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A B S T R A C T

Study region: The region of interest is the South-Tyrol in the southeastern Alps, Italy. A com-
parison of meteorological forcing is performed with reference to this region while hydrological
simulations are conducted in the Passirio river basin.

Study focus: The objective of this work is to evaluate the suitability of ERA5-Land reanalysis
product as a reference dataset for hydrological modelling in topographically complex Alpine
regions. ERA5-Land is compared with observational gridded dataset, obtained by means of the
Kriging interpolation, available at two contrasting spatial resolutions a coarse grid size of 11 × 8
kilometres and a high-resolution grid size 1 × 1 kilometres. The hydrological coherence of
the three datasets (ERA5-Land and the two observational datasets) with observed streamflow
time series is then assessed with refer the Passirio/Passer river basin and to its nested and
snow-dominated sub-catchment Plan/Pfelders.

New hydrological insights for the region: The study assesses ERA5-Land’s suitability for hydrolog-
ical simulations in the South-Tyrol region by comparing streamflow outcomes. At the annual
scale, an overestimation of precipitation of about 40mm/month and a temperature underes-
timation of about 2.1 ◦C is reported. These discrepancies influence hydrological simulations,
resulting in an overestimation of both streamflow and snow water equivalent. It is thus crucial
to consider the limitations of ERA5-Land when using it as forcing for hydrological application
in watersheds characterized by complex terrains, such as Alpine region.

1. Introduction

Hydrological models conceptualize complex natural processes related to the water cycle in a broad range of applications such
as flood risk assessment (e.g. Apel et al., 2004; Barendrecht et al., 2017), hydropower production (e.g. Kouadio et al., 2022;
Pandey et al., 2015; Avesani et al., 2021) and water management (e.g., Devia et al., 2015; Sood and Smakhtin, 2015). However,
the reliability of hydrological simulations is strictly dependent on the correct spatial and temporal representation of the input
meteorological forcing (Bisselink et al., 2016; Asong et al., 2020) aiming to properly reproduce the relevant hydrological processes
over high-resolved domains and prolonged time windows (Ly et al., 2013; Arsenault and Brissette, 2014).
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Nowadays, numerous gridded meteorological datasets are available, each one characterized by different spatio-temporal
esolution and accuracy, with the latter being largely dependent on the type and amount of information used to obtain the
roduct (e.g., Prein and Gobiet, 2017). Uncertainty stemming from the spatial distribution of the meteorological forcing propagates
o hydrological modelling thus affecting the proper representation of hydrological variables (e.g., snow water equivalent and soil
ater content) (Maina et al., 2020; Shuai et al., 2022). Similarly, the temporal resolution of meteorological forcing exerts a strong

ontrol on the runoff generation and streamflow aggregation process. For example, streamflow modelling with high temporal
esolution has been recognized as a key factor for flood forecasting (Wetterhall et al., 2011; Ficchì et al., 2016), in eco-hydrological
tudies (Woelber et al., 2018), and for the proper management of hydropower systems at sub-daily time scales (Xu and Liu, 2021;
vesani et al., 2022).

The control exerted by spatio-temporal resolution of gridded meteorological datasets on hydrological simulation soars in the
lpine context. Alpine Region is indeed characterized by heterogeneous landscapes and areas with highly variable topography,
hich may result in microclimatic variations (Tuo et al., 2016; Melsen et al., 2016). Local variations of both precipitation and

emperature indeed control the snow accumulation and melting processes and in turn streamflow response, particularly in small
eadwater catchments (Khan et al., 2016; Ruelland, 2020). In this case, the hourly temporal resolution of meteorological forcing is
hus mandatory to correctly simulate the diurnal snowmelt, which ensures regular streamflow supply to hydropower plants (Mahmud
t al., 2019; Galletti et al., 2021).

So far, in situ measurements from meteorological stations have been the main provider of observational data for hydrological
pplications (Citterio et al., 2015). These are, however, not uniformly distributed in space, and data records are often inhomogeneous
nd limited in time (Hunziker et al., 2017). Meteorological stations are indeed usually deployed at low elevations to ease
aintenance works and to guarantee optimal operational range (Hofstra et al., 2010). Furthermore, and despite the utmost

mportance of observational data for hydrological applications, a net decline in the number of meteorological stations was observed
orldwide since the beginning of the 21st century due to installation and maintenance costs (Menne et al., 2018). Issues which are
lso present in the Alpine Region (Mallucci et al., 2019).

To compensate for the decreasing trend in the number of meteorological stations, interpolated datasets of precipitation and
emperature are now routinely used. They allow to generate gridded information over continuous domains though the accuracy
f the estimation depends strongly on network spatio-temporal coverage as well as on the type of interpolation algorithms
dopted (Lespinas et al., 2015; Beck et al., 2020).

Alternatively, climate reanalyses are another type of product that has recently gained attention for obtaining gridded meteorolog-
cal datasets (Qiaohong et al., 2017; Tetzner et al., 2019; Pelosi et al., 2020; Hafizi and Sorman, 2022). Those consist in retrospective
umerical meteorological simulations of a past period combined with data assimilation procedures based on ground and satellite
nformation. Differently from the interpolation method, the spatial and temporal structures of meteorological variables such as
emperature and precipitation are reproduced on a physical and dynamical basis (Parker, 2016), which are consistent in space and
ime and are extended over long periods. Reanalyses could therefore be a useful product in areas where surface measurements are
oor and unevenly distributed (Tarek et al., 2020; Essou et al., 2017; Muñoz Sabater et al., 2021). These products are routinely
sed as initial conditions for the generation of reforecasts products at the global scale (Hamill and Whitaker, 2006; Weerts et al.,
011), as reference datasets for the validation of short-term and seasonal forecast models (i.e., Crespi et al. (2021b)) and they are
sed as boundary conditions in climate model simulations (e.g., Xue et al. (2014)).

Several studies assessed the accuracy of reanalyses products in different regions by performing a direct comparison with
bservational datasets of precipitation or temperature. Illustrative examples are the works of Zandler et al. (2020), Hassler and
auer (2021) and Tapiador et al. (2017) in the case of precipitation, Simmons et al. (2017) and Mistry et al. (2022) for temperature.
ll these studies concur that reanalysis products exhibit notable limitations, characterized not only by well-known biases due to
odelling accuracy (mainly due to their typically low spatial resolution and to the poor representation of convection processes) but

lso by biases specific to the region of interest.
With reference to the Alpine Region, a limited number of studies investigated the accuracy and reliability of reanalysis

roducts. Prömmel et al. (2010) and Scherrer (2020) demonstrated the superior performance of the ERA reanalysis temperature
f compared with high-resolution regional climate simulations and regional reanalysis products (i.e. HARMONIE, MESCAN-SURFEX
nd COSMO-REA6). Regarding precipitation, Isotta et al. (2015) observed that regional reanalyses overestimates mean precipitation
nd the frequency of wet days in the Alpine region when compared to high-resolution station-based interpolation datasets. Most
mportantly, and to the best of the authors’ knowledge, no studies have conducted an assessment of the suitability of these reanalysis
roducts for hydrological modelling purposes in the Alpine region.

In order to fill the aforementioned gap, we have selected the ERA5-Land reanalysis dataset (Copernicus Climate Change Service,
019) among other products (see National Center for Atmospheric Research, 2016, for an overview). On one hand, ERA5-Land
epresents the state-of-the-art global reanalysis dataset for land applications (Muñoz Sabater et al., 2021; Parker, 2016; Pelosi et al.,
020), and on the other is characterized by an higher spatial resolution compared to other products such as ERA5 (Hersbach et al.,
023) and the older ERA-Interim (Simmons et al., 2006), and thus making it more attractive for applications in areas characterized
y complex topography.

