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Abstract

In this thesis, I detail my contribution to the development of both the theoreti-
cal aspects of modelling compressible and incompressible multi-phase flows and
the design of suitable numerical algorithms for solving such models. Currently,
there is no universally accepted mathematical model to describe two-phase
flows, consequently the extension to multi-phase flows (with more than two
phases) is even less clear. A popular approach to describe two-phase flows is
to use so-called homogenised mixture models, which are based on the diffuse
interface approach. One of the most established ones is the Baer-Nunziato (BN)
model. Due to its relatively simple mathematical structure, it is possible to
derive reduced models, such as a model for incompressible two-phase flows, with
straightforward assumptions. However, there are modelling and numerical rea-
sons for the need to develop a mathematical model formulated in a well-defined
mixture theory. Therefore, the derivation of a multi-phase and multi-material
model within the framework of Symmetric Hyperbolic Thermodynamically
Compatible (SHTC) theory and its numerical solution are of relevant interest
in the work presented in this thesis.

Concerning the details of my research work, I begin by addressing the problem
of a reduced BN-type model for incompressible two-phase flows. In incom-
pressible models, the pressure acts as a Lagrange multiplier which ensures the
divergence free condition of the velocity field. A natural numerical approach is
to treat pressure-related terms implicitly, thus in this context two efficient mass
and momentum conservative semi-implicit FV schemes for different applications
are developed, e.g. for complex non-hydrostatic free surface flows, or for flows
interacting with moving solid obstacles. These new numerical algorithms are
implemented in a distributed memory MPI-parallel Fortran code. In addition,
the semi-implicit discretisation adopted for the pressure subsystem, rather
than a fully implicit one for the complete Partial Differential Equation (PDE)
system, leads to a small-size, symmetric positive definite discrete linear system
that can be solved efficiently with a preconditioned, matrix-free conjugate
gradient method. This directly results in a much higher parallel scalability
compared to fully implicit schemes.
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A semi-implicit scheme boils down to the solution of a discrete linear system
that takes into account the contributions of implicitly treated terms involved
in the governing equations. As a result, understanding the numerical problems
associated with the discretization of each term is more complex. Some of the nu-
merical problems usually encountered in the numerical solution of compressible
multi-phase model are related to the presence of complex interfaces described
by the volume fraction of each phase. Therefore, to become more familiar
with and better address these challenges, explicit schemes are considered. In
particular, the numerical scheme initially adopted is an explicit second order FV
method combined with the path-conservative technique of Castro and Pares for
the treatment of the non-conservative products appearing in BN-type models.
With the insights from this numerical scheme, the complete seven-equation
BN model for compressible two phase flows is discretized. However, despite
the variety of literature addressing this model, it still presents some problems,
such as the fact that the model is not closed (in the sense that it requires
the specification of an interface pressure and an interface velocity, the choice
of which is not unique) and that it is not clear how to generalise the BN
formulation to mixtures with an arbitrary number of phases. This is mainly
due to the fact that the derivation procedure of the BN model is based on
phenomenological and heuristic observations.

To overcome these problems, a model based on a well-defined mixture theory
and derived from first principles as causality and the laws of thermodynamics
is considered. This model can be written in a conservative form and, as
formulated, is already generalised to an arbitrary number of constituents. It
takes the form of a monolithic system of first order hyperbolic PDEs that
include a unified multi-phase description of fluids and solids. The origins of this
model go back to the SHTC theory of mixtures firstly proposed by Romenski
for the case of two fluids, and then generalized to the case of an arbitrary
number of constituents. Furthermore, the Eulerian hyperelasticity equations of
Godunov and Romenski (GPR) are used to introduce viscous and elastic forces.
These Eulerian equations of solid mechanics are characterised by algebraic
relaxation source terms that are capable of extending the applicability of the
model not only to elasto-plastic solids but also to viscous and inviscid fluid
flows. Within this theoretical framework, a first order hyperbolic multi-phase
model is formulated, by which compressible Newtonian and non-Newtonian,
inviscid and viscous fluids as well as elasto-plastic solids can be described.

The question arises whether it is possible to compare the original BN model
with the multi-phase model derived from SHTC theory. This can be done if
the SHTC system is rewritten in terms of the equations of conservation of
mass, phase momenta and phase energies. This structure can be referred to
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as form of Baer-Nunziato type. In addition, since the BN model is one of the
most popular mathematical models for describing two-phase flow, there are
many works that address it numerically. However, only a very limited number
of publications exist on the mathematical and computational issues of BN
models for multiphase flows describing more than two phases. Therefore, it is
very interesting to numerically address the multi-phase BN-type type model
derived from SHTC theory, which includes the challenges related to the GPR
model of continuum mechanics. The resulting BN-type form is given by a large
non-linear PDEs system, which includes highly non-linear stiff algebraic source
terms as well as non-conservative products. In this thesis, a simplified version
of the SHTC BN-type model is addressed numerically, neglecting the phase
pressure relaxation, the temperature relaxation and assuming the absence of
phase transformations. The differente challenges presented by the model are
tackled by adopting a source operator splitting. The homogeneous part of the
PDE system is discretized with a MUSCL-Hancock finite volume scheme using
a primitive variable reconstruction and positivity preserving limiting, combined
with a path-conservative technique to deal with the non-conservative products.
Furthermore, the scheme employs semi-analytical time-integration methods for
the stiff source terms governing the various relaxation processes.
Concerning the applicability of the models presented in this thesis for the

solution of different problems, the resulting aforementioned semi-implicit algo-
rithms for the BN models are first validated on a set of classical incompressible
Navier-Stokes test problems and subsequently also by adding a fixed and mov-
ing solid phase. Most importantly, however, in this thesis I provide results for
complex flows resulting from the interaction of three different phases including
gases, liquids and solids. Therefore, results are shown for multiphase flows
in the limit behaviour of the Newtonian inviscid and viscous fluid, as well
as in the limit of nonlinear hyperelasticity for phases behaving as elastic and
elasto-plastic solids. In both cases the numerical results are comparable with
results obtained from established standard models, i.e. the Euler or Navier-
Stokes equations for fluids, or the classical hypo-elastic model with plasticity,
but, notably, everything within a unified multi-phase model of continuum
mechanics.
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1 Introduction

Multi-phase flows are very common both in nature as well as in human endeav-
ours. Clouds are liquid droplets moving in a gas. At the earth’s surface, solid
particles are driven by interaction with air or water, shaping the morphology
of the environment. Moreover, in the subsurface, gaseous and liquid phases
coexist in solid layers, or, as in the Earth’s mantle, solid phases with different
properties interact. In the context of human activities, heat transfer by boiling
is the core of the energy industry and involves the nucleation, growth and
coalescence of gas bubbles and the interaction of this gas with moving solid
surfaces such as turbines. Chemical processes involve the mixing, transforma-
tion and sedimentation of different phases. In addition, on a small scale, drops
and sprays or on a larger scale flows interacting with nautical, civil or energy
engineering structures such as ships, bridges, wind or hydroelectric turbines
are some examples of phenomena that can be described through a multiphase
approach. The widespread occurrence of multi-phase flows in various environ-
mental phenomena, scientific and engineering disciplines as in many industrial
applications highlights the need to develop a general mathematical description
as well as suitable numerical methods for understanding their behaviour.

One way to describe the behaviour of multiphase flows is to follow the details
of the evolution of each component of the mixture and all of their interfaces.
However, this solution is often not feasible. For example, a suspension of
uniformly shaped rigid particles in a liquid constitutes a very simple two-phase
mixture. It is possible to define an initial-boundary-value problem for such a
mixture that would only turn out to be a complicated problem in mechanics.
However, just defining the initial conditions would consist of an unreasonable
amount of information that makes this approach impractical.

Furthermore, in an analogy to gas dynamics, much more sophisticated models
exist, oriented towards molecular dynamics eg. [90, 91, 159], or the direct
Monte Carlo simulation of gas flows [62, 126, 139, 140]. However, although they
have important specific applications, they are computationally too demanding
for many practical purposes, in particular at large spatial and temporal scales.
It is therefore necessary to develop models at the continuum level, such as the
Navier-Stokes equations. These models, in turn, are often supplemented with
large eddy models [75, 107, 118, 176] or coarser-scale turbulence models [22,
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1 Introduction

57] in order to account for phenomena that are not directly solved and to be
applicable to the solution of real engineering problems.
Similarly for multi-phase flows, following the details of the evolution of

each component of the mixture and all interfaces would be computationally
too onerous as well as impractical. In this sense, the practical need for a
macroscopic model through a continuum description is undeniable.
A primary task in studying the behaviour of continuous media is the def-

inition of appropriate conservation and balance laws. These consist at least
of mass, momentum and energy conservation. In addition, entropy consid-
erations are relevant in order to respect the second law of thermodynamics.
However, in the literature, the formulation of conservation laws for multiphase
flows has been a controversial topic and so far there is no universally accepted
procedure for deriving them in a closed form. Furthermore, past and current
research efforts in relation to multiphase flow modelling mostly focus on two-
phase models, consequently the extension to multi-phase flows is even less clear.

In this sense, these modelling difficulties will be highlighted in this thesis.
By numerically dealing with one of the most historically established models,
the two-phase Baer-Nunziato (BN) model [3], it will be clear that there are
modelling and numerical reasons for the need to develop a mixture model for-
mulated within a proper mathematical framework of continuum mechanics. The
main objective of this work therefore becomes the development and numerical
solution of a set of hyperbolic partial differential equations capable of describ-
ing a generic multi-phase and multi-material continuum in a unified manner,
within the framework of Symmetric Hyperbolic Thermodynamically Compatible
(SHTC) theory. In the following section, we briefly describe the approaches
generally used in the literature and the problems associated with their closure, in
contrast with the advantages of formulating a mixture theory within the SHTC
continuum mechanics.

1.1 A continuum approach for multi-phase mixtures
In this thesis, we will focus on a description of multi-phase flows from a macro-
scopic point of view, i.e. through a continuum description. The description of
fluids and solids as continuous media is achieved through the conservation and
equilibrium laws for mass, momentum and energy. These laws are used to state
the governing equations of the medium as a function of time, within a common
mathematical framework established in the 19th century by, among others,
Cauchy, Navier, Poisson, Laplace, Stokes, Newton and Euler. However, fluids
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1.1 A continuum approach for multi-phase mixtures

and solids are generally recognised as different states of matter and studied by
two distinct communities, using different approaches. The Eulerian description
is most commonly used to describe the field of motion of a fluid, as fluids
usually undergo large deformations that are not suitable for a Lagrangian
description, while in solid mechanics the Lagrangian description is preferred in
order to write the force balance equations on a body, since the stress tensor
in a solid depends on the deformation of the medium that is readily available
within the Lagrangian framework.

Multiphase flows, i.e. flows of several interacting continua, represent the point
at which these two different approaches have to be combined. For instance, some
applications employ two or more different models, one for each of the phases
involved, with additional coupling rules governing the interaction between the
different media. However, it is clear that abandoning the distinction between
solids and fluids in favour of adopting a unified continuum mechanics model
(UMCM) would yield advantages in a continuum formulation of multiphase
flows.

1.1.1 On the classical formulation of conservation laws for
multi-phase flows

Theories of multi-phase mixtures stem from the early work of C. Truesdell (1957)
[173], who transposed the kinetic theory for gas mixtures, given by Maxwell
[108], into a form appropriate for a continuum theory. In fact, underlying multi-
phase theories is the same concept introduced by Truesdell for gas mixtures,
according to which a mixture can be represented by “a sequence of bodies Bk,
all of which. . . occupy regions of space. . . simultaneously”. Thus, the phases
are treated as interpenetrating continua and a theory describing them should
have a mathematical structure that accounts for the macroscopic phenomena
associated with the heterogeneous nature of the mixture.

A first rational treatment of a continuum theory for heterogeneous materials
was that of Goodman and Cowin [86], who presented a model for a single-phase
granular material with a void in the interstices. They noticed that there are
two reasonable definitions of mass density in this case. The bulk density %s is
the ratio of the mass of the sample to the total volume of the sample, while the
material density ρs is the ratio of mass of the grains to the volume occupied
by the grains. The ratio αs = %s/ρs of these two quantities is the definition of
the solid volume fraction. The concept of volume fraction quickly became the
basic notion for modelling the presence of several components in a continuous
multiphase mixture description.
The work presented by Goodman et al. has prompted great interest in
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1 Introduction

the development of continuum theories of mixtures, and it is difficult, if not
impossible, to account for all the contributions in the literature. However, it
is interesting to mention that the derivation of conservation laws, and their
final form, has been a controversial topic. Two techniques for deriving the
balance equations have been employed, which can be referred to as averaging
and postulation respectively.

The postulation approach is adopted in the context of a continuum multiphase
mixture theory. An essential step towards the development of such a theory was
presented by Passman [128], and stems directly from the axioms laid down by
Truesdell [173]. The three main principles are the “Metaphysical Principles”:

1. all properties of the mixture must be mathematical consequences of
properties of the constituents;

2. to describe the motion of a constituent, we can conceptually isolate it
from the rest of the mixture, provided that the actions of the other
constituents on it are taken into account;

3. the motion of the mixture is governed by the same equations as for a
single body.

