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Abstract. Future deep learning systems call for techniques that can
deal with the evolving nature of temporal data and scarcity of annota-
tions when new problems occur. As a step towards this goal, we present
FUSION (Few-shot UnSupervIsed cONtinual learning), a learning strat-
egy that enables a neural network to learn quickly and continually on
streams of unlabelled data and unbalanced tasks. The objective is to
maximise the knowledge extracted from the unlabelled data stream (un-
supervised), favor the forward transfer of previously learnt tasks and
features (continual) and exploit as much as possible the supervised in-
formation when available (few-shot). The core of FUSION is MEML -
Meta-Example Meta-Learning – that consolidates a meta-representation
through the use of a self-attention mechanism during a single inner loop
in the meta-optimisation stage. To further enhance the capability of
MEML to generalise from few data, we extend it by creating various
augmented surrogate tasks and by optimising over the hardest. An ex-
tensive experimental evaluation on public computer vision benchmarks
shows that FUSION outperforms existing state-of-the-art solutions both
in the few-shot and continual learning experimental settings. 1

Keywords: Continual Learning · Meta-Learning · Representation Learn-
ing.

1 Introduction

Human-like learning has always been a challenge for deep learning algorithms.
Neural networks work differently than the human brain, needing a large num-
ber of independent and identically distributed (iid) labelled data to face up the
training process. Due to their weakness to directly deal with few, online, and
unlabelled data, the majority of deep learning approaches are bounded to spe-
cific applications. Continual learning, meta-learning, and unsupervised learning
try to overcome these limitations by proposing targeted solutions. In particular,
continual learning has been largely investigated in the last few years to solve the

1 The code is available at https://github.com/alessiabertugli/FUSION
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Fig. 1: Overview of FUSION learning strategy. Further details in Section 3.

catastrophic forgetting problem that affects neural networks trained on incre-
mental data. When data are available as a stream of tasks, neural networks tend
to focus on the most recent, overwriting their past knowledge and consequently
causing forgetting. Several methods [14,18,7,21,26,20] have been proposed to
solve this issue involving a memory buffer, network expansion, selective reg-
ularisation, and distillation. Some works take advantage of the meta-learning
abilities of generalisation on different tasks and rapid learning on new ones to
deal with continual learning problems, giving life to meta-continual learning [13]
and continual-meta learning [4]. Due to the complex nature of the problem, the
proposed approaches generally involve supervised or reinforcement learning set-
tings. Moreover, the majority of continual learning solutions assume that data
are perfectly balanced or equally distributed among classes. This problem is non-
trivial for continual learning since specific solutions have to be found to preserve
a balanced memory in presence of an imbalanced stream of data.

In this paper, we introduce FUSION (standing for Few-shot UnSupervIsed
cONtinual learning), a new learning strategy for unsupervised meta-continual
learning that can learn from small datasets and does not require the underly-
ing tasks to be balanced. As reported in Figure 1, FUSION is composed of four
phases: embedding learning, clustering, meta-continual train and meta-continual
test. In the embedding learning phase, a neural network is trained to generate
embeddings that facilitate the subsequent separation. Then clustering is applied
on these embeddings, and each cluster corresponds to a task (i.e., a class) for
the following phase. As clustering is not constrained to produce balanced clus-
ters, the resulting tasks are also unbalanced. For the meta-continual training
phase, we introduce a novel meta-learning based algorithm that can effectively
cope with unbalanced tasks. The algorithm, called MEML (for Meta-Example
Meta-Learning), relies on a single inner loop update performed on an aggregated
attentive representation, that we call meta-example. In so doing, MEML learns
meta-representations that enrich the general features provided by large clusters



Generalising via Meta-Examples for Continual Learning in the Wild 3

with the variability given by small clusters, while existing approaches simply
discard small clusters [12]. Finally, on meta-continual test, the learned represen-
tation is frozen and novel tasks are learned acting only on classifications layers.
We perform extensive experiments on two few-shot datasets, Omniglot [16] and
Mini-ImageNet [8] and on two continual learning benchmarks, Sequential MNIST
and Sequential CIFAR-10 [15] widely outperforming state-of-the-art methods.
Contributions. We remark our contributions as follows:
– We propose FUSION, a novel strategy dealing with unbalanced tasks in an

unsupervised meta-continual learning scenario;
– As part of FUSION, we introduce MEML, a new meta-learning based al-

gorithm that can effectively cope with unbalanced tasks, and MEMLX, a
variant of MEML exploiting an original augmentation technique to increase
robustness, especially when dealing with undersized datasets;

– We test FUSION on an unsupervised meta-continual learning setting reach-
ing superior performance compared to state-of-the-art approaches. Ablations
studies empirically show that the imbalance in the task dimension does not
negatively affect the performance, and no balancing technique is required;

– We additionally test MEML, our meta-continual learning method, in stan-
dard supervised continual learning, achieving better results with respect to
specifically tailored solutions.