This work has thus the following two objectives: (i) an assessment of the temperature and precipitation biases of the ERA5-Land
roduct at the hourly resolution compared to a gridded observational dataset specifically developed for the study region; and (ii)
n assessment of the suitability of ERA5-Land product for hydrological modelling in small Alpine catchments. To this aim, the river
dige basin with outlet in Bronzolo (Italy, Southern Alps) is chosen as a case study, which is referred to as South-Tyrol, hereafter.
2

he region is characterized by an elevated number of meteorological stations, which allow for the elaboration of a reliable high
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resolved in space and time gridded dataset by using kriging with external drift algorithm based on observational data (Goovaerts,
1997). The suitability of ERA5-Land for hydrological application is evaluated in the Passirio/Passer (Passirio hereafter) catchment.
Passirio catchment exhibits indeed the typical features of alpine environments, including complex topography, high altitude, and
a snow-dominated hydrological regime (Bellin et al., 2016; Majone et al., 2016) and thus it can be considered as a proxy of the
typical hydrological response of the snow-dominated catchments located in the entire South-Tyrol (Nicòtina et al., 2008; Stergiadi
et al., 2020).

The work objectives are pursued by developing an hourly gridded observational dataset of precipitation and temperature with a
patial resolution of 1 kilometre. Afterwards, the observational dataset is upscaled to the spatial resolution of ERA5-Land for a fair
omparison with the reanalysis dataset as well as to evaluate the sensitivity of meteorological-forcing resolution on hydrological
imulations in a snow-dominated alpine catchment.

The suitability of the various considered datasets for hydrological modelling is evaluated by adopting the recently introduced
ydrological Coherence Test (HyCoT) (Laiti et al., 2018) method, which provides a framework for excluding meteorological datasets
ot coherent with streamflow observations as a function of the modelling goal at hand. In particular, we analysed the hydrological
erformances of three datasets: ERA5-Land, the gridded observational data produced by kriging evaluated at the original resolution
f 1 km, and at the same coarse scale of ERA5-Land. It is worth mentioning that the hourly dataset at 1 km spatial resolution obtained
y kriging is novel for the analysed region, and it also represents a valuable benchmark for future hydrological applications and
nalysis in this region.

The article is organized as follows. Section 2 describes the case study, while Section 3 introduces both the different types of
ata used and the methods, including the kriging algorithm, the hydrological model, the hydrological coherence procedure and
he experimental design of the simulations. Section 4 presents the results of the meteorological comparison and of the hydrological
imulations. Section 5 presents an extensive discussion about the performance of ERA5-Land in hydrological modelling, and finally
n Section 6 conclusive remarks are drawn.

. Case study

This work is carried out in the Autonomous Province of Bolzano/Bozen (South-Tyrol hereafter), an Italian province located in
he southeastern Alps, Italy (see Fig. 1). A complex mountainous topography characterizes the territory of the Province with deep
alleys and high mountain crests. Watercourses of the main valleys converge into the main river of the region, the Adige, which
ises at Resia/Reschen pass and ends its course after 409 km into the Adriatic sea at Rosolina a Mare (Chiogna et al., 2016). Adige
iver basin closed at Bronzolo/Branzoll (Bronzolo hereafter) gauging station has a contributing area of 6926 km2, accounting for
9% of the total contributing river basin area (Autorità di Bacino Nazionale del Fiume Adige, 2008). The climate of South-Tyrol is
ontinental with warm and wet summers and cold and dry winters as typical in the Alpine Region (Lutz et al., 2016; Diamantini
t al., 2018). Average annual precipitation during the period 2010–2019 is 941mm, while average monthly temperatures range from
he minimum of −4.02 ◦C in winter to the mean maximum of 15.03 ◦C in summer.

Hydrological analyses are carried out in the Passirio catchment, one of the main tributaries of the Adige river along its course in
he South-Tyrol (Stergiadi et al., 2020), with reference to the Merano/Meran (Merano hereafter) and Plan/Pfelders (Plan hereafter)
auging stations, respectively (see Fig. 1). The catchment closed at Merano has a drainage area of 414 km2 with elevation ranging
rom 365m a.m.s.l. to 3380m a.m.s.l.. The nested sub-catchment closed at the Plan gauging station has an area of 49 km2 and
igher elevation, which ranges between 1440m a.m.s.l. and 3380m a.m.s.l.. The mean annual precipitation in the Passirio catchment

during the period of interest is approximately 1150mm, and thus in line with the annual average precipitation of the entire South
yrol (Chiogna et al., 2016; Mallucci et al., 2019). The precipitation distribution follows the typical pattern observed across the
dige river basin (Laiti et al., 2018), with the majority of precipitation occurring in the summer and autumn seasons. The Passirio
as a typical snow-dominated hydrological regime with high flows during the melting season and in the autumn triggered by cyclonic
torms (Norbiato et al., 2009; Di Marco et al., 2021; Larsen et al., 2021). The Passirio catchment is known for its hydrological regime
hat primarily relies on quick subsurface flow and surface runoff generation (Stergiadi et al., 2020; Avesani et al., 2022).

. Data and methods

.1. Observational data

Hourly temperature and precipitation data were provided by the Meteorological Office of the Autonomous Province of
olzano/Bozen (Italy) (https://meteorological.provinz.bz.it/meteorological-stations-valley.asp). Specifically, temperature and pre-
ipitation time series were available at 177 and 129 stations, respectively (see Fig. 1), during the time window 2010–2019.

The distribution of the stations covers the entire area of interest with a mean horizontal distance among them of 2.9 km. The
86% of the ground stations are located under 2300m a.m.s.l. leaving the highest elevations less monitored as shown in Fig. 2.
t can also be noted a preponderance of temperature stations compared to precipitation stations for high altitudes, whereas the
ighest number of meteorological stations (22 out of 177 for temperature and 27 out of 129 for precipitation) is located at altitudes
etween 750m a.m.s.l. and 1000m a.m.s.l.. Changes in the number of meteorological stations with the elevation and their effect on
he hydrological simulations will be further discussed in Section 5.

Streamflow records during the period 2010–2019 were provided by the Hydrological Office of the Autonomous Province of
3

olzano/Bozen (Italy) (https://weather.provinz.bz.it/gauging-stations.asp) at the gauging stations of Merano and Plan in the Passirio

https://meteorological.provinz.bz.it/meteorological-stations-valley.asp
https://weather.provinz.bz.it/gauging-stations.asp
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Fig. 1. Map of the Adige river catchment with the outlet being located in Bronzolo (South-Tyrol). The maps also shows the Digital Elevation Model (DEM) of
the region, the river network, and the meteorological and stream gauging stations. The inset shows the Passirio catchment closed at Merano and the nested
sub-catchment of Plan.

Fig. 2. Distribution of ground stations per elevation band for temperature and precipitation in the South-Tyrol area. Each bin represents an elevation band
range of 250m, spanning from 0m a.m.s.l. to 3500m a.m.s.l..
4
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Table 1
Parameters of the exponential covariance model for hourly precipitation and temperature data
in the study region.
Variables Precipitation Temperature

𝜎2
𝑛 0.742mm2 6.492 °C2

𝜎2 2.882mm2 21.117 °C2

a 15 699m 104 126m

catchment. These are official measurements and are characterized by a limited number of missing data. Records at Merano are used
to calibrate the hydrological model and to evaluate the suitability of the different datasets adopted in this work. Data at Plan are
used to provide a spatial validation of the proposed framework in a nested sub-catchment, where the streamflow data are available
but not used in the parameter estimation phase (Di Marco et al., 2021). The mean metered streamflow at Merano gauging station
is 12.04m3∕s, with a minimum of 0.64m3∕s registered in March 2018 and a maximum of 119m3∕s in June 2014. The mean metered
streamflow at Plan sub-catchment closure is 2.25m3∕s, with a minimum value of 0.26m3∕s in March 2016 and a maximum of
19.85m3∕s in June 2016.

