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ABSTRACT

The temporal consistency of yearly land-cover maps is of great
importance to model the evolution and change of the land cover
over the years. In this paper, we focus the attention on a novel
approach to classification of yearly satellite image time series
(SITS) that combines deep learning with Bayesian modelling,
using Hidden Markov Models (HMMs) integrated with Trans-
former Encoder (TE) based DNNs. The proposed approach
aims to capture both i) intricate temporal correlations in yearly
SITS and ii) specific patterns in multiyear crop type sequences.
It leverages the cascade classification of an HMM layer built
on top of the TE, discerning consistent yearly crop-type se-
quences. Validation on a multiyear crop type classification
dataset spanning 47 crop types and six years of Sentinel-2 ac-
quisitions demonstrates the importance of modelling temporal
consistency in the predicted labels. HMMs enhance the overall
performance and F1 scores, emphasising the effectiveness of
the proposed approach.

Index Terms— deep learning, multitemporal classifica-
tion, HMM, satellite image time series, remote sensing

1. INTRODUCTION

In the last decade, Deep Learning (DL) has become more
and more relevant in remote sensing data analysis, allowing
the research community to move towards more complex chal-
lenges on larger scales. However, with single acquisitions, it
is not possible to model many characteristics of the land cov-
ers that are strictly related to their temporal signatures, such
as in the case of cultivation or blooming vegetation. When
multitemporal acquisitions are available, the use of DL allows
the modelling of the phenological traits of the land cover [1].
The DL architectures considered for multitemporal remote
sensing usually discard the spatial information and focus on
the spectral and temporal information. They can be divided
into three categories: i) Recurrent Neural Networks (RNNs),
ii) 1D Convolutional Neural Networks (CNNs) and iii) Trans-
former networks. Among the RNNs, the Long-Short-Term
Memory (LSTM) network showed high accuracies [2]. In [3],
the authors proposed a Temporal CNN (TempCNN) that ap-
plies 1D convolutions to the temporal domain, outperforming
methods based on random forests and RNNs with Gated Re-

curring Units (GRUs). Transformer, which are based on the
concept of Self-Attention, showed excellent performance in
the natural language processing domain, and they are currently
the most studied type of Deep Neural Networks (DNNs) for
satellite image time series (SITS) analysis. Rußwurm et al.
[4] compared Transformers, LSTM networks and TempCNNs
on a crop type classification task with Sentinel-2 (S2) multi-
spectral time series (TS). They showed that all these models
perform similarly on pre-processed data (i.e., with atmospheric
correction, temporal selection of cloud-free observations, and
cloud masking), whereas LSTM networks and Transformers
perform better on raw Top-of-Atmosphere (TOA) data.

A typical application of multitemporal acquisitions is
the analysis of SITS over the years to produce yearly land-
use/land-cover (LULC) maps. This application requires that
multitemporal LULC products outline a realistic temporal
evolution of each pixel. For this reason, the temporal con-
sistency of multitemporal land-cover products is particularly
important. A Bayesian approach to the classification of two
images acquired over the same location was proposed by
Swain in his pioneering work [5]. He specifically modelled
the temporal correlation between the land cover at different
acquisition times to relate the class posterior probabilities
estimated on single acquisitions. Then, he proposed a cascade
implementation that, starting from a single time step, uses the
temporal correlation modelled by known land-cover transition
probabilities to account for temporal consistency with the sec-
ond time step. Bruzzone [6] extended this work to a compound
classification system, proposing automatic techniques for the
estimation of the transition probabilities and generalising
the system to multisensor data and multiple classification
systems (e.g., KNNs, SVMs and shallow neural networks) [7].
Extensions to more than two observations usually rely on the
Hidden Markov Model (HMM) formulation [8], which allows
modelling the temporal correlation through the transition
probabilities between adjacent time steps. Nowadays, the
classification of multiple dates with multitemporal data and
DL-based architectures is still a challenge, and the modelling
of the temporal correlation in the TS of the labels predicted
by the DNN is understudied in remote sensing. Few works
[9, 10, 11, 12, 13] investigated the combination of HMMs with
DNNs for acoustic data classification and ECG signal analysis.
In remote sensing land cover classification, some papers [14]



Fig. 1. Flowchart of the proposed cascade-based classification
approach, combining a DNN model with an HMM layer.

tried to overcome the complexity of the problem by training
an end-to-end DL model, such as an LSTM network, with a
multiyear training dataset, defined by the automatic extraction
of reliable training samples from existing land cover products.
However, the temporal correlation of the labels at different
years is not modelled.

