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Abstract
Objectives Only few published artificial intelligence (AI) studies for COVID-19 imaging have been externally validated. Assessing
the generalizability of developed models is essential, especially when considering clinical implementation. We report the development
of the International Consortium for COVID-19 Imaging AI (ICOVAI) model and perform independent external validation.
Methods The ICOVAI model was developed using multicenter data (n = 1286 CT scans) to quantify disease extent and assess
COVID-19 likelihood using the COVID-19 Reporting and Data System (CO-RADS). A ResUNet model was modified to
automatically delineate lung contours and infectious lung opacities on CT scans, after which a random forest predicted the
CO-RADS score. After internal testing, the model was externally validated on a multicenter dataset (n = 400) by independent
researchers. CO-RADS classification performance was calculated using linearly weighted Cohen’s kappa and segmentation
performance using Dice Similarity Coefficient (DSC).
Results Regarding internal versus external testing, segmentation performance of lung contours was equally excellent (DSC = 0.97 vs.
DSC = 0.97, p = 0.97). Lung opacities segmentation performance was adequate internally (DSC = 0.76), but significantly worse on
external validation (DSC = 0.59, p < 0.0001). For CO-RADS classification, agreement with radiologists on the internal set was
substantial (kappa = 0.78), but significantly lower on the external set (kappa = 0.62, p < 0.0001).
Conclusion In this multicenter study, a model developed for CO-RADS score prediction and quantification of COVID-19 disease
extent was found to have a significant reduction in performance on independent external validation versus internal testing. The
limited reproducibility of the model restricted its potential for clinical use. The study demonstrates the importance of independent
external validation of AI models.
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Key Points
• The ICOVAI model for prediction of CO-RADS and quantification of disease extent on chest CT of COVID-19 patients was
developed using a large sample of multicenter data.

• There was substantial performance on internal testing; however, performance was significantly reduced on external validation,
performed by independent researchers. The limited generalizability of the model restricts its potential for clinical use.

• Results of AI models for COVID-19 imaging on internal tests may not generalize well to external data, demonstrating the
importance of independent external validation.
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Abbreviations
AI Artificial intelligence
CNN Convolutional neural network
CO-RADS COVID-19 Reporting and Data System
COVID-19 Coronavirus disease 2019
DICOM Digital Imaging and Communications in

Medicine
DSC Dice Similarity Coefficient
ICOVAI International Consortium for COVID-19

Imaging AI
RT-PCR Reverse transcriptase-polymerase chain

reaction

Introduction

Artificial intelligence (AI)-based analysis of imaging perform-
ed for coronavirus disease 2019 (COVID-19) evaluation has
been extensively researched [1]. During the pandemic, several
deep learning models have been developed, aiming to assist
radiologists in interpreting and reporting chest CT scans in
COVID-19 patients.

Volume quantification of affected lung tissue on chest CT
scans has been shown to correlate with disease severity in
COVID-19 [2–6]. Manual delineation of lung abnormalities by
radiologists is labor-intensive and time-consuming, and therefore
not routinely conducted in clinical practice. Automated segmen-
tation of affected lung tissue can be made readily available, there-
by allowing clinical adoption of quantitative analysis.

To standardize reporting of chest CT scans, the COVID-19
Reporting andData System (CO-RADS) was introduced [7]. The
grading system includes five categories of increasing disease
probability, ranging from negative (CO-RADS 1) to typical im-
aging findings of COVID-19 (CO-RADS 5). CO-RADS has
shown reasonable to very good diagnostic performance and inter-
observer agreement [7–10]. Applying machine learning tech-
niques to automate CO-RADS classification could potentially
improve the interobserver agreement, especially for less experi-
enced readers. Moreover, such an automated analysis can be per-
formed before clinicians have the opportunity to read theCT scan,
ensuring the CO-RADS classification and volume quantification
are present at the time of interpretation. This could potentially

result in a more efficient clinical workflow if the automated as-
sessment is sufficiently accurate.

Before anyAI application is considered forwidespread clinical
use, external validation of themodel should be performed [11]. In
the systematic review by Roberts et al, only 8 of 37 (22%) deep
learning papers on COVID-19 imaging analysis that passed their
quality check had completed external validation [12]. This might
especially be worrisome for AI applications in COVID-19 imag-
ing since several methodological flaws and biases in these studies
were reported [12]. The authors stressed the importance of per-
forming an external validation on a well-curated dataset of appro-
priate size to evaluate the generalizability of an AI model, ensur-
ing it translates well to unseen, independent data.