3.2. ERA5-Land data

Reanalyses data used in this work is the ERA5-Land product (Muñoz Sabater et al., 2021), which is the last generation reanalysis
from ECMWF recently released on Copernicus portal (Copernicus Climate Change Service, 2019). Data were retrieved for the period
2010–2019. It is generally considered a reference climate product for a wide range of applications including, for example, assessment
of crop-reference evapotranspiration (Pelosi et al., 2020), estimation of soil moisture (Madhavi et al., 2022) and hydrological
modelling at the global scale (Parker, 2016; Muñoz Sabater et al., 2021). The performances of the companion product ERA5 in
reproducing precipitation extremes over complex orography terrains have recently validated by Mastrantonas et al. (2022). ERA5-
Land provides, among many variables, hourly time series of temperature and precipitation with a 0.1◦ × 0.1◦ grid spacing horizontal
esolution. This resolution is achieved through numerical integration of the ECMWF land surface model driven by the downscaled
eteorological forcing from the ERA5 climate reanalysis, including an elevation correction for the thermodynamic near-surface

tate, which allows for a better reproduction of the climate condition at the local scale (Xie et al., 2022). In this context, it is
orth mentioning the existence of the dataset VHR-REA_IT (Raffa et al., 2021), which has been recently developed at the resolution
f about 2.2 km as a dynamical downscaling of ERA5 by means of a convection-permitting climate model. The dataset is able to
eproduce rainfall extremes better than ERA5 (Reder et al., 2022), though its performances are yet to be demonstrated in hydrological
pplications. For this latter reason and also considering its recent release, we still opted to use ERA5-Land for the proposed analysis.

In the proposed work, the ERA5-Land dataset is transformed through a rototranslation of the cells composing the grid, from the
riginal 𝑊𝐺𝑆84 reference coordinate system to 𝐸𝑇𝑅𝑆8 reference system. The original horizontal resolution (0.1◦), equivalent to
round 9 km regular grid, thus results in an almost rectangular grid of 11 × 8 km. This dataset is referred to as REA11×8hereafter.

.3. Interpolation of observed meteorological data

To obtain the spatial distribution of the observational data, the hourly precipitation and temperature data available at the
eteorological stations were interpolated over a regular 1 km grid using a kriging algorithm (KR). Among the different kriging

chemes, the interpolation was performed using the kriging with the terrain elevation as external drift for both temperature
nd precipitation (Goovaerts, 1997). Specifically, the interpolation was performed by using gaussian, exponential and spherical
ovariance functions combined with a nugget model and considering measurements available at the closest 8, 16, and 32
eteorological stations. A leave-one-out cross-validation procedure was then applied to all the aforementioned configurations to

dentify the geostatistical model configuration leading to the smallest error over the period 2010–2019. The procedure allowed to
dentify kriging with 16 neighbouring stations and the exponential covariance model with nugget as the most accurate interpolation
cheme for both precipitation and temperature. The Eq. (1) reports the covariance function herein adopted:

𝐶(𝑟) = 𝜎2𝑛𝛿(𝑟) + 𝜎2𝑒𝑥𝑝
[

−3𝑟
𝑎

]

; (1)

where 𝑟 is the two-point lag distance, 𝛿(𝑟) characterizes the nugget effect and it reads as follows: 𝛿(𝑟) = 1 if 𝑟 = 0 and 𝛿(𝑟) = 0 if 𝑟 ≠ 0,
𝜎2𝑛 and 𝜎2 are the variances at small (i.e., the nugget) and large scales, respectively, while 𝑎 is a scaling parameter. For the sake of
completeness, Table 1 reports the values of the parameters of the geostatistical models, providing the lowest cross-validation errors
for the temperature and precipitation. The obtained gridded hourly dataset of precipitation and temperature is hereafter referred to
as KR1×1.

The outcomes of the cross-validation procedure are reported in Section 4.1. Specifically, two widely used metrics were adopted,
amely the Mean Absolute Error (MAE) and the Mean Error (ME) defined as follows (Murphy, 2012):

𝑀𝐴𝐸 = 1
𝑛
∑

|𝑝𝑖 − 𝑎𝑖| (2)
5

𝑛 𝑖=1
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Table 2
List of ICHYMOD model parameters for snow and rainfall-runoff modules (respectively TOPMELT and PDM models, respectively).

Name Unit Range Description Sub-model

PCF – 1–1.2 Precipitation Correction Factor TOPMELT

CMF mm m2

MJ h ◦C
0.001–0.1 Combined Melt Factor TOPMELT

G mm
km 0–0.5 Precipitation gradient with altitudes TOPMELT

alb𝑠 – 0.70–0.95 Fresh snow albedo TOPMELT
T𝑐

◦C 0–2.5 Threshold temperature for rain/snow classification TOPMELT
RMF 1

h ◦C
0.01–0.90 Rain Melt Factor TOPMELT

C𝑚𝑎𝑥 mm 100–550 Maximum storage capacity PDM
b – 0.025–0.75 Storage capacity probability density function exponent PDM

K𝑔
hh mm𝑏𝑔

mm 18k–60k Groundwater recharge time constant PDM
b𝑔 – 1.3–2.3 Exponent of groundwater recharge function PDM

𝑀𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑝𝑖 − 𝑎𝑖) (3)

where 𝑝𝑖 is the reconstructed value, 𝑎𝑖 is the observed value at the 𝑖th time step and 𝑛 is the length of the series.

3.4. ICHYMOD hydrological model

The semi-distributed hydrological model ICHYMOD (Integrated catchment-scale hydrological model Norbiato et al., 2008, 2009)
is used to simulate hydrological processes at the hourly time scale in the Passirio catchment. ICHYMOD has already proven to
be a reliable tool over the region of interest for the accurate prediction of both streamflow and snow variables (Zaramella et al.,
2019; Di Marco et al., 2020, 2021; Avesani et al., 2022). This model adopts a semi-distributed approach where the catchment is
divided into several sub-catchments in which the hydrological properties are assumed uniform. Different modules are embedded
in the ICHYMOD framework to simulate the overall hydrological cycle at an hourly time step. Potential evapotranspiration is
estimated with the Hargreaves formula (Hargreaves and Samani, 1985), while snowpack dynamics are computed by means of the
TOPMELT model, recently developed by Zaramella et al. (2019). The PDM approach (Moore, 2007) is used for modelling rainfall-
runoff transformation taking water of snow–ice melting dynamics (TOPMELT model) and evapotranspiration (Hargreaves module)
to recharge groundwater. The Muskingam–Cunge scheme is adopted for streamflow routing along the river network (Cunge, 2010).
More details on TOPMELT are reported below to allow a clearer discussion of the results.