2 Related Work

2.1 Continual Learning

Background. Continual learning is one of the most challenging problems in
deep learning research since neural networks are heavily affected by catastrophic
forgetting when data are available as a stream of tasks. In more detail, neural
networks tend to focus on the most recent tasks, overwriting their past knowledge
and consequently causing forgetting. As theoretically exposed in [25], there are
three main evaluation protocols for comparing methods’ performance: Task-IL,
Domain-IL and Class-IL. Task-IL is the easiest scenario since task-identity is
always provided, even at test-time; Domain-IL only needs to solve the current
task, no task-identity is necessary; Class-IL instead intends to solve all tasks
seen so far with no task identity given. Much of the recent literature [13,1,3] is
directed towards methods that do not require the detection of the task change.
Our proposed approach follows this line of research, using a rehearsal technique
to avoid forgetting without the need for task identity and targeted solutions to
find them. Finally, continual learning methods can be divided into three main
categories.
Architectural strategies. They are based on specific architectures designed to
mitigate catastrophic forgetting [23]. Progressive Neural Networks (PNN) [23]
are based on parameter-freezing and network expansion, but suffers from a ca-
pacity problem because it implies adding a column to the neural network at
each new task, so growing up the number of tasks training the neural network
becomes more difficult due to exploding/vanishing gradient problems.
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Regularisation strategies. They rely on putting regularisation terms into the
loss function, promoting selective consolidation of important past weights [14,26].
Elastic Weights Consolidation (EWC) [14] uses a regularization term to control
catastrophic forgetting by selectively constraining the model weights that are
important for previous tasks through the computation of Fisher information
matrix of weights importance. Synaptic Intelligence (SI) [26] can be considered
as a variant of EWC, that computes weights importance online during SGD.
Rehearsal strategies. Rehearsal strategies focus on retaining part of past in-
formation and periodically replaying it to the model to strengthen connections
for memories, involving meta-learning [21], combination of rehearsal and regu-
larisation strategies [18,7], knowledge distillation [17] and generative replay [24].
Experience Replay [22] stores a limited amount of information of the past and
then adds a further term to the loss that takes into account loss minimization on
the buffer data, besides the current data. Meta-Experience Replay (MER) [21]
induces a meta-learning update in the process and integrate an experience re-
play buffer, updated with reservoir sampling, facilitating continual learning while
maximizing transfer and minimizing interference. Gradient Episodic Memory
(GEM) [18] and its more efficient version A-GEM [7] is a mix of regularization
and rehearsal strategies.

2.2 Meta-Learning

Background. Meta-learning, or learning to learn, aims to improve the neu-
ral networks ability to rapidly learn new tasks with few training samples. The
tasks can comprise a variety of problems, such as classification, regression and
reinforcement learning, but differently from Continual learning, training doesn’t
occur with incremental tasks and models are evaluated on new unseen tasks.
The majority of meta-learning approaches proposed in the literature are based
on Model-Agnostic Meta-Learning (MAML) [9].
MAML. By learning an effective parameter initialisation, with a double loop
procedure, MAML limits the number of stochastic gradient descent steps re-
quired to learn new tasks, speeding up the adaptation process performed at
meta-test time. The double loop procedure acts as follow: an inner loop that
updates the parameters of the neural network to learn task-specific features and
an outer loop generalizing to all tasks. The success of MAML is due to its model-
agnostic nature and the limited number of parameters it requires. Nevertheless,
it suffers from some limitations related to the amount of computational power
it needs during the training phase. To solve this issue, the authors propose a
further version, First Order MAML (FOMAML) that focus on removing the
second derivative causing the need for large computational resources. ANIL [19]
investigates the success of MAML finding that it mostly depends on feature
reuse rather than rapid learning. This way, the authors propose a slim version
of MAML, removing almost all inner loops except for task-specific heads.
Unsupervised meta-learning. Although MAML is suitable for many learn-
ing settings, few works investigate the unsupervised meta-learning problem.
CACTUs [12] proposes a new unsupervised meta-learning method relying on
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clustering feature embeddings through the k-means algorithm and then builds
tasks upon the predicted classes. The authors employ representation learning
strategies to learn compliant embeddings during a pre-training phase. From
these learned embeddings, a k-means algorithm clusters the features and assigns
pseudo-labels to all samples. Finally, the tasks are built on these pseudo-labels.