This study aimed to develop and independently validate an
AI model consisting of COVID-19 segmentation and likelihood
estimation (CO-RADS) on chest CT using multicenter data.

Material and methods

International Consortium for COVID-19 Imaging AI
(ICOVAI)

During the initial phase of the COVID-19 pandemic, there
was a need for accurate and efficient analysis of chest CT
scans. ICOVAI was formed to address this need. The collab-
oration consisted of multiple hospitals and industry partners
across Europe. The consortium aimed to develop an AI-based
quantification and CO-RADS classification tool for clinical
use, following good-practice guidelines. These principles in-
cluded high-quality diverse data and multiple expert readers to
perform data annotation.

Data collection

The ICOVAI consortium included a multicenter, interna-
tional cohort of patients suspected of COVID-19 pneumo-
nia undergoing chest CT. The dataset for model creation
consisted of n = 1092 CT scans of patients with available
reverse transcriptase-polymerase chain reaction (RT-PCR)
test results for COVID-19 (n = 580 positive, n = 512 nega-
tive), shown in Fig. 1. The data was collected between
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December 2019 and May 2020 through ten participating in-
stitutions (Table 1). The male (n = 545) to female (n = 547)
ratio was 1:1. To balance the dataset, n = 194 CT scans from
the National Lung Screening Trial were added as negative
control samples. Combined, the total dataset yielded n =
1286 CT scans from n = 1266 unique patients.

An independent test dataset for external validation was retro-
spectively collected from five different hospitals in Europe
(Table 2). The cohort included n = 400 adult patients undergoing
chest CT for suspected COVID-19 pneumonia or triage between
February 2020 and May 2020. Twenty-five patients were ex-
cluded due to severe breathing or motion artifacts (n = 9), insuf-
ficient inspiration (n = 9), low resolution (n = 2), or missing
DICOM data or clinical information (n = 5). After exclusion,
n = 375 CT scans of unique patients remained, with a mean
age of 61.1 years (SD 16.8), and male-to-female ratio of 1.1:1.
The majority of patients showed symptoms of respiratory in-
fection at the time of imaging (n = 332, 88.5%). RT-PCR tests
performed within 7 days of imaging were used as a reference
standard and available for n = 363 patients (96.8%). Available
RT-PCR test results were positive for n = 181 patients and
negative for n = 182 patients.

Data annotation

ICOVAI model: Multiple radiologists independently classified
all CT scans (n = 1286) using the CO-RADS scheme (n =
1058 by three readers, n = 228 by two readers). A total of 409
cases were excluded due to discordance, i.e., all readers yielded
different CO-RADS scores, resulting in 877 CT scans. The dis-
tribution of classification labels for both the training (n = 805)
and internal test set (n = 72) is shown in Table 3.

The total lung volume and lung opacities were manually
segmented by medical students in n = 1060 CT scans and
reviewed by a team of n = 15 radiologists (2–23 years of
experience). For n = 905, more than two readers segmented
each CT scan, after which both segmentation masks were
averaged and rounded. Segmentations were performed using
Veye Annotator (Aidence BV).

External validation: The external test dataset (n = 400) was
classified by two readers using CO-RADS. Each case was read
twice: first by a radiology resident (F.G., fourth year of training)
or radiologist (L.T., 5 years of experience), and thereafter by a
certified thoracic radiologist (A.B., 8 years of experience or
R.W., 6 years of experience). In cases of discordance or

Table 1 Dataset of the ICOVAI
consortium. Number of CT scans
per participating institution for
both the classification and
segmentation task. The data is
split into a training and internal
test set for both tasks

Institution Classification Segmentation

Training Internal test Training Internal test

Albert Schweitzer Hospital, The Netherlands 15 1 20 1

AZ Turnhout, Belgium 82 4 102 7

Catharina Hospital, The Netherlands 19 3 26 3

Imapôle Lyon-Villeurbanne, France 108 17 136 19

Laurentius Hospital, The Netherlands 145 9 179 17

Lifetrack, Singapore 1 0 2 0

NHSX, UK 50 7 59 9

Rijnstate, The Netherlands 14 3 22 3

Tergooi MC, The Netherlands 13 0 13 0

Franciscus Gasthuis & Vlietland, The Netherlands 216 14 252 16

ICOVAI International Consortium for COVID-19 Imaging AI

Fig. 1 Data flowchart for the ICOVAI model development and external validation
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uncertainty, a consensus reading was performed by a third radi-
ologist (A.B., R.W. or L.T.). The distribution of CO-RADS
scores for the external test dataset is shown in Table 3.

