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Abstract: The lognormal moment sequence is considered. Using the fractional moments technique, it
is first proved that the lognormal has the largest differential entropy among the infinite positively
supported probability densities with the same lognormal-moments. Then, relying on previous
theoretical results on entropy convergence obtained by the authors concerning the indeterminate
Stieltjes moment problem, the lognormal distribution is accurately reconstructed by the maximum
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by moments.
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1. Introduction and Some Useful Tools

The random variable X follows the lognormal distribution with parameters µ 2 R
and s2 > 0, say X ⇠ LN(µ, s2), if X is absolutely continuous with values in R+ and has
density function

LN(x) =
1p

2ps2x
e�

1
2s2 (ln(x)�µ)2

, x � 0, (1)

with integer moments µk = ek µ+ 1
2 k2s2

for k = 1, 2, . . . .
The lognormal distribution can be defined as the probability distribution of a random

variable X whose logarithm obeys the normal law of probability centered at µ; moreover,
it is believed by some that it is “as fundamental a distribution in statistics as the normal one”
and thus a very useful distribution for representing variables that are the multiplicative
product of many positive-valued independent factors. This follows from the central limit
theorem, since X is a lognormal random variable equivalent to ln(X) being a normal
random variable.

The lognormal distribution has some nice properties. For example, the product
of independent lognormal variables is still lognormal; furthermore, if X is a lognormal
random variable, then aX, 1/X and Xa are also lognormal for a 6= 0. Because of its
importance, the lognormal distribution, including the problem of moments, has been
studied intensively by many researchers and has a wide range of applications in the natural
sciences and in fields such as finance, economics, political science, sociology, philology,
biology, and physical and industrial processes. Interestingly, insurance losses data analysis
is positive, and the distribution is often unimodal hump-shaped, right-skewed, and with
heavy tails. Although many parametric unimodal distributions have been used in the
actuarial literature to model these data, their characteristics require more flexible models.
In particular, the losses in the right tail, although rare in frequency, are in fact those that have
the greatest impact on an insurer’s operations and could lead to the possible bankruptcy
of the company. In such circumstances, heavy-tailed distributions have been shown to be
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reasonably competitive. Different classes of models can be considered to select a suitable
distribution. For example, ref. [1], Equation (3), have successfully considered a mode-
parametrised unimodal Gamma distribution. And again, ref. [2], Equation (5) consider
a mode-parameterized lognormal distribution. Special mention should be made of the
famous paper by [3] which clearly demonstrated the moment non-uniqueness of a general
lognormal distribution by explicitly writing an infinite family of different distributions
all having the same moments as those of LN(µ, s2). Integral transforms, such as the
Laplace and Fourier transforms, of the lognormal distribution have received considerable
attention in the literature for several decades. Since these integral transforms have no
known closed form, considerable effort has been devoted to finding viable approximation
methods. Recently, ref. [4] presented two parametric approximations (Theorems 3 and 4)
for the Laplace transform of the lognormal distribution.

These approximations improve as this parameter goes to infinity and can be used for
numerical calculations. Another characterization property of the lognormal distribution
using the Kullback–Leibler measure D(g, gr) =:

R
R+ g(x) ln g(x)

gr(x) dx between the proba-

bility density functions g and its r size-weighted counterpart gr(x) = xr

µr
g(x), with finite

moments µr = E(Xr) < •, for r 2 R, have been provided by [5], Theorem 1.
The authors claim that D(g, gr) becomes symmetric, i.e., D(g, gr) = D(gr, g), if and

only if g coincides with the lognormal density. Following [5], we want to give a further
characterization of LN(µ, s2) in the context of so-called fractional moments (see [6]) this
will allow us to prove that the lognormal density has the largest entropy among all densities
sharing the same moments.

From now on, for the sake of calculation simplicity, in place of the general LN(µ, s2)
distribution, we investigate the centered lognormal distribution LN(0, s2). Note that all its
properties and related results hold also for its non-centered (1).

Consider an indeterminate Stieltjes moment problem (books such as [7–9], are widely
known references on this topic and contain exhaustive details on the debate and progress
made in the moment problems for a century; for more recent results, see [10,11]. For deter-
minacy/indeterminacy criteria of moment problem by means of the entropic technique,
see [12].