TOPMELT integrates both snow and ice melting dynamics into the ICHYMOD by means of an enhanced temperature-index
approach. It is important to mention that TOPMELT divides the sub-catchment into elevation bands, whose pixels are then aggregated
into uniformly distributed radiation classes. This allows both air temperature and precipitation variability with elevation to be taken
into account. Specifically, the snowmelt 𝐹 for the 𝑖th elevation band and the 𝑗th radiation class at time 𝑡 is calculated as follows:

𝐹𝑖,𝑗 (𝑡) =

{

𝐶𝑀𝐹 ⋅ 𝑅𝐼𝑖,𝑗 (𝑡)
(

1 − 𝑎𝑙𝑏𝑠(𝑡)
)

⋅ 𝑚𝑎𝑥
[

0; 𝑇𝑖(𝑡) − 𝑇𝑐
]

, if 𝑡 ∈ daytime
𝑁𝑀𝐹 ⋅ 𝑚𝑎𝑥[0, (𝑇𝑖(ℎ) − 𝑇𝑐 )], if 𝑡 ∈ 𝑛 nighttime

(4)

where 𝑇𝑖(𝑡) is the air temperature of the 𝑖th elevation band; 𝑅𝐼𝑖,𝑗 (𝑡) is the cell radiation index; 𝐶𝑀𝐹 is the Combined Melt Factor; 𝑎𝑙𝑏𝑠
is the snow albedo; 𝑇𝑐 is a threshold base temperature; and 𝑁𝑀𝐹 is the night melt factor. Furthermore, the snow model accounts
for both rain-on–snow, ice melting, and water refreezing (see Zaramella et al. (2019) for further details). Estimated precipitation
and air temperature time series at each elevation band are then used to calculate snow accumulation. Specifically, precipitation is
divided into rainfall and snowfall depending on the threshold temperature, 𝑇𝑐 . Then, either a precipitation correction factor (𝑃𝐶𝐹 )
or a snow correction factor (𝑆𝐶𝐹 ) are applied to account for spatial representativeness and potential deficiencies during periods of
snow. The precipitation value 𝑃𝑖(𝑡) at the 𝑖th elevation band is thus computed as follows:

𝑃𝑖(ℎ) = 𝑃𝑎𝑣𝑔(𝑡) ⋅
(

1 +
(

𝑧 − 𝑧𝑎𝑣𝑔
)

⋅ 𝐺
)

(5)

where 𝑃𝑎𝑣𝑔 is the mean areal total precipitation over a specific sub-catchment, 𝑧 is the elevation band altitude and z𝑎𝑣𝑔 is the
sub-catchment mean elevation. The term 𝐺 is instead the precipitation lapse rate, which is assumed constant and computed at the
regional scale from the available precipitation data.

Temperature 𝑇𝑖 over the 𝑖th band is computed by using an hourly time-varying vertical temperature lapse rate, 𝐿𝑅(𝑡), which is
unique for the entire basin and obtained from available temperature data. Indeed, a linear regression process is performed at each
hourly time step using recorded temperature and the corresponding station altitude.

For a more comprehensive presentation of the other modules of the model, readers are referred to the works of Moore (2007)
and Norbiato et al. (2008). Table 2 reports the main parameters of ICHYMOD, including their units, ranges of variation, and sub-
model use. As described in Section 3.6, 9 of these parameters are estimated through model calibration, 𝐺 is instead evaluated a
priori. 𝑃𝐶𝐹 and 𝑇𝑐 are reported in this table for description consistency but are not calibrated because this paper’s goal is to compare
6
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Table 3
Summary of datasets used in the present work, with P and T representing precipitation and temperature variables,
respectively. The table provides an overview of the representative acronyms, variables comprising each dataset,
the data source, and the temporal/spatial resolutions.

KR1×1 KR11×8 REA11×8

Variables P, T P, T P, T
Type of data Interpolated station data Aggregated KR1×1 ERA5-Land model
Spatial resolution 1 × 1 km 11 × 8 km 11 × 8 km
Temporal resolution Hourly Hourly Hourly

3.5. Hydrological Coherence Test (HyCoT)

The evaluation of the meteorological datasets utilized in this study for hydrological modelling is conducted using the Hydrological
oherence Test (HyCoT) (Laiti et al., 2018). This method employs a goal-oriented framework to discern meteorological forcing
atasets that do not align with hydrological observations. Essentially, the hydrological model outcomes serve as a tool to assess
he ‘‘hydrological coherence’’ between precipitation and observational variables. A model calibration is performed for each
eteorological forcing dataset available, enabling the comparison of the hydrological model outcomes according to a chosen metric,

hus evaluating the feasibility of the meteorological forcing in allowing the reproduction of the observed variables.
In this study, the Nash–Sutcliffe Efficiency (NSE hereafter) index (Nash and Sutcliffe, 1970) is adopted as the efficiency metric,

ith streamflow serving as the observational variable. It is important to note that the model calibration, performed individually
or each meteorological forcing dataset, utilizes the Generalized Likelihood Uncertainty Estimation (GLUE) methodology (Beven
nd Binley, 1992). This involves employing a Monte Carlo sampling approach to generate numerous parameter sets randomly
rom the parameter space, each representing a plausible combination of parameter values. Subsequently, the hydrological model is
xecuted for each parameter set, producing model outcomes (in this case, streamflows) for each simulation. These model results are
hen compared to the observed streamflows using the adopted efficiency metric to identify the parameter set that ensures the best
erformance.

.6. Experimental design

In order to evaluate the accuracy of REA11×8 dataset in the entire South-Tyrol region, the observational dataset KR1×1 is
esampled by areal averaging to the same grid of REA11×8. This upscaled version of the observational dataset is hereafter termed
s KR11×8. Overall, we thus considered three meteorological input forcing datasets as summarized in Table 3. An assessment of
he bias is then performed on the period 2010–2019 by considering cell-to-cell difference between REA11×8and KR11×8, while the
-test (Lehmann and Romano, 1986) is applied to assess the correlation between biases and elevation with a level of significance of
.05.

Evaluation of the hydrological coherence of the three datasets (i.e. REA11×8, KR11×8 and KR1×1) was performed on the Passirio
catchment by considering an hourly time step. According to the ICHYMOD framework, the catchment is partitioned into 23 sub-
catchments with an average area of 20 km2. As shown in Fig. 3, three of these sub-catchments constitute the nested sub-catchment
of Plan, adopted for the spatial validation (see Section 4.3).

It is worth noticing that for each dataset (i.e. REA11×8, KR11×8 and KR1×1) the corresponding precipitation lapse rate 𝐺 was
computed considering the entire South-Tyrol and it is assumed constant in space and time. The decision to adopt the entire South-
Tyrol region for the calculation of 𝐺 is due to the fact that the Passirio basin, despite being ideal for representing the hydrological
behaviour of snow-dominated Alpine catchment, is too small to guarantee an adequate representation of precipitation trends with
elevation. A similar approach was used for setting-up ICHYMOD in the same region by Di Marco et al. (2021) and Shrestha et al.
(2023).

The temperature lapse rate 𝐿𝑅(𝑡) was evaluated at each hourly time step within ICHYMOD model itself according to the different
meteorological forcing datasets and considering for each of them the values at the grid points in the Passirio catchment as a proxy
for ground stations. For the sake of clarity, Fig. 3 shows an example of the evaluation of the temperature lapse rate in a generic time
step 𝑡 for the datasets REA11×8, KR11×8 and KR1×1. As can be seen, the higher the resolution of the dataset, the more temperature
data are considered for the regression. This in turn leads to a different hourly lapse rate and therefore a potential different simulation
outcomes of snow dynamics and runoff generation.

