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ABSTRACT 
This paper explores citation-based metrics, how they differ in 
ranking papers and authors, and why. We initially take as example 
three main metrics that we believe significant; the standard 
citation count, the more and more popular h-index, and a variation 
we propose of PageRank applied to papers (called PaperRank), 
that is appealing as it mirrors proven and successful algorithms for 
ranking web pages. As part of analyzing them, we develop 
generally applicable techniques and metrics for qualitatively and 
quantitatively analyzing indexes that evaluate content and people, 
as well as for understanding the causes of their different 
behaviors. Finally, we extend the analysis to other popular 
indexes, to show whether the choice of the index has a significant 
effect in how papers and authors are ranked. 
We put the techniques at work on a dataset of over 260K ACM 
papers, and discovered that the difference in ranking results is 
indeed very significant (even when restricting to citation-based 
indexes), with half of the top-ranked papers differing in a typical 
20-element long search result page for papers on a given topic, 
and with the top researcher being ranked differently over half of 
the times in an average job posting with 100 applicants. 

1. INTRODUCTION 
The area of scientific metrics (metrics that assess the quality and 
quantity of scientific productions) is an emerging area of research 
aiming at the following two objectives: 1) measuring scientific 
papers, so that “good” papers can be identified and so that 
researchers can quickly find useful contributions when studying a 
given field, as opposed to browsing a sea of papers, and 2) 
measuring individual contributions, to determine the impact of a 
scientist and to help screen and identify candidates for hiring and 
promotions in industry and academia. 

Until only 20 years ago, the number of researchers and of 
conferences was relatively small, and it was relatively easy to 
assess papers and people by looking at papers published in 
international journals. With small numbers, the evaluation was 
essentially based on looking at the paper themselves. In terms of 
quantitative and measurable indexes, the number of publication 
was the key metric (if used at all). With the explosion of the 
number of researchers, journals, and conferences, the “number of 
publications” metric progressively lost meaning. On the other 
hand, this same explosion increased the need for quantitative 
metrics at least to “filter the noise”. For example, a detailed, 
individual, qualitative analysis of hundreds of applications 
typically received today for any job postings becomes hard 
without quantitative measures for at least a significant preliminary 
filtering.  

Recently, the availability of online databases and Web 
crawling made it possible to introduce and compute indexes based 

on the number of citations of papers (citation count and its 
variations or aggregations, such as the impact factor and the h and 
g indexes [13]) to understand the impact of papers and scientists 
on the scientific community. More and more, Universities 
(including ours) are using these indexes as a way to filter or even 
decide how to fill positions by “plotting” candidates on charts 
based on several such indexes. 

This paper performs an experimental study of scientific 
metrics (and, in particular, citation-based metrics) with the goal of 
1) assessing the extent of differences and variations on the 
evaluation results when choosing a certain metric over another, 
and 2) understanding the reasons behind these differences. 
Besides “traditional” metrics, we also present and discuss metrics 
for papers and authors inspired at how the significance of Web 
pages is computed (essentially by considering papers as web 
pages, citations as links, and applying a variation of PageRank). 
PageRank-based metrics are emerging as important complement 
to citation counts as they incorporate the “weight” (the reputation 
or authority) of the citing paper and its density of citations (how 
many other papers it references) in the metric. In addition, the fact 
that they have been working very well for the Web suggests that 
they may be insightful for papers as well.  
Besides the introduction of the PageRank-based index and its 
computation algorithm, the main contributions of this paper lie 1) 
in the experimental analysis of metrics, so that people and 
developers in “ranking” papers and people are aware of how much 
choosing different indexes results in different versions of the 
truth, and why this is the case, and 2) in the identification of a 
generally applicable analysis method and of a set of indicators to 
assess the difference between ranking algorithms for papers and 
people. 

We performed the analysis on a dataset consisting of over 
260K ACM publications. The analysis was conducted by 1) 
computing the various citation-based indexes; 2) analyzing the 
extent of the differences in ranking of papers and people 
depending on the metric, 3) developing “meta-indexes” whose 
purpose is to help explore the reasons for these differences, and 4) 
using these exploration indexes to derive conclusions of when and 
why page rank and citation measures differ and what to make of 
this difference. The results of the analysis are rather surprising, in 
that even if we restrict to citation-based indexes, the choice of the 
specific index rather than another changes the result of filtering 
and selection of papers and people about half of the times. 

The structure of the paper is as follows. Related work is 
presented in Section 2. In section 3 we describe the dataset and in 
Section 4 we focus on the presentation of the main indexes for 
papers and for authors and on their computation for the particular 
dataset. The in-depth exploration of the indexes is provided in 
Section 5 (for papers) and section 6 (for authors), along with 



comments and discussions on the results and with the introduction 
of the appropriate meta-indexes. Finally, the major findings of the 
present work are summarized in Section 7. 

 

2. STATE OF THE ART 
After the Second World War, with the increase in funding of 
Science and Technology (S&T) initiatives (especially by public 
institutions), the need for supervising and measuring the 
productivity of research projects, institutions, and researcher 
themselves became apparent [9; 10]. Scientometrics was then born 
as a science for measuring and analysing quantitatively science 
itself [7].  Nowadays, the quantitative study of S&T is a rapidly 
developing field, also thanks to a greater availability of 
information about publications in a manner that is easy to process 
(query, analyze).  