Within the maximum entropy (MaxEnt, shortly) rationale, it is well known that
LN(0, s2) can be considered having the largest entropy among all positive random vari-
ables X with assigned expected values E[ln(X)] and E[ln2(X)], respectively. This fact is
not surprising in view of the maximal entropy property of the normal distribution once
assigned E[X] and E[X2] and taking into account the relationship between normal and
lognormal distributions.

As a consequence, recalling the well-known fact that the logarithm function can be
expressed as the pointwise limit of a sequence of simpler functions for every x > 0 (see
Equation (5) below), our goal will be realized by means of two distinct tools
(a) Firstly by the so-called fractional moments which will allow us to prove the lognormal

has the largest entropy out all densities having the lognormal moments (Theorem 2
below);

(b) Then, by the so-called integer moments, which will allow us to prove, employing
the complete sequence of integer moments solely, out densities having lognormal
moments, the lognormal only may be reconstructed (Theorem 3 below). Equivalently,
the lognormal is characterized by its integer moments, justifying the paper’s title,
although it is not uniquely determined by lognormal moments.
The rest of the paper is structured as follows. In Section 2, it is proved that the

lognormal distribution is characterized by two fractional moments E(Xa) and E(X2a),
with a ! 0+, and its entropy coincides with the entropy of ghmax, which is the member of
the class C• with maximum entropy. In Section 3, the lognormal density is recovered by
its integer moment sequence using the MaxEnt technique, and it is further shown that the
sequence of entropies associated with the MaxEnt densities converges to the entropy of
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ghmax and hence, to the entropy of the lognormal distribution. Finally, by noting that the
sequence of entropies of the MaxEnt densities is a Cauchy sequence, using its properties, it
is concluded that the sequence of MaxEnt densities converges almost everywhere to the
lognormal one. Section 4 will illustrate the so-called Askey density previously found in the
literature and labeled as “another continuous weight function for the lognormal moments”.
Finally, in Section 5, some charaterizations of the lognormal are listed.

2. Characterization of Lognormal via Fractional Moments

From [13], p.59, we preliminarily recall the following well-known result: the MaxEnt
density f f m

n constrained by the n fractional moments {E(Xaj)}n
1 , aj > 0, and in addition to

a0 = 0 and E(Xa0) = 1 for normalizing reasons, amounts to

f f m
n (x) = e�Ân

0 ljx
aj

(2)

where l0, l1, . . . , ln, are the Lagrange multipliers calculated by imposing fractional moments
Z

R+
xaj f f m

n (x) dx = E(Xaj), j = 0, . . . , n

as constraints as stressed by the index f m, and the corresponding entropy is given by

H[ f f m
n ] =

n

Â
j=0

ljE[Xaj ]. (3)

For more theoretical and numerical details on the topic, see [6].
In an indeterminate Stieltjes moment problem, the totality of densities g with support

R+ forms the convex set

C• :=
⇢

g � 0 |
Z

R+
xkg(x) dx = µk, k = 0, 1, . . .

�
,

with some properties:
1. In C• there is a unique density, say ghmax, having largest differential entropy (shortly,

entropy), being the continuous entropy functional

H : g ! H[g] =: E[� ln(X)] = �
Z

R+
g(x) ln g(x) dx

strictly concave and, over the convex set C•, H takes a maximum H[ghmax]. As a
consequence, excluding ghmax, every g 2 C• has entropy H[g] < H[ghmax] strictly.

2. LN(0, s2) belongs to C•, and in Theorem 2 below, the first main result will be proved,
that is H[LN(0, s2)] = H[ghmax] and then LN(0, s2) ⌘ ghmax.
The following result, formalized in Lemma 1, is preliminary to the characterization of

the lognormal distribution by fractional moments of appropriate order a 2 R+.

Lemma 1. The lognormal may be equivalently considered as MaxEnt density having two charac-
terizing fractional moments {E(Xa),E(X2a)}, with a ! 0+.

