
ORIGINAL RESEARCH

A goal-based framework for contextual requirements
modeling and analysis

Raian Ali • Fabiano Dalpiaz • Paolo Giorgini

Received: 18 February 2010 / Accepted: 5 July 2010 / Published online: 27 July 2010

� Springer-Verlag London Limited 2010

Abstract Requirements engineering (RE) research often

ignores or presumes a uniform nature of the context in

which the system operates. This assumption is no longer

valid in emerging computing paradigms, such as ambient,

pervasive and ubiquitous computing, where it is essential to

monitor and adapt to an inherently varying context. Besides

influencing the software, context may influence stake-

holders’ goals and their choices to meet them. In this paper,

we propose a goal-oriented RE modeling and reasoning

framework for systems operating in varying contexts. We

introduce contextual goal models to relate goals and con-

texts; context analysis to refine contexts and identify ways

to verify them; reasoning techniques to derive requirements

reflecting the context and users priorities at runtime; and

finally, design time reasoning techniques to derive

requirements for a system to be developed at minimum cost

and valid in all considered contexts. We illustrate and

evaluate our approach through a case study about a

museum-guide mobile information system.

Keywords Contextual requirements � Context analysis �
Goal modeling � Requirements analysis

1 Introduction

The advances of computing, sensors, and communication

technology helped the realization of new computing para-

digms such as ambient, ubiquitous and pervasive comput-

ing. These paradigms weave computing systems with

humans’ living environments to transparently meet their

needs [1]. Context, a core element of these settings, can be

defined as the reification of the environment that is what-

ever provides a surrounding in which a system operates [2].

Context can influence the requirements of a system, and the

variants a system can adopt to meet its requirements.

Moreover, context is by nature variable in these paradigms,

and it calls for new approaches to create system that can

adapt to context changes.

Goal-oriented analysis has been proposed in the

requirements engineering (RE) literature to capture the

intentionality behind software requirements [3]. Goals are a

useful abstraction to represents stakeholders’ needs and

expectations, and they offer a very intuitive way to elicit

and analyze requirements. Context is strongly related to

goals, for it changes the current goals of a stakeholder and

the possible ways to satisfy them. For example, let us

consider a tour guide that has the goal of providing assis-

tance to tourists during an organized tour. The context

‘‘tourist has not had lunch today and now it is lunchtime’’

activates the guide’s goal ‘‘find a restaurant’’ and, sup-

posing that a context like ‘‘tourist is vegetarian’’ applies,

the guide has to find a restaurant serving vegetarian food.

A software system developed to support tour guides has to

reflect guides’ goals, their rationale and their capability to

adapt to the context. This reflection is preliminary for the

system to execute useful functionalities such as showing on

the map a set of close restaurants that serve vegetarian

food.

R. Ali (&) � F. Dalpiaz � P. Giorgini

DISI, University of Trento,

Via Sommarive 14, 38123, Povo, Trento, Italy

e-mail: raian.ali@disi.unitn.it

F. Dalpiaz

e-mail: fabiano.dalpiaz@disi.unitn.it

P. Giorgini

e-mail: paolo.giorgini@disi.unitn.it

123

Requirements Eng (2010) 15:439–458

DOI 10.1007/s00766-010-0110-z

Goal models (i* [4], Tropos [5], and KAOS [6]) repre-

sent an intentional ontology used at the early requirements

analysis phase to explain the why of a software system.

They have been used to represent the rationale of both

humans and software systems [7], and they provide useful

constructs to analyze high-level goals and ways to satisfy

them. Such features are essential for the analysis and the

design of a software system supposed to reflect stake-

holders’ rationale and adaptation to varying contexts [8, 9].

In this paper, we propose a RE modeling and reasoning

framework for systems operating in and reflecting varying

contexts. We propose the contextual goal model that

extends Tropos goal model introducing variation points

where the context may influence the choice among the

available variants of goals satisfaction [10, 11]. We also

propose a set of modeling constructs to analyze and dis-

cover relevant information the system needs to capture, at

runtime, in order to verify if a context applies [12, 13].

Two reasoning techniques are then proposed. The former

concerns the automatic derivation at runtime of goal model

variants that reflect context and user priorities. The latter is

about the derivation, at design time, of the requirements to

be implemented that lead for a system developed with

minimum costs and valid in all considered contexts. We

illustrate and evaluate our framework through a mobile

information system case study.

The paper is structured as follows. Section 2 describes

the museum-guide case study; Sect. 3 introduces the con-

textual goal model to capture requirements for varying

contexts; Sect. 4 illustrates the reasoning technique to

derive requirements for different contexts and users’ pri-

orities, while Sect. 5 shows an approach to derive the core

requirements of a system. Section 6 presents our developed

automated support tool and the results obtained by apply-

ing our framework on the case study. Related work and

conclusion are given in Sects. 7 and 8, respectively.

2 Case study: museum-guide

In this paper, we use a case study of a museum-guide

mobile information system developed within the Labora-

tory for Mobile Applications (LaMA1) at University of

Trento. The system is expected to enforce the museum

rules by notifying visitors to what they should do in the

right moment. Moreover, the system has to figure out if the

visitor is interested in a certain piece of art and convey

suitable information related to that piece of art. Visitors

and museum staff are provided with PDAs as communi-

cation and explanation devices. The system consists basi-

cally of two components: the monitoring component that

captures context, and the functional component that carries

out actions reflecting each monitored context.

To initiate the process of conveying information about a

piece of art to a visitor, the system has to monitor whether

the visitor is interested in it. This information can be

inferred, for instance, if the visitor has been standing in

front of the piece of art for long time. If so, the system has

to look for the best way to convey information to the vis-

itor. The delivery of information can be done via infor-

mation terminals, the PDA the visitor has, or a staff

member. For each of the possible ways to convey infor-

mation, the system is supposed to do certain tasks. For

example, to use terminals the visitor must be informed

about the existence of such a service, guided to it, and

informed about the way to use it. To get information

through a staff member, the system has to notify the staff

member and establish a call with the visitor or guide the

staff to the visitor’s place to give information in person.

Concerning the relationship between context and

requirements, context can influence decisions about:

– Requirements to meet: if the context ‘‘visitor is not

interested in a piece of art’’ applies, the mobile

information system does not need to activate the

information delivery process. Moreover, if the context

‘‘visitor is familiar with the use of terminals and knows

one of the languages the terminals support’’ applies,

then informing the visitor about the way of using such

terminals is not required and the system has only to

inform the visitor about the existence of the service and

guide him to a free terminal.

– Ways to meet requirements: the system could have two

variants to convey information about a piece of art via

PDAs: video-based and interactive. Each variant could

require a valid context. For example, conveying

information via an interactive presentation requires

that a context like ‘‘visitor has good experience in using

PDAs’’ applies.

– Quality of each way: considering staff comfort as a

quality measure; conveying information to visitors on

person is less comfortable for a staff when a context

like ‘‘visitor is far away from the staff’’ applies.

3 Goal-based contextual requirements

Goal modeling is a mainstream technique in RE. It is an

effective way to capture stakeholders’ needs and expecta-

tions and understand whether and why a software should be

developed. Goal models are intentional representations of

users goals and the ways users may adopt to satisfy them.

Goal models can capture also the quality of each way

through the notion of softgoal [3]. Context may have a1 http://lama.disi.unitn.it/

440 Requirements Eng (2010) 15:439–458

123

http://lama.disi.unitn.it/

strong influence on users goals, the way to reach them, and

the quality of each way. Consequently, we need to enrich

goal models with context to capture such influence. In this

section, we propose the contextual goal model that

accommodates the relation between goals and context.

3.1 Tropos goal modeling: overview

Goal analysis represents a paradigmatic shift with respect to

object-oriented analysis. While object-oriented analysis fits

well with the late stages of requirement analysis, goal-ori-

ented analysis is more natural for the earlier stages where

organizational goals are analyzed to identify and justify

software requirements and position them within the orga-

nizational system [7]. Tropos goal analysis projects the

system as a set of interdependent actors, each having its own

strategic interests (goals). Goals are analyzed iteratively in a

top–down manner to identify more specific sub-goals nee-

ded to reach the upper-level goals. Goals can be ultimately

satisfied by means of specific executable processes (tasks).

In Fig. 1, we show a partial Tropos goal model for the

museum-guide case study. Actors (‘‘Visitor assistance

system’’ and ‘‘Staff assistance system’’) have a set of top-

level goals (‘‘visitor gets informed about a piece of art’’),

which are iteratively decomposed into subgoals by And-

decomposition (all subgoals should be achieved to fulfil the

top goal) and Or-decomposition (at least one subgoal

should be achieved to fulfill the top goal – e.g., ‘‘visitor

gets information via his PDA’’ or ‘‘visitor gets information

through museum staff’’. Goals are finally satisfied by means

of executable tasks; the goal ‘‘piece of art information is

presented to visitor’’ can be reached by one of the tasks

‘‘information is presented to visitor via video’’ and

‘‘information is presented to visitor interactively’’.