2.3 Meta-Learning for Continual Learning

Meta-learning has been extensively merged with continual learning for differ-
ent purposes. We highlight the existence of two strands of literature [4]: meta-
continual learning, that aims to incremental task learning, and continual-meta
learning that instead focuses on fast remembering. To clarify the difference be-
tween these two branches, we adopt the standard notation that denotes S as the
support set and Q as the query set. The sets are generated from the data distri-
bution of the context (task) C and respectively contain the samples employed in
the inner and outer loops (e.g. in a classification scenario, both S and Q contain
different samples of the same classes included in the current task). We define the
meta-learning algorithm as MLφ and the continual learning one with CLφ.
Continual-meta learning. Continual-meta learning mainly focuses on making
meta-learning algorithms online, to rapidly remember meta-test tasks. In detail,
it considers a sequence of tasks S1:T , Q1:T , where the inner loop computation
is performed through fθt = MLφ(St−1), while the learning of φ (outer loop) is
obtained using gradient descent over the lt = L(fθt, St). Since local stationarity
is assumed, the model fails on its first prediction when the task switches. At the
end of the sequence,MLφ recomputes the inner loops over the previous supports
and evaluate on the query set Q1:T .
Meta-continual learning.More relevant to our work are meta-continual learn-
ing algorithms [13,1], which use meta-learning rules to “learn how not to forget".
Resembling the notation proposed in [4], given K sequences sampled i.i.d. from
a distribution of contexts C, Si,1:T , Qi,1:T ∼ Xi,1:T |Ci,1:T , CLφ is learned with
∇φ

∑
t L(CLφ(St), Qt) with i < N < K and evaluated on the left out sets∑K

i=N L(CLφ(St), Qt). In particular, OML [13] and its variant ANML [1] favour
sparse representations by employing a trajectory-input update in the inner loop
and a random-input update in the outer one. The algorithm jointly trains a rep-
resentation learning network (RLN) and a prediction learning network (PLN)
during the meta-training phase. Then, at meta-test time, the RLN layers are
frozen and only the PLN is updated. ANML replaces the RLN network with a
neuro-modulatory network that acts as a gating mechanism on the PLN activa-
tions following the idea of conditional computation.

3 Few-Shot Unsupervised Continual Learning

Meta-continual learning [13,1] deals with the problem of allowing neural net-
works to learn from a stream of few, non i.i.d. examples and quickly adapt to
new tasks. It can be considered as a few-shot learning problem, where tasks are
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incrementally seen, one class after the others. Formally, we define a distribution
of training classification tasks p(T ) = T0, T1, ..., Ti, .... During meta-continual
training, the neural network sees all samples belonging to T0 first, then all sam-
ples belonging to T1, and so on, without shuffling elements across tasks as in
traditional deep learning settings. The network should be able to learn a general
representation, capturing important features across tasks, without catastrophic
forgetting, meaning to overfit on the last seen tasks. During the meta-test phase,
a different distribution of unknown tasks p(T ′) = T ′0 , T ′1 , ..., T ′i , ... is presented
to the neural network again in an incremental way. The neural network, starting
from the learned representation, should quickly learn to solve the novel tasks. In
this paper, differently from standard meta-continual learning, we focus on the
case where no training labels are available and tasks have to be constructed in
an unsupervised way, using pseudo-labels instead of the real labels in the meta-
continual problem. To investigate how neural networks learn when dealing with
a real distribution and flow of unbalanced tasks, we propose FUSION, a novel
learning strategy composed of four phases.

3.1 Embedding Learning

Rather than requiring the task construction phase to directly work on high di-
mensional raw data, an embedding learning network, which is different from
the one employed in the following phases, is used to determine an embed-
ding that facilitates the subsequent task construction. Through an unsupervised
training [5,2], the embedding learning network produces an embedding vector
set Z = Z0, Z1, ..., ZN , starting from the N data points in the training set
D = X0, X1, ..., XN (see Figure 1.1). Embeddings can be learned in different
ways, through generative models [2] or self-supervised learning [5]. In Figure 1.1
an illustration of an unsupervised embedding learning based on self-supervised
learning is shown.