The easiest measure to show any individual scientist’s output 
is the total number of publications. However, this index does not 
express the quality or impact of the work, as the high number of 
conferences and journals make it easy to publish even low quality 
papers.  

To take quality and impact into account, the citations1 that a 
paper receives emerged, in various forms, as a leading indicator. 
The citation concept for academic journals was proposed in the 
fifties by Eugene Garfield, but received the deserved attention in 
1963 with the birth of the Science Citation Index (SCI) [9]. SCI 
was published by the Institute for Scientific Information (ISI) 
founded by Garfield himself in 1960 and currently known as 
Thomson Scientific that provides the Web of Science2 on-line 
commercial database. The most studied and commonly used 
indexes (related to SCI) are, among others [16]: 
 P-index: or just number of articles of author. 
 CC-index: number of citations excluding self-citations. 
 CPP: or average number of citations per article. 
 Top 10% index: the number of papers of a person that are in 

the top 10% most frequently cited papers in the domain 
during the past 4 years. 

 Self-citation percentage. 
 Career length in years. 
 Productivity: quantity of papers per time-unit. 

 
Although most of the indexes are related mainly to authors, 

they can also be applied to measuring communities, institutions or 
journal, using various forms of aggregation. 
In the last decade new indexes have been proposed. These indexes 
are rapidly gaining popularity over the more traditional citation 
metrics described above: 
 H-index, proposed by Hirsch in [13]. The H-index for an 

author is the maximum number h such that the author has at 
least h articles with h citations each. This index is widely 
used (including in our University), and comes in different 
flavors (e.g., normalized based on average number of authors 
of papers, on the average citations in a community, etc…). 

 The G-index for an author is the maximum number g such 
that the most cited g papers of an author collectively received 
g2 citations. The g index takes into account papers with very 

                                                                 
1 a citation data is a data on references cited in footnotes or 

bibliographies of scholarly research papers 
2 http://scientific.thomson.com/products/wos/ 

high citations, which is something that is smoothed out by 
the h-index.  

In addition, we mention below some algorithm for ranking Web 
pages. They are relevant as many of them have been very 
successful for ranking web content, and papers share some 
similarities with Web sites, as they can be seen as a sort of 
hypertext structure is papers are seen as web pages and citations 
are seen as links.    
 Hypertext-Induced Topic Selection (HITS) [14]: based on 

graph linkage investigation, it operates with two notions: 
“authority” and “hub”, where authority represents relevance 
of the page (graph node) to query and hub estimates the 
value of the node's links to other pages. 

 PageRank (described in more detailed in the following): a 
well-known and successful ranking algorithm for Web pages 
[3], based on net random walking probabilistic model. When 
modified for ranking  scientific papers, it has been shown to 
give interesting results [5].  

 Hilltop [1]. This algorithm is based on the detection of 
"expert pages", i.e., pages that have many outgoing links 
(citations)  and are relevant to a topic. Pages that are linked 
by expert ones have better rank. 

In our work we adopt a variation of PageRank as one of the main 
indexes used for the analysis of differences among indexes. The 
intuition behind PageRank is that a web page is important if 
several other important web pages point to it. Correspondingly, 
PageRank is based on a mutual reinforcement between pages: the 
importance of a certain page influences and is being influenced by 
the importance of some other pages.  From a computational point 
of view, PageRank is a statistical algorithm:  it uses a relatively 
simple model of "Random Surfer" [3] to determine the probability 
to visit a particular web page. Since random browsing through a 
graph is a stochastic Markov process, the model is fully described 
by Markov chain stochastic matrix. The most intriguing question 
about PageRank is how to compute one for a dataset as huge as 
the web.  

The inventors of PageRank, Brin and Page, proposed a quite 
effective polynomial convergence method [3], similar to the 
Jacobi methods.  Since then, a significant amount of research has 
been done in the exploration of the meaning of PageRank and 
proposals for different computation procedures [2] [6] [5]. When 
the attention is shifted from web pages to scientific citations, the 
properties of the citation graph – mainly its sparseness – has been 
used to simplify the computational problem [20]. 

In our work, we have based our computations on a variation 
of Page Rank (called Paper Rank) for ranking scholarly 
documents explained in detail in Section 4. From a computational 
perspective, the difference is that the algorithm we propose 
exploits the fact that in citations, unlike in web links, cycles are 
very rare. 

In terms of comparison among scientific metrics for 
determining the difference in the ranking results they generate 
(and methods for evaluating such differences), there is no prior art 
to the best of our knowledge. 
 

3. DATA SET DESCRIPTION AND DATA 
PREPROCESSING   
The starting point for our analysis is a dataset of 266788 papers 
published in ACM conferences or journals, and authored by 



244782 different authors. The dataset was available as XML 
documents that for each paper describes information such as 
authors, title, year of publication, journal, classification and 
keywords (for some of the papers), journal volume and pages, and 
citations. A sample of the dataset format is available at the 
companion web page mentioned earlier. 

