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Abstract

Relational data is characterised by the rich structure it encodes in the dependencies
between the individual entities of a given domain. Statistical Relational Learning
(SRL) combines first-order logic and probability to learn and reason over relational
domains by creating parametric probability distributions over relational structures.
SRL models can succinctly represent the complex dependencies in relational data and
admit learning and inference under uncertainty. However, these models are significantly
limited when it comes to the tractability of learning and inference. This limitation
emerges from the intractability of Weighted First Order Model Counting (WFOMC),
as both learning and inference in SRL models can be reduced to instances of WFOMC.
Hence, fragments of first-order logic that admit tractable WFOMC, widely known as
domain-liftable, can significantly advance the practicality and efficiency of SRL models.

Recent works have uncovered another limitation of SRL models, i.e., they lead to
unintuitive behaviours when used across varying domain sizes, violating fundamental
consistency conditions expected of sound probabilistic models. Such inconsistencies
also mean that conventional machine learning techniques, like training with batched
data, cannot be soundly used for SRL models.

In this thesis, we contribute to both the tractability and consistency of probabilistic
inference in SRL models. We first expand the class of domain-liftable fragments with
counting quantifiers and cardinality constraints. Unlike the algorithmic approaches
proposed in the literature, we present a uniform combinatorial approach, admitting
analytical combinatorial formulas for WFOMC. Our approach motivates a new family of
weight functions allowing us to express a larger class of probability distributions without
losing domain-liftability. We further expand the class of domain-liftable fragments
with constraints inexpressible in first-order logic, namely acyclicity and connectivity
constraints. Finally, we present a complete characterization for a statistically consistent
(a.k.a projective) models in the two-variable fragment of a widely used class of SRL
models, namely Markov Logic Networks.
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Mathematical Symbols

[b] The set of b 2-tables

[n] {1 · · ·n}

[u] The set of u 1-types

α, β, γ . . . arbitrary logical formulas⊎
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i(x) ith 1-type in variable x

ijl(x, y) i(x) ∧ j(y) ∧ l(x, y)

l(x, y) lth 2-table

L First order logic language

R Set of relational symbols in L

Acronyms / Abbreviations

C2 FOL with two variables and counting quantifiers

FO2 FOL with two variables
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Chapter 1

Introduction

Artificial Intelligence (AI) models that can learn and reason, while exploiting both
expert-knowledge and relational data are of significant importance. Such models can
make a significant impact in fields like social network analysis [1], biological systems
[2], planning [3], epidemiology [4], medicine [5], recommendation systems [6] e.t.c. The
key feature of relational data is the dependencies it represents between individual
data attributes. However, this key feature conflicts with the fundamental assumption
of the modern day Machine Learning (ML), namely the Independent and Identically
Distributed (IID) data assumption [7]. Identically distributed means that each data
point is sampled from the same underlying distribution that does not fluctuate over
time or with more samples. The independence condition imposes that such samples are
not connected in any way. Relational data differs from IID data as it involves multiple
entities that are related to each other in complex ways. For instance, in a social
network, users are connected to other users in various ways (e.g., friends, followers,
etc.), and those connections may influence their attributes. As a result, relational data
violates the independence assumption that is central to many ML techniques. This
makes applying traditional ML techniques to relational data difficult without losing
important information and relationships between entities. Therefore, new methods are
needed to handle the complexity and dependencies of relational data.

The scale and complexity of relational data demand a machine-readable represen-
tation language that, on the one hand, is succinct enough to be human-interpretable
and, on the other hand, is rich enough to capture all the data nuances. First-Order
Logic (FOL) serves this purpose by allowing quantification over data entities, also
referred to as the domain, and expressing relations among the domain elements. For
example, given a dataset of a human population going through a Covid-19 epidemic,
we are given information about whether individuals have Covid or not and the other
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people they come in contact with. We may create a simple FOL language with a unary
predicate Covid(x) representing that x has covid and a binary predicate Contact(x, y)

representing that x came in contact with y. We may write the following simple FOL
rule for contact tracing:

∀xy.Covid(x) ∧ Contact(x, y)→ Covid(y) (1.1)

Hence, given that we have Covid(a) and Contact(a, b), one can infer that Covid(b).
In fact such a reasoning procedure can be automated to infer potential new Covid
cases from the available data. However, paraphrasing Russel and Norvig [8], accurately
modelling complex real-world domains with logic is limited by:

• Complexity: Listing out/learning all the possible exception-less rules is an
intractable process. In most rich enough structured datasets, a complete exception
less description of the data is likely to be either prohibitively large or the trivial
representation, i.e. the data itself. For example, in the aforementioned FOL rule
(1.1) for contact-tracing, it is unlikely that the observed-data follows the rule
completely. We may find many individuals in the population that violate the
rule. In such a case, the formula will be unsatisfiable w.r.t the data and lead to
failure of inference.

• Practical Uncertainty: When dealing with expert-knowledge, a large amount
of knowledge comprises qualitative or quantitative beliefs. FOL provides no
straight-forward method of exploiting such knowledge. For example, it is unlikely
that an expert can quantify their uncertainity in the FOL rule (1.1), in any
meaningful manner.

• Theoretical Uncertainty: Real-world processes, and hence the data generated
by them, are often inherently stochastic, a reliable and generalizable FOL model
of the data is unlikely to exist in such cases.

Probability theory provides a method for representing both the uncertainty in expert
knowledge and the inherent stochasticity in the data-generation process. Hence, models
that can exploit succinct FOL representation while also expressing the uncertainties
in the data are exceedingly desirable. The field of Statistical Relational Learning
(SRL) [9, 10] builds on exactly these motivations. SRL aims to construct probabilistic
models over rich structured data, expressed in FOL languages extended with additional
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weight/probabilistic parameters. In general, SRL models assume a parametric proba-
bility distribution Pθ(ω) over the set of FOL interpretations Ω. The model learning
task then consists of estimating the model parameters θ∗ that maximize the likelihood
of the observed data ω, i.e.

θ∗ = argmax
θ

Pθ(ω)

and inference tasks consist of getting the probability of a query q, by summing over
the probability of all the models that satisfy q, i.e.,

P (q) :=
∑
ω∈Ω
ω|=q

Pθ(ω)

1.1 Motivation and Challenges

Despite the rich expressivity, when it comes to tractability of learning and inference,
SRL models fare no better than having a naive tabular representation of the probability
distribution, with individual random variables for each entity in the domain — w.r.t FOL
this means that the computational complexity1 of learning and reasoning essentially
reduces to the one of a propositional probabilistic language comprising individual
ground atoms as boolean random variables. Dan Roth [11] showed that inference in
such a language is in the computational complexity class #P- complete [12]. This means
that probabilistic inference is at least as hard as enumerating all the possible satisfiable
assignments to a propositional logic formula. Furthermore, the intractability result
holds even under very restrictive fragments of logic and is true also for computational
complexity of approximate probabilistic inference.

Another key challenge in SRL emerges from inexpressivity of FOL for many relavant
global properties of real-world data. Intuitively, this inexpressivity arises from the
implicit locality of any FOL property [13]. This locality means that FOL sentence cannot
express properties like connectivity, acyclicity e.t.c. [14]. Hence, the only possibility for
expressing such properties is through propositionalisation a.k.a. grounding. However,
such a representation is exponentially large and renders inference/learning intractable.

Moreover, recent works [15] have shown that a large variety of widely used prob-
abilistic models, encompassing almost all of existing SRL models [16], do not admit
basic consistency requirements expected of sound statistical models. The lack of such
consistency conditions means that SRL models do not admit consistency of parameter

1Whenever referring to computational complexity, we mean worst-case computational complexity.
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estimation, i.e., as you see more and more data, it is not true that your parameters
converge to the true value of the model parameters. Furthermore, SRL models are
not even consistent under marginalization, i.e., if you take an SRL model describing
a social network on (say) 2500 people, then the distribution it gives you on social
networks of (say) 2499 people is not what you’d get by summing over networks of 2500
people. Such inherent inconsistencies in SRL models make them hard to be used across
varying domain sizes [17, 18].

Both tractability and consistency are major challenges to SRL models. The former
renders them unpractical, the latter unfounded. In this thesis, we make contributions
towards addressing both these challenges, by characterizing (and expanding) SRL
models that are tractable and consistent.

1.2 Contributions

This thesis makes five main contributions towards tractability, expressivity and consis-
tency of SRL models. Since the computational bottleneck for learning and inference
in a vast array of SRL models can be reduced to tractability (and expressivity) of
Weighted First Order Model Counting (WFOMC), our tractability results are presented
w.r.t WFOMC.

Firstly, we provide a sound and uniform framework for tractable WFOMC in the two
variable fragment of FOL, extended with cardinality constraints and counting quantifiers.
In comparison to existing decision-diagrams/logical-circuits based approaches, our
approach is combinatorial in nature. We formalize a uniform framework, by defining
new logic based combinatorial concepts (e.g., Definition 26). These concepts allow us
to develop an analytical framework for WFOMC, allowing us to derive closed-form
formulas for WFOMC in the two-variable fragment and its extensions with cardinality
constraints and counting quantifiers.

Secondly, the framework we develop naturally motivates our second contribution: a
larger, more expressive class of weight functions in the two-variable fragment. Although,
past works have been able to express such distributions using complex valued weight-
functions [19], we obtain the same expressivity using only real-valued weight functions
in a rather simple manner.

Our third and fourth contributions take us towards expanding lifted inference to
constraints not definable in FOL. We expand the domain-liftaibility of the two-variable
fragment with an acyclicity constraint, i.e., a predicate in the language is axiomatized
to represent a Directed Acyclic Graph (DAG). We then use similar techniques, to
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incorporate a connectivity constraint, i.e., a predicate in the language is axiomatized
to represent a connected graph. We also show that both these constraints remain
domain-liftable even in the presence of cardinality constrains and counting quantifiers.

Finally, we move on to the problem of consistency of inference. Recent works
by Shalizi and Rinaldo Exponential Random Graphs (ERGMs) [15] have shown that
ERGMs do not admit consistent parameter learning. They further show that this
problem emerges from a deeper problem concerning consistency of ERGMs under
marginalization. Jaeger and Shulte [16], formalized this problem for SRL, showing
that only very restricted fragments of SRL models admit consistent marginalization
properties. In this thesis, we provide a complete characterization of consistent Markov
Logic Networks in the 2-variable fragment. We also show that this model reduces to a
relational generalization of the Stochastic Block’s Model [20].

1.3 Thesis Structure

The contributions in this thesis are based in the overlap of logic and probability theory,
and the resultant SRL models.

Chapter 2 begins with providing essential background on FOL and probability
distributions defined with respect to sufficient statistics. We then show that integrating
these ideas, i.e. defining models on FOL interpretations with FOL-definable sufficient
statistics leads us to a special class of SRL models, namely Markov Logic Networks
[21]. We also provide some basic combinatorial principles, which are useful for many
technical results of the thesis.

In Chapter 3, we present the first and the second contribution of this thesis i.e.
WFOMC in the two variable fragment, expanded with cardinality constraints and
counting quantifiers, and a general class of weight functions, which is strictly more
expressive than symmetric weight functions. The work presented in this chapter is
based on the following papers:

Sagar Malhotra and Luciano Serafini. Weighted Model Counting in FO2 with
Cardinality Constraints and Counting Quantifiers: A Closed Form Formula. In
proceedings of the AAAI Conference on Artificial Intelligence, 2022. [22]
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Sagar Malhotra and Luciano Serafini. A Combinatorial Approach to Weighted
Model Counting in the Two-Variable Fragment with Cardinality Constraints. In
proceedings of International Conference of the Italian Association for Artificial
Intelligence, 2021 [23]

In Chapter 4, we expand the class of domain-liftable theories in the two-variable
fragment to a constraint in-expressible in FOL, namely an acyclicity constraint. The
work presented in this chapter is based on the following (under-review) arxiv preprint:

Sagar Malhotra and Luciano Serafini. Weighted First Order Model Counting
with Directed Acyclic Graph Axioms. arXiv:2302.09830 [24]

We further expand the class of domain-liftable theories in Chapter 5, by adding
another constraint in-expressible in FOL: a connectivity axiom. The work presented in
this chapter is based on the following under-review paper.

Sagar Malhotra and Luciano Serafini. Weighted First Order Model Counting
with Connectivity Axioms.

Finally, in Chapter 6, we deal with consistency of learning and inference in Markov
Logic networks. We provide the necessary and sufficient conditions for a 2-variable
MLN to admit consistency of inference and learning. The work presented in this
chapter forms part of the following publication:

Sagar Malhotra and Luciano Serafini. Projectivity in Markov Logic Networks. In
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2022 [25]



Chapter 2

Background

Logic Probability

Sufficient
Statistics

ERGM

MLN

WFOMC

Combin-
atorics

Learning
and

Inference

Fig. 2.1 Concept Dependency Graph for Background

Our goal in this thesis is to investigate learning and inference in probability
distribution ascribed to First-Order Logic (FOL) interpretations. In this chapter, we
provide the necessary background in FOL and probability theory. We assume basic
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understanding of propositional logic and directly begin with FOL in section 2.1, where
we introduce the necessary background in FOL required for this thesis. We then briefly
introduce Weighted First Order Counting (WFOMC) in section 2.2, and relevant results
on complexity of WFOMC in the literature. We then move on to introducing

2.1 First Order Logic

Every logic comprises a formal language for making statements about objects and
reasoning about their properties. Statements in a logical language are constructed
according to a set of rules known as the syntax. The meaning to these statements
(their truth value or their probabilities) is given by the semantics.

We will deal with a fragment of First-Order Logic (FOL), also known as the
Herbrand Logic [26], which can be succinctly described as follows:

Herbrand Logic := First Order Logic Syntax + Herbrand Semantics

Furthermore, we will assume a completely relational language, i.e., there are no
function symbols in the language. Whenever referring to Herbrand Logic, we intend
its function-free variant. All the results are provided with respect to function-free
Herbrand logic, with finite set of relational symbols and constants. We will now define
the syntax and semantics of function-free Herbrand Logic formally. Our goal is not
to capture every aspect of FOL or even Herbrand Logic, but to rather capture the
fragment of FOL relevant to this thesis and largely used in the AI and SRL community.

2.1.1 Syntax

Herbrand Logic follows exactly the same syntax as FOL. We will now introduce a
function-free syntax of FOL, which will be assumed throughout this thesis.

Definition 1 (Language). A function-free FOL language L consists of:

• Logical connectives: ∧ (and), ∨ (or), ¬ (not), → (implication) and ↔ (iff)

• Quantifiers: ∀ (forall) and ∃ (exists)

• Relational symbols: A finite set of relational symbols, R := {Ri/ri}i, where Ri

is a relational symbol with arity ri

• Variables: A finite set of variables V := {xi}i
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• Equality Symbol: =

• Constants: A finite set of constants ∆ := {ci}i

• Auxiliary Symbols: Parenthesis and commas

Definition 2 (Atom). An atom in L is a string of the form:

• (t1 = t2) where t1, t2 ∈ ∆ ∪ V

• R(t1, . . . , tr), where ti, . . . , tr ∈ ∆ ∪ V, R ∈ R and r is the arity of the relational
symbol R.

We denote the set of all atoms in L.

Definition 3 (Litera). A literal is an atom or its negation.

Definition 4 (Ground atom). An atom with no variables in it is called a ground atom.
We denote the set of ground atoms in L with G.

Definition 5 (Predicate function). Given a ground atom g ∈ G in L, then the function
pred : G → R, maps the atom g to the predicate occurring in g.

Example 1. Given a ground atom R(a, b), then pred(R(a, b)) = R.

Definition 6 (Formula). A formula is defined as follows:

• An atom

• (¬α), where α is a formula

• (α ∧ β), where α and β are formulas

• (α ∨ β), where α and β are formulas

• (α→ β), where α and β are formulas

• (α↔ β), where α and β are formulas

• (∀x.α), where α is a formula and x is a variable

• (∃x.α), where α is a formula and x is a variable

• Only the expressions produced by above rules are formulas
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Definition 7 (Ground formula). A formula with no variables in it is called a ground
formula.

Definition 8 (Free variables). Free variables of formula α, denoted by FV [α], are
recursively defined as follows:

• FV [xi] = {xi}, for xi ∈ V

• FV [ci] = ∅, for ci ∈ ∆

• FV [R(t1, . . . , tr)] = FV [t1] ∪ . . . ∪ FV [tr], where R(t1, . . . , tr) is an atom

• FV [(t1 = t2)] = FV [t1] ∪ FV [t2], where (t1 = t2) is an atom

• FV [(¬α)] = FV [α], where α is a formula

• FV [(α ∗ β)] = FV [α] ∪ FV [β], where ∗ ∈ {∧,∨,↔,→}

• FV (∀x.α) = FV (α)− {x},where α is a formula

• FV (∃x.α) = FV (α)− {x},where α is a formula

Definition 9 (Sentence). A formula with no free variables is called a sentence.

2.1.2 Semantics

Definition 10 (Herbrand interpretation/model). A Herbrand interpretation/model ω
is a subset of ground atoms in the FOL language L. We denote the set of Herbrand
interpretations as Ω.

Remark 1. With an abuse of notation, we will also use the equivalent notion of
Herbrand interpretation/models as a truth assignment to ground atoms, i.e., ω : G →
{T,F}. The two equivalent notations are defined as follows:

g ∈ ω ↔ ω(g) = T

g ̸∈ ω ↔ ω(g) = F

Definition 11 (Herbrand Satiafaction). Let α be a sentence and ω be a Herbrand
interpretation in L. Then:

• ω |= s = t if and only if s and t are syntactically identical

• ω |= R(t1, . . . , t2) if and only if R(t1, . . . , t2) ∈ ω
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• ω |= ¬α if and only if ω ̸|= α

• ω |= α ∧ β if and only if ω |= α and ω |= β

• ω |= α ∨ β if and only if ω |= α or ω |= β

• ω |= α→ β if and only if ω ̸|= α or ω |= β

• ω |= α↔ β if and only if ω |= α ∧ β or ω |= ¬α ∧ ¬β

• ω |= ∀x.α(x) if and only if ω |= α(c) for all c ∈ ∆

• ω |= ∃x.α(x) if and only if ω |= α(c) for some c ∈ ∆

Satisfaction of a set sentences Γ is defined with respect to a language that includes
all the variables and constants that appear in Γ. This is to avoid situations where a
model fails to satisfy either a sentence or its negation.

A consequence of above definitions is that Herbrand Logic satisfies the domain closure
and unique-name assumption, commonly used in AI applications of FOL. Furthermore,
since the domain over which the variables are quantified is simply the set of constants
∆, we will call ∆ the domain or domain constants, as is common in SRL literature.

Definition 12 (Herbrand Entailment). Let Γ be a set of sentences in the language L.
Let α be another sentence in L. Then Γ entails α if and only if every Herbrand model
in Ω that satisfies Γ also satisfies α.

Having defined Herbrand logic, we will now assume it for the rest of the thesis.
Hence, whenever referring to FOL/FOL-language/FOL-interpretation/FOL-formula,
we will intend function-free finite Herbrand logic as presented here.

Remark 2. Since we are dealing with Herbrand interpretations, we can always bi-
jectively label the domain constants with the set [n], where n = |∆|, using a bijective
map π : ∆→ [n]. Any property that needs to be inferred on sentences w.r.t ∆ can be
equivalently inferred w.r.t the relabeled domain i.e. [n]. Hence, we can assume [n] to be
the domain without loss of generality.

2.1.3 Projection and Cardinality Constraints

We will also use the notion of projection of an interpretation on both domain and
relational symbols defined as follows:
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Definition 13 (Projection of an interpretation on subset of the domain). Given an
FOL language L with a domain ∆, let ∆′ ⊂ ∆, then ω ↓ ∆′ is an interpretation that
assigns truth assignment only to the ground atoms defined on ∆′.

Definition 14 (Projection of an interpretation on a predicate). Given an FOL language
L, then ωR for a relational symbol R ∈ L is an interpretation that assigns truth
assignment only to the ground atoms g, such that pred(g) = R.

Example 2. Let us have a language with only two relational symbol R and B both of
arity 2, with a domain ∆ = [4]. We represent an interpretation ω as a multi-relational
directed graph, where a pair of domain elements c and d have a red (resp. blue) directed
edge from c to d if R(c, d) (resp. B(c, d)) is true in ω and have no red (resp. blue)
edge otherwise. Let us take for example the following interpretation ω on [4]:

21 3 4

then ω′ = ω ↓ [2] and ω′′ = ω ↓ [2̄] are given as:

21 3 4and

respectively. Projecting on the predicate R, denoted by ωR is given as:

21 3 4

Similarly, projecting on the predicate B, denoted by ωB is given as:

21 3 4
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Definition 15. [Cardinality Constraints] Let ω be an L-interpretation, let {Pi}i ⊆ R
be a subset of predicate symbols in L. We say ω |= (|Pi|= l), if the number of ground
atoms g ∈ ω, such that pred(g) = Pi, is equal to l. Similarly, a cardinality constraint
Γ({|Pi|}i) is an arithmetic constraint on the cardinality of the set of predicates Pi i.e.
|Pi| in ω, and ω |= Γ({|Pi|}i), if the predicate cardinalities in ω satisfy the constraint
Γ({|Pi|}i).

Example 3 (Cardinality Constraints). Continuing Example 2, let Γ(R) := |R| < 2,
then ω ̸|= Γ, whereas ω ↓ [2] |= Γ and ω ↓ [2̄] |= Γ.

Remark 3. We use ∆ = ∆′ ⊎∆′′ to denote that ∆ is a union of two disjoint sets ∆′

and ∆′′. If ω′ is an interpretation on ∆′ and ω′′ is an interpretation on ∆′′, then we
use ω′ ⊎ ω′′ to denote the partial interpretation on ∆′ ⊎∆′′, obtained by interpreting
ground atoms over ∆′ as interpreted in ω′ and ground atoms over ∆′′ as interpreted in
ω′′. However, the ground atoms involving domain constants from both ∆′ and ∆′′ are
left uninterpreted in ω′ ⊎ ω′′.

2.2 Weighted First Order Model Counting

Given an FOL language L with a domain ∆ of size n, First Order Model Counting
(FOMC) is the problem of computing the sum of all the models that satisfy Φ. Formally,

fomc(Φ, n) :=
∑
ω|=Φ

1 (2.1)

Weighted First Order Model Counting (WFOMC), generalizes this problem by adding
a weight function w : Ω→ R, that assigns a real-valued weight to each interpretation
ω. Hence, WFOMC is formally defined as follows:

wfomc(Φ,w, n) :=
∑
ω|=Φ

w(ω) (2.2)

Since, we are dealing with Herbrand Logic, one may argue that the WFOMC can be
performed by simply grounding out the formula and counting its satisfiable assignments
using brute-force enumeration. However, such a task is known to be computationally
intractable. Formally this intractability is captured in the following result by Valiant:

Theorem 1. [Valiant, 1979 [27]] Let α be a Boolean formula, then the computational
complexity of computing the number of satisfying assignments of α is #P -Complete.