Subsequently, this theory was further developed by various authors, e.g. Nunzi-
ato and Walsh [122] made modifications taking into account the physical notion
that the volume fraction associated with the mixture is the sum of the volume
fractions of the constituents, and the constraint that arises if the mixture is
saturated. Within this mixture theory the conservation laws are postulated
following for each phase the balance principles of continuum mechanic, taking
also in account for interaction between phases, i.e. the exchange of mass,
momentum and energy. Furthermore, the conservation of mass, momentum
and energy are required for the overall mixture and this imposes constraints on
the interactions between the phases. It should be specified that much of the
work in these articles relates to the formulation of specific closure relationships
that satisfy the principles of thermodynamics for two-phase flows of reactive
granular materials, see e.g. [3, 58, 136] and references therein.

Another interesting approach for the derivation of conservation laws involves
overcoming the discrete nature of the phases that constitute a multiphase
mixture through the use of averaging techniques. Within averaged approaches,
see e.g. [48, 93, 119], the balance equations of each constituent are derived by
applying an averaging operation to the equations of motion for different continua
separated by an interface across which the densities, velocities, etc., may jump.
This integration is done through the use of a component indicator function
Xa. This is a concept closely related to the volume averaging process, in fact
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1.1 A continuum approach for multi-phase mixtures

the average of X̄a is the average fraction of occurrences of phase component a
at point x and at time t, and this averaged quantity corresponds to what is
usually called the volume fraction αa. This approach using averaged equations
for two-phase flows can also be found in a more recent work by Abgrall and
Saurel [152].

Furthermore, it should be noted that this controversy concerning the deriva-
tion of conservation laws has been overcome in Drew and Passman’s book [47]
where one of the main results presented is that averaging and postulation give
essentially the same results, while the correct prescription of the constitutive
closure is the crucial issue. The averaged equations have the same form as those
postulated in mixture theories, and can be represented, with minor differences,
by the following system of balance laws for each phase constituent a, consisting
of the phase conservation of mass, momentum and internal energy,

∂t(αρ)a +∇ · (αρv)a = Γa,
∂t(αρv)a +∇ · (αρv⊗ v− αT)a = Ma + Γava,

∂t(αρe)a +∇ · (αρev− αT · v + αq)a = Ea + Mava + Γaea,
(1.1)

where αa, ρa,va, ea,Ta,qa are the volume fraction, density, velocity field, inter-
nal energy, stress tensor and thermal impulse of each phase, respectively. The
terms on the right hand side (RHS), Γa,Ma, Ea are, respectively, the rate of
production of mass, due to phase change or chemical reaction, the momentum
and the energy source to phase a due to interactions or exchanges among
constituents. Furthermore, this system is usually coupled with the following
constraints∑

a

Γa = 0
∑
a

Ma + Γava = 0
∑
a

Ea + Mava + Γaea = 0 (1.2)

in order to retrieve the classical mass, momentum and energy balance equa-
tions for the mixture. The previous system (1.1) must be supplemented with
equations of state, constitutive equations, and boundary and initial conditions
to be a determined system. Equations of state specify the thermodynamic
state of the material in the usual sense. The constitutive equations specify the
behaviour of the individual phases and their interaction with each other, and
it is in their definition that the complexity of formulating conservation laws
for multiphase flows lies.
In an analogy to the Navier Stokes equations of single phase flows, once a

constitutive equation is postulated, for example assuming that the stress is a
linear function of the strain rate, there are exact solutions to the equations of
motion, as in the case of Couette flow, that allow the viscosity to be measured
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1 Introduction

and thus characterise a fluid. For multiphase flows, there are almost no exact
solutions or theorems on asymptotic behaviour for slow or other specific flows.
One can compare only with the few existing experimental data [153] or with
molecular dynamics [90]. Therefore, determining the constants or functions
governing the constitutive equations is a subtle and complex task, and other
techniques must be considered, for example remembering that correct physical
theories must be built on an adequate mathematical basis. This means that
the development of the constitutive equations can be aided by “principles”, see
[38, 174], such as

1. well-posedness of the initial value problem (IVP),

2. separation of components, which means that a variable expressing a phase
self-interaction depends only on the variables associated with that phase,

3. frame indifference which states that the constitutive equations cannot
depend on the reference frame.

These provide rational means to formulate constitutive equations without
inadvertently neglecting important dependencies and without including irra-
tional dependencies. Thus, the first step consists of defining vector and tensor
quantities that are objective i.e. frame-indifferent for each phase or component
of the mixture. Let ’s consider a mixture of N phases a = 1, ... ,N, then the
phase velocities va are not frame-independent, but by means of the mixture
velocity v the relative phase velocities can be defined as wa = va−v, which are
objective quantities. The relative phase accelerations are denoted by aa, and
the phase strain tensor Da and the relative one Wa are objective quantities as
well, and read

Da = 1
2(∇va + (∇va)T), Wa = 1

2(∇va − (∇v)T). (1.3)

Let’s consider the definition of the momentum source Ma due to interactions or
exchanges among constituents for the phase a. It is a frame-indifferent vector-
valued function, hence can be defined as a function of the objective vectors
Va = (∇α,∇ρ,∇p,∇T,w,a)a and the tensors Ta = (D,W)a for a = 1, ... ,N
and in which pa, Ta are the phase pressure and the temperature. Then Ma

must have the form

Ma =
∑
a=1

N
n∑
i=1

Aa,iVa,i +
∑
a=1

N
n∑
i=1

m∑
j=1

(Ba,i,jVa,i · Ta,j + Ca,i,jTa,j · Va,i),

(1.4)
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1.1 A continuum approach for multi-phase mixtures

where n and m are the dimensions of the two previously defined objective
vectors Va, Ta respectively. Thus, in order to close the theory all the scalar
coefficients Aa,i, Ba,i,j , Ca,i,j have to be specified. This is usually done by
imposing the constraints defined in (1.2), and requiring that the constitutive
equations satisfy the appropriate entropy inequalities. However, it is clear that
this is a complex task. The problem can be reduced by considering a first-order
theory, thus only considering terms that have first-order derivatives in space or
time, but still a considerable number of dependencies must be determined.
At this point, the complexity inherent in this formulation of conservation

laws for multi-phase flows is evident, which explains why closed models can
only be found in the literature for application-specific two-phase flows, see
eg. deflagration-to-detonation transition (DDT) in gas-permeable, reactive
granular materials [3, 7, 58] and spray modelling [40].

1.1.2 A unified multi-phase model of continuum mechanics

As we have seen, the main challenge in formulating multiphase flow models
is associated with the formulation of a closed model that satisfies a priori
important physical and mathematical properties. This is inherently very com-
plicated, however, unlike classical approaches, through the theory of Symmetric
Hyperbolic Thermodynamic Compatible (SHTC) systems of conservation law,
it is possible to formulate a model of continuum mechanics based ab initio on
universally accepted fundamental physical principles, such as the principles
of invariance, conservation principles, the principle of causality, the laws of
thermodynamics and the well-posedness of the IVP.
The origin of the SHTC formulation of continuum mechanics can be at-

tributed to the work of Godunov [77], who considered “an interesting class”
of nonlinear conservation laws. The main motivation for this seminal work
was the desire to understand how to ensure the well-posedness of the IVP for
a nonlinear system of time-dependent PDEs, which should be regarded as a
fundamental physical observation on the time evolution of physical systems.
The inference is that the only possibility is to deliberately develop the model
within the subclass of symmetric first-order hyperbolic PDE systems. Moreover,
already in this [77] and subsequent works [79, 81] it was shown that there is an
intimate connection between the symmetric hyperbolicity and thermodynamics.
In particular, this specific subclass of systems of conservation laws can be
written in symmetric hyperbolic Godunov form, and can be shown to satisfy
both the first principle of thermodynamics (the law of conservation of total
energy) and the second principle of thermodynamics (the entropy inequality).

Within this mathematical framework, it is possible to derive a theory for multi-
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1 Introduction

phase flows. The SHTC theory of mixtures was first proposed by Romenski
in [149, 150] for the case of two fluids. It was then further developed in
a series of works [144–146] and it was generalized to the case of arbitrary
number of constituents in [143]. Recently, various numerical schemes were
developed to solve the two-fluid SHTC equations, e.g. semi-implicit all-Mach
number schemes were developed in [104, 105], high-order discontinuous Galerkin
and finite-volume schemes in the ADER framework were developed in [141],
a thermodynamically compatible discretization was proposed in [168], and
detailed solutions of the Riemann problems for the barotropic two-fluid SHTC
equations were studied in [167].
An early product of the very general SHTC formalism is the unified model

of continuum mechanics introduced by Godunov and Romenski in [80, 82–84]
as an hyperbolic Eulerian formulation of elasticity, rather than the Lagrangian
framework more commonly adopted in solid mechanics. In [131], Peshkov and
Romenski, presented the key insight that the Godunov–Romenski model may
be applied not only to elasto-plastic solids, but to fluid flows too. This model,
which represents a unified description of fluids and solids, takes the form of a
monolithic first order hyperbolic system of PDEs, i.e. all signals propagate in
space by means of finite speed waves and each of the system’s partial differential
equations is first order in space and time. Several numerical schemes have
recently been developed to model elasto-plastic solids, e.g. [5, 12, 16, 63, 64, 74],
and viscous or inviscid fluids [34, 54, 55, 94, 95], with this modelling approach,
however, almost always only one phase is considered. The mathematical model
and its many variants have been referred to differently in these various contexts,
from Hyperbolic-Peshkov-Romenski (HPR) or Godunov-Peshkov-Romenski
(GPR) in [54, 55] to unified model of continuum mechanics (UMCM) in [12].
In this thesis, we adopt the generic terminology Unified Continuum Mechanics
Model, or when appropriate for brevity UMCM or GPR.

The unified multi-phase model of continuum mechanics object of this thesis
work is derived, as a whole, from variational principles and geometrical con-
straints within the formalism of SHTC systems, following the work of Peshkov
et al. [132] where the variational nature of the SHTC equations is extensively
highlighted. Within this theoretical framework, in order to obtain the equa-
tions for a specific medium, it is necessary to identify state variables and to
define a thermodynamic potential as a function of these variables. Considering
a mixture of N constituents denoted by latin indices a, where a = 1, ... ,N
enumerates the phases, the vector of sought SHTC state variables is

Q = {U ,A, ρ,w1, ... ,wN−1, ϕ1, ... , ϕN−1, %1, ... , %N−1, η1, ... , ηN}T, (1.5)

where U is a vector field with the meaning of the mixture momentum, A is a

8



1.1 A continuum approach for multi-phase mixtures

three by three non-symmetric matrix called distortion field or cobasis of the
mixture, w1, ... ,wN−1 are the relative velocities of each phase which are defined
with respect to the N-th constituent that can be chosen arbitrary, ϕa, %a and
ηa are scalar quantities defined as follows ϕa = ραa, %a = ρca, ηa = %asa where
αa, ca, sa are the volume fraction, mass fraction and specific entropy of the
a-th phase, respectively.

Then, once also a thermodynamic potential is defined as a function of these
variables, a first order hyperbolic multi-phase model can be formulated, which
satisfies both the first and the second principles of thermodynamics and by
which compressible Newtonian and non-Newtonian, inviscid and viscous fluids
as well as elasto-plastic solids can be described.

1.1.3 A comparison of the two approaches

In this brief introduction we have seen, in 1.1.1, that the standard approach
of deriving governing equations for multiphase flows leads to a system of
governing equations in the form of mass, momentum and energy balance laws
for each phase. Then, the phase interactions are described with both differential
interaction terms and non-differential source terms that are usually unknown,
and their rigorous formulation requires complex additional considerations. The
model originally introduced in the context of reactive granular materials by Baer
and Nunziato in [3] is one of the most prominent which follows this approach.
Nowadays, it is usually referred to a simplified form, for compressible two-phase
flows, in which it is assumed that the interaction between the constituents is
given only by contributions proportional to the volume fraction gradients of
the phases through two so-called interphase pressure and velocity coefficients,
see e.g. the following recent works [2, 52, 138, 152, 156] and references therein.
In 1.1.2, we pointed out that a unified multiphase model of continuum

mechanics can be formulated within the SHTC systems formalism. More
precisely, a mixture can be uniquely described through an appropriate choice
of a vector of state variables (1.5) and defining a thermodynamic potential as
a function of these variables. It can be seen that the vector of sought SHTC
state variables differs from that usually adopted in the classical formulation
of conservation laws for multiphase flows. Thus, the governing equations in
SHTC theory describe the evolution of different quantities.
The question therefore arises as to whether it is possible to compare these

two approaches. This can be done if the SHTC system is rewritten in terms
of the equations of conservation of mass, momentum and phase energy. This
structure is referred to in the following as Baer-Nunziato type form (BN-type
form). In this work, the BN-type form of the SHTC mixture model will be
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derived, and naturally a closed form of the model will be obtained, where the
interactions between the constituents are automatically well defined. Initially,
this rewriting of the SHTC system will be done by excluding the evolution
equation for the mixture distortion field A, since the rigorous derivation of the
several distortion fields relating to each phase, which is necessary in a classical
description of the mixture through the quantities describing the individual
constituents, is not available so far. Then, assuming that the single mixture
distortion field can be described through various phase-related distortion fields
Aa, by analogy we consider an evolution equation for each of these matrix
value fields. In a simplified view, this model can also be seen as an extension
of the multi-phase theory of mixtures proposed by Romenski [143] augmented
with GPR theory. However, while this simplified, practical viewpoint is correct
for this BN-type form of the SHTC mixture model, it is not correct for the
SHTC model derived as a whole from variational principles.