3.2 Clustering

As done in [12], the task construction phase exploits the k-means algorithm
over suitable embeddings obtained with the embedding learning phase previ-
ously described. This simple but effective method assigns the same pseudo-
label to all data points belonging to the same cluster. This way, a distribution
p(T ) = T0, T1, ..., Ti, ... of tasks is built from the generated clusters as reported
in Figure 1.2. Applying k-means over these embeddings leads to unbalanced
clusters, which determine unbalanced tasks. This is in contrast with typical
meta-learning and continual learning problems, where data are perfectly bal-
anced. To recover a balanced setting, in [12], the authors set a threshold on
the cluster dimension, discarding extra samples and smaller clusters. We believe
that these approaches are sub-optimal as they alter the data distribution. In an
unsupervised setting, where data points are grouped based on the similarity of
their features, variability is an essential factor. In a task imbalanced setting, the
obtained meta-representation is influenced by both small and large clusters.
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3.3 Meta-Continual Train

Motivation. The adopted training protocol is related to the way data are pro-
vided at meta-test train time. In that phase, the model receives as input a
stream of new unseen tasks, each with correlated samples; we do not assume
access to other classes (opposed to the training phase) and only the current one
is available. In this respect, since the network’s finetuning occur with this stream
of data, during training we reproduce a comparable scenario. In particular, we
need to design a training strategy that is sample efficient and directly optimize
for a proper initial weights configuration. These suitable weights allow the net-
work to work well on novel tasks after a few gradient steps using only a few
samples. In the context of meta-learning, MAML relies on a two-loop training
procedure performed on a batch of training tasks. The inner loop completes N
step of gradient updates on a portion of samples of the training tasks, while
the outer loop exploits the remaining ones to optimize for a quickly adaptable
representation (meta-objective). Recent investigations on this algorithm explain
that the real reason for MAML’s success resides in feature reuse instead of rapid
learning [19], proving that learning meaningful representations is a crucial factor.
Procedure. The created tasks are sampled one at a time Ti ∼ p(T ) for the
unsupervised meta-continual training phase as shown in Figure 1.3. The training
process happens in a class-incremental way - where one task corresponds to one
cluster - following a two-loop update procedure. The inner loop involves samples
belonging to the ongoing task, while the outer loop contains elements sampled
from both the current and other random clusters. In fact, during this stage,
the network may suffer from the catastrophic forgetting effect on the learned
representation if no technique is used to generalise or remember. To this end,
the query set, used to update parameters in the outer loop, have to be designed
to simulate an iid distribution, containing elements belonging to different tasks.
The unbalanced case takes two-third of the current cluster data for the inner
loop and adds one-third to a fixed number of random samples for the outer
loop. The balanced case - usually adopted with supervised data - instead takes
the same number of samples among tasks for both the inner and the outer
loop. To deal with the meta-continual train in FUSION (Figure 1.3), we propose
MEML, a meta-learning procedure based on the construction of a meta-example,
a prototype of the task obtained through self-attention. The whole architecture
is composed of a Feature Extraction Network (FEN), an aggregation module and
a CLassification Network (CLN). The FEN is updated only in the outer loop
(highlighted in blue in the figure), while frozen during the inner (grey). Both the
aggregation module and the CLN are renewed in the inner and outer loop.
MEML. We remove the need for several inner loops, maintaining a single in-
ner loop update through a mechanism for aggregating examples based on self-
attention. This way, we considerably reduce the training time and computational
resources needed for training the model and increases global performance. The
use of a meta-example instead of a trajectory of samples is particularly help-
ful in class-incremental continual learning to avoid catastrophic forgetting. In
fact, instead of sequentially processing multiple examples of the same class and
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updating the parameters at each one (or at each batch), the network does it
only once per class, reducing the forgetting effect. At each time-step, a task
Ti = (Scluster,Squery) is randomly sampled from the task distribution p(T ).
Scluster contains elements of the same cluster as indicated in equation 1, where
Ycluster = Y0 = ... = Yk is the cluster pseudo-label and K is the number of data
points in the cluster. Instead, Squery (equation 2) contains a variable number of
elements belonging to the current cluster and a fixed number of elements ran-
domly sampled from all other clusters, where Q is the total number of elements
in the query set.

