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Reconstruction of the frequency-wavenumber
spectrum of water waves with an airborne acoustic
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Abstract—This work presents a novel method to reconstruct
the frequency-wavenumber spectrum of water waves based on the
complex acoustic Doppler spectra of scattered sound measured
with an array of microphones. The reconstruction is based on a
first-order small-roughness-amplitude expansion of the acoustic
wave scattering equation, which is discretized and inverted by
means of a singular value decomposition. An analogy of this
approach to the first-order Bragg scattering problem is demon-
strated by means of a stationary phase expansion. The approach
enables the reconstruction of the dispersion relation of water
waves when the ratio between roughness height and acoustic
wavelength is less than 0.1, and when the surface wavelength
is larger than 1/2 of the acoustic wavelength. The method
is validated against synthetic data and data from laboratory
and field experiments, to demonstrate its applicability to two-
and three-dimensional complex patterns of water waves, and
specifically to the surface deformations that arise naturally in a
turbulent open-channel flow. Fitting the reconstructed data with
the analytical dispersion relation enables the non-contact estimate
of the underlying flow velocity for hydraulic conditions where
the coexistence of different types of turbulence-forced and freely
propagating water waves would limit the accuracy of standard
non-contact Doppler velocimetry approaches, paving the way for
robust and accurate non-contact river monitoring using acoustics.

Index Terms—Wave spectrum, Doppler, non-contact, river
monitoring, frequency-wavenumber spectrum, acoustics.

I. INTRODUCTION

THE properties of water waves measured by means of scat-
tered electromagnetic or acoustic signals have been used

to monitor currents [1], bathymetry [2], and significant wave
height and period [3] in the oceans, and surface flow velocities
in rivers [4], [5]. In most cases, the dominant mechanism that
influences the scattered acoustic or electromagnetic signals
is Bragg scattering [6]. The scattered signal is selectively
sensitive to water waves with the Bragg wavenumber κB =
k0[cos(ϕi) + cos(ϕr)], where k0 = ω0/c0 is the wavenumber
modulus of the incident signal, ω0 is the corresponding angular
frequency, c0 is the speed of light or sound (as appropriate),
and ϕi and ϕr are the elevation angles of the wavenumber
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vectors of the incident and scattered waves relative to the
horizontal plane. For a monostatic setup where the signal is
emitted and received at the same location, κB = 2k0 cos(ϕi).
The frequency of the sound or electromagnetic wave reflected
from the rough moving water surface changes by an amount
∆ω proportional to the wave speed (Doppler shift). Then,
the Doppler spectrum of the scattered signal at the frequency
ω0 +∆ω is proportional to the amplitude of the water waves
with wavenumber κB , where ∆ω = κBc and c is the phase
speed of the Bragg waves on the rough surface. Measurements
of the Doppler spectra provide an estimate of the speed of
water waves, which can be used to infer the velocity of the
underlying flow [7].

Applications of Doppler spectra analysis for the non-contact
measurement of flow velocities in rivers or open-channel flows
employed both radar [4], [5], [8]–[10] and acoustic [11] sig-
nals. These applications can suffer from large uncertainties be-
cause of the complex dynamics of the water waves when they
interact with a turbulent flow. Turbulent forcing can modify the
speed of water waves [12] or generate additional wave patterns
[13] making the identification of the Doppler velocity and their
link with the underlying depth-averaged flow velocity non-
trivial [4], [11]. Measurements with a bistatic geometry (sep-
arate source and receiver) allow focusing on longer and more
predictable waves while increasing the signal-to-noise ratio,
but at the expense of the ease of data interpretation [8], [14].
The main obstacle to the interpretation of the Doppler spectra
for river monitoring is the fact that waves with different wave-
lengths, speeds, and/or directions of propagation can produce
a peak at the same Doppler frequency [11]. The frequency-
wavenumber spectrum of the water surface fluctuations allows
the separation of the contributions from the different types of
waves (gravity-capillary waves and turbulence-forced patterns)
that appear in a turbulent flow, according to their speed of
propagation and dispersion relation [15]–[18]. The analysis
of such spectra enables a more accurate and robust estimate
of the time-averaged surface flow velocity [3], and also of
the water depth [19]. However, the calculation of frequency-
wavenumber spectra requires measurements of the surface
deformations in time and in space which is challenging.

Numerous methods have been developed for the recon-
struction of the ocean wave spectrum based on scattered
radar signals, although their application to river flows is
not straightforward. There is a direct relationship between
the acoustic/electromagnetic wave Doppler spectrum and the
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water wave spectrum, which can be revealed by expanding
the scattering equations with respect to a small ratio of
surface amplitude over signal wavelength [20]. Voronovich and
Zavorotny [21] proposed a method to reconstruct the spatial
spectrum of water waves based on the first-order expansion
of the Doppler HF/VHF radar signal emitted and recorded by
a moving antenna on an airplane, using a synthetic aperture
approach. The detection of the Bragg peaks in the Doppler
spectrum is facilitated in the case of radar scattering in the
ocean, where measurements are usually performed in the
Fraunhofer zone, i.e., for small values of the ratio between
the effective size of the illuminated area and measurement
range [22], and where the angle of incidence of the signal and
the Bragg wavenumber are well defined. This facilitates the
estimation of the wave speed but provides little information
about the spectrum of scales other than the ones identified by
the Bragg wavenumber. In turn, information about the broader
water wave spectrum can be extracted from the continuous
second-order terms of the backscattering Doppler spectra in
the neighbourhood of the Bragg peaks [23], [24]. Such an
approach has been applied mainly to sea surface scattering of
high-frequency radar, and was later improved and extended
to multiple radar systems to address an ambiguity in the
wave travel direction [25], [26]. These methods require prior
knowledge of the dispersion relation (and therefore of the
speed) of water waves to relate the temporal information in the
Doppler spectra with the spatial spectrum of the rough surface,
therefore they are not applicable in river flows where the
dispersion relation depends on the (unknown) flow velocity.
Alternatively, the continuous spectrum of relatively long water
waves can be estimated from the modulation of shorter Bragg
waves, which results in a pattern of spatial and/or temporal
variations of the Doppler velocity [27]. The approach employs
the linear water wave theory to express the modulation as a
function of wave frequency. It assumes the velocity of the flow
to be constant, and requires a capability to clearly identify
the frequency of the Bragg peaks with a high spatial and/or
temporal resolution.

