three-signals on�gurations. As regards to the results for a test set of T (test)
3 = 50three-signals examples, the values in the third blok of Tab. 5.1 indiate that theresolution auray of the proposed approah does not signi�antly redue withrespet to the single-signal or two-signals senarios [avg (ς̂3) = 5.55, avg (ψ̂3

)
=

0.15 vs. avg (ς̂2) = 4.51, avg (ψ̂2

)
= 0.28 and ς̂1 = 2.81, ψ̂1 = 0.25℄. As anillustrative example, let us onsider the ase of a set of signals impinging onthe array from (θ1 = 8o, φ1 = 85o), (θ2 = 68o, φ2 = 95o), (θ3 = 55o, φ3 = 290o).Starting from the oarse map determined, three di�erent ARoIs are suessivelyidenti�ed [Fig. 5.9(a)℄ and better resolved thus iteratively improving the DOAresolution auray as pointed out by the indexes in Tab. 5.4 where the valuesestimated by the other lassi�ation approahes are reported [Fig. 5.9(b)℄, aswell. By omparing the distribution at the Sopt-th step of the IMSA and theone from the bare SVM , it is evident the improvement guaranteed by the multi-saling proess both in resolving and properly loating a number of ARoIs equalto the number of signals (I).In the third experiment, I = 4 (I = Imax) signals impinge on the planar array.Figure 5.10 shows the results provided by the IMSA− SVM and in orrespon-dene with a set of representative examples. More in detail, the �rst example(Con�guration 1/1/1/1) refers to a on�guration where four separated signals anbe reognized [(θ1 = 35o, φ1 = 35o), (θ2 = 20o, φ2 = 115o), (θ3 = 70o, φ3 = 135o),

(θ4 = 80o, φ4 = 260o) - Figs. 5.10(a)-5.10()℄. The seond example [Fig. 5.11(d)℄deals with a two-lusters setup [Con�guration 2/2 - (θ1 = 15o, φ1 = 75o), (θ2 = 25o, φ2 = 120o),
(θ3 = 75o, φ3 = 270o), (θ4 = 65o, φ4 = 300o)℄, while a single signal and a lusterof three-signals are present in the last example [Con�guration 1/3 - (θ1 = 15o, φ1 = 105o),
(θ2 = 80o, φ2 = 275o), (θ3 = 85o, φ3 = 300o), (θ4 = 75o, φ4 = 315o)℄. Whateverthe example, the multi-saling proess is able to identify with an ever inreasingresolution from s = 1 [Fig. 5.10(a)℄ up to s = Sopt = 3 [Fig. 5.10()℄ the ARoIs74
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DOA Indexes

Method ς1 ψ1 ς2 ψ2 ς3 ψ3

IMSA− SVM
s = 1 5.50 0.2 5.59 1.43 4.61 1.56
s = 2 4.15 0.06 5.42 0.74 4.43 0.55

s = Sopt = 3 4.24 0.009 5.19 0.33 3.10 0.14
Bare SVM 10.11 0.35 4.34 1.44 16.52 1.55

MLP 2.45 0.6 21.77 1.09 22.82 2.36
RBF 28.31 1.35 37.34 0.49 29.57 0.67Table 5.4: Multiple signals senario, I = 3 (Con�guration 1/1/1). Performaneindexes when applying IMSA−DOA, single-step SVM , multi layer pereptron(MLP ) neural network, and radial basis funtion (RBF ) neural network.

Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM
s = 1 6.84 0.40 24.37 0.40 23.31 1.48 25.47 1.56
s = 2 5.85 0.31 28.01 0.31 16.96 0.91 8.08 0.68

s = Sopt = 3 3.44 0.16 29.33 0.16 12.31 0.21 7.42 0.24

Bare SVM 8.37 2.89 24.71 2.89 26.52 2.89 25.68 2.89

MLP 38.98 0.52 8.91 0.52 35.34 1.82 17.46 1.69

RBF 15.19 0.32 18.69 0.32 40.65 1.81 22.01 0.91Table 5.5: Multiple signals senario, I = 4 (Con�guration 1/1/1/1). Perfor-mane indexes when applying IMSA − DOA, single-step SVM , multi layerpereptron (MLP ) neural network, and radial basis funtion (RBF ) neural net-work.
75
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CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION
Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM
s = 1 15.50 0.89 11.51 0.89 45.50 2.98 57.71 2.98
s = 2 12.78 0.39 10.65 0.39 10.80 0.72 24.12 0.72

s = Sopt = 3 12.91 0.16 10.55 0.16 4.71 0.26 17.01 0.26

Bare SVM 15.46 0.91 11.64 0.91 46.53 3.17 58.66 3.17

MLP 9.35 0.29 8.66 0.29 13.75 1.75 27.43 1.75

RBF 8.06 0.26 8.77 0.26 14.84 0.57 9.50 0.57Table 5.6: Multiple signals senario, I = 4 (Con�guration 2/2). Performaneindexes when applying IMSA−DOA, single-step SVM , multi layer pereptron(MLP ) neural network, and radial basis funtion (RBF ) neural network.to whih the inidene diretions of the atual signals belong as pointed out bythe numerial indexes ψ(i), i = 1, ..., I in Tab. 5.5. On the other hand, it shouldbe notied that the DOA estimation proess tends to luster multiple regions-of-inidene in a single ARoI when the angular separations among the signalsredue. Suh an event takes plae also in orrespondene with the �Con�gura-tion 2/2� [Fig. 5.11(d) - Tab. 5.6℄ where two ARoIs are identi�ed. It is evenmore evident in Fig. 5.11(e) (Tab. 5.7) where the angular inidenes of threesignals are deteted in only one ARoI. The �lustering� e�et is quantitativelypointed out by the behavior of the averaged loalization index (Tab. 5.1 - fourthblok) when dealing with the omplete test set (T (test)
4 = 50) to whih previousexamples belong. As a matter of fat, there is a signi�ant inrease of the avg (ς̂)ompared to the values of the same quantity when I = 1, 2, 3 [avg (ς̂4) = 17.29vs. avg (ς̂1) = 2.81, avg (ς̂2) = 4.51, avg (ς̂3) = 5.55℄, even though the value of

avg
(
ψ̂
) remains lose to those of other multiple-signals on�gurations sine theestimated ARoIs still arefully identify the atual inidene areas.The fourth and �fth experiments deal with more ritial test senarios sine theexamples under test are onerned with a number of signals di�erent from thatin the training set (i.e., I 6= 1, 2, 3, 4). More spei�ally, let us onsider theClustered Distribution of I = 18 signals with inidene diretions indiated bythe white points in Fig. 5.12. It is worth notiing that suh a on�gurationturns out to be not admissible (i.e., I = 18 estimates annot be obtained) forsignal subspae-based array proessing tehniques as 2D-unitary ESPRIT whenthe planar array struture at hand is used. As a matter of fat, the maximumnumber of soures 2D-unitary ESPRIT an handle is equal to [67℄

I2DESPRIT
max = min {U × (V − 1) ; V × (U − 1)} (5.16)being M = U × V . On the other hand, it should be onsidered that an high77
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5.3. NUMERICAL SIMULATIONS AND RESULTS
Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM
s = 1 16.98 0.88 39.13 2.81 54.57 2.81 64.78 2.81
s = 2 16.51 0.62 6.04 1.70 22.43 1.70 35.70 1.70

s = Sopt = 3 8.13 0.59 6.18 1.46 11.84 1.46 28.89 1.46

Bare SVM 17.38 0.87 39.45 2.85 54.87 2.85 65.72 2.85

MLP 11.62 0.19 27.46 1.08 11.41 1.08 8.15 1.08

RBF 6.51 0.10 16.85 0.10 3.01 0.10 20.63 0.10Table 5.7: Multiple signals senario, I = 4 (Con�guration 1/3). Performaneindexes when applying IMSA−DOA, single-step SVM , multi layer pereptron(MLP ) neural network, and radial basis funtion (RBF ) neural network.
Method DOA Indexes