The hydrological experiments are carried out considering the classical hydrological year time spawn (October to September in
the ensuing year). Specifically, the model was first calibrated, with reference to each of the three meteorological datasets, during the
period from 1st October 2013 to 30th September 2017 (termed calibration period hereafter) by adopting the NSE as an efficiency
metric (see Section 3.5). In the current application the parameters involved in calibration were 9 of the those outlined in Table 2
(considering 𝐺 calibrated a priori, as described above in this section). For each calibration experiment the number of iterations
used was 5000 and the best parameters were selected based on NSE. Furthermore, the first three years of the simulations (from 1st
October 2010 to 30 September 2013) were used as a warm-up period to avoid dependence on the initial condition and therefore
excluded from the computation of the model performance. Validation of the modelling framework was then performed on the period
from 1st October 2017 to 30 September 2019 (termed validation period hereafter) for all three calibration experiments by computing
7
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Fig. 3. In the first row the Passirio catchment closed at Merano is presented together with its 23 sub-catchments and the meteorological datasets grids covering
the basin. The three dashed sub-catchments represent the nested Plan sub-catchment. In the second row, an example of evaluation of the temperature lapse rate
𝐿𝑅(𝑡) on a generic time step 𝑡 is presented with reference to the three adopted datasets.

NSE at the Merano gauging station. Moreover, the Plan gauging station was used for spatial validation by considering in this case
the entire time period spanning from 1st October 2013 to 30th September 2019. This evaluation aimed to assess the hydrological
framework robustness, as outlined in work (Di Marco et al., 2021), evaluating the hydrological consistency of the hourly datasets
across various catchment sizes.

Simulated streamflow for the different experiments was then compared chronologically as hourly time series and by computing
their Empirical Cumulative Distribution Functions (ECDFs) to identify possible biases at the different flow regimes. Furthermore,
the comparison was also performed by considering the following seasonal aggregations: winter from December to February, spring
from March to May, summer from June to August, and autumn from September to November. Finally, the response of the snow
dynamics to the different meteorological forcing, as simulated by the cryospheric component of the ICHYMOD model, was performed
to emphasize the importance of the combined role of temperature and precipitation biases.

4. Results

4.1. Creation of the gridded observational data reference dataset

According to the procedure described in Section 3.3 the 1-km gridded KR1×1 dataset was created with reference to the time
window 2010–2019. At the hourly time scale, the Mean Absolute Error (MAE) and the Mean Error (ME) obtained through the
cross-validation procedure are 0.07mm (ME: 0.00mm) for precipitation and 1.82 ◦C (ME: 0.57 ◦C) for temperature, respectively.

Fig. 4 reports KR1×1 spatial distribution for (a) precipitation and (b) temperature aggregated at the yearly time scale. The
average annual precipitation obtained over the period 2010–2019 is 921mm, while the average monthly temperature ranges from
the minimum of −3.78 ◦C to the maximum of 13.32 ◦C.

The Mean Absolute Error (MAE) and Mean Error (ME) metrics, aggregated on a daily basis, were obtained through the cross-
validation procedure (refer to Section 3.3) and are presented in Table 4, categorized by different months. These findings align with
the results reported by Crespi et al. (2021a), who recently published a high-resolution daily gridded dataset of temperature and
precipitation for the Trentino/South-Tyrol region.

As observed in Table 4, the precipitation Mean Absolute Error (MAE) ranges from 0.5mm to 1.8mm, with more substantial
errors occurring during the summer season (i.e., June to August), characterized by convective precipitation events. The daily Mean
8
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Fig. 4. High resolution 1 × 1 km gridded datasets of the annual mean (a) precipitation and (b) temperature over the South-Tyrol Province during the period
2010–2019.

Table 4
Monthly cross-validation metrics across the South-Tyrol stations obtained by the kriging interpolation performed
at 1 km scale. Mean Absolute Error (MAE) and Mean Error (ME) at the daily temporal resolution are reported
for both precipitation and temperature variables.

Precipitation Temperature

MAE [mm] ME [mm] MAE [◦C] ME [◦C]

January 0.5 0.0 1.6 0.0
February 0.5 0.0 1.6 0.0
March 0.5 0.0 1.6 0.0
April 0.7 0.0 2.6 0.0
May 1.2 0.0 1.6 0.1
June 1.5 0.0 1.6 0.1
July 1.8 0.0 1.5 0.1
August 1.7 0.0 1.5 0.0
September 1.0 0.0 1.5 0.0
October 1.0 0.0 1.4 0.0
November 0.9 0.0 1.4 0.0
December 0.5 0.0 1.6 0.0

Error (ME) remains consistently at 0mm throughout the entire year, a value consistent with the findings of Crespi et al. (2021a).
Regarding temperature, the MAE varies from 1.4 ◦C in October to 2.6 ◦C in April, with the ME increase to 0.1 ◦C in Summer while it
remains consistently at 0 ◦C along the other seasons. Generally, lower MAE are observed in the summer and autumn seasons, while
larger errors are evident in winter and spring. In this context, the cross-validation results align with those presented by Crespi et al.
(2021a), reporting MAE values ranging from 1.1 ◦C to 1.8 ◦C.

4.2. Comparison between meteorological forcing

The results here presented aim to analyse the biases characterizing ERA5-Land product by performing a comparison between
REA11×8and KR11×8 datasets at different spatial and temporal scales. Indeed, bias in this work is the difference between the
REA11×8and the KR11×8 datasets.

Fig. 5 compares the spatially aggregated mean of hourly REA11×8and KR11×8 data using the Empirical Cumulative Distribution
Functions (ECDFs) for temperature and using Exceedance Probability curves for precipitation, as well as their monthly aggregation
displayed as boxplots. As it can be noticed from Fig. 5(a), REA11×8exhibits higher precipitation values than KR11×8 for events below
1mm∕h with a non-zero event probability of 64% compared to 42% for KR11×8. On the other hand, KR11×8 presents larger values
for exceedance probability lower than 5%. The prevalence of larger values for REA11×8with respect to KR11×8 (i.e., a positive
bias) is also confirmed by visual inspection of Fig. 5(b) where a mean bias of about 30mm∕month is observed throughout the year.
Besides, the highest bias values occur in terms of monthly average between April and July, with a value around 40mm∕month. The
bias observed in the other months is lower with a minimum of 20mm∕month in September and an average of 30mm∕month.

Regarding temperature, Fig. 5(c) highlights how REA11×8dataset presents colder temperatures than the KR11×8 dataset, with
a median positive bias of 2.1 ◦C. The variation in temperature is minimal for higher quantiles, but as we move towards lower
exceedance probability values, the difference becomes more pronounced, reaching a maximum of approximately 6 ◦C in the lower
quantiles. The boxplots in Fig. 5(d) highlight that temperature biases are more pronounced in winter and spring compared to summer
and autumn, exhibiting a clear seasonal pattern.
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Fig. 5. Comparison between REA11×8 and KR11×8 datasets spatially aggregated over the South-Tyrol: (a) the precipitation exceedance curve of the hourly
data, (b) the precipitation monthly boxplots, (c) the temperature ECDFs of the hourly data and (d) the temperature monthly boxplots.

Fig. 6. Spatial distribution of the bias between REA11×8 and KR11×8 datasets aggregated at the yearly time scale for (a) precipitation and (b) temperature.

Assessment of the spatial variability of the biases is presented in Fig. 6 in terms of yearly cumulative precipitation and mean
temperature differences between the two datasets, respectively. It can be noticed from Fig. 6(a) that the dissimilarity in annual
precipitation ranges between 27mm∕year and 915mm∕year among all the cells in the region of interest. Besides, the application of
a t-test provided a 𝑝-value of 0.49 highlighting how no significant correlation can be retrieved between biases and elevation.

The spatial distribution of the temperature bias is presented in Fig. 6(b). Differences ranges from a minimum of −7.9 ◦C to a
maximum of 1.25 ◦C. Opposite to the case of precipitation, the bias presents a significant correlation with elevation as evidenced by
the 𝑝-value of 0.005 obtained when applying the t-test. The identified trend between the bias and the elevation can be estimated
10
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Table 5
Precipitation and temperature seasonal bias over South-Tyrol during the period 2010–2019.