More recent approaches attempted to directly reconstruct
the instantaneous shape of the water surface based on simul-
taneous measurements of the scattered electromagnetic [28],
[29] or acoustic [30]–[35] signal at different receivers along
an array. These methods, derived for static surfaces, neglect
the effects of the surface dynamics on the scattered field
(e.g., Doppler shift), which can limit the reliability of the
reconstruction over longer periods of time.

Here we propose a method for reconstructing the frequency-
wavenumber spectrum of water waves from the first-order
Doppler spectra of scattered acoustic signals without any prior
knowledge of the surface dynamics. The method produces an
estimate of the dispersion relation of the water waves that
enables the characterization of the surface and flow dynamics
even in turbulence-dominated environments such as rivers
and partially filled pipes. Combining a single omnidirectional
narrow-band acoustic source with an array of receivers ar-
ranged within a region of specular reflection, the method
allows the characterization of the behavior in space and time
of small-amplitude (relative to the acoustic wavelength) water

waves. The method is derived in Section II and validated both
numerically (Section III) and experimentally (Section IV) in
conditions that are representative of a small river or open
channel. The potential application for the non-invasive mon-
itoring of river flow is demonstrated by estimating the time-
averaged flow velocity based on the reconstructed spectra in
Section IV-B.

II. DERIVATION

A. 3D surface

Figure 1 illustrates schematically the problem of acoustic
scattering by a dynamically rough water surface. The surface
roughness is defined as function ζ expressing a perturbation
of the plane x − y, z = ζ(x, y), with z pointing upwards. A
harmonic signal with angular frequency ω0 and wavenumber
k0 is emitted by an acoustic source located at S = (xs, ys, zs)
in the far field with respect to the scattering surface. The signal
scattered by the surface is recorded by NM receivers with
co-ordinates Mm = (xm, ym, zm), m = 1, . . . , NM that are
also set up in the far field. The directivity of the source is
modelled by the function D(ϕs(x, y, z)), where ϕs is the angle
between the normal to the acoustic wavefront and the axis of
the speaker, identified by the unit vector ns. For an acoustic
wave with wavenumber vector k0, k0 ·ns = k0 cos(ϕs). Here
D(ϕs(x, y, z)) is approximated by the directivity pattern of a
piston of radius a0 with an infinite baffle as [36]

D(ϕs) = 2
J1(k0 a0 sin(ϕs))

k0 a0 sin(ϕs)
, (1)

where J1(·) is the Bessel function of the first kind and first
order. It is assumed that: (i) the maximum surface elevation
is small relative to the distance between the source and the
surface, i.e. max{ζ(x, y)} ≪ |z− S|, and to the distance
between the surface and the receivers, i.e. max{ζ(x, y)} ≪
|M− z|; (ii) the maximum surface slope is small relative to
the angle of incidence of the signal w.r.t. the horizontal plane,
i.e. max{∇ζ(x, y)} ≪ tan(ϕi), where ϕi = − sin−1(ez ·
k0/k0); (iii) the Kirchhoff approximation [37] is valid, i.e.,
2k0rc sin

3 ϕi > 1, where rc is the curvature radius of the scat-
tering surface; and (iv) the deformation of the surface shape
in time is slow relative to the speed of sound. Condition (ii) is
necessary for the linearisation of the scattering equation with
an acoustically rigid boundary and ensures that shadowing can
be neglected [37].

Under these conditions, the scattered acoustic pressure at the
location Mm can be approximated by the Kirchhoff integral
equation [22]

p(Mm, t) = exp (−iω0t)

∫ ∫
Γ

H0(Mm, x, y)

× exp [−iqz(Mm, x, y)ζ(x, y, t)] dxdy, (2)

where

qz(Mm, x, y) = k0

(
zm

rm(Mm, x, y)
+

zs
rs(x, y)

)
, (3)

r2m(Mm, x, y) = (xm−x)2+(ym− y)2+ z2m and r2s(x, y) =
(xs − x)2 + (ys − y)2 + z2s are the squared distances to the
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source and receivers from a point with coordinates (x, y, 0)
and Γ is the projection of the rough surface on the xy-plane.
The kernel H0(Mm, x, y) is a function of the geometry of the
array that is independent of the shape of the surface and of
time t,

H0(Mm, x, y) = − iD(ϕs(x, y))

4πk0
qz(Mm, x, y)

× exp {ik0 [rm(Mm, x, y) + rs(x, y)]}
rs(x, y)rm(Mm, x, y)

. (4)

Assuming a small relative surface deformation, k0ζ ≪ 1,
and expanding Eq. (2) in a Taylor series, one obtains

p(Mm, t)

= exp (−iω0t)

∞∑
n=0

∫ ∫
Γ

Hn(Mm, x, y) [ζ(x, y, t)]
n
dxdy,

(5)

where

Hn(Mm, x, y) =
[−iqz(Mm, x, y)]

n

n!
H0(Mm, x, y). (6)

It is further assumed that the scattering surface can be
described as the inverse Fourier transform of its complex
frequency-wavenumber spectrum ψ(κx, κy, ω), e.g.,

ζ(x, y, t)

=
1

8π3

∫ ∫ ∫ ∞

−∞
ψ(κx, κy, ω)e

i(κxx+κyy−ωt)dκxdκydω,

(7)

where ψ(−κx,−κy,−ω) = ψ∗(κx, κy, ω) to ensure that ζ is
real, ψ∗ is the complex conjugate of ψ, and κ = (κx, κy) is
the wavenumber of the rough surface. The Fourier transform
in time of the scattered signal p(Mm, t) up to the second order
yields

p̃(Mm, ω) =

∫ ∞

−∞
p(Mm, t)e

iωtdt

≈ δ(ω − ω0)Ĥ0(Mm, 0, 0)