ς̂ ψ̂
IMSA− SVM 1.20 0.21
Bare SVM 2.82 1.94

MLP 13.78 1.66
RBF 13.62 1.21Table 5.8: Multiple signals senario, I = 18 (Clustered Distribution). Perfor-mane indexes when applying IMSA − DOA, single-step SVM , multi layerpereptron (MLP ) neural network, and radial basis funtion (RBF ) neural net-work.dimensional array proessing is enabled widening the size of the planar array (i.e.,the number of array sensors) at the expense of the omputational omplexitythat, unlike SVM-based methods, exponentially grows.Figure 5.12 ompares the �onvergene� (s = Sopt = 3) map provided by the

IMSA − SVM and the ones from other single-step lassi�ers. As it an beobserved, the multi-saling proess is still able to arefully estimate the ARoIto whih the atual signals belong with a degree of auray higher than thatfrom the other tehniques both in terms of loalization and area extension (Tab.5.8). Similar onlusions hold true when dealing with the detetion of the signalsdistribution displayed in Fig. 5.13, although the detetion of the single signal onthe bottom of the region of analysis appears to be more ritial probably beauseof the absene of similar spatial on�gurations in the training set.Finally, the last experiment is onerned with a senario where there are notsignals that impinge on the array and the noise level has been varied from the80
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∆θ

(2)
(1) = 5o and ∆φ

(2)
(1) = 20o).referene value used for the SVM training [Pn = 20 dB (Test Set) vs. Pn = 0 dB(Training Set)℄ thus further ompliating the test ase. As a matter of fat,neither the free-ase example is present in the training set nor the same noiselevel has been �learned�. Nonetheless, the SVM-based lassi�er did not detetedthe presene of any signal thus de�ning a uniform distribution of probability [Fig.5.14(a)℄. Otherwise, the other methods give olor-maps with some �artifats�[see Figs. 5.14(b)-5.14()℄ although haraterized by very small values of theprobability of signal inidene.5.3.3 Dipole Array AntennaIn the last experiment, a uniform array of λ

2
-dipoles is taken into aount withdipoles oriented along the x axis. Therefore, the e�etive length [82℄ of the arrayelement turns out to be

em =
λ

π

[
cos

(
π
2
sinθcosφ

)