The set is biased in terms of citation information. For any 
given paper in the set, we have all its references (outgoing 
citations), but we only have citations to it (incoming citations) 
from other papers in the dataset, and hence from ACM papers. To 
remove the bias (to the possible extent), we disregard references 
to non-ACM papers. In other words, we assume that the world, for 
our citation analysis, only consists of ACM papers. Although we 
have no measurable evidence, given that we are comparing 
citation-based metrics we believe that the restriction to an “ACM 
world” does not change the qualitative results of the analysis. 
Including references to non-ACM papers would instead unfairly 
lower the measure for Paper Rank since, as we will show, Paper 
Rank is based on both incoming and outgoing citations. 

This being said, we also observe that the quality of the 
chosen dataset is very high. The majority of papers have been 
processed manually during the publishing process and all author’s 
names have been disambiguated by humans. This is crucial since 
systems like Google Scholar3 or Citeseer4 contain errors in the 
disambiguation of authors names and citations. In fact, both 
Goodle Scholar or other autonomous digital libraries like Citeseer 
or Rexa5 use machine learning-based unsupervised techniques to 
disambiguate the information and are prone to introduce mistakes. 
A preliminary study of these errors in Google Scholar is presented 
in [19]. Besides disambiguation errors, crawled information may 
include spurious types of documents like deliverables, reports, 
white papers, etc. Indeed, Scholar includes in its statistics the 
citations coming from project deliverables or even curricula vitae, 
which are not commonly considered to be academically 
meaningful citations. Thus, although incomplete, the ACM dataset 
has a high level of quality in particular in respect to authors and 
citations. 

The full citation graph of the ACM dataset has 951961 
citations, with an average of 3.6 outgoing citations per paper 
(references to other ACM papers). Figure 1 shows instead how 
many papers have a given (incoming) citation count (hereafter 
called CC). As expected, there is a very large number of papers 
with low, near-zero citations and a few papers with a high number 
of citations. 

 

                                                                 
3 http://scholar.google.com 
4 http://citeseer.ist.psu.edu/ 
5 http://rexa.info/ 

 
Figure 1. Distribution of papers by Citation Count. 

The years of publication of the papers in the dataset vary from 
1950 to 2005 with most emphasis on the recent two decades due 
to the increase in the number of publications. 

4. PAPER RANK AND PR-HIRSCH 
This section describes the Paper Rank (PR) algorithm for ranking 
papers and the corresponding measure (PR-Hirsch) for ranking 
authors. 

4.1 Page Rank outline 
The original Page Rank algorithm [3] ranks the nodes of a 
directed graph with N vertices. The rank of a node is determined 
by the following recursive formula, where S(j) is the quantity of 
outgoing links from a node Pj. are just sequence 
numbers and D  is the set of nodes  such that there is a path in the 
graph from them to  node i.  
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The formula can be seen in matrix form and the computation can 
be rewritten as an eigenvector problem: 

    rAr rr
⋅=                                     (2) 

where A is the transition matrix, or stochastic Markov 
matrix.  

This consideration exposes several potential problems in 
rank computation as discussed in [2][15]. One of them is the 
presence of the nodes which link to other nodes but are not linked 
by other nodes, called dangling nodes. In this case, equation (2) 
may have no unique solution, or it may have no solution at all (it 
will lead to zero-rows occurrence in the transition matrix and 
uncertainty of the rank of the dangling nodes). Such problem may 
be resolved with the introduction of a dump-factor d. The damp 
(or decay) factor is a positive double number 0 < d < 1: 
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The damp factor was proposed by the PageRank inventors, 
Page and Brin. In their publication [3], Page and Brin give a very 
simple intuitive justification for the PageRank algorithm: they 
introduce the notion of ‘random surfer‘. Since in the specific case 
of web pages graph, the equivalent stochastic Markov matrix can 
be described as browsing through the links, we may imagine a 
‘surfer’ who makes random paths through the links. When the 
surfer has a choice of where to go, it chooses randomly the next 
page to visit among the possible linked pages The damp factor 
models the fact that surfers at some point get bored of following 
links and stop (or begin another surf session). The damp factor 
therefore also reduces the probability of surfers ending up in 
dangling nodes, especially if the graph is densely connected and 
dangling nodes are few.     

The damp factor helps to achieve two goals at once: 1) faster 
convergence using iterative computational methods, 2) ability to 
solve the equation, since all the nodes must have al least d/N Page 
Rank even if they are not cited at all.  

4.2 Paper Rank  
PageRank has been very successful in ranking web pages, 
essentially considering the reputation of the web page referring to 
a given page, and the outgoing link density (pages P linked by 
pages L where L has few outgoing links are considered more 
important than pages P cited by pages L where L has many 
outgoing links). Paper Rank (PR) applies page rank to papers by 
considering papers as web pages and citations as links, and hence 
trying to consider not only citations when ranking papers, but also 
taking into account the rank of the citing paper and the density of 
outgoing citations from the citing paper. 