A dependency indicates that an actor (depender) depends

on another actor (dependee) to attain a goal or to execute a

task: the actor ‘‘Visitor assistance system’’ depends on the

actor ‘‘Staff assistance system’’ for achieving the goal

‘‘visitor gets info through museum staff’’. Softgoals are

qualitative objectives for whose satisfaction there is no clear-

cut criteria (‘‘staff is more comfortable’’ is a rather vague

objective), and they can be contributed either positively or

negatively by goals and tasks: ‘‘staff gives info to visitor in

person’’ usually contributes negatively to ‘‘staff is more

comfortable’’, while ‘‘staff gives info to visitor remotely’’

usually contributes positively to it.

Goal analysis allows for different variants to satisfy a

goal, but does not specify explicitly when each variant can

be adopted. Supporting variants without specifying when to

follow each of them raises the question ‘‘why does the

system support several variants and not just one?’’. The

system may support different variants to goal satisfaction

in order to be able to operate in varying contexts. In the

next section, we specify the relationships between such

variants and context through the contextual goal model.

3.2 Context in requirements

Context has been defined in multiple computer science dis-

ciplines especially in artificial intelligence (for a survey, see

[14]). It has also been defined in the literature of emerging

computing paradigms, such as ubiquitous, adaptive, and

mobile systems [2, 15, 16], which our requirement-engi-

neering framework is developed for. A specific definition of

context strongly depends on the domain it is used in. For

example, in a context-sensitive search engines, a user may

search the term ‘‘java’’ that could mean a programming lan-

guage or an island. To disambiguate the searched term, the

engine may look to the context that can be the query history. If

the user asked recently for the term ‘‘cgi programming’’, then

most probably he is looking for the Java programming lan-

guage [17]. In the rest of this section, we adapt a definition of

context from the perspective of requirements engineering,

namely goal-oriented requirements engineering.

As widely accepted, software is a mean to meet user

requirements [7, 18, 19, 20]. Software is developed to solve

Fig. 1 Tropos goal model example

Requirements Eng (2010) 15:439–458 441

123

a problem in the users world and to help them reach their

goals. In line with this view of requirements, Tropos

requirements analysis projects a system, either organiza-

tional or software, as a set of interdependent actors. Each

actor has goals that are partial states of the world an actor

attempts to reach. Tropos goal analysis represents alter-

native sets of tasks that an actor may execute trying to

reach its goals. In other words, tasks are not required per se,

but are means to reach goals. Actors are autonomous in

deciding what goals to reach, how, and how well to reach

them. We here give a definition of actor, adapted from [5],

that is going to be the observer of a context:

Definition 1 (Actor) an actor is an entity that has goals

and can decide autonomously how to achieve them.

An actor can be of different types such as human actors,

software actors, or organizational actors. The main char-

acteristic of an actor is the autonomy in deciding the way to

reach its goals. This includes the ability to decide what

goals to reach, how, and how well to reach them. For

example, an assistance staff is a human actor that may have

the goal of conveying appropriately information about

pieces of art to visitors. The assistance staff has the ability

to decide when to activate this goal and what to do to reach

it. The staff may reach such goal by making a phone call

with the visitor or by delivering information to him in

person, and the decision between these two options is left

to the assistance staff himself. The decision taken by an

actor depends on the state of a portion of the world such

actor lives in. We call such a state context:

Definition 2 (Context) a context is a partial state of the

world that is relevant to an actor’s goals.

The decision about the parts of the world that are relevant

to an actor decisions is of subjective nature. An actor does not

observe the world for the purpose of observation per se. An

actor does that to decide what goals to reach and what actions

to do to reach them. Therefore, such decision is influenced by

properties over the world that an actor needs to observe. For

example, ‘‘visitor is in a room where taking pictures is for-

bidden’’ is relevant for a visitor assistance system actor when

deciding whether to block his PDA camera. The same context

is irrelevant when this actor needs to decide whether to

convey information about a piece of art. Moreover, there

could be always viewpoints about what parts of the world are

relevant to a decision. For example, to decide the adoptability

of conveying information to a visitor via an information ter-

minal, one staff assistance attempts to verify the context

‘‘visitor is very close to a free terminal,’’ and another one may

attempts to verify ‘‘visitor is close to a terminal or to a map

showing the locations of terminals in the museum’’.

Context is inherently partial and volatile. Actors may

have partial view of the state of the world. They may not be

interested or able to capture all the information that fully

captures such a state. A state of the world may be parti-

tioned into dimensions such as spatio-temporal, personal,

tasks, social as proposed in [16]. This partitioning is a way

of facilitating the way a state of the world can be described

and captured. The world is volatile and could be in dif-

ferent states. A partial state of the world that is uniform

does not influence the decisions of an actor. For example, if

all the museums do not allow taking pictures to the pieces

of art, then the museum-guide system does not need to

observe whether a room contains non-pictured piece of art.

The decision is made developing the system and applied in

all museums the system will operate in.

3.3 Contextual goal model

Goal models allow for variants of goal satisfaction. The

applicability of each of these variants can be context

dependent. The explicit specification of the context where

each variant is applicable allows, amongst other things, for

a systematic derivation of variants for various contexts.

The enumeration of goal model variants and the specifi-

cation of contexts for each of them separately is obviously

a hard and time-consuming task because of the potentially

large number of variants and the complexity of each variant

when treated as one block. To avoid enumerating the

variants, we propose to define context on a set of variation

points at the goal model.

Figure 2 represents a Tropos goal model for the

museum-guide mobile information system that we have

already described. To make the model contextual, we need

to explicitly represent the relation between its space of

variants and the context. To this end, contexts, which are

labeled as C1... C15 on Fig. 2, can be associated with the

following variation points of Tropos goal model:

1. Or-decomposition: the adoptability of a subgoal or a

subtask in an or-decomposition may require a valid

context. For example, to provide information about a

piece of art, a visitor can be directed to a dedicated

terminal. The terminal, however, has to be available

and close to the visitor, while the visitor has to be able

to use and interact with such a terminal (C4).

Alternatively, the visitor’s PDA can be used to convey

information when the piece of the art information is

not complicated, and the visitor has the ability and

knowledge to use PDAs (C5). Getting information

through an assistance staff requires that the visitor is

not able to use PDA and not familiar with terminals or

that he is classified as an important visitor (C6).

Notifying a museum staff by issuing a special voice

message through his room speakers can be adopted if

the room does not include audio art contents (C11). The

442 Requirements Eng (2010) 15:439–458

123

museum staff can give information through a call to

visitors when the staff’s PDA and the visitor’s PDA

are not busy (C15).

2. Root goals: depending on the context, an actor may

decide to reach a root goal. For example, to reach the

root goal ‘‘visitor is assisted’’, the visitor has to be

inside the museum area (including parking places and

public square in front of museum), and the visitor

should have accepted the assistance by the mobile

information system (C0).

3. Means-end: goals can be ultimately satisfied via

specific executable processes (tasks). The adoptability

of each task in means-end analysis might depend on

the context. For example, the visitor can be notified

about the availability of information terminals through

a PDA voice message when he puts the headphones on

and is not using his PDA for a call (C9); while

notifying him by SMS can be adopted in the opposite

context ð:C9Þ: Notifying a museum staff by ringing

tone, and SMS is adoptable when he is not calling

(C12), while notifying him by a PDA voice command

is adoptable when he is not calling and is putting the

headphone on (C13).

4. Actors dependency: an actor can attain a goal or get a

task executed by delegating it to another actor only in a

specific context. For example, the dependency in

Fig. 2 requires an available staff member that talks the

language of the visitor and knows enough about the

piece of art (C10).

5. And-decomposition: a subgoal/subtask in an And-

decomposition might (not) be needed only in a certain

context, i.e., some subgoals/subtasks are not always

mandatory to fulfill the top-level goal/task in an And-

decomposition. For example, the subgoal ‘‘visitor gets

informed about a piece of art’’ has to be reached if the

visitor is still inside the gallery building and he is

interested in the piece of art (C1). The subgoal ‘‘visitor

is out of museum by closing time’’ needs to be reached

when closing time is approaching (C2), and the goal

‘‘visitor accomplishes registration’’ has to be reached

when visitor has entered the museum building (C3).

The task ‘‘visitor is notified to not enter’’ is needed

Fig. 2 The goal model of the museum-guide system with context annotation

Requirements Eng (2010) 15:439–458 443

123

when the visitor is on the way to enter the museum

building (C7), and the task ‘‘visitor is notified to get

out’’ is needed when the visitor is still inside the

museum building and is not walking toward the

exit (C8).

6. Contribution to softgoals: softgoals are qualitative

objectives for which there is no clear-cut criteria for

their satisfaction. They can be contributed either

positively or negatively by goals and tasks. The

contributions to softgoals can vary from one context

to another. For example, giving the information in

person is comfortable to the assistance staff if the

visitor is close to him (C14), while it is not comfortable

when they are far away from each other.

Table 1 shows the semantics of the contextual variation

points. Such semantics can be applied to non-contextual

variation points if we suppose contexts (Ci, Cj, ...) to be

always true.