1.2 Systems of balance laws
Conservation laws are fundamental to the understanding of the physical world,
as they describe which processes can or cannot occur in nature. In physics,
a conservation law states that a specific measurable quantity of an isolated
system does not change as the system evolves over time. In particular, in
continuum mechanics, local balance laws are usually expressed mathematically
by systems of PDEs which has the following general structure

∂tQ +∇ · F(Q,∇Q) + B(Q) · ∇Q = S(Q). (1.6)

Exact solutions to these differential systems very rarely exist, so numerical
analysis plays a central role in the development of robust and efficient numerical
methods to find accurate solutions to these problems.

1.2.1 Explicit and semi-implicit schemes
The development of new numerical methods is closely tied to the nature of
mathematical models. An interesting class of non-linear conservation laws, e.g.
the Euler equations of gas-dynamics, is represented by first-order hyperbolic
PDE systems, whose general structure is

∂tQ +∇ · F(Q) = S(Q). (1.7)

First-order hyperbolic PDE systems satisfy and imitate two important and
closely related principles of nature. That is, information propagates by means
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of waves moving with finite speed and consequently the principle of causality
is satisfied. In other words, causality can be seen as a consequence of the
finite speed of propagation of information, in fact if waves originate from
the interaction of matter (the interaction is the cause) it is reasonable to
require that this interaction takes place in a finite physical space and that
there exist zones that are sufficiently distant from the cause that they are
not yet influenced by the interaction. These characteristics are also naturally
reflected in the development of numerical methods. In the context of explicit
numerical schemes, the concept of the finite speed of propagation of information
is reflected in the so-called Courant–Friedrichs–Lewy (CFL) condition [39].
This is a necessary condition to ensure the stability of the time integration
and expresses the maximum time step size ∆t that can be adopted for a given
mesh size ∆x and a given numerical scheme. The underlying principle of the
condition is that the numerical domain of dependence of any point in space and
time must include the analytical domain of dependence, which can be related
to the maximum signal propagation speed λ; this translates into the following
inequality

∆t/∆x ≤ λ, (1.8)
which must be satisfied everywhere in the computational domain.

Considering hyperbolic-parabolic PDE systems, for instance the compressible
Navier-Stokes equations, whose general structure is represented in (1.6), a sim-
ilar time restriction can be derived in the case of explicit numerical integration.
However, in this case, the proportionality between the time step and the mesh
size is quadratic, ∆t ∼ ∆x2, and such a condition can become prohibitive
on fine meshes, which is why implicit or semi-implicit schemes are needed.
In general, solving nonlinear systems of PDEs using fully implicit schemes is
computationally expensive, since strongly nonlinear algebraic systems with a
huge number of unknowns and with rather high condition number must be
solved. Therefore, the semi-implicit approach is a viable strategy to retain a
mild stability condition and to increase computational efficiency.

On the other hand, the nature of PDE systems tends to change depending on
the flow regimes that occur and this requires the design of different and specific
numerical methods. These different flow regimes can be characterised by the
Mach number M = ||v||/C, defined through the ratio of the flow velocity v
to the sound speed C, which expresses the influence of compressibility on a
flow field. The physical interpretation is that in the low Mach number regime
the sound velocity, related to pressure waves, is much larger than the fluid
velocity. Therefore, rapid pressure equalisation takes place and, as a result,
density changes due to compression cannot occur and the fluid flow becomes
incompressible in the limit.

11



1 Introduction

Focusing for instance on compressible Navier–Stokes equations, with the aid
of asymptotic analysis [98, 99, 114], it can be shown that in the low Mach
number limit M → 0 their counterpart are the incompressible Navier-Stokes
equations, which are a hyperbolic-parabolic-elliptic PDE systems with infinite
propagation rates. In this limit pressure results in a Lagrange multiplier that
adapts itself to ensure the divergence free condition of the velocity field. A
classical numerical approach consists of applying an operator splitting strategy
to yield a hyperbolic dominated subsystem for the unknown velocities and
an elliptic Poisson-type problem for the pressure [129, 160]. Various finite
volume, finite difference and finite element methods have been developed for
incompressible flows, see e.g. [8, 29, 30, 37, 88, 161] also in a hybrid form, in
order to solve each subproblem with the most suitable scheme [23]. Furthermore,
some of these algorithms have been extended to the weakly compressible and
low Mach regimes [9, 112], and to all Mach number flows too [24, 127, 164],
retaining a reasonable time step restriction that depends only on the velocity
field, rather than on the sound speed.

1.3 Structure of the thesis

The remainder of the thesis is divided into four main parts, initially the various
mathematical models are introduced or derived, then the numerical modeling
aspects are discussed through the development of various numerical schemes
closely related to the mathematical nature of the models, and finally ample
space is devoted to the obtained numerical results. In detail, the structure is
as follows.

In Chapter 2, the different mathematical modelling approaches adopted
in this thesis for multiphase mixtures are presented. I illustrate the main
features of the so-called BN model, from a brief characteristic analysis to a
non-dimensional formulation for deriving the low Mach limit model, as done for
the (isentropic) Euler equations in [98–100]. In the same chapter, I also describe
how a unified multiphase model of continuum mechanics can be derived from
variational principles and geometric constraints within the SHTC formalism
[132]. Through this approach, the main problem of the classical formulation of
conservation laws for multi-phase flows, inherent in the definition of a closed
model generalised to an arbitrary number of constituents, is overcome. Fur-
thermore these two approaches are compared by rewriting the SHTC model in
a BN-type form.
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1.3 Structure of the thesis

Chapter 3 is entirely devoted to the derivation of various numerical meth-
ods, tailored to the different mathematical models addressed in this thesis.
I introduce a novel staggered, semi-implicit, finite-volume method derived
starting from the works of Casulli et al. [29, 51], for the solution of a simplified
BN model. This method is the basis of a highly efficient Fortran MPI-parallel
code that in terms of applicability is a step forward for the study of real-world
problems related to complex non-hydrostatic free-surface flows interacting with
solid moving obstacles.
A substantial part of this chapter is devoted to the development of a robust
numerical scheme capable of addressing the various difficulties inherent in a
unified theory of compressible multiphase fluid and solids mechanics. I detail
the numerical techniques I adopted to address a reduced form of the BN-type
SHTC model capable of describing a continuum consisting of up to three phases.

In Chapter 4 provides and discusses an extensive collection of numerical
experiments, with the aim of validating the numerical methods developed in this
work, as well as providing some rather unique results related to the behaviour
of multiphase flows for more than two phases, described through the unified
model of fluid mechanics and compressible multiphase solids presented here.
The computational results obtained in this thesis are published in [69, 70], and
[71] is, at the time of writing of this manuscript, to be submitted for publication.

Finally, the Chapter 5 list the main achievements of the work presented in
this thesis and discuss future research directions regarding numerical algorithms
and modelling perspectives provided within a unified theory of compressible
multiphase fluid and solid mechanics.
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2 Towards a unified theory of
multiphase fluid and solid mechanics

This chapter is entirely devoted to the presentation and formulation of the
mathematical models which will then be addressed numerically. The devel-
opment of a multiphase model following the classical formulation presents
difficulties that are inherent in the approach, as we have seen in Section 1.1.1.
There is no attempt to provide an exhaustive and rigorous derivation of the
governing equations of a mixture following this approach; such a task is beyond
the scope of this thesis. However, it is useful to introduce and mathematically
describe one of the most widely used and studied formulations for modelling
compressible two-phase flow, namely the one originally proposed by Baer and
Nunziato [3].

In this work, there are two main reasons for the introduction of this model.
First, the BN model was the starting point of my research work on modeling
and numerical solution of multiphase flows. In fact, through its non-dimensional
formulation, the low Mach limit model was recovered. Moreover, by considering
only rigid body motion for the solid phase, a reduced incompressible BN model
is obtained, which, as we shall see, can be applied for the solution of complex
non-hydrostatic free-surface flows interacting with moving solid bodies.

The second motivation is comparative; in fact, the need to adopt a formula-
tion different from the classical one becomes apparent noting the modelling
limitations associated with a rather simplistic definition of interphase terms
and understanding the difficulties associated with generalization to the case of
an arbitrary number of constituents. Therefore, ample space will be devoted in
this chapter to formulating a theory of mixtures within the SHTC framework
derived from variational principles [132]. This approach overcomes the main
problem of the classical formulation of conservation laws for multiphase flows,
inherent in defining a closed model generalized to an arbitrary number of
constituents. However, a classical reformulation of the new SHTC model, i.e.,
considering the mathematical structure of the BN model, can be useful in
practice to recognize and isolate terms associated with phase interactions and
compare them with those already present in the original BN model.
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2 Towards a unified theory of multiphase fluid and solid mechanics

2.1 The Baer-Nunziato equations of compressible
two-phase flow

The Baer-Nunziato model is one of the most popular nonconservative models
for two-phase flows. In its original formulation [3] it is a two-phase model specif-
ically designed for applications describing the deflagration-to-detonation (DDT)
transition in reactive, gas-permeable granular materials. However, nowadays
this model is usually referred to by considering only the homogeneous part of
the original system, i.e., without the algebraic phase interaction terms, see e.g.
the following recent works [2, 52, 138, 152, 156]. This is equivalent assuming
that the interaction between the constituents is given only by contributions pro-
portional to the volume fraction gradients of the phases through two so-called
interphase pressure and velocity coefficients. This simplification, in some sense,
makes the model less specific and applicable to a wider range of two-phase
flows, see. e.g. [49, 72] for a reduced model for free surface flows or [97] for
the interaction of compressible fluids with solids. The complete seven-equation
Baer-Nunziato model, without algebraic source terms, is a fist-order system of
nonlinear PDEs, which reads

∂t(αρ)a +∇ · (αρv)a = 0,
∂t(αρv)a +∇ · (αρv⊗ v + αp I)a = pI∇αa,
∂t(αρE)a +∇ · (αρvE + αv p)a = −pI ∂tαa,

∂tαa + vI · ∇αa = 0

(2.1)

where the subscript a denotes each phase, thus in this two-phase model a = 1, 2;
ρa is the mass density, va = (va,1, va,2, va,3)T the velocity vector, pa the pressure
and Ea the total energy per unit mass and αa the volume fraction of each
phase a, respectively. Furthermore, the model requires a proper choice of the
interface velocity vI and the interface pressure pI. Baer and Nunziato, in their
original work, proposed the following choice

vI = v2, pI = p1, (2.2)

where, since in this work the model describes flame propagation in gas-
permeable granular solids, the two phases considered are a gaseous and a
solid one; in this order we are denoting them with subscripts 1 and 2, respec-
tively. Thus, these assumptions are equivalent to assuming the interphase
pressure pI equal to that of the most compressible phase and the interphase
velocity vI corresponding to the velocity of the least compressible phase, that
is, the solid phase, phase 2. Another choice of pI and vI will lead to a different
mathematical model. It should also be noted that the volume fractions αa
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must satisfy the saturation constraint, i.e., α1 + α2 = 1, therefore, it is clear
that formally the nonconservative convection equation for the second volume
fraction function, in (2.1), must be excluded from the system of PDEs since it
is equivalent to that for phase 1. In order to close the system (2.1), we need
to provide additional relations, namely the equations of state (EOS) for each
phase. For instance, an ideal EOS for the gas phase and a stiffened EOS for
the solid phase can be chosen

e1 = p1
ρ1(γ1 − 1) , e2 = p2 + γ2π2

ρ2(γ2 − 1) , (2.3)

where e1, e2 are the specific internal energies, γ1, γ2 are the specific heat ratios
of the gas and solid phases, respectively, and π2 is a known constant.
From a modelling perspective, it is easy to see how the BN model (2.1)

reflects the structure outlined in (1.1), and it is essentially formulated as a
system of two Euler sub-systems, with extra terms describing the interaction
of the two constituents. Therefore each phase has its own pressure, velocity
and temperature, which is why it is said to be a full non-equilibrium model.
Moreover, the interphase terms are defined in a very simplified form, compared
to the form of interphase terms presented in (1.4) where all combinations
of the vector and tensor quantities that are objective are considered. In
(2.1) the interaction between the constituents is given only by contributions
proportional to the volume fraction gradients ∇αa of the phases through two
so-called interphase pressure pI and velocity vI coefficients.