14 Background

Here, #P is the counting analouge of the complexity class NP, i.e., it takes
exponential amount of time in the size of the input. Surprisingly, intractability
of counting solutions to boolean formula remains even when satisfiability is tractable:

Theorem 2. [Valiant, 1979 [27]] Let α be a Boolean formula in DNF, then the
computational complexity of computing the number of satisfying assignments of α is
#P -Complete.

Furthermore, Beame et. al [28], extend this intractability result to WFOMC.
However, in order to have the domain size as the notion of input, keeping Φ and weights
fixed, the appropriate complexity class for their analysis is #P1: the class of counting
problems with input in the unary language 1n.

Theorem 3 (Beame et al., 2015 [28]). There exists an FOL sentence Φ using at most
three variables whose data complexity for (W)FOMC is in the class #P1−hard.

There do exist positive results on counting complexity in WFOMC over formulas
with at most two variables, and extensions to this result will form a major focus of this
thesis. These results rely on a special class of weight functions known as the symmetric
weight functions:

Definition 16. (Symmetric Weight Function) Given a function-free first order logic
language L over a domain ∆, where G are the set of ground atoms. A symmetric
weight function associates two real-valued weights w : R → R and w̄ : R → R to each
relational symbol in L. The weight of an interpretation ω is then defined as:

w(ω) =
∏
ω|=g
g∈G

w(pred(g))
∏
ω|=¬g
g∈G

w̄(pred(g)). (2.3)

We use (w, w̄) to denote a symmetric weight function.

The class of weight functions and FOL formulas that admit tractable WFOMC are
largely known as domain-liftable [29]. We formally have the following definition:

Definition 17 (Domain liftable). An FOL sentence Φ is said to be domain-liftable if
for a given weight function w and domain of size n, wfomc(Φ,w, n) can be computed
in time polynomial w.r.t n.

We are finally ready to provide the positive tractability results in WFOMC:

Theorem 4 (Beame et al. (2015) [28]). Given a sentence Φ in FOL, with at most two
variables, then the Symmetric Weighted First Order Model Counting of Φ is domain
liftable.
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2.3 Sufficient Statistics

In statistics and probabilistic machine learning, we are concerned with estimating the
value for parameters θ, of an assumed parametric family of distributions P (X;θ), given
some observed data x, such that the data likelihood, i.e., P (X = x;θ), is maximized.
A sufficient statistic T (X), with respect to P (X;θ), is a function of X such that any
other function calculated on X gives no more information about θ than T (X). Hence,
given observed data x a statistician who knows T (x), does no worse in estimating the
value of θ, than a statistician who knows x.

We define sufficient statistic more formally as follows:

Definition 18 (Sufficient Statistic). Given a parametric probability distribution P (X;θ),
T is a sufficient statistic w.r.t θ if:

P (X|T (X);θ) = P (X|T (X);θ′) (2.4)

for all possible values of parameters θ and θ′.

Example 4. Let X = X1, . . . , Xn be a sequence of Bernoulli trials with P (Xi = 1) = θ.
We will verify that T (X) =

∑
i Xi is sufficient for θ.

P (X1 = x1, . . . , Xn = xn|T (X1, . . . , Xn) = t; θ) =
P ((X1 = x1, . . . , Xn = xn) ∧ (T = t); θ)

P (T = t; θ)

when the number of X ′
is with value 1 is different from t, then the numerator in RHS

and LHS is identically equal to 0. Otherwise, in RHS, the probability in numerator is
the probability of getting t Xi’s with value 1 and other n − t Xi’s as 0s. Since Xi’s
are independent we have that the numerator is equal to θt(1− θ)n−t. The denominator
in RHS, on the other hand is given by

(
n
t

)
θt(1− θ)n−t, as no order on trials is given.

Hence, we have that:

P (X1 = x1, . . . , Xn = xn|T (X1, . . . , Xn) = t; θ) =
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=
1(
n
t

)
Hence, P (X|T (X); θ) does not depend on θ. Hence, T (X) =

∑
iXi is sufficient for θ.

We now provide the Fisher-Neyman factorization theorem, which gives an easier
method of recognizing sufficient statistics of a given parametric family of distributions.
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Theorem 5 (Fisher–Neyman factorization). T (X) is sufficient for P (X|T (X);θ) iff
non-negative functions g and h can be found such that:

P (X|T (X);θ) = g(T (X),θ)h(X) (2.5)

We refer the reader to [30] or any other mathematical statistics textbook for a
proof of the Fisher–Neyman factorization theorem.

Example 5. We continue with the previous example of probability distribution on n

Bernoulli random variables:

P (X; θ) =
n∏

i=1

θXi(1− θ)1−Xi

=
n∏

i=1

θ
∑

i Xi(1− θ)
∑

i(1−Xi)

= θ(
∑

i Xi)(1− θ)n−(
∑

i Xi)

= θT (X)(1− θ)n−T (X)

(2.6)

Now, g(T (X),θ) = θT (X)(1− θ)n−T (X) and h(X) = 1. Hence, due to Fisher-Nayman
factorisation we have that T (X) =

∑
i Xi is a sufficient statistic.

Given Fisher-Neyman factorization, we get that maximizing likelihood, i.e.,
P (X = x;θ) is equivalent to maximizing g(T (X = x),θ). Hence, there exists a
maximum likelihood estimator θ̂, which depends on x only through T (x). Hence, there
exists a maximum likelihood estimator that is a function of T (x) [30].

2.4 Exponential Family of Distributions

In the previous section, we only saw examples of scalar valued parameters θ, however,
when θ = ⟨θ1 . . . θk⟩ is a vector, then the sufficient statistics can also be vector valued,
i.e., T (X) = ⟨T1(X) . . . Tk(X)⟩, such that Ti(X) is a sufficient statistic for θi. All the
results of the previous section follow as it is in the vector valued case. One way to
create a model where our desired statistics T (·) are sufficient is by using them in an
exponential family distribution. In the following we give a slightly narrow definition of
exponential family of distributions — which is general enough for our purposes.
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Definition 19. A model P (X;θ) is an exponential family distribution if it can be
written in the form:

P (X;θ) =
exp(θ · T (X))∑
x exp(θ · T (x))

(2.7)

where θ ·T (X) denotes dot product between θ and T (X). The denominator in equation
(2.7) is called the partition function, denoted by Z(θ).

Using Fisher-Neyman factorization, it can be seen that in an exponential distribution,
T (X) are a sufficient statistic w.r.t θ. Hence, exponential families provide a simple
method to create models with predefined sufficient statistics.

2.5 Exponential Random Graphs

The idea of creating exponential families can be exploited to model rich probability
distributions on graphs. Such models are known as Exponential Random Graph
Models(ERGMs).

Definition 20 (ERGM). Exponential-family Random Graph Models (ERGMs) are
exponential families over graphs. In other words, the sufficient statistics are functions
of the graph/adjacency matrix.

Example 6. Let Ω(n) represent the set of simple undirected graphs on [n]. In order
to define an exponential family on Ω(n), we define the number of edges n1(ω) and the
number of triangles n2(ω) as sufficient statistics, with parameters θ1 and θ2 respectively.
Hence, for ω ∈ Ω(n), we have the sufficient statistic T (ω) = ⟨T1(ω) = n1(ω), T2(ω) =

n2(ω)⟩, and the parameters θ = ⟨θ1, θ2⟩.

Pθ(ω) =
exp(T (ω) · θ)

Z(θ)
(2.8)

where T (ω) · θ represents the dot product. Hence, T (ω) · θ = n1(ω)θ1 + n2(ω)θ2.

2.6 Markov Logic Networks

Markov Logic Networks (MLNs) [21] are SRL models that ascribe an exponential family
of probability distributions to FOL interpretations, by defining sufficient statistics
represented by FOL formulas. Hence, an MLN is defined as follows:
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Definition 21. [Markov Logic Networks] Given a first order logic language L with a
fixed and finite domain ∆, an MLNM consists of a finite set of weighted quantifier-free
first-order logic formulas {αi, wi}i, where αi are first-order logic formulas and each wi

are real-valued weights. An MLN ascribes the following probability distribution over all
the possible interpretations of a given first-order logic sentence Φ:

PM(ω) :=
1

Z
exp

(∑
i

wini(ω)

)
(2.9)

where ni(ω) is the number of groundings of αi satisfied in the interpretation ω and Z

is the partition function defined as follows:

Z :=
∑
ω|=Φ

exp

(∑
i

wini(ω)

)
(2.10)

MLNs can be equivalently seen as exponential-family probability distributions
described over FOL interpretations, where the sufficient statistics T (ω) has the following
form:

T (ω) = ⟨T1(ω), . . . , Tk(ω)⟩ = ⟨n1(ω), . . . , nk(ω)⟩

And the parameter vector θ has the following form:

θ = ⟨θ1 . . . θk⟩ = ⟨w1 . . . wk⟩

Hence, following the Fisher-Neyman factorization as given in Theorem 5, it is easy
to see that αi’s form sufficient statistics1 for an MLN distribution.
Following is an illustrative example of a Markov Logic Networks:

Example 7. [MLN Example] We go back to the example introduced in the introduction
section. We have a human population and our goal is to build a model for contact
tracing i.e. a model that allows for accurately predicting probability of a human having
covid, given its contacts with other human-beings:

w1 : Vaccinated(x) ∧ ¬Covid(x) (2.11)

w2 : Covid(x) ∧ Contact(x, y)→ Covid(y) (2.12)

where w1 and w2 are the weight’s that reflect confidence in the logical formulas being
true in the domain.

1More formally, the functions ni(ω) form the sufficient statistics.
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The weights w1 and w2 can reflect an expert’s relative confidence in the rules or can
be learned from data. Notice that negative weights can be used to reduce probability
of certain logical formulas. In the example above, making w1 negative is a reasonable
choice.

2.6.1 MLNs and WFOMC

Van den Broeck et al. [31] provided a simple yet very useful method of converting
the problem of computing the partition function of an MLN to a WFOMC problem,
through the following encoding.

Given an MLN as defined in Definition 21, we can encode the computation of the
partition function in to Symmetric-WFOMC of the following FOL sentence:

Φ ∧
∧
i

∀FV [αi].(Ri(FV [αi])↔ αi) (2.13)

where FV [αi] are free variable in αi, Ri are fresh predicate symbols not previously
existing in αi, and Ri(FV [αi]) has exactly the free variable in αi. The symmetric
weight function (w, w̄), where w(Ri) = exp(wi) and w̄(Ri) = 1, the rest of the relational
symbol and their negation has weight 1.

2.6.2 Learning

Given an observed MLNM = {αi, wi}ki=1, and an interpretation ω, we can learn the
parameters θ := ⟨w1, . . . , wk⟩, through maximizing the log-likelihood of the observed
interpretation.

θ̂ = argmax
θ

logPM,θ(ω) (2.14)

Although, simple to state, but a slightly deeper investigation of the log-likelihood
shows its hidden complexity:

logPM,θ(ω) =
∑
i

wini(ω)− logZ(θ) (2.15)

Now, writing gradient descent for estimating the parameters, we have that:

wt+1
i = wt

i − γ
∂ logPM,θ(ω)

∂wt
i

(2.16)
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where ∂ logPM,θ(ω)

∂wt
i

, reflects the following gradient:

∂ logPM,θ(ω)

∂wi

= ni(ω)
1

Z(θ)

∂ logPM,θ(ω)

∂wi

(2.17)

Notice, that Z(θ) is computed in each iteration of equation (2.16), hence tractability
of Z(θ) is intimately connected to learning complexity. Kuželka and Kungurtsev [32]
formalize this in the following theorem:

Theorem 6 ( Kuželka and Kungurtsev [32]). Let Ψ = (α1, . . . , αl) be a list of first-
order logic formulas and Φ0 be a set of first-order logic sentences. Let ΩΦ0 be the set of
models of Φ0 over a given domain ∆. Let ωb ∈ Ω be a training example. If computing
the partition function of the MLN given by the formulas Ψ on ΩΦ0 is domain liftable,
then there is an algorithm which finds weights w = (w1, . . . , wl) such that the difference
between probability, of an interpretation ω, assigned by the MLN with weights w and
the optimal MLN is at most 2ϵ. The algorithm runs in time polynomial in |∆| and 1/ϵ.

2.6.3 Inference

Inference in MLN can also be reduced to WFOMC, let q a query then the probability
of the query reduces to:

P (q) =
∑
ω|=q

P (ω) (2.18)

If q is an FOL sentence then the problem reduces to Symmetric-WFOMC.

2.7 Notation and Basic Combinatorics

We use the following basic notation. The set of integers {1, ..., n} is denoted by [n].
We use [m : n] to denote the set of integers {m, ..., n}. Wherever the set of integers [n]

is obvious from the context we will use [m] to represent the set [m+ 1 : n]. Bold-face
small-case Latin letters (with or without indices), e.g., k are used to represent vectors,
corresponding normal-face letters, e.g., ki, are used to represent the components of the
vector. Given a vector k = ⟨k1 . . . k[u]⟩, we use |k| to denote the sum of its components,
i.e.,

∑
i∈[u] ki. We will also use multinomial coefficients denoted by
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(
n

k1, ..., ku

)
=

(
|k|
k

)
=

n!∏
i∈[u] ki!

We also introduce the principle of inclusion-exclusion which will be used extensively
throughout the thesis.

2.7.1 Principle of Inclusion-Exclusion

Given a set of finite sets {Ai}i∈[n], let AJ :=
⋂

j∈J Aj for an arbitrary subset J of [n].
Then the principle of inclusion-exclusion (PIE) states that:∣∣∣⋃

i

Ai

∣∣∣ = ∑
∅≠J⊆[n]

(−1)|J |+1|AJ | (2.19)

For all subsets J, J ′ ⊆ [n], such that |J |= |J ′|= m for some m ≥ 1, if AJ and AJ ′

have the same cardinality, then there are
(
n
m

)
terms in equation (2.19), with value A[m].

Hence, equation (2.19) reduces to:

∣∣∣⋃
i

Ai

∣∣∣ = n∑
m=1

(−1)m+1

(
n

m

)
A[m] (2.20)

Remark 4. PIE can be easily extended to the case when Ai are sets of weighted
FOL interpretations, where each interpretation ω has a weight w(ω), where w is the
symmetric weight function as given in Definition 16. In this case PIE allows us to
computed the weighted sum of all the interpretations in

⋃
i Ai.

Let w(Ai) denote the weighted sum of all the interpretations in Ai, Then the PIE
reduces to:

w
(⋃

i

Ai

)
=

∑
∅≠J⊆[n]

(−1)|J |+1w(AJ) (2.21)

Similarly, when w(AJ) and w(AJ ′) are the same for each m = |J |= |J ′|, we have that:

w
(⋃

i

Ai

)
=

n∑
m=1

(−1)m+1

(
n

m

)
w(A[m]) (2.22)





Chapter 3

WFOMC in FO2 and C2

The work presented in this chapter has been previously published across the
following publications:

Sagar Malhotra and Luciano Serafini. Weighted Model Counting in FO2 with
Cardinality Constraints and Counting Quantifiers: A Closed Form Formula. In
proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Sagar Malhotra and Luciano Serafini. A Combinatorial Approach to
Weighted Model Counting in the Two-Variable Fragment with Cardinality
Constraints. In proceedings of International Conference of the Italian Association
for Artificial Intelligence, 2021

3.1 Introduction

Most of the algorithms for WFOMC rely on a first-order logic variant of decision
diagrams known as the FO d-DNNF [29, 33, 19, 34, 31]. In this chapter we present
a completely combinatorial approach to WFOMC in two variable fragment of FOL
(FO2) and its extension with counting quantifiers (C2). To this end, we introduce the
notion of 2-type consistency1 with respect to a universally quantified FO2 formula.
Consistent 2-types characterize a universally quantified FO2 formulas in terms of a
subset of 2-types in the language L. We use this notion to derive a closed-form for
FOMC in the universally quantified fragment of FO2 and its extensions with cardinality

1In our original papers, we used the name "lifted interpretations" for consistent 2-types
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constraints, existential quantifiers, and counting quantifiers. The presented approach
makes the following key contributions:

1. The closed-form is easily extended to FO2 with existential quantifiers, cardinality
constraints and counting quantifiers, without losing domain-liftability. A cardi-
nality constraint on an interpretation is a constraint on the number of elements
for which a certain predicate holds. Counting quantifiers admit expressions of
the form ∃≥mxΦ(x) expressing that there exist at least m elements that satisfy
Φ(x). Previous works have relied on Lagrange interpolation and Discrete Fourier
Transform [19] for evaluating cardinality constraints. In this work, we deal with
cardinality constraints in a completely combinatorial fashion.

2. We provide a complete and uniform treatment of WFOMC in the two-variable
fragment. Multiple extensions of FO2 have been proven to be domain liftable
[35, 19, 36]. Most of these works rely extensively on a variety of logic-based
algorithmic techniques. In this thesis, we provide a uniform and self-contained
combinatorial treatment for all these extensions.

3. The proposed closed form admits a class of weight functions strictly larger than
symmetric weight functions. The extended class of weight functions allows
modelling the recently introduced count distributions.

Most of the chapter focuses on First-Order Model Counting (FOMC) i.e. counting
the number of models of a formula Φ over a finite domain of size n denoted by
fomc(Φ, n). We then show how WFOMC can be obtained by multiplying each term
of the resulting formula for FOMC with the corresponding weight function. This
allows us to separate the treatment of the counting part from the weighting part.
The chapter is therefore structured as follows: We first present some background on
the 2-variable fragments FO2 and C2, where we define some combinatorial notions
essential to this chapter and the rest of the thesis. We first present our formulation
of the closed-form formula for FOMC given in [28] for the universally quantified
fragment of FO2. We then present an alternative variant of this formula, that allows
us to incorporate cardinality constraints. Using principle of inclusion-exclusion, we
extend this approach to incorporate existential quantification. We then show how the
aforementioned approach can be expanded to incorporate functionality constrains, i.e.,
a relation in the language represents a function. Finally, we extend this approach to
counting quantifiers.
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The last part of the chapter extends the formula for FOMC to WFOMC for the
case of symmetric weight functions and for a larger class of weight functions that allow
modeling count distributions [37].

3.2 Related Works

WFOMC for the purposes of probabilistic inference was independently defined and
proposed by Gogate et al. [38] and Van den Broeck et al. [31]. Van den Broeck et al.
[31] provide an algorithm for Symmetric-WFOMC over universally quantified theories
based on knowledge compilation techniques. The notion of a domain lifted theory i.e.
a first-order theory for which WFOMC can be computed in polynomial time w.r.t
domain cardinality was first formalized by Van den Broeck in [29]. The same paper
shows that a theory composed of a set of universally quantified clauses containing at
most two variables is domain liftable. Van den Broeck et al.[36] extend this procedure
to theories in full FO2 (i.e. where existential quantification is allowed) by introducing
a skolemization procedure for WFOMC.

Beame et al. [28] and Jaeger et al. [39, 40] investigate the theoretical aspects of
WFOMC. Importantly, Beame et al. [28] show that there exists a formula in the three-
variable fragment of FOL, where WFOMC cannot be computed in polynomial time
and Jaeger [40] showed that even ϵ−approximation of WFOMC is intractable. Beame
et al. [28] also provide a closed-form formula for WFOMC in the universally quantified
fragment of FO2. Kuusisto and Lutz [35] extend the domain liftability results to FO2

with a functionality axiom, and for sentences in uniform one-dimensional fragment U1

[41]. They also propose a closed-form formula for WFOMC in FO2 with functionality
constraints. Recently, Kuželka [19] proposed a uniform treatment of WFOMC for
FO2 with cardinality constraints and counting quantifiers, proving these theories to be
domain-liftable.

With respect to the state-of-the-art approaches to WFOMC, we propose an approach
that provides a closed-form for WFOMC with cardinality constraints and counting
quantifiers from which the PTIME data complexity is immediately evident. Moreover,
Kuželka [19] relies on a sequence of reductions for proving domain liftability of counting
quantifiers in the two variable fragment, on the other hand, our approach relies on a
single reduction and exploits the principle of inclusion-exclusion to provide a closed-
form formula for WFOMC. Finally, Kuželka [37] introduced Complex Markov Logic
Networks, which use complex-valued weights and allow for full expressivity over a
class of distributions called count distributions. We show in the last section of the



26 WFOMC in FO2 and C2

chapter that our formalization is complete w.r.t. this class of distributions without
using complex-valued weight functions.

3.3 The Two-Variable Fragments: FO2 and C2

FO2 is a fragment of FOL, where the set of variables in L is restricted to have only two
variables. In this thesis we will mainly be dealing with this fragment and its various
extensions. From now on, we will use capital Greek letters to denote FOL formula. We
will write Φ(x) to denote the fact that x is a free-variable in Φ(x). Hence, a sentence
will be represented by capital Greek letter e.g. Ψ,Φ etc. C2 is an extension of FO2,
where besides the quantifiers ∀ and ∃, quantifiers like ∃=k (exist exactly k), ∃<k (exist
less than k) and ∃>k (exist more than k) are admitted. We will now introduce the
concepts of types and tables, which will serve us throughout this thesis.

Definition 22 (1-type). Given an FOL language L, a 1-type is a maximally consistent
conjunction of literals containing exactly one variable and no constants.

We use u to denote the number of 1-types in L. We assume an arbitrary ordering
on the 1-types and denote the ith 1-type in variable x as i(x). Hence the set of all
1-types can be described by [u].

Example 8 (1-type). Let us have an FOL language L consisting of relational symbols
R = {A/1, R/2}. Then following are all the 1-types in variable x.

1(x) : A(x) ∧ R(x, x) (3.1)

2(x) :¬A(x) ∧ R(x, x) (3.2)

3(x) : A(x) ∧¬R(x, x) (3.3)

4(x) :¬A(x) ∧¬R(x, x) (3.4)

Definition 23 (2-table). Given an FOL language L, a 2-table is a maximally consistent
conjunction of literals containing exactly two distinct variable and no constants.

We use b to denote the number of 2-tables. We assume an arbitrary order on the
2-table, hence the lth 2-table is denoted by l(x, y). Hence, the set of all 2-tables can be
described by [b].
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Example 9 (2-table). Let us have an FOL language L consisting of relational symbols
R = {A/1, R/2}. Then following are all the 2-tables.