+

∫ ∫ ∞

−∞
Ĥ1(Mm,−κx,−κy)ψ(κx, κy, ω − ω0)dκxdκy

+

∫ ∫ ∫ ∫ ∫ ∞

−∞
Ĥ2(Mm,−(κx + κ′x),−(κy + κ′y))

×ψ(κx, κy, ω
′)ψ(κ′x, κ

′
y, ω−ω0 −ω′)dω′dκxdκydκ

′
xdκ

′
y,

(8)

where

Ĥn(Mm, κx, κy)

= (2π)1−3n

∫ ∫
Γ

Hn(Mm, x, y)e
−i(κxx+κyy)dxdy (9)

is the spatial Fourier transform of the kernel Hn.
The zero-th order term, δ(ω−ω0)Ĥ0(Mm, 0, 0), in Eq. (8)

contributes only to the signal at the carrier frequency ω0. The
integral that includes the first term Ĥ1(Mm,−κx,−κy) can
be approximated numerically: discretizing the wavenumber
and frequency axes with regular grids, kx = a∆kx, a =

−Nx/2, . . . , Nx/2; ky = b∆ky , b = −Ny/2, . . . , Ny/2; and
ω = n∆ω, n = −Nω/2, . . . , Nω/2; and assuming a surface
spectrum with an upper cutoff to satisfy the Nyquist-Shannon
sampling theorem (ψ(κ, ω) = 0 for |κ| > ks/2), then, at first
order of k0h

p̃(Mm, n∆ω) ≈ ∆kx∆ky

Nx/2∑
a=−Nx/2

Ny/2∑
b=−Ny/2

Ĥ1(Mm,−a∆kx,−b∆ky)ψ(a∆kx, b∆ky, n∆ω − ω0),

if n∆ω ̸= ω0. (10)

Equation (10) can be rewritten as a matrix product,

P̃ = ĤΨ. (11)

P̃m,n = p̃(Mm, n∆ω) is the complex discrete Fourier spec-
trum coefficient in the spectrum of the scattered signal corre-
sponding to the frequency n∆ω and recorded by the m-th mi-
crophone. ĤNm×Nκ

=
[
Ĥ(1), Ĥ(2), . . . , Ĥ(Ny)

]
, with elements

Ĥ
(b)
m,a = Ĥ1(Mm,−a∆kx,−b∆ky)∆kx∆ky , is a rectangular

(Nκ = NxNy) transfer matrix that depends only on the
problem geometry. ΨNκ×Nω = [Ψ(1),Ψ(2), . . . ,Ψ(Ny)]T , with
elements Ψ

(b)
n,a = ψ(a∆kx, b∆ky, n∆ω − ω0), is the complex

discrete frequency-wavenumber spectrum of the scattering
surface at the Doppler frequency n∆ω − ω0, reshaped as a
2D matrix.

The frequency-wavenumber spectrum of the surface can
be estimated by inverting Eq. (11). Note that the choice
of the wavenumber discretization is arbitrary (despite some
requirements that will be highlighted in the following sec-
tions). However, in typical applications, the number of discrete
wavenumbers Nκ exceeds the number of physical receivers
Nm. In this case, the inversion can be achieved numerically,
for example by means of a singular value decomposition of the
transfer matrix Ĥ through regularization. Here, we employed
the Tikhonov regularization, and the regularization parame-
ter was calculated based on the generalized cross-validation
method. Krynkin et al. [32] applied a similar approach to
reconstruct the shape of a surface directly, but neglecting the
Doppler shift.

Once the complex frequency-wavenumber spectrum is es-
timated, it is possible to reconstruct either the frequency
spectrum at the location (x, y),

E(x, y, ω) =
1

4π2

∫ ∫ ∞

−∞
ψ(κx, κy, ω)e

i(κxx+κyy)dκxdκy,

(12)

or even the instantaneous shape of the water surface by means
of Eq. (7).

B. 2D surface

Assuming no variations of the surface elevation along the
y-axis (ζ = ζ(x, t) with ∂ζ/∂y = 0) and source and receivers
situated on the x−z plane, the 3D Kirchhoff integral equation
(Eq. (2)) can be simplified as a single integral along the
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Fig. 1. A schematic representation of the geometry of the problem. S and Mm represent the position of the acoustic source and of the m-th receiver,
respectively. x0(Mm, κ) is the location of the stationary phase point identified from the Bragg resonance condition for the m-th receiver and for the
wavenumber κ (Eq. (17)). x0(Mm, 0) identifies the specular point for the m-th receiver. The two areas shaded in pink and in blue identify respectively the
portions of rough surface where Bragg scattering by waves with the wavenumbers −κ (delimited by dashed lines) and κ (delimited by dashed-dotted lines)
is predominant. The two areas overlap in the area shaded in purple.

projection Γx of the rough surface on the x-axis by means
of a stationary phase expansion along y [38], yielding:

p(2D)(Mm, t) = exp (−iω0t)

×
∫
Γx

H(2D)
0 (Mm, x) exp [−iqz(Mm, x)ζ(x, t)] dx; (13)

where

H(2D)
0 (Mm, x) =

e−iπ/4

k0
√
k08π

qz(Mm, x)

×
D(ϕ(x)) exp

{
ik0

[
r
(2D)
m (Mm, x) + r

(2D)
s (x)

]}
√
r
(2D)
s (x)r

(2D)
m (Mm, x)

√
r
(2D)
s (x) + r

(2D)
m (Mm, x)

;

(14)

Ĥ(2D)
n (Mm, κx) = (2π)1−2n

∫
Γx

H(2D)
n (Mm, x)e

−iκxxdx;

(15)
with r

(2D)
m (Mm, x) =

√
(xm − x)2 + z2m and r

(2D)
s (x) =√

(xs − x)2 + z2s . Equations (5) to (12) remain valid after
replacing ψ(κx, κy, ω) with

ψ(2D)(κx, ω) = ψ(κx, κy, ω)δ(κy) (16)