Scluster = {(Xk, Yk)}Kk=0, (1) Squery = {(Xq, Yq)}Qq=0. (2)

Scluster is used for the inner loop update, while Squery is used to optimise
the meta-objective during the outer loop. All the elements belonging to Scluster
are processed by the FEN, parameterised by θ, computing the feature vectors
R0, R1, ..., RK in parallel for all task elements (see equation 3). The obtained
embeddings are refined in equation 4 with an attention function, parameterised
by ρ, that computes the attention coefficients ~a from the features vectors. Then,
the final aggregated representation vector RME (equation 5), for meta-example
representation, captures the most salient features.

R0:K = fθ(X0:K), (3) ~a = Softmax[fρ(R0:K)], (4) RME = ~aᵀR0:K . (5)

The single inner loop is performed on this meta-example, which adds up
the weighted-features contribution of each element of the current cluster. Then,
the cross-entropy loss L between the predicted label and the pseudo-label is
computed and both the classification network parameters W and the attention
parameters ρ are updated with a gradient descent step (as indicated in 6), where
ψ = {W,ρ} and α is the inner loop learning rate. Finally, to update the whole
network parameters φ = {θ,W, ρ}, and to ensure generalisation across tasks, the
outer loop loss is computed from Squery. The outer loop parameters are thus
updated as shown in equation 7 below, where β is the outer loop learning rate.

ψ ← ψ−α∇ψL(fψ(RME), Ycluster), (6) φ← φ− α∇φL(fφ(X0:Q), Y0:Q). (7)

Note that with the aggregation mechanism introduced by MEML, a single
inner loop is made regardless of the number of examples in the cluster, thus
eliminating the problem of unbalancing at the inner loop level.
MEMLX. Since the aim is to learn a representation that generalises to unseen
classes, we introduce an original augmentation technique inspired by [11]. The
idea is to generate multiple sets of augmented input data and retain the set with
maximal loss to be used as training data. Minimising the average risk of this
worst-case augmented data set enforces robustness and acts as a regularisation
against random perturbations, leading to a boost in the generalisation capability.
Starting from the previously defined Scluster and Squery we generate m sets of
augmented data:

{Sicluster, Siquery}mi=1 ← A(Scluster), A(Squery), (8)
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where A is an augmentation strategy that executes a combination of different
data transformations for each i ∈ m. Hence, for each of these newly generated
sets of data we perform an evaluation forward pass through the network and
compute the loss, retaining the Siccluster and Siqquery sets giving the highest loss
to be used as input to MEML for the training step:

ic = argmaxi∈1,..mL(f(Sicluster), Ycluster),
iq = argmaxi∈1,..mL(f(Siquery), Y0:Q).

(9)

Three different augmented batches are created starting from the input batch,
each forwarded through the network producing logits. The Cross-Entropy losses
between those latter and the targets are computed, keeping the augmented batch
corresponding to the highest value. In detail, we adopt the following augmenta-
tion: vertical flip, horizontal flip for batch 1; colour jitter (brightness, contrast,
saturation, hue) for batch 2; random affine, random crop for batch 3.

3.4 Meta-Continual Test

At meta-continual test time, novel and unseen tasks T ′i ∼ p(T ′) from the test set
are provided to the network, as illustrated in Figure 1.4. Here p(T ′) represents
the distribution of supervised test tasks and T ′i corresponds to a sampled test
class. The representation learned during meta-train remains frozen, and only the
prediction layers are fine-tuned. The test set is composed of novel tasks, that can
be part of the same distribution (e.g. distinct classes within the same dataset)
or even belong to a different distribution (e.g. training and testing performed on
different datasets).

4 Experiments

4.1 Few-Shot Unsupervised Continual Learning

Datasets.We employ Omniglot and Mini-ImageNet, two datasets typically used
for few-shot learning evaluation. The Omniglot dataset contains 1623 characters
from 50 different alphabets with 20 greyscale image samples per class. We use
the same splits as [12], using 1100 characters for meta-training, 100 for meta-
validation, and 423 for meta-testing. The Mini-ImageNet dataset consists of 100
classes of realistic RGB images with 600 examples per class. We use 64 classes
for meta-training, 16 for meta-validation and 20 for meta-test.
Architecture. Following [13], we use for the FEN a six-layer CNN interleaved
by ReLU activations with 256 filters for Omniglot and 64 for Mini-ImageNet.
All convolutional layers have a 3× 3 kernel (for Omniglot, the last one is a 1× 1
kernel) and are followed by two linear layers constituting the CLN. The attention
mechanism is implemented with two additional linear layers interleaved by a
Tanh function, followed by a Softmax and a sum to compute attention coefficients
and aggregate features. We use the same architecture for competitive methods.
We do not apply the Softmax activation and the final aggregation but we keep
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Omniglot
Algorithm/Tasks 10 50 75 100 150 200