1(x, y) : R(x, y) ∧ R(y, x) ∧ (x ̸= y)

2(x, y) :¬R(x, y) ∧ R(y, x) ∧ (x ̸= y)

3(x, y) : R(x, y) ∧¬R(y, x) ∧ (x ̸= y)

4(x, y) :¬R(x, y) ∧¬R(y, x) ∧ (x ̸= y)

Definition 24 (2-type). Given an FOL language L, a 2-type is a maximally consistent
conjunction of literals containing at most two distinct variable and no constants.
Equivalently a 2-type is a conjunction of the form:

i(x) ∧ j(y) ∧ l(x, y)

where i(x) and j(y) are the ith and jth 1-types and l(x, y) is the lth 2-table. We use
ijl(x, y) to denote a 2-type i(x) ∧ j(y) ∧ l(x, y).

In a given interpretation ω, we say a single constant c realizes the 1-type i(x) if
ω |= i(c). We say a pair of distinct domain constants (c, d) realize a 2-table l(x, y) if
ω |= l(c, d) and similarly (c, d) realizes the 2-type ijl(x, y) if ω |= i(c) ∧ j(d) ∧ l(c, d).

1/2-types and 2-tables allow us to create complete description of an interpretation
for evaluating any two variable formula on it. We formalize this notion in the following
Lemmas.

Lemma 1. In a given interpretation ω, a single domain constant c realizes one and
only one 1-type.

Proof. Assuming by contradiction that ω |= i(c) and ω |= j(c) for a pair of distinct
1-types i.e. i ̸= j. Hence, we have that ω |= i(c) ∧ j(c). Since 1-types i(x) and j(x)

are a maximally consistent conjunction of literals, hence so are i(c) and j(c). Hence,
i(c) ∧ j(c) = ⊥. Hence, we have that ω |= ⊥, which is a contradiction.

Definition 25. [1-type Cardinality Vector] An interpretation ω is said to have the
1-type cardinality vector k = ⟨k1, . . . , ku⟩ if for all i ∈ [u] it has ki domain elements c

such that ω |= i(c), where i(x) is the ith 1-type. If ω has 1-type cardinality vector k,
then we say that ω |= k.

Notice that by construction we have that, for a given k,
∑

i ki = n, where n is the
domain cardinality.
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Lemma 2. In a given interpretation ω, a pair of distinct domain constants (c, d)

realizes one and only one 2-table.

Proof. Assuming by contradiction that ω |= l(c, d) and ω |= l′(c, d) for a pair of distinct
2-tables i.e. l ̸= l′. Hence, we have that ω |= l(c, d) ∧ l′(c, d). Since 2-tables l(x, y) and
l′(x, y) are a maximally consistent conjunction of literals, hence so are l(c, d) and l′(c, d).
Hence, l(c, d) ∧ l′(c, d) = ⊥. Hence, we have that ω |= ⊥, which is a contradiction.

Lemma 3. In a given interpretation ω, a pair of distinct domain constants (c, d)

realizes one and only one 2-type.

Proof. Assuming by contradiction that ω |= ijl(c, d) and ω |= i′j′l′(c, d) for a pair of
distinct 2-types, i.e., i ̸= i′ or j ̸= j′ or l ̸= l′. Hence, ω |= ijl(c, d) ∧ i′j′l′(c, d). But
due to Lemma 1 and Lemma 2, this leads to a contradiction.

Definition 26. [2-type Cardinality Vector] An interpretation ω is said to have the
2-type cardinality vector ⟨k,h⟩, where h is a vector with components hijl and i ≤ j,
representing the number of unordered pair of distinct domain constants {c, d} such that
ω |= ijl(c, d) or ω |= ijl(d, c), and k is the 1-type cardinality vector of ω. If ω has
2-type cardinality vector ⟨k,h⟩, then we say ω |= ⟨k,h⟩. Given a ⟨k,h⟩, we also use
hij to denote the vector ⟨hij1 · · ·hijb⟩.

With an abuse of notation, if ω is a model of Φ, and ω |= k ( resp. ω |= ⟨k,h⟩) ,
then we denote this by ω |= Φ ∧ k (resp. ω |= Φ ∧ ⟨k,h⟩).

3.4 FOMC for Universally Quantified FO2

Universally quantified FO2 formulas are formulas of the form ∀xy.Φ(x, y), where Φ(x, y)

is quantifier-free. In this section, we first present a re-formulated version of closed
form formula for FOMC of universally quantified FO2 formulas as presented in [28].
We then present an alternative — combinatorially more informative — variant of this
closed-form.

Definition 27. Given a universally quantified FO2 formula ∀xy.Φ(x, y), where Φ(x, y)

is quantifier-free. We define Φ({x, y}) as follows:

Φ({x, y}) := Φ(x, x) ∧ Φ(x, y) ∧ Φ(y, x) ∧ Φ(y, y) (3.5)
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Example 10. Given an FOL language L with relational symbols {R/2, A/1}, let
Φ(x, y) = A(x) ∧R(x, y)→ A(y), then Φ({x, y}) is the following formula

(A(x) ∧R(x, x)→ A(x))

∧ (A(x) ∧R(x, y)→ A(y))

∧ (A(y) ∧R(y, x)→ A(x))

∧ (A(y) ∧R(y, y)→ A(y))

(3.6)

We now define the notion of 2-type consistency with respect to a universally
quantified FO2 formula.

Definition 28 (2-Type Consistency). Given a universally quantified FO2 formula
∀xy.Φ(x, y), a 2-type is consistent with ∀xy.Φ(x, y) if:

ijl(x, y) |= Φ({x, y}) (3.7)

where the entailment in equation 3.7 is checked by assuming a propositional language
consisting of only the constant-free literals in L.

Example 11. The following is an example of a consistent 2-type for the formula (3.6)
of Example 10:

τ(x, y) := ¬A(x) ∧R(x, x) ∧ ¬A(y) ∧R(y, y) ∧ ¬R(x, y) ∧R(y, x) (3.8)

It is easy to see that, assuming a propositional language consisting of constant-free liter-
als in L, i.e., with propositional variables {A(x), A(y), R(x, x), R(y, y), R(x, y), R(y, x)},
that:

τ(x, y) |= Φ({x, y})

Lemma 4. If a 2-type ijl(x, y) is not consistent (inconsistent) with a universally
quantified FO2 formula ∀xy.Φ(x, y) then:

ijl(x, y) |= ¬Φ({x, y}) (3.9)

Proof. Since a 2-type ijl(x, y) is a maximally consistent conjunction of literals with at
most two variables, it forms a maximally consistent theory in the propositional language
consisting of the constant free literals in L. Hence, for any 2-type if ijl(x, y) ̸|= Φ({x, y}),
then ijl(x, y) |= ¬Φ({x, y}).
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Lemma 5. Given a universally quantified FO2 sentence ∀xy.Φ(x, y) and an interpre-
tation ω, then ω |= ∀xy.Φ(x, y) if and only if for all pairs of domain constants (c, d) in
the domain, ω |= ijl(c, d) only if ijl(x, y) is consistent with ∀xy.Φ(x, y).

Proof. Grounding of ∀xy.Φ(x, y) over the domain ∆ can be written as follows:∧
{c,d}⊆∆
c ̸= d

Φ({c, d}) (3.10)

If ω |= ∀xy.Φ(x, y), then equivalently:

ω |=
∧

{c,d}⊆∆
c ̸= d

Φ({c, d}) (3.11)

Assuming to the contrary let’s say there exists a pair of constants (c, d), such that
(c, d) realizes the 2-type ijl(x, y), i.e., ω |= ijl(c, d), but ijl(x, y) is inconsistent with
∀xy.Φ(x, y). Due to Lemma 4, if ijl(x, y) ̸|= Φ({x, y}), then ijl(x, y) |= ¬Φ({x, y}).
Hence, ijl(c, d) |= ¬Φ({c, d}). Hence, we have that ω |= ¬Φ({c, d}), which is a
contradiction to expression (3.11) and hence to the fact that ω |= ∀xy.Φ(x, y).

Lemma 6. Given an FOL sentence Φ, then the following always holds.

fomc(Φ, n) =
∑
k

fomc(Φ,k) (3.12)

where k are the 1-type cardinality vectors (see Definition 25) and fomc(Φ,k) is defined
as the number of models such that ω |= Φ ∧ k.

Proof. Using Lemma 1, we cannot have that for any interpretation ω, ω |= k and ω |= k′,
where k and k′ are distinct 1-type cardinality vectors. Also, for each interpretation ω,
ω |= k, for some 1-type cardinality k. Hence, we have that:

{ω : ω |= Φ} =
⊎
k

{ω : ω |= Φ ∧ k} (3.13)

where
⊎

represents disjoint union. Therefore:

|{ω : ω |= Φ}| =
∑
k

|{ω : ω |= Φ ∧ k}| (3.14)
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Using Lemma 6, we can decompose the model counting problem into model counting
w.r.t the 1-type cardinality vectors k. Furthermore, we have the following corollary:

Corollary 1 (of Lemma 6). Given an FOL sentence Φ, if fomc(Φ,k) is domain
liftable then so is fomc(Φ, n).

Proof. Using Lemma 6, we have that fomc(Φ, n) can be decomposed into fomc(Φ,k).
Irrespective of Φ, k ranges over all possible u-tuples ⟨k1 · · · ku⟩, where

∑
i ki = n.

Using stars and bars method, the number of such u-tuples is given as
(
n+u−1
u−1

)
, which is

bounded above by nu, where u is the number of 1-types in the language. Hence, we have
that there are only polynomial O(nu) summands in the summation

∑
k fomc(Φ,k).

Hence, if fomc(Φ,k) can be computed in polynomial time w.r.t n, say O(nc), for some
positive constant c, then fomc(Φ, n) can be computed in time O(nu) ·O(nc) = O(nu+c),
which is polynomial in n.

Hence, we can worry about only showing the closed-forms and domain-liftability
for fomc(Φ,k), as domain-liftability and closed-forms for fomc(Φ, n) automatically
follow from Corollary 1 and Lemma 6 respectively. In the following we provide the
formula for computing fomc(∀xy.Φ(x, y),k). Althoug, the proof ideas are based on
the derivation of fomc(Φ, n) as presented in [28], the concepts used in the following
proof rely on weighted types and tables, rather than "cells" and their probabilities as
introduced in [28]. We will use the introduced notation and concepts throughtout.

Theorem 7 (Beame et al. (2015)[28] reformulated). Given a universally quantified
FO2 formula ∀xy.Φ(x, y), interpreted over a domain ∆ of size n, then the model count
of the models ω such that ω |= ∀xy.Φ(x, y) and ω has the 1-type cardinality k is given
as:

fomc(∀xy.Φ(x, y),k) =
(
n

k

) ∏
i≤j∈[u]

n
k(i,j)
ij (3.15)

where k(i, j) is defined as follows:

k(i, j) =


ki(ki−1)

2
if i = j

kikj otherwise
(3.16)

and nij =
∑

l∈[b] nijl, where nijl is 1 if ijl(x, y) |= Φ({x, y}) and 0 otherwise.

Proof. Our goal is to count the models ω over the domain Delta of size n, such that
ω |= ∀xy.Φ(x, y) ∧ k. Given a domain ∆, the number of interpretations with 1-type
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cardinality vector k is given as: (
n

k

)
If ω |= k then we have kikj pairs of domain constants (c, d) such that ω |= i(c)∧j(d),

where i ̸= j. Due to Lemma 5 each such pair of domain constants can realize a 2-table
l(x, y) if ijl(x, y) |= Φ({x, y}). Hence, we have

∑
l∈[b] nijl = nij independent and

mutually-exclusive choices for assigning the 2-tables to each such (c, d). Hence, when
i ̸= j, the number of ways of assigning 2-table to the pairs of domain constants realizing
the ith and the jth 1-type respectively is given as:

n
kikj
ij

The pair of domain constants (c, d) such that ω |= i(c)∧ i(d) is given as
(
ki
2

)
. Using

the same reasoning as above, we have
∑

l∈[b] niil = nii independent and mutually-
exclusive choices for assigning the 2-tables to each such (c, d). Hence, when i = j, the
number of ways of assigning 2-table to the pairs of domain constants realizing the ith

1-types is given as:

n
(ki2 )
ii

Hence, the possible 2-table assignments to the pair of domain elements realizing
the ith and jth 1-type respectively is given as:

n
k(i,j)
ij

Hence the number of models ω such that ω |= ∀xy.Φ(x, y) ∧ k is given as:(
n

k

) ∏
i≤j∈[u]

n
k(i,j)
ij

It can be seen that (3.15) can be computed in polynomial time w.r.t n. Hence,
using Corollary 1, we have that FOMC for universally quantified FO2 formulas is
domain-liftable.
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Example 12 (Example 10 continued). Consider a domain of 3 elements (i.e., n = 3).
The formula (3.15) takes the form:

(
3

k0, k1, k2, k3

) 3∏
i=0

n
ki(ki−1)

2
ii

3∏
i<j
i=0

n
kikj
ij

which is the number of models with k0 elements for which A(x) and R(x, x) are both
false; k1 elements for which A(x) is false and R(x, x) true, k2 elements for which A(x)

is true and R(x, x) is false and k3 elements for which A(x) and R(x, x) are both true.
For instance:

(
3

2,0,0,1

)
n1
00n

2
03 =

(
3

2,0,0,1

)
41 · 22 = 3 · 16 = 48 is the number of models in

which 2 elements are such that A(x) and R(x, x) are false and 1 element such that
A(x) and R(x, x) are both true.

We now move on to demonstrating an extension of formula (3.15), which will be
later exploited to incorporate cardinality constraints and counting quantifiers. We
will also see that this formula motivates a very general class of weight functions for
WFOMC in the 2-variable fragment. The key extension this formula provides is simple,
instead of decomposing FOMC over 1-type cardinality vectors k, we decompose it over
the 2-type cardinality vectors ⟨k,h⟩. We first provide a lemma and corollary analogous
to Lemma 6 and Corollary 1, for the 2-type cardinality vectors ⟨k,h⟩.

Lemma 7. Given an FOL sentence Φ, then the following always holds.

fomc(Φ, n) =
∑
⟨k,h⟩

fomc(Φ, ⟨k,h⟩) (3.17)

where ⟨k,h⟩ are the 2-type cardinality vectors (see Definition 26) and fomc(Φ, ⟨k,h⟩)
is defined as the number of models such that ω |= Φ ∧ ⟨k,h⟩.

Proof. Using Lemma 3, we cannot have that for any interpretation ω, ω |= ⟨k,h⟩ and
ω |= ⟨k′,h′⟩, where ⟨k,h⟩ and ⟨k′,h′⟩ are distinct 2-type cardinality vectors. Also, for
each interpretation ω, ω |= ⟨k,h⟩, for some 2-type cardinality vector ⟨k,h⟩. Hence,
we have that:

{ω : ω |= Φ} =
⊎
⟨k,h⟩

{ω : ω |= Φ ∧ ⟨k,h⟩} (3.18)

where
⊎

represents disjoint union. Therefore:

|{ω : ω |= Φ}| =
∑
⟨k,h⟩

|{ω : ω |= Φ ∧ ⟨k,h⟩}| (3.19)
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Lemma 7, leads to the following corollary about decomposition of domain liftaibility
over the 2-type cardinality vectors ⟨k,h⟩

Corollary 2 (of Lemma 7). Given an FOL sentence Φ, if fomc(Φ, ⟨k,h⟩) is domain
liftable then so is fomc(Φ, n).

Proof. The proof idea is similar to the one of Corollary 1, i.e., we show that there are
only polynomially many values of ⟨k,h⟩ in an FOL language, irrespective of Φ. We
have O(nu) 1-type vectors k. Hence, we only need to show that given a k, there are
only polynomially many h. If an ω |= k, then we have k(i, j) (see equation (3.16))
pairs of distinct domain constant (c, d) realizing the 1-type i and j respectively. Each
such pair can be extended to a 2-type by realizing any of the possible b 2-tables. Hence,
we have

(
k(i,j)
hij

)
possible choices for realizing the two tables for the k(i, j) pairs. Now

using that stars and bars method, the number of possible hij values is
(
k(i,j)+b−1

b−1

)
.

This is bounded above by O(k(i, j)b), which is bounded above by O(n2b), as the k(i, j)

cannot have a larger value than n2 — as the number of possible pairs of distinct domain
constants is only

(
n
2

)
. Finally, we have only u(u+1)

2
possible pairs of 1-types i and j,

such that i ≤ j. Hence, given a 1-type cardinality vector k, the vector h can take
u(u+1)

2
O(n2b) = O(n2b) values. The total possible values of ⟨k,h⟩ are bounded above by

the upper-bound for total possible values of k times the upper-bound for total possible
h. Hence, the total possible values of k are bounded by O(nu) · O(n2b) = O(nu+2b).
Hence using Lemma 7, if fomc(Φ, ⟨k,h⟩) can be computed in O(nc) for some constant
c, then fomc(Φ, n) can be computed in O(nc+u+2b).

We now present the closed-form formula for fomc(Φ, ⟨k,h⟩).

Theorem 8. Given a universally quantified FO2 formula ∀xy.Φ(x, y), interpreted over
a domain ∆ of size n, then the model count of the models ω such that ω |= ∀xy.Φ(x, y)
and ω has the 2-type cardinality ⟨k,h⟩ is given as:

fomc(∀xy.Φ(x, y), ⟨k,h⟩) =
(
n

k

) ∏
i≤j∈[u]

(
k(i, j)

hij

)∏
l∈[b]

n
hijl

ijl (3.20)

where k(i, j) is defined as follows:

k(i, j) =


ki(ki−1)

2
if i = j

kikj otherwise
(3.21)
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where nijl is 1 if ijl(x, y) |= Φ({x, y}) and 0 otherwise.

Proof. We first enumerate the number of models ω such that ω |= ⟨k,h⟩. Given
a 1-type cardinality vector k, we have

(
n
k

)
choices for assigning 1-types to domain

constants. Given that ω |= k, it has k(i, j) pairs of distinct domain constants (c, d)

such that i(c) and j(d), each such pair can be extended to any of the possible b 2-tables,
such that we have hijl pairs with 2-type ijl(x, y). Hence, we have

(
k(i,j)
hij

)
choices for

assigning 2-tables, where hij = ⟨hij1, · · · , hijb⟩. Hence, we have that the number of
models ω, such that ω |= ⟨k,h⟩ is given as:(

n

k

) ∏
i≤j∈[u]

(
k(i, j)

hij

)
(3.22)

Finally, in order to count the models such that ω |= ∀xy.Φ(x, y)∧⟨k,h⟩, we can only
admit ω that have two types consistent with ∀xy.Φ(x, y). We introduce an indicator
variable nijl, which is 1 if ijl(x, y) |= Φ({x, y}) and 0 otherwise. We multiply expression
(3.22) with nijl for each realization of a 2-type ijl(x, y), hence by

∏
l∈[b] n

hijl

ijl . Giving
us expression (3.20).

Notice that the indicator variables nijl act as a filter for selecting and deselecting
models or ⟨k,h⟩ that need to be counted, a single realization of an inconsistent 2-type
leads to an nijl = 0 being present in the product

∏
l∈[b] n

hijl

ijl , hence leading to a 0
contribution for that model or for that ⟨k,h⟩ in fomc(∀xy.Φ(x, y), ⟨k,h⟩).

It can be seen that equation (3.20), can be computed in polynomial time w.r.t the
domain cardinality n. Hence, using Corollary 2, we have that FOMC for universally
quantified formulas in FO2 is domain liftable, under this new formulation of the FOMC
formula.

3.5 FOMC for Cardinality Constraints

Cardinality constraints as defined in Definition 15 are arithmetic expressions that
impose restrictions on the number of times a certain predicate is interpreted to be true.
A simple example of a cardinality constraint is |A| = m, for some unary predicate A

and positive integer m. This cardinality constraint is satisfied by any interpretation in
which A(c) is interpreted to be true for exactly m distinct constants c in the domain ∆.
A more complex example of a cardinality constraint could be: |A|+ |B| ≤ |C|, where
A, B and C are some predicates in the language.
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Lemma 8. Given the interpretations ω1 and ω2, having the same 2-type cardinality
vector, i.e., ω1 |= ⟨k,h⟩ and ω2 |= ⟨k,h⟩, then for any cardinality constraint Γ :

ω1 |= Γ↔ ω2 |= Γ

Proof. The proof is a consequence of the fact that ⟨k,h⟩ uniquely defines the cardinality
of the predicates. Let us assume to the contrary that ω1 |= ⟨k,h⟩ and ω2 |= ⟨k,h⟩,
but ω1 |= (|A|= l) and ω2 |= (|A|= l′), where l ̸= l′. Let s ⊂ [u] represents the set of
1-types, such that if i ∈ s, then i(x) |= A(x). If A is a unary predicate then due to
Lemma 1, we have that for ω1

∑
i∈s ki = l. Similarly, for ω2 we have that

∑
i∈s ki = l′.

But ω1 and ω2 have the same 1-type cardinality vectors, hence l = l′, which is a
contradiction.

We now repeat the same argument for binary predicates, let R be a binary predicate,
and assume to the contrary that ω1 |= ⟨k,h⟩ and ω2 |= ⟨k,h⟩, but ω1 |= (|R|= q)

and ω2 |= (|R|= q′), where q ̸= q′. Let s ⊂ [u], be the set of 1-types such that if
i ∈ s, then i(x) |= R(x, x). Let f1 ⊆ [b] be the set of 2-tables such that if l ∈ f1, then
l(x, y) |= R(x, y) ∧ ¬R(x, y) or l(x, y) |= ¬R(x, y) ∧ R(x, y). Let f2 ⊆ [b] be the set
of 2-tables such that if l ∈ f2, then l(x, y) |= R(x, y) ∧ R(y, x). Then using Lemma
1 and Lemma 2, we have that for ω1:

∑
i∈s ki +

∑
l∈f1 hijl +

∑
l∈f2 2hijl = q, and for

ω2:
∑

i∈s ki +
∑

l∈f1 hijl +
∑

l∈f2 2hijl = q′. But both ω1 and ω2 have the same 2-type
cardinality vector, hence q = q′, which is a contradiction.