Precipitation Temperature

Autumn 62.32 −1.42
Winter 90.87 −3.18
Spring 102.85 −2.19
Summer 108.69 −1.16

Table 6
Nash–Sutcliffe Efficiency indexes during the calibration (from 1st October 2013 to 30th September
2017) and validation periods (from 1st October 2017 to 30th September 2019) for the simulations
conducted at the Merano gauging station. Validation during the entire observational period at
Plan is also presented for the three different datasets.

Station Merano Plan

From 1st Oct 2013 1st Oct 2017 1st Oct 2013
To 30th Sep 2017 30th Sep 2019 30th Sep 2019

KR1×1 0.78 0.60 0.61
KR11×8 0.70 0.51 0.47
REA11×8 0.39 0.37 0.63

in about 0.5 ◦C per 1000m. This result indeed shows that the bias is more noticeable at higher elevations, with the REA11×8dataset
presenting colder temperatures in mountainous sub-catchments than in valleys.

Finally, Table 5 illustrates the biases in precipitation and temperature within both the REA11×8and KR11×8 datasets, aggregated
seasonally and spatially. It is noteworthy that precipitation exhibits positive biases across all seasons, indicating a wetter tendency
in reanalysis data compared to observational data. Conversely, temperature is characterized by negative biases throughout the year,
suggesting that reanalyses depict cooler conditions than the observational datasets.

Concerning the Passirio catchment (see Fig. 1) it is noteworthy that the monthly average precipitation bias is 33.4mm, varying
between 7.58mm in November and 67.91mm in July. The monthly temperature bias over the same catchment averages −1.8 ◦C,
ranging from a minimum of −3.7 ◦C in January to a maximum of −0.7 ◦C in July. Similar patterns are observed in the Plan catchment
(see Fig. 1), where the monthly average precipitation bias is 36.7mm, fluctuating between 11.28mm in November and 77.17mm in
July. The average monthly temperature bias in the Plan catchment is −1.2 ◦C, with a minimum of −3.3 ◦C in January and a maximum
of 0.2 ◦C in July.

4.3. Hydrological model simulations and coherence

Table 6 shows the NSE coefficients of the hydrological calibrations performed with the three datasets KR1×1, KR11×8 or
REA11×8used as input meteorological forcing. The adoption of the higher resolution KR1×1dataset leads to a value of NSE equal to
0.78 during the calibration period at the Merano station. On the other hand, the upscaled observational dataset KR11×8 leads instead
to a slightly lower value of 0.70 always evaluated at the Merano gauging stations. The simulations conducted during the validation
period present a small deterioration of the performances with NSE equalling 0.60 for KR1×1 and 0.51 for KR11×8, respectively. It is
worth mentioning that the NSE values during validation are greater than 0.5 and therefore simulations can be considered acceptable
following the classification introduced by Moriasi et al. (2007). On the contrary, the adoption of the REA11×8dataset results in not
satisfactory hydrological model performances at Merano, with a value of NSE equalling 0.39 in calibration and 0.36 in validation,
respectively.

Spatial validation of the hydrological modelling was also performed by simulating streamflow at the Plan gauging station (see
Fig. 9). Concerning the observational datasets, the efficiency metrics show a decline in performance with values of NSE equalling
0.61 and 0.47 for KR1×1 and KR11×8, respectively, still close to the acceptability threshold for the latter case. On the contrary,
the adoption of the reanalysis dataset REA11×8leads to a value of NSE equalling 0.63, slightly better than the value obtained at
Plan with the observational dataset KR1×1. Surprisingly, this result entails not only a satisfactory reproduction of the observed
streamflow at the validation site but also a significant increment of the modelling performances with respect to the calibration
experiment. This latter and counterintuitive aspect will be further discussed in Section 5.

Figs. 7 and 8 provide further insights into hydrological simulation outcomes. On one hand, Fig. 7 shows the ECDFs of the
simulated flows against the observed streamflows at Merano station during the calibration (subplot a) and the validation (subplot
b) periods, respectively. As can be noticed, the gridded observational datasets (KR1×1 and KR11×8) exhibit similar behaviour on
the entire Passirio during both periods, whereas the REA11×8always overestimates observed streamflows (black lines in Fig. 7a
and b). The mean streamflow metered at the Merano gauging station is 11.60m3∕h during the calibration period, a value which
is well reproduced by simulations conducted with KR1×1 and KR11×8 datasets which present mean streamflow of 11.70m3∕h and
11.66m3∕h, respectively. On the contrary, simulations conducted using REA11×8as forcing lead to a significant overestimation of
mean streamflow which equals 16.22m3∕h. In addition, overestimation of the streamflow occurs for 90% of the simulation time steps
as depicted in both plots of Fig. 7.
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Fig. 7. Streamflow over Passirio catchment at the Merano gauging station: exceedance curves at hourly resolution for (a) the calibration and (b) the validation
periods, respectively.

Fig. 8. Hourly streamflow time series in the Passirio catchment at the Merano gauging station during the entire observational period 1st October 2013–30th
September 2019. The inset shows a focus on the hydrological year spanning from 1st October 2014 to 30th September 2015.

On the other hand, Fig. 8 compares the time series of observations measured at Merano gauging station with the simulations
obtained by using as input the three different datasets. All the simulations are generally capable of reproducing the observed
streamflow timing. In addition, and in agreement with the results presented in Fig. 7, simulations conducted with REA11×8present
a significant overestimation of the observed streamflow, particularly evident during the recession limbs of the hydrograph. On the
contrary, KR1×1 and KR11×8 exhibit a small underestimation of observations under baseflow conditions. These differences are even
12
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Fig. 9. Hourly streamflow time series at the Plan sub-catchment: (a) chronological comparison and (b) exceedance curves during the entire observational period
1st October 2013–30th September 2019.

more evident when focusing solely on the hydrological year spanning from 1st October 2014 to 30th September 2015, as shown in
the inset of Fig. 8.

In addition, the inset of Fig. 8 allows an improved visual representation of the overall streamflow overestimation obtained when
using REA11×8dataset. The inset also emphasizes how both KR1×1 and KR11×8 forced simulations exhibit similar results, with
KR1×1 performing slightly better in reproducing observed streamflow during the spring and summer seasons, and both simulations
slightly underestimating baseflow during the winter season. Comparatively, the simulation using the REA11×8dataset yields slightly
worse results than KR11×8 in autumn and summer. Additional discussion of these seasonal differences is reported in Section 5.3.

Fig. 9(a) compares observed and simulated streamflow time series during the overall observational period at the Plan gauging
station, used for spatial validation. Still at Plan, Fig. 9(b) shows the exceedance curves during the same period. The latter,
in particular, highlights how simulations conducted using KR1×1 and KR11×8 datasets always slightly underestimate observed
streamflow, with KR1×1 providing a better representation than KR11×8 of the lowest quantiles (i.e., high streamflow events).
Contrary to the case of Merano, simulation with REA11×8provides slightly better results than both kriging-based simulations, with,
in particular, a better representation of the baseflow and of the melting season. Further discussion on these seasonal differences is
reported in Section 5.