2.1.1 Characteristic analysis

The characteristic analysis of the BN model was comprehensively studied by
Embid and Baer [58]. Therefore, here we will only briefly present the results.
As a consequence of the presence of the differential interaction terms, the
overall system of governing equations (2.1) cannot be written in divergence
form. The system is said to be non-conservative, and the phase interaction
terms are called non-conservative terms. Defining the state variable vector Q
as

Q = (α1 ρ1, α1 ρ1 v1
T, α1 ρ1E1, α2 ρ2, α2 ρ2 v2

T, α2 ρ2E2, α2 )T
, (2.4)

the governing PDE system (2.1) can be written in compact matrix-vector
notation as

∂tQ +∇ · F(Q) + B(Q)∇Q = 0, (2.5)
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where F(Q) is a non-linear conservative flux tensor and B(Q)∇Q = Bi ∂xkQ,
with k = 1, 2, 3, represent the non-conservative products, and read

F(Q) =



α1 ρ1 v1
α1 (ρ1 v1 ⊗ v1 + p1 I)
α1 (ρ1E1 + p1) v1

α2 ρ2 v2
α2 (ρ2 v2 ⊗ v2 + p2 I)
α2 (ρ2E2 + p2) v2

0


, B(Q)∇Q =



0
−p1∇α1
−p1 v2 · ∇α1

0
+p1∇α1

+p1 v2 · ∇α1
v2 · ∇α2


. (2.6)

The PDE system (2.1) can also be rewritten in the following quasi-linear form
in terms of the conservative variables Q

∂tQ + A(Q)∇Q = 0, (2.7)

with

A(Q) = (A1, A2, A3) = ∂F
∂Q + B(Q), (2.8)

while in terms of the vector of primitive variables V

V = ( ρ1, v1
T, p1, ρ2, v2

T, p2, α2 )T
, (2.9)

it can be rewritten as

∂tV + C(V)∇V = 0, (2.10)

with

C(V) = (C1, C2, C3), Ck = ∂V
∂Q Ak

∂Q
∂V . (2.11)

To compute the eigenstructure of the system, and thus assess its hyperbolicity,
we can consider the equations projected along a generic direction k specified
by a unit vector êk. This can be done, without loss of generality, due to
the rotational invariance of the system (2.1); thus the matrix of coefficients
appearing in (2.10) will be given by the following projection C1 = C · ê1, which
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results

C1 =



v1,1 ρ1 0 0 0 0 0 0 0 0 ρ1 ∆u
α1

0 v1,1 0 0 1/ρ1 0 0 0 0 0 0
0 0 v1,1 0 0 0 0 0 0 0 0
0 0 0 v1,1 0 0 0 0 0 0 0
0 ρ1 a

2
1 0 0 v1,1 0 0 0 0 0 ρ1 a2

1 ∆u
α1

0 0 0 0 0 v2,1 ρ2 0 0 0 0
0 0 0 0 0 0 v2,1 0 0 1/ρ2

∆p
α1 ρ2

0 0 0 0 0 0 0 v2,1 0 0 0
0 0 0 0 0 0 0 0 v2,1 0 0
0 0 0 0 0 0 ρ2 a

2
2 0 0 v2,1 0

0 0 0 0 0 0 0 0 0 0 v2,1



, (2.12)

where ∆u = (u2,1−u1,1) and ∆p = (p2− p1), while a1, a2 are the sound speeds
of the gas and solid phases, respectively, and can be calculated according to
each EOS as follows

a1 =
√
γ1 p1/ρ1, a2 =

√
γ2 (p2 + π2)/ρ2. (2.13)

The following eigenvalues λ can be computed for the matrix C1

λ1 = u1 − a1, λ2 = λ3 = λ4 = u1, λ5 = u1 + a1,

λ6 = u2 − a2, λ7 = λ8 = λ9 = u2, λ10 = u2 + a2,

λ11 = u2.

(2.14)

Therefore, since all eigenvalues (2.14) are real, system (2.1) is hyperbolic; the
right eigenvectors of C1, corresponding to these eigenvalues are

R1 =



0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 ρ2 1 0 0 ρ2 0
0 0 0 0 0 −a2 0 1 0 a2 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρ2 a

2
2 0 0 0 ρ2 a

2
2 −∆p

α2

ρ1 1 0 0 ρ1 0 0 0 0 0 ρ1(∆u)2

α1 (a2
1−(∆u)2)

−a1 0 0 0 a1 0 0 0 0 0 −a2
1(∆u)

α1 (a2
1−(∆u)2)

0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

ρ1 a
2
1 0 0 0 ρ1 a

2
1 0 0 0 0 0 ρ1 a2

1(∆u)
α1 (a2

1−(∆u)2)



. (2.15)
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As shown in [58], observing (2.15) it is straightforward to see that the eigen-
vectors become linearly dependent if one of the following conditions is realized

α1 = 0, α2 = 0, a2
1 − (∆u)2 = 0. (2.16)

Furthermore, for the Riemann problem consisting of system (2.1) and the
following initial conditions, considering a generic direction x,

Q(x, 0) =

QL(x), x < 0,
QR(x), x > 0,

(2.17)

the first inverse Riemann exact solver was proposed by Andrianov and Warnecke
[2], while the first forward exact solvers were published by Schwendeman et
al. [156] and Deledicque and Papalexandris [43]. Moreover the structure of
the exact solution of the Riemann problem (2.1) and (2.17) is described in
the work of Tokareva and Toro[169] by examining the right eigenvalues of the
system (2.15) with generalized Riemann invariants.

2.1.2 Non-dimensional formulation and low-Mach limit
In this section, with the aim of obtaining a simplified model describing the
behaviour of incompressible phases, the low Mach limit of the BN model is
derived with the aid of a classical asymptotic expansion approach, e.g. [44, 98].

As stated in the introduction 1.2.1, different flow regimes can be characterised
by the Mach number M = ||v||/C, given by the ratio of the local flow velocity
v to the sound speed C. Thus, in principle, in a multiphase context, given a
homogeneous velocity field for the phases, a different flow regime will be found
for each phase. For instance, a compressible behaviour may be assumed by a
gas phase, while a liquid phase may exhibit an almost incompressible response.
Consequently, in order not to lose generality in a non-dimensional analysis
it would be necessary to choose different reference quantities for each phase,
leading to different Mach numbers characterising the flow regime of each phase,
as was done by Lukáčová et al. in [105]. However, in the specific application
of interest for this thesis work, the low Mach limit of the most compressible
phase is of interest. (The limit is even more strictly satisfied for the solid
phase, the least compressible of the two.) Therefore, the simultaneous limit for
both phases is considered in the non-dimensionalisation stage, assuming a flow
regime described by a single Mach number associated with both phases.

To represent and identify the different scales present in model (2.1), we denote
the non-dimensional quantities by (̃·) and the corresponding reference value
by (·)r. The following reference quantities can be assumed. The convective
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2.1 The Baer-Nunziato equations of compressible two-phase flow

scale is denoted by ur = xr/tr which can be expressed by means of a reference
length xr and time tr. Further we define the reference density ρr and the
reference pressure pr from which one can define the reference sound speed
given by (Cr)2 = pr/ρr. With these definitions, we can express the dimensional
variables with the product of the non-dimensional quantity and the reference
value, for each phase, as follows

x = x̃ xr, t = t̃ tr, M = ur/Cr,

va = ṽa
xr

tr
, ρa = ρ̃a ρ

r, pa = p̃a ρ
r (Cr)2, ea = ẽa (Cr)2,

(2.18)

where ea is the specific internal energy of each phase and M is the reference
Mach number.
By inserting expressions (2.18) into (2.1) and dropping (̃·), we obtain the

following non-dimensional formulation of the BN system

∂t(αρ)a +∇ · (αρv)a = 0,

∂t(αρv)a +∇ ·
(
αρv⊗ v + αp

M2 I
)
a

= pI
M2 ∇αa,

∂t(αρE)a +∇ · (αρvE + αv p)a = −pI ∂tαa,

∂tαa + vI · ∇αa = 0,

(2.19)

where the non-dimensional total energy is given by

Ea =
(1

2 |v|
2M2 + e

)
a
. (2.20)

The presence of the Mach number in the non-dimesional momentum equation
of the system (2.19) leads to a change in the eigenvalues related to acoustic
waves, which now read

λ1 = u1 − a1/M, λ2 = λ3 = λ4 = u1, λ5 = u1 + a1/M,

λ6 = u2 − a2/M, λ7 = λ8 = λ9 = u2, λ10 = u2 + a2/M,

λ11 = u2.

(2.21)

Furthermore, it can be seen that pressure-related terms in the momentum
equations become dominant and that acoustic waves propagate significantly
faster than the material ones, for low Mach numbers.
Through an asymptotic analysis of the non-dimensional model (2.19), it is

possible to gain a better understanding of the behaviour of the solution in
the low Mach number limit and formally obtain the incompressible equations.
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2 Towards a unified theory of multiphase fluid and solid mechanics

According to [44, 98], for the derivation of the low Mach limit model, we focus
on the scales induced by the Mach number, considering a time and space
asymptotic expansion of the variables ρa, pa,va, for each phase, which read

ρa(x, t) = ρ(0)
a (x, t) +O(M),

pa(x, t) = p(0)
a (x, t) + p(1)

a (x, t)M + p(2)
a (x, t)M2 +O(M3),

va(x, t) = v(0)
a (x, t) +O(M).

(2.22)

By introducing these expansions into the non-dimensional equations (2.19) and
sorting by Mach number orders, we find the following system for the leading
order O(M0)

∂t(αρ(0))a +∇ · (αρ(0) v(0))a = 0, (2.23)

∂t(αρ(0) v(0))a +∇ · (αρ(0) v(0) ⊗ v(0) + αp(2) I)a = p
(2)
I ∇αa, (2.24)

∂t(αρ(0)e(0))a +∇ · (αρ(0) v(0) e(0) + αv(0) p(0))a = −p(0)
I ∂tαa, (2.25)

∂tαa + vI
(0) · ∇αa = 0, (2.26)

where e(0)
a is a function of ρ(0)

a , p
(0)
a and the following two PDEs for the orders

O(M−1) and O(M−2)

∇ · (αp(1) I)a = p
(1)
I ∇αa, ∇ · (αp(0) I)a = p

(0)
I ∇αa. (2.27)

Considering the choices of Baer and Nunziato in defining the interphase quan-
tities (2.2), we can rewrite (2.27) for the first and the second phase as

∇
(
α1 p

(1)
1
)

= p
(1)
1 ∇α1, ∇

(
α1 p

(0)
1
)

= p
(0)
1 ∇α1,

∇
(
α2 p

(1)
2
)

= −p(1)
1 ∇α1, ∇

(
α2 p

(0)
2
)

= −p(0)
1 ∇α1,

(2.28)

which imply that ∇p(1)
1 = 0 and ∇p(0)

1 = 0, therefore the pressure for the first
phase is constant in space up to a perturbation in M2. The same consideration
can be made for the second phase only assuming that p(1)

2 = p
(1)
1 and p(0)

2 = p
(0)
1 ,

for instance considering a pressure relaxation term. At this stage we can rewrite
the system (2.29) at the leading order O(M0), introducing these consideration
about phase pressures, and reads

∂t(αρ(0))a +∇ · (αρ(0) v(0))a = 0, (2.29)

∂t(αρ(0) v(0))a +∇ · (αρ(0) v(0) ⊗ v(0) + αp(2) I)a = p
(2)
1 ∇αa, (2.30)

αa∂t(ρ(0)e(0))a + (ρ(0)e(0) + p
(0)
1 )a (v(0)

a − v(0)
1 ) · ∇αa+

+ (αρ(0)e(0) + αp(0))a∇ · v(0)
a = 0, (2.31)

∂tαa + v(0)
2 · ∇αa = 0. (2.32)
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2.1 The Baer-Nunziato equations of compressible two-phase flow

Assuming further that the phase velocities coincide in this limit, v(0)
1 = v(0)

2
(e.g. due to the inter-phase drag terms present in the original model), the
phase energy conservation equation (2.31) reduces to

αa∂t(ρ(0)e(0))a + (αρ(0)e(0) + αp(0))a∇ · v(0)
a = 0. (2.33)

Integrating (2.33) over the domain Ω with periodic or no-flux boundary con-
ditions, as done in [44, 98], we obtain that (ρ(0)e(0))a is constant in time.
Therefore it follows directly that ∇ · v(0)

a = 0 for each phase. This means the
pressure of each phase is given by

pa(x, t) = p(0)
a + p(2)

a (x, t)M2 +O(M3), (2.34)

where the leading order p(0)
a is a constant which plays the role of the thermo-

dynamic variable, and the second-order term p
(2)
a (x, t) is the pressure whose

fluctuations account for local force balancing and, for M → 0, satisfies the
Poisson equation. This leads to a system of incompressible Euler equations with
friction coupled through a source term that is a function of the second-order
term p

(2)
a (x, t)

∂t(αρ(0))a +∇ · (αρ(0) v(0))a = 0,

∂t(αρ(0) v(0))a +∇ · (αρ(0) v(0) ⊗ v(0) + αp(2) I)a = p
(2)
1 ∇αa,

∇ · v(0)
a = 0,

∂tαa + v(0)
2 · ∇αa = 0.

(2.35)

23



2 Towards a unified theory of multiphase fluid and solid mechanics

2.2 The unified SHTC multiphase model of continuum
mechanics

The seminal ideas about an SHTC theory of mixtures was proposed by Romenski
in [149, 150] for the case of two fluids. It was then further developed in a series
of works [144–146] and it was generalized to the case of arbitrary number of
constituents in [143]. This theory is characterized by its remarkable ability
to describe multiphase flow in closed form as formulated, in contrast to more
conventional formulations (e.g. BN model). However, even if correct, the
derivation is somewhat complicated, mainly due to the fact that terms related
to the existence of geometric stationary compatibility constraints, e.g., for the
vorticity of relative velocities, are added a posteriori to prevent the source
terms from violating them.

This theory, can be rewritten simply and clearly in light of the work on the
re-derivation of SHTC theory from variational principle presented in the recent
work of Peshkov et al. [132]. Indeed, this work reveals that the original structure
of SHTC systems, which goes back to the work of Godunov and Romenski
[80, 82–84], is rather related to conservation laws written in the Lagrangian
framework, while their Eulerian counterparts are inherently non-conservative
time evolutions and have a more complicated structure that intimately includes
geometric aspects.