Example 13. Consider Φ(x, y) as given in Example 10, we wish to compute FOMC of
∀xy.Φ(x, y) with the additional conjunct |A| = 2 and |R| = 2, i.e., ∀xy.Φ(x, y)∧ (|A| =
2) ∧ (|R| = 2). The constraint |A| = 2 implies that when computing FOMC we
have to consider k such that k2 + k3 = 2. |R| = 2 constraint translates to only
considering ⟨k,h⟩ with k1 + k3 +

∑
i≤j(h

ij
1 + hij

2 + 2hij
3 ) = 2. Hence, FOMC for

∀xy.Φ(x, y) ∧ (|A| = 2) ∧ (|R| = 2) can be written as:∑
⟨k,h⟩|=Γ1∧Γ2

fomc(∀xy.Φ(x, y), ⟨k,h⟩) (3.23)

where Γ1 is the constraint such that |A| = 2 and Γ2 is the constraint such that |R|= 2.
Both these constraints can be checked in polynomial time w.r.t domain cardinality, from
just the ⟨k,h⟩, which are polynomially many.

For a given ⟨k,h⟩, we use the notation k(A) to denote cardinality of A if A is unary
and ⟨k,h⟩(A) if A is binary. Using Lemma 8, we can conclude that fomc(Φ ∧ Γ, n)

where Φ is a pure universal formula with 2 variables can be computed by considering
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only the ⟨k,h⟩’s that satisfy Γ, i.e., those ⟨k,h⟩’s where Γ evaluates to true, when |P |
is substituted with ⟨k,h⟩(P ) when P is binary and k(P ) when P is unary.

Theorem 9. Given a universally quantified FO2 formula Φ and cardinality constraint
Γ, then:

fomc(Φ ∧ Γ, n) =
∑

⟨k,h⟩|=Γ

fomc(Φ, ⟨k,h⟩) (3.24)

Proof. Due to Lemma 8, if ω1 and ω2 have the same 2-type cardinality vector then
they agree on any cardinality constraint. Hence,

{ω : ω |= Γ} = {ω : ω |= ⟨k,h⟩ and ⟨k,h⟩ |= Γ} (3.25)

Hence, we have that:

fomc(Φ ∧ Γ, n) =
∑

⟨k,h⟩|=Γ

fomc(Φ, ⟨k,h⟩)

3.6 FOMC for Existential Quantifiers

Scott [42] proposed an equi-satisfiable normal form for an FO2 formula, largely known
as the Scott’s Normal Form(SNF). In [35], the authors show that every interpretation
of a formula in FO2, can be extended to a unique interpretation of its SNF reduction.
They further show that SNF has no more interpretations than the original FO2 formula.

Theorem 10 (Scott’s Normal Form [42] and [35]). For every FO2 sentence Γ in a
language L, an equi-satisfiable sentence SNF(Γ) in Lext can be constructed, where Lext

is an extension of L with new predicates, and SNF(Γ) has the following form:

SNF(Γ) := ∀xy.Φ(x, y) ∧
m∧
i=1

∀x∃y.Ψi(x, y) (3.26)

where Φ(x, y) and Ψi(x, y) are quantifier-free, such that for every L-interpretation
ω |= Γ, there exists a unique Lext-interpretation ωext |= SNF(Γ), and for every Lext-
interpretation ωext |= SNF(Γ), ωext ↓ L |= Γ.

In this section, we provide a proof for model counting in the presence of existential
quantifiers. The key difference in our approach w.r.t [28] is that we make explicit use
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of the principle of inclusion-exclusion, and we will later generalize the same approach
to counting quantifiers. We will first provide a corollary of the principle of inclusion-
exclusion.

Corollary 3 ([43] section 4.2). Let Ω be a set of objects and let S = {S1, . . . , Sm} be
a set of subsets of Ω. For every Q ⊆ S, let N(⊇ Q) be the count of objects in Ω that
belong to all the subsets Si ∈ Q, i.e., N(⊇ Q) =

∣∣∣{⋂Si∈Q Si}
∣∣∣. For every 0 ≤ l ≤ m,

let sl =
∑

|Q|=l N(⊇ Q) and let e0 be count of objects that do not belong to any of the
Si in S, then

e0 =
m∑
l=0

(−1)lsl (3.27)

Theorem 11. For an FO2 formula in Scott’s Normal Form as given in (3.26), let
Φ′ = ∀xy.(Φ(x, y) ∧

∧q
i=1 Pi(x) → ¬Ψi(x, y)) where Pi’s are fresh unary predicates,

then:

fomc((3.26), n) =
∑
⟨k,h⟩

(−1)
∑

i k(Pi)fomc(Φ′, ⟨k,h⟩) (3.28)

Proof. Let Ω be the set of models of ∀xy.Φ(x, y) over the language of Φ and {Ψi} (i.e.,
the language of Φ′ excluding the predicates Pi) and on a domain ∆ consisting of n
elements. Let S = {Ωci}c∈∆, 1≤i≤q be the set of subsets of Ω where Ωci is the set of
ω such that ω |= ∀y.¬Ψi(c, y). For every model ω of (3.26), ω ̸|= ∀y¬Ψi(c, y) for any
pair of i and c i.e. ω is not in any Ωci. Also, for every ω ∈ Ω, if ω ̸∈ Ωci for any pair of
i and c, then ω |= ∃y.Ψi(c, y) for all i and for all c ∈ ∆ i.e., ω |=

∧q
i=1 ∀x∃y.Ψi(x, y).

Hence, ω |= (3.26) if and only if ω ̸∈ Ωci for all c and i. Therefore, the count of models
of (3.26) is equal to the count of models in Ω which do not belong to any Ωci. Hence, If
we are able to compute sl (as introduced in Corollary 3), then we could use Corollary 3
for computing cardinality of all the models which do not belong to any Ωci and hence
fomc((3.26), n).

For every 0 ≤ l ≤ n · q, let us define

Φ′
l = Φ′ ∧

q∑
i=1

|Pi|= l (3.29)

We will now show that sl is exactly given by fomc((3.29), n).
Every model of Φ′

l is an extension of an ω ∈ Ω that belongs to at least l elements in
S. In fact, for every model ω of ∀xy.Φ(x, y) i.e. ω ∈ Ω, if Q′ is the set of elements of
S that contain ω, then ω can be extended into a model of Φ′

l in
(|Q′|

l

)
ways. Each such
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model can be obtained by choosing l elements in Q′ and interpreting Pi(c) to be true
in the extended model, for each of the l chosen elements Ωci ∈ Q′. On the other hand,
recall that sl =

∑
|Q|=l N(⊇ Q). Hence, for any ω ∈ Ω if Q′ is the set of elements of S

that contain ω, then there are
(|Q′|

l

)
distinct subsets Q ⊆ Q′ such that |Q|= l. Hence,

we have that ω contributes
(|Q′|

l

)
times to sl. Therefore, we can conclude that

sl = fomc(Φ′
l, n) =

∑
|Q|=l

N(⊇ Q)

and by the principle of inclusion-exclusion as given in Corollary 3, we have that :

fomc((3.26), n) = e0 =

n·q∑
l=0

(−1)lsl

=

n·q∑
l=0

(−1)lfomc(Φ′
l, n)

=

n·q∑
l=0

(−1)l
∑

⟨k,h⟩|=
∑

i|Pi|=l

fomc(Φ′, ⟨k,h⟩)

=
∑
⟨k,h⟩

(−1)
∑

i k(Pi)fomc(Φ′, ⟨k,h⟩)

3.7 FOMC for Counting Quantifiers

Counting quantifiers are expressions of the form ∃x≥m.Ψ(x), ∃≤mx.Ψ(x), and ∃=mx.Ψ(x).
The extension of FO2 with such quantifiers is denoted by C2 [44]. In this section, we
show how FOMC in C2 can be performed by exploiting the formula for FOMC in
FO2 with cardinality constraints. We assume that the counting quantifier ∃≤my.Ψ(y)

is expanded to
∨m

k=0 ∃=ky.Ψ(y), and the quantifiers ∃≥my.Ψ(y) are first transformed
to ¬(∃≤m−1y.Ψ(y)) and then expanded. We are therefore left with quantifiers of the
form ∃=my.Ψ(y). Hence, any C2 formula can be transformed into a formula of the
form Φ0 ∧

∧q
k=1 ∀x.(Ak(x) ↔ ∃=mky.Ψk(x, y)) that preserves FOMC, where2 Φ0 is

a pure universal formula obtained by replacing every occurrence of the sub-formula
∃=mky.Ψk(y) with Ak(x), where Ak(x) is a fresh predicate. W.l.o.g, we can assume that
Ψk(x, y) is the atomic formula Rk(x, y). We will now present a closed-form for FOMC

2We assume that Φ0 contains no existential quantifiers as they can be transformed as described in
Theorem 11.
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of Φ0 ∧
∧

k ∀x.(Ak(x)↔ ∃=mky.Rk(x, y)). For the sake of notational convenience, we
use Φi..j to denote

∧
i≤s≤j Φs for any set of formulas {Φs}.

Theorem 12. Let Φ be the following C2 formula :

Φ0 ∧
q∧

k=1

∀x.(Ak(x)↔ ∃=mky.Rk(x, y))

where Φ0 is a pure universal formula in FO2. Let us define the following formulas for
each k, where 1 ≤ k ≤ q:

Φk
1 =

∧mk

i=1∀x∃y.Ak(x) ∨Bk(x)→ fki(x, y)

Φk
2 =

∧
1≤i<j≤mk

∀x∀y.fki(x, y)→ ¬fkj(x, y)
Φk

3 =
∧mk

i=1∀x∀y.fki(x, y)→ Rk(x, y)

Φk
4 = ∀x.Bk(x)→ ¬Ak(x)

Φk
5 = ∀x∀y.Mk(x, y)↔ ((Ak(x) ∨Bk(x)) ∧Rk(x, y))

Φk
6 = |Ak|+ |Bk| = |fk1| = · · · = |fkmk

| = |Mk|
mk

where3 Bk, fki and Mk are fresh predicates. Then fomc(Φ, n) is given as:

∑
⟨k,h⟩|=

∧
k Φk

6

(−1)
∑

k k(Bk)+
∑

k,i k(Pki)fomc(Φ′, ⟨k,h⟩)∏
k mk!k(Ak)

where Φ′ is obtained by replacing each Φk
1 with

∧mk

i=1∀x∀y.Pki(x)→ ¬(Ak(x)∨Bk(x)→
fki(x, y)) in Φ0 ∧

∧
k Φ

k
1..5 and Pki are fresh unary predicates.

Lemma 9. For a given interpretation ω, let Aω
k and Bω

k represent the set of constants
c such that ω |= Ak(c) and ω |= Bk(c), respectively. If ω |= Φ0 ∧

∧q
k=1 Φ

k
1..6 then every

c ∈ Aω
k ∪Bω

k has exactly mk Rk-successors i.e., ω |= ∃=mky.R(c, y).

Proof. If c ∈ Aω
k ∪ Bω

k , then by Φk
1, c has an fki-successor for every 1 ≤ i ≤ mk. Φk

2

implies that c has distinct fki and fkj successor for any choice of i and j. Φk
3 implies that

any fki-successor of c is also an Rk-successor. Hence, c has at least mk Rk-successors.
Axiom Φk

5 implies that c has exactly as many Rk-successors as Mk-successors.
Hence, c has at-least mk Mk-successors. Furthermore, by Φk

4 we have that Aω
k and Bω

k

3If Φ0 is obtained after a transformation as described in Theorem 11, then we can add the term∑
g k(Pg) to the exponent of (−1), for the set of unary predicates {Pg} introduced to deal with

existential quantifiers. Also, any cardinality constraint on predicates of Φ0 can be easily conjuncted
and incorporated into ∧kΦk

6 .
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are disjoint. Hence, using Φk
6, we can conclude that c has exactly mk Mk-successors.

Finally, using Φk
5 we can conclude that c has exactly mk Rk-successors.

Proof (of Theorem 12). First notice that every model ω of Φ can be extended to∏
k mk!

Aω
k models of Φ0 ∧

∧
k Φ

k
1..6 by interpreting Bk in the empty set, fki in the set of

pairs ⟨c, d⟩ for c ∈ Aω
k and d being the i-th Rk-successor of c (for some ordering of the

Rk-successors) and Mk according to the definition given in Φ5
k.

Let Ω the set of models of Φ0 ∧
∧q

k=1 Φ
k
1..6 restricted to the language of Φ, Mk and

fki (i.e., the language of Φ0 ∧
∧q

k=1 Φ
k
1..6 excluding the predicates Bk) and on a domain

C consisting of n elements.
Notice that Ω contains also the models that are not extensions of some model of Φ.

Therefore, in the first part of the proof we count the number of extensions of models
of Φ in Ω, and successively we will take care of the over-counting due to the multiple
interpretations of fki’s.

Let S = {Ωck} be the set of subsets of Ω such that if ω ∈ Ωck then ω |= ¬Ak(c) ∧
∃=mky.Rk(c, y). Due to Lemma 9, if ω ∈ Ω then ω |=

∧
k ∀x.Ak(x)→ ∃=mky.Rk(x, y).

Hence, in order to count the models of Φ in Ω we only need to count the number
of models in Ω that satisfy

∧
k ∀x∃=mky.Rk(x, y)→ Ak(x), equivalently, the number

of models that belong to none of the Ωck. Hence, if we are able to evaluate sl (as
introduced in Corollary 3) then we can use Corollary 3 to count the set of models in Ω

that satisfy Φ.
Let ω ∈ Ω. Let us define Φl for l ≥ 0 as follows:

Φl = Φ0 ∧
∧
k

Φk
1..6 ∧

(∑
k

|Bk| = l

)
(3.30)

Firstly, let Q′ be the set of elements in S that contain ω. By Lemma 9, ω can be
extended in

(|Q′|
l

)
models of Φl. Each such extension can be achieved by choosing l

elements in Q′, and interpreting Bk(c) to be true in the extended model iff Ωck is a
part of the l chosen elements. On the other hand, recall that sl =

∑
|Q|=l N(⊇ Q).

Every ω that is contained in all the elements of Q′, contributes
(|Q′|

l

)
to sl. Hence,

sl = fomc(Φl, n). Using inclusion-exclusion principle (corollary 3), we have that the
number of models which do not belong to any of the Ωck are:∑

l

(−1)lsl =
∑
l

(−1)lfomc(Φl, n) (3.31)
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Hence, we have the count of models of Φ in Ω. But notice that this is the count of
the models of Φ in the language of Φ0 ∧

∧
k Φ

k
1..6 excluding Bk, where there are the

additional predicates {fki}. Since every interpretation with |Aω
k |= rk can be extended

in mk!
rk models of Φ due to the permutations of {fki}mk

i=1, to obtain FOMC on the
language of Φ we have to take into account this over-counting4. This can be obtained
by introducing a cardinality constraint |Ak| = rk for every Ak and dividing by mk!

rk

for each k and r1...rq values. Giving the following expression for fomc(Φ, n):

∑
l,rk

(−1)lfomc(Φl ∧
∧

k|Ak|= rk, n)∏
k mk!rk

(3.32)

Also notice that Φk
1 contains mk existential quantifiers, to eliminate them we use the

result of Theorem 11. We introduce mk new unary predicates Pk1, . . . , Pkmk
for each k,

and replace each Φk
1 with

∧
i ∀x∀y.Pki(x)→ ¬(Ak(x) ∨Bk(x)→ fki(x, y)). Hence, by

Theorem 11 we have that fomc(Φ, n) is equal to:

∑
⟨k,h⟩|=

∧
k Φk

6

(−1)
∑

k k(Bk)+
∑

k,i k(Pki)fomc(Φ′, ⟨k,h⟩)∏
k mk!k(Ak)

where Φ′ is the pure universal formula Φ0∧
∧q

k=1 Φ
k
2..5∧

∧
i,k Pki(x)→ ¬(Ak(x)∨Bk(x)→

fki(x, y)).

3.8 Weighted First-Order Model Counting

FOMC formulas introduced so far can be easily extended to weighted model counting
by simply defining a positive real-valued weight functions w(⟨k,h⟩) and adding them
as a multiplicative factor to fomc(Φ, ⟨k,h⟩), in all the FOMC formulas. We first deal
with symmetric-weight functions (as defined in Definition 16) and then introduce a
new larger class of weight functions.

Theorem 13. Given a C2 sentence Φ, symmetric-WFOMC for Φ can be obtained from
FOMC as follows:

wfomc(Φ, n) =
∑
⟨k,h⟩

w(⟨k,h⟩) · fomc(Φ, ⟨k,h⟩) (3.33)

4Notice that Mk leads to no additional models of Φ as interpretations of Mk are uniquely determined
by Ak and Rk by Φk

5 .



3.8 Weighted First-Order Model Counting 43

where w(⟨k,h⟩) is defined as follows:

w(⟨k,h⟩) =
∏
P∈L

w(P )⟨k,h⟩(P ) · w̄(P )⟨k,h⟩(¬P )

where w(P ) and w̄(P ) are real valued weights on predicate P , and it’s negation
respectively.

Proof. The proof is a consequence of the observation that fomc(Φ, ⟨k,h⟩) is the
number of models of Φ that contain k(P ) elements that satisfy P if P is unary, and
⟨k,h⟩(P ) pairs of elements that satisfy P , if P is binary.

3.8.1 Expressing Count Distribution

Kuželka [37] introduced a strictly more expressive class of weight functions which also
preserves domain liftability. These weight functions can express count distributions,
which are defined as follows:

Definition 29 (Count distribution [37]). Let Φ = {αi, wi}mi=1 be a Markov Logic
Network defining a probability distribution pΦ,Ω over a set of possible worlds (we call
them assignments) of a formula Ω. The count distribution of Φ is the distribution over
m-dimensional vectors of non-negative integers n given by

qΦ(Ω,n) =
∑

ω|=Ω, n=N(Φ,ω)

pΦ,Ω(ω) (3.34)

where N (Φ, ω) = (n1, . . . , nm) and ni is the number of grounding of αi that are true in
ω.

Kuželka [37] showed that count distributions can be modelled by Markov Logic
Networks with complex weights. In the following, we prove that if each αi is in FO2,
count distributions can be expressed by a w(⟨k,h⟩).

Theorem 14. Every count distribution over a set of possible worlds of a formula Ω

definable in FO2 can be modelled with a weight function on ⟨k,h⟩, by introducing m

new predicates Pi and adding the axioms Pi(x)↔ αi(x) and Pj(x, y)↔ αj(x, y), if αi

and αj has one and two free variables respectively and by defining:

qΦ(Ω,n) =
1

Z

∑
⟨k,h⟩(Pi)=ni

w(⟨k,h⟩) · fomc(Ω, ⟨k,h⟩) (3.35)

where Z = wfomc(Ω, w, n) is the partition function.
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Proof. The proof is a simple consequence of the fact that all the models agreeing with
a count statistic n can be counted using cardinality constraints which agree with n.
Any such cardinality constraint correspond to a specific set of ⟨k,h⟩ vectors. Hence,
we can express arbitrary probability distributions over count statistics by picking real
valued weights for ⟨k,h⟩ vector.

Since Ω is a FO2 formula, then we can compute FOMC as follows:

fomc(Ω, n) =
∑
⟨k,h⟩

fomc(Ω, ⟨k,h⟩)

Let us define w⟨k,h⟩ for each ⟨k,h⟩ as follows:

w⟨k,h⟩ = 1

fomc(Ω, ⟨k,h⟩)
∑
ω|=Ω

N(α1,ω)1=⟨k,h⟩(P1)
...

N(αm,ω)m=⟨k,h⟩(Pm)

pΦ,Ω(ω) (3.36)

This definition implies that the partition function Z is equal to 1. Indeed:

Z = wfomc(Ω, w, n)

=
∑
⟨k,h⟩

w(⟨k,h⟩) · fomc(Ω, ⟨k,h⟩)

=
∑
⟨k,h⟩

∑
ω|=Ω

N(α1,ω)1=⟨k,h⟩(P1)
...

N(αm,ω)m=⟨k,h⟩(Pm)

pΦ,Ω(ω)

=
∑
ω|=Ω

∑
⟨k,h⟩

N(α1,ω)1=⟨k,h⟩(P1)
...

N(αm,ω)m=⟨k,h⟩(Pm)

pΦ,Ω(ω)

=
∑
ω|=Ω

pΦ,Ω(ω)

= 1
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Hence,

qΦ(Ω,n) =
∑

⟨k,h⟩(Pi)=ni

fomc(Ω, ⟨k,h⟩) · w(⟨k,h⟩)

=
∑

⟨k,h⟩(Pi)=ni

∑
ω|=Ω

N(α1,ω)1=⟨k,h⟩(P1)
...

N(αm,ω)m=⟨k,h⟩(Pm)

pΦ,Ω(ω)

=
∑
ω|=Ω

N(α1,ω)1=n1
...

N(αm,ω)m=nm

pΦ,Ω(ω)

Example 14. In the example proposed in [37], they model the distribution of a sequence
of 4 coin tosses such that the probability of getting an odd number of heads is zero,
whereas each event with even number of heads is equally likely. In order to model this
distribution, we introduce a predicate H(x) over a domain of 4 elements, we also define
Ω as ⊤. This means that every model of this theory is a model of Ω. Notice that this
distribution cannot be expressed using symmetric weights, as symmetric weights can
only express binomial distribution for this language. But we can define weight function
on ⟨k,h⟩ vector. In this case k = (k0, k1) such that k0 + k1 = 4. Since there are no
binary predicates we can ignore h. Intuitively, k0 is the number of tosses which are not
heads and k1 is the number of tosses which are heads. If we define the weight function
as w(k0, k1) = 1 + (−1)k1. Then by applying (3.35) we obtain the following probability
distribution over the tosses:

q(Ω, (4, 0)) =

(
4
4

)
· (1 + 1)

16
=

1

8

q(Ω, (3, 1)) =

(
4
3

)
· (1− 1)

16
= 0

q(Ω, (2, 2)) =

(
4
2

)
· (1 + 1)

16
=

3

4

q(Ω, (1, 3)) =

(
4
1

)
· (1− 1)

16
= 0

q(Ω, (0, 4)) =

(
4
0

)
· (1 + 1)

16
=

1

8
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which coincides with the distribution obtained by [37]. Notice, that such a distribution
cannot be expressed through symmetric weight functions and obligates the use of a
strictly more expressive class of weight functions.

We are able to capture count distributions without losing domain liftability. Fur-
thermore, we do not introduce complex or even negative weights, making the relation
between weight functions and probability rather intuitive.

3.9 Conclusion

In this chapter, we have presented a closed-form formula for FOMC of universally
quantified formulas in FO2 that can be computed in polynomial time w.r.t. domain
cardinality. From this, we are able to derive a closed-form expression for FOMC
in FO2 formulas in Scott’s Normal Form, extended with cardinality constraints and
counting quantifiers. These extended formulas are also computable in polynomial time,
and therefore they constitute lifted inference algorithms for C2. All the formulas are
extended to cope with weighted model counting in a simple way, admitting a larger
class of weight functions than symmetric weight functions. All the results have been
obtained using combinatorial principles, providing a uniform treatment to all these
fragments.