1− sin2θcos2φ

]
[
(cosθcosφ) θ − (sinφ)φ

] (5.17)Moreover, the inter-element distane has been hosen equal to dx = 0.65λ and
dy = 0.5λ [85℄. Then, a subset of the experiments of the previous setions, butwith the dipole array, has been dealt with to evaluate the appliability of the
IMSA− SVM approah to non-ideal eletromagneti senarios, as well.In the �rst example (I = 1), the multi-saling proedure stops after Sopt = 4iterations and the �nal result is shown in Fig. 5.15. Likewise the ase with82
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• the use of a lassi�er based on SVM allows one to estimate the DOAprobability map in real time;
• thanks to the SVM generalization apability, the IMSA − SVM be-haves properly when dealing with omplex eletromagneti senarios non-84
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5.4. CONCLUSIONSneessarily belonging to the set of training examples;
• the SVM-based approah is able to estimate the DOAs of a number ofsoures greater than the maximum allowed by onventional eigenvalue de-omposition methods for a �xed planar array geometry;
• unlike 2−D subspae-based algorithms, the omputational omplexity doesnot inrease with the size of the retangular array;
• the proposed LBE tehnique adapts to element failure or other soure oferrors oming from the toleranes in the array struture that ause non-negligible performane degradation in onventional estimation tehniqueswhih require highly alibrated antennas with idential radiation proper-ties;
• the a-priori knowledge (deterministi or statistial) on the array on�g-uration and radiation pattern harateristis an be easily and usefullyexploited by de�ning suitable IMSA− SVM training sets;
• the multi-saling proedure (IMSA) provides good results dealing withboth single-signal and multiple-signals on�gurations with an angular res-olution omparable to that of other state-of-the-art DOA algorithms;
• system omplexity, lassi�er arhiteture, and omputational osts signi�-antly redue with respet to the �bare� lassi�ation.
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Chapter 6Real-Time Passive Loalization andTrakingAn innovative strategy for passive loalization of transeiver-free objets is pre-sented. The loalization is yielded by proessing the reeived signal strengthdata measured in an infrastrutured environment. The problem is reformulatedin terms of an inverse soure one, where the probability map of the preseneof an equivalent soure modeling the moving target is looked for. Towards thisend, a ustomized lassi�ation proedure based on a support vetor mahineis exploited. Seleted, but representative, experimental results are reported toassess the feasibility of the proposed approah and to show the potentialities andappliability of this passive and unsupervised tehnique.
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6.1. INTRODUCTION6.1 IntrodutionIn the reent years, there has been a wide and rapid di�usion of wireless sensornetworks (WSNs) [86℄ thanks to the availability of suh low-power and perva-sive devies integrating on-board sensing, proessing, and radio frequeny (RF )iruitry for information transmission. Usually, short-range ommuniations areat hand sine the wireless nodes are generally densely distributed and hara-terized by low power onsumption to ensure a long lifetime. Therefore, WSNshave been also pro�tably used for loation and traking purposes. In suh aframework, the main e�orts have been devoted to develop ad-ho systems basedon dediated transponders/sensors [87℄ or assuming an �ative� target equippedwith a transmitting devie [88℄[89℄. Di�erent properties of the reeived signal,suh as the time of arrival (TOA) and the diretion of arrival (DOA), have beensuessfully exploited to address the loalization problem [90℄[91℄. Other modal-ities to loate ative targets are based on the evaluation of the reeived signalstrength (RSS) [92℄[93℄[94℄[95℄. This is an easily measurable quantity that hasbeen also used to loalize the wireless nodes of the network through e�etivetriangulation strategies [93℄. Moreover, the distane between nodes has beenestimated thanks to simpli�ed radio propagation models. Although easier thana �passive� loalization tehnique, the main drawbak of these approahes is theneed of the target to be equipped with an ad-ho devie. Whether suh a fatan be onsidered negligible when traking either objets or animals (althoughthe osts unavoidably inrease), other problems arise when dealing with people(e.g., privay) and espeially with non-ooperative subjets as for elderly people.Moreover, suh wearable devies an undergo (asual or voluntary) damages thuslimiting the reliability of the traking system.Other strategies onerned with transeiver-free targets have been also presentedin the sienti� literature. State-of-the-art approahes are based on Dopplerradar systems able to estimate the distane between the target and the sensor[96℄. As a matter of fat, moving targets an be traked through the analysisof the Doppler signature indued by the objet motion [97℄. Unfortunately, thearising performane in real environments an be strongly in�uened by non-negligible instabilities leading to several false alarms. Furthermore, slow-movingtargets [98℄ are not generally deteted.This paper is aimed at presenting an inversion proedure, preliminary validatedin [99℄, for the loalization and traking of passive objets starting from themeasurements of the RSS indexes available at the nodes of a WSN . Sine thetransmission of information among the wireless nodes is allowed by RF signals,the arising eletromagneti radiations an be also pro�tably exploited to sensethe surrounding environment. Indeed, any target lying within the environmentinterats with the eletromagneti waves radiated by the nodes. Therefore, themeasurements of the perturbation e�ets on the other reeiving nodes is dealtwith a suitable inversion strategy to determine the equivalent soure model-88
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(a)

(b)Figure 6.1: Equivalent Traking Problem - Sketh of (a) the traking senarioand (b) the equivalent inverse problem.
ing the presene of the target/satterer generating the perturbation itself. Byvirtue of the fat that the number of nodes in a WSN an vary and the needto have a simple and �exible traking/loalization method allowing real-timeestimates, a learning-by-examples (LBE) strategy based on a Support VetorMahine (SVM) is used.The outline of the hapter is as follows. The mathematial issues onernedwith the proposed approah are detailed in Set. 6.2 where the SVM-basedmethod is desribed, as well. In Set. 6.3, representative results from a wideset of experiments dealing with the traking of single as well as multiple targetsin both outdoor and indoor WSN deployments are shown. Eventually, someonlusions are drawn (Set. 6.4). 89