Moreover, in this thesis, the SHTC multiphase model is extended with addi-
tional physical effects, deriving it as a whole from variational principles, while
retaining its first-order hyperbolic nature. Specifically, in this re-formulation of
an SHTC mixture theory, the unified model of continuum mechanics introduced
in [131], based on the Eulerian hyperbolic formulation of elasticity by Godunov
and Romenski [82–84], is included from the beginning. This particular formu-
lation of continuum mechanics is notable for its ability to describe liquids and
solids in a unified manner, with the two states of matter differing simply by
the choice of a material-specific time scale τ , that governs the rate at which
deformation, in a given control volume, are dissipated through a process of
relaxation.

2.2.1 General structure of the SHTC formulation

The origin of the SHTC formulation of continuum mechanics can be attributed
to the fundamental work of Godunov [77] who asked what mathematical
requirements can guarantee IVP well-posedness, i.e. what requirements can
guarantee that the solution of a PDE system with initial data exists, is unique
and continuously depends on the initial data, for a new model of non-linear
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2.2 The unified SHTC multiphase model of continuum mechanics

continuum mechanics. Stressing that the well-posedness of the IVP should be
considered as a fundamental physical principle, in the same way that causality,
conservation and thermodynamic principles or Galilean invariance are regarded
when considering classical smooth solutions of time-dependent PDEs.

As has been shown by Godunov [77–79], for the important subclass of
symmetric hyperbolic systems of PDEs, one can guarantee that such systems
are globally hyperbolic by definition, and consequently that IVP is locally
well-posed in time. In fact, if we consider a first order system of conservation
laws, for q = (q1, q2, ... , qn),

∂q
∂t

+ ∂Fk(q)
∂xk

= 0, (2.36)

which admits an additional conservation law for a strictly convex total energy
density potential E(q)

∂E(q)
∂t

+ ∂Gk(q)
∂xk

= 0. (2.37)

Then, such a system (2.36)-(2.37) can be parametrized in terms of a new state
variables vector p = (p1, p2, ... , pn) and a new potential L(p). These new
quantities (p, L) are thermodynamically conjugate to (q, E) via the following
definitions

p = Eq , L(p) = q · Eq − E(q) = q · p− E(q), (2.38)

namely, via the definition of L, which is Legendre’s transformation of E(q);
the subscript denotes partial derivatives with respect to the latter, i.e. p is a
vector of components pi = ∂E/∂qi. The inverse relations also exist

q = Lp , E(q) = p · Lp − L(p) = p · q − L(p), (2.39)

and (2.38)-(2.39) are one-to-one relations since E(q) is assumed to be a convex
function, i.e. the Hessian ∂p/∂q = Eqq = (Lpp)−1 > 0 is symmetric and
positive definite. By also introducing the Legendre-conjugation of the energy
flux Lk(p), which reads

Lk(p) = Eq · Fk(q)−Gk(q) = p · Fk(q)−Gk(q), (2.40)

the previous system (2.36)-(2.37) can be parametrized as

∂Lp
∂t

+
∂Lkp
∂xk

= 0, (2.41)
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2 Towards a unified theory of multiphase fluid and solid mechanics

and this form can be easily rewritten as a symmetric quasilinear one

Lpipj
∂pj
∂t

+ Lkpipj
∂pj
∂xk

= 0. (2.42)

Therefore, the parametrization of the governing equations in terms of the
conjugate variables p and generating potential L(p) allows to rewrite the
system in a symmetric hyperbolic quasilinear form, if the energy potential is
convex.

Moreover, one usually refers to (2.41) as Godunov’s form of the conservation
laws. However, in light of the re-derivation work of SHTC theory from varia-
tional principle, in [132], it is clear that the original Godunov structure (2.41)
refers to conservation laws written in the Lagrangian framework; while their
Eulerian counterparts are, in general, non-conservative time evolutions and
have a more complicated structure, that can be represented by generalizing
(2.41) as follows

∂Lp
∂t

+ ∂(vk L)p
∂xk

+ Ck
∂p
∂xk

= 0, (2.43)

where Ck are some symmetric matrices and vk is the velocity field. The presence
of the non-conservative terms, represented by Ck ∂p/∂xk, is related to the
fact that involution constraints in the Eulerian framework are not auxiliary
equations derived from stationary laws as in the Lagrangian framework, but are
an intrinsic part of the structure of the Eulerian SHTC equations. Furthermore,
these constraints cannot be omitted, otherwise the Galilean invariance property
would be violated and the characteristic structure would also change. In [132], it
is also shown how the conjugate form of the Eulerian SHTC equations can still
be written as a symmetric quasilinear system, even including these geometrical
involution constraints.
The second key observation in Godunov’s work [77] is that for this specific

subclass of conservation law systems, there is an intimate connection with
thermodynamics. Specifically, the system (2.36) and the conservation law of
the total energy (2.37) costitute and overdetermined system of PDEs, which
means that

Eq ·
(
∂q
∂t

+ ∂Fk(q)
∂xk

)
≡ ∂E(q)

∂t
+ ∂Gk(q)

∂xk
. (2.44)

Thus, this subclass of symmetric hyperbolic PDEs can be associated with the
thermodynamically compatible systems of first order nonlinear conservation
laws.
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2.2 The unified SHTC multiphase model of continuum mechanics

2.2.2 Mixture description: composition characteristics
We consider a mixture of N constituents denoted by latin indices a, where
a = 1, ... ,N enumerates the phases. Denoting by M and V the total mass and
the volume of the infinitesimal element of the mixture, respectively, we can
write

M =
N∑
a=1

ma, V =
N∑
a=1

νa, (2.45)

where ma is the mass and νa is the volume of the a-th constituent in the
mixture control volume V . The mixture mass density is then defined as

ρ = M

V
= m1 +m2 + ...+mN

V
=

N∑
a=1

%a, (2.46)

where
%a := ma

V
(2.47)

denotes the density of the a-th phase inside the control volume V .
To characterise the volume and mass content of the a-th constituent inside

the mixture control volume V , it is also convenient to introduce two non-
dimensional scalars: the volume fraction

αa := νa
V
,

N∑
a=1

αa = 1, (2.48)

and the mass fraction

ca := ma

M
= %a

ρ
,

N∑
a=1

ca = 1. (2.49)

Although %a represents the true mass density of the a-th constituent inside
the control volume V , the equations of state of the constituents are usually
given in the single-phase context, i.e. as if the phase a would occupy the entire
volume V . Therefore, to use the standard single-phase equations of state, we
shall also need the mass density of the a-th phase not of the entire mixture
control volume V , but of the partial volume νa, i.e.

ρa = ma

νa
= maV

νaV
= %a
αa
. (2.50)

In other words, for phase a, its mass density ρa of the partial volume νa and
its true mass density %a of the control volume V are related by

%a = αaρa. (2.51)
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2 Towards a unified theory of multiphase fluid and solid mechanics

The mixture entropy density η = ρS is defined as

η :=
N∑
a=1

ηa =
N∑
a=1

%asa (2.52)

where sa is the specific entropy of the a-th phase. Hence, the specific mixture
entropy can be computed as

S = η

ρ
= c1s1 + c2s2 + ...+ cNsN. (2.53)

2.2.3 Mixture description: the kinematic quantities

Due to the conservation principle, the total momentum of a control volume is
defined as the sum of the momenta of its parts. Thus the linear momentum
U = {Uk} of the mixture control volume V , where k denotes the component
in space, is defined as the sum of the linear momenta ua = {ua,k} := %ava of
the constituents

U := u1 + u2 + ...+ uN = %1v1 + %2v2 + ...+ %NvN, (2.54)

where va = {va,k} is the velocity of the a-th phase. The velocity V = {Vk} :=
U/ρ of the mixture control volume is therefore defined as the center of mass
velocity

V := U

ρ
= %1v1 + %2v2 + ...+ %NvN

ρ
= c1v1 + c2v2 + ...+ cNvN. (2.55)

For the SHTC formulation of the mixture equations, in addition to the mixture
momentum U , one also needs the relative velocity w = {wa,k}

wa = va − vN, wa,k = va,k − vN,k, k = 1, ... , 3. (2.56)

which is defined with respect to the N-th constituent that can be chosen
arbitrarily. Whereas, in order to derive a BN-type formulation it is useful to
define the relative velocity with respect to the mixture velocity

v̄a := va − V , v̄a,k = va,k − Vk, k = 1, ... , 3. (2.57)

In the SHTC theory, the relative velocity wa is the preferred choice because it
is dictated by the variational formulation as well as by the symmetrization of
the governing equations [145, 150].
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2.2.4 Mixture description: deformation characteristics

In order to describe the elastic and inelastic deformations of a single material
in the SHTC framework, one needs to introduce the concept of the distortion
field A, by means of which the evolution of elastic and elastoplastic solids and
the dynamics of Newtonian and non-Newtonian fluids can be formulated in
the SHTC formalism [83, 94, 131, 133, 134].
In the classical formulation of ideal elastic solids the distortion matrix is

interpreted as the inverse of the deformation gradient tensor, commonly denoted
in the literature as F = ∂x/∂X, or, in index notations FiK = ∂xi/∂XK , and
hence, A = ∂X/∂x or AKi = ∂XK/∂xi, for the dynamics of pure elastic
solids. Here, as usual, we denote the coordinates of the reference configuration
by X and the coordinates in the current configuration by x. In the case of
inelastic deformations (viscous flows, plastic deformations), the distortion field
can be interpreted as the inverse of the elastic part F e of the multiplicative
decomposition F = F eF i of the deformation gradient into elastic and inelastic
part, e.g. see [131, 133]. In this case, the distortion field A is free to have
a non-zero curl component, therefore the reference configuration loses its
physical significance and it plays merely the role of an initial condition, i.e.
one can not reconstruct the original Lagrangian frame. In other words, in
general, the distortion field should be viewed as a local field attached to each
material element, providing its complete time and space local information
about deformation and rotation.
Note that in the notation of the distortion matrix entries, we distinguish

between the Eulerian (lowercase) index i, j, k and the Lagrangian (uppercase)
index I, J,K so that the distortion matrix can be seen as a triad of three
basis vectors A = {A1,A2,A3}, where for each K = 1, 2, 3, AK is a 3-vector
AK = (AK1, AK2, AK3).

It is also useful to introduce the definition of a positive definite symmetric
tensor, the metric tensor G, which has been shown to be useful for describing
complex fluids [87, 131]. This rank-2 tensor can be defined as G = AT A, or, in
index notations Gij = AJiAJj , and identifies the direction and magnitude of
deformations in the continuum. Again, in an analogy with the solid mechanics,
it coincides with the inverse of the left Cauchy-Green deformation tensor
B = F FT and is sometimes called Piola tensor or Finger tensor.
According to the unified model of continuum mechanics [131] and SHTC

formulation for multiphase flows [143, 145], a true non-equilibrium multiphase
model should have, in general, different pressures, temperatures, velocities,
distortion fields, and etc. for each phase. However, at the moment, following
[147, 148], we only know how to derive the SHTC multiphase model for the case
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2 Towards a unified theory of multiphase fluid and solid mechanics

when the phase distortions are equal, A1 = A2 = ... = AN = A. Moreover,
a multiphase single-distortion model was successfully used in [120, 121] for
transient shock-dominated problems in 1D as well in multiple space dimensions.
Yet, from our computational experience with the model, it has appeared

that it is beneficial to evolve individual distortions for every phase. Therefore,
in Section 2.3.2 a heuristic extension of the SHTC multiphase model in its
BN-form (2.3) to the case of different phase distortions Aa is discussed, and
this formulation was used to obtain all the numerical results presented in
Section 4.2.

2.2.5 Mixture description: SHTC state variables

The SHTC mixture governing equations are naturally formulated in terms of
state variables, which are usually represented by scalar and vectors densities,
e.g. mass density, momentum density, entropy density, etc. The set of SHTC
state variables for mixtures is partly different from the conventionally used state
variables, for example, in the BN-type formulations, e.g. mixture momentum
and relative velocities {U ,wa}, a = 1, ... ,N − 1 in the SHTC formulation
versus phase momenta ua, a = 1, ... ,N in the BN-type formulations. The
SHTC choice is conditioned by the variational nature of the equations and
their symmetrization procedure. Thus, the vector of sought conservative SHTC
variables is

Q = (U ,A, ρ, %1, ... , %N−1,w1, ... ,wN−1, η1, ... , ηN, ϕ1, ... , ϕN−1)T , (2.58)

which is related to the vector of primitive SHTC variables

P = (V ,A, ρ, c1, ... , cN−1,w1, ... ,wN−1, s1, ... , sN, α1, ... , αN−1)T , (2.59)

as
ϕa = ραa, U = ρV , %a = ρca ηa = ρcasa. (2.60)

One should pay attention to that ϕN, %N, and wN are excluded from the set of
state variables because they can be expressed as

ϕN = ρ− ϕ1 − ...− ϕN−1, %N = ρ− %1 − ...− %N−1, wN = 0, (2.61)

likewise their primitive counterparts

αN = 1− α1 − ...− αN−1, cN = 1− c1 − ...− cN−1, wN = 0. (2.62)
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2.2.6 Closure relations
To design the equations of a multiphase model, the main ingredient, within
the SHTC formalism, is related to the definition of a total energy density E(Q)
defined with respect to the state vector Q. According to the principle of energy
conservation, the total energy density E of the mixture, in the control volume
V , can be defined as the sum of the mixture energy density associated with the
elastic-shear stress εe and the energy densities Ea = εi

a + εk
a of its constituents

E(Q) = εe +
N∑
a=1
Ea, (2.63)

where εe(ρ,A) is the elastic-shear energy and, for each phase a = 1, 2, ... ,N,
εi
a(ρ, %a, ϕa, ηa) is the internal energy, and εk

a(%a,ua) is the kinetic energy.