C. Bragg Scattering Interpretation

To clarify the range of applicability of the method, it is help-
ful to examine the integrals in Eq. (9) and Eq. (15) by means
of a stationary phase expansion. The case of a 2D surface
(Eq. (15)) is considered for simplicity, but the results are valid
in a more general 3D case. The superscript (2D) and subscript
x in κx are dropped for brevity. It is assumed that the scattering
surface area Γx is large compared to the acoustic wavelength
λ0 and that the directivity D(ϕs) varies slowly along x. The
phase of the integrand is k0[rm(Mm, x) + rs(x)] − κx. The

gradient of the phase equals zero at the stationary phase point,
x0(Mm, κ), which is given implicitly by

x0(Mm, κ) =
rs(x0)xm + rm(Mm, x0)xs
rm(Mm, x0) + rs(x0)

+
rs(x0)rm(Mm, x0)

rm(Mm, x0) + rs(x0)

κ

k0
. (17)

The first term on the right-hand side of Eq. (17) identifies the
point of specular reflection, which is a stationary phase point
when κ = 0. It is noted that in a monostatic configuration
(M = S, Nm = 1) Eq. (17) yields 2k0(x0 − xs)/rs =
2k0 cos(ϕi) = κ, which enables to identify κ as the Bragg
wavenumber. In the more general bistatic configuration, the
expansion of Eq. (15) at x0(Mm, κ) yields

Ĥn(S,Mm, κ, k0) ≈ (2π)1−2n

√
2π

k0
eiπ/4

×
[

z2s
r3s(x0)

+
z2m

r3m(Mm, x0)

]−1/2

Hn(Mm, x0)e
−iκx0 . (18)

Eq. (18) links the Fourier transform Ĥn of the kernel at the
wavenumber κ with the location x0 on the surface that satisfies
the Bragg resonance condition for κ. Eq. (17) has solutions
only for |κ| ≤ 2k0. Therefore, the Doppler spectrum as a first-
order approximation is governed by roughness wavelengths
larger than λ0/2.

Let us consider a sinusoidal scattering surface with the
wavenumber κ0, moving at the speed c, with the following
monochromatic frequency-wavenumber spectrum:

ψ(κ, ω) = [ψ0δ(κ− κ0) + ψ∗
0δ(κ+ κ0)] δ(ω − κc), (19)
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where ψ0 is a constant. Substituting into Eq. (8) yields

p̃(Mm, ω) ≈ δ(ω − ω0)Ĥ0(Mm, 0)

+ ψ0Ĥ1(Mm,−κ0)δ(ω − ω0 − κ0c)

+ ψ∗
0Ĥ1(Mm, κ0)δ(ω − ω0 + κ0c)

+ ψ0

[
ψ0Ĥ2(Mm,−2κ0)δ(ω − ω0 − 2κ0c)

+ψ∗
0Ĥ2(Mm, 0)δ(ω − ω0)

]
+ ψ∗

0

[
ψ0Ĥ2(Mm, 0)δ(ω − ω0)

+ψ∗
0Ĥ2(Mm, 2κ0)δ(ω − ω0 + 2κ0c)

]
, (20)

a result first obtained by Barrick [39] in the context of radar
scattering. The 0-th order spectrum at the carrier frequency
ω0 is Ĥ0(Mm, 0), which is due to reflections at the specular
point. At first order, the Doppler spectrum has two peaks, at
the Doppler frequencies ω − ω0 = ±κ0c. These are linked
to scattering at two stationary phase points, x0(Mm,−κ0)
and x0(Mm, κ0), respectively. Assuming (without any loss
of generality) that the surface moves towards the positive
x-direction, and that xm > xs, then the peak at the
positive Doppler frequency, κ0c, is due to scattering from
x0(Mm,−κ0) < x0(Mm, 0) which is to the left of the
specular point (closer to the source - see Fig. 1), and the peak
at the negative Doppler frequency −κ0c, is due to scattering
from x0(Mm, κ0) > x0(Mm, 0) (closer to the receiver). The
spatial dependence of the Doppler spectrum is highlighted in
Fig. 1, where the areas shaded in pink and in blue represent
the areas of the surface where Bragg scattering is sensitive
to waves with the wavenumbers −κ (producing the Doppler
spectrum at frequency κc) and κ (producing the Doppler
spectrum at frequency −κc), respectively. These areas overlap
only in a small portion of the surface.

Second-order terms in Eq. (20) contribute to the Doppler
spectrum at the carrier frequency ω0, and at the second-
order harmonics ω − ω0 = ±2κ0c of the Bragg frequencies.
Including three terms in the expansion would lead to additional
peaks at the frequencies ω−ω0 = ±κ0c±κ0c±κ0c, and so on.
Higher-order terms of the small perturbation expansion yield
spurious harmonics in the estimated surface spectrum. For a
broadband roughness spectrum, the harmonics are replaced
by the auto-convolution of the roughness frequency spectrum,
yielding an additional broadband contribution to the Doppler
spectrum which is not easily separated from the first-order
terms, unless the measurements are performed in the Fraun-
hofer zone. In this case, the Bragg wavenumber is uniquely
defined by the geometry, and second-order Doppler inversion
[23], [24] becomes a more favourable approach.

D. Scattering from water waves

The spectrum of water waves can be described as ψ(κ, ω) =
Ψ(κ)δ(ω − κc), where c is the phase velocity defined by the
gravity-waves dispersion relation,

c =

√
gd

(1 +B)

B

tanh(κd)

κd
, (21)

where g is the acceleration due to gravity, B = ρgγ−1κ−2

is the Bond number, which indicates the ratio of gravity and
surface tension effects, γ is the surface tension coefficient, ρ
is the water density, and d is the water depth.

In rivers and open channel flows, the mean flow modifies
the frequency of gravity-capillary waves as follows [16]:

ω = κ ·U± κc, (22)

where U is the flow velocity (here assumed to be constant in
space and in time). In addition to gravity waves, other types of
surface deformations such as turbulent boils, vortex dimples,
etc. (see Muraro et al. [13]) are induced by turbulent structures.
The frequency of these so-called ‘forced’ waves [12] is equal
to [16]

ω = κ ·U. (23)

The coexistence of multiple types of waves with different
speeds and directions of propagation makes the wavenumber-
frequency relationship non-unique, causing multiple peaks in
the Doppler spectra of backscattered acoustic [11] or radar
[4] signals, and resulting in the ambiguity of flow velocity
estimations.