Chapter 4

WFOMC with Acyclicity Constraints

The work presented in this chapter forms part of the following under review
article, available at arxiv:

Sagar Malhotra and Luciano Serafini. Weighted First Order Model Counting
with Directed Acyclic Graph Axioms. arXiv:2302.09830 [24]

4.1 Introduction

A large part of SRL is concerned with modelling, learning and inferring over large
scale datasets. However, as we show in Section 2.2, modelling complex relationships is
restricted by the complexity of WFOMC in models like MLNs. As demonstrated in the
previous chapter this complexity can be overcome for the two-variable fragment of FOL
extended with cardinality constraints and counting quantifiers. However, real-world
data modelling requires much more expressivity. Furthermore, modelling requirements
may not be even FOL-definable. One such example is Directed Acyclic Graphs (DAGs).
DAGs are ubiquitous data structures, that appear in all kinds of applications. Citation
networks, such as CiteSeer, Cora and PubMed, can be modeled as DAGs. Citation
networks are acyclic because a paper cannot cite itself or cite a paper that cites
it. In these networks, articles are represented as nodes, and the edges represent the
citation relationships between them. A set of multiple genealogy trees that trace family
relationships can also be represented as DAGs (with additional constraints i.e. being a
forest), where nodes represent individuals and edges represent parent-child relationships.
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Hence, SRL models that can express an Acyclicity constraints can significantly aid
learning and inference tasks in many real-world datasets.

In this chapter, we show that WFOMC in C2 expanded with a DAG axiom is
domain liftable, allowing us to efficiently answer questions like:

“How many DAGs with exactly (or atleast or atmost) k sources and exactly m (or
atleast or atmost) sinks exist ?”

Given the vastness of DAG applications, these results can allow modelling of many
real-world scenarios in models like Markov Logic Networks e.g. citation networks [45].
Furthermore, since counting DAGs have become an important tool for learning Bayesian
Networks and causal inference [46, 47], our results could potentially be exploited in
these domains as well.

4.2 Related Works

Recent results have attempted to expand the domain-liftability of WFOMC in C2

[19, 22] by expanding the logical language in different directions, such as the linear order
axiom [48]. However, one of the most interesting such development has been extension
of domain-liftability of C2 with a tree axiom [49]. This development is interesting as a
tree structure is not only outside the expressivity of domain-liftable fragments, but is
inexpressible in any FOL language. This chapter expands the domain-liftability of C2,
with another constraint in-expressible in FOL, namely the acyclicity constraint.

4.3 Background

We assume background from Section 2.1, Section 2.2 and Section 2.7. We will revisit
WFOMC in FO2 and C2 as presented in [28] and [19], respectively, as these approaches
render the proofs in this chapter easier to formulate.

4.3.1 WFOMC

In WFOMC as defined in equation (2.2), we assume that the weight function w does
not depend on individual domain constants, which implies that w assigns same weight
to two interpretations which are isomorphic under the permutation of domain elements.
Hence, for a domain ∆ of size n, we can equivalently use [n] as our domain. Furthermore,
in this chapter we will focus only on symmetric weight functions as defined in Definition
16. We will also need to invoke modularity of WFOMC-preserving reductions.
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Definition 30 ([36]). A reduction (Φ, w, w̄) to (Φ′, w′, w̄′) is modular iff for any
sentence Λ:

wfomc(Φ ∧ Λ, (w, w̄), n) = wfomc(Φ′ ∧ Λ, (w′, w̄′), n)

Intuitively, modularity implies that the reduction procedure is sound under presence
of other sentences Λ. And that any new sentence Λ does not invalidate the reduction.

For the rest of the chapter, whenever referring to weights, we intend symmetric
weights. Hence, we will use wfomc(Φ, n) without explicitly mentioning the weights w

and w̄.

Revisiting WFOMC in FO2

We now define some weight parameters associated with an FOL language. These pa-
rameters will be useful for treating WFOMC. Given an FO2 language L and symmetric
weight functions (w, w̄), let I denotes the set of atoms in L containing only variables,
i.e. not grounded. We then define the following two parameters for each 1-type i(x)

and 2-table l(x, y):

wi =
∏

i(x)|=g
g∈I

w(pred(g))
∏

i(x)|=¬g
g∈I

w̄(pred(g))

and

vl =
∏

l(x,y)|=g
g∈I

w(pred(g))
∏

l(x,y)|=¬g
g∈I

w̄(pred(g)) (4.1)

We will now present a slightly reformulated version of WFOMC for universally
quantified FO2 formulas, as presented in [28].

Theorem 15 (Beame et al. (2015) [28]). Given a universally quantified FO2 formula
∀xy.Φ(x, y), interpreted over a domain [n], then the weighted model count of the models
ω such that ω |= ∀xy.Φ(x, y) and ω has the 1-type cardinality k is given as:

wfomc(∀xy.Φ(x, y),k) =
(
n

k

)∏
i∈[u]

wki
i

∏
i≤j∈[u]

r
k(i,j)
ij (4.2)
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where k(i, j) is defined as follows:

k(i, j) =


ki(ki−1)

2
if i = j

kikj otherwise

where we define rij =
∑

l∈[b] nijlvl, where nijl is 1 if ijl(x, y) |= Φ({x, y}) and 0

otherwise.

Proof. In a given 1-type cardinality vector k, ki represents the number of constants
c of 1-type i. Also a given constant realizes exactly one 1-type. Hence, for a given
k, we have

(
n
k

)
possible ways of realizing 1-types. A domain constant c realizing the

ith 1-type contributes a weight of wi multiplicatively to weight of ω. Hence, for a
given k, the contribution due to 1-type realizations is

∏
i∈[u] w

ki
i . Furthermore, in

an interpretation ω |= ∀xy.Φ(x, y), given a pair of constants c and d such that c is
of 1-type i and d is of 1-type j, using Lemma 3, we have that (c, d) can realize the
2-table l(c, d), only if ijl(x, y) |= Φ(x, y). Hence, in an arbitrary interpretation, the
multiplicative weight contribution due to l(x, y) realization is given by nijlvl. Also
using Lemma 2, each ordered pair of constants can realize exactly one and only one
2-table. Hence, the possible 2-table realization contributes a weight rij =

∑
l nijlvl.

Furthermore, given 1-type assignments to i(c) and j(d), the ordered pair (c, d) can
realize 2-table independently of all other domain constants. Finally, There are k(i, j)

possible such pairs, contributing a weight∏
i≤j∈[u]

r
k(i,j)
ij

Clearly, equation (4.2) can be computed in polynomial time w.r.t domain cardinality.
Furthermore, there are only polynomially many k, in the size of the domain. Hence,
wfomc(∀xy.Φ(x, y), n) given as:∑

|k|=n

wfomc(∀xy.Φ(x, y),k)

can be computed in polynomial time w.r.t domain size n.
[36] show that any FOL formula with existential quantification can be modularly

reduced to a WFOMC preserving universally quantified FO2 formula, with additional
new predicates and negative weights. Hence, showing that FO2 is domain-liftable.
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Revisiting WFOMC in C2

[19] show that WFOMC in C2 can be reduced to WFOMC in FO2 with cardinality
constraints. Furthermore, these reductions are independent of the domain cardinality.
In order to prove domain liftability, the proof in [19], relies on Lagrange interpolation.
In the following we provide an easier presentation of the proof.

Theorem 16 ([19], slightly reformulated). Let Φ be a first-order logic sentence. Let
Γ be a arbitrary cardinality constraint. Then wfomc(Φ ∧ Γ,k) can be computed in
polynomial time with respect to the domain cardinality, relative to the wfomc(Φ,k)

oracle.

Proof. We assume an FOL language L, with r relational symbols {Ri/ai}i∈[r]. Given
an interpretation ω, let µ = ⟨|R1|. . . |Rr|⟩ be the vector containing cardinality of each
predicate Ri in ω. Now, w(ω) can be easily evaluated using the definition of symmetric
weight functions (Definition 16). Furthermore, any two interpretations with same
predicate cardinalities µ as ω, have the same weight w(ω). Hence, we use wµ to denote
the weight w(ω).

Given an FOL formula Φ, let Aµ be the number of models ω |= Φ ∧µ. Clearly, the
following holds:

wfomc(Φ,k) =
∑
µ

Aµwµ (4.3)

Each predicate Ri/ai can be grounded to nai ground atoms. Hence, there are n
∑

i∈[r] ai

possible values of µ, which are polynomial in n. Hence, if we evaluate wfomc(Φ,k) for
n
∑

i∈[r] ai different values of weight functions (w, w̄), then we have a linear system of
n
∑

i∈[r] ai equations with n
∑

i∈[r] ai variables (variables being Aµ), which can be solved in
O(n3

∑
i∈[r] ai) time, using Gauss-elimination. Once we have all the Aµ, we can evaluate

any cardinality constraint as follows:

wfomc(Φ ∧ Γ,k) =
∑
µ|=Γ

Aµwµ (4.4)

where µ |= Γ represents the fact that the predicate cardinalities µ, satisfy the
cardinality constraint Γ. Since, there area only polynomially many µ, equation (4.4)
can be computed in polynomial time.

Remark 5. In equation (4.4), we assume that µ |= Γ can be checked in polynomial
time wrt n. Which is a reasonable assumption for all our purposes.
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Remark 6. In the proof presented above (and in [19]), the first-order definability of
Φ is never invoked. This property has also been exploited for imposing cardinality
constraints with tree axiom in [49].

Theorem 16 extends domain-liftability of any sentence Φ to its domain liftability
with cardinality constraints. We now move onto the results on domain-liftability of C2.

Theorem 17 (Kuželka (2021)[19]). The fragment of first-order logic with two variables
and counting quantifiers is domain-liftable.

The key idea behind Theorem 17 is that WFOMC of a C2 sentence Φ can be
converted to a problem of WFOMC of an FO2 sentence Φ′ with cardinality constraints
Γ on an extended vocabulary with additional weights for the new predicates (the
new predicates are weighted 1 or -1). We refer the reader to [19], for the detailed
treatment of Theorem 17. However, for our purposes it is important to note that this
transformation is modular. The modularity of the WFOMC procedure as presented
in [19], has also been exploited to demonstrate domain-liftability of C2 extended with
Tree axiom [49] and Linear Order axiom [48].

4.3.2 Counting Directed Acyclic Graphs

A Directed Acyclic Graph (DAG) is a directed graph such that starting from an
arbitrary node i and traversing an arbitrary path along directed edges, we would never
arrive at node i. We now present the derivation of a recursive formula for counting the
number of DAGs.

Let the nodes be the set [n] and let Ai be the set of DAGs on [n] where node i has
indegree zero. Since every DAG has at least one node with in-degree zero, we have
that the total number of DAGs i.e. an is given as |

⋃
i∈[n] Ai|. The number of DAGs

such that all nodes in J ⊆ [n] have in-degree zero is then given as AJ :=
⋂

j∈J Aj. Let
us assume that J = [m] for some 1 ≤ m ≤ n. We now derive a method for computing
A[m]. We make the following three observations for deriving the formula for counting
the DAGs in A[m].

• Observation 1. If ω ∈ A[m], then there are no edges between the nodes in [m],
as otherwise a node in [m] will have a non-zero in-degree. In other words, only
directed edges from [m] to [m̄] are allowed.

• Observation 2. If ω ∈ A[m], then subgraph of ω restricted to [m̄] i.e. ω ↓ [m̄] is a
DAG. And the subgraph of ω restricted to [m] is just an empty graph, i.e., the
set of isolated nodes [m] with no edges between them.
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• Observation 3. Given a DAG on [m̄], then it can be extended to 2m(n−m) DAGs
in A[m]. This is because DAGs in A[m] have no edges between the nodes in [m].
They only have outgoing edges from [m] to [m̄]. For extending a given DAG on
[m̄] to a DAG in A[m], we can either draw an out-going edge from [m] to [m̄] or
not. Giving us two choices for each pair of nodes in [m]× [m̄]. Hence, there are
2|[m]×[m̄]| = 2m(n−m) ways to extend a given DAG on [m̄] to a DAG in A[m].

The number of possible DAGs on [m̄] is an−m. Due to Observation 3, we have that
A[m] has 2m(n−m)an−m DAGs obtained by extending the DAGs on [m]. Furthermore,
due to Observation 1 and Observation 2, these are all the possible DAGs in A[m]. Hence,
|A[m]|= 2m(n−m)an−m. Now, we can repeat this argument for any m sized subset of [n].
Hence, if |J |= |J ′|= m then AJ = AJ ′ = 2m(n−m)an−m. Hence, using the principle of
inclusion-exclusion as given in equation (2.20), we have that:

an =
n∑

m=1

(−1)m+1

(
n

m

)
2m(n−m)an−m (4.5)

Notice that replacing n−m with l in equation (4.5), it can be equivalently written as:

an =
n−1∑
l=0

(−1)n−l+1

(
n

l

)
2l(n−l)al (4.6)

This change of variable allows us to write a bottom-up algorithm for counting DAGs,
as given in Algorithm 1. Based on this algorithm we now show that counting DAGs
can be performed in polynomial time with respect to the number of nodes n.

Proposition 1. The number of labelled DAGs over n nodes can be computed in
polynomial time.

Proof. We define a0 = 1 by convention and then by using equation (4.6) in Algorithm
1, we incrementally compute a1, a2..., saving each result in a list given by A. The for
loop runs in time O(n), and in each run in line 5, we perform other O(n) operations.
Hence, the algorithm runs in O(n2).

4.4 WFOMC with DAG Axiom

In this section we extend the approach used for counting DAGs in equation (4.5) to
WFOMC of FO2 and C2 formulas with a DAG Axiom. First, we formally define the
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Algorithm 1 Number of DAG on n nodes
1: Input: n
2: Output: an
3: A[0]← 1
4: for i = 1 to n do
5: A[i]←

∑i−1
l=0(−1)i−l+1

(
i
l

)
2l(i−l)A[l]

6: end for
7: return A[n]

DAG axiom. We then present Proposition 2, Proposition 3 and Proposition 4, analogous
to Observation 1, 2 and 3 respectively, as presented in the subsection 4.3.2. We then use
principle of inclusion-exclusion to compute the WFOMC of universally quantified FO2

formulas extended with a DAG axiom. And show our method to be domain-liftable.
The proposed apporach is then extended to admit full FO2, Cardinality constraints and
C2. We finally extend the DAG axiom, with additional unary predicates that represent
sources and sinks of the DAG.

Definition 31. Let Φ be a first-order logic sentence, possibly containing the binary
relation R. An interpretation ω is a model of Ψ = Φ ∧ Acyclic(R) if and only if:

• ω is a model of Φ, and

• ωR forms a Directed Acyclic Graph

Definition 32. Let Ψ = Φ ∧ Acyclic(R), where Φ is a first-order logic sentence, be
interpreted over the domain [n]. Let 1 ≤ m ≤ n. Then ω is a model of Ψ[m] if and only
if ω is a model of Ψ on [n] and the domain elements in [m] have zero R-indegree.

Notice that due to Definition 32, for the domain [n], Ψ[n] is equivalent to Ψ′ =

Φ ∧ ¬R(x, y).

Proposition 2. Let Ψ = ∀xy.Φ(x, y) ∧ Acyclic(R) and Ψ′ = ∀xy.Φ(x, y) ∧ ¬R(x, y),
where Φ(x, y) is quantifier-free, be interpreted over [n]. Let 1 ≤ m ≤ n. If ω is a model
of Ψ[m], then ω ↓ [m] |= Ψ′ and ω ↓ [m̄] |= Ψ.
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Proof. We have that ω |= Ψ. Hence, we have that:

ω |=
∧

(c,d)∈[n]2
Φ(c, d)

⇒ ω |=
∧

(c,d)∈[m]2

Φ(c, d)
∧

(c,d)∈[m̄]2

Φ(c, d)

∧
(c,d)∈[m̄]×[m]

Φ(c, d)
∧

(c,d)∈[m]×[m̄]

Φ(c, d)

Since, ω |=
∧

(c,d)∈[m]2 Φ(c, d) and ω |=
∧

(c,d)∈[m̄]2 Φ(c, d), we have that ω ↓ [m] |=
∀xy.Φ(x, y) and ω ↓ [m̄] |= ∀xy.Φ(x, y). Now, since [m] has zero R-indegree, it can
only have outgoing R-edges to [m̄]. Hence, we can infer that ω ↓ [m] |= ∀xy.¬R(x, y).
Now, ωR is a DAG, then so is ωR ↓ [m̄]. Hence, ω ↓ [m̄] |= Acyclic(R). Hence,
ω ↓ [m] |= Ψ′ and ω ↓ [m̄] |= Ψ.

Proposition 3. Let Ψ = ∀xy.Φ(x, y) ∧ Acyclic(R) and Ψ′ = ∀xy.Φ(x, y) ∧ ¬R(x, y),
where Φ(x, y) is quantifier-free, be interpreted over the domain [n]. Let ω′ be a model
of Ψ′ on the domain [m] and let ω′′ be a model of Ψ on the domain [m̄]. Then the
number of extensions ω, of ω′ ⊎ ω′′, such that ω |= Ψ[m] ∧ k is given as:∏

i,j∈[u]

n
k′i·k′′j
ij (4.7)

where k′
i and k′′

i are the number of domain constants realizing the ith 1-type in ω′ and ω′′

respectively. We define nijl to be 1 if ijl(x, y) |= Φ({x, y}) ∧ ¬R(y, x) and 0 otherwise
and nij =

∑
l∈[b] nijl.

Proof. In order to obtain an interpretation ω |= Ψ[m] ∧ k on the domain [n] from
ω′ ⊎ ω′′, we only need to extend ω′ ⊎ ω′′ with interpretations of the ground-atoms
containing (c, d) ∈ [m] × [m̄]. For a given pair (c, d) ∈ [m] × [m̄], let ω′ |= i(c) and
ω′′ |= j(d). Since ω is a model of ∀xy.Φ(x, y), we must have that ijl(c, d) |= Φ({c, d}).
Furthermore, since we want that every domain element in [m] has indegree zero, we
cannot have R(d, c). Hence, we must have that ijl(c, d) |= Φ({c, d})∧¬R(d, c). Hence,
the number of 2-tables that can be realized by (c, d) is given by nij . Since there are k′

i

domain elements c realizing the ith 1-type in ω′ and k
′′
j domain elements d realizing

the jth 1-type in ω′′, the number of extensions ω, of ω′ ⊎ ω′′, such that ω |= Ψ[m] ∧ k is
given by expression (4.7).
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Proposition 4. Let Ψ = ∀xy.Φ(x, y) ∧ Acyclic(R) and Ψ′ = ∀xy.Φ(x, y) ∧ ¬R(x, y),
where Φ(x, y) is quantifier-free. Then:

wfomc(Ψ[m],k) =∑
k=k′+k′′

|k′|=m

∏
i,j∈[u]

r
k′ik

′′
j

ij · wfomc(Ψ′,k′) · wfomc(Ψ,k′′) (4.8)

where k′ + k′′ represents the element-wise sum of integer-vectors k′ and k′′, such that
|k′|= m and |k′′|= |k|−m. Also, nij =

∑
l nijlvl, where nijl is 1 if ijl(x, y) |= Φ({x, y}) ∧ ¬R(y, x)

and 0 otherwise.

Proof. The WFOMC of Ψ′ on [m], with 1-type cardinality vector k′ is given as
wfomc(Ψ′,k′). Similarly, the WFOMC of Ψ on [m̄], with 1-type cardinality vector
k′′ is given as wfomc(Ψ,k′′). Due to proposition 3, each pair of models counted in
wfomc(Ψ′,k′) and wfomc(Ψ,k′′), can be extended in

∏
i,j∈[u] n

k′ik
′′
j

ij ways to a model of
Ψ[m] ∧ k. It is easy to see that the total multiplicative weight contribution of these
extensions is given as

∏
i,j∈[u] r

k′ik
′′
j

ij . The summation in (5.7) runs over all possible
realizable 1-type cardinalities over [m] and [m̄], represented by k′ and k′′ respectively,
such that they are consistent with k, i.e. when k = k′ +k′′. Hence, formula (5.7) gives
us the WFOMC of the models ω, such that ω ↓ [m] |= Ψ′, ω ↓ [m̄] |= Ψ and ω |= Ψ∧ k
where the domain constant in [m] have zero R indegree. Due to proposition 2, we have
that these are all the models such that ω |= Ψ ∧ k and the domain constants in [m]

have zero R indegree.

Proposition 5. The first order model count of the formula Ψ = ∀xy.Φ(x, y) ∧
Acyclic(R), where Φ(x, y) is quantifier-free, is given as:

wfomc(Ψ,k) =

|k|∑
m=1

(−1)m+1

(
|k|
m

)
wfomc(Ψ[m],k) (4.9)

Proof. The proof idea is very similar to the case for counting DAGs as given in (4.5).
Let the domain be [n], hence |k|= n. Let Ai be the set of models ω |= Ψ, such that ω
has 1-type cardinality k and the domain element i has zero R-indegree. Since, each
DAG has atleast one node with zero R-indegree, our goal is to compute w(∪i∈[n]Ai).
Let J ⊆ [n] be an arbitrary set of domain constants. Let AJ =

⋂
j∈J Aj for an arbitrary

subset J of [n]. Then using principle of inclusion-exclusion as given in equation (2.22),
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we have that:
wfomc(Ψ,k) =

∑
∅̸=J⊆[n]

(−1)|J |+1w(A[m]) (4.10)

Now, A[m] is the set of models such that domain elements in [m] have zero R-indegree.
Hence, A[m] are exactly the models of Ψ[m]. Furthermore, notice that in Proposition
2, Proposition 3 and Proposition 4, [m] can be replaced with any m-sized subset J of
[n]. Hence, for all J ⊆ [n], such that |J |= m, we have that w(AJ) = wfomc(Ψ[m],k).
Hence, equation (4.10) reduces to equation (4.9).

We make a change of variable in equation (4.9) (similar to equation (4.6)), by
replacing m with |k|−l, to obtain the following equation:

wfomc(Ψ,k) =

|k|−1∑
l=0

(−1)|k|−l+1

(
|k|
l

)
wfomc(Ψ[|k|−l],k)

(4.11)

We provide pseudocode for evaluating equation (4.11) in Algorithm 2, namely WFOMC-
DAG. We now analyse how WFOMC-DAG works and show that it runs in polynomial
time with respect to domain cardinality |k|= n.