Oracle OML [13] 88.4 74.0 69.8 57.4 51.6 47.9
Oracle ANML [1] 86.9 63.0 60.3 56.5 45.4 37.1
Oracle MEML (Ours) 94.2 81.3 80.0 76.5 68.8 66.6
Oracle MEMLX (Ours) 94.2 75.2 75.0 67.2 58.9 55.4

OML 74.6 32.5 30.6 25.8 19.9 16.1
ANML 72.2 46.5 43.7 37.9 26.5 20.8
MEML (Ours) 89.0 48.9 46.6 37.0 29.3 25.9
MEMLX (Ours) 82.8 50.6 49.8 42.0 34.9 31.0

Table 1: Meta-test test accuracy on Om-
niglot.

Mini-ImageNet
Algorithm/Tasks 2 4 6 8 10

Oracle OML [13] 50.0 31.9 27.0 16.7 13.9
Oracle MEML (Ours) 66.0 33.0 28.0 29.1 21.1
Oracle MEMLX (Ours) 74.0 60.0 36.7 51.3 40.1

OML 49.3 41.0 19.2 18.2 12.0
MEML (Ours) 70.0 48.4 36.0 34.0 21.6
MEMLX (Ours) 72.0 45.0 50.0 45.6 29.9

Table 2: Meta-test test accuracy
on Mini-ImageNet.

the added linear layers, obtaining the same number of parameters. The choice in
using two simple linear layers as attention mechanism is made specifically since
the aim of the paper is to highlight how this kind of mechanism can enhance
performance and significantly decrease both training time and memory usage.
Training. For Omniglot, we train the model for 60000 steps while for Mini-
ImageNet for 200000, with meta-batch size equals to 1. The outer loop learning
rate is set to 1e−4 while the inner loop learning rate is set to 0.1 for Omniglot and
0.01 for Mini-ImageNet, with Adam optimiser. As embedding learning networks,
we employ Deep Cluster [5] for Mini-ImageNet and ACAI [2] for Omniglot.
Since Mini-ImageNet contains 600 examples per class, after clustering, we sample
examples between 10 and 30, proportionally to the cluster dimension to keep
the imbalance between tasks. We report the test accuracy on a different number
of unseen classes, which induces increasingly complex problems as the number
increase. Following the protocol employed in [13], all results are obtained through
the mean of 50 runs for Omniglot and 5 for Mini-ImageNet.
Performance Analysis. In Table 1 and Table 2, we report results respectively
on Omniglot and Mini-ImageNet, comparing our model with competing meth-
ods. To see how the performance of MEML within our FUSION is far from
those achievable with the real labels, we also report for all datasets the accuracy
reached in a supervised case (oracles). We define Oracle OML [13] and Oracle
ANML [1] 2 as supervised competitors, and Oracle MEML the supervised version
of our model. MEML outperforms OML on Omniglot and Mini-ImageNet and
ANML on Omniglot, suggesting that the meta-examples strategy is beneficial
on both FUSION and fully supervised cases. MEMLX, the advanced version ex-
ploiting a specific augmentation technique is able to improve the MEML results
in almost all experiments. In particular, MEMLX outperforms MEML on both
Omniglot and Mini-ImageNet in FUSION and even in the fully supervised case
on Mini-ImageNet. The only experiment in which MEML outperforms MEMLX
2 Our results on Oracle ANML are different from the ones presented in the original
paper due to a different use of data. To make a fair comparison we use 10 samples for
the support set and 15 for the query set for all models, while in the original ANML
paper the authors use 20 samples for the support set and 64 for the query set. We do
not test ANML on Mini-ImageNet due to the high computational resources needed.
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Omniglot Mini-ImageNet

Algorithm Time GPU Time GPU

OML [13] 1h 32m 2.239 GB 7h 44m 3.111 GB
MEML 47m 0.743 GB 3h 58m 1.147 GB
MEMLX 1h 1m 0.737 GB 4h 52m 1.149 GB

Table 3: Training time and GPU usage of
MEML and MEMLX compared to OML
on Omniglot and Mini-ImageNet.
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Fig. 2: Training time compari-
son with respect to the accu-
racy between the most impor-
tant state-of-the-art continual
learning methods.