From a computation perspective, PR is different from Page 
Rank in that loops are very rare, almost inexistent. Situations with 
loop where a paper A cites a paper B and B cites A are possible 
when authors exchange their working versions and cite papers not 
yet published but accepted for publication. In our dataset, we have 
removed these few loops (around 200 loops in our set). This 
means that the damp factor is no longer needed to calculate PR. 
Because of the above analysis, we can compute PR directly 
according to the formula (1). 

Furthermore, considering that a citation graph has N>>1 
nodes (papers), each paper may potentially have from 1 to N-1 
inbound links and the same quantity of outgoing ones. However, 
in practice citation graphs are extremely sparse, (articles normally 
have from 5 to 20 references) and this impact the speed of the 
computation of PR. 

However, also in this case the matrix form of the problem 
(i.e. formula (2)) may have no solution, now because of initial 
nodes (nodes who are cited but do not cite). To avoid this problem 
we slightly transform initial problem assigning a rank value equal 
to 1 to all initial nodes, and resetting it to zero at the end of the 
computation (as we want to emphasize that papers who are never 
cited have a null paper rank). Now the problem became solvable 
and the Markov matrix may be easily brought to the diagonal 
form. We used fast and scalable recursive algorithm for 
calculating Paper Rank, which corresponds to the slightly 
different equation: 

    0rrAr rrr
+⋅=                                     (4) 

4.3 PR-Hirsch 
One of the most widely used indexes related to author is the 

H-index proposed by Jorge Hirsch in 2004 [13] and presented 

earlier. The H-index tries to value consistency in reputation: it is 
not important to have many papers, or many citations, but many 
papers with many citations.  

We propose to apply a similar concept to measure authors 
based on PR. However, we cannot just say that PRH is the 
maximum number q such that an author has q papers with rank q 
or greater. This is because while for H-index it may be reasonable 
to compare number of papers with number of citations the papers 
have, for PRH this may not make sense as PR is for ranking, not 
to assign a meaningful absolute number to a paper. The fact that a 
paper has a CC of 45 is telling us something we can easily 
understand (and correspondingly we can understand the H-index), 
while the fact that a paper has a PR of 6.34 or 0.55 has little 
“physical meaning”. 

In order to define a PR-based Hirsch index, we therefore 
rescale PR so that it gets to a value that can be meaningfully 
compared with the number of papers. Let’s consider in some 
detail our set:  we have a graph with N nodes (vertices) and n 
citations (edges). Each i-th node has PR equal to Pi, that expresses 
the probability for a random surfer to visit a node, as in the Page 
Rank algorithm.  So let’s assume that we run exactly n surfers 
(equal to quantity of citations), and calculate the most probable 
quantity of surfers who visited node i. If the probability to visit 
the node i for one surfer is pi, expectation value Qi for n surfers to 
visit the node i will be pi • n, which is most probable quantity of 
surfers, who visited node i. We sum probabilities since all surfers 
are independent. To be precise we should first normalize PR for 
each node according to full probability condition: 1=∑

i
ip . If 

the total sum of all PRs equals to M, the expected value for n 
surfers is as follows:  

M
nPQ ii =                                 (4) 

Where Pi is a Paper Rank of the paper i, n/M is the constant 
≈5.9169 for our citation graph. So in other words we rescale PR to 
make it comparable with the quantity of citations. Indeed, Qi is the 
most probable quantity of surfers who visited a specific paper i, 
whereas to compute Hirsch index we use quantity of citations for 
the paper i. It is interesting to compare the ranges of Q and 
citation count (see Table 1). 

Following the definition of H-index and the previous 
discussion, we define PR-Hirsch as the maximum integer number 
h such that an author has at least h papers with Q value (i.e. 
rescaled PR following equation (4))  equal or greater than h.  

 
Table 1. Comparison of citation count and random surfers 

count mathematical expectation values for all papers in graph. 

Average Q Maximum 
Q Average CC Maximum 

CC 
3.57 1326.77 3.57 1736 

 

5. EXPLORING PAPER METRICS 
This section explores the extent of the differences between paper 
metrics PR and CC when ranking papers, and their causes. As part 
of the analysis we introduce concepts and indexes that go beyond 
the PR vs CC analysis, and that are generally applicable to 



understanding the effects and implications of using a certain index 
rather than another for assessing papers’ value.  

5.1 Plotting the difference 
The obvious approach to exploring the effect of using PR vs CC 
in evaluating papers would consist in plotting these values for the 
different papers. Then, the density of points that have a high CC 
and low PR (or vice versa) would provide an indication of how 
often these measures can give different quality indication for a 
paper. This leads however to charts difficult to read in many 
ways: first, points overlap (many papers have the same CC, or the 
same PR, or both). Second, it is hard to get a qualitative indication 
of what is “high” and “low” CC or PR. Hence, we took the 
approach of dividing the CC and PR axis in bands.  

Banding is also non-trivial. Ideally we would have split the 
axes into 10 (or 100) bands, e.g., putting in the first band the top 
10% (top 1%) of the papers based on the metric, to give 
qualitative indications so that the presence of many papers in the 
corners of the chart would denote a high divergence. However the 
overlap problem would remain, and it would distort the charts in a 
significant way since the measures are discrete. For example the 
number of papers with 0 citations is well above 10%. If we 
neglect this issue and still divide in bands of equal size (number of 
papers), papers with the same measure would end up in different 
bands. This gives a very strong biasing in the chart (examples are 
provided in the companion page).   