WFOMC-DAG takes as input Ψ = ∀xy.Φ(x, y)∧Acyclic(R) and k – where Φ(x, y)

is a quantifier-free formula and k is a 1-type cardinality vector, such that |k|= n –
and returns wfomc(Ψ,k). In line 3, an array A with u indices is initiated and A[0]

is assigned the value 1, where 0 corresponds to the u dimensional zero vector. The
for loop in line 5− 7 incrimentally computes wfomc(Ψ,p), where the loop runs over
all u-dimensional integer vectors p, such that pi ≤ ki, in lexicographical order. The
number of possible p vectors is atmost nu. Hence, the for loop in line 5 runs at most nu

iterations. In line 6, we compute wfomc(Ψ,p) as given in equation (4.11). Also in line 6,
the function wfomc(Ψ[m],p) — that computes wfomc(Ψ[m],p) —is called at most |p|−1
times, which is bounded above by n. A[p] stores the value wfomc(Ψ,p). Hence, as p

increments in lexicographical order, A[p], stores the value of wfomc(Ψ[m],p). In the
function wfomc(Ψ[m], s), the number of iterations in the for loop is bounded above by
n2u. And wfomc(Ψ′, s′) is an FO2 WFOMC problem, again computable in polynomial
time. Hence, the algorithm WFOMC-DAG runs in polynomial time w.r.t domain
cardinality. Notice that since loop 5-7 runs in lexicographical order, the A[s′′] required
in the function wfomc(Ψ[m], s) are always already stored in A. Now, there are only
polynomially many k w.r.t domain cardinality. Hence, computing wfomc(Ψ,k) over



58 WFOMC with Acyclicity Constraints

Algorithm 2 WFOMC-DAG
1: Input: Ψ,k
2: Output: wfomc(Ψ,k)
3: A[0]← 1 ◃ A has u indices
4: ◃ 0 = ⟨0, ..., 0⟩
5: for 0 < p ≤ k where p ∈ Nu

0 do ◃ Lexical order
6: A[p]←

∑|p|−1
l=0 (−1)|p|−l+1

(|p|
l

)
wfomc(Ψ[|p|−l],p)

7: end for
8: return A[k]
9: function wfomc(Ψ[m], s) ◃ Equation (5.7)

10: S = 0
11: for s′ + s′′ = s and |s′|= m do
12: S ← S +

∏
i,j∈[u] r

s′is
′′
j

ij · wfomc(Ψ′, s′) · A[s′′]
13: end for
14: return S
15: end function

all possible k values, we can compute wfomc(Ψ, n) in polynomial time w.r.t domain
cardinality. Furthermore, using the modular WFOMC preserving skolemization process
as provided in [36], we can easily extend this result to the entire FO2 fragment. Hence,
leading to the following theorem:

Theorem 18. Let Ψ = Φ∧Acyclic(R), where Φ is an FO2 formula. Then wfomc(Ψ, n)

can be computed in polynomial time with respect to the domain cardinality.

Using Theorem 16 and Remark 6, we can also extend domain-liftability of FO2,
with DAG axiom and cardinality constraints.

Theorem 19. Let Ψ = Φ ∧ Acyclic(R), where Φ is an FO2 formula, potentially also
containing cardinality constraints. Then wfomc(Ψ, n) can be computed in polynomial
time with respect to the domain cardinality.

Furthermore, since WFOMC of any C2 formula can be modularly reduced to
WFOMC of an FO2 formula with cardinality constraints [19]. We also have the
following theorem:

Theorem 20. Let Ψ = Φ ∧Acyclic(R), where Φ is an C2 formula. Then wfomc(Ψ, n)

can be computed in polynomial time with respect to the domain cardinality.
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4.4.1 Source and Sink

Definition 33. Let Φ be a first order sentence, possibly containing some binary relation
R, a unary relation Source and a unary relation Sink. Then a structure ω is a model
of Ψ = Φ ∧ Acyclic(R, Source, Sink) if and only if:

• ω is a model of Φ ∧ Acyclic(R), and

• In the DAG represented by ωR, the sources of the DAG are interpreted to be true
in ωSource.

• In the DAG represented by ωR, the sinks of the DAG are interpreted to be true
in ωSink.

The Source and the Sink predicate can allow encodicng constraints like ∃=kx.Source(x)

or ∃=kx.Sink(x).

Theorem 21. Let Ψ = Φ ∧Acyclic(R, Source, Sink), where Φ is a C2 formula. Then
wfomc(Ψ, n) can be computed in polynomial time with respect to the domain cardinality.

Proof. The sentence Ψ can be equivalently written as:

Φ ∧ Acyclic(R)

∧ ∀x.Source(x)↔ ¬∃y.R(y, x)

∧ ∀x.Sink(x)↔ ¬∃y.R(x, y)

(4.12)

which is a FO2 sentence extended with DAG constraint.

4.5 Conclusion

In this chapter we demonstrate the domain liftability of FO2 and C2 extended with
a Directed Acyclic Graph Axiom. We then extend our results with Source and Sink
predicates, which can allow additional constraints on the number of sources and sinks in
a DAG. These results can potentially allow better modelling of datasets that naturally
appear with a DAG structure [50]. In future, we aim at investigating successor,
predecessor and ancestory constraints in FOL extended with DAG axioms.





Chapter 5

WFOMC with Connectivity Constraint

5.1 Introduction

A connected graph is a graph in which there is a path between any two vertices. A
large set of structures/datasets in real-world are represented by connected graphs
e.g. social networks [51], transportation networks [52], electrical networks [53] e.t.c.
Furthermore, connectivity can also be a very safty-critical property to check [54]. Even
though most of the aforementioned structures can be seen as relational data, analyzing
these structures for connectivity is limited in most SRL models, as First-Order Logic
and hence the language of most SRL models cannot express connectivity [14]. In this
chapter we aim to make initial steps towards resolving this problem by expanding the
class of domain-liftable languages with a connectivity constraint, i.e., a predicate in
the language represents a connected graph.

5.2 Background

We assume background from Section 2.1, Section 2.2, Section 2.7 and Section 4.3. We
also present the required combinatorial background on counting Connected Graphs.

5.2.1 Counting Connected Graphs

A connected graph on [n] is a simple undirected graph such that for any pair of nodes i
and j, there exists a path connecting the two nodes. In a given graph, a connected
component is a subgraph that is not part of any larger connected subgraph. In a rooted
graph one node is labeled in a special way to distinguish it from other nodes, the
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special node is called the root of the graph. Given a rooted graph, we call its connected
component containing the root as the rooted-connected component.

Proposition 6. The number of rooted graphs on [n], such that the subgraph on [m] is
a rooted-connected component is given as:

m · cm · 2(
n−m

2 ) (5.1)

where cm is the number of connected graphs on [m].

Proof. Let ω be a rooted graph such that ω ↓ [m] forms a rooted-connected component.
Since, ω ↓ [m] is a connected component, there can be no edges between [m] and [m̄].
The number of possible connected graphs on [m] is given by cm. Also in ω any node in
[m] can be chosen to be the root. Hence, the number of ways in which ω ↓ [m] can
be a rooted-connected component is m · cm. Since ω ↓ [m] is a connected-component,
there can be no edges between [m] and [m̄], and ω ↓ [m̄] can be any n − m sized
graph. Hence, 2(

n−m
2 ) subgraphs can be realized on [m̄]. Since, subgraphs on [m] and

[m̄] are realized independently, the total number of graphs on [n] such that [m] is a
rooted-connected component is given by expression (5.1).

The arguments used in Proposition 6 can be repeated for any rooted graph on [n],
with a rooted-connected component of size m. Since, there are

(
n
m

)
ways of choosing

such subsets, we have the following Proposition.

Proposition 7. The number of rooted graphs on [n] with an m sized rooted-connected
component is given as: (

n

m

)
·m · cm · 2(

n−m
2 ) (5.2)

where cm is the number of connected graphs on m nodes.

Summing up equation (5.2) over all m, for 1 ≤ m ≤ n. We get the following
proposition.

Proposition 8. Let cm be the number of connected graphs on m nodes. Then the
following holds:

n · 2(
n
2) =

n∑
m=1

(
n

m

)
·m · cm · 2(

n−m
2 ) (5.3)

Proof. Using Proposition 7, the RHS of equation (5.3) sums over the number of rooted
graphs with a rooted-connected component of size m. But any rooted graph on [n]

consists of a rooted-connected component of some size m, where 1 ≤ m ≤ n. Hence,
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Algorithm 3 Number of connected graphs on [n]

1: Input: n
2: Output: cn
3: c[1]← 1 ◃ c is an array
4: for i = 2 to n do
5: c[i]← 2(

i
2) − 1

i

∑i−1
m=1

(
i
m

)
·m · c[m] · 2(

i−m
2 )

6: end for
7: return c[n]

the RHS is counting all possible rooted graphs on [n], which is equal to n · 2(
n
2) i.e.,

the LHS.

Clearly the RHS of equation (5.3) can be written as:

n · 2(
n
2) = n · cn +

n−1∑
m=1

(
n

m

)
·m · cm · 2(

n−m
2 ) (5.4)

which gives us the following equation for counting connected graphs:

cn = 2(
n
2) − 1

n

n−1∑
m=1

(
n

m

)
·m · cm · 2(

n−m
2 ) (5.5)

Remark 7. The number of connected graphs on one node, i.e. c1, is vacuously equal
to 1.

Theorem 22. The number of connected graphs on [n] can be computed in polynomial
time w.r.t n.

Proof. Algorithm 4 takes in as input n the number of nodes and returns the number
of connected graphs on [n]. The algorithm incrementally computes the number of
connected graphs on i nodes, from i equal to 2 to i equal to n. Storing the number of
connected graphs on i nodes in the ith position of an array c. Hence, in each iteration
of for loop on line 5, the c[m]′s used in line 5 are already stored in the array c. Hence,
the algorithm runs n iterations of the for loop and in each loop at most O(n) operations
are performed. Hence, the algorithm runs in O(n2).



64 WFOMC with Connectivity Constraint

5.3 WFOMC with Connectivity Axiom

In this section we extend the approach used for counting connected graphs in equation
(5.5) to WFOMC of FO2 and C2 formulas with a connectivity axiom.

Definition 34. Let R be a binary predicate, an interpretation ω is a model of
Connected(R) if

• ωR forms a symmetric and antireflexive relation of R, and

• ωR forms a connected graph

Definition 35. For any subset C ⊆ [n], ω is a model of Connected(R,C) if

• ωR ↓ C forms a symmetric and antireflexive relation of R, and

• ωR ↓ C is a connected component of ωR

Notice that Connected(R) is equivalent to Connected(R, [n]).

Remark 8. Since our goal is to compute WFOMC of Ψ = Φ ∧ Connected(R), which
by definition entails that ωR forms a symmetric and anti-reflexive relation of R. We
can assume without loss of generality that:

Φ |= ∀x.¬R(x, x) ∧ ∀xy.R(x, y)→ R(y, x)

.

Proposition 9. Let Ψ := ∀xy.Φ(x, y) ∧ Connected(R) and let Ψ[m] := ∀xy.Φ(x, y) ∧
Connected(R, [m]) be two sentences interpreted over [n]. Let 1 ≤ m ≤ n. If ω is a
model of Ψ[m], then ω ↓ [m] |= Ψ and ω ↓ [m̄] |= ∀xy.Φ(x, y).

Proof. We have that ω |= Ψ[m]. Hence, we have that:

ω |=
∧

(c,d)∈[n]2
Φ(c, d)

⇒ ω |=
∧

(c,d)∈[m]2

Φ(c, d)
∧

(c,d)∈[m̄]2

Φ(c, d)

∧
(c,d)∈[m̄]×[m]

Φ(c, d)
∧

(c,d)∈[m]×[m̄]

Φ(c, d)

Since, ω |=
∧

(c,d)∈[m]2 Φ(c, d) and ω |=
∧

(c,d)∈[m̄]2 Φ(c, d), we have that ω ↓ [m] |=
∀xy.Φ(x, y) and ω ↓ [m̄] |= ∀xy.Φ(x, y). Since [m] is a connected component in ωR, we
can infer that ω ↓ [m] |= Ψ.
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Proposition 10. Let Ψ := ∀xy.Φ(x, y) ∧ Connected(R) and let Ψ[m] := ∀xy.Φ(x, y) ∧
Connected(R, [m]) be two sentences interpreted over [n], where Φ(x, y) is quantifier-free
formula such that:

∀xy.Φ(x, y) |=∀xy.¬R(x, x)∧
∀xy.R(x, y)→ R(y, x)

Let ω′ be a model of Ψ on the domain [m] and let ω′′ be a model of ∀xy.Φ(x, y) on
the domain [m̄]. Then the WFOMC of the extensions ω on [n], of ω′ ⊎ ω′′, such that
ω |= Ψ[m] ∧ k is given as:

w(ω′) ·w(ω′′) ·
∏

i,j∈[u]

r
k′i·k′′j
ij (5.6)

where k′
i and k′′

j are the number of domain constants realizing the ith and jth 1-
types in ω′ and ω′′ respectively, and rij =

∑
l∈[b] nijlvl, where nijl is 1 if ijl(x, y) |=

Φ({x, y}) ∧ ¬R(x, y) and 0 otherwise and vl is as defined in equation (4.1).

Proof. In order to obtain an interpretation ω |= Ψ[m]∧k on the domain [n], from ω′⊎ω′′,
we only need to extend ω′ ⊎ ω′′ with interpretations of the ground-atoms containing
(c, d) ∈ [m]× [m̄]. For a given pair (c, d) ∈ [m]× [m̄], let ω′ |= i(c) and ω′′ |= j(d). Since
ω is a model of ∀xy.Φ(x, y), we must have that ijl(c, d) |= Φ({c, d}). Furthermore,
since we want that ωR ↓ [m] forms a connected component in ω, we cannot have R(c, d).
Hence, we must have that ijl(c, d) |= Φ({c, d}) ∧ ¬R(c, d). Hence, (c, d) can realize
the lth 2-table only if nijl = 1. Hence, the multiplicative weight contribution to the
weight of a given extension ω of ω′⊎ω′′, due to (c, d) realizing the lth 2-table is given as
nijlvl. Furthermore, (c, d) realizes the 2-tables mutually-exclusively. Also, the weight
contribution of the 2-table realizations of (c, d), nijlvl, only depends on the 1-types of
c and d and is independent of all other domain constants. Now, ω′ and ω′′ interpret
completely independent set of ground atoms in any extension of ω′ ⊎ ω′′, hence, their
weights contribute independently as w(ω′) and w(ω′′) in any such extension. Finally,
since there are k′

i domain elements c realizing the ith 1-type in ω′ and k
′′
j domain

elements d realizing the jth 1-type in ω′′, the WFOMC of the extensions ω, of ω′ ⊎ ω′′,
such that ω |= Ψ[m] ∧ k is given by:

w(ω′) ·w(ω′′) ·
∏

i,j∈[u]

(
∑
l∈[b]

nijlvl)
k′i·k′′j

Which can be equivalently written as expression (5.6).



66 WFOMC with Connectivity Constraint

Proposition 11. Let Ψ := ∀xy.Φ(x, y) ∧ Connected(R) and let Ψ[m] := ∀xy.Φ(x, y) ∧
Connected(R, [m]) be two sentences interpreted over [n], where Φ(x, y) is quantifier-free
formula such that:

∀xy.Φ(x, y) |=∀x.¬R(x, x)∧
∀xy.R(x, y)→ R(y, x)

Then:

wfomc(Ψ[m],k) =∑
k=k′+k′′

|k′|=m

∏
i,j

r
k′ik

′′
j

ij wfomc(Ψ,k′)wfomc(∀xy.Φ(x, y),k′′) (5.7)

where k′ + k′′ represents the element-wise sum of integer-vectors k′ and k′′, such that
|k′|= m and |k′′|= |k|−m. Also, rij =

∑
l nijlvl, where nijl is 1 if ijl(x, y) |= Φ({x, y}) ∧ ¬R(x, y)

and 0 otherwise.

Proof. Due to Proposition 10, each pair of models ω′ |= Ψ∧k′ and ω′′ |= ∀xy.Φ(x, y)∧k′′,
interpreted on [m] and [m̄] respectively, can be extended to multiple models ω of Ψ[m]

on [n]. The weighted sum of all such extensions, for a given pair ω′ and ω′′ is given as
expression (5.6). Furthermore, due to Proposition 9, if ω |= Ψ[m], then ω ↓ [m] |= Ψ

and ω ↓ [m̄] |= ∀xy.Φ(x, y). Hence, the WFOMC of interpretations ω |= Ψ[m], such
that ω ↓ [m] |= k′ and ω ↓ [m̄] |= k′′, for fixed k′ and k′′, is given as:

∑
ω′|=Ψ∧k′

ω′′|=∀xy.Φ(x,y)∧k′′

∏
i,j∈[u]

r
k′ik

′′
j

ij ·w(ω′) ·w(ω′′)

=
∏

i,j∈[u]

r
k′ik

′′
j

ij ·
∑

ω′|=Ψ∧k′

ω′′|=∀xy.Φ(x,y)∧k′′

w(ω′) ·w(ω′′)

=
∏

i,j∈[u]

r
k′ik

′′
j

ij ·
∑

ω′|=Ψ∧k′

w(ω′) ·
∑

ω′′|=∀xy.Φ(x,y)∧k′′

w(ω′′)

=
∏

i,j∈[u]

r
k′ik

′′
j

ij · wfomc(Ψ,k′) · wfomc(∀xy.Φ(x, y),k′′)

The wfomc of Ψ on [m], with 1-type cardinality vector k′, is given as wfomc(Ψ,k′).
Similarly, the number models of ∀xy.Φ(x, y) on [m̄], with 1-type cardinality vector k′′

is given as wfomc(Ψ,k′′). Due to Proposition 10, the multiplicative-weight contribution
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due to the extensions of each pair of models counted in wfomc(Ψ,k′) and wfomc(Ψ,k′′),
to models the models of Ψ[m]∧k is given as

∏
i,j∈[u] r

k′ik
′′
j

ij . In order to compute WFOMC
of Ψ[m]∧k, we sum over all possible k′ and k′′, such that k′+k′′ = k and |k′|= m. Hence,
giving us equation (5.7). can be extended in

∏
i,j∈[u] n

k′ik
′′
j

ij ways. The summation in
(5.7) runs over all possible realizable 1-type cardinalities over [m] and [m̄], represented
by k′ and k′′ respectively, such that they are consistent with k, i.e. when k = k′ + k′′.
Hence, formula (5.7) gives us the total number of models ω, such that ω ↓ [m] |= Ψ′,
ω ↓ [m̄] |= Ψ and ω |= Ψ ∧ k where the domain constant in [m] have zero R indegree.
Due to proposition 2, we have that these are all the models such that ω |= Ψ ∧ k and
the domain constants in [m] have zero R indegree.

Due to modularity of the skolemization process for WFOMC [36], in Proposition
11, ∀xy.Φ(x, y) can be replaced by any FO2 sentence.

We will also use the notion of ωR representing a rooted graph. This can be easily
modelled in FOL by introducing a fresh new predicate Root(x) and adding a conjunct
to any sentence, where a root needs to exist w.r.t ωR, a formula ∃=1x.Root(x). This
can be modelled with cardinality constraints as ∃x.Root(x) ∧ |Root|= 1. However, this
is rather tedious and we will use the notion of a graph and a connected component
being rooted without this formal discription.

Proposition 12. Let Ψ := Φ ∧ Connected(R) and let Ψ[m] := Φ ∧ Connected(R, [m])

be two sentences interpreted over [n], where Φ is an FO2 sentence such that:

Φ |=∀x.¬R(x, x)∧
∀xy.R(x, y)→ R(y, x)

Then the WFOMC of the models ω |= Ψ[m], such that ωR ↓ [m] forms a rooted-connected
component is given as:

m · wfomc(Ψ[m],k) (5.8)

Proof. The proof idea is identical to the one of Proposition 6. Since, ωR ↓ [m] forms
a rooted-connected component in ω |= Ψ[m], we have m choices for selecting any
node in [m] as a root. Hence, the number of models of Ψ[m], where [m] represents a
rooted-connected component is given as expression (5.8).
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Proposition 13. Let Ψ := Φ ∧ Connected(R) and let Ψ[m] := Φ ∧ Connected(R, [m])

be two sentences interpreted over [n], where Φ is an FO2 sentence such that:

Φ |=∀x.¬R(x, x)∧
∀xy.R(x, y)→ R(y, x)

Then the WFOMC of the models ω |= Φ with a rooted-connected component of size m

is given as: (
n

m

)
·m · wfomc(Ψ[m],k) (5.9)

Proof. The proof idea is identical to the one of Proposition 7. wfomc(Ψ[m],k) is the
same as wfomc(ΨC ,k), where ΨC := Φ(x, y) ∧ Connected(R,C), for any C ⊆ [n],
where |C|= m. Furthermore, there are

(
n
m

)
ways of choosing C in [n]. And in each ΨC

has |C|= m choices for selecting a root in C.

Proposition 14. Let Ψ = Φ ∧ Connected(R), where Φ is an FO2 sentence, such that:

Φ |=∀x.¬R(x, x)∧
∀xy.R(x, y)→ R(y, x)

then the following holds:

n · wfomc(Φ,k) =
n∑

m=1

(
n

m

)
·m · wfomc(Ψ[m],k) (5.10)

where Ψ[m] := Φ ∧ Connected(R, [m]).