is on Omniglot, in the supervised case. In our opinion, the reason is to be found in
the type of dataset. Omniglot is a dataset made up of 1100 classes and therefore
characters are sometimes very similar to each other. Precisely for this reason,
applying augmentation can lead the network to confuse augmented characters
for a class with characters belonging to other classes. In the unsupervised case,
the clusters are grouped by features, which should better separate the data from
a visual point of view, thus favouring our augmentation technique.
Time and Computation Analysis. In Table 3, we compare training time and
computational resources usage between OML, MEML and MEMLX on Omniglot
and Mini-ImageNet. We measure the time to complete all training steps and the
computational resources in gigabytes occupied on the GPU. Both datasets con-
firm that our methods, adopting a single inner update, train considerably faster
and uses approximately one-third of the GPU resources with respect to OML.
MEMLX undergoes minimal slowdown, despite the use of our augmentation
strategy. To a fair comparison, all tests are performed on the same hardware
equipped with an NVIDIA Titan X GPU.

4.2 Supervised Continual Learning

To further prove the effectiveness of our meta-example strategy, we put MEML
and MEMLX in standard supervised continual learning and show its performance
compared to state-of-the-art continual learning approaches.
Datasets. We experiment on Sequential MNIST and Sequential CIFAR-10. In
detail, the MNIST classification benchmark and the CIFAR-10 dataset [15] are
split into 5 subsets of consecutive classes composed of 2 classes each.
Architecture. For tests on Sequential MNIST, we employ as architecture a
fully-connected network with two hidden layers, interleaving with ReLU activa-
tion as proposed in [18], [21]. For tests on CIFAR-10, we rely on ResNet18 [20].
Training.We train all models in a class-incremental way (Class-IL), the hardest
scenario among the three described in [25], which does not provide task identities.
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We train for 1 epoch for Sequential MNIST and 50 epochs for Sequential CIFAR-
10. SGD optimiser is used for all methods for a fair comparison. A grid search
of hyperparameters is performed on all models taking the best ones for each.
For rehearsal-based strategies, we report results on buffer size 200, 500 and
5120. The standard continual learning test protocol is used for all methods,
where the accuracy is measured on test data composed of unseen samples of
all training tasks at the end of the whole training process. We adapt our meta-
example strategy to a double class per task making a meta-example for each class
corresponding to two inner loops. The query set used within FUSION mirror the
memory buffer in continual learning. The memory buffer contains elements from
previously seen tasks, while the query set samples elements from all training
tasks. For MEMLX, we apply our augmentation technique on both current task
data and buffer data.
Performance Analysis. In Table 4 we show accuracy results on Sequential
MNIST and Sequential CIFAR-10 3 respectively. MEML and MEMLX consis-
tently overcome all state-of-the-art methods on both datasets. We denote that
MEML is significantly different from MER, processing one sample at a time and
making an inner loop on all samples. This greatly increases the training time,
making this strategy ineffective for datasets such as CIFAR-10. On the contrary,
MEML makes as many inner loops as there are classes per task and finally a
single outer loop on both task data and buffer data. This way, MEML training
time is comparable to the other rehearsal strategy, but with the generalisation
benefit given from meta-learning. To further confirm the beneficial role of the
meta-learning procedure, we observe that EXP REPLAY, using only one loop,
reaches lower performance. In Table 5 we report results on additional continual
learning metrics: forward transfer, backward transfer and forgetting. In particu-
lar, forward transfer (FWT) measure the capability of the model to improve
on unseen tasks with respect to a random-initialized network. It is computed
making the difference between the accuracy before the training on each task and
the accuracy of a random-initialized network, averaged on all tasks. Backward
transfer [18] (BWT) is computed making the difference between the current
accuracy and its best value for each task, making the assumption that the high-
est value of the accuracy on a task is the accuracy at the end of it. Finally,
forgetting is similar to BTW, without the letter assumption. We compare the
best performer algorithms on both Sequential MNIST and Sequential CIFAR.
MEML and MEMLX outperform all the other methods on BWT and forgetting,
while little lower performance are reached on FWT. Since results are consistent
for all buffer dimensions, we report results on buffer 5120.
Time Analysis. We make a training time analysis (see Figure 2) between the
most relevant state-of-the-art continual learning strategy on Sequential MNIST.
We measure the training time in seconds since the last task. We find that MEML
and MEMLX are slower only compared to EXP REPLAY due to the meta-
learning strategy, but they are faster with respect to both GEM and MER,
reaching higher accuracy.
3 Due to high training time we do not report MER results on Sequential CIFAR-10.
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Sequential MNIST Sequential CIFAR-10
Algorithm/Buffer None 200 500 5120 None 200 500 5120