Mixture elastic energy, εe

Recalling that according to the unified model of continuum mechanics [131],
the Navier-Stokes equations can be considered as a the stiff relaxation limit of
the SHTC viscoelastic model [54], and thus, like in elastic solids, their response
to shear deformations is characterized by the elastic energy.
In this work, the part of the energy density associated with the elastic-

shear stress, εe, is assumed to be proportional to the second invariant of the
deviator devGij = Gij − (Gkk/3)δij of the metric tensor of elastic deformations
Gij = AJiAJj , and reads

εe(ρ,Aa) = 1
4ρCs2 (devGikdevGki) , (2.64)

where Cs is a parameter representing the propagation speed of small-amplitude
shear waves in the mixture, here it is referred to as shear sound velocity.
The definition of strain energy in (2.64) is a choice, then other definitions

can be used freely, such as the one given in [116], which produces a sharper
separation between spherical and deviatoric stresses.
At the moment, an SHTC formulation for multiphase flows with different

distortion fields Aa is unknown, and in the theoretical part, we assume a
single-distortion approximation A = A1 = A2 = ... = AN.

Phase internal energy, εi
a

The SHTC state variables (2.58) are dictated by the variational formulation of
the governing equations. However, these might be not the optimal choice of
variables when it comes to expressing the fluxes in terms of the conventional
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fluid characteristics such as pressure, temperature, etc. Therefore, it is useful to
express the total energy density of the mixture through two parametrizations.
The first one is in terms of the state vector Q in (2.58), and the second one
in terms of the individual phase state parameters ρa and sa. The latter, only
concerns the internal energies εi

a. Thus, we shall use the following notations

εi
a(ρ, %a, ϕa, ηa) = ε̂i

a(ρa, sa) = %aê
i
a(ρa, sa) =

= %aê
i
a

(
%aρ

ϕa
,
ηa
%a

)
, a = 1, 2, ... ,N− 1

(2.65)

and for a = N

ε̂i
N(ρN, sN) =

(
ρ−

N−1∑
a=1

%a

)
êi

N

(
ρ
(
ρ−

∑N−1
a=1 %a

)
ρ−

∑N−1
a=1 ϕa

,
ηN

ρ−
∑N−1
a=1 %a

)
. (2.66)

With this parametrization of the internal energies, the phase pressures and
temperatures are defined as

pa := ρ2
a

∂êi
a

∂ρa
, Ta := ∂êi

a

∂sa
. (2.67)

In this work, several test problems for multiphase flows of interacting gases,
liquids, and solids will be presented. Each of these states of matter has its
own equation of state which are described below. We remark that it is not the
goal of the thesis to provide a comprehensive list of equations of state for all
possible materials, but rather to illustrate the flexibility of the SHTC model in
handling different types of materials.

• For the gas phases, the equation of state of perfect gases is used in the
form

êi
a(ρa, sa) = Co2

a

γa(γa − 1)

(
ρa
ρoa

)γa−1
esa/Cva , (2.68)

where ρoa is the reference density, γa is the adiabatic exponent, Coa is the
velocity of sound at normal atmospheric conditions, Cva is the specific
heat capacity at constant volume. Then, according to (2.67), the pressure
and temperature are computed as

pa = ρ2
a

∂êa
∂ρa

= ρoaCo2
a

γa

(
ρa
ρoa

)γa
esa/Cva , (2.69)

Ta = ∂êa
∂sa

= Co2
a

Cvaγa(γa − 1)

(
ρa
ρoa

)γa−1
esa/Cva , (2.70)

and the phase velocity of sound Ca can be computed as

C2
a := ∂pa

∂ρa
= Co2

a

(
ρa
ρoa

)γa−1
esa/Cva . (2.71)
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• For the liquid and solid phases, the stiffened gas equation of state will be
used in the form

êi
a(ρa, sa) = Co2

a

γa(γa − 1)

(
ρa
ρoa

)γa−1
esa/Cva + ρoaCo2

a − γapoa
γaρa

, (2.72)

denoting with poa the reference (atmospheric) pressure. In this case, the
pressure and temperature are given by

pa = ρ2
a

∂êa
∂ρa

= ρoaCo2
a

γa

(
ρa
ρoa

)γa
esa/Cva − ρoaCo2

a − γap0a
γa

, (2.73)

Ta = ∂êa
∂sa

= Co2
a

Cvaγa(γa − 1)

(
ρa
ρoa

)γa−1
esa/Cva (2.74)

and the phase adiabatic sound speed Ca results in

C2
a := ∂pa

∂ρa
= Co2

a

(
ρa
ρoa

)γa−1
esa/Cva . (2.75)

Phase kinetic energy, εk
a

The phase kinetic energy

εk
a = 1

2%a
‖ua‖2, (2.76)

is defined in terms of the phase momenta ua. However, also in this case, it
is useful to express this component of the energy density of the mixture in
terms of the state vector Q, to compute the partial derivatives ∂E/∂Q. Thus,
alternatively, εk

a can be also given, after some algebra, as

N∑
a=1

εk
a = 1

2ρ

3∑
k=1

U2
k +W (ρ, %1, ... , %N−1,w1, ... ,wN−1) (2.77)

where the kinetic energy of relative motion W is defined as

W (ρ, %1, ... , %N−1,wa, ... ,wN−1) := 1
2

3∑
k=1

N−1∑
a=1

%aw
2
a,k −

1
2ρ

3∑
k=1

(
N−1∑
a=1

%awa,k

)2

.

(2.78)
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Thermodynamic forces, EQ

At this point we are able to express the total energy density of the mixture
completely in terms of the state vector Q. Keping in mind that

%N = ρ−
N−1∑
a=1

%a and ϕN = ρ−
N−1∑
a=1

ϕa, (2.79)

the partial derivatives of the energy potential E with respect to the state vector
Q are given by

∂E
∂ρ

=
N−1∑
a=1

∂ε̂i
a

∂ρa

%a
ϕa

+ ∂ε̂i
N

∂ρN

(
ρϕN − ρ%N + %NϕN

ϕN2

)
− ∂ε̂i

N

∂sN

ηN

%N2

+ 1
2ρ2

3∑
k=1

N∑
a=1

(%awa,k)2 − 1
2ρ2

3∑
k=1

U2
k + ∂εe

∂ρ
, (2.80a)

∂E
∂Ui

= 1
ρ
Ui, (2.80b)

∂E
∂AJj

= ∂εe

∂AJj
, (2.80c)

∂E
∂ϕa

= −%aρ
ϕ2
a

∂ε̂i
a

∂ρa
+ %Nρ

ϕ2
N

∂ε̂i
N

∂ρN
, a = 1, ... ,N−1, (2.80d)

∂E
∂%a

= ρ

ϕa

∂ε̂i
a

∂ρa
− ηa
%2
a

∂ε̂i
a

∂sa
− ρ

ϕN

∂ε̂i
N

∂ρN
+ ηN

%2
N

∂ε̂i
N

∂sN
+ 1

2

3∑
k=1

w2
a,k

− 1
ρ

3∑
k=1

N−1∑
b=1

%bwb,kwa,k, a = 1, ... ,N−1, (2.80e)

∂E
∂wa,k

= %awa,k −
%a
ρ

N−1∑
b=1

%bwb,k, a = 1, ... ,N−1, (2.80f)

∂E
∂ηa

= 1
%a

∂ε̂i
a

∂sa
. (2.80g)

In addition, a thermodynamic mixture pressure P can be defined in the SHTC
formalism

P (Q) := ρEρ + UiEUi + ϕaEϕa + %aE%a + ηaEηa − E = ρ2Êρ := P̂ (P ), (2.81)
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and, with the formulas in (2.80), P (Q) can be computed as the following sum

P (Q) =
N∑
a=1

(
ρa
∂ε̂i

a

∂ρa
− ε̂i

a

)
:= P̂ (P ), (2.82)

which suggests that the quantities

Pa := ρa
∂ε̂i

a

∂ρa
− ε̂i

a (2.83)

can be called the partial phase pressures. Moreover, due to the fact that

ρa
∂ε̂i

a

∂ρa
− ε̂i

a = αaρ
2
a

∂êa
∂ρa

, (2.84)

the partial phase pressures Pa and the single phase pressures (2.67) are related
by

Pa = αapa. (2.85)
In other words, the mixture pressure can be computed as

P = P1 + ...+ PN = α1p1 + ...+ αNpN. (2.86)

All the derivatives listed in (2.80) are used in the formulation of the SHTC
governing equations and therefore it is more convenient to express them in
a more explicit form. Thus, expressions (2.80d) and (2.80f) can be further
expanded as follows

∂E
∂AJj

= ρCs2AJi devGij , (2.87a)

∂E
∂ϕa

= −1
ρ

(pa − pN), (2.87b)

∂E
∂%a

= µa − µN + 1
2

3∑
k=1

w2
a,k −

1
ρ

3∑
k=1

N−1∑
b=1

%bwb,kwa,k, (2.87c)

∂E
∂wa,k

= %awa,k −
%a
ρ

N∑
b=1

%bwb,k = %a(va,k − Vk), (2.87d)

∂E
∂ηa

= Ta, (2.87e)

where
µa := ea + pa

ρa
− saTa = ea − αa

∂ea
∂αa

− sa
∂ea
∂sa

= ∂ε̂i
a

∂%a
(2.88)

is the chemical potential of the a-th constituent.
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2 Towards a unified theory of multiphase fluid and solid mechanics

2.2.7 The SHTC mixture conservation laws

As we have seen in Section 1.1.1 a multiphase continuum is generally described
by means of mass, momentum and energy balance laws for each constituent.
However, the balance laws of the SHTC mixture consist of the evolution
equations for the quantities defined in the state vector of the SHTC variables
(2.58). As anticipated in Section 2.2, the SHTC theory of mixtures was first
proposed by Romenski et al. in [143] for an arbitrary number of constituents,
based simply on the requirements listed at the beginning of Section 2.2.1.
However, this theory can be rewritten simply and clearly in light of the work
on the re-derivation of the SHTC theory from the variational principle, [132],
in which involution constraints are an intrinsic part of the structure of the
Eulerian SHTC equations. Furthermore, in the variational framework, the
original theory in [143] can be extended by including the unified model of
continuum mechanics, i.e. by including AJi in the formulation of the following
mixture theory.

In order to understand the variational nature of the SHTC governing equa-
tions, i.e. that the master system can also be obtained from Hamilton’s
stationary action principle, let us consider a vector potential referred to the
mixture and N− 1 scalar potentials

xi(t,XI), χa(t,XI). (2.89)

where t is time, X = XI and x = xi are the Lagrangian and Eulerian spatial
coordinates respectively, while the potentials χa are needed to characterise
each phase in the mixture, with a = 1, ...N− 1. We denote the derivatives of
the potentials in (2.89) as follows

v̂i = ∂xi
∂t

, f̂iJ = ∂xi
∂XJ

,

êa = ∂χa
∂t

, ĥaJ = ∂χa
∂XJ

,

(2.90)

and we define the action integral

L =
ˆ

Λ dX dt, (2.91)

where Λ = Λ(v̂i, f̂iJ , êa, ĥaJ) is the Lagrangian. The first variation is

δL =
ˆ (

−
(
∂Λv̂i
∂t

+
∂Λf̂iJ
∂XJ

)
δxi −

(
∂Λêa
∂t

+
∂ΛĥaJ
∂XJ

)
δχa

)
dX dt, (2.92)
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and the δL is null for every possible perturbation if the individual integrands
are null, i.e. if and only if the following Euler-Lagrange equations are valid

∂Λv̂i
∂t

+
∂Λf̂iJ
∂XJ

= 0, (2.93)

∂Λêa
∂t

+
∂ΛĥaJ
∂XJ

= 0, (2.94)

and the following integrability conditions, which are trivial consequences of
definitions (2.90),

∂f̂iJ
∂t
− ∂v̂i
∂XJ

= 0, ∂f̂iJ
∂XK

− ∂f̂iK
∂XJ

= 0, (2.95)

∂ĥaJ
∂t
− ∂êa
∂XJ

= 0, ∂ĥaI
∂XJ

− ∂ĥaJ
∂XI

= 0, a = 1, ... ,N−1 (2.96)

are satisfied. In order to obtain the fully conservative Lagrangian master
system, that admits the original Godunov structure (2.41) we have to introduce
a potential U as a partial Legendre transformation of the Lagrangian Λ

dU = d (v̂iΛv̂i + êaΛêa − Λ)
= v̂idΛv̂i + êadΛêa − Λf̂iJdf̂iJ − ΛĥaJdĥaJ
= v̂idΛv̂i + êadΛêa + Λf̂iJd(−f̂iJ) + ΛĥaJd(−ĥaJ).