Segmentations of total lung volumes were performed by a
technical physician (K.G.L.) and reviewed by a radiologist
(L.T.). In addition, manual segmentations of infectious lung
opacities were performed by a radiology resident or radiolo-
gist (F.G., L.T.), and reviewed by a certified thoracic radiolo-
gist (A.B., R.W.). Segmentations were performed using RVAI
(Robovision BV).

Data preprocessing

To prepare the pixel data from the DICOM series as input for the
AI model, quintic interpolation was performed on all slices,
yielding a voxel spacing of 1.25 mm × 0.5 mm × 0.5 mm.
Subsequently, voxel values were scaled such that the “lung win-
dow”, i.e., −1000 to 300 HU, corresponded to the range of −1.0
to 1.0, for numeric stability. Axial slices were extracted from the
generated volume and scaled to a fixed size of 256 × 256 pixels.

Design of the artificial intelligence system

The AI system was designed to delineate COVID-19 infected
areas and yield a CO-RADS score through two separate AI
models that function in synchrony. First, a convolutional neural
network (CNN) with ResUNet-a architecture [13] takes the CT
as input and returns two segmentation masks, labelling every
voxel in the CT scan as infectious/non-infectious and lung/no-

lung. The ResUNet-a architecture for segmentation contained
several adjustments (see Supplementary information).

Subsequently, a tree-based ensemble model was used to pre-
dict the CO-RADS score. The input features were constructed
based on the segmentation masks of the CNN and the corre-
sponding CT image voxel values. The tree-based ensemblemod-
el was constructed through a random forest classifier
(RandomForestClassifier, scikit-learn v.0.24.1), with the
following settings: n_estimators = 300, max_depth = 48,
min_samples_split = 12, max_features = 32, and random
o v e r s am p l i n g w i t h “ n o m a j o r i t y ” s t r a t e g y
(RandomOverSampler, imblearn v0.8.1). All other parameters
were at default.

Statistical analysis

The performance of the AI model’s CO-RADS predictions
was evaluated through the weighted Cohen’s kappa score
(Eq. 1) since it considers how far the prediction is off.

κ ¼ 1 ¼ ∑n
i¼1∑

n
j¼1wijxij

∑n
i¼1∑

n
j¼1wijmij

ð1Þ

withw the confusionmatrix weights (Supplementary Table S2
for linear), x the observed confusion matrix values, m the
expected confusion matrix values based on chance agreement,
and n the number of categories.

We implemented the Dice Similarity Coefficient (DSC) to
quantify the overlap between the ground-truth label and the AI
segmentation in two ways. First, we calculated the DSC (Eq. 1)
based on the true positives (TP), false positives (FP), and false
negatives (FN) on each individual CT scan. Here, we reported
the median DSC and its 95% confidence interval (CI). However,
since the negative RT-PCR cases in the test set have no segment-
ed volume, the DSC is not defined (dividing by 0). Therefore, the
DSCwas only calculated on CT scans of patients with a positive
RT-PCR. Secondly, to include false-positive segmentations re-
turned by the AI model for RT-PCR negative CT scans, we
included the “micro Dice Similarity Coefficient” (mDSC) as
well. Here, the TP, FP, and FN are multiplied by the voxel size
(mm3) of the respective CT scan. The resulting values over the
CT scans are summed, and the mDSC is calculated via Eq. 2.
This method yields one value, where larger segmented volumes
will have an increased impact on the total score. To analyze the
correlation between segmented volumes, we implemented
Spearman’s correlation. For statistical tests, p < 0.05 was consid-
ered significant. See supplemental material for p value
calculation.