In the rest of the paper, we use the term ‘‘context of a

goal model variant’’ to refer to the conjunction of con-

texts at the variation points of the first five kinds. If the

context of a goal model variant applies, this means that

the variant is applicable. The contexts associated with

contributions to softgoals are used to evaluate the quality

of each goal model variant. In Fig. 3, we show a variant

of the museum-guide goal model and its corresponding

context.

3.4 Context analysis

Similar to goals, context may need to be analyzed. On the

one hand, goal analysis allows for a systematic way to

discover alternative set of tasks an actor may execute to

reach a goal. On the other hand, context analysis should

allow for a systematic way in discovering alternative sets

of facts an actor may verify to judge if a context applies.

Table 1 Semantics for the

contextual variation points

Fig. 3 A variant of the museum-guide goal model and its context

444 Requirements Eng (2010) 15:439–458

123

We specify context as a formula of world predicates.

The syntax for this formula is shown in Code 1 using the

EBNF notation:

Code 1 EBNF grammar for world predicates formulae

Formula :- World_Predicate | (Formula) | Formula AND Formula |

Formula OR Formula

We classify world predicates, based on their verifiability

by an actor, into two kinds, facts and statements:

Definition 3 (Fact) a world predicate F is a fact for an

actor A iff F can be verified by A.

Definition 4 (Statement) a world predicate S is a state-

ment for an actor A iff S cannot be verified by A.

An actor has a clear way to verify a fact. He has the ability

to capture the necessary data and compute the truth value of

a fact. A fact is not a subject of viewpoints. In other words,

when a fact is true for an actor, it will be also true for others.

For example, world predicates such as ‘‘visitor is in the same

room as a piece of art’’, ‘‘visitor is in the corridor of the same

floor as the piece of art’’ are facts that the museum guide

information system can compute their truth values based on

the visitor’s location, which can be obtained by a positioning

system, and the topology of museum.

Some world predicates are not verifiable by an actor. We

call such predicates statements. A world predicate cannot

be verified by an actor for reasons such as:

– lack of information: an actor may be unable to verify a

world predicate because of the inability to capture the

information necessary to verify it. For example,

‘‘visitor does not know about a piece of art’’ is a

statement from the perspective of an actor such as the

assistance staff in a museum. The staff cannot obtain all

the information needed to verify this statement. The

staff cannot monitor whether a visitor has read about

the piece of art somewhere on the web or has been told

about it by a friend.

– abstract nature: some world predicates are abstract by

nature and do not have clear criteria to be evaluated

against. For example, ‘‘visitor is interested in a piece of

art’’ is a world predicate that an actor, such as an

assistance staff, has no precise way to judge whether it

holds and be certain of the judgement. It is a concept

that refers to a visitor’s mood that there is no way to

verify it by an actor rather than the visitor himself.

Some decisions that an actor takes may depend on

contexts specifiable by means of only facts, while some

other decisions may depend on contexts that include also

statements. For example, to decide if to convey information

about a piece of art to a visitor via an assistance staff, the

system (visitor assistance system) has to judge if the con-

text C6 applies. This includes deciding the truth of the

world predicate wp = ‘‘visitor is not familiar with infor-

mation terminals’’. Such world predicate is a statement that

the system cannot verify. However, this statement can be

refined into a formula of facts and other statements. For

example, the refinement could consider the behavior of the

visitor while using a terminal. A slow or an unsuccessful

interaction between the visitor and a terminal may indicate

little familiarity in using such terminals, i.e. indicate the

truth of wp. We call the relation between such a formula of

world predicates and a refined statement Support, and we

define it as following:

Definition 5 (Support) a statement S is supported by a

formula of world predicates u iff u gives enough evidence

to the truth of S.

In an iterative way, a statement could be ultimately

refined to a formula of facts that supports it. That is to say,

the relation support is transitive. If a formula u1 supports a

statement S1 and S1u2 supports S2, then u1^u2 supports S2.

However, refining a statement to a formula of facts is not

always possible. We may have statements that could be

unrefinable to facts. For example, ‘‘visitor never visited

other similar museums’’ is a world predicate that cannot be

verified by an assistance staff due to lack of information.

Moreover, the staff would not be able to find a formula of

facts that he can verify to support such a statement. In our

contextual goal model, we allow only for contexts that are

specified by means of facts and/or statements that are

supported by facts. We call the kind of statements and

contexts that we deal with as monitorable statements and

monitorable contexts, and we define them as follows:

Definition 6 (Monitorable Statements) a statement S is

monitorable iff there exists a formula of facts u that sup-

ports S.

Definition 7 (Monitorable context) a context C is

monitorable iff C can be specified by a formula of facts and

monitorable statements

A monitorable context, specified by a world predicate

formula u, applies if all the facts in u and all the formulae

of facts that support the statements in u are true.

Context analysis aims to discover whether a context is

monitorable and to find the formula of facts that specifies

it. Context analysis starts with specifying a world predicate

formula that represents a context. This formula may con-

tain both facts and statements. For example, taking the

context C1 of the contextual goal model shown in Fig. 2,

this context can be specified as a formula of world

Requirements Eng (2010) 15:439–458 445

123

predicates C1 = wp1 ^ wp2 where wp1 = ‘‘visitor is inside

the gallery building’’ and wp2 = ‘‘visitor is interested in

getting explanation about a piece of art’’. Obviously, the

world predicate wp1 is a fact that the system can verify

based on obtainable data (position of the visitor can be

obtained through a positioning system), while wp2 is a

statement, and we need to find out whether it is refinable

into a formula of facts.

To see if a context is monitorable, the statements in the

formula specifying that context need to be refined into for-

mulae of facts that support them. A statement can be ana-

lyzed iteratively to ultimately discover a formula of facts that

an actor can visualize in the world and that gives evidence in

support of the analyzed statement. In Fig. 4, we analyze the

context C1. In this figure, statements are represented as

shadowed rectangles and facts as parallelograms. The rela-

tion support is represented as curved filled-in arrow, and

the and, or, implication logical operators are represented

as black triangles, white triangles, filled-in arrows,

respectively.

As we mentioned earlier, we consider the relation sup-

port as a transitive relation. For example, as shown in

Fig. 4, the formula w1 ^ w2 ^ w3 ^ w4 supports the

statement wp2, the formula (f1 ^ f2) _ f3 supports the

statement w1, then the formula ((f1 ^ f2) _ f3) ^ w2 ^ w3 ^
w4 supports the statement wp2. Consequently, a statement

may be refined iteratively to reach the level of facts. In the

same figure, we show the formula of facts that supports the

statement wp2. The visitor assistance system can verify this

formula to judge if wp2 applies.

Context analysis allows us to identify the facts that an

actor has to verify. These facts are verifiable on the basis of

data an actor can collect of the world. For example, taking

the facts f9... f13 that support the statement w3 = ‘‘piece of

art [p] is interesting to visitor [v]’’ of Fig. 4, the analysts

could develop a preliminary data conceptual model shown

in Fig. 5 which the museum-guide system has to imple-

ment and maintain. Context modeling approaches (for

example [23, 24]) might be employed here for more

expressiveness and powerful analysis of contextual infor-

mation than class diagrams that we have used. We still

need to investigate the integration between our proposed

context analysis constructs and such context modeling

approaches.

Fig. 5 A preliminary conceptual model of the data needed to verify w3 leaf facts

Fig. 4 The context analysis for C1

446 Requirements Eng (2010) 15:439–458

123

The analogy between goal analysis and context analysis

is shown in Fig. 6. While a goal is a partial state of the

world that an actor attempts to reach, context is a partial

state of the world that an actor attempts to judge if it holds.

Goal analysis justifies why an actor takes some actions

(tasks), while context analysis justifies why an actor needs

to collect data and verify facts of its environment.

4 Deriving requirements in varying contexts

Goal models allow for a systematic analysis of variants for

goal satisfaction and an implemented system may support

all or a subset of them. This is a design decision that can be

taken on the basis of different criteria. For example, the

designer can decide to minimize the overall development

costs and therefore to reduce the number of implemented

variants. Alternatively, the designer may decide to make

the system flexible and highly variable, which will require

a much higher number of variants to be implemented [21].

In any case, each variant can be applicable in certain

contexts, and the system has to implement runtime mech-

anisms to decide which variant to adopt when more than

one variant is applicable in the actual context. For this

decision, users’ prioritization over goal model variants can

be an effective criteria to be used at runtime. However,

specifying such prioritization introduces two main prob-

lems at the analysis phase:

– the potentially large number of goal model variants,

i.e., specifying prioritization over the enumerated

variants could be extremely time-consuming.

– when the variants contain a large number of nodes, it

could be hard for users to comprehend the variants and

the differences between them.

Instead of asking users to specify their prioritization

over variants, prioritization can be expressed over the

quality measures, i.e., softgoals. Users can express priori-

tization on softgoals and bypass the large number of goal

model variants. Besides this advantage, softgoals allow

users to express their prioritization using their own terms.