5. Discussion

5.1. High-resolution interpolated dataset

The results presented in Section 4.1 exhibit consistency with existing literature regarding precipitation and temperature for the
investigated region. Specifically, the KR1×1 dataset aligns closely with findings from Laiti et al. (2018), which reported an average
annual precipitation ranging between 883mm and 1052mm based on five distinct datasets (E-OBS Cornes et al., 2018, MSWEP Beck
et al., 2018, MESAN Landelius et al., 2016, APGD Isotta and Frei, 2013, and ADIGE Mallucci et al., 2019). Additionally, the KR1×1
dataset, with an annual mean temperature of 6.2 ◦C, corresponds closely with Lutz et al. (2016), which report an annual mean
temperature of 3 ◦C for the Adige basin over the period 1961–1990. Similarly, Crespi et al. (2021a) documented a temperature of
5 ◦C for the Trentino/South-Tyrol region during the period 1981–2010.

It is worth to mention that KR1×1 is the only dataset providing hourly temporal resolution for the entire Alpine region to the
best of the author’s knowledge.

It is important to underline that the adoption of the Kriging as an interpolation scheme has a key advantage: Kriging is indeed
an exact interpolator and it is recognized as one of the best linear unbiased estimators (Goovaerts, 1997; Eldeiry, 2012). This means
that, unlike other interpolators, such as least squares polynomial fitting (Gentile et al., 2012) or linear regression (Crespi et al.,
2021a), the interpolated value at a sample location is equal to the observed value at that location, while the prediction error is
minimized and has a zero mean (Goovaerts, 1997). As all interpolators also kriging has some drawbacks, which may be enhanced
in alpine regions. It is indeed sensitive to the size and spatial distribution of the observations and to the spatial auto-correlation of
the data. As a consequence, either sparse sampling or clustering of weather stations could lead to suboptimal reconstruction of both
precipitation and temperature fields. This is indeed not the case in our study where the station network is fairly dense and well
distributed over the investigated domain shown in Fig. 1.
13
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Table 7
Hourly cross-validation errors averaged across the South-Tyrol station for precipitation and
temperature variables.

Precipitation Temperature

Elev. band [𝑚.𝑎.𝑠.𝑙.] MAE [mm] MAE [◦C]
From 0 to 1000 0.058 1.69
From 1000 to 1800 0.072 1.29
Over 1800 0.088 1.44

Instrument type, site elevation, and exposure of weather stations are other sources of uncertainty that may affect the accuracy of
he kriging interpolation performed in this study, as well as that which would have been obtained using different schemes (Nijssen
nd Lettenmaier, 2004; Tian et al., 2013). Besides, rain gauge undercatch is another well-known source of error in precipitation
ecords, particularly at high altitudes. This can indeed account for up to several tens of percent of the measured precipitation
alue (Frei and Schär, 1998), while different shelters of the weather station from direct sunlight affect the instrumental temperature
ecording (Böhm et al., 2010). Our results are in line with those findings as further highlighted in Table 7 which reports the hourly
AE for both precipitation and temperature over three elevation bands: from 0m a.m.s.l. to 1000m a.m.s.l., from 1000m a.m.s.l. to

1800m a.m.s.l. and over 1800m a.m.s.l.. It can be noticed that the MAE of precipitation increases with elevation, whereas the MAE
of temperature presents the lowest values at the higher elevations. Conversely, no discernible trend exists between elevation and
temperature errors.

In general, interpolation methods like kriging can greatly benefit from incorporating external information, such as radar
data, which aids in better understanding extreme events and filling spatial gaps. While these methods have demonstrated good
performance in Alpine regions (Rysman et al., 2016; Sideris et al., 2014), they are tailored only for precipitation estimation and
can introduce complexity to data management. Further analysis is required to extend these findings to our specific case study area.
Nonetheless, our investigation indicates that kriging yields strong outcomes in this region, as detailed in Section 4.1.

5.2. Comparison between ERA5-Land and the interpolated datasets

5.2.1. Precipitation
The significant precipitation overestimation by ERA5 reanalysis dataset with respect to the observational dataset generated

by means of kriging interpolation is consistent with the recent findings by Bandhauer et al. (2022), which showed that ERA5
overestimates precipitation in three European sub-regions characterized by prominent mountain ridges, namely an Alpine, a
Carpathian and a Fennoscandian transect. Similarly, Amjad et al. (2020) showed that both ERA-Interim and ERA5 have a wet
bias with respect to observations in the mountainous region of Turkey.

In our case study, the significant differences between ERA5-Land and KR11×8 can be attributed to two different factors: (i) a
possible precipitation undercatch by KR11×8, the effect which may be relevant in alpine regions and at high altitudes; and (ii)
the significant overestimation by ERA5-Land of the frequency of wet days over the Alps (up to a factor of 2), as also reported
in Bandhauer et al. (2022) and Monteiro and Morin (2023).

5.2.2. Temperature
The seasonal variability of temperature biases, as depicted in Fig. 5 for the entire South-Tyrol region, corresponds to patterns

observed in the French Alps (Monteiro et al., 2022) and the broader European Alps (Monteiro and Morin, 2023). Notably, the
most significant disparities between reanalysis and observational datasets manifest during the winter months (see Fig. 5(d)). It is
noteworthy that a similar bias pattern in ERA5-Land temperature was also identified by Huang et al. (2022) in the Qinghai-Tibet
Plateau concerning both in-situ observations and the US Global Land Data Assimilation System (GLDAS).

Additional factors, including elevation, aspect, slope, vegetation, and snow cover, each entangled within intricate interdepen-
dencies, may contribute to the diverse capacity of the reanalysis product in replicating observations throughout the year (Hersbach
et al., 2020). Specifically, the discerned dependency of temperature biases on elevation, as unveiled through the application of the
t-test outlined in Section 3.6, resonates with findings presented by Monteiro and Morin (2023) for the European Alps. Moreover, a
distinct bias pattern is evident throughout the year (refer to Table 5), aligning with Monteiro and Morin (2023), who reports peak
biases in December and January, ranging between −2 ◦C and −3.5 ◦C from November to February. It is pertinent to acknowledge
that disparities may stem from variations in the analysed period and geographical region.

5.3. Testing the hydrological coherence

Hydrological coherence of the climate datasets is assessed according to their ability to reproduce the observed streamflow time
series, following the HyCoT methodology described in Section 3.5.

Hydrological simulations conducted using the two observational gridded datasets (i.e., KR1×1 and KR11×8) characterized by
a different spatial resolution showed no significant differences at Merano gauging station. This finding is consistent with previous
studies (Nicòtina et al., 2008; Ghimire et al., 2022; Volpi et al., 2012; Michelon et al., 2021) showing that for medium to large
watersheds, the total rainfall amount is more important than the spatial distribution of rainfall for an accurate reproduction of the
14
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Fig. 10. SWE comparison of the three datasets simulations: (a) on Passirio and (b) on Plan catchment, both during the validation period from 1st October 2017
to 30th September 2019.

observed hydrographs. This is also coherent with the poor performances of the simulations conducted by using ERA5-Land as the
input, where the significant precipitation overestimation in comparison to observational datasets led to a significant bias of the
simulated streamflows.

The results obtained by spatial validation at the Plan station, a small nested sub-catchment of the Passirio (see Fig. 1) involve a
more complex interpretation. On the one hand, the use of the higher spatial resolution dataset (KR1×1) is associated with improved
performances with respect to the coarser dataset (KR11×8). On the other hand, an unexpected improvement in performance results
from the use of ERA5-Land. In this case, we argue that the hydrological response in this small snow-dominated Alpine catchment
is shaped not only by the spatial pattern of precipitation but also, and to a major extent, by the interplay of temperature and
precipitation in controlling snowmelt dynamics, as also highlighted in Zhang et al. (2015), Girons Lopez et al. (2020) and Ruelland
(2020).