On the other hand, the knowledge of the frequency-
wavenumber spectrum of the surface and its comparison with
the theoretical dispersion relations (Eq. (22)-(23)) would allow
a more robust estimation of the surface flow velocity. The
approach has been applied extensively in oceanography [40],
[41], and was recently extended to the non-contact monitoring
of the velocity [42] and water depth [19] of river flows
through the analysis of videos of their water surface. Specifi-
cally, Dolcetti et al. [19] employed an optimisation algorithm
to identify the flow parameters (velocity and water depth)
that provide the best fit between the measured frequency-
wavenumber spectrum and a synthetic spectrum that satisfies
the theoretical dispersion relations, Eq. (22) and (23). The
applicability of this latter approach to the spectra reconstructed
from the scattered acoustic signal is tested in Section IV-B, to
estimate the flow velocity.

III. NUMERICAL VALIDATION

The numerical tests were aimed at characterizing the per-
formance of the method in ideal conditions. For the numerical
validation of the method, random surface realizations with
different wave amplitudes and with different spectra were
constructed by means of Fourier synthesis [37]. The initial
surface shape was evolved in time according to Eq. (21)
(i.e., without mean flow), assuming infinitely large depth
and neglecting the surface tension terms (B → ∞). The
scattered field at each time step was calculated by means of
the 2D Kirchhoff approximation model based on Eq. (13). The
geometry and signal characteristics were chosen in accordance
with the experiments on paddle-generated waves described
later in Section IV-A. A monochromatic acoustic signal with
frequency ω0/2π = 14 kHz (wavelength λ0 = 24.3 mm)
was used. The scattered signal was calculated at 30 receiver
locations spaced equidistantly between x1 = 66 mm and
xNm

= 937 mm, at the height of zm = 293 mm above the
mean water level. The source had the co-ordinates xs = 0 mm
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Fig. 2. Examples of spectrum reconstruction based on synthetic data for a sinusoidal surface with λ0/max(|ζ|) = 80 (a, b, c) and broadband surface
roughness λ0/std(ζ) = 80 (d, e, f). (a, d): Doppler spectrum at the first receiver, p̃(M1, χ); (b, e): reconstructed frequency wavenumber spectrum ψ(κ, ω);
(c, f): reconstructed frequency spectrum E(x, ω). The crosses in (b) indicate the actual wavenumber and frequency of the scattering surface. The dashed line
in (e) indicates the dispersion relation of gravity waves. The dashed lines in (c) and (f) indicate the location of the stationary phase point x0(Mm, κ(ω))
calculated for the first and last receiver of the array.

and zs = 236 mm, and the equivalent radius a0 = 20 mm.
The source axis was inclined downwards by 59 degrees from
the horizontal.

Figure 2 shows examples of the modelled Doppler spec-
tra (Fig. 2a, d) of the reconstructed surface frequency-
wavenumber spectra (Fig. 2b, e) and of the reconstructed sur-
face frequency spectra (Fig. 2c, f) obtained for two synthetic
data sets. For Figs. 2a, b, and c the surface consisted of a single
sinusoid with the amplitude max(|ζ|) = 0.3 mm, wavelength
l = 2π/κ = 135 mm, and frequency ω = 27 rad/s. Figures 2d,
e, and f were obtained for a surface with a broadband power-
function spectrum Ψ(κ) ∼ κ−3, 10π ≤ κ ≤ 100π, and with
the root-mean-squared (rms) surface elevation of 0.3 mm. A
similar power-function dependence of the surface spectrum on
κ has been previously proposed and validated for open-channel
flow applications based on measurements of acoustic scattering
[11], [14]. The surface parameters used for the simulations in
the present work ensured the validity of the small-roughness-
amplitude approximation.

The Doppler spectrum calculated for the sinusoidal surface
in Fig. 2a has a series of peaks at the harmonics of the
frequency κc. These represent second- and higher-order terms
like those defined in Eq. (20). Since positive and negative
Doppler frequencies relate to scattering at different locations
on the surface (x0(Mm,−κ0) and x0(Mm, κ0), see Eq. (20)
and Fig. 1), the Doppler spectrum is not symmetric with
respect to ω − ω0 = 0 (e.g., Fig. 2d). In Fig. 2b and e the
crosses and the dashed line indicate the theoretical dispersion
relation of the water waves for the surfaces with the sinu-
soidal and broadband roughness, respectively. The main ridges
of the reconstructed frequency-wavenumber spectrum follow
these lines closely, indicating a successful reconstruction.
The wavenumber resolution of the reconstructed frequency-
wavenumber spectrum is not governed by the aperture of the

array, but by the distance between the first and last stationary
phase points. Since this distance is different for positive
and negative frequencies, the resolution is also different and
generally higher at larger wavenumbers (e.g., Fig. 2b, e).

The dashed-dotted lines in Fig. 2c and f indicate the
position of the stationary phase points x0(M1, κ(ω)) and
x0(M30, κ(ω)) calculated for the first and last receivers as
a function of κ(ω) = ω/c, i.e., for the wavenumber that
corresponds to the frequency ω according to the dispersion
relation Eq. (21). The frequency spectra of the surface rough-
ness were independent of x, whereas the reconstructed spectra
appear to decay rapidly to zero outside of the region delimited
by the first and last stationary phase points. This can be
explained by Eq. (18) and (20) since only the portion of
the surface where a stationary phase point can exist for the
wavenumber κ contributes to the Doppler spectrum at the
frequency −κc. Therefore, only this portion of the surface
can be reconstructed based on the Doppler spectrum at such
a frequency. Averaging the reconstructed surface frequency
spectrum E(x, ω) along x must be done carefully because
of the spurious dependence of E(x, ω) on x. Here, the
averaging was performed by means of a frequency-dependent
rescaling factor w(ω) = Γ/[x0(M30, κ(ω))− x0(M1, κ(ω))],
i.e., Ē(ω) = w(ω)

∑
iE(xi, ω)/Nx.