DSC ¼ 2 * TPð Þ= 2 * TP þ FP þ FNð Þ ð2Þ

Table 2 Dataset for external validation. Number of CT scans per
participating institution

Institution External test

Amphia Hospital, The Netherlands 56

Antwerp University Hospital, Belgium 171

Campus Bio-Medico University of Rome, Italy 15

University Hospital of Liège, Belgium 87

OLV Hospital, Belgium 46

Total 375

Table 3 Distribution of CO-RADS categories per dataset

CO-RADS Training Internal test External test

1 362 (45%) 30 (42%) 137 (37%)

2 121 (15%) 12 (17%) 69 (18%)

3 66 (8%) 6 (8%) 48 (13%)

4 60 (7%) 6 (8%) 13 (3%)

5 196 (24%) 18 (25%) 108 (29%)

Total 805 72 375

CO-RADS COVID-19 Reporting and Data System
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Model training and deployment

The resulting dataset was divided into a training (n = 971) and
an internal test (n = 89) set, based on a randomly stratified
split. Therefore, the ratios of the different CO-RADS classifi-
cations were approximately equal in the two sets.

The segmentation model was trained with randomly sam-
pled slices from the training set CT scans. Scaling, rotation,
translation, mirroring, and addition of noise were applied to
the slices to augment the training data. Stochastic Gradient
Descent was used as the optimizer with a learning rate of 0.1
and Nesterov Momentum of 0.9. DSC was implemented as
the loss function. The AI model was developed and trained
with Tensorflow (v2.3.2).

The classification model was trained on 805 CT scans with
10-fold cross-validation. To account for class imbalance, ran-
dom over-sampling of minority CO-RADS classification
scores was performed.

To perform external validation, the AI model was deployed
within the hospital environment and inference was executed
on two NVIDIA Quadro RTX 8000.

Results

Imaging data

For the ICOVAI dataset, the CT manufacturers were GE (n =
424, 33.0%), Siemens (n = 499, 38.9%), Philips (n = 323,
25.1%), Toshiba (n = 37, 2.9%), and unknown (n = 3, 0.2%).
More detailed acquisition parameters are listed in Supplementary
Table S3. For the external validation dataset, chest CT scanswere
acquired without intravenous contrast in 74.1% patients (n =
278), and with intravenous contrast in 25.9% patients (n = 97).
Distribution of CT manufacturers was GE in 55.7% cases (n =
209), and Siemens in 44.3% cases (n = 166). Slice thickness
ranged from 1.0 to 3.0 mm (average 1.5 mm).

Internal test: inter-reader agreement

To report on inter-reader agreement with respect to classifica-
tion using CO-RADS, all scans with a score of at least two
readers were analyzed. This analysis also included scans for
which no majority consensus could be found, yielding a total
of 1058 CT scans. Between all reader pairs (n = 4895 combi-
nations), Cohen’s kappa scores were 0.48 (unweighted), 0.72
(linear weighted), and 0.85 (quadratic weighted).

Internal test: AI performance

The AI model achieved a COVID-19 segmentation DSC of
0.76 and sensitivity of 0.79. The mean true positive, false
positive, and false negative volume of COVID were 228.9

mL, 88.3 mL, and 59.1 mL, respectively. The mean absolute
error was 117.1 mL.

For total lung segmentation, the AI model achieved a DSC
of 0.97 and sensitivity of 0.97. The mean true positive, false
positive, and false negative volume of COVID were 4433.9
mL, 97.0 mL, and 137.1 mL, respectively. The mean absolute
error was 147.9 mL.

For CO-RADS classification, the AI model achieved
Cohen’s kappa scores of 0.58 (not weighted), 0.78 (linearly
weighted), and 0.89 (quadratically weighted). The confusion
matrix is shown in Table 4.

External test: AI performance

The ICOVAI model pipeline excluded n = 1 case, leaving n =
374 for final analysis. For COVID-19 segmentation, the AI
model achieved a performance of 0.59 mDSC and 0.63 sen-
sitivity on the external test dataset, significantly lower than
that on the internal test set (p < 0.0001). The mean true pos-
itive, false positive, and false negative volumes of COVID
were 237 mL, 197 mL, and 138 mL, respectively. The mean
absolute error was 142 mL (CI: 81–246 mL). The median
DSC over all COVID-19–positive CT scans was 0.48. The
distribution of DSC scores is shown in Fig. 2A. The correla-
tion between the segmented volume by the AI model and the
segmentation by the expert reader was strong (spearman r =
0.83, p < 0.001); see Fig. 2B.

The total lung segmentation achieved 0.97 mDSC and 0.98
sensitivity on the external test dataset. The mean true positive,
false positive, and false negative volumes of COVID were 4.1
L, 178 mL, and 80 mL, respectively. The mean absolute error
was 148 mL (CI: 135–156 mL). The median DSC over all
COVID-19 positive CT scans was 0.97. Figure 3 shows total
lung segmentation in two patients with extensive opacities.