Proof. The proof idea is identical to the one of Proposition 8. Using Proposition 13,
the RHS of (5.10), sums over the WFOMC of all the models of Φ, where ωR is a
simple graph with a R-rooted-connected component of size m, where 1 ≤ m ≤ n. But
any model of Φ, where ωR is a rooted graph, consists of some R-rooted-connected
component of size m, where 1 ≤ m ≤ n. Hence, the RHS of equation (5.10), computes
the weighted sum of all models of Φ where ωR is a rooted graph. But this is equal to n

times the WFOMC of Φ, because we have n choices for assigning a root in each model
of Φ.
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Algorithm 4 WFOMC-Connected
1: Input: Ψ := Φ ∧ Connected(R),k
2: Output: wfomc(Ψ,k)
3: A[0]← 0 ◃ A has u indices
4: ◃ 0 = ⟨0, ..., 0⟩
5: for 0 < p ≤ k where p ∈ Nu

0 do ◃ ≤ is Lexical order
6:
7: A[p]← wfomc(Φ,p)− 1

|p|
∑|p|−1

m=1

(|p|
m

)
mwfomc(Ψ[m],p)

8: ◃ Equation (5.12)
9: end for

10: return A[k]
11:
12: function wfomc(Ψ[m], s)
13: S = 0
14: for s′ + s′′ = s and |s′|= m do
15: S ← S +

∏
i,j∈[u] r

s′is
′′
j

ij · A[s′] · wfomc(Φ, s′′)
16: ◃ Equation (5.7)
17: end for
18: return S
19: end function

The RHS of equation (5.10) can be written as:

n · wfomc(Φ,k) =

n · wfomc(Ψ[n],k) +
n−1∑
m=1

(
n

m

)
·m · wfomc(Ψ[m],k)

(5.11)

Notice that Ψ[n] is equivalent to Ψ. Hence, we get the following:

wfomc(Ψ,k) =

wfomc(Φ,k)− 1

n

n−1∑
m=1

(
n

m

)
·m · wfomc(Ψ[m],k)

(5.12)

WFOMC-Connected (4) takes as input Ψ = Φ ∧Connected(R) and k – where Φ is
an FO2 formula and k is a 1-type cardinality vector, such that |k|= n – and returns
wfomc(Ψ,k). In line 3, an array A with u indices is initiated and A[0] is assigned the
value 0, where 0 corresponds to the u dimensional zero vector. The for loop in line 5−9

incrementally computes wfomc(Ψ,p), using equation (5.12), where the loop runs over



70 WFOMC with Connectivity Constraint

all u-dimensional integer vectors p, such that p ≤ k, where ≤ is the lexicographical
order. The number of possible p vectors is at most nu. Hence, the for loop in line 5 runs
at most nu iterations. In line 7, we compute wfomc(Ψ,p) as given in equation (5.12).
Also in line 7, the function wfomc(Ψ[m],p) — that computes wfomc(Ψ[m],p) —is called
at most |p|−1 times, which is bounded above by n. A[p] stores the value wfomc(Ψ,p).
In the function wfomc(Ψ[m], s), the number of iterations in the for loop is bounded
above by n2u. And wfomc(Φ, s′′) is an FO2 WFOMC problem, again computable in
polynomial time. Hence, the algorithm WFOMC-Connected runs in polynomial time
w.r.t domain cardinality. Notice that since loop 5-7 runs in lexicographical order, the
A[s′] required in the function wfomc(Ψ[m], s) are always already stored in A. Now,
there are only polynomially many k w.r.t domain cardinality. Hence, computing
wfomc(Ψ,k) over all possible k values, we can compute wfomc(Ψ, n) in polynomial
time w.r.t domain cardinality. Giving us the following theorem:

Furthermore, using the modular WFOMC preserving skolemization process as
provided in [36], we can easily extend this result to the entire FO2 fragment. Hence,
leading to the following theorem:

Theorem 23. Let Ψ := Φ ∧ Connected(R), where Φ is an FO2 formula. Then
wfomc(Ψ, n) can be computed in polynomial time with respect to the domain cardinality.

Using Theorem 16 and Remark 6, we can also extend domain-liftability of FO2,
with Connected Graph Axiom and cardinality constraints.

Theorem 24. Let Ψ := Φ∧Connected(R), where Φ is an FO2 formula, potentially also
containing cardinality constraints. Then wfomc(Ψ, n) can be computed in polynomial
time with respect to the domain cardinality.

Furthermore, since WFOMC of any C2 formula can be modularly reduced to
WFOMC of an FO2 formula with cardinality constraints [19]. We also have the
following theorem:

Theorem 25. Let Ψ := Φ ∧ Connected(R), where Φ is an C2 formula. Then
wfomc(Ψ, n) can be computed in polynomial time with respect to the domain cardinality.

5.4 Conclusion

In this chapter, we demonstrate the domain liftability of FO2 and C2 extended with a
Connectivity Axiom. These results can potentially allow better modelling of datasets
that naturally appear with connected structures. In future, we aim at investigating
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constraints like k−connectivity. On the application side, we believe that our work can
be used in efficiently computing partition function in Markov Logic Networks and also
in checking robustness of connectivity in real-world networks.





Chapter 6

Projectivity in MLNs

The work presented in this Chapter is based on the following publication:

Sagar Malhotra and Luciano Serafini. Projectivity in Markov Logic Networks. In
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2022 [25]

6.1 Introduction

Statistical Relational Learning [9, 10] (SRL) is concerned with representing and learning
probabilistic models over relational structures. Many works have observed that SRL
frameworks exhibit unwanted behaviors over varying domain sizes [55, 18]. These
behaviors make models learned from a fixed or a sub-sampled domain unreliable for
inference over larger (or smaller) domains [18]. Drawing on the works of Shalizi and
Rinaldo [15] on Exponential Random Graphs (ERGMs), Jaeger and Schulte [16] have
recently introduced the notion of projectivity as a strong form of guarantee for good
scaling behavior in SRL models. A projective model requires that the probability of
any given query, over arbitrary m domain objects, is completely independent of the
domain size.

Jaeger and Schulte [16] identify restrictive fragments of SRL models to be projective.
But whether these fragments are complete characterization of projectivity, remains an
open problem.

In this chapter, our goal is to characterize projectivity for a specific class of SRL
models, namely Markov Logic Networks (MLNs) [21]. MLNs are amongst the most
prominent template-based SRL models. An MLN is a Markov Random Field with
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features defined in terms of function-free weighted First Order Logic (FOL) formulae.
Jaeger and Schutle [16] show that an MLN is projective if - any pair of atoms in each of
its formulae share the same set of variables. We show that this characterization is not
complete. Furthermore, we completely characterize projectivity for the class of MLNs
with at most 2 variables in their formulae. Our charecterization leads to a parametric
restriction that can be easily incorporated into any MLN learning algorithm. We
also identify a special class of projective models, namely the Relational Block Models
(RBMs). Any projective MLN in the two variable fragment can be expressed as an
RBM. We show that the training data likelihood due to the maximum likelihood RBM
is greater than or equal to the training data likelihood due to any other projective
MLN in the two variable fragment. RBMs also admit consistent maximum likelihood
estimation. Hence, RBMs are projective models that admit consistent and efficient
learning from sub-sampled domains.

The chapter is organized as follows: We first contextualize our work w.r.t the
related works in this domain. We then provide some background and notation on FOL
and relational structures. We also elaborate on the fragment of FOL with at most
two variables i.e. FO2 and define the notion of FO2 interpretations as multi-relational
graphs. We also overview some results on Weighted First Order Model Counting.
In the subsequent section, we provide a parametric representation for any MLN in
the two variable fragment. We then dedicate a section to the main result of this
chapter i.e. the necessary and sufficient conditions for an MLN in the two variable
fragment to be projective. Based on the projectivity criterions we identify a special
class of models namely Relational Block Models. We dedicate a complete section
to RBMs and elaborate on their useful properties. We then move on to a formal
comparison between the previous characterizations and the presented characterization
of projectivity in MLNs. Finally, we discuss the consistency and efficiency aspects of
learning for projective MLNs and RBMs.

6.2 Related Work

Projectivity has emerged as a formal notion of interest through multiple independent
lines of works across ERGM and SRL literature. The key focus of these works have
been analyzing [56, 55] or mitigating [17, 18] the effects of varying domain sizes on
relational models. The major step in formalizing the notion of projectivity can be
attributed to Shalizi and Rinaldo [15]. The authors both formalize and characterize the
sufficient and necessary conditions for ERGMs to be projective. It is interesting to note
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that their projectivity criterion is strictly structural i.e. they put no restrictions on
parameter values but rather inhibit the class of features that can be defined as sufficient
statistics in ERGMs. In contrast our results w.r.t MLN are strictly parametric (which
may correspond to non-trivial structural restrictions as well). With respect to SRL,
the notion of projectivity was first formalized by Jaeger and Schulte [16], they show
some restrictive fragments of SRL models to be projective. Jaeger and Schulte [57]
significantly extend the scope of projective models by characterizing necessary and
sufficient conditions for an arbitrary model on relational structures to be projective.
Their characterization is expressed in terms of the so called AHK models. But as
they conclude in [57], expressing AHK models in existing SRL frameworks remains
an open problem. Hence, a complete characterization of projectivity in most SRL
languages is still an open problem. Weitkamper [58] has shown that the characterization
of projectivity provided by Jaeger and Schulte [16], for probabilistic logic programs
under distribution semantics, is indeed complete. In this work, we will extend this
characterization to the two variable fragment of Markov Logic Networks.

Another correlated problem to projectivity is learning from sub-sampled or smaller
domains. In the relational setting projectivity is not a sufficient condition for consistent
learning from sub-sampled domains [16]. Mittal et. al. have proposed a solution to
this problem by introducing domain-size dependent scale-down factors [18] for MLN
weights. Although empirically effective, the scale-down factors are not known to be
a statistically sound solution. On the other hand, Kuzelka et. al. [59], provide a
statistically sound approach to approximately obtain the correct distribution for a
larger domain. But their approach requires estimating the relational marginal polytope
for the larger domain and hence, offers no computational gains w.r.t learning from
a sub-sampled domain. In this work, we will provide a statistically sound approach
for efficiently estimating a special class of projective models (namely, RBM) from
sub-sampled domains. We also show that our approach provides consistent parameter
estimates in an efficient manner and is better than estimating any projective MLN in
the two variable fragment (in terms of data likelihood maximisation).

6.3 Background

Interpretations as Multi-relational Graphs.

Given an FO2 language L with interpretations defined over the domain ∆ = [n], we
can represent an interpretation ω ∈ Ω(n) as a multi-relational graph (x,y). This is
achieved by defining x = (x1, ..., xn) such that xq = i if ω |= i(q) and by defining
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y = (y12, y13, ...yqr, ..., yn−1,n), where q < r, such that yqr = l if ω |= l(q, r). We also
define ki = ki(x) = ki(ω) := |{c ∈ ∆ : c |= i(c)}|, hij

l = hij
l (y) = hij

l (ω) := |{(c, d) ∈
∆2 : ω |= ijl(c, d)}| and for any D ⊆ ∆2, hij

l (D) = hij
l (ω,D) := |{(c, d) : ω |=

ijl(c, d) and (c, d) ∈ D}|. Notice that
∑

i≤j

∑
l∈[b] h

ij
l =

(
n
2

)
and

∑
l∈[b] h

ij
l = k(i, j),

where k(i, j) is defined in equation (3.16) . We use (xI,yI) to represent the multi-
relational graph for ω ↓ I. Throughout this chapter we will use an interpretation ω

and it’s multi-relational graph (x,y) interchangeably.

Families of Probability Distributions and Projectivity.

We will be interested in probability distributions over the set of interpretations or
equivalently their multi-relational graphs. A family of probability distributions {P (n) :

n ∈ N} specifies, for each finite domain of size n, a distribution P (n) on the possible
n-world set Ω(n) [57]. We will mostly work with the so-called exchangeable probability
distributions [57] i.e. distributions where P (n)(ω) = P (n)(ω′) if ω and ω′ are isomorphic.
A distribution P (n)(ω) over n-worlds induces a marginal probability distribution over
m-worlds ω′ ∈ Ω(m) as follows:

P (n) ↓ [m](ω′) =
∑

ω∈Ω(n):ω↓[m]=ω′

P (n)(ω)

Notice that due to exchangeability P (n) ↓ I is the same for all subsets I of size m, hence
we can always assume any induced m-world to be ω ↓ [m]. We are now able to define
projectivity as follows:

Definition 36 ([57]). An exchangeable family of probability distributions is called
projective if for all m < n:

P (n) ↓ [m] = P (m)

When dealing with probability distributions over multi-relational representation,
we denote by (X,Y ) the random vector where, X = (X1, . . . , Xn) and each Xi takes
value in [u]; and Y = (Y12, Y13, . . . , Yqr, . . . , Yn−1,n) where q < r and Yqr takes values
in [b].

6.4 A Parametric Normal Form for MLNs

A Markov Logic Network (MLN) Φ is defined by a set of weighted formulas {(φi, ai)}i,
where φi are quantifier free, function-free FOL formulas with weights ai ∈ R. An MLN
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Φ induces a probability distribution over the set of possible worlds ω ∈ Ω(n):

P
(n)
Φ (ω) =

1

Z(n)
exp
( ∑
(φi,ai)∈Φ

ai.N(φi, ω)
)

where N(φi, ω) represents the number of true groundings of φi in ω. The normalization
constant Z(n) is called the partition function that ensures that P

(n)
Φ is a probability

distribution.

Theorem 26. Any Markov Logic Network (MLN) Φ = {(φi, ai)}i on a domain of size
n, such that φi contains at-most two variables, can be expressed as follows:

P
(n)
Φ (ω) =

1

Z(n)

∏
i∈[u]

skii
∏

i,j∈[u]
i≤j

∏
l∈[b]

(tijl)
hij
l (6.1)

where si and tijl are positive real numbers and ki is ki(ω) and hij
l is equal to hij

l (ω).

Proof. Let Φ = {(φi, ai)}i be an MLN, such that φi contains at-most two variables.
Firstly, every weighted formula (φ(x, y), a) ∈ Φ that contains exactly two variables is
replaced by two weighted formulas (φ(x, x), a) and (φ(x, y) ∧ (x ̸= y), a). The MLN
distribution P

(n)
Φ is invariant under this transformation. Hence, Φ can be equivalently

written as {(αq(x), aq)}q ∪ {(βp(x, y), bp)}p, where {αq(x)}q is the set of formulas
containing only the variable x and {βp(x, y)}p is the set of formulas containing both
the variables x and y. Notice that every βp(x, y) entails x ̸= y.

Let us have ω ∈ Ω(n), where we have a domain constant c such that ω |= i(c). Now
notice that the truth value of ground formulas {αq(c)}q in ω is completely determined
by i(c) irrespective of all other domain constants. Hence, the (multiplicative) weight
contribution of i(c) to the weight of ω can be given as exp(

∑
q aq1i(x)|=αq(x)). We define

si as follows:
si = exp(

∑
q

aq1i(x)|=αq(x)) (6.2)

Clearly, this argument can be repeated for all the domain constants realizing any 1-type
in [u]. Hence, the (multiplicative) weight contribution due to 1-types of all domain
constants and equivalently due to the groundings of all unary formulas, is given as∏

i∈[u] s
ki
i .

We are now left with weight contributions due to the binary formulas, given by the
set {(βp(x, y), bp)}p. Due to the aforementioned transformation, each binary formula
β(x, y) contains a conjunct (x ̸= y). Hence, all groundings of β(x, y) such that both
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x and y are mapped to the same domain constants evaluate to false. Hence, we can
assume that x and y are always mapped to distinct domain constants. Let us have
an unordered pair of domain constants {c, d} such that ω |= ijl(c, d). The truth
value of any binary ground formula β(c, d) and β(d, c) is completely determined by
ijl(c, d) irrespective of all other domain constants. Hence, the multiplicative weight
contribution due to the ground formulas {βp(c, d)}p ∪ {βp(d, c)}p is given as tijl, where
tijl is defined as follows:

exp

(∑
p

bp1ijl(x,y)|=βp(x,y) +
∑
p

bp1ijl(x,y)|=βp(y,x)

)
(6.3)

Hence, the weight of an interpretation ω under the MLN Φ is given as∏
i∈[u]

skii
∏

i,j∈[u]
i≤j

∏
l∈[b]

(tijl)
hij
l

Definition 37. Given an MLN in the parametric normal form given by equation (6.1).
Then fij is defined as

∑
l∈[b] tijl.

We will now provide the parameterized version of the partition function Z(n) due
to Theorem 26.

Proposition 15. Let Φ be an MLN in the form (6.1), then the partition function Z(n)

is given as:

Z(n) =
∑
k

(
n

k

)∏
i∈[u]

skii
∏

i,j∈[u]
i≤j

(fij)
k(i,j) (6.4)

where k(i, j) is defined in equation (3.16).

Sketch. The proposition is a parameterized version of Theorem 7, where
∏

i∈[u] s
ki
i

takes into account the weight contributions due to the 1-type realizations and fij is
essentially a weighted version of nij i.e. given a pair of constants c and d such that
they realize the ith and the jth 1-type respectively, then fij is the sum of the weights
due to the 2-types realized by the extensions to the binary predicates containing both
c and d.
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6.5 Projectivity in Markov Logic Networks

We present the necessary and sufficient conditions for an MLN to be projective in the
two variable fragment. The complete proofs are provided in the appendix.

Lemma 10 (Sufficiency). A Markov Logic Network in the two variable fragment is
projective if all the fij have the same value i.e. ∀i, j ∈ [u] : fij = F , for some positive
real number F .

Sketch. The key idea of the proof is that if ∀i, j ∈ [u] : fij = F , then the partition
function factorizes as Z(n) = (F )(

n
2)
(∑

i∈[u] si

)n
. Now, defining pi = si∑

i si
and

wijl =
tijl
F

, allows us to re-define the MLN distribution (6.1) equivalently as follows:

P
(n)
Φ (ω) =

∏
i∈[u]

pkii
∏

i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l

ijl (6.5)

Here,
∑

i pi = 1 and
∑

l wijl = 1. Hence, P (n)
Φ (ω) is essentially a (labeled) stochastic

block model, which are known to be projective [15].

We will now prove that the aforementioned sufficient conditions are also necessary.

Lemma 11 (Necessary). If a Markov Logic network in the two variable fragment is
projective then, all the fij have the same value i.e. ∀i, j ∈ [u] : fij = F , for some
positive real number F .

Sketch. We begin by writing the projectivity condition in the multi-relational repre-
sentation, i.e. P

(n+1)
Φ ↓ [n](X ′ = x′,Y ′ = y′) is equal to:∑

x[n]=x′

y[n]=y′

P
(n+1)
Φ (X = x,Y = y) (6.6)

Multiplying and dividing equation (6.6) by Z(n) and using simple algebraic manipula-
tions we get that for all x′:

Z(n+ 1)

Z(n)
=
∑
i∈[u]

si
∏
j∈[u]

f
kj(x

′)
ij (6.7)

Now, the LHS of equation (6.7) is completely independent of x′, whereas RHS is
dependent on x′. It can be shown that this is possible iff fij does not depend on x′,
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which in turn is possible iff fij does not depend on i and j i.e. ∀i, j ∈ [u] : fij = F , for
some positive real F .

We are finally able to provide the following theorem.

Theorem 27. A Markov Logic Network (MLN) Φ = {(φi, ai)}i, such that φi contains
at-most two variables is projective if and only if all the fij (as given in Definition 37)
have the same value i.e. ∀i, j ∈ [u] : fij = F , for some positive real number F .

In the next section, we will show that the conditions in Theorem 27 correspond to
a special type of probability distributions. We will characterize such distributions and
then investigate their properties.

6.6 Relational Block Model

In this section we introduce the Relational Block Model (RBM). We show that any
projective MLN in the two variable fragment can be expressed as an RBM. And any
RBM can be expressed as a projective MLN. Furthermore, we show that an RBM is a
unique characterization of a projective MLN in the two variable fragment.

Definition 38. Let n be a positive integer (the number of domain constants), u be a
positive integer (the number of 1-types), b be a positive integer (the number of 2-tables),
p = (p1, ..., pu) be a probability vector on [u] = {1, ..., u} and W = (wijl) ∈ [0, 1]u×u×b,
where wijl = wijl (wijl is the conditional probability of domain elements (c, d) realizing
the lth 2-table, given i(c) and j(d)). The multi-relational graph (x,y) is drawn under
RBM(n, p,W ) if x is an n-dimensional vector with i.i.d components distributed under
p and y is a random vector with its component yqr = l, where l ∈ [b], with a probability
wxqxrl independently of all other pair of domain constants.

Thus, the probability distribution of (x,y) is defined as follows, where x ∈ [u]n and
y ∈ [b](

n
2)

P (X = x) :=
n∏

q=1

pxq =
u∏

i=1

pkixi

P (Y = y|X = x) :=
∏

1≤q<r≤n

wxqxryqr

=
∏

1≤i≤j≤u

∏
1≤l≤b

(wijl)
hij
l

In the following example, we show how RBMs can model homophily.
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Example 15 (Homophily). Let us have an FO2 language with a unary predicate C

(representing a two colors) and a binary predicate R. We wish to model a distribution
on simple undirected graphs i.e. models of the formula φ = ∀xy.¬R(x, x) ∧ (R(x, y)→
R(y, x)) such that same color nodes are more likely to have an edge. Due to φ the
1-types with ¬R(x, x) as a conjunct have a probability zero. Hence, we can assume
we have only two 1-types: 1(x) = C(x) ∧ ¬R(x, x) and 2(x) = ¬C(x) ∧ ¬R(x, x)
(representing two possible colors for a given node). Similarly due to φ, we have only
two 2-tables 1(x, y) : R(x, y) ∧R(y, x) and 2(x, y) : ¬R(x, y) ∧ ¬R(y, x) (representing
existence and non existence of edges). We can now easily define homophily by following
parameterization of an RBM. p1 = p2 = 0.5 i.e. any node can have two colors with
equal probability. Then we can define w111 = 0.9, w112 = 0.1, w221 = 0.9, w222 = 0.1,
w121 = 0.1 and w122 = 0.9.

Theorem 28. Every projective Markov Logic Network in the two variable fragment
can be expressed as an RBM.

Proof. The proof follows from the sufficiency proof in Lemma 10. Notice that in the
proof, we derive equation (6.5) (equivalently, equation (21) in the appendix), which is
exactly the expression for RBM. Hence, any projective MLN can be converted to an
RBM by defining pi and wijl as follows:

pi =
si∑
i si

wijl =
tijl∑
l tijl

(6.8)

Theorem 29. Every RBM can be expressed as a projective MLN in the two variable
fragment.

Proof. Given an RBM as defined in definition 38 with parameters {pi, wijl}, let us
have a projective MLN Φ such that every 1-type i(x) is a formula in the MLN with
a weight log pi. Φ also has a weighted formula ijl(x, y) for every 2-type, such that
i ≤ j. The weight for ijl(x, y) is log(wijl) if ijl(x, y) ̸= ijl(y, x), and is 0.5 log(wijl) if
ijl(x, y) = ijl(y, x). It can be seen from definition of si (6.2) and tijl (6.3), that for Φ,
si = pi and tijl = wijl. Hence, due to (6.1), we have that:

P
(n)
Φ (ω) =

1

Z(n)

∏
i∈[u]

pkii
∏

i,j∈[u]
i≤j

∏
l∈[b]

(wijl)
hij
l (6.9)

In the MLN Φ,
∑

i si =
∑

i pi = 1 and
∑

l tijl =
∑

l wijl = fij = 1. Hence, using
Proposition 15, we have that Z(n) = 1. Hence, completing the proof.
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Proposition 16. Given two RBMs with probability distribution P ′ and P ′′ and param-
eters {p′i, w′

ijl} and {p′′i , w′′
ijl}. If P ′ = P ′′, then, p′i = p′′i and w′

ijl = w′′
ijl.