(2.97)

which, denoting m̂i = Λv̂i , %̂a = Λêa , F̂iJ = −f̂iJ , ŵaJ = −ĥaJ , yields the
thermodynamic identity

dU = Um̂idm̂i + U%̂ad%̂a + UF̂iJdF̂iJ + UŵaJdŵaJ . (2.98)

Now, by collecting these quantities into a new Lagrangian vector of state
variables q̂ = (m̂i, F̂iJ , ŵaJ , %̂a) and using the potential U = U(q̂), equations
(2.93),(2.94),(2.95),(2.96) can be transformed into the following minimal La-
grangian master system

dm̂i

dt −
∂ UF̂iJ
∂XJ

= 0, (2.99a)

dF̂iJ
dt −

∂ Um̂i
∂XJ

= 0, (2.99b)

dŵaJ
dt + ∂ U%̂a

∂XJ
= 0, a = 1, ... ,N−1, (2.99c)

d%̂a
dt + ∂ UŵaJ

∂XJ
= 0, a = 1, ... ,N−1, (2.99d)
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2 Towards a unified theory of multiphase fluid and solid mechanics

which should be supplemented by stationary constraints (2.95) and (2.96) which
now read as

∂F̂iJ
∂XK

− ∂F̂iK
∂XJ

= 0, ∂ŵaI
∂XJ

− ∂ŵaJ
∂XI

= 0, a = 1, ... ,N−1. (2.100)

The conversion from the SHTC Lagrangian master system (2.99) and (2.100),
which admits the original Godunov (2.41) structure, to the Eulerian equations
can be carried out by means of the Lagrange-to-Euler change of the spatial
variables which results in the change of the time and spatial derivatives

d
dt = ∂

∂t
+ vk

∂

∂xk
,

∂

∂XJ
= F̂iJ

∂

∂xi
, (2.101)

while the Lagrangian total energy density U(q̂) is related to Eulerian total
energy density E(q) as

U(q̂) = ι E(q) with ι = det(FiJ) (2.102)

Similarly, Lagrangian state variables q̂ are related to Eulerian fields q =
(Ui, AJi, wa,i, %a) by the formulae

m̂i = ι Ui, F̂iJ = A−1
Ji , ŵaI = ι wa,i, %̂a = ι %a (2.103)

Despite these simple definitions, the conversion to Eulerian equations is a
non-trivial task and details can be found, for example, in [81], or in Appendix
C of [55].
The resulting Eulerian master system has a more complicated structure

than the fully conservative Lagrangian system (2.99), in fact the Eulerian
equations are inherently non-conservative and admit only the generalized
Godunov structure in (2.43). The resulting system of non-conservative Eulerian
equations, formulated in terms of the state variables vector q and the total
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energy density E(q), reads

∂Ui
∂t

+ ∂

∂xk

(
UiEUk +

(
ρEρ + UiEUi + %aE%a − E)δik+

+ wa,iEwa,k +AJkEAJi
)

= 0, (2.104a)

∂AJk
∂t

+ ∂AJlEUl
∂xk

+ EUi
(
∂AJk
∂xi

− ∂AJi
∂xk

)
= 0, (2.104b)

∂wa,k
∂t

+ ∂ (wa,lEUl+E%a)
∂xk

+ EUl
(
∂wa,k
∂xl

−∂wa,l
∂xk

)
=0, a=1, ... ,N−1,

(2.104c)

∂%a
∂t

+
∂
(
%aEUk + Ewa,k

)
∂xk

= 0, a=1, ... ,N−1,

(2.104d)

∂ρ

∂t
+ ∂ (ρEUk)

∂xk
= 0. (2.104e)

where it should be noted that, with respect to the Lagrangian framework, here
we usually also consider the mass conservation of the mixture Eq.(2.104e). In
fact, especially for numerical reasons, it is useful to treat ρ as an independent
state variable governed by its own time evolution.
Despite this consideration, it should be specified that, in this Eulerian

framework, as was shown for example in [80, 135], the conservation of mass
(2.104e) is the consequence of the time evolution (2.104b) for the distortion
matrix A and therefore also in this case could be excluded from the governing
system. Whereas, let’s recall that in the Lagrangian framework it is not
necessary to consider the mass conservation equation since the mass density is
ρ = ρo ι

−1. In this sense, the complementary equations of the Lagrangian pair
(2.99a) and (2.99b) are the three equations (2.104a), (2.104b) and (2.104e) of
the Eulerian SHTC master system.
Note also that an arbitrary number of equations with the structure of

(2.104e) can be added to the system (2.104). In the specific case concerning
the formulation of a unified multiphase model of continuum mechanics, the
variables under consideration are specified in the state vector Q. Accordingly,
the resulting system formulated in terms of the state variables Q and the total
energy density E(Q), the entropy conservation laws ηa and the time evolution
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2 Towards a unified theory of multiphase fluid and solid mechanics

of the volume fraction through ϕa are considered, therefore (2.104) becomes

∂Ui
∂t

+
∂
(
UiVk + Pδik + wa,iEwa,k +AJkEAJi

)
∂xk

= 0, (2.105a)

∂AJk
∂t

+ ∂AJlVl
∂xk

+ Vi

(
∂AJk
∂xi

− ∂AJi
∂xk

)
= 0, (2.105b)

∂wa,k
∂t

+∂ (wa,lVl + E%a)
∂xk

+Vl
(
∂wa,k
∂xl

−∂wa,l
∂xk

)
=0, a=1, ... ,N−1, (2.105c)

∂%a
∂t

+
∂
(
%aVk + Ewa,k

)
∂xk

= 0, a=1, ... ,N−1, (2.105d)

∂ϕa
∂t

+ ∂ (ϕaVk)
∂xk

= 0, a=1, ... ,N−1, (2.105e)

∂ρ

∂t
+ ∂ (ρVk)

∂xk
= 0, (2.105f)

∂ηa
∂t

+ ∂(ηaVk)
∂xk

= 0, a=1, ... ,N, (2.105g)

where the velocity field Vk is introduced since is always the conjugate field
of the total momentum, i.e., Vk = EUk , and where the definition of thermo-
dynamic mixture pressure P , in (2.81), was also used. Equations (2.105) are
the multiphase, multi-pressure, and multi-speed SHTC governing equations
in a Cartesian coordinate system, with k = 1, 2, 3, for an arbitrary number of
non-heat conducting phases, denoted by a = 1, ... ,N, which can describe New-
tonian and non-Newtonian, inviscid and viscous fluids, as well as elasto-plastic
solids.

The governing system (2.105) for multiphase fluid and solid mechanics is
not a system of conservation laws because of the presence of non-conservative
differential terms,

Vi

(
∂AJk
∂xi

− ∂AJi
∂xk

)
, Vl

(
∂wa,k
∂xl

− ∂wa,l
∂xk

)
, (2.106)

in equations (2.105b) and (2.105c), respectively. As we have already mentioned,
the terms in (2.106) are an intrinsic part of the structure of the Eulerian SHTC
equations and are a result of the following stationary geometric involution
constraints

∇×A = B, ∇×wa = ωa, (2.107)
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2.2 The unified SHTC multiphase model of continuum mechanics

which are satisfied by the solutions of (2.105), if they hold true at time t = 0.
In component-wise notations, these involution constraints, by means of the
Levi-Civita symbol εijk, read

εijk
∂AJk
∂xj

= BJi, εijk
∂wa,k
∂xj

= ωa,k, (2.108)

where the quantities BJi and ωa,k satisfy the following conservation laws

∂BJi
∂t

+ ∂ (BJiVk −BJkVi)
∂xk

+ Vi
∂BJk
∂xk

= 0, (2.109)

∂ωa,j
∂t

+ ∂ (ωa,jVk − ωa,kVj)
∂xk

+ Vj
∂ωa,k
∂xk

= 0. (2.110)

and have a certain physical meaning. For instance, B, has the meaning of
a dislocation density tensor [135] in elatoplasticity theory. In general, for
plasticity or viscosity, if the phase has undergone an irreversible dissipative
process, one has ∇ ×A 6= 0, and since usually this irreversible dynamics is
time-dependent, the system (2.105) has non-trivial time-dependent solutions
in which these involution constraints are non-zero terms.

2.2.8 Irreversible dynamics, dissipative processes

In the SHTC theory, a dissipative process is associated with the irreversible part
of the time evolution equations that increases the entropy of the system and
that is modeled via algebraic relaxation source terms [132], i.e. the hyperbolic
nature of PDEs is not affected. They are defined in terms of the gradients
of the energy EQ, (i.e. in terms of the conjugate state variables), thus the
irreversible part of the SHTC equations can be called the gradient dynamics
[130, 132].

Therefore, the following arbitrary functions of the conjugate state variables
can be added

ZJk(EAJk), Λa,k(Ewb,k), χa(E%b), Φa(Eϕb), πa(Eηb), (2.111)
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in the right-hand side of the system equations (2.105)

∂Ui
∂t

+
∂
(
UiVk + Pδik + wa,iEwa,k +AJkEAJi

)
∂xk

= 0, (2.112a)

∂AJk
∂t

+ ∂AJlVl
∂xk

+ Vi

(
∂AJk
∂xi

− ∂AJi
∂xk

)
= ZJk, (2.112b)

∂wa,k
∂t

+ ∂ (wa,lVl + E%a)
∂xk

+ Vl

(
∂wa,k
∂xl

− ∂wa,l
∂xk

)
= Λa,k, a = 1, ... ,N−1,

(2.112c)

∂%a
∂t

+
∂
(
%aVk + Ewa,k

)
∂xk

= χa, a = 1, ... ,N−1, (2.112d)

∂ϕa
∂t

+ ∂ (ϕaVk)
∂xk

= Φa, a = 1, ... ,N−1, (2.112e)

∂ρ

∂t
+ ∂ (ρVk)

∂xk
= 0, (2.112f)

∂ηa
∂t

+ ∂(ηaVk)
∂xk

= πa + Πa, a = 1, ... ,N, (2.112g)

where no sources are considered for the conservation of momentum and mass
of the mixture, since mass and momentum must always be exactly conserved.
Moreover, since the terms in (2.111) are quite arbitrary, Πa must be intro-
duced in (2.112g) to ensure consistency with the first and second laws of
thermodynamics. For instance, this term is necessary to guarantee that

AJkZJk + wb,kΛa,k + %bχa + ϕbΦa + ηbπa ≡ 0, (2.113)

which is required by the energy summation rule in (2.44), see detail in Section
2.2.9.

Strain relaxation, ZJk
The strain relaxation source ZJk, for the distortion field AJk, takes the form

ZJk := −1
ρ

Υ EAJk , EAJk = ρCs2AJi devGik, (2.114)

where Υ it’s a positive relaxation scaling functions, which according to [131],
is taken equal to

Υ = 3
τ e Cs−2 det(AJk)5/3. (2.115)
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The parameter τ e is the so-called strain relaxation time, which governs the
rate at which the strain, in a given control volume, is dissipated trough this
dissipative process. When τ e → 0 a state of strain equilibrium is achieved
instantaneously and therefore inviscid flow is retrieved, while for τ e →∞ the
relaxation process is infinitely slow and the behaviour of a pure elastic solid is
retrieved.

Interphase friction, Λa,k
The second dissipative process considered is the relative velocity relaxation
towards zero, due to the interfacial friction, and appear as source terms in the
relative velocity equations. This is modelled by the functions

Λa,k := −1
ρ

N−1∑
b=1

λab,kEwb,k , Ewb,k = ∂E
∂wb,k

= %b(vb,k − Vk), (2.116)

where the kinetic coefficients λab,k = λab,k(Q) are the entries of three (k =
1, 2, 3) symmetric positive semi-definite matrices.

Pressure relaxation, Φa

The dissipative process related to the pressure relaxation towards a common
pressure are introduced as source terms in the volume fraction conservation
laws of the phases by the functions

Φa := −ρ
N−1∑
b=1

ϕabEϕb , Eϕa = ∂E
∂ϕa

= −pa − pN

ρ
, (2.117)

where ϕab = ϕab(Q) are the kinetic coefficients which again are the entries of a
symmetric positive semi-definite matrix.

Kinetics of phase transformation, χa

For the sake of completeness, we also mention how chemical kinetics can be
introduced into the SHTC mixture equations. In order to achieve this, it is
necessary to introduce the χa sources into the true mass density equations,
which are defined as

χa := −ρ
N−1∑
b=1

χabE%b , E%a = ∂E
∂%a

= µa−µN + 1
2

3∑
k=1

w2
a,k−

1
ρ

3∑
k=1

N−1∑
b=1

%bwb,kwa,k

(2.118)
where the kinetic coefficients χab = χab(Q) form a symmetric positive semi-
definite matrix.
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Temperature relaxation, πa

Finally, the source terms πa in the phase entropy equations are defined as

πa := −%a
Eηa −

N∑
b=1

%b
ρ Eηb

τhEηa
= %a

Ta −
N∑
b=1

cbTb

τh Ta
, (2.119)

and they model the phase temperature relaxation towards the common tem-
perature

T :=
N∑
a=1

caTa (2.120)

which can be called the temperature of the mixture control volume. Here, τh

is a relaxation parameter that characterizes the rate at which the temperature
equilibrium T1 = ... = TN = T is approached by the system.