Proof. From the elementary inequality for positive real number ey � 1 + y the following
one 1 � 1

y  ln(y)  y � 1 is drawn with equality if and only if y = 1. Next, setting
y = x1/n, with n 2 N, for each n � 1 two additional inequalities

8
><

>:

1 � 1
x  ln(x)  n(x1/n � 1)  x1/n ln(x)  x ln(x), if x > 0

[n(x1/n � 1)]2  ln2(x), if 0 < x  1
(4)
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involving ln(x) and ln2(x) are drawn. As well recall the well-known fact that the logarithm
function can be expressed as the pointwise limit of a sequence of simpler functions for
every x > 0

ln(x) = lim
n!•

n(x1/n � 1), ln2(x) = lim
n!•

[n(x1/n � 1)]2 (5)

Replacing in (1) ln(x) and ln2(x) with n(x1/n � 1) and [n(x1/n � 1)]2, respectively, the con-
tinuous function sequence {LNn} 2 L1[0, •) is drawn with

LNn(x) = e�
1
2 ln(2ps2)�n(x1/n�1)� 1

2s2 [n(x1/n�1)]2

= e�[ 1
2 ln(2ps2)�n+ n2

2s2 ]�[n� n2
s2 ]x

1/n� n2
2s2 x2/n

(6)

Combining (4) with (6) allows us to concluding no entry LNn can be considered as
probability density. From (5) and each fixed x 2 R+, the integrable function sequence
{LNn} is pointwise convergent to LN. Furthermore, LN has mode xmode = e�s2 with

LN(xmode) =
e

1
2 s2

p
2ps2 . From (6), each entry LNn admits a maximum at xn = (1 � s2

n )n 
e�s2

< 1 with LN(xn) = LN(xmode) independent on n, so that {LNn} is a sequence of
positive, continuous, uniformly bounded, pointwisely convergent to LN functions for all
x 2 [0, •). From (1)–(6), we have

8
<

:

LN(x)  LNn(x) if 0 < x  1

LN(x) > LNn(x) if x > 1
(7)

Taking into account (4), the piecewise continuous function j is defined as

j(x) =:

8
<

:

LN(xmode) if 0 < x  1

LN(x) if x > 1
(8)

In the next three items, the dominated convergence theorem will be used so that we need
to construct a suitable positive piecewise continuous integrable function j1(x), x 2 [0, •)
(the so-called dominating function).

1. Assuming from (8) j1 = j, then LNn(x)  j1(x) for each x � 0 and each n, and j1 2
L1[0, •) holds, so that all the requirements of the dominated convergence theorem
are satisfied, from which it follows that

lim
n!•

Z

R+
LNn(x)dx =

Z

R+
LN(x)dx = 1. (9)

2. As above recalled, none of the entries of the positive function sequence {LNn} can be
considered as density; hence, the sequence {H[LNn] =: �

R
R+ LNn(x) ln(LNn(x)) dx}

is improperly called an “entropy sequence”. Nevertheless, we will be able to prove
that

lim
n!•

H[LNn] = � lim
n!•

Z

R+
LNn(x) ln(LNn(x)) dx = �

Z

R+
LN(x) ln(LN(x)) dx = H[LN]. (10)

Indeed, consider (6), from which

H[LNn] = �
Z

R+
LNn(x) ln(LNn(x) dx

= �
Z

R+

h1
2

ln(2ps2) + n(x1/n � 1) +
1

2s2 [n(x1/n � 1)]2
i

LNn(x) dx
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Split just above integral
R
R+ into

R 1
0 +

R •
1 , take into account (4), (7) and (8); then, find

the upper bound for the sequence {LNn ln(LNn)}

| LNn(x) ln(LNn(x)) | =| 1
2

ln(2ps2) + n(x1/n � 1) +
1

2s2 [n(x1/n � 1)]2 | LNn(x)

 (| 1
2

ln(2ps2) | + | n(x1/n � 1) | + 1
2s2 [n(x1/n � 1)]2)LNn(x)

from which arises the piecewise continuous and integrable dominating function

j2(x) =

8
>><

>>:

⇣
1
2 | ln(2ps2) | � ln(x) + 1

2s2 ln2(x)
⌘

LN(xmode), if x  1

⇣
1
2 | ln(2ps2) | +x ln(x) + 1

2s2 ln2(x)
⌘

LN(x), if x > 1

and then | LNn log(LNn) | j2 2 L1[0, •) for each n. Consequently, from the
dominated convergence theorem, (10) is proved.

3. A similar result holds for the moment curves of LN

mLN(a) =
Z

R+
xaLN(x) dx = e

1
2 s2a2

and of LNn

mLNn(a) =
Z

R+
xaLNn(x) dx

for each n � 1, with a � 0. Combining item 1 with (8), we know each LNn  j1,
from which each sequence entry {xaLNn}  xa j1. As a consequence, the function
j3 = xa j1 for each a � 0 satisfies

R
R+ j3(x) dx < • and, being piecewise continuous,

is the required dominating function. For each a � 0, the following relationship follows

lim
n!•

mLNn(a) = lim
n!•

Z

R+
xaLNn(x) dx =

Z

R+
xaLN(x)dx = mLN(a) (11)

Combining (6)–(11) and replacing 1
n with a in (6), it can be concluded that the log-

normal has to be considered MaxEnt distribution characterized by two fractional
moments {E(Xa),E(X2a)} with a ! 0+. Then, Lemma 1 is proved.