Proof. The proposition is a consequence of the fact that the parameter pi is marginal
probability of an arbitrary constant c realizing the ith 1-type and wijl is the conditional
probability of an arbitrary pair of constants (c, d) realizing the lth 2-table given i(c)

and j(d). Hence, two RBMs that disagree on the pi and wijl cannot assign the same
probability mass to marginal probability of i(c) and ijl(c, d) and hence, cannot be the
same distribution.

Corollary 4 (of Proposition 16). Given two projective MLNs Φ′ and Φ′′ such that
they have the same probability distributions PΦ′ and PΦ′′, with their respective RBMs
parameterized by {p′i, w′

ijl} and {p′′i , w′′
ijl}. Then we must have that p′i = p′′i and

w′
ijl = w′′

ijl.

Hence, RBMs are a unique representation for projective MLNs in the two variable
fragment.

6.7 Previous Characterizations of Projectivity

Jaeger and Schulte [16] show that an MLN is projective if it’s formulae φi satisfy the
property that any two atoms appearing in φi contain exactly the same variables. Such
MLNs are also known as σ-determinate [60]. We now show that in the two variable
fragment, Theorem 27 leads to a strictly more expressive class of MLNs.

Proposition 17. Given an MLN Φ = {φi, ai}i such that any two atoms appearing in
φi contain exactly the same variables or equivalently that the MLN is σ−determinate.
Then:

∀i, j, i′, j′ ∈ [u],∀l ∈ [b] : ti′j′l = tijl (6.10)

Proof. We first write an equivalent MLN Φ′ = {αq(x), aq} ∪ {βp(x, y), bp} as presented
in proof of Theorem 26. Due to the conditions provided in the proposition, all the
atoms in βp(x, y) contain both the variables x and y. Using the definition of tijl from
(6.3), and the fact that none of the βp(x, y) have an atom with only one variable, we
have that the value of tijl depends only on the lth 2-table, irrespective of the 1-types
i and j. This is because, none of the first order atoms in the ith and the jth 1-type
appear in βp(x, y). Hence, tijl only depends on l, giving us equation (6.10).
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Proposition 17 is a stricter condition than Theorem 27. In the following, we prove
that σ-determinate MLNs cannot express all the projective MLNs in the two variable
fragment.

Theorem 30. There exists a projective MLN in the two variable fragment which cannot
be expressed as a σ−determinate MLN.

Proof. Let us have a σ-determinate MLN Φ, since Φ is projective, we can create it’s
equivalent RBM (due to Theorem 29), say P . Let {pi, wijl} be the parameters of P .
Due to equation (6.8) and Proposition 17, we have that wijl = wi′j′l for all i, j, i′, j′.
Due to existence of a projective MLN for every RBM (from Theorem 29), we can
always create an MLN Φ′ for which the RBM parameters wijl ̸= wi′j′l for some i, j, i′, j′.
Since, RBMs uniquely characterize the probability distributions due to MLNs (from
Corollary 4), Φ′ can not be expressed as an MLN such that wijl = wi′j′l. Hence, Φ′ can
not be expressed as a σ-determinate MLN.

In the following example, we provide an MLN which cannot be written as a σ−
determinate MLN.

Example 16. Let us have a binary predicate R. We have only two 1-types R(x, x)

(say 1(x)) and ¬R(x, x) (say 2(x)) and four 2-tables, R(x, y) ∧R(y, x) (say 1(x, y)),
R(x, y)∧¬R(y, x) (say 2(x, y)), ¬R(x, y)∧R(y, x) (say 3(x, y)) and ¬R(x, y)∧¬R(y, x)

(say 4(x, y)). An MLN Φ, with the following 2-types as weighted formulas, cannot be
expressed as a σ−determinate MLN:

111(x, y) : log 7 114(x, y) : log 4

124(x, y) : log 64 221(x, y) : log 8

In parametric normal form, t111 = exp(2 log 7), t114 = exp(2 log 4), t124 = exp(log 64)

and t221 = exp(2 log 8). All the other tijl, such that ijl(x, y) is not a dual of 111(x, y),
114(x, y), 124(x, y) or 221(x, y), are equal to exp(0) i.e. 1. It can be verified that
fij = 67 for all i, j ∈ [2], hence, this MLN is projective due to Theorem 27. Using
Theorem 28, we can express this distribution as an RBM, such that w111 = 72

67
and

w114 =
42

67
. If w111 ̸= w114 then necessarily t111 ̸= t114 (as wijl is defined as tijl

fij
and fij

is the same for all i, j in Φ and in any equivalent MLN, due to Theorem 27). Due to
uniqueness of RBM parameters for any set of projective MLNs expressing the same
distribution (Corollary 4), we have that in all MLNs equivalent to Φ, t111 ̸= t114. Hence,
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using Proposition 17, we have that any MLN expressing the same distribution as Φ

cannot be expressed as a σ−determinate MLN.

6.8 Maximum Likelihood Learning

In a learning setting, for an MLN {φi, ai} in the two variable fragment, we are interested
in estimating the set of parameters θ = {ai} that maximize the likelihood of a training
example such that the learnt MLN is projective. As analyzed in [61, 59], we will focus
on the scenario where only a single possible world ω ∈ Ω(n) is observed. We estimate θ

by maximizing the likelihood

L(n)(θ|ω) = P
(n)
θ (ω) (6.11)

Notice that although every projective MLN can be equivalently defined as an
RBM, the maximum likelihood parameter estimate for an RBM is not the same as the
parameter estimate for an MLN such that it is projective.

We will now provide, the maximum likelihood estimator for an RBM.

Proposition 18. Given a training example ω ∈ Ω(n), the maximum likelihood parameter
estimate for an RBM is given as, pi = ki

n
and wijl =

hij
l

k(i,j)
.

Proposition 18 can be derived by maximizing the log likelihood due to the distribu-
tion given in Definition 38.

We will now see how maximum likelihood parameter estimate can be obtained for
an MLN such that the MLN is projective.

Given an MLN {φi, ai}i in the two variable fragment, where θ = {ai}i are unknown
parameters to be estimated, due to Theorem 26, we can define si(θ) and tijl(θ), such
that the likelihood is given as:

L(θ|ω) = 1

Z(n)

∏
i∈[u]

si(θ)
ki
∏

i,j∈[u]
i≤j

∏
l∈[b]

(tijl(θ))
hij
l (6.12)

Defining F (θ) as
∑

l ti′j′l(θ) for some fixed i′ and j′, the maximum likelihood parameter
estimates such that the estimated MLN is projective, can be then obtained by solving
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the following optimization problem:

maximize
θ

:
[∑
i∈[u]

ki log si(θ) +
∑
i,j∈[u]
i≤j

∑
l∈[b]

hij
l log tijl(θ)

− n log (
∑
i∈[u]

si(θ))−
(
n

2

)
logF (θ)

]
subject to : ∀i, j ∈ [u] : fij(θ) = F (θ)

(6.13)

Notice that due to factorization of Z(n) under projectivity (see Lemma 10),
−n log (

∑
i∈[u] si(θ)) −

(
n
2

)
logF (θ) represents − log(Z(n)). The above optimization

can be solved through any conventional optimization algorithm. It can be seen that
this problem has a much lesser overhead as far as computing log(Z(n)) is concerned.
But the additional constraints may counter act this gain. Furthermore, in many cases
it may happen that no non-zero weights exist that satisfy the constraints and in that
case the problem will return zero weights for the MLN formulas.

Theorem 31. Given a training example ω ∈ Ω(n), then there is no parameterization
for any projective MLN in the two variable fragment that has a higher likelihood for ω

than the maximum likelihood RBM for ω.

Proof. Let L be the likelihood of ω due to the maximum likelihood RBM. Let L′ be the
likelihood of ω due to a projective MLN Φ, such that L′ > L. Now, due to Theorem 28,
Φ can be expressed as an RBM. Hence, we can have an RBM such that the likelihood
of ω is L′, but L′ > L which is a contradiction. Hence, we cannot have a projective
MLN that gives a higher likelihood to ω than the maximum likelihood RBM.

Theorem 31 shows us that if a data source is known to be projective (i.e. we know
that marginals in the data will be independent of the domain at large) then in terms of
likelihood, specially in the case of large relational datasets, we are better off in using
an RBM than an expert defined MLN. This can also be argued from efficiency point of
view as RBMs admit much more efficient parameter estimates.

We will now move on to the question: are parameters learned on a domain of size n,
also good for modelling domain of a different size m ? This question is an abstraction
of many real world problems, for example, learning over relational data in presence
of incomplete information [62], modelling a social network from only sub-sampled
populations [63], modelling progression of a disease in a population by only testing a
small set of individuals [64] etc.
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Jaeger and Schulte [16] formalized the afore mentioned notions in the following two
criterions:

Eω[argmax
θ

logL(m)(θ|ω′)] = argmax
θ

logL(n)(θ|ω) (6.14)

argmax
θ

Eω[logL
(m)(θ|ω′)] = argmax

θ
logL(n)(θ|ω) (6.15)

It is easy to see, by law of large numbers, that RBMs satisfy both these criterions.
On the other hand the same can not be said about the maximum likelihood estimates
for projective MLNs as described in (6.13).

6.9 Conclusion

In this work, we have characterized the class of projective MLNs in the two-variable
fragment. We have also identified a special class of models, namely Relational Block
Model. We show that the maximum likelihood RBM maximizes the training data
likelihood w.r.t to any projective MLN in the two-variable fragment. Furthermore,
RBMs admit consistent parameter learning from sub-sampled domains, potentially
allowing them to scale to very large datasets, especially in situations where the test
data size is not known or changes over time.

From an applications point of view, the superiority of RBMs in terms of training
likelihood maximisation and consistent parameter learning can potentially make them
a better choice over an expert defined MLN, especially when training set is large and
the test domain size is unknown or varies over time. We plan to investigate such
capabilities of RBMs and projective MLNs in future work, especially in comparison to
models like Adaptive MLNs [17] and Domain Size Aware MLNs [18].

On the theoretical front, the imposed independence structure due to projectivity
clearly resembles the AHK models proposed in [57]. In future works, we aim at investi-
gating this resemblance and generalizing our work to capture complete projectivity
criterion for all the MLNs.
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6.10 Appendix to Chapter 6

A.1 : Lemma 10 [Sufficiency]

Lemma 10 (Sufficiency). A Markov Logic Network in the two variable fragment is
projective if all the fij have the same value i.e. ∀i, j ∈ [u] : fij = F , for some positive
real number F .

Proof. Let ∀i, j ∈ [u] : fij = F . Hence, due to Proposition 15, we have:

Z(n) =
∑
k

(
n

k

)∏
i∈[u]

skii
∏

i,j∈[u]
i≤j

(F )k(i,j) (6.16)

=
∑
k

(
n

k

)∏
i∈[u]

skii (F )(
n
2) = F (n2)

(∑
i∈[u]

si

)n
(6.17)

Let pi =
(

si∑
i si

)
and wijl =

(
tijl
F

)
. Hence,

P
(n)
Φ (ω) =

1

(
∑

i∈[u] si)
n(F )(

n
2)

∏
i∈[u]

skii
∏

i,j∈[u]
i≤j

∏
l∈[b]

(tijl)
hij
l

=
∏
i∈[u]

( si∑
i∈[u] si

)ki ∏
i,j∈[u]
i≤j

∏
l∈[b]

(
tijl
F

)h
ij
l

=
∏
i∈[u]

pkii
∏

i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l

ijl

Using the multi-relational representation, P (n)
Φ (ω) can be equivalently expressed as:

P
(n)
Φ (X = x,Y = y) =

∏
q∈[n]

pxq

∏
q,r∈[n]
q<r

wxqxryqr (6.18)

Let (X ′,Y ′) be the random vector containing Xq and Yp,q with p < q ∈ [m]. Clearly,
our goal is to show that

P
(n)
Φ ↓ [m](X ′ = x′,Y ′ = y′) = P

(m)
Φ (X ′ = x′,Y ′ = y′)
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Now, the marginal distribution over the m-worlds (X ′,Y ′), due to P
(n)
Φ (X = x,Y = y)

can be expressed as:

P
(n)
Φ ↓ [m](X ′ = x′,Y ′ = y′) =

∑
x[m]=x′

y[m]=y′

P
(n)
Φ (X = x,Y = y)

=
∑

x[m]=x′

y[m]=y′

∏
q∈[n]

pxq

∏
q,r∈[n]
q<r

wxqxryqr

=
∏
q∈[m]

pxq

∏
q,r∈[m]
q<r

wxqxryqr ×

(∑
x[m]
y[m]

∏
q∈[m]

pxq

∏
q,r∈[m]
q<r

wxqxryqr

∏
q∈[m]
r∈[m]

wxqxryqr

)

=
∏
i∈[u]

p
ki(x

′)
i

∏
i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l (y′)

ijl

×

(∑
x[m]
y[m]

∏
i∈[u]

p
ki(x[m])

i

∏
i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l (y[m])

ijl

∏
i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l ([m]⊗[m])

ijl

)

where A ⊗ B = A × B ∪ B × A. Notice that
∏

i∈[u] p
ki(x

′)
i

∏
i,j∈[u]
i≤j

∏
l∈[b] w

hij
l (y′)

ijl is

P
(m)
Φ (X ′ = x′,Y ′ = y′). Hence, in order to complete the proof, we will now show that

for any x′: ∑
x[m]
y[m]

∏
i∈[u]

p
ki(x[m])

i

∏
i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l (y[m])

ijl

∏
i,j∈[u]
i≤j

∏
l∈[b]

w
hij
l ([m]⊗[m])

ijl = 1 (6.19)

The LHS of equation (6.19) can be written as:

∑
∑

k=n−m

(
n−m

k

)∏
i∈[u]

pkii
∏

i,j∈[u]
i≤j

(
∑
l

wijl)
k(i,j)

∏
i,j∈[u]
i≤j

(
∑
l

wijl)
ki(x

′)×kj (6.20)

By definition, for any i, j ∈ [u],
∑

l wijl = 1 , and
∑

i pi = 1. Hence, expression (6.20)
can be written as:

∑
∑

k=n−m

(
n−m

k

)∏
i∈[u]

pkii =

(∑
i

pi

)n−m

= 1
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Hence, completing the proof.

A.2 : Lemma 11 [Necessary]

Lemma 11 (Necessary). If a Markov Logic network in the two variable fragment is
projective then, all the fij have the same value i.e. ∀i, j ∈ [u] : fij = F , for some
positive real number F .

Proof. Let us have a markov logic network Φ over a domain [n+ 1]. Let X and Y be
random vectors representing multi-relational graphs on the domain [n+1]. Let X ′ and
Y ′ be random vectors representing multi-relational graphs on the domain [n]. Then :

P
(n+1)
Φ ↓ [n](X ′ = x′,Y ′ = y′) =

∑
x[n]=x′

y[n]=y′

P
(n+1)
Φ (X = x,Y = y)

=
∑

x[n]=x′

y[n]=y′

1

Z(n+ 1)

∏
q∈[n+1]

sxq

∏
q,r∈[n+1]

q<r

txqxryqr

=
1

Z(n)

∏
q∈[n]

sxq

∏
q,r∈[n]
q<r

txqxryqr

Z(n)

Z(n+ 1)

∑
xn+1
yq,n+1

sxn+1

∏
q∈[n]

txqxn+1yq,n+1

= P
(n)
Φ (X ′ = x′,Y ′ = y′)

Z(n)

Z(n+ 1)

∑
xn+1
yq,n+1

sxn+1

∏
q∈[n]

txqxn+1yq,n+1

Due to projectivity we have that:

P
(n)
Φ (X ′ = x′,Y ′ = y′) = P

(n+1)
Φ ↓ [n](X ′ = x′,Y ′ = y′)

Hence,

Z(n+ 1)

Z(n)
=
∑
xn+1
yq,n+1

sxn+1

∏
q∈[n]

txqxn+1yq,n+1

which can be equivalently written as:

Z(n+ 1)

Z(n)
=
∑
i∈[u]

si
∏
j∈[u]

(∑
l∈[b]

tjil

)
kj(x

′)
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Now,
∑

l∈[b] tjiv = fji = fij. Hence:

Z(n+ 1)

Z(n)
=
∑
i∈[u]

si
∏
j∈[u]

f
kj(x

′)
ij

Hence, for any choice of the domain size m and for any choice of m-worlds (x,y) and
(x′,y′), we have that: ∑

i∈[u]

si
∏
j∈[u]

f
kj(x)
ij =

∑
i∈[u]

si
∏
j∈[u]

f
kj(x

′)
ij (6.21)

which implies 1 that:
∀i, j, i′, j′ ∈ [u] : fij = fi′j′

Hence, completing the proof.

A.3 : Auxiliary Lemmas for Lemma 11

In proof of Lemma 11 we argue that, for any choice of the domain size m and for any
choice of m-worlds (x,y) and (x′,y′), we have that:∑

i∈[u]

si
∏
j∈[u]

f
kj(x)
ij =

∑
i∈[u]

si
∏
j∈[u]

f
kj(x

′)
ij (6.22)

This implies that:
∀i, j, i′, j′ ∈ [u] : fij = fi′j′ (6.23)

We will first infer a slightly stricter equation from (6.22). x and x′ can have any 1-type
cardinalities, say k = ⟨k1(x)...ku(x)⟩ = ⟨k1...ku⟩ and k′ = ⟨k1(x′)...ku(x

′)⟩ = ⟨k′
1...k

′
u⟩

respectively, such that
∑

i∈[u] ki =
∑

i∈[u] k
′
i = m. Hence, we can conclude that, for all

k and k′ such that
∑

i∈[u] ki =
∑

i∈[u] k
′
i, we have that:

∑
i∈[u]

si
∏
j∈[u]

f
kj
ij =

∑
i∈[u]

si
∏
j∈[u]

f
k′j
ij (6.24)

Hence, our goal is to prove that (6.24) implies (6.23). We formally prove this statement
in Lemma 13. Before proving Lemma 13, we will need to prove the following auxiliary
lemma.

1For a rigorous proof of why this is true, see Lemma 12 and Lemma 13 in Appendix A.3
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Lemma 12. Let (xi)
m
i=1,(yi)mi=1 and (ai)

m
i=1 be tuples of positive non-zero reals. If for

all positive integers n:
m∑
i=1

aix
n
i =

m∑
i=1

aiy
n
i (6.25)

then the set of entries in (xi)
m
i=1 and the set of entries in (yi)

m
i=1 are the same.

Proof. Let {ui}pi=1 and {vi}qi=1 be the set of unique entries in (xi)
m
i=1 and (yi)

m
i=1

respectively. Also, without loss of generality, we may assume an ordering such that
u1 > u2 > ... > up and v1 > v2 > ... > vq and also that q ≥ p. We can rewrite (6.25)
as:

∀n ∈ Z+ :

p∑
i=1

ciu
n
i =

q∑
i=1

div
n
i (6.26)

As n grows the leading term on LHS is c1u
n
1 and on the RHS is d1v

n
1 . Hence, it must

be :

∀n ∈ Z+ : c1u
n
1 = d1v

n
1

Since, u1, v1, c1 and d1 are non-zero positive reals, we can conclude that u1 = v1 and
c1 = d1. Hence, we may subtract c1u

n
1 from both sides in (6.26) to get :

∀n ∈ Z+ :

p∑
i=2

ciu
n
i =

q∑
i=2

div
n
i (6.27)

We may now repeat the aforementioned argument and infer that u2 = v2 and c2 = d2.
Furthermore, repeating this argument p times, we can infer that {ui}pi=1 = {vi}pi=1,
leaving us with 0 =

∑p
i=q−p+1 div

n
i , which is a contradiction as di and vi are positive

reals. Hence, we must have that p = q. Hence, we have that {ui}pi=1 = {vi}qi=1. Hence,
completing the proof.

Since, fij = fji, we can see {fij} as a symmetric u× u matrix (fij) in Ru×u
>0 . Hence,

the statement that equation (6.24) implies equation (6.23) can be formally written as
the following Lemma.

Lemma 13. Let S = (fij) ∈ Ru×u
>0 be a symmetric matrix and let (si)ui=1 ∈ Ru

>0. If for
all k = ⟨k1, ..., ku⟩ and k′ = ⟨k′

1, ..., k
′
u⟩ such that ki, k′

i ∈ Z+ and
∑u

i=1 ki =
∑u

i=1 k
′
i,

we have that:
u∑

i=1

si
∏
j∈[u]

f
kj
ij =

u∑
i=1

si
∏
j∈[u]

f
k′j
ij (6.28)
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then
∀i, j, i′, j′ : fij = fi′j′

Proof. Let k be such that kp = n, let ki = 0 for all i ̸= p. Let k′ be such that k′
q = n

and k′
i = 0 for all i ̸= q. Then due to (6.28), we have that:

∀n ∈ Z+ :
u∑

i=1

si(fip)
n =

u∑
i=1

si(fiq)
n (6.29)

Hence, due to Lemma 12, we have that the entries in (fip)
u
i=1 and (fiq)

u
i=1 form the

same set. A similar argument can be repeated for any pair of columns. Hence, all
columns in S have the same set of entries, we denote the set of such entries as U .

Let n = uk where k ∈ Z+. Let k be such that ki = k for all i ∈ [u]. Let k′ be such
that k′

q = n and k′
i = 0 for all i ̸= q. Then due to (6.28), we have that:

∀k ∈ Z+ :
u∑

i=1

si
∏
p∈[u]

fk
ip =

u∑
i=1

si(fiq)
uk

∀k ∈ Z+ :
u∑

i=1

si(
∏
p∈[u]

fip)
k =

u∑
i=1

si(f
u
iq)

k

As k grows the leading term on left-hand side and right-hand side must agree for the
equality to hold. Let ci′(

∏
p∈[u] fi′p)

k and di′′(f
u
i′′q)

k be the leading terms on RHS and
LHS respectively. Hence,

∀k ∈ Z+ : ci′(
∏
p∈[u]

fi′p)
k = di′′(f

u
i′′q)

k (6.30)

Using Lemma 12, we have that
∏

p∈[u] fi′p = fu
i′′q. Now, fi′′q has to be equal to the

maximum term in U , say m. Also,
∏

p∈[u] fi′p is a product of all the terms in the pth

matrix column of S. Since, each matrix column has the same set of terms U , we have
that

∏
p∈[u] fi′p ≤ mu. But due to (6.30), we have that,

∏
p∈[u] fi′p = mu, which is

possible iff:
∀i, j, i′, j′ : fij = fi′j′
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