LWF [17] 19.62 - - - 19.60 - - -
EWC [14] 20.07 - - - 19.52 - - -
SI [26] 20.28 - - - 19.49 - - -
SAM [10] 62.63 - - - - - - -
iCARL [20] - - - - - 51.04 49.08 53.77
HAL [6] - 79.80 86.80 88.68 - 32.72 46.24 66.26
GEM [18] - 78.85 85.86 95.72 - 28.91 23.81 25.26
EXP REPLAY [22] - 78.23 88.67 94.52 - 47.88 59.01 83.65
MER [21] - 79.90 88.38 94.58 - - - -
MEML (Ours) - 84.63 90.85 96.04 - 54.33 66.41 83.91
MEMLX (Ours) - 89.94 92.11 94.88 - 51.98 63.25 83.95

Table 4: MEML and MEMLX compared
to state-of-the-art continual learning
methods on Sequential MNIST and Se-
quential CIFAR-10 in class-incremental
learning.

Sequential MNIST Sequential CIFAR-10
Algorithm/Metric FWT BWT Forgetting FWT BWT Forgetting

HAL [6] -10.06 -6.55 6.55 -10.34 -27.19 27.19
GEM [18] -9.51 -4.14 4.30 -9.18 -75.27 75.27
EXP REPLAY [22] -10.97 -6.07 6.08 -8.45 -13.99 13.99
MER [21] -10.50 -3.22 3.22 - - -
MEML (Ours) -9.74 -3.12 3.12 -12.68 -10.97 10.97
MEMLX (Ours) -9.74 -1.72 1.92 -12.74 -12.42 12.42

Table 5: Forward transfer, backward
transfer and forgetting comparison
on Sequential MNIST and Sequen-
tial CIFAR-10 in class-incremental
learning.
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Fig. 3: The capability of meta-
example on Omniglot.
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Fig. 4: Unbalanced vs. balanced
settings on Omniglot.

Meta-Example Single Update vs. Multiple Updates. To prove the effec-
tiveness of our method - MEML - based on meta-examples, we compare it with:
OML [13] - performing multiple updates, one for each element of the cluster;
OML with a single update - adopting a single update over a randomly sampled
data point from each task; MEML with mean ME - a version exploiting the mean
between the feature vector computed by the FEN. In Figure 3, we show that
MEML and MEMLX consistently outperform all the other baselines on Om-
niglot. OML with a single update gives analogous performance to the multiple
updates one, confirming the idea that the strength of generalisation relies on the
feature reuse. Also, the MEML with mean ME has performance comparable with
the multiple and single update ones, proving the effectiveness of our aggregation
mechanism to determine a suitable and general embedding vector for the CLN.

Balanced vs. Unbalanced Tasks. To justify the use of unbalanced tasks and
show that allowing unbalanced clusters is more beneficial than enforcing fewer
balanced ones, we present some comparisons in Figure 4. First of all, we introduce
a baseline in which the number of clusters is set to the true number of classes,
removing from the task distribution the ones containing less thanN elements and
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sampling N elements from the bigger ones. We thus obtain a perfectly balanced
training set at the cost of less variety within the clusters; however, this leads to
poor performance as small clusters are never represented. To verify if maintaining
variety and balancing data can lead to better performance, we try two balancing
strategies: augmentation, at data-level, and balancing parameter, at model-level.
For the first one, we keep all clusters, sampling N elements from the bigger and
using data augmentation for the smaller to reach N elements. At model-level,
we multiply the loss term by a balancing parameter to weigh the update for
each task based on cluster length. These tests result in lower performance with
respect to MEML and MEMLX, suggesting that the only thing that matters is
cluster variety and unbalancing does not negatively affect the training.

5 Conclusion and Future Work

We tackle a novel problem concerning few-shot unsupervised continual learning,
proposing an effective learning strategy based on the construction of unbal-
anced tasks and meta-examples. With an unconstrained clustering approach, we
find that no balancing technique is necessary for an unsupervised scenario that
needs to generalise to new tasks. Our model, exploiting a single inner update
through meta-examples, increase performance as the most relevant features are
selected. In addition, an original augmentation technique is applied to reinforce
its strength. We show that MEML and MEMLX not only outperform the other
baselines within FUSION but also exceed state-of-the-art approaches in class-
incremental continual learning. Interesting future research is to investigate a
more effective rehearsal strategy that further improves performance even when
facing Out-of-Distribution data and domain shift.
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