Just to have an idea about how well LNn given in (6) approximates the LN density,
look at the following graph (Figure 1).

Figure 1. Comparison between LN(x) and LNn(x) with s = 0.1 and n = 222.
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Here (top), as n increases supx | LN � LNn | tends to zero exponentially, leaving to
presume that LNn is uniformly convergent to LN. Consequently (bottom), the difference
(LN � LNn) tends to zero uniformly. The order of magnitude of the error made gives an
idea of how well LNn approximates LN.

Lemma 1 allows us to reconnect to the fractional moments problem in the MaxEnt
framework; in this setup, a crucial role is played by the following distribution characteriza-
tion theorem, hereafter referred to as Lin’s theorem, due to Lin (1992).

Theorem 1 ([14]). A positive r.v. X is uniquely characterized by an infinite sequence of positive
fractional moments {E(Xaj)}•

1 with distinct exponents aj 2 (0, a⇤), E(Xa⇤) < •, for some
a⇤ > 0.

Similarly, it can be shown that several other distributions, such as Gamma, generalized
Gamma, Weibull, Rayleigh, Chi-Square, and Pareto, to name a few, can be considered as
MaxEnt distributions characterized by a few fractional moments.
We are now able to demonstrate the first main result of this paper by means of the fractional
moments technique.

Theorem 2 (Main Result-I). Of all the densities g 2 C• with lognormal moments, the lognormal
LN has the largest entropy, that is

H[LN] = maxg2C• H[g] = H[ghmax] (12)

so that LN coincides with ghmax.

Proof. For an arbitrary g 2 C•, consider its moment curve mg(a) =
R
R+ xag(x) dx. In gen-

eral, mg(a) 6= mLN(a) except when a = j, j = 0, 1, 2, ...; in which case mg(j) = mLN(j) = µj

holds. Let f f m
2 be the MaxEnt approximation of g, constrained by two fractional moments

{E(Xa),E(X2a)} picked up from mg(a), with small and fixed a. Thanks to (11), the couple
of values follows {E(Xa),E(X2a)} 2 mg(a) ' {E(Xa),E(X2a)} 2 mLN(a). Recalling the
entropy H[g] of an arbitrary density g is a continuous function of two expected values
{E(Xa),E(X2a)} 2 mg(a), thanks to (10), the relationship H[LN] ' H[ f f m

2 ] can be set.
Now, consider an arbitrary g 2 C•, its moment curve mg(a) and a sequence of its fractional
moments {E(Xa),E(X2a), {E(Xaj}•

3 } satisfying Lin’s theorem conditions, with fixed small
a and each aj > 2a. For each g 2 C•, with g 6= ghmax, it holds

H[LN] ' H[ f f m
2 ] > H[g] (13)

as the couple {E(Xa),E(X2a)} 2 mLN(a), with a ! 0+, characterizes LN, in contrast to
the couple {E(Xa),E(X2a)} 2 mg(a) ' {E(Xa),E(X2a)} 2 mLN(a), with a ! 0+, which
does not characterize any of the remaining g 2 C•. So, H[LN] = H[ghmax] > H[g] holds
for every g 2 C•; combining the uniqueness of ghmax in C• with the fact that LN 2 C• too,
it follows LN ⌘ ghmax. Consequently, Theorem 2 is proved.

3. Characterization and Reconstruction of Lognormal via Its Integer Moments

Given that the moment problem for the lognormal density is indeterminate, one
might expect that approximations based uniquely on a sequence of integer moments might
either fail to converge or converge to a different distribution with the same moments.
A difficult proof would no doubt be required, and perhaps a similar approximation might
be numerically very unstable for more than a few moments. Theorem 2 allows us to solve
the problem. Suppose in a positive distribution reconstruction process only the whole
moment sequence is known, specifically the lognormal moments {µk = e

1
2 s2k2}•

1 .
The question follows: using the MaxEnt method with lognormal moments as constraints,

which distribution is reconstructed (in other words, identified or characterized) out of the infinitely
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many candidate distributions belonging to C•? The expected answer is obvious: the one with
the largest entropy.