Figure 3 shows the results for synthetic data calculated with
λ0 = 23 mm and with surface amplitude varying between
λ0/160 and λ0/10. Figures 3c and f show the average (and
rescaled) reconstructed frequency spectrum of the scattering
surface. As the relative amplitude of the water waves in-
creased, the amplitude of the Doppler spectra in Fig. 3a and
d also increased, as expected. An increase in the number of
harmonics and a significant broadening of the Doppler spectra
was also observed for the sinusoidal and broadband surfaces,
respectively. The reconstructed frequency-wavenumber spectra
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Fig. 3. Spectrum reconstruction based on synthetic data for water wave amplitude varying between λ0/160 and λ0/10. (a, b, c) are for a sinusoidal surface.
(d, e, f) are for a broadband surface. (a, d): Doppler spectrum at the first receiver; (b, e): reconstructed frequency-wavenumber spectrum ψ(κ, ω); (c, f):
reconstructed average frequency spectrum (c) and power spectral density (f). The reconstructed frequency-wavenumber spectra in (b) and (e) correspond to the
cases with λ0/max(|ζ|) = 10 and λ0/rms(|ζ|) = 10, respectively. The red lines in (c) and (f) represent the theoretical frequency spectrum of the scattering
surface.

in Fig. 3b and e relate to cases with λ0/max(|ζ|) = 10
(Fig. 3b) and λ0/rms(ζ) = 10 (Fig. 3e). They both show
some spurious ridges/harmonics at the frequencies ω = ±nκc,
n = 1, 2, 3. These spurious harmonics cause an overestimation
of the reconstructed frequency spectra amplitude, as seen in
Fig. 3c and f.

From the Bragg scattering interpretation in section II-D and
from the results of the numerical validation study, it is possible
to draw the following preliminary conclusions regarding the
range of applicability of the proposed methodology:

• According to Eq. (9), the Doppler spectrum contribution
at the first order at the Doppler frequency ω−ω0 is related
to the spectrum of the wave with the wavenumber κ that
satisfies the Bragg resonance condition. From the point
of view of the reconstruction of the surface spectrum,
the smallest surface wavelength that can be reconstructed
with an omnidirectional source is equal to |κ| < 2k0;

• The contribution to the first-order Doppler spectrum of a
surface wave with wavenumber κ is mediated by the value
of the kernel H1 at the location x0. Hence, the value of
the reconstructed spectrum at each surface wavenumber
κ is representative of the behavior of the surface in a
limited region, whose size and location depend on κ and
on the geometry of the acoustic setup (see Fig. 2c, f);

• The spectral resolution in wavenumber space varies
with the wavenumber κ, and it is proportional to
2π/max(|x0(Mn, κ)− x0(Mn′ , κ)|), i.e., it depends on
the maximum distance between the stationary phase
points obtained with Eq. (17) for all microphones in the
array, as a function of κ (see Fig. 2b, e).

IV. EXPERIMENTAL VALIDATION

A. Paddle-generated waves in a wave tank

A first series of experiments was performed in a 12 m long
and 0.5 m wide rectangular wave tank in the LVV facility at
the University of Sheffield. The tank was filled with water
up to a depth of 1 m. The surface waves were generated
by means of a purposely made CNC-controlled vertically
oscillating wave-maker, in the absence of a unidirectional flow.
The experimental setup was identical to that of the numerical
simulations and photographs are shown in Fig. 4. The acoustic
setup consisted of 30 1/4” microphones (G.R.A.S. 40PH) and
loudspeaker (Visaton G25FFL). The incident acoustic signal
had a frequency of 14 kHz with the wavelength of 24.3 mm.
The wave-maker was installed at x = −756 mm behind the
source and generated water waves propagating towards the
positive x direction. Time series of the surface elevation were
measured at 7 locations before and after the measurement area
with a set of calibrated wave gauges. The amplitude of the
water waves decreased exponentially with the distance from
the wave maker. The wave amplitude at the array location was
estimated by fitting an exponential function ∼ exp(−γx) to
the wave gauge measurements. Reflections of the water waves
from the ends of the wave tank were assumed negligible due
to the rapid exponential decrease of the wave amplitude with
fetch. Two types of water waves were generated: a sinusoidal
wave with the amplitude max(|ζ|) ≈ 1 mm and frequency
ω = 27 rad/s, and broadband surface waves with the amplitude
rms(ζ) ≈ 1.4 mm.

The results of the analysis applied to experimental data are
shown in Fig. 5. Despite the presence of some noise (see
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Fig. 4. Photographs of the experimental setup with the wave tank in the LVV facility at the University of Sheffield.
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Fig. 5. Spectrum reconstruction based on experimental data obtained in the wave tank. (a, b, c) sinusoidal surface roughness elevation with λ0/max(|ζ|) = 18.
(d, e, f) broadband surface roughness elevation with λ0/rms(ζ) = 17. (a, d): Doppler spectrum at the first receiver; (b, e): reconstructed frequency-wavenumber
spectrum ψ(κ, ω); (c, f): average reconstructed frequency amplitude spectrum (c) and power spectral density (f). The red dashed lines in (c) and (f) represent
the frequency spectrum measured with wave gauges.

Fig. 5b, 5e) that was absent in the synthetic data sets, the
spectrum reconstruction results based on experimental data are
consistent with those observed in the numerical simulations.
The dispersion relation of the water waves is easily identified
by the maxima of the reconstructed frequency-wavenumber
spectrum (Fig. 5b, 5e). These relations follow those predicted
by the theory (Eq. (21)) over a significant range of scales.
Compared to the frequency spectra of the water waves mea-
sured directly by wave gauges, the reconstructed frequency
spectra in Fig. 5c and f reveal some influence of higher-order
effects (spurious harmonic peaks), which are consistent with
the relatively large surface wave amplitude (λ0/max(|ζ|) = 18
and λ0/rms(ζ) = 17, respectively).