In this paper, we focus on the combination of DNNs with
strategies for modelling the temporal correlation in the TS of
predicted labels, drawing inspiration from a cascade classifi-
cation approach [5]. The strength of our approach lies in the
fusion of Bayesian modelling, specifically HMMs, with DNNs
based on the Transformer Encoder (TE). By combining the
strengths of these methodologies, we aim to capture both the
intricate temporal correlations in multiyear land-cover labels,
and the complex spectral patterns within yearly SITS. This
strategy is validated on a multiyear crop type classification
dataset spanning over six years of S2 acquisitions. The results
show the importance of modelling the temporal consistency of
the labels predicted by DNNs, as well as the effectiveness of
their combination with HMMs.

2. PROPOSED METHODOLOGIES

In this section, we present the novel methodology based on
cascade classification employed for multiyear crop type classi-
fication, drawing inspiration from HMMs and incorporating a
TE as the emission model (Fig. 1). Let x(y) ∈ RT×B be a TS
of T observations with B spectral bands for year y. The task
is to predict labels ω(y) ∈ {ω1, ω2, ..., ωC} , y = 1, 2, ..., Y ,
where C is the number of classes and Y is the number of years
under consideration. Under a Bayesian perspective, the prob-
lem can be formulated as finding the best sequence of labels
that maximise the joint density distribution:

p
(
ω(1), ..., ω(Y ),x(1), ...,x(Y )

)
=

p
(
x(1), ...,x(Y ) | ω(1), ..., ω(Y )

)
P
(
ω(1), ..., ω(Y )

)
,

(1)

where the two terms model the likelihood of the observed
sequence given the generating sequence of labels and the
prior probability of the sequence of labels, respectively. In

the cascade classification approach [5], we consider class-
conditional independence in the temporal domain, i.e., the
observations x(1),x(2) at a given spatial position at differ-
ent time steps y1, y2 are independent of each other given the
classes ω(1), ω(2) at the two time steps. Then, we can write as
follows:

p
(
x(1), ...,x(Y ) | ω(1), ..., ω(Y )

)
=[

Y∏
y=1

p
(
x(y) | ω(y)

)]
,

(2)

which is equivalent to the output independence assumption of
HMMs [8]. For two dates classification problems, the cascade
classification approach [5] finds the best label ω(2) by first
marginalising p

(
ω(1), ω(2),x(1),x(2)

)
over ω(1):

argmax
i

{
p
(
x(2) | ω(2)

i

)
×

×
C∑

j=1

P
(
ω
(2)
i | ω(1)

j

)
p
(
x(1) | ω(1)

j

)
P
(
ω
(1)
j

)}
. (3)

One can note that this is akin to an HMM where the Markov as-
sumption is employed to simplify the definition and modelling
of the prior term P

(
ω(1), ..., ω(Y )

)
. Combining this with the

HMM’s output independence assumption and expanding to
more than two dates, we perform cascade classification by
using a custom implementation of an HMM, where a DNN is
used to approximately estimate the emission model p (x | ω)
and a Markov transition model is used to enforce temporal
consistency.

2.1. Emission Model: Transformer Encoder

The proposed approach exploits a TE for raw optical TS clas-
sification [4] as the emission model. This DNN is designed to
capture complex temporal and spectral patterns present in mul-
titemporal SITS data. Two versions of the TE are considered,
differing in the definition of the final layer: the first one uses a
standard linear layer with softmax activation, while the second
one uses a normalised softmax layer with no bias term and
normalised rows in the weight matrix [15]. The former, con-
sidered as a discriminative approach, approximately estimates
class posterior probabilities Pdisc (ω | x) through standard cat-
egorical cross entropy optimisation, while the latter, akin to
a generative model, implicitly enforces a uniform class prior
distribution P (ω) = 1/C,∀ω on the class posteriors, align-
ing with the requirements of an HMM emission model, i.e.,
Pgen (ω | x) ∼ p (x | ω). This approach helps in reducing the
bias towards dominant classes in the dataset.