The CO-RADS classification achieved Cohen’s kappa
scores of 0.41 (not weighted), 0.62 (linearly weighted), and
0.75 (quadratically weighted). See Table 5 for the confusion
matrix. Figure 4 shows two examples of misclassification.

External test: visual interpretation

A radiologist (L.T., 5 years of experience) performed a
qualitative visual inspection of the segmentation results
on the external test set. The AI delineation of infectious
lung opacities was determined adequate to excellent for
the majority of cases. When compared to the ground truth
labels generated by the radiologists, the ICOVAI model
was less sensitive to discrete ground-glass opacities. In
several cases, the ICOVAI model generated false-
positive segmentations of non-infectious lung opacities
such as atelectasis or fibrosis.

4253European Radiology (2023) 33:4249–4258



Discussion

In this multicenter study, we described the development of the
ICOVAI model and performed an independent external valida-
tion using data from five institutions. We observed a significant
reduction in performance on the external test as compared to the
internal test for lung opacity segmentation and CO-RADS pre-
diction, but not for lung contour segmentation.

To the best of our knowledge, we have performed the first
pre-market external validation study that independently assessed
the segmentation performance of a COVID-19 imaging AI solu-
tion using large-volume multicenter data. Our work shows that
published results of COVID-19 segmentation on internal test sets
may not generalize well to patient data from other institutions.

External validation can highlight the shortcomings of a pre-
dictivemodel, whichwere not apparent during internal testing on

CT scans sampled out of the same cohort. The importance of
external validation is illustrated by the increasing number of
high-impact journals requesting it for all predictivemodels before
publication [14]. Moreover, repetitive test set use by slightly
different experiments can lead to “test set overfitting” [15], where
the model fits the test data well by chance in one of the experi-
ments.We solved these problemswith external validation, where
the model is tested once at an external location with an unrelated
dataset.

The reported differences in segmentation performance of
COVID-19 pneumonia on the internal versus external datasets
may partially be explained by interreader variation. The lung
areas labelled as abnormal by annotators of the development
dataset versus independent annotators of the external dataset
may vary because of variations in default window-level settings
on the different annotation platforms used to perform the ground

Table 4 Confusion matrix of CORADS classification on internal test set

Prediction

CO-RADS 1 CO-RADS 2 CO-RADS 3 CO-RADS 4 CO-RADS 5

Ground truth CO-RADS 1 29 1 0 0 0

CO-RADS 2 3 5 3 1 0

CO-RADS 3 4 1 1 0 0

CO-RADS 4 0 2 0 1 3

CO-RADS 5 0 0 1 2 15

CO-RADS COVID-19 Reporting and Data System

Fig. 2 Segmentation of infectious
lung opacities by the ICOVAI
model on external validation. A
Distribution of DSC in the
external test set of patients with
RT-PCR confirmed COVID-19.
B There is a strong correlation
between the volume of infectious
lung opacities segmented by the
experts (ground truth) and the
ICOVAI model. C Ground truth
segmentations (green contours)
included a larger area of discrete
ground-glass opacity, versus
ICOVAI segmentation (yellow
contours) which included only
marked ground-glass opacities. D
False-positive segmentation by
the ICOVAI model of normal in-
creased attenuation in the posteri-
or lung bases
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truth segmentations, leading to distinct cut-off values to label
lung densities (Fig. 2C).

Variation in CO-RADS scoring between the internal and
the external test sets could, to some extent, be explained by
selection bias. For the internal dataset, CO-RADS scores were
excluded when there was no majority consensus between
readers, eliminating the “hardest to evaluate” cases. This is
most likely also the cause for the AI model’s kappa score
being higher than the inter-reader kappa score. When results
on the internal test set are better than the ground truth, test set
overfitting may be occurring [15]. In this case, external vali-
dation can reflect the true, tempered performance of the AI
model more accurately.