B. Water surface fluctuations induced by a turbulent flow

Turbulent open channel flows display strongly three-
dimensional water surface deformations. Therefore, the anal-

ysis was performed in 3D with measurements obtained with a
2D microphone arrangement on a plane. The acoustic device
used in these experiments was a Simcenter Sound Camera
(Siemens Digital Industries Software, Belgium), which is
an array of MEMS microphones distributed around a video
camera, and designed primarily for sound source localization
methods, both near- and far-field. The Sound Camera was
operated in two different configurations: a configuration with
49 MEMS microphones arranged along 9 spiral-shaped rays
with an aperture of 120 mm for the laboratory experiments
(see Fig. 6a), and an extended configuration with 81 MEMS
with a diameter of 600 mm (see Fig. 6b).

The laboratory experiments were performed in a recirculat-
ing hydraulic flume at the University of Sheffield. The dimen-
sions of the flume were 15 m long and 0.506 m wide. The
flume bed had a slope of 0.002 and was covered with a layer of
spheres with a diameter of 25 mm. Four steady flow rates were
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tested: 5.3, 10.3, 13.2, and 20.0 l·s−1 (flow conditions Lab 1,
Lab 2, Lab 3, and Lab 4, respectively). The water surface
velocity was measured in each condition by timing neutrally
buoyant particles across a known distance. The surface flow
velocity varied between 0.30 m s−1 and 0.59 m s−1, while the
uniform water depth varied between 42.2 mm and 115.1 mm
across all the flow conditions (see Table I). The uncertainty
of the surface velocity measurements, calculated as half of the
maximum difference between all measurements in each flow
condition, was below 5%. The Froude number of the flow
(F = U/

√
gd) varied between 0.47 and 0.56 (see Table I).

The sound camera (in the base configuration) and source were
installed 9.5 m downstream of the inlet. The center of the
source was 250 mm away from the center of the camera and
they were elevated 340 mm and 320 mm from the bed of
the flume, respectively. The sound camera and source had
the same inclination angle of approximately 60 degrees, with
the sound camera facing downstream and the source facing
upstream. The acoustic signal radiated by the source had a
frequency of 19 kHz. The instantaneous surface elevation was
measured by means of three wave gauges positioned at a
distance of 10 m from the flume inlet. The measured root-
mean-squared (rms) average of the surface fluctuations varied
between 0.09 mm (λ0/rms(ζ) = 199, condition Lab 1) and
0.25 mm (λ0/rms(ζ) = 72, condition Lab 4). Fig. 6a shows
the photograph of the experimental setup in the flume.

Field measurements were performed on two separate dates
in the River Loxley (Sheffield, UK) at three different locations
within the same reach. The River Loxley is a river draining a
catchment of 43.5 km2. The mean annual discharge recorded
at Damflask Reservoir (approximately 1.5 km upstream of
the measurement reach) is 0.563 m3 s−1, with 5% percentile
of 1.512 m3 s−1 and 95% percentile flow of 0.116 m3 s−1

[43]. The water depth and water surface velocity at each
measurement site were: 350 mm, 0.36 m s−1 (Field Condition
1); 500 mm, 0.41 m s−1 (Field Condition 2); and 550 mm,
0.52 m s−1 (Field Condition 3). The estimated uncertainty
of the surface velocity measurements was between 7% for
condition Field Condition 1 and 14% for Field Conditions
2 and 3. The Froude number of the flow varied between
0.19 and 0.22. The speaker and sound camera were held at
a height between 500 mm and 700 mm above the water
surface by means of a cantilever beam installed on two tripods
(Fig. 6b), with a distance of 700 to 750 mm between the
speaker and the centre of the array. The incident acoustic
signal had a frequency of 17.5 kHz. The water surface fluctu-
ations could not be measured directly in the field. Their rms
average was estimated by integrating the frequency power-
spectral-density spectra estimated acoustically, E(x, y, ω). The
estimated rms(ζ) varied between 0.66 mm (λ0/rms(ζ) = 29,
Field Condition 1 and Field Condition 2), and 4.63 mm
(λ0/rms(ζ) = 4.2, Field Condition 3), although the latter
could have been overestimated with the proposed method.

Figure 7 shows the normalized frequency-wavenumber
spectra of the water surface reconstructed from the acoustic
signals recorded in the laboratory flume. The normalization
was performed by dividing the spectra by their maximum at
each frequency to compensate for the rapid decay at high fre-

quencies and to facilitate the visualization over a wider range
of scales. The reconstructed spectra are three-dimensional (two
wavenumber vector components and frequency). Figure 7a-
d show the spectral cross-section at κy = 0 and Fig. 7e-h
show the spectral cross-section at κx = 0, where κx is in
the streamwise direction (along the source axis plane) and
κy is in the transverse direction. The spectra in the κy − ω
plane are nearly symmetrical around κy = 0, while those in
the κx − ω plane are strongly tilted upwards towards positive
κx because of the advection of the waves by the mean flow
(Eq. (22) and (23)). Three spectra ridges are easily identifiable
in Fig. 7e-h. They are representative of the dispersion relation
of gravity-capillary waves (upper and lower ridge, Eq. (22))
and of turbulence-forced surface deformations (central ridge,
Eq. (23)), as demonstrated by the close proximity with the
theoretical relations also plotted in Fig. 7.

Figure 8 shows the normalised frequency-wavenumber spec-
tra of the water surface reconstructed from the analysis of the
scattered acoustic signals measured in the field. Compared
to the laboratory data, the central ridge corresponding to
turbulence-forced surface deformations is nearly absent in
Fig. 8a-c. The balance between gravity-capillary waves and
turbulent-forced deformations at the free surface of a turbulent
flow is the result of the equilibrium between the turbulent
forcing and the stabilizing effect of gravity and surface tension,
determined by the characteristic velocity and length scales
of the flow [13], [44]. While the Lab Conditions showed
a combination of both types of waves which is indicative
of a regime of weak turbulence, the lower Froude number
in the Field Conditions is representative of a regime of
gravity-dominated turbulence, where waves are expected to
be predominant [44]. The transverse spectra in Fig. 8d-f are
not symmetric demonstrating the capability of the method to
account for the velocity components in the x and y directions.
The more ragged ridges in the streamwise spectra for Field
Condition 3 (Fig. 8c) are likely to be an artifact of the
normalization or higher-order effects due to larger surface
deformations for this flow condition.