For example, users can easily specify that ‘‘more comfort’’

has high priority while ‘‘less disturbance’’ is not such

important. The quality contexts of a variant are those on the

contribution links between the goals/tasks of that variant

and softgoals. The truth value of quality contexts deter-

mines the quality of each variant.

We adopt an approach similar to the one proposed in

[22] to specify prioritization over softgoals. We consider

binary contributions to softgoals (positive or negative).

Stakeholders can specify the priority of each softgoal by

selecting an integer in the range [0,n]. Priority 0 corre-

sponds to ‘‘the user does not care about the softgoal’’,

priority n means ‘‘the user considers the soft-goal very

important’’. The priority of a variant is computed by the

formula:

priorityðvÞ ¼
X

sg2v

percentPosðv; sgÞ � priorityðsgÞ

�
X

sg2v

percentNegðv; sgÞ � priorityðsgÞ

The function percentPos(v, sg) (percentNeg(v, sg))

refers to the percentage of the positive (negative)

contributions with respect to the total number of

contributions from the variant v to the softgoal sg. We

use the percentage to uniformly deal with softgoals with

disparate numbers of contribution links. Every contribution

link is treated as an evidence about the positive or negative

satisfaction of a softgoal. Consequently, the derivation of

goal model variants for a given context and user

prioritization is a two-step process that the system

follows at runtime:

1. Deriving the variants applicable in the current context:

the truth values of contexts at the variation points

decide the set of goal model variants that are

applicable. As we have shown earlier, context analysis

allows us to discover a formula of facts that specifies a

context (see Fig. 4). The system, at runtime, has to

monitor the environment and collect data (Fig. 5) and

compute the truth value of the formulae of facts at each

variation point of the goal model. This, in turn, filters

the space of goal model variants leaving those that are

applicable in the current context.

Fig. 6 The analogy between goal analysis and context analysis

Requirements Eng (2010) 15:439–458 447

123

2. Ranking the applicable variants based on user’s

prioritization: at certain contexts, there could be more

than one applicable goal model variant. In other words,

there could be more than one variant to meet the same

requirements. To select between them, user prioritiza-

tion could be considered by the system at runtime. To

this end, users are asked, at design time, to prioritize

the set of softgoals. The system computes the value of

contextual contributions and the priority of each

applicable variant according to the formula above.

The adopted variant is the one with the highest

priority, i.e., the one that better contributes to the

highly prioritized softgoals.

Example 1 Suppose that the current context allows for the

two variants partially shown in Fig. 7. The system has the

possibility to guide a staff to meet a visitor in person (variant

v0) or the possibility to establish a call between them so as to

communicate remotely (variant v00). Delivering information

in person to a visitor contributes negatively to the softgoal

‘‘staff feels more comfortable’’, as we presume that the staff

is not close to the visitor (C14 is false), and positively to the

softgoal ‘‘visitor is well-informed’’. The second variant,

delivering the information by a remote call, contributes

conversely to the two mentioned softgoals. If a stakeholder,

such as the administration of the museum, stated that priority

(‘‘staff is more comfortable’’): = 4, and that priority

(‘‘visitor is well informed’’): = 3, then and according to the

formula above priority(v0) = 1 and priority (v00) = -1 and

v0 will be selected.

5 Deriving requirements for minimum development

costs

In the previous section, we have studied the derivation of

goal model variants for a given context and user priori-

ties. Such reasoning is of high importance for systems

that support multiple goal model variants and where more

than one variant is adoptable in certain contexts. On the

other side, and for reasons such as budget and timing

constraints, we may want a system developed with min-

imum costs sacrificing the quality and flexibility gained

by supporting the whole set of goal model variants. In

other words, the system has to support a set of variants

that is enough to meet users’ goals in all considered

contexts and developed with minimum costs. To this end,

we have developed a reasoning in three steps to be used

at design time: (1) we exclude the variants that are

unadoptable because of unsatisfiability in their contexts;

(2) we exclude the variants that can be always replaced

by others; (3) and finally, we reason about the remaining

variants to extract those leading to a system developed

with minimum costs and that is able to meet user goals in

all analyzed contexts.

5.1 Deriving the unadoptable variants

A goal model variant is unadoptable when its context

specification formula is unsatisfiable. We need to check

such unsatisfiability early to save costs and fix errors given

that unadoptable variants may lead to software function-

alities that are never used or incorrectly specified. In this

section, we develop SAT-based [25] reasoning techniques

to detect unsatisfiability of contexts associated with goal

models.

Contexts are specified as formulae of facts and such

formulae might be unsatisfiable. We have shown how to

refine the contexts specified at the variation points of goal

model into formulae of facts (see Fig. 4). The context of

a goal model variant is accumulative and defined as the

conjunction of the contexts at the variation points in that

variant (see Fig. 3). Consequently, the formula of the

context of a goal model variant is the conjunction of the

formulae of facts of the contexts at the variation points of

that variant. In order to check the satisfiability of a for-

mula expressing a context, either of a variation point or

of a goal model variant, we need also to specify all

Fig. 7 Two instantiated goal model variants with different qualities

448 Requirements Eng (2010) 15:439–458

123

possible contradictions among its variables (world

predicates).

Example 2 in Fig. 2 we have C8 = wp8.1 ^ wp8.2 where

wp8.1 = ‘‘visitor is inside the museum’’ and wp8.2 = ‘‘he is

not walking towards the exit’’, and C7 = wp7.1 where

wp7.1 = ‘‘visitor is on the way to enter the museum’’. In

this example, C7 ! :C8 because wp8:1 ! :wp7:1; so any

goal model variant that whose context includes C7 ^ C8

will never be applicable.

The analyst may specify such logical relations between

facts, statements, or contexts specified at the variation

points of a goal model2. For example, the specification

statementi!:statementj will be translated as the formula

of facts that supports statementi contradicts with the one

supporting statementj. Cvpi
! :Cvpj

means that the for-

mula of facts that specifies the context at the variation

point vpi contradicts with that of the context at the vari-

ation point vpj. The logical relations between formulae of

world predicates can be absolute or dependent on the

characteristics of the operational environment of the

system:

1. Absolute relations apply wherever the system operates.

For example, suppose we have the three world

predicates wp1 = ‘‘staff [s] of museum branch [m]

has never worked in another museum branch’’,

wp2 = ‘‘visitor [v] is for the first day in [m]’’ and

wp3 = ‘‘ [s] assisted [v] some date before today’’, then

wp1 ! :ðwp2 ^ wp3Þ applies in whatever museum the

system could operate in.

2. Operational environment-dependent relations hold in a

particular environment where the system operates

without any guarantee that such relations apply in all

operational environments. For example, suppose we

have the two world predicates wp1 = ‘‘there is enough

light at the visitor location’’ and wp2 = ‘‘visitor is

inside a museum gallery room’’. If the museum keeps

the light level inside the gallery rooms low, for

decorating reasons or to conserve the pieces of art,

then wp1 ! :wp2 applies always in this particular

museum. Moreover, the operational environment itself

assures that some contexts are always true or always

false, so we have to consider a special kind of

environment dependent relations of the form Env!
world predicates formula: For example, if the system

is going to operate in a museum where pieces of art are

protected against touching, then the relation Env!
:wp3 where the world predicate wp3 = ‘‘visitor has

just touched a piece of art’’ will always hold at that

museum.

We apply SAT-based techniques to check whether a

boolean formula is satisfiable under a set of assumptions.

Given a boolean formula expressing a context and a set of

logical relations between its variables, a SAT-solver is

exploited to check whether there exists a truth assignment for

all variables that makes the conjunction of the context formula

and the logical relations formula satisfiable. If such assign-

ment exists, then the formula is satisfiable, otherwise it is

unsatisfiable under the assumed logical relations. The pseudo-

code of the algorithm (CheckSAT) is reported in Fig. 8.

Example 3 The variant shown in Fig. 9 has an unsatisfi-

able context due to the contradiction between C7 (‘‘the

visitor is on the way to enter the museum shortly before the

closing time’’), and C1 (‘‘the visitor is in the gallery

building and interested in getting explanation about a piece

of art’’). A design decision has to be taken to accept this

kind of unsatisfiability, i.e. to confirm that the model var-

iant is indeed not needed, or to modify the model and fix it.

In fact, and in this particular example, the unsatisfiability is

not a modeling error, but it is a side-effect of the goal

model hierarchy. This hierarchy compactly represents a

large number of variants in one model and it, at the same

time, may include variants that are never applicable. The

tasks of the unadoptable variants, such as the variant of our

example, could appear in other variants with satisfiable

contexts and, therefore, these tasks are not necessarily

unusable if implemented in the final system. A task could

Fig. 8 Checking context satisfiability under assumptions (CheckSAT)

Fig. 9 A partial goal model variant with an unsatisfiable context

because of the contradiction between C7 and C1
2 In Sect. 6, we discuss our CASE tool to support this task.

Requirements Eng (2010) 15:439–458 449

123

be implemented in the system-to-be if it appears in, at least,

one goal model variant with a satisfiable context.