6.2. MATHEMATICAL FORMULATION6.2 Mathematial FormulationLet us onsider the two-dimensional (2D) senario shown in Fig. 6.1(a). Theinvestigation domain D is inhomogeneous and onstituted by a set of obstalesand moving targets to be loalized/traked all lying in free-spae. The knownhost senario (i.e., the target-free domain) is desribed by the objet funtion
τh (r) = εh (r)− 1 − j σh(r)

ωε0
where ω is the working angular frequeny, r = (x, y)is the position vetor, εh and σh being the dieletri permittivity and the on-dutivity, respetively. Moreover, the target/s is/are identi�ed by the dieletridistribution τo (r), r ∈ Do. The area under test is infrastrutured with a WSNand S nodes are deployed at rs, s = 1, ..., S spatial loations. The s-th wirelessnode radiates an eletromagneti signal, ξincs (r) (1)1, and the �eld measured bythe other S− 1 nodes and arising from the interations of the inident �eld withthe senario under test is given by

ξtots (rm) = ξincs (rm) +

∫

D

J (r′)G0 (r
′, rm) dr

′ (6.1)where G0 is the free-spae Green's funtion [100℄ and rm is the position of the
m-th (m = 1, ..., S − 1) reeiving node. As a matter of fat, the �eld indued in
D is equivalent to that radiated in free-spae by an equivalent urrent density
J (r) [101℄ modeling the presene of whatever disontinuity of the free-spae (i.e.,both the obstales and the moving targets)

J (r) = τ (r) ξtot (r) , r ∈ D (6.2)where τ (r) = τo (r) if r ∈ Do and τ (r) = τh (r) if r ∈ Dh = D −Do, Do and Dhbeing the support of the targets and its omplementary area.Equation (6.1) an be reformulated in a di�erent fashion by de�ning a di�erentialequivalent urrent density Ĵ (r) radiating in the inhomogeneous host medium[100℄ [Fig. 6.1(b)℄. The radiated �eld an be then expressed as follows
ξtots (rm) = ξincs (rm) +

∫

D

τh (r
′) ξtots,u (r

′)G0 (r
′, rm) dr

′ +
∫

D0

Ĵ (r′)G1 (r
′, rm) dr

′ (6.3)where Ĵ (r) = τ̂ (r) ξtots,p (r) and τ̂ (r) = τ (r) − τh (r) is the di�erential objetfuntion. In (6.3), the seond term on the right side is the �eld sattered fromthe host medium without targets, ξtots,u being the eletri �eld related to ξincs inorrespondene with the target-free senario. Moreover, G1 is the inhomoge-neous Green's funtion for the target-free on�guration [100℄, whih satis�es the1 (1) The salar ase has been onsidered to simplify the notation. However, the extensionto the vetorial ase is straightforward. 90



CHAPTER 6. REAL-TIME PASSIVE LOCALIZATION AND TRACKINGfollowing integral equation
G1 (r, r

′) = G0 (r, r
′) +

∫

D

τh (r
′)G0 (r, r”)G1 (r”, r

′) dr”. (6.4)Sine the host medium is a-priori known, Equation (6.3) an be rewritten as
ξtots (rm) = ξ̂incs (rm) +