2.2. Transition Model: HMM Layer

To embody the HMM logic, a custom layer is devised
to serve as a unique implementation of the HMM transi-



tion model for multiyear crop type classification. The pa-
rameters of this HMM layer include the log probabilities
P
(
ω(y), ω(y+1)

)
of the joint prior distribution of each tuple of

labels
(
ω(y), ω(y+1)

)
, representing the probabilities of the two

labels co-occurring in consecutive years. This configuration
facilitates the extraction of both transition probabilities and
initial state probabilities:

P
(
ω(y+1) | ω(y)

)
= P

(
ω(y+1), ω(y)

)
/P

(
ω(y)

)
P
(
ω(y)

)
=

C∑
i=1

P
(
ω

(y+1)
i , ω(y)

)
,

(4)

and improves numerical stability during both training and in-
ference. Moreover, the modelling of the joint probabilities
enables the estimation of both forward and backward transi-
tion probabilities, simply marginalising over ω(y) instead of
ω(y+1). Leveraging this capability, the network performs cas-
cade classification in both forward and backward directions
during the inference step. This unique approach ensures that
the predictions for each year depend on observations from all
years, enhancing the overall consistency of predictions. The
forward HMM model can be written as follows:

p
(
ω(1), ..., ω(Y ),x(1), ...,x(Y )

)
=

=

[
Y∏

y=1

p
(
x(y) | ω(y)

)][
Y −1∏
y=1

P
(
ω(y+1) | ω(y)

)]
P
(
ω(1)

)
.

(5)

In multiyear cascade classification, the objective is to es-
timate for each time step i the probability of classes ω(y)

occurring with the observed sequence up to that point:

p
(
ω(y),x(1), ...,x(y)

)
=

=

C∑
ij=1,∀j<y

p
(
ω

(1)
i1

, ω
(2)
i2

, ..., ω(y),x(1), ...,x(y)
)

= p
(
x(y) | ω(y)

)∑
i=1

P
(
ω(y) | ω(y−1)

i

)
×

× p
(
ω

(y−1)
i ,x(1), ...,x(y−1)

)
,

(6)

where the equation is applied recursively and p
(
x(1), ω(1)

)
=

p
(
x(1) | ω(1)

)
P
(
ω(1)

)
. Assuming that the observations

for successive time steps are available, the same ap-
proach can be used in the backward direction, obtaining
p
(
ω(y),x(y), ...,x(Y )

)
. The forward and backward predic-

tions can be fused, obtaining a prediction for ω(y) that depends
on the observation of all the years:

p
(
ω(y),x(1), ...,x(Y )

)
=

=
p
(
ω(y),x(1), ...,x(y)

)
p
(
ω(y),x(y), ...,x(Y )

)
p (x(y) | ω(y))P (ω(y))

.

(7)

This can be used both for training and inference, where
class-posterior probabilities can be obtained simply by nor-
malisation. In this paper, we also explore the second-order
HMM, where the transition probabilities are defined over
combinations of the two previous time steps, i.e., we have
P
(
ω(y+2) | ω(y+1), ω(y)

)
. With some adjustments, the cas-

cade equations can be formulated similarly to (6), and the
results of forward and backward cascade predictions can be
formulated exactly as in (7). Note that, differently from stan-
dard HMMs, we do not assume that the same transition model
can be used for all the adjacent pairs of years, i.e., we estimate
a transition matrix for each couple of years.

2.3. Training Procedure

The emission model is trained encompassing labels from all
years. It is important to note that the TE is specifically trained
on individual yearly sequences rather than on the entire se-
quence collectively. The HMM layer is initialised with co-
occurrence matrices derived from the TE training phase. The
entire model, comprising the TE and HMM layer, undergoes
fine-tuning (FT), which is performed in a supervised manner
by employing the cascade results of applying the forward-
backward cascade algorithm in the categorical cross entropy.

3. DATASET DESCRIPTION

To validate the proposed methodologies, we considered pub-
licly available Land Parcel Identification System (LPIS) crop
type maps in Austria, which are based on farmers’ declara-
tions1. The dataset has been developed with a focus on the
Military Grid Reference System (MGRS) tile 33UVP. The
selection of the tile was due to the consistent coverage of two
S2 orbits and the wide variety of crop types present in the
region. We analysed six target agronomic years, ranging from
September 2016 to September 2022. The study involved a
total number of 805 S2 L1C acquisitions, incorporating all
the 13 spectral channels re-sampled at a resolution of 10m
using a nearest neighbour approach. No cloud screening has
been applied to the S2 images. For each agronomic year, we
selected the crop fields with a minimum size of 400m2 and
only the crop fields occurring in every target year with an
occurrence greater than 0.05%. At the end of this filtering
process, we identified 47 distinct crop type labels, for a total
number of ∼ 300, 000 crop fields. Each resulting crop field is
then collapsed into one single entry representing the spatial
mean value of the pixels belonging to that crop field on every
acquisition date.