5.2 Deriving the (non-)core variants

Core requirements are system requisites that cannot be

bargained on. There could be different perspectives to

categorize requirements into core and non-core. Concern-

ing a system supported by variants to operate in and reflect

varying contexts, the variants having no alternative variants

at certain contexts are core. Discovering core variants is

useful for several reasons. It helps to know the parts of the

system that are critical and whose failure cannot be rem-

edied by adopting other variants at certain contexts. Also, it

helps to know the part of the system that needs to be

developed first and cannot be delayed to get a system

operable in all considered contexts. The latter reason is the

focus of this paper.

We develop a reasoning mechanism to derive the (non-)

core goal model variants as a basic step to decide the

variants to include in the system to be. The goal model

variants that are preconditioned by unsatisfiable contexts

will be never adopted. The developed software has to only

consider the variants with satisfiable contexts. The goal

model variants with unsatisfiable contexts are obviously

non-core as such variants are never adoptable. Moreover,

the implications between the contexts of goal model vari-

ants could make some variants core and others non-core.

Similar to the contradictions between contexts, the impli-

cations can be absolute or dependent on the operational

environment of the system. We first give some basic defi-

nitions and then develop an algorithm for processing a

contextual goal model and deriving the core variants.

Definition 8 (Core variant) a variant Vi with a context

specified by a formula ui is core iff ui is satisfiable and 9=
variant Vj with a context specified by a satisfiable formula

uj : ðui ! ujÞ ^ :ðuj ! uiÞ:

From this definition, any variant that is non-core has a

set of core variants applicable in all contexts where it is

itself applicable, but not vice versa. A reason for keeping

such non-core variants is that at certain contexts they might

assure better quality3. The core variants are grouped on the

basis of their contexts equivalence (direct equivalence or

equivalence under assumptions) to construct core groups of

variants.

Definition 9 (Core groups set) is the set of core variants

partitioned on the basis of context equivalence.

Definition 10 (Core group of variants) is an element of

the core groups set.

In Fig. 10, we propose an algorithm that, given a con-

textual goal model, returns the set of all core groups of

variants. Following Definitions 8, 9, and 10, the algorithm

excludes the variants with inconsistent contexts (line 1), then

partitions the rest of variants in groups on the basis of context

equivalence (lines 2–8), and then extracts the core groups of

variant (lines 9–14). We use the algorithm CheckSAT

(shown in Fig. 8) to check the implication (equivalence)

between contexts. Given the logical relations (n) between the

variables of two formulae u1 and u2 then u1 ! u2 if and

only if:ðu1 ! u2Þ is unsatisfiable under the assumptions n.

Example 4 In Fig. 11, we show two partial contextual

goal model variants { V1, V2 } each including a different set

of tasks to implement. Both contexts of the two variants are

satisfiable and V2:context ! V1:context ^ :ðV1:context !
V2:contextÞ: This means that V2 is non-core since there is

always the variant V1 that can replace it in all considered

contexts. In the space of these two partial variants, the task

‘‘send [s] a voice command’’ and ‘‘make voice call between

[s] and [v]’’ are non-core, while the tasks ‘‘[s] is alerted

via ringing tone and SMS’’, ‘‘show [v] picture’’, and

‘‘direct [v] to [s] place’’ are core and essential to imple-

ment in order to achieve the goal ‘‘[v] gets info through

[m] staff [s]’’ in all considered contexts.

5.3 Deriving the variants for minimal costs system

Developing a system that supports multiple variants to

reach its requirements is desirable for several reasons such

as flexibility and fault tolerance. In the previous section

Fig. 10 Extracting core groups of variants

3 The selection of non-core variants to support in the system-to-be is

out of the scope of this paper.

450 Requirements Eng (2010) 15:439–458

123

(Sect. 4), we have shown how such approach can accom-

modate the priorities of different users. For different rea-

sons, such as timing and budget constraints, we may be

required to develop just an operable system, i.e. a system

that operates in all considered contexts. In this section, we

develop the final step of the reasoning about a contextual

goal model to derive a subset of its leaf tasks that leads to a

system able to operate in all considered contexts and

developed with minimum costs. These tasks may not

implement the whole set of goal model variants, but those

that are implemented will allow the system to reach its

goals in all considered contexts.

Costs are not related to goals but to tasks as tasks rep-

resent executable processes while goals are just desires of

an actor. Each task needs certain development resources

(equipments, programmers, software packages, and so on).

Each of these resources has a cost. We need to specify the

resources needed for each task development and the costs

of each resource to enable our target reasoning. A resource

may be a part of the development of multiple tasks which

means that the development costs of tasks may overlap. For

example, both of the tasks ‘‘direct visitor to terminal

location’’ and ‘‘direct staff to visitor location’’ need almost

the same resources. They both need a positioning system,

communication system, and preparing a digital map of the

museum. The development of the two tasks ‘‘piece of art

information is presented to visitor via video’’ and ‘‘piece of

art information is presented to visitor interactively’’ share

the resources of gathering data about the pieces of art and

preparing pictures, videos, and audio explanation to be

presented, and programming the presentation.

Defining the resources needed for each task, and the

costs of these resources is the basic step to decide which

tasks to develop. The second step is getting the core groups

of variants of the contextual goal model (we have already

explained this reasoning in Sect. 5.2). Then, we need to

identify a subset of tasks that implements, at least, one

variant of each core group of variants targeting for a

minimal total cost.

Definition 11 (Operable set of tasks) S is an operable set

of tasks for a core groups set CS iff for each

CG 2 CS;9v 2 CG ^ v:tasks � S:

Definition 12 (Min-cost set of tasks) S is a min-cost set

of tasks iff S is an operable set of tasks and 9= another

operable set of tasks S0 with lower development costs.

A naive approach to extract a min-cost set of tasks can

be to compute the cartesian product of the core groups of

variants and then selecting the combination of variants of

minimum cost. Such approach is obviously time-consum-

ing and suffers of exponential blow-up. Moreover, our

experiments evidenced that it cannot deal even with small-

to-medium–sized goal models. Thus, we need to replace

the naive approach with an optimized algorithm. We can

significantly reduce the complexity of our reasoning by

exploiting the nature of the problem as shown in the

algorithm reported in Fig. 12. First, the algorithm calcu-

lates the set of tasks that are mandatory for all possible

combinations of variants (lines 1–4). A task is mandatory if

it is included in all the variants of, at least, one core group

of variants. To reduce the number of core groups of

Fig. 11 V2 is non-core because V2:context ! V1:context ^ :ðV1:context ! V2:contextÞ

Fig. 12 Extracting the min-cost set of tasks

Requirements Eng (2010) 15:439–458 451

123

variants to be involved in the cartesian product, the algo-

rithm makes two processing and produces a reduced core

groups set. A core group that includes, at least, a variant

implementable using a subset of the mandatory tasks will

be excluded (lines 5–9). Some core groups of variants

become equivalent after excluding the mandatory tasks of

the variants belonging to them, and we unify such equiv-

alent groups to reduce the number of core groups that will

be included in the forthcoming cartesian product (lines

10–11). The rest of the algorithm deal with the cartesian

product of the core groups of variants belonging to the

reduced core groups set (S) and returns the min-cost set of

tasks (lines 12–14).

Example 5 In Fig. 13, we show a part of the goal model

shown in Fig. 2. We provide estimations for the costs of

each task development aside. We show the set of variants

after excluding the non-core variants as we explained in the

last section. The remaining variants are grouped based on

context equivalence to create core groups of variants. The

relation between tasks based on the shared resources are

reported. Include (T1, T2): the work done to gather simple

information of the pieces of art is included in that needed for

gathering more detailed information. Intersect (T3, T4, A):

the interactive presentation (T4) includes videos (the

resource A) that are also needed for video-based presenta-

tion (T3). Intersect (T3, T5, B), Intersect (T4, T5, B): all

these tasks need a server and PDA for communication (the

resource B). Intersect (T4, T8, C): we presume that T8 is

interactive which means that both of T8 and T4 require PDA

with touch screen and the corresponding programming

packages for getting user input in this way (the resource C).

After this specification, we show the set of tasks to develop

and the variant that are implemented on them and the final

minimized costs.

6 Automated support tool: RE-Context

In order to support the analyst in the reasoning techniques,

we described in the previous two sections, we have

developed a prototype automated reasoning tool called RE-

context. It takes as input a contextual goal model expressed

as an input file for DLV4, a disjunctive Datalog [26]

implementation. At the moment, we do not provide a

graphical goal modeling editor neither automated transla-

tion to the DLV input format.

Code 2 shows how part of the goal model of Fig. 13 is

translated to the input format for RE-context. Goal and

context labels begin with a lowercase letter, because

leading uppercase letters represent variables in DLV. The

top-level goal G1 is Or-decomposed to sub-goals G2 and

G3 (line 1). Line 1 shows the syntax that allows for DLV

to select either G2 or G3 if G1 is chosen. If G2 is selected,

then C5 should apply (line 2); if G3 is selected, then C6

should be valid. Goal G2 is And-decomposed to G4 and

G5 (lines 4–5). There are two tasks that are means-end

linked to G4: T1 and T2; DLV should choose among them,

as expressed in line 6. Similarly (line 7), in order to

achieve G5, DLV should select either T3 or T4. Line 8 is

the input for DLV to start planning: it states that G1

should be achieved.