Finally, the approach we took (Figure 2) is to divide the X-
axis in bands where each band corresponds to a different citation 
count measure. With this separation we built 290 different bands, 
since there are 290 different values for CC (even if there are 
papers with much higher CC, there are only 290 different CC 
values in the set). For the Y-axis we leverage mirrored banding, 
i.e., the Y-axis is divided into as many bands as the X-axis, also in 
growing values of PR. Each Y band contains the same number of 
papers as X (in other words, the vertical rectangle corresponding 
to band i in the X axis contains the same number of papers qi as 
the horizontal rectangle corresponding to band i of the Y-axis). 
We call a point in this chart as a square, and each square can 
contain zero, one, or many papers. 

The reasoning behind the use of mirrored banding is that this 
chart emphasizes divergence as distance from the diagonal (at an 
extreme, plotting a metric against itself with mirrored banding 
would only put papers in the diagonal). Since the overlap in PR 
values is minimal (there are thousands of different values of PR 
and very few papers with the same PR values, most of which 
having very low CC and very low PR, and hence uninteresting), it 
does not affect in any qualitatively meaningful way the banding of 
the Y-axis. 

 
Figure 2. CC vs PR.  

X axis plots CC bands, Y axis plots PR mirror-banded by CC.  
The color corresponds to the number of papers within a band. 

(For actual values of PR and CC for each band see Table 2) 
 
Table 2 gives an indication of the actual citation and PR values for 
the different bands. 
 

Table 2. Mapping of band number to the actual value of CC 
or average actual value for PR. 

Number of band both 
for CC and PR 

CC PR 

50 50 6.23 
100 100 14.74 
150 151 26.57 
200 213 38.82 
250 326 58.86 
280 632 113.09 
290 1736 224.12 

 
The chart in Figure 2 shows a very significant number of papers 
with a low CC but a very high PR. These are the white dots (a 
white color corresponds to one paper). Notice that while for some 
papers the divergence is extreme (top left) and immediately 
noticeable, there is a broad range of papers for which the 
difference is still very significant from a practical perspective. 
Indeed, the very dense area (bands 1-50) includes many excellent 
papers (CC numbers of around 40 are high, and even more 
considering that we only have citations from ACM papers). Even 
in that area, there are many papers for which the band numbers 
differ significantly if they are ranked by CC or PR.  

 
To give a quantitative indication of the difference, Table 3 

below shows how far apart are the papers from the diagonal. The 
farther away the papers, the more the impact of choosing an index 
over another for the evaluation of that paper. 

 
 
 
 
 

 



Table 3. Deviation of papers around main diagonal. 

Distance in bands  
from the diagonal 

% of papers  
with this distance 

0 36.83 
1 24.30 
2 13.02 
3 5.76 
4 5.43 
5 2.50 
6 1.70 
7 1.34 
8 1.86 
9 1.57 

10 0.79 
≥11 4.89 

 
The mean value for the distance from the main diagonal is 

3.0 bands, while the standard deviation is 3.4. This deviation from 
the average is rather significant, i.e. in average the papers are 
dispersed through 3 bands around main diagonal. 

In the subsequent discussion, we will qualitatively refer to 
papers with high PR and high CC as popular gems, to paper with 
high PR and low CC as hidden gems, to papers with low PR and 
high CC as popular papers, and to papers with low CC and PR as 
dormant papers (which is an optimistic term, on the assumption 
that they are going to be noticed sometime in the future).  

5.2 Divergence 
The plots and table above are an attempt to see the difference 
among metrics, but it is hard from them to understand what this 
practically means. We next try to quantitatively assess the 
difference in terms of concrete effects of using a metric over 
another for what metrics are effectively used, that is, ranking and 
selection. Assume we are searching the Web for papers on a 
certain topic or containing certain words in the title or text. We 
need a way to sort results, and typically people would look at the 
top result, or at the top 10 or 20 results, disregarding the rest. 
Hence, the key metric to understand divergence of the two 
indexes is how often, on average, the top t results would contain 
different papers, with significant values for t =1, 10, 20. 

Specifically, we introduce a metric called divergence, which 
quantitatively measures the impact of using one scientometric 
index versus the other. Consider two metrics M1 and M2 and a set 
of elements (e.g., of papers) S. From this set S, we take a subset n 
of elements, randomly selected. For example, we take the papers 
related to a certain topic. These n papers are ranked, in two 
different rankings, according to two metrics M1 and M2, and we 
consider the top t elements. We call divergence of the two 
metrics, DivM1,M2 (t,n,S), the average number of elements that 
differ between the two sets (or, t minus the number of elements 
that are equal).  For example, if S is our set of ACM papers, and n 
are 1000 randomly selected papers (say, the papers related to a 
certain topic or satisfying certain search criteria), DivCC,PR 
(20,1000,S) measures the average number of different papers that 
we would get in the typical 20-item long search results page.  We 
measured the divergence experimentally for CC and PR, obtaining 
the results in the table below. As a particular case, DivM1,M2 (1,n,S) 
measures how often does the top paper differs with the two 
indexes.  