Considering an indeterminate Stieltjes moment problem, [15] - Thm. 7, have indeed
shown that the MaxEnt approximation converges in entropy to ghmax and, in combination
with the Theorem 2, gives us the relation

lim
n!•

H[ f im
n ] = H[ghmax] = H[LN]. (14)

Here, the index im refers to the fact that f im
n (x) = e�Ân

0 ljxj
is the MaxEnt approxima-

tion of the lognormal density based on using integer moments as constraints and having
an analytical form analogous to (2), in which the term aj is replaced by j.

In addition to the convergence in the entropy (14), the following also holds true.

Theorem 3 (Main Result-II). The sequence { f im
n (x)} converges a.e. to LN in L1

lim
n!•

f im
n = LN a.e.

so that ghmax = LN almost everywhere. Equivalently, LN is characterized by the sequence of its
integer moments.

Proof. The proof is obtained combining together the following facts.
1. [15] - Thm. 7, proved that the monotonically non-increasing sequence {H[ f im

n ]}
converges to the quantity H[ghmax] = H[LN] finite, so that taking into account (14),
{H[ f im

n ]} is a Cauchy sequence.
2. Consider the Kullback–Leibler distance between densities LN and f im

n

DKL(LN, f im
n ) :=

Z

R+
LN(x) ln

LN(x)
f im
n (x)

dx

As LN and f im
n share the same first n moments {µk}n

1 , the relationship below easily
follows: Z

R+
LN(x) ln

LN(x)
f im
n (x)

dx = H[ f im
n ]� H[LN]. (15)

3. Recall Pinsker’s inequality ([16], p. 390),

1
2
k f im

n � LN k2
1 DKL(LN, f im

n )

Collecting together items 1–3, Equation (15) and m > n arbitrary indices, it follows

1
2
k f im

n � f im
m k2

1 DKL( f im
m , f im

n ) = H[ f im
n ]� H[ f im

m ]

so that { f im
n } is a Cauchy sequence in L1.

4. LN is the unique density in C• with the largest entropy value H[LN] = H[ghmax].
Replacing f im

m with LN, letting n ! •, recalling (14), the completeness of L1 and the
items 1–3

1
2
k f im

n � LN k2
1 DKL(LN, f im

n ) = H[ f im
n ]� H[LN] ! 0

so that { f im
n } is uniformly convergent to LN. It is standard that { f im

n } has a subse-
quence pointwise convergent a.e. to ghmax = LN and the sequence itself converges
a.e. to the same limit, which could explain the goodness of the approximation of LN
through the MaxEnt approximation f im

n based on integer moments.



Mathematics 2024, 12, 3830 8 of 11

4. Askey and Berg Densities Having Lognormal Moments

In the previous section, we showed that among the infinitely many densities in C•,
the lognormal LN has the largest entropy. To our knowledge, there are two other densities
in C•, excluding the so-called Stieltjes classes (see [17]), w and wc, called Askey and Berg
densities, respectively: we now want to investigate the connection between LN and w.
Theorem 3 gives us the opportunity to study the Askey density w, which is considered in
the literature as different from LN for the simple reason that this has a different analytical
form. It might also be interesting to represent LN by an analytical expression in which the
full sequence {µk{LN}}•

1 of the lognormal moments appears explicitly, which is consistent
with the fact that ghmax = LN, since only the latter is characterized by the lognormal
moment sequence.

In order to achieve this, the following three facts are brought together.
1. From Theorem 3, ghmax = LN holds a.e.;
2. [18] - Theorem 2.1, considered Jacobi’s theta function

Qq(x) :=
•

Â
�•

xkq
1
2 k2

, x > 0 (16)

where q = exp(�s2), so that 0 < q < 1 and proved, as q ! 1�,

Qq(x) =
a

s
2p

ln(1/q)
e

ln2(x)
2 ln(1/q) (17)

Here, the symbol “=
a

” means asymptotically equal; that is, we write Aq =
a

Bq if
limq!1� Aq/Bq = 1.