Fig. 13 Illustration of the minimum-cost core requirements extraction

4 http://www.dbai.tuwien.ac.at/research/project/dlv/

452 Requirements Eng (2010) 15:439–458

123

http://www.dbai.tuwien.ac.at/research/project/dlv/

Code 2 Part of the goal model of Fig. 13 expressed in DLV as input

for RE-Context

1 ach(g2) v ach(g3) :- ach(g1)

2 c5 :- ach(g2)

3 c6 :- ach(g3)

4 ach(g4) :- ach(g2)

5 ach(g5) :- ach(g2)

6 todo(t1) v todo(t2) :- ach(g4)

7 todo(t3) v todo(t4) :- ach(g5)

8 ach(g1)

The first step of RE-context is to derive all variants, and

this consists of running the DLV reasoner using it as a

planner on the goal model: the output consists of all the

valid models that satisfy the rules in the input file. Each

variant consists of a set of tasks to execute and the set of

contexts required for each variant.

The second step is to check context satisfiability for

each variant. This corresponds to run the CheckSAT algo-

rithm described in Fig. 8. To verify the satisfiability of a

context, RE-Context uses the state-of-the-art SMT solver

MathSAT5. RE-Context loads the definition of the contexts

from separate files: for instance, context C1 is represented

in the code as c1) and is defined in the file c1.txt as a

boolean formula expressed over a set of variables. The

variables of this formula are the leaf facts of C1 context

hierarchy. Variants with unsatisfiable contexts are not

considered in the later reasoning steps, since they cannot be

adopted in any context.

RE-context can be used online while constructing the

contextual goal model to check the satisfiability of partial

goal model variants. This feature provides two advanta-

ges. First, it allows to discover modeling errors and

locate them early in the analysis. For example, if the

context of the root goal contradicts with the context

specified for an alternative in an OR-Decomposition, then

the tool suggests to either (1) modify the model or (2)

exclude the unadoptable alternative and stop further

refinement. Second, it helps to reduce the manual speci-

fication of the relations between contexts. For example,

once the analyst specifies a new relation between con-

texts, the tool checks the satisfiability of the (partial)

variants to discover those with unsatisfiable contexts and

asks the analyst whether to accept or to fix the unsatis-

fiability. It is worth noting that context unsatisfiability

might be a side-effect of the compact form of goal model

hierarchy and not necessarily a modeling error (see

Example 3), and a design decision has to be taken about

it. Once the analyst has accepted the unsatisfiability in a

variant vi and thus decided to exclude it, RE-context

excludes all the variants that include vi. In order to

minimize the interaction with the analysts, RE-context

checks the smaller variants first.

RE-context can be run in two usage modes, each cor-

responding to one of the reasoning techniques we described

in this paper: (1) deriving the variants for a given context

and user prioritization and (2) deriving the variants leading

to minimum development costs.

Deriving variants for varying contexts: the input for this

activity includes the contexts that apply and the user pri-

oritization of softgoals. The latter input is provided by

representing (contextual) contributions to soft-goals and

the importance given by the user to the various soft-goals

(0 = ‘‘I don’t care’’, 5 = ‘‘I care very much’’). Code 3

shows how to express user prioritization or softgoals for the

example in Fig. 13. Line 1 says that context C14 is true;

lines 2–3 express the interest of the user in both soft-goals

SG1 (visitor well informed) and SG2 (staff is more com-

fortable). Lines 4–7 show the contributions from goals G10

and G11 to the soft-goals; in particular, line 5 shows a

contextual contribution from G10 to SG2: the contribution is

positive only if context C14 is true. RE-Context returns the

best variant, namely the one that better contributes to the

soft-goals the user cares about.

Code 3 User preferences in Fig. 13 expressed in the RE-Context

input format.

1 phi(c14)

2 softgoal(sg1,3)

3 softgoal(sg2,1)

4 contrib(g10,sg1,pos)

5 contrib(g10,sg2,pos) :- phi(c14)

6 contrib(g11,sg1,neg)

7 contrib(g11,sg2,pos)

Deriving variants for minimum development costs: the

first step to reason about minimum development cost is to

get rid of non-core variants; this task is carried out by

running the SAT-solver based tool to check whether there

are replaceable variants (see Definition 8). Subsequently,

RE-context groups the variants in core groups, where each

core group contains variants whose contexts are equivalent;

RE-context runs the SAT-solver based tool to identify

equivalent contexts. Once core groups are identified, the

minimum development cost should be computed, by

choosing one variant from each core set that lead to a total

minimum costs. Costs are expressed for each task on the

basis of the resources they need. Lines 1–5 in code 4 shows

the development cost for tasks T1 and T2 (taken from

Fig. 13). Task and resources labels are represented with a5 http://mathsat4.disi.unitn.it

Requirements Eng (2010) 15:439–458 453

123

http://mathsat4.disi.unitn.it

leading lowercase letter due to DLV syntactic rules. Lines

1–2 define the cost for resources R1 and R2, respectively.

Lines 3–5 define the relation between tasks and develop-

ment resources: task T1 requires only resource R1, whereas

T2 requires both R1 and R2. Therefore, there is an inter-

section between T1 and T2 for R1; more precisely, there is

an inclusion relation (T2 includes T1), given that all

resources needed by T1 are also needed by T2.

Code 4 Development cost for tasks t1 and t2 in Fig. 13.

1 cost(r1,30) :- needed(r1)

2 cost(r2,10) :- needed(r2)

3 needed(r1) :- todo(t1)

4 needed(r1) :- todo(t2)

5 needed(r2) :- todo(t2)

6.1 Evaluation

We have organized a seminar to present our framework,

invited four requirements engineers with good expertise in

goal modeling, and explained our framework to them. We

have then invited an expert in mobile computing from the

LaMA at University of Trento to describe the museum-

guide scenario. Then, we asked the requirements engineers

to use our framework to model the museum guide

requirements. Together with the domain expert, we have

answered the questions the engineers have raised during

the session. We have then formalized the contextual goal

model the engineers have drawn, then we ran our tool and

obtained and reported the results. RE-context has been

installed on a computer equipped with an AMD Athlon(tm)

64 X2 Dual Core Processor 5000?, 4 GB RAM, Sun Java

JRE 1.6.0_07-b06, Linux Debian 2.6.18.dfsg.1-12, and we

analyzed the performance and reported the results.

6.1.1 Reasoning results

Figure 14 shows the results obtained by running the auto-

mated reasoning techniques on the museum-guide case

study. The first two columns show the time required to

develop (TD) and formalize (TF) the goal model; clearly,

the time taken by these activities can be reduced with the

aid of a CASE tool. Then, the table presents data con-

cerning the goal model size in terms of the number of

actors (NA), goals (NG), tasks (NT), soft-goals (NSG),

variation points (NVP), and variants (V).

Then, the figure contains data collected by running the

tool. First, we report the number of iterations where the

tool asked us to fix or accept unsatisfiability. Whenever an

unsatisfiable context is accepted, i.e. the variant is indeed

unadoptable, the tool also excludes the other variants that

contain it. After unsatisfiability checking, the tool pro-

cesses the variants with satisfiable contexts: the number of

non-core variants (NCV), the total cost to develop all tasks

aside (TC), the shared cost among all tasks (SC), the cost of

developing all tasks (CAS = TC - SC), the number of

core groups of variants (CGV) and the minimum cost for a

system working in all considered contexts (MC).

We have tested the reasoning about variants derivation for

given context and user priorities through an interactive

experiment with designers. First, the designers were asked to

give their ranking to the set of softgoals. Then, they were

given a context and a set of adoptable variants and asked to

expect the variant that the reasoning will give. We compared

the results of the reasoning with their answer to see if user

expectation matches with the way the system is going to

derive variants for a given context and priorities. This

experiment helped us to validate this kind of reasoning and

modify the model and the ranking of the softgoals iteratively.

6.1.2 Performance analysis

After running RE-context on the original goal model, we

tested its scalability on goal models of different sizes, as

shown in Fig. 15. The original goal model is that of the

case study. To get models of smaller and larger sizes, we

have taken sub-trees and cloned them, in similarly to the

approach in [27]. The first two columns in Fig. 15 show the

number of nodes (NN) and variants (NV) in the goal

model, whereas the next four columns show the time of

Fig. 14 The results obtained by applying the developed tool on the museum-guide system

454 Requirements Eng (2010) 15:439–458

123

executing our reasoning. T_Der is the time to derive all

variants of goal model, T_Inc is the time required to get

variants with unsatisfiable contexts, while T_CGV is the

time the tool required to get the core groups of variants.