 

Table 4. Experimentally measured divergence for the set of 
ACM papers. 

t DivPR,CC (t, 1000, 
S), in % 

DivPR,CC (t, 1000, 
S), 

1 62.40 0.62 
10 49.94 4.99 
20 46.42 9.28 
40 43.29 17.31 
60 42.51 25.5 
80 41.75 33.39 

100 40.52 40.52 
 
The table is quite indicative of the difference, and much 

more explicit than the plots or other evaluation measures 
described above. In particular, the table shows that more than 
almost  2/3 of the times, the top ranked paper differs with the two 
metrics. Furthermore, and perhaps even more significantly, for the 
traditional 20-element search result page, nearly half of the paper 
would be different based on the metric used. This means that the 
choice of metric is very significant for any practical purposes, and 
that a complete search approach should use both metrics 
(provided that they are both considered meaningful ways to 
measure a paper). In general we believe that divergence is a very 
effective way to assess the difference of indexes, besides the 
specifics of CC and PR. We will also see the same index on 
authors, and the impact that index selection can therefore have on 
people’s careers. 

Details on the experiments for producing these results and 
the number of measures executed are reported in the companion 
web page. 

5.3 Understanding the differences 
We now try to understand why the two metrics differ. To this end, 
we separate the two factors that contribute to PR, see equation (1): 
the PR measure of the citing papers and the number of outgoing 
links of the citing papers.  

To understand the impact of the weight, we consider for each 
paper P the weight of the papers citing it (we call this the potential 
weight, as it is the PR that the paper would have if all the citing 
papers P only cited P). We then plot (Figure 3) the average 
potential weight for the papers in a given square (intersection of a 
CC and a PR band) in the banded chart.  

The estimation of the impact of outgoing links can be done in 
various ways. For example, we can take the same approach as for 
the weight and compute a double average over the outgoing links 
(for each paper P, compute the average number of outgoing links 
of the set C(P) of papers citing P, and then average them for all 
papers of a square in the CC vs PR chart). This is useful but 
suffers from the problem that if some papers (maybe  
“meaningless” paper with very low PR, possibly zero) have a very 
high number of outgoing links, they may lead us to believe that 
such high number of links may be the cause for a low PR value 
for a paper, but this is not the case (the paper is only loosing very 
few PR points, possibly even zero, due to these outgoing links).  
A high value of this measure therefore is not necessarily 
indicative of the number of outgoing links being a factor in low 
values of PR. 



  
Figure 3. Average potential weight for all papers in a square 

The color in the Z-axis denotes the weight 
Figure 4. Average dispersed weight for all papers in a square 

The color in the Z-axis denotes the weight  
X axis plots CC bands, Y axis plots PR mirror-banded by CC X axis plots CC bands, Y axis plots PR mirror-banded by CC  

  
 

  

A more meaningful approach is to measure the HOC index 
for each paper P, defined as the maximum number h such that P is 
cited by at least h papers, each having at least h outgoing links. 
HOC stands for Hirsch for outgoing citation, where the reference 
to Hirsch is because the way it is defined resembles the Hirsch 
index for papers. Plotting the average HOC for all papers in a 
square gives us a better indication of the overall impact of 
outgoing links on a paper PR because it smoothes the effect of a 
few papers having a very high number of outgoing links. Again, 
examples of these plots can be found in the companion web page.  

This measure is useful but does not take into account the fact 
that what we really want to see when examining the effect of 
outgoing links from citing paper is the “weight dispersion”, that 
is, how much weight of the incoming papers (i.e., how much 
potential weight) is dispersed through other papers as opposed to 
being transmitted to P. This is really the measure of the “damage” 
that outgoing links do to a Paper Rank. We compute the dispersed 
weight index for a paper P (DW(P)) as the sum of the PR of the 
citing papers C(P) (that is, the potential weight of P) divided by 
the PR of P (the actual weight). Figure 4 plots the average 
dispersed weight for each square, as usual by CC and PR. The 
dark area in the bottom right corner is because there are no papers 
there.  

Figure 5. "Gem" and "popular paper" relative positions. 
The specific gem is the paper Computer system for inference 

execution and data retrieval, by R. E. Levien and M. E. Maron, 
1967. This paper has 14 citations in our ACM-only dataset 
(Google Scholar shows 24 citations for the same paper). The PR 
of this “hidden gem” is 116.1, which is a very high result: only 9 
papers have a greater rank. Let’s go deep inside the graph to see 
how this could happen.  

 
These two charts very clearly tell us that outgoing links are the 
dominant effect for the divergence between CC and PR. Papers 
having a high CC and low PR have a very high weight dispersion, 
while papers with high PR and low CC are very focused and able 
to capture nearly all potential weight. The potential weight chart 
(Figure 3) also tends to give higher numbers for higher PR papers 
but the distribution is much more uniform in the sense that there 
are papers in the diagonal or even below the diagonal and going 
from the top left to the bottom right the values do changes but not 
in a significant way (especially when compared to the weight 
dispersion chart).  