3. Askey and Berg (see [19], Equations (2.5) and (2.8) for details and further references),
respectively, found the densities

w(x) =
1

ln(1/q) · x · Qq(x)
(18)

and its one-parameter extension

wc(x) =
xc�1

Mc Qq(xq�c)
(19)

The last one satisfies the property wc+1 = wc with Mc as the normalizing constant
and Mc+1 = qc+1/2Mc; so it suffices to consider c 2 [0, 1). Note that setting c = 0,
wc = w.
Combining (16) with (17) and setting x = 1, as q ! 1�, the interesting result follows

•

Â
k=�•

q
1
2 k2

=

s
2p

ln(1/q)
(20)

In particular, (20) allows us to easily understand the validity of (17), i.e., the range of q
values for which Wang’s result is meaningful. We have numerical evidence that such a
range of values is approximately 1/e < q < 1, which is equivalent to 0 < s < 1.

Collecting together (17) and (18), as q ! 1�, it follows that

w(x) =
a

1p
2p ln(1/q)

· 1
x

e�
ln2(x)

2 ln(1/q) (21)

that is, w is asymptotically equal to LN.
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As q ! 1�, combining (16), (18) and (21), recalling {µk{LN} = q�
1
2 k2}•

1 , exploiting
the translation invariance of Â•

k=�• and the identity k2 = (k + 1)2 � 2(k + 1) + 1, we have

LN(x) =
a

1
pq ln(1/q)

h
1 + Â•

k=1
(x/q)�k+(x/q)k

µk(LN)

i

From Theorem 3, as q ! 1�, it follows that w =
a

LN = ghmax, so from (21), LN can
be explicitly formulated in terms of its moments, proving that the information content
needed to characterize LN reduces to that carried by the sequence of lognormal moments,
confirming the above result LN = ghmax a.e.

Example 1. Out of pure curiosity, we wonder what ghmax is like once the sequence of moments has
been assigned. Considering the various convergence criteria outlined above, f im

n can be considered a
good approximation of ghmax as n assumes high values. And that is what we’re going to do, with an
example.

Consider the standard lognormal LN(0, s2) with density LN and entropy
H[LN] = 1

2 ln(2pes2) ' �0.883646 as s = 0.1, which guarantees limn!• H[ f im
n ] = H[LN] is

finite, according to Theorem 2 and [15], Thm. 7.
Table 1 shows the entropy H[ f im

n ] of the MaxEnt reconstruction f im
n with increasing n while

Figure 2 displays LN density and f im
n . Here n = 10 is the largest available value due to the

numerical instability associated with the moment problem in the MaxEnt setup.
From Table 1, it can be seen that as n increases, the difference H[ f im

n ]� H[LN] tends to 0.
Here, we observe that the entropy changes very little as we go from, say, six to ten moments. Since
the entropy rapidly stabilizes as the number of moments increases, this suggests that the number
of moments considered is high enough for the reconstructed density to be close to the estimated
density LN. The example now illustrated provides an answer to the reasonable doubt outlined above:
given that the moment problem for the lognormal density is indeterminate, one might expect that
approximations based on a sequence of integer moments either fail to converge or converge to a
different distribution with the same moments.

Table 1. H[ f im
n ] and difference H[ f im

n ] � H[LN], with s = 0.1, for an increasing number n of
integer moments.

n H[ f
im
n ] H[ f

im
n ]� H[LN]

2 �0.876144 0.007501

4 �0.877783 0.006367

6 �0.881564 0.002084

8 �0.882228 0.001411

10 �0.882631 0.001015
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Figure 2. Comparison f im
n , n = 10, with LN, s = 0.1.

5. Final Remarks

At the end of this paper, we will briefly summarize the path taken and the main
results obtained.

Due to the analytic form of the Shannon entropy functional and its concavity, there
exists a (unique) maximum in correspondence of ghmax; that is, this density has the maxi-
mum entropy in the class C• which contains all the distributions sharing the lognormal
moment sequence with it. In the MaxEnt framework, ghmax represents the most entropy-
representative element of the class C•. Moreover, using the fact that the characterizing
moments of the lognormal distribution are given by E[ln(X)] and E[ln2(X)] and that they
can be assimilated to fractional moments whose orders a1 and a2 tend to 0+, it has been
proved by Theorem 2 that ghmax coincides with LN.

Now, considering the sequence of lognormal integer moments as constraints, we know
that the MaxEnt approximation based on them, f im

n , converges in entropy, and also almost
everywhere, to ghmax. Hence, by Theorem 3, f im

n converges almost everywhere to LN =
ghmax. Finally, it is possible to conclude that the lognormal distribution is characterized by
the sequence of its integer moments. And this justifies the title of this paper.
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