∫

Do

Ĵ (r′)G1 (r
′, rm) dr

′ (6.5)where ξ̂incs (rm) is the �eld of the senario without targets and equivalent to an�inident� �eld on the targets.With the knowledge of G1 (i.e., the knowledge of the target-free senario) the sat-tering problem turns out to be the retrieval of the di�erential soure Ĵ oupyingthe target domain Do. The detetion of the target position and the de�nition ofthe target trajetory in D an be then formulated as the de�nition of the sup-port of the di�erential equivalent soure, whih satis�es the inverse satteringequation (6.5), starting from the measurements of ξtot (rm), m = 1, ..., S − 1.This is possible in a WSN-infrastrutured environment sine the nodes at handare simple and heap devies that give an indiret estimate of the �eld valuethrough the RSS index. Aordingly, the RSS is measured at the m-th nodewhen the s-th node is transmitting by onsidering both the target-free senario[ξincs (rm) knowledge℄ and the presene of targets within D [ξtots (rm) knowledge℄and the di�erential �eld ξsctm,s = ξtots (rm)−ξ̂
inc
s (rm) ould be used for the inversionproedure.However, it is worth to take into aount that the power radiated by the WSNnodes an vary due to several fators (e.g., battery level of the WNS nodes,environmental onditions) thus �blurring� the data aquisition and, onsequently,ompliating the solution of the inverse problem at hand. To overome thisdrawbak, the inversion is statistially reast as the de�nition of the probabilitythat a target is loated in a position of D starting from the knowledge of ξsctm,s,

s = 1, ..., S, m = 1, ..., S, m 6= s. The arising lassi�ation problem is then solvedby means of a suitable SVM-based approah. More spei�ally, the region Dwhere the targets are looked for is partitioned into a grid of C ells entered at rc,
c = 1, ..., C. Eah c-th ell is haraterized by its state, χc, whih an be eitherempty (χc = −1) or oupied (χc = 1) whether a target (i.e., the orrespondingdi�erential equivalent soure) is present or absent. Moreover, the probabilitythat a target belongs to the c-th ell, αc = Pr {χc = 1| (Γ, c)}, is given by

αc =
1

1 + exp
{
pH

[
ϕ (Γ, c)

]
+ q

} , c = 1, ..., C (6.6)where Γ =
{
ξsctm,s; s = 1, ..., S; m = 1, ..., S; m 6= n

}, and p, q are unknown pa-rameters to be determined [6℄. In (6.6), the funtion ϕ (·) is a non-linear mappingfrom the data of the original input spae, Γ, to a higher dimensional spae (alledfeature spae) where the data are more easily separable through a simpler fun-tion (i.e., the hyperplane H). 91



6.3. EXPERIMENTAL VALIDATIONThe hyperplane H is o�-line de�ned throughout the training phase by exploitingthe knowledge of a set of T known examples where both the input data (Γ,
t = 1, ..., T ) and the orresponding maps (χ

t
= {χc,t; c = 1, ..., C}, t = 1, ..., T )are available. Usually, a linear deision funtion is adopted

H
[
ϕ (Γ, c)

]
= w · ϕ (Γ, c) + b, c = 1, ..., C (6.7)

w and b being an unknown normal vetor and a bias oe�ient, respetively.Thedeision funtion parameters unequivoally de�ne the deision plane and areomputed in the training phase by minimizing the following ost funtion
Ψ (w) =

‖w‖2

2
+

λ
∑T

t=1 C
(t)
+

T∑

t=1

C
(t)
+∑

i=1

η
(t)
c+ +

λ
∑T

t=1C
(t)
−

T∑

t=1

C
(t)
−∑

f=1

η
(t)
c− (6.8)subjet to the separability onstraints

w · ϕ (Γ, c) + b ≥ 1− η
(t)
c+, c = 1, ..., C

w · ϕ (Γ, c) + b ≤ η
(t)
c− − 1, c = 1, ..., C

(6.9)where λ is a user-de�ned hyperparameter [102℄ that ontrols the trade-o� betweenthe training error and the model omplexity to avoid over�tting. Moreover, η(t)c+and η
(t)
c− are the so-alled slak variables related to the mislassi�ed patterns.They are introdued beause the training data are usually not ompletely sepa-rable in the feature spae by means of a linear hyperplane.The minimization of (6.8) is performed following the guidelines detailed in [38℄and also exploiting the so-alled kernel trik method [6℄.6.3 Experimental ValidationThe feasibility and the e�etiveness of the proposed approah have been as-sessed through an extensive experimental validation arried out in both indoorand outdoor senarios (Fig. 6.2). The nodes have been plaed at �xed positions