Figure 6 shows all the incoming citations for this paper up to two 
levels in the citation graph. The paper in the center is our “gem”, 
and this is because it is cited by an heavyweight paper that also 
has little dispersion: it cites only two papers.  

We observe that this also means that in some cases a pure PR 
may not be robust, meaning, the fact that our gem is cited by a 
heavyweight paper may be considered a matter of “luck” or a 
matter of great merit, as a highly respected “giant” is citing it. 
Again, discussing quality of indexes and which is “better” or 
“worse” is outside our analysis scope, as is the suggestion for the 
many variations of PR that could make it robust. 

To see the difference concretely on a couple of example, we take 
a “hidden gem” and a “popular paper”, see Figure 5. 



 

 
Figure 6. One of the “hidden gem” in the dataset, paper of E. Levien and M. E. Maron (in the center).  
Arrows refer to incoming citations. The digits near the papers refer to the quantity of outgoing links. 

 

 
Figure 7. "Popular paper" (in the center): relatively highly cited but not very well-ranked. 



 
We now consider a paper in the bottom of the CC vs PR plot, 

a paper with high number of citations but relatively low PR. The 
corresponding citation graph is shown in Figure 7. This paper has 
55 citations in our ACM dataset (158 citations in Google Scholar) 
and a relatively poor PR of 1.07. This result is not particularly 
bad, but it is much worse than other papers with similar number of 
citations. There are 17143 papers in the dataset that have grater 
Paper Rank and just 1394 papers with better citation count. 
Comparing with papers in the same CC and PR band, this paper 
has a weight dispersion factor that is over twice that of papers in 
the same CC band and three times the one of papers in the same 
PR band, which explain why the increased popularity with respect 
to papers in the same PR band did not correspond to a higher PR. 

As a final comment, we observe that very interestingly there 
are papers with very low CC and very high PR, but much less 
papers – almost none - with very high CC and very low PR. If we 
follow the dispersion plot this is natural, as it would assume that 
the dispersed weight should be unrealistically high (many papers 
with hundreds of citations) which does not happen in practice, 
while it is possible to have “heavyweight” papers with very few 
citations that make the presence of paper gems (papers in the top 
left part) possible.  

However, we believe that the absence of papers in the bottom 
right part and, more in general, the skew of the plot in Figure 2 
towards the upper left is indicative of a “popularity bias”. In the 
ideal case, an author A would read all work related to a certain 
paper P and then decide which papers to reference. In this case, 
citations are a very meaningful measure (especially if they are 
positive citations, as in the motto “standing on the shoulders of 
giants”). However this is impossible in practice, as nobody can 
read such a vast amount of papers. What happens instead is that 
author A can only select among the papers she “stumbles upon”, 
either because they are cited by other papers or because they are 
returned first in search results (again often a result of high citation 
count) or because they are published in important venues. In any 
event, it is reasonable to assume that authors tend to stumble upon 
papers that are cited more often, and therefore these papers have a 
higher chance of being cited than the “hidden gems”, even if 
maybe they do not necessarily have the same quality. We believe 
that it is for this reason that over time, once a paper increases with 
citation count, it necessarily increases with the weight, while 
gems may remain “hidden” over time. A detailed study of this 
aspect (and of the proper techniques for studying it) is part of our 
future work. 

6. EXPLORING AUTHOR METRICS 

6.1 Plotting the difference 
We now perform a similar analysis on authors rather than papers. 
For this, we initially consider PRH and Hirsch as main metrics, 
and then extend to other metrics. The plot to visualize the 
differences (Figure 8) is similar in spirit to the one for CC vs PR. 
The X-axis has Hirsch values, while the Y-axis has PRH values. 
A first observation is that applying “Hirsching” to CC and PR to 
get H-index and PRH smoothes the differences, so we do not have 
points that are closer to the top left and bottom right corners. This 
could only happen, for example, if one author had many papers 
that are hidden gems. 

 
Figure 8. The gradient of Hirch  and PRHirch in log scale. 

Author’s density is plotted with colors: authors’ number goes 
from 1 to 149170 of authors per square.  

PR-Hirch has been rounded. 
 
Since the authors with low Hirsch and PRH are dominant, a 

log scale was used plotting Figure 6. This increased similarity is 
also shown in Table 5, where many papers are on the diagonal 
(this is also due to the fact that we have a much smaller number of 
squares in this chart). The mean distance from the diagonal is 0.25 
bands, while the standard deviation is 0.42 bands. 

Interestingly, as we will see, though at first look the 
differences seem less significant, the impact of using one rather 
than the other index is major. 