The graph on the right-hand side depicts the results

shown in the table: the x-axis represents logarithmically the

number of variants, the y-axis represents logarithmically

the computation time needed. The collected data show that

the time needed for computation is growing exponentially

with the increase of the problem size. Considering that the

reasoning is performed at design-time, the tool scales quite

well in the test cases (it takes less than 16 min with

648.000 variants). We don’t present here results for

deriving variants under given context and user prioritiza-

tion over softgoals, as the computational cost is negligible.

Moreover, the algorithm we have shown in Fig. 12 led to

negligible time for computing the tasks to develop with

minimum costs.

Scalability issues can be addressed by means of two

techniques. The first one is to iteratively check the goal

model during construction. We can reason about context

satisfiability and derive variants corresponding to a given

context and user priorities while constructing the goal

model instead of analyzing the entire final goal model at

once. In such a way, problems are identified as soon as they

arise and can be fixed immediately. The second one is to

exploit divide-and-conquer strategy. Computing the core

groups of variants is very expensive because of the large

number of comparisons that include the invoking of SAT

solver. To reduce this complexity, we can split the goal

model into parts, reason about each part, and combine the

results. For example, for an AND-decomposed goal, we

can compute the core groups of variants of each subgoal

and then combine the results by cartesian product. We

obtained preliminary results of the effectiveness of this

strategy. We applied it to the root goal of the goal model

with 100 nodes in Fig. 15. The entire analysis, from variant

generation to core groups generation, took us 150340

seconds, about six times faster than analyzing the whole

goal model at once. We obtained similar improvements

also on goal models for different case studies.

6.2 Discussion

Other modeling constructs could be added to increase the

expressiveness of our proposed context analysis. A possible

extension is the specification of temporal relations between

world predicate (statement and facts). For example, a

statement like ‘‘visitor tried to get explanation about a

piece of art before he left the room in sudden way’’ is

composed of two sub-statements that should occur

sequentially. Temporal relations are important for the

system at runtime to decide the truth of a context. Another

extension is a weighted ‘‘Support’’ relation that defines

how much evidence is given to the truth of a statement. For

example, the fact ‘‘visitor is walking slowly’’ gives high

evidence to the statement ‘‘visitor is not in a hurry’’ while

the fact ‘‘is still early to the closing time’’ gives lower

evidence to it.

Some of the reasoning techniques proposed in this paper

may require an intensive intervention of the analyst.

Variants derivation for a given context and user priorities

requires a manual ranking of softgoals. This ranking

involves the specification of the priority of each softgoal

once. The variant derivation for system developed with

minimum costs requires the analyst to provide the devel-

opment costs of each task once. These two kinds of rea-

soning require a reasonable amount of specification to be

provided manually by the analyst. From the other side, the

analyst intervention required for reasoning about context

satisfiability may become complex as we presumed that the

logical relations between world predicates formulae are

manually provided. Consequently, more techniques and

automated support are needed to help the task of the analyst

in specifying and verifying our proposed contextual goal

models.

Fig. 15 Tabular and graphical representation of the performance of the developed tool. Time is in milliseconds

Requirements Eng (2010) 15:439–458 455

123

In this paper, we dealt with actors at the class level. We

assumed a uniform rationale with respect to goal achieve-

ment and adaptation to context amongst all actors of the

same class. For example, we presumed that all assistance

staff find it uncomfortable to go to a visitor in person when

they are far away from each other. However, different

assistance staff may share common attitudes and differ in

others. Dealing with actor preferences and instance-specific

rationale are still open issues that will be explored in future

work. A promising solution to this issue is to use inheri-

tance and overriding principles at the actor level to bypass

the naive enumeration of actor instances.

We need further investigation of the mutual influence

between context and requirements. In our approach, we

model and reason about the influence of context on the

requirements, and we do not study the influence of the

actions taken to meet requirements on the context. Such

influence might be problematic. For example, illustrating

the use of information machines to visitors and asking

their feedback might be done through their PDAs. The

first by showing a demo and the second by showing an

interactive dialogue. Both options require an exclusive

possession of the PDA screen which leads to conflict if

done together.

7 Related work

The research in context modeling, such as [23], concerns

finding modeling constructs to represent software and user

context, but there is still a gap between the context model

and software behavior model, i.e. between context and its

use. We tried to reduce such a gap at the goal level and

allow for answering questions like: ‘‘how do we decide the

relevant context?’’, ‘‘why do we need context?’’ and ‘‘how

does context influence software and user behavior adap-

tation?’’. Salifu et al. [28] investigate the use of problem

descriptions to represent and analyze variability in context-

aware software. Their work recognizes the link between

requirements and context as a basic step in designing

context-aware systems.

Software variability modeling, mainly feature models

[29, 30], concerns modeling a variety of possible config-

urations of the software functionalities to allow for a sys-

tematic way of tailoring a product upon stakeholder

choices, but there is still a gap between each functionality

and the context where this functionality can or has to be

adopted, the problem we tried to solve at the goal level.

Furthermore, our work is in line and has the potential to be

integrated with the work in [31] and the FARE method

proposed in [32] that show possible ways to integrate

features with domain goals and knowledge to help for

eliciting and justifying features.

Requirements monitoring is about insertion of a code

into a running system to gather information, mainly about

the computational performance, and reason if the running

system is always meeting its design objectives, and rec-

oncile the system behavior to them if a deviation occurs

[8]. The objective is to have more robust, maintainable, and

self-evolving systems. In [33], a GORE (goal-oriented

requirements engineer) framework KAOS [6] was inte-

grated with an event-monitoring system (FLEA [34]) to

provide an architecture that enables the runtime automated

reconciliation between system goals and system behavior

with respect to a priori anticipated or evolving changes in

the system environment. Differently, we propose model-

driven framework that concerns an earlier stage, i.e.

requirements, with the focus on identifying requirements

together with context, and eliciting the monitoring data.

Customizing goal models to fit to user skills and pref-

erences was studied in [35, 36]. The selection between goal

model variants is based on one dimension of context, i.e.

user skills, related to the atomic goals (executable tasks) of

the goal hierarchy, and on user preferences that are

expressed over softgoals. In [37] Lapouchnian et al. pro-

pose techniques to design autonomic software based on an

extended goal modeling framework, but the relation to the

context is not focused on. Liaskos et al. [38] study the

variability modeling under the requirements engineering

perspective and propose a classification of the intentional

variability when Or-decomposing a goal. We focused on

context variability, i.e. the unintentional variability, which

influences the applicability and appropriateness of each

goal model variant. Reasoning with Tropos goal model has

been already studied in [39]; adding context to goal models

creates the need to integrate between reasoning with con-

text and that with the goal model.

8 Conclusions and future work

In this paper, we have developed a goal-oriented frame-

work for modeling and analyzing requirements for varying

contexts. We extended Tropos goal model to capture the

relationship between each variant to goal satisfaction and

context. In turn, context is defined through a hierarchial

analysis. The context analysis represent a systematic way

to identify facts the system needs to verify in order to

confirm an analyzed context.

We have formalized the extended goal model and

developed two reasoning techniques. The first technique is

for deriving the requirements variants with respect to

context and user priorities. This reasoning technique is

used at runtime to determine the variant to adopt from the

pool of goal model variants supported by the system. The

second technique is for deriving a minimum-cost set of

456 Requirements Eng (2010) 15:439–458

123

tasks that has to be implemented to enable the system of

meeting users’ goals in all considered contexts. We have

applied our framework on a scenario of a mobile infor-

mation system to assist visitors in museums, and we have

reported and discussed the results obtained.

We have discussed several limitations of our proposed

framework that will be addressed in our future work. We

will work to enrich our context analysis to deal with tem-

poral relations between contexts and to express the

weighted evidence that a formula of world predicate gives

to a statement. We will work to enhance the scalability of

our automated support tool and to reduce the amount of

effort an analyst is required to pay in order to construct our

proposed models and use our analysis techniques. Captur-

ing the variability and communality between instances of

an actor class is another challenge to address. Moreover,

the influence on context caused by the actions that the

system takes to meet its requirements, and the problems it

may lead to is also another problem that we will work on.

Besides that, we will also make research along two other

lines:

– Managing viewpoints of context: besides the potential

inconsistency between different stakeholders’ specifi-

cations of requirements, that is well studied in the

literature (e.g., [40]), context specification itself might

be debatable. We need to manage multiple perspectives

(viewpoints) of context since different stakeholder

might specify context differently or even in contradic-

tory ways. Categorizing, detecting, and managing, such

differences in context specifications are necessary to

have well specified requirements. For example, in a

museum-guide system, the context A = ‘‘visitor is

interested in watching a documentary film’’ is a high

level context that can be differently specified by

different stakeholders. One stakeholder can say ðA
B _ CÞ where B = ‘‘the film is related to the visitor’s

local culture’’ and B = ‘‘the film concerns a city where

the visitor has been once at least’’. Another stakeholder

might say: A=‘‘a visitor is interested in the film if it

conveys very new information to him’’. To some

extent, these two descriptions are inconsistent.