Figure 9 shows the reconstructed frequency spectra of
the surface fluctuations in the laboratory (Fig. 9a) and field
(Fig. 9b) experiments. These are compared with the spectra
of the data recorded with wave gauges for the laboratory
conditions in Fig. 9a. The increase in the spectral energy
from Lab Condition 1 to Lab Condition 4 is captured well by
the reconstruction, although the energy at frequencies below
4 rad s−1 is largely overestimated. This is due to leakage
of the zero-th order term of the Doppler spectrum at the
Doppler frequency χ − ω0 ≈ 0. Similar behavior of the
reconstructed frequency spectra can be seen in Fig. 9b for the
field dataset, although the lack of direct measurements of the
surface fluctuations in the field does not allow an evaluation
of the accuracy of the reconstruction for this dataset. The
relatively small slope of the reconstructed spectrum for Field
Condition 3 suggests a noisier and less accurate reconstruction,
which is confirmed by the more ragged appearance of the
reconstructed frequency-wavenumber spectrum in Fig. 9c and
f, and which could be due to the larger amplitude of the surface
fluctuations in this flow condition.
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a) b)SoundCamera Speaker SoundCamera Speaker

Fig. 6. Photographs of the measurement setup for the laboratory (a) and field (b) experiments with turbulence-induced water surface fluctuations. The flow
direction is from left to right.
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Fig. 7. The normalized reconstructed frequency-wavenumber spectra measured in the laboratory experiments. (a-d): cross-section on the streamwise
wavenumber-frequency plane, ψ(κx, 0, ω); (e-h): cross-section on the lateral wavenumber-frequency plane, ψ(0, κy , ω). Flow conditions: (a, e) Lab Condition
1; (b, f) Lab Condition 2; (c, g) Lab Condition 3; and (d, h) Lab Condition 4. (dashed line): dispersion relation of turbulence-forced surface deformations
(Eq. (23)). (dashed-dotted line): dispersion relation of gravity-capillary waves (Eq. (22)).

The reconstructed frequency-wavenumber spectra in the
laboratory and in the field were fitted with the theoretical
dispersion relations (Eq. (22) and Eq. (23)) using the Matlab
code kOmega [45], based on the work of Dolcetti et al. [19]
to estimate the time-averaged flow velocity U = |U|. The
measured and estimated velocities are reported in Table I.
The difference between the measured and estimated values
is smaller than 10% for the laboratory data and 14% for the
field data, which is comparable with a typical uncertainty in
the direct flow measurements.

V. CONCLUSIONS

A novel method for reconstructing the frequency-
wavenumber spectrum of a dynamic water surface based on the

TABLE I
MEASURED AND ESTIMATED FLOW VELOCITY FOR THE FLUME AND FIELD

EXPERIMENTS.

Flow λ0/rms(ζ) Froude flow velocity (m/s)
Cond. number measured estimated error (%)
Lab 1 198.8 0.47 0.30 ± 0.00 0.29 -2.4
Lab 2 137.7 0.53 0.40 ± 0.02 0.40 -0.7
Lab 3 99.4 0.55 0.51 ± 0.01 0.48 -5.9
Lab 4 71.6 0.56 0.59 ± 0.03 0.54 -9.0

Field 1 29.4* 0.19 0.36 ± 0.02 0.37 2.2
Field 2 29.4* 0.19 0.41 ± 0.06 0.45 10.1
Field 3 4.19* 0.22 0.52 ± 0.07 0.59 13.6
*Values estimated by integrating the reconstructed frequency power-
spectral-density spectra of the water surface.
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Fig. 8. The normalized reconstructed frequency-wavenumber spectra measured in the field experiments. (a, c): cross-section along the streamwise wavenumber-
frequency plane, ψ(κx, 0, ω); (d, f): cross-section along the lateral wavenumber-frequency plane, ψ(0, κy , ω). Flow conditions: (a, d) Field Condition 1; (b,
e) Field Condition 2; and (c, f) Field Condition 3. (dashed line): dispersion relation of turbulence-forced surface deformations (Eq. (23)). (dashed-dotted line):
dispersion relation of gravity-capillary waves (Eq. (22)).
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Fig. 9. The frequency spectrum, E(ω), reconstructed from the experimental
data. (a): from laboratory data; (b): from field data. (dashed lines): frequency
spectrum of the surface fluctuations measured with wave gauges.

Doppler spectra of the scattered acoustic field recorded with
an array of microphones has been proposed. The method does
not require any prior knowledge of the free surface dynamics
to produce an estimate of the dispersion relation of the water
waves, enabling the characterization of the surface dynamics

in turbulence-dominated environments such as rivers or par-
tially filled pipes. The spectrum reconstruction is based on a
small roughness-amplitude expansion that can be interpreted
in terms of first-order Bragg scattering theory. The limits of
applicability of the method have been investigated with a
numerical model. The shortest roughness scale that can be
reconstructed is limited to half of the acoustic wavelength. The
spectral resolution of the reconstructed spectra is a function
of the surface wavelength and is inversely proportional to the
maximum distance between the stationary phase points for all
microphones in the array.

The method has been validated in the laboratory and in
the field for two- and three-dimensional surface roughness
patterns, demonstrating its capability to detect the presence
of different types of waves (dispersive gravity-capillary waves
and non-dispersive turbulence-forced surface fluctuations) co-
existing simultaneously on the surface. Fitting the recon-
structed frequency-wavenumber spectra with theoretical dis-
persion relations for both types of surface deformations using
an existing algorithm [45] has allowed for the estimation of
the flow velocity with an error of the order of 10-14%. By
accounting explicitly for the complexity of the water surface
dynamics in turbulent flows and by being based on a bistatic
geometry to provide a high signal-to-noise ratio, the proposed
method is a robust and compact alternative for existing non-
contact river monitoring approaches. It could be rapidly de-
ployed on unmanned aerial vehicles [46] to monitor floods and
representative sections of river reaches. The approach could be
extended to electromagnetic waves, complementing existing
techniques for the reconstruction of dynamic rough surface
profiles [47], [48] or for the monitoring of the ocean [49]–
[54] and rivers [55]–[57].
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