Modelling of snow dynamics is, therefore, of paramount importance to assess the reliability of ERA5-Land in hydrologic
simulations performed in high-altitude headwaters. To this end, we analysed the Snow Water Equivalent (SWE) simulated by the
model using the three different meteorological forcing datasets (i.e., KR1×1, KR11×8, and REA11×8) in both the entire Passirio and
the Plan catchments during the validation period. This comparison is depicted in Fig. 10, which shows clearly how the simulation
driven by reanalysis (REA11×8) results in greater SWE for both basins with respect to those obtained by using the observational
datasets (i.e KR1×1, KR11×8). This can be attributed to the pronounced positive precipitation bias in winter, resulting in larger
available water volumes, which coupled with the colder temperatures of ERA5-Land leads to significantly larger values of SWE.
This latter result is also confirmed by the recent work of Shrestha et al. (2023) where the use of ERA5 as input forcing for SWE
simulations in Alpine basins resulted in an overestimation not only of SWE but also of the snow-cover area in the upper part of the
Adige basin.

The significant differences in simulating the temporal evolution of SWE among the three datasets are also witnessed by
the different values of the TOPMELT snow module parameters obtained during calibration as presented in Table 8. Firstly, the
precipitation lapse rate 𝐺 is similar for KR1×1 and REA11×8, but it is significantly lower for KR11×8. Therefore, it appears that
ERA5-Land captures the precipitation orographic enhancement due to elevation, a widely acknowledged phenomenon in the alpine
region (e.g. Avanzi et al. (2021)), as effectively as the high-resolution observation dataset (i.e. KR1×1). Secondly, the large value
of the Melt Factor (𝐶𝑀𝐹 ) obtained for REA11×8case indicates that the calibration process tries to compensate for the negative
ERA5-Land temperature biases in order to ensure the correct streamflow simulation at Merano gauging station. As it can be noticed
from Eq. (4), the larger the value of 𝐶𝑀𝐹 the larger is the snowmelting occurring at lower temperatures thus compensating for
the colder values of REA11×8if compared with those of KR1×1 and KR11×8 observational datasets. The same compensation occurs,
although to a lesser extent, for the Fresh Snow Albedo (𝑎𝑙𝑏𝑠) parameter, which dwindles moving from the observational datasets-
driven calibrations to the case in which REA11×8is used. Notice that a reduction in the snow albedo is associated to a larger share
of input radiation into the snowpack and thus to enhanced snow melting. The Rain Melt Factor 𝑅𝑀𝐹 deserves instead a separate
15

discussion. This refers indeed to the rain-on-snow conditions where melting depends on both precipitation and temperature. The
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Table 8
TOPMELT snow module calibrated parameters for the three different experimental setups,
corresponding to the three different forcing used (i.e., KR1×1, KR11×8 and REA11×8). The
description of each parameter is reported in Section 3.4.
Name Unit KR1×1 KR11×8 REA11×8

CMF mm m2

MJ h ◦C
0.0025 0.0025 0.008

G mm
km 0.064 0.019 0.076

alb𝑠 – 0.85 0.96 0.77
RMF 1

h ◦C
0.07 0.03 0.025

interplay between these two factors seems more correlated to the different resolution of the datasets, with similar values obtained
in calibration for KR11×8 and REA11×8and a larger value obtained for KR1×1. This behaviour could be attributed to the fact that
the coarse resolution results in the averaging of temperature and precipitation, which affects the rain-on-snow cusp conditions.

To complete the discussion of the hydrological performance, seasonal streamflows are reported as exceedance curves in Fig. 11
for both Merano and Plan gauging stations, respectively, with reference to the validation period.

Visual inspection of Fig. 11 clearly highlights how the use of REA11×8generally leads to a significant overestimation, with respect
to the other datasets, of the streamflow over all the seasons and for both catchments. Indeed, overestimation by REA11×8is always
present at Merano, mainly in autumn (Fig. 11(a.1)) and summer (Fig. 11(a.4)), as a consequence of the large positive precipitation
biases observed in these seasons. Overestimation is also present in winter (Fig. 11(a.2)) and spring (Fig. 11(a.3)) seasons, though
to a lesser extent. On the other hand, at Plan sub-catchment, REA11×8is capable of better reproducing observed streamflows in
winter (Fig. 11(b.2)) and spring (Fig. 11(b.3)) with consequent lower errors in summer (Fig. 11(b.4)) as a consequence of the
improved representation of snowmelt and accumulation in the preceding seasons. The role exerted by temperature in this sub-
catchment is indeed highly relevant, with the cooler temperature of REA11×8with respect to KR11X8 and KR1X1 leading to a
better representation of the snow-dominated seasons. This latter effect compensates for the model deficiency in reproducing reliably
baseflows with REA11×8, condition which is particularly evident in autumn and summer (see the high quantiles in Fig. 11(b.1) and
(b.4)). Furthermore, the impact of precipitation undercatchment at Plan, evident in both KR1×1 and KR11×8 datasets, is particularly
notable during winter and spring (refer to Fig. 11(b.2) and (b.3)). Consistent with the findings of Collados-Lara et al. (2018),
undercatchment of precipitation at high elevations significantly influences the outcomes of the snow melting module. In summary,
our results affirm the substantial role of precipitation volume in shaping streamflow responses in medium to large catchments, with
temperature gaining heightened significance in smaller, high-elevation catchments.

The use of KR1×1 leads to better performances than KR11×8, as also shown by NSE indexes presented in Table 6. The differences
are associated in this case with the different spatial resolution which entails a significantly different evaluation of the temperature
lapse rate at each time step (see Section 3.6).

6. Conclusion

This study highlights the need to rely on accurate and high-resolved in space and time meteorological data for hydrological
applications, particularly in the context of the Alpine Region. Hydrological models are essential for various applications, including
flood risk assessment, hydropower production, and water management. However, the reliability of these models hinges on the
spatial and temporal representation of meteorological forcing data, which can significantly impact the simulation of key hydrological
processes such as snow accumulation and melt.

Given some limitations (e.g. undercatchment) of in-situ meteorological stations and their declining numbers, this study explores
the use of ERA5-Land climate reanalyses dataset, which offers promising possibilities by providing meteorological data with no
gaps over extended time periods and domains. However, its suitability for hydrological modelling in the Alpine Region remains to
be thoroughly assessed. To achieve this, the study focuses on the South-Tyrol region and the Passirio catchment as representative
examples. By developing high-resolution observational datasets and comparing them with ERA5-Land datasets, the research aimed
at evaluating the biases in temperature and precipitation and assessed the suitability of ERA5-Land for hydrological modelling.
The Hydrological Coherence Test (HyCoT) is employed to evaluate the hydrological coherence of these datasets with streamflow
observations, shedding light on their effectiveness in improving hydrological simulations in snow-dominated Alpine catchments.
Furthermore, the creation of a novel 1 km spatial resolution dataset by means of kriging with external drift algorithm offers a
valuable benchmark for future hydrological studies in the region.

Despite its undisputed relevance, the presence of significant precipitation and temperature biases in the ERA5-Land dataset
propagates throughout the hydrological modelling chain and significantly deteriorates the accuracy of hydrological simulations,
particularly at medium spatial scales. In this sense, a possible solution could be to correct the bias of the ERA5-Land meteorological
forcing to improve hydrological performance, by implementing bias adjustment methods typically used in climatological impact
studies. Further research along this line is currently under development.
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Fig. 11. Exceedance curves of the seasonal streamflow (1:autumn, 2:winter, 3:spring, 4:summer) at Merano (a.1)–(a.4) and Plan (b.1)–(b.4) gauging stations.
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