rs = (xs, ys), s = 1, ..., S, on the perimeter of the investigation area D. In allexperiments, S = 6 Tmote Sky nodes have been used and the region D has beenassumed having the same size (−20λ ≤ x ≤ 20λ and −12λ ≤ y ≤ 12λ) whateverthe senario at hand, λ being the free-spae wavelength of the wireless signalstransmitted by the nodes (e.g., f = 2.4GHz). Although the same topology hasbeen adopted for outdoor as well as indoor situations, two di�erent trainings ofthe SVM-based approah have been performed sine the arising eletromagnetiphenomena signi�antly di�er (e.g., the eletromagneti interferenes). Other-wise, the alibration of training examples (T ), the separation hyperplane H (λ),and the disretization of the investigation area (C) has been performed onlyone, namely for the outdoor ase, sine the format of the data proessed by the
SVM does not hange. More in detail, the following setup has been onsidered:92
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T ∈ [100, 700] with step ∆T = 100, λ = 10i, i = {0, 1, 2, 3}, and C ∈ [15, 960]from a rough disretization with C = 5 × 3 ells of dimension 4λ × 4λ to the�nest one having C = 40× 24 ells of dimension λ× λ. These values have beenalibrated with referene to single-target experiments by evaluating the behaviorof the loalization error de�ned as

ρ =

√(
xactj − x

est
j

)2
+
(
yactj − y

est
j

)2

ρmax

(6.10)where ractj =
(
xactj , yactj

) and restj =
(
xestj , yestj

) are the atual and estimatedpositions of the target, ρmax being the maximum admissible loation error. Asfor the test ase at hand, it turns out that ρmax =
√
X2

D + Y 2
D and restj has beenalulated from the probability map aording to the following relationships

xestj =

∑C
c=1 αcxc∑C
c=1 αc

yestj =

∑C
c=1 αcyc∑C

c=1 αc

. (6.11)Figure 6.3 gives the normalized values of the loation indexes obtained for dif-ferent ombinations of the ontrol parameters. Eah plot refers to the variationof a ontrol parameter keeping onstant the others (T opt = 500, λopt = 100,
Copt = 60). 94
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(b)Figure 6.4: Single target loalization - Outdoor Senario - Probability maps ofthe investigation region D obtained when the test data (a) belongs and (b) doesnot belong to the training data set.
As far as the SVM training phase is onerned, the referene measurements havebeen �rst olleted in the target-free senarios [i.e., τ̂ (r) = 0⇒ ξsctm,s = 0, m, s =
1, ..., S, m 6= s℄. Suessively, the sets of RSS measurements [i.e., RSSm,s (t),
m, s = 1, ..., S, m 6= s, t = 1, ..., T ℄ have been olleted with the target loatedat T di�erent positions, rj = (xj , yj), j = 1, .., T , randomly seleted within D toover as uniformly as possible the whole area under test.As regards the SVM test step, both single (J = 1) and multiple (J = 2) targettraking problems have been onsidered.95
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Outdoor Indoor

T ime Instant ρ ρ× ρmax [λ] ρ ρ× ρmax [λ]

1 0.071 3.32 0.209 9.76
2 0.070 3.30 0.131 6.09
3 0.060 2.78 0.115 5.38
4 0.057 2.67 0.048 2.23
5 0.045 2.09 0.089 4.15
6 0.074 3.46 0.140 6.53

AverageError : ρ 0.063 2.94 0.122 5.69Table 6.1: Single target traking - Loalization errors for the outdoor and theindoor senarios.
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6.4. DISCUSSIONS
Single Target Multiple Target

j = 1 j = 1 j = 2

ρ ρ× ρmax [λ] ρ ρ× ρmax [λ] ρ ρ× ρmax [λ]

(a) 0.044 2.07 0.217 10.12 0.158 7.37
(b) 0.059 2.77 0.196 9.14 0.135 6.31
(c) 0.093 4.34 0.151 7.02 0.074 3.44
(d) 0.150 6.98 0.149 6.96 0.062 2.91
(e) 0.262 12.23 0.063 2.93 0.106 4.94
(f) 0.357 16.67 0.031 1.46 0.063 2.93Table 6.2: Multiple target loalization - Outdoor Senario - Loalization errorsfor the single and multiple target ase.