– Context and security requirements: most of security

requirements approaches (such as Secure Tropos [41])

deal with security requirements that are context-inde-

pendent. In some cases, context can influence security

requirements, and we would need to do research in

context-dependent security requirements. For example,

in an emergency situation (such as fire), a visitor will

accept rescue team to know his location and other data

needed to guide him to a safe area, while in a normal

situation a visitor would have more restricted security

concerns.

Acknowledgments This work has been partially funded by EU

Commission through the COMPAS, NESSOS and ANIKETOS pro-

jects. We thank Jaelson Brelaz de Castro, Bashar Nuseibeh, John

Mylopoulos, Yijun Yu, Anders Franzen, Alberto Griggio, and Amit

K. Chopra for the helpful discussions that enriched the ideas in this

paper.

References

1. Weiser M (1991) The computer for the 21st century. Scientific

American 265(3):94–104

2. Finkelstein A, Savigni A (2001) A framework for requirements

engineering for context-aware services. In: Proceedings of

STRAW 01

3. Yu E, Mylopoulos J (1998) Why goal-oriented requirements

engineering. In: Proceedings of REFSQ’98, pp 15–22

4. Yu ESK (1995) Modelling strategic relationships for process

reengineering. Ph.D. Thesis, University of Toronto

5. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J

(2004) Tropos: an agent-oriented software development meth-

odology. Autonomous Agents Multi-Agent Syst 8(3):203–236

6. Dardenne A, van Lamsweerde A, Fickas S(1993) Goal-directed

requirements acquisition. Sci Comput Program 20(1–2):3–50

7. Mylopoulos J, Chung L, Yu E(1999) From object-oriented to

goal-oriented requirements analysis. Commun ACM 42(1):31–37

8. Fickas S, Feather MS (1995) Requirements monitoring in

dynamic environments. In: Proceedings of RE 1995. IEEE

Computer Society Washington, DC, USA, p 140

9. Sykes D, Heaven W, Magee J, Kramer J (2008) From goals to

components: a combined approach to self-management. In: Pro-

ceedings of SEAMS’08. ACM New York, NY, USA, pp 1–8

10. Ali R, Dalpiaz F, Giorgini P(2008) Location-based variability for

mobile information systems. In: Bellahsene Z, Léonard M (eds)

Proceedings of CAiSE’08, volume 5074 of LNCS. Springer,

Berlin, pp 575–578

11. Ali R, Dalpiaz F, Giorgini P(2008) Location-based software

modeling and analysis: Tropos-based approach. In: Li Q, Spac-

capietra S, Yu ESK, Olivé A(eds) Proceedings of ER 2008 vol-

ume 5231 of LNCS. Springer, Berlin, pp 169–182

12. Ali R, Dalpiaz F, Giorgini P (2009) A goal modeling framework

for self-contextualizable software. In: Proceedings of EMMSAD

2009, vol 29 of LNBIP. Springer, Berlin, pp 326–338

13. Ali R, Dalpiaz F, Giorgini P (2009) Goal-based self-contextual-

ization. In: CAiSE’09 - Forum, vol 453, CEUR-WS, pp 37–42

14. Brezillon P (1999) Context in artificial intelligence: I. a survey of

the literature. Comput Artifi Intell 18:321–340

15. Dey AK (2001) Understanding and using context. Personal

Ubiquitous Comput 5(1):4–7

16. Krogstie J, Lyytinen K, Opdahl AL, Pernici B, Siau K, Smo-

lander K (2004) Research areas and challenges for mobile

information systems. Int J Mobile Commun 2(3):220–234

17. Shen X, Tan B, Zhai CX (2005) Context-sensitive information

retrieval using implicit feedback. In: Proceedings of SIGIR 2005.

ACM, pp 43–50

18. Jackson M (2000) Problem frames: analyzing and structuring

software development problems. Addison-Wesley Longman

Publishing Co., Inc., Boston

19. van Lamsweerde A (2001) Goal-oriented requirements engi-

neering: A guided tour. In: RE 2001. IEEE Computer Society,

pp 249–262

20. Jureta I, Mylopoulos J, Faulkner S (2008) Revisiting the core

ontology and problem in requirements engineering. In: RE 2008.

IEEE Computer Society

Requirements Eng (2010) 15:439–458 457

123

21. Yu Y, Lapouchnian A, Liaskos S, Mylopoulos J, Leite JCSP (2008)

From goals to high-variability software design. In: Proceedings of

ISMIS’08, vol 4994 of LNCS. Springer, Berlin, pp 1–16

22. Dalpiaz F, Giorgini P, Mylopoulos J (2009) An architecture for

requirements-driven self-reconfiguration. In: Proceedings of

CAiSE’09, vol 5565 of LNCS. Springer, Berlin, pp 246–260

23. Henricksen K, Indulska J (2004) A software engineering frame-

work for context-aware pervasive computing. In: Proceedings of

PerCom’04. IEEE Computer Society, pp 77–86

24. Bai Y, Yang J, Qiu Y (2008) OntoCBR: Ontology-based CBR in

Context-aware Applications. In: Proceedings of the International

Conference on Multimedia and Ubiquitous Engineering (MUE

2008)

25. Biere A, Heule M, van Maaren H, Walsh T (eds) (2009) Hand-

book of satisfiability. In: Frontiers in artificial intelligence and

applications, vol 185. IOS Press, Amsterdam

26. Eiter T, Gottlob G, Mannila H (1997) Disjunctive datalog. ACM

Trans Database Syst 22(3):364–418

27. Wang Y, McIlraith SA, Yu Y, Mylopoulos J (2007) An auto-

mated approach to monitoring and diagnosing requirements. In:

Proceedings of ASE 2007. ACM New York, NY, USA,

pp 293–302

28. Salifu M, Yu Y, Nuseibeh B (2007) Specifying monitoring and

switching problems in context. In: Proceedings of RE 2007. IEEE

Computer Society, pp 211–220

29. Pohl K, Böckle G, van der Linden F (2005) Software Product line

engineering: foundations, principles, and techniques. Springer,

Berlin

30. Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) Form: a

feature-oriented reuse method with domain-specific reference

architectures. Ann Softw Eng 5:143–168

31. Yu Y, do Prado Leite JCS, Lapouchnian A, Mylopoulos J (2008)

Configuring features with stakeholder goals. In: Proceedings of

SAC 2008. ACM New York, N Y, USA, pp 645–649

32. Ramachandran M, Allen P (2005) Commonality and variability

analysis in industrial practice for product line improvement.

Softw Proc: Improve Pract 109(1):31–40

33. Feather MS, Fickas S, Van Lamsweerde A, Ponsard C (1998)

Reconciling system requirements and runtime behavior. In:

IWSSD’98. Association for Computing Machinery, Inc, One

Astor Plaza, 1515 Broadway, New York, N Y, 10036-5701, USA

34. Cohen D, Feather MS, Narayanaswamy K, Fickas SS (1997)

Automatic monitoring of software requirements. In: Proceedings

of ICSE 1997. ACM New York, N Y, USA, pp 602–603

35. Hui B, Liaskos S, Mylopoulos J (2003) Requirements analysis for

customizable software: a goals-skills-preferences framework. In:

Proceedings of RE 2003. IEEE Computer Society, pp 117–126

36. Liaskos S, McIlraith S, Mylopoulos J (2006) Representing and

reasoning with preference requirements using goals. Technical

report, Department of Computer Science, University of Toronto,

ftp://ftp.cs.toronto.edu/pub/reports/csrg/542

37. Lapouchnian A, Yu Y, Liaskos S, Mylopoulos J (2006)

Requirements-driven design of autonomic application software.

In: Proceedings of CASCON ’06. ACM

38. Liaskos S, Lapouchnian A, Yu Y, Yu E, Mylopoulos J (2006) On

goal-based variability acquisition and analysis. In: Proceedings of

RE 2006. IEEE Computer Society, pp 76–85

39. Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R (2002)

Reasoning with goal models. In: Proceedings of ER 2002, volume

2503 of LNCS. Springer, Berlin, pp 167–181

40. Nuseibeh B, Kramer J, Finkelstein A (1993) Expressing the

relationships between multiple views in requirements specifica-

tion. In: Proceedings of ICSE 1993. IEEE Computer Society,

pp 187–196

41. Mouratidis H, Giorgini P (2007) Secure tropos: a security-ori-

ented extension of the tropos methodology. Int J Softw Eng

Knowledge Eng 17(2):285–309

458 Requirements Eng (2010) 15:439–458

123

ftp://ftp.cs.toronto.edu/pub/reports/csrg/542

	A goal-based framework for contextual requirements modeling and analysis
	Abstract
	Introduction
	Case study: museum-guide
	Goal-based contextual requirements
	Tropos goal modeling: overview
	Context in requirements
	Contextual goal model
	Context analysis

	Deriving requirements in varying contexts
	Deriving requirements for minimum development costs
	Deriving the unadoptable variants
	Deriving the (non-)core variants
	Deriving the variants for minimal costs system

	Automated support tool: RE-Context
	Evaluation
	Reasoning results
	Performance analysis

	Discussion

	Related work
	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