A prior study by Lessmann et al trained an AI system with
single-center data to score the likelihood of COVID-19 using
CO-RADS [16]. They found a moderate to substantial agree-
ment between observers, reporting a linearly weighted kappa
of 0.60 on their internal test set, and 0.69 on their external test
set. In our multicenter study, we found a similar level of agree-
ment (kappa values of 0.78 and 0.62, respectively). Previous
multicenter studies that included external validation have fo-
cused on a binary or ternary classification of COVID-19 ver-
sus other types of pneumonia and normal lungs [17–22].
These studies reported a high to outstanding area under the
receiver operating curve (AUC) (0.87–0.98) for identifying
COVID-19 on CT. However, the results are difficult to com-
pare with our study that focused on predicting CO-RADS, a

more complex multicategorical assessment scheme.
Additionally, our external validation was executed by inde-
pendent researchers. Similarly, Jungmann et al performed an
independent external validation on four commercial AI solu-
tions to differentiate COVID-19 pneumonia from other lung
conditions [23]. They found high negative predictive values
(82–99%) for the tested models, but deemed only one solution
to have an acceptable sensitivity. The specificity of the four
solutions was highly variable (31–80%) and positive predic-
tive values were low (19–25%). Their study was limited to
evaluating binary classification and did not assess the segmen-
tation accuracy. Regarding lung opacities segmentation per-
formance on COVID-19 patients, the multicenter study of
Zhang et al reached anmDSC of 0.55–0.58 on internal testing,
comparable with our findings on external validation [20].
Other published studies have reported higher DSC values for
segmentation of lung opacities. However, most studies used
single-center data, datasets of limited size, or did not perform
external validation [24–27].

Our study has several limitations. First, patients were selected
by convenience sampling, which may have introduced selection
bias. The internal dataset included controls from the National
Lung Screening Trial that did not correspond to the target popu-
lation. This was mitigated by performing an independent valida-
tion with a balanced external dataset. Secondly, CO-RADS is
prone to interobserver variability and is therefore an imperfect
reference standard. Cases in the internal dataset were excluded

Fig. 3 Total lung segmentation
(red contours) by the ICOVAI
model on the external test dataset
was good to excellent, even in
cases with extensive ground-glass
opacities (A). When large con-
solidations were present, this
could lead to false-negative seg-
mentations in the most peripheral
parts (B)

Table 5 Confusion matrix of CORADS classification on external test set

Prediction

CO-RADS 1 CO-RADS 2 CO-RADS 3 CO-RADS 4 CO-RADS 5

Ground Truth CO-RADS 1 94 29 9 3 2

CO-RADS 2 17 35 5 8 3

CO-RADS 3 12 9 2 3 22

CO-RADS 4 0 1 4 2 6

CO-RADS 5 4 6 5 15 78

CO-RADS COVID-19 Reporting and Data System
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when there was a disagreement between all readers on CO-
RADS classification, arguably inducing a bias towards less com-
plicated cases. For the external dataset, disagreements were re-
solved using consensus. Thirdly, interobserver variability of
COVID-19 segmentations was not evaluated. Therefore, we can-
not determine whether the ICOVAI model was reasonably close
to the agreement between radiologists.

Future AI developers might benefit from a centralized,
high-quality reference image repository to perform external
validation of their model, which would also be helpful in
setting benchmarks of model performance.

Conclusion

This study evaluated the ICOVAI model performance inde-
pendently using an external, multicenter test dataset.
Segmentation of total lung volumes in both internal and ex-
ternal datasets was excellent, even in patients with severe
COVID-19 pneumonia. The performance of the ICOVAI
model on segmentation of infectious lung opacities and clas-
sification of CO-RADS was significantly worse on the exter-
nal test dataset compared to the internal test dataset. The re-
sults showed limitations in the generalizability of the ICOVAI
model, therefore restricting the potential for clinical use. Our
study demonstrates the importance of independent external
validation of AI models.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09303-3.
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Fig. 4 CO-RADS misclassification by the ICOVAI model on the
external test dataset. A A 55-year-old patient with small subpleural
ground-glass opacities in both lungs (arrows), which consisted of a typ-
ical appearance of COVID-19 (CO-RADS 5), later confirmed with RT-
PCR. The case was misclassified as negative (CO-RADS 1) by the
ICOVAI model. B A 70-year-old patient was admitted to the intensive

care unit with lobar pneumonia, atypical appearance for COVID-19 (CO-
RADS 2). CT showed infectious consolidation in the right upper lobe
(arrows), and increased attenuation due to hypoventilation in the other
pulmonary lobes. The case was misclassified as CO-RADS 5 by the
ICOVAI model
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Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was not required because
of the retrospective nature of this study.
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