J = 1) and two (T2 examples with J = 2) targets. Sine T = T1 + T2 exampleshave been used also for the single-target training, some experiments have beenarried out to analyze the dependene of the loalization on the perentage oftraining samples from T1 and T2. The probability maps in Fig. 6.9 show that theposition of one target an be orretly loated although a smaller set of single-target examples has been used for the training phase (i.e., T1 < T2). Vie versa,a larger number of example is needed for an e�etive loalization of the twotargets as pointed out by the maps in Fig. 6.10 and quanti�ed by the loationindexes in Tab. 6.2. Suh a behavior was expeted sine the number of di�erentombinations with two targets is higher if ompared to the single-target ase.Therefore, T1 = 150 and T2 = 350 examples have been suessively used for thetraining phase of the following traking experiments.As representative examples, two di�erent situations with J = 2 have been dealtwith. In the former, one target (j = 1) is moving withinD while the other (j = 2)remains immobile in the same position. Instead, both targets are moving in theseond example. The atual trajetory and the estimated one are shown in Fig.6.11 and Fig. 6.12, respetively. Whatever the example at hand, a quite arefulindiation on the position and path followed by the targets has been obtainedas further on�rmed by the average values of the loalization errors (outdoor:
ρ1 = 0.070, ρ2 = 0.061 - indoor: ρ1 = 0.101, ρ2 = 0.070).6.4 DisussionsThe loalization and traking of passive targets have been addressed by exploit-ing the RSS values available at the nodes of a WSN . The problem at hand hasbeen reformulated into an inverse soure one aimed at reonstruting the supportof an equivalent soure generating a perturbation of the wireless links among the
WSN nodes equal to that due to the presene of targets within the monitored100
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6.4. DISCUSSIONSarea. The inversion has been faed with a learning-by-examples approah basedon a SVM lassi�er devoted to determine a map of the a-posteriori probabilitythat a di�erential equivalent soure is present within the investigation domain.Experimental results have assessed the e�etiveness and reliability of the pro-posed approah in dealing with the traking of single and multiple human beingsboth in indoor and outdoor environments.

104



Chapter 7Conlusions and FutureDevelopmentsIn this last setion, some onlusions are drawn and further advanes are envis-aged in order to address the possible developments of the proposed tehnique.
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In this thesis, a lassi�ation approah for real-time solution of omplex ele-tromagneti problems has been proposed. A suitable SVM-based strategy hasbeen developed for determining the probability of presene and the position oftargets starting from the de�nition of a �risk map� of the onsidered domain.The e�etiveness of the approah has been assessed by onsidering di�erent ap-pliation �elds, starting from the buried objet detetion (Chapter 3) up to thepassive traking of targets moving throughout the monitored area (Chapter 6).The obtained results on�rmed the generalization apabilities of the method indeteting and loating multiple targets as well as in estimating the presene andthe diretion of arrival of interferenes (Chapter 5).Conerning the methodologial novelties of this work, the main ontribution isonerned with the following issues:
• the integration of a SVM-based lassi�er with an iterative multi-salingproedure to improve resolution auray;
• the reliability in dealing with real experiments and three-dimensional se-narios;
• the �exibility in the solution of time-varying senarios as for the onlinetraking of moving targets;Future works, urrent under development, will be devoted to fully exploit thekey-features of the approah as well as to inrease autonomy by enabling thesystem to adapt to hanging irumstanes. In suh a framework, the possibilityto move in an autononomi ontext requires that the proposed approah will beable to adjust itself to allow high �exibility to dynami and unexpeted situa-tions. Inremental learning strategies will be investigated as an on-line methodto onstrut the solution reursively.
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