The dissipative processes Φa, Λa,k, and χa are defined in such a way that
they diminish the thermodynamic forces Eϕa , Ewa,k , and Eχa , i.e they lead the
mixture towards a thermodynamic equilibrium state at which these forces must
vanish Eϕa = 0, Ewa,k = 0, and Eχa = 0, while the temperature relaxation πa
tends to make the phase temperatures equal.

Entropy production terms, Πa

The remaining undefined dissipative terms, the entropy production terms
Πa, a = 1, ... ,N, serve the goal of making the system compatible with the
two laws of thermodynamics. Therefore, to fulfill the first and second law of
thermodynamics (see the next section for the details), Πa must be defined as

Πa := %a
Eηaρ

σ ≥ 0 (2.121)

where

σ := 1
NEAJiZJk +

N−1∑
b=1

(
EϕbΦb +

3∑
k=1
Ewb,kΛb,k + E%bχb

)
=

1
ρNEAJiΥ EAJk +

N−1∑
b=1

N−1∑
c=1

(
ρEϕbϕbcEϕc +

3∑
k=1

ρ−1Ewb,kλbc,kEwc,k+

+ ρE%bχbcE%c
)
≥ 0.

(2.122)
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Remark that, in general, the sign of each Πa ≥ 0 is definite due to the choice
of the kinetic coefficients ϕab, λab,k, and χab that are the entries of the positive
semi-definite matrices.

Yet, the phase entropies may decrease due to the presence of the temperature
relaxation terms πa that makes the sign of Πa− πa, in general, indefinite. This
of course doesn’t contradict the second law because the mixture constituents
are not isolated systems. However, as discussed in the next section, this choice
of Πa guaranties the fulfillment of the second law of thermodynamics for the
entire mixture.

2.2.9 Consistency with the first and second laws of
thermodynamics

One may notice that the total energy conservation law (first law of thermo-
dynamics) is not listed within the set of equations (2.112). In fact, one of the
main features of all the SHTC models [81, 85, 132, 149, 150] is that the energy
conservation law
∂E
∂t

+ ∂

∂xk

(
EVk + Vk(Pδik + wa,iEwa,k +AJkEAJi) + E%aEwa,k

)
= 0 (2.123)

is automatically fulfilled for solutions of system (2.112). In other words, the
energy conservation law can be obtained as a linear combination of the governing
equations (2.112) multiplied with certain coefficients (the thermodynamic
conjugate variables or main-field variables [111]), as stated in (2.44). Thus,
Eq.(2.123) can be obtained as the following linear combination of equations
(2.112) multiplied by the corresponding factors, which are the thermodynamic
forces EQ

(2.123) ≡ Eρ · (2.112f) + EUi · (2.112a) + EAJk · (2.112b) + Eϕa · (2.112e)+
+ E%a · (2.112d) + Ewa,k · (2.112c) + Eηa · (2.112g).

(2.124)

However, we can obtain zero in the right hand-side of (2.123) by these means
only if we define the phase entropy production terms Πa as in (2.121). Note
that the temperature relaxation terms πa are defined in such a way that

N∑
a=1
Eηaπa =

N∑
a=1

Taπa = 0. (2.125)

As we have already mentioned, if the relaxation processes discussed in the
previous section are taken into account, our choice (2.121) of the phase entropy
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2 Towards a unified theory of multiphase fluid and solid mechanics

production terms Πa cannot guarantee positive sign of Πa − πa. However, the
mixture itself (in the absence of exchange with the exterior) is an isolated
system and the second law must hold. Thus, our choice of the phase entropy
production terms Πa not only guarantees the energy conservation law for the
entire mixture (the first law of thermodynamics) but also the second law.
Indeed, the mixture entropy density is defined as

η = η1 + ...+ ηN (2.126)

and fulfills the entropy balance law

∂η

∂t
+ ∂(ηVa)

∂xk
= Π + π ≥ 0, (2.127a)

Π :=
N∑
a=1

Πa =
(
c1
T1

+ ...+ cN

TN

)
σ ≥ 0, (2.127b)

π = −
N∑
a=1

πa = 1
2tr

(
MTM

)
≥ 0, (2.127c)

where Mab is a symmetric matrix with the entries

Mab =
√
%a%b
ρτ

(Ta − Tb)2

TaTb
, a, b = 1, ... ,N, (2.128)

and the sign on the right hand side of (2.127b) is guarantied by the choice
of the kinetic coefficients ϕab, λab,k, and χab that form positive semi-definite
matrices.
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2.3 The SHTC model compared with the classical
approach, a BN-type form

As anticipated in the Introduction 1, it is of particular interest to compare the
structure of the newly derived model within the SHTC formalism, presented in
Section 2.2, with the structure of models obtained through a classical approach.
In particular, comparing it with one of the most prominent ones that follows
this approach, which is the model originally introduced by Baer and Nunziato
[3], also briefly analysed in Section 2.1.
We have seen that the standard approach of deriving governing equations

for multiphase flows leads to a system of governing equations in the form of
mass, momentum, and energy balance laws for each phase, coupled with some
terms that account for interactions or exchanges among constituents. These
interactions are described with differential terms that are usually unknown
and whose rigorous formulation requires complex additional considerations.
This structure is referred to in the following as BN-type form of the governing
equations. Moreover, we have seen in Section 2.1 that the BN model [3]
is nowadays usually referred to in a simplified form, for compressible two-
phase flows, in which the interactions between constituents are assumed to be
given only by contributions proportional to the gradients of volume fraction of
the phases through two so-called interphase pressure and velocity coefficients.
Finally, the difficulties inherent in formulating a generalized closed model to
mixtures with an arbitrary number of phases, both historically and conceptually
following the classical approach, are evident.

In Section 2.2, we showed how a unified theory of multiphase fluid and solid
mechanics can be formulated within the SHTC formalism. More specifically, we
saw how a mixture can be uniquely described through the appropriate choice
of a vector of state variables (2.58) and the definition of a thermodynamic
potential (2.77). It can be seen that the vector of SHTC state variables sought
differs from that usually adopted in the classical formulation of conservation
laws for multiphase flows. Therefore, the governing equations of the SHTC
theory describe the evolution of different quantities than those of the BN model.
Thus, in order to compare the two models, a rewriting of the SHTC governing
equations is necessary.
Furthermore, another important consideration concerns the interaction be-

tween the constituents. In the theory of SHTC systems, dissipative processes
are formulated through gradients of the total energy potential, which is defined
rigorously in the mixture theory, and give rise to strictly algebraic source terms
that satisfy the thermodynamic laws and that do not affect the hyperbolic
nature of PDEs.
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2 Towards a unified theory of multiphase fluid and solid mechanics

2.3.1 A BN-type form of the SHTC multiphase model
In order to compare the structure of the multiphase SHTC model (2.112) with
the BN-type structure, the system of PDEs in (2.112) is rewritten in terms of
mass, momentum and phase energy balance laws.
All the dissipative source terms of the SHTC model are deliberately kept

in the BN-type form. While, this rewriting of the SHTC system is done by
excluding the evolution equation for the distortion field of the mixture AJi,
since the rigorous derivation of the different distortion fields Aa,Ji related to
each phase, which are required in a classical description of the mixture through
the quantities describing the individual constituents, from a single mixture
distortion field is so far under investigation.

In the following BN-type form of the SHTC mixture equations all the result-
ing Euler-like terms are collected on the left-hand side, while the interphase
exchange terms and the terms arising from the dissipative processes considered
in Section 2.2.8 are collected on the right-hand side.

The phase mass balance equations

The evolution equations in (2.112d) can be immediately rewritten in a more tra-
ditional form using the definition of the mixture velocity V and the expression
of Ewa,k , given in (2.87d),

∂%a
∂t

+ ∂ (%ava,k)
∂xk

= χa. (2.129)

The phase volume fraction equation

The phase volume fraction equations can be retrieved from the equations
(2.112e), using the conservation of total mass and balance laws of the phase
densities (2.129), and read

∂αa
∂t

+ Vk
∂αa
∂xk

= 1
ρ

Φa. (2.130)

Thus, comparing with the BN model, one can conclude that the interface
velocity vI,k of the BN model is replaced by the mixture velocity Vk in the
SHTC model, as was already noticed in [145, 146].

The phase momentum equations

The balance laws for the phase momenta can be obtained from the mixture
momentum conservation and relative velocity equations in the following way.
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Let DUi represents the mixture momentum equation (2.105a), Dwa,i represents
the relative velocity equations (2.105c), and Dua,i represents the phase momen-
tum equations that we need to derive. Then, the phase momentum balance
equations can be obtained as

Dua,i = %a
ρ
DUi −

%a
ρ

N∑
b=1

%bDwb,i + %aDwa,i. (2.131)

After lengthy but rather straightforward manipulations of the terms in (2.131),
the individual phase momentum balance equations can be written as

∂ua,i
∂t

+ ∂

∂xk
(ua,iva,k + Paδki) =− ca

N∑
b=1

pb
∂αb
∂xi

+ pa
∂αa
∂xi

(2.132a)

− ca
N∑
b=1

%bv̄b,kωb,k,i + %av̄a,kωa,k,i (2.132b)

− ca
N∑
b=1

%bsb
∂Tb
∂xi

+ %asa
∂Ta
∂xi

(2.132c)

+ ca

N∑
b=1

%bΛb,i − %aΛa,i (2.132d)

+ ca

N∑
b=1

vb,iχb − va,iχa, (2.132e)

where
ωa,k,i := ∂wa,i

∂xk
− ∂wa,k

∂xi
(2.133)

and v̄a,k as previously defined in (2.57). Here, the presence of the phase
transformation terms χa is due to appearance of ∂%a/∂t and the need to
replace them by their expressions from (2.129).
The phase momentum equations (2.132) derived from the SHTC mixture

equations can be compared with those of the original BN model in order
to understand some differences between the two approaches. The main one
concerns the fact that in the momentum equations derived from the SHTC
mixture theory (2.132), a closed form of the terms resulting from the interaction
of the constituents is naturally obtained. These interphase exchange terms are
collected on the right-hand side of (2.132). The last two (2.132d) and (2.132e)
are contributions from the dissipative processes considered in the previous
paragraph, respectively concerning relative velocity relaxation and the presence
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of the phase transformation. Whereas the other terms, (2.132a, 2.132b, 2.132c),
arise naturally by deriving a BN-type form of the SHTC mixture equations,
i.e. they are naturally univocally defined from a mixture theory described by a
set of variables capable of capturing the multiphase character of the flow.
The first term, given by (2.132a), is the only one directly comparable with

the original BN model, since in this model inter-phase exchange terms are
only given by a contributions proportional to the volume fraction gradients.
Similarly, in the equations derived from the SHTC theory, the terms in (2.132a)
contain the phase volume fraction gradients, however, with known coefficients
which can be seen as an unambiguous way to evaluate an interphase pressure,
in an analogy with the BN formalism.

The second, given by (2.132b), contains the gradients of the phase velocities
organised to express the phase velocity vortices and represents the so-called
lift forces.
The last one, (2.132c), is proportional to the phase temperature gradient,

and can also be expressed, after some manipulation, as the phase entropy
gradient.

Since there is no rigorous derivation of the original BN model, the similarity
found in the interphase terms proportional to volume fraction suggests that in
a more complete BN-type multiphase model one should consider all the terms
that appear in closed form thanks to the SHTC mixture theory.

The phase energy equations

The phase energy balance laws can be obtained from the conservation equations
of mixture momentum, relative velocity and entropy, similarly to the phase
momentum equations, after a lengthy manipulation.
However, this procedure is not illustrated in this work, since the energy

equations depend directly on the momenta PDEs, and the latter already fulfill
the comparative purpose of this section by making the interphase terms clear.

2.3.2 Multi-distortion extension of the BN formulation of SHTC
equations

According to the unified model of continuum mechanics [131] and SHTC
formulation for multiphase flows [143, 145], a true non-equilibrium multiphase
model should have, in general, different pressures, temperatures, velocities,
distortion fields, and etc. for each phase. However, at the moment, it is only
known how to derive the SHTC multiphase model for the case when the phase
distortions are equal, A1 = A2 = ... = AN = A. Therefore, in this section a
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heuristic extension of the SHTC multiphase model in its BN form to the case
of different phase distortions Aa is discussed.
Thus, to extend the SHTC multiphase model in its BN form to the multi-

distortion formulation, we employ a heuristic approach and simply introduce
the phase distortion fields Aa = {Aa,Jk} for each phase a = 1, ... ,N and assume
that each Aa is advected by the phase velocity va, i.e. we add to system
(2.129,2.130, 2.132,) the following equations for the phase distortion fields

∂Aa,Jk
∂t

+ ∂ (Aa,Jlva,l)
∂xk

+ va,i

(
∂Aa,Jk
∂xi

− ∂Aa,Ji
∂xk

)
= Za,Jk, (2.134)

for the dynamic of Aa,Jk should be added for each phase. Specifically, with this
extension to continuous mechanics, the total energy density E of the mixture
(2.77) should be modified by taking into account the energy density associated
with the elastic shear stresses εs,a of the constituents, rather than of the mixture,
and would result

E =
N∑
a=1

εs,a + εa +W (ρ, %1, ... , %N−1,wa, ... ,wN−1) + 1
2ρ

3∑
k=1

U2
k . (2.135)

As previously introduced in Section 2.2.6, the phase energy densities associated
with the elastic-shear stresses, εs,a, are assumed to be proportional to the second
invariant of the deviator dev Ga,ij = Ga,ij− (trGa,ik