1Data source: https://www.data.gv.at/en/search/
?typeFilter%5B%5D=dataset&searchterm=INVEKOS+Schl%
C3%A4ge+%C3%96sterreich+&searchin=data, Accessed on: May
23, 2024.

https://www.data.gv.at/en/search/?typeFilter%5B%5D=dataset&searchterm=INVEKOS+Schl%C3%A4ge+%C3%96sterreich+&searchin=data
https://www.data.gv.at/en/search/?typeFilter%5B%5D=dataset&searchterm=INVEKOS+Schl%C3%A4ge+%C3%96sterreich+&searchin=data
https://www.data.gv.at/en/search/?typeFilter%5B%5D=dataset&searchterm=INVEKOS+Schl%C3%A4ge+%C3%96sterreich+&searchin=data


Table 1. Comparison of the mean F1 scores (mF1%) consider-
ing the different components of the methodology proposed on
test set. Results from both training and FT are reported.

approach mF1% FT mF1%

TE
generative 68.71 70.88

discriminative 64.85 70.05

HMM
1st order cascade 70.16 73.59

HMM
2nd order cascade 70.08 73.49

4. EXPERIMENTAL SETUP AND RESULTS

To accurately model the temporal sequences and the consis-
tency of the crop rotations, we split the dataset considering a
stratified random sampling approach, considering the unique-
ness of the label sequences within the agronomic target years.
In particular, we defined each stratum exploiting an agglom-
erative hierarchical clustering approach, which recursively
merges pairs of label sequences based on a Hamming distance
with rotations. To determine the distance of two samples, we
consider the minimum of each possible hamming distance
computed on one sample and all the circular shifts of the other
candidate sample. This approach results in the aggregation of
samples showing similar crop sequences but shifted by one
or more years, as they will display a small distance metric
and be grouped within the same cluster. After the clustering
operation, each sample in the stratum is randomly assigned to
train, validation, and test sets, with a probability of 0.6, 0.2,
and 0.2, respectively. The TE was trained on the training set,
while the FT of the TE and HMM was conducted considering
the performance on the validation set.

Table 1 shows a comparison of the performance of the
different models on the test set, before and after FT. HMMs
before FT are simply initialised with the co-occurrence matri-
ces obtained from the training labels. From the table, one can
see that the TE alone performs worse compared to the combina-
tion with an HMM, emphasising the importance of exploring
the correlation in the temporal sequence. Moreover, the FT

cascaded HMM achieves better performance compared to the
inference-only approach (i.e., without FT), showing a 73.59%
F1 score when considering the 1st order approach. This is a
notable achievement given the complexity of considering 47
different classes—which is a very challenging problem in crop-
type mapping with remote sensing image classification. The
modified version of the TE employing the normalised weights
in the final linear layer (i.e., generative) outperforms the origi-
nal implementation of the TE (i.e., discriminative) [4]. A more
detailed analysis can be inferred from Table 2, where the F1
scores are presented for each distinct crop type, considering
the generative TE and both 1st and 2nd order HMMs. Despite
the similar performance on average, the classification results
indicate that the 2nd order HMM performs better than the 1st

order HMM on the most difficult classes at the expenses of the
most performing ones.

5. CONCLUSIONS

In this paper, we have presented a novel cascade classification
approach to multitemporal land cover classification of SITS
that integrates Bayesian modelling, specifically HMMs, with
DNNs. This methodology involves two key aspects: (i) the
supervised training of an TE used as the emission model of an
HMM and (ii) the FT of the cascade classification approach
considering an HMM model built on top of the Encoder. This
study showcased that the incorporation of HMM with DNNs
effectively leverages the consistency of labels across different
time sequences, outperforming the independent classification
of each single year with the Encoder. The effectiveness of this
novel strategy is validated through the experimental results
on a multiyear dataset spanning six years of S2 acquisitions
on a high detailed crop classification scheme, showing 47
different crop types. Our results highlight the importance
of modelling the temporal consistency of labels predicted by
DNNs, by fusing it with HMMs in a Bayesian approach, in
enhancing the overall performance of crop type classification
models. In future works, we plan to reframe the approach
within a change detection framework and investigate the weak
and semi supervision scenarios, where only a subset of the
training data are reliably labelled.

Table 2. Quantitative analysis in terms of F1 scores (%) on the 47 selected crop type classes comparing the fine-tuned generative
TE (GTE) and HMMs, considering both 1st (HMM-1) and 2nd (HMM-2) order cascade classification approaches. Best results are
highlighted in gray.
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