 
Table 5. Deviation of authors around main diagonal  

Distance in bands from the 
main diagonal 

Percent of authors with this 
distance 

0 83.07% 
1 12.23% 
2 2.90% 
3 0.99% 
4 0.40% 
5 0.19% 
6 0.09% 
7 0.05% 
8 0.03% 
9 0.02% 

10 0.01% 
≥11 0.01% 

 

6.2 Divergence 
The same measure of divergence described for papers can be 
computed for authors. The only difference is that now the set S is 
a set of authors, and that the indexes are H-index and PRH instead 
of CC and PR. We also compute it for n=100, as the experiment 
we believe it is meaningful here is to consider replies to a typical 
job posting for academia or a research lab, generating, we assume, 
around 100 applications. (Statistics for other values of n are 
reported in the companion web page).  



Table 6. Divergence between PRH and H, n=100. 

t DivPRH,H(t) 

1 59.3% 
5 50.04% 
10 46.13% 
20 43.47% 

 

Although nobody would only make a decision based on 
indexes, they are used more and more to filter applications and to 
make a decision in case of close calls or disagreements in the 
interview committees. The table tells us that almost two third of 
the times, the top candidate would differ. Furthermore, if we were 
to filter candidates (e.g., restrict to the top 20), nearly half of the 
candidates passing the cutoff would be different based on the 
index used. This fact emphasizes once again that index selection, 
even in the case of both indexes based on citations, is key to 
determining the result obtained, be them searching for papers or 
hiring/promotion of employees. Notice also that we have been 
only looking at differences in the elements in the result set. Even 
more are the cases where the ranking of elements differ, even 
when the t elements are the same. 

Another interesting aspect is that the divergence is so high 
even if the plot and Table 5 show values around the diagonal. This 
is because most of the authors have a very low H and PRH (these 
accounts for most of the reasons why authors are on average on 
the diagonal). However, and this can also be seen in the plot, 
when we go to higher value of H and PRH, numbers are lower and 
the distribution is more uniform, in the sense that there are authors 
also relatively far away from the diagonal (see the softer colors 
and the distributions also far from the diagonal towards the top-
right quadrant of Figure 8). Incidentally, we believe that this 
confirms the quality of divergence as a metric in terms of 
concretely emphasizing the fact that the choice of index, even 
among citation-based ones, has a decisive effect on the result. 

We omit here the section on “understanding the difference” 
as here it is obvious and descends from the difference between CC 
and PR, described earlier and used as the basis for PRH and 
Hirsch respectively. 

6.3 Divergence between other indexes 
The discussion above has focused on PRH vs H. We now extend 
the same analysis to other indexes. The table below shows a 
comparison for PRH, H, G index, and the total citation count for 
an author (the sum of all citations for the paper by an author, 
denoted as TCC in the table).  
Table 7. Divergence for the different indexes in %, n=100 (for 

simplicity the Div () notation is omitted). 

t PRH vs G PRH vs 
TCC 

H vs 
TCC 

H vs G G vs 
TCC 

1 56.3 56.4 38.2 34.6 29.9 
5 45.66 46.38 29.48 25.58 23.84 
10 43.05 43.03 27.9 22.94 22.95 
20 41.3 41.66 27.63 21.70 22.62 
 

The first lesson we learn from the table is that no two indexes 
are strongly correlated. The higher correlation is between G and 
the total citation count, and we still get the top choice different in 
one out of four cases. The other interesting aspect is that PRH and 

H are the pair with the highest divergence, which makes them the 
two ideal indexes to be used (in case one decides to adopt only 
two indexes). 

7. CONCLUSIONS AND FUTURE WORK 
This paper has explored and tried to understand and explain the 
differences among citation-based indexes. In particular, we have 
focused on a variation of Page Rank algorithm specifically design 
for ranking papers – that we have named Paper Rank  -  and 
compared it to the standard citation count index. Moreover, we 
have analyzed related indexes for authors, in particular the Paper 
Rank Hirsch–index and the commonly-used H-index. We have 
explored in details the impact they can have in ranking and 
selecting both papers and authors.  The following are the main 
findings of this paper: 

1. PR and CC are quite different metrics for ranking papers. A 
typical search would return half of the times different results. 

2. The main factor contributing to the difference is weight 
dispersion, that is, how much weight of incoming papers is 
dispersed through other papers as opposed to being 
transmitted to a particular paper.  

3. For authors, the difference between PRH and H is again very 
significant, and index selection is likely to have a strong 
impact on how people are ranked based on the different 
indexes. Two thirds of the times the top candidate is 
different, in an average application/selection process as 
estimated by the divergence. 

4. An analogous exploration of divergence between several 
citation-based indexes reveal that all of them are different in 
ranking papers, with g-index and total citation count being 
the most similar. 

In addition to the findings, we believe that: 

1. Divergence can be a very useful and generally applicable 
metric, not only for comparing citation-based indexes, but 
also for comparing any two ranking algorithms based on 
practical impact (results).  

2. There are a significant number of “hidden gems” while there 
are very few “popular papers” (non gem). The working 
hypothesis for this fact (to be verified) is that this is due to 
citation bias driven by a “popularity bias” embedded in the 
author’s citation practices, i.e. authors tend to stumble upon 
papers that are cited more often, and therefore these papers 
have a higher chance of being cited  

The exploration of the citation bias hypothesis is our immediate 
future research, along with the extension of our dataset to a more 
complete coverage of the citation graph, to analyze the its possible 
influence on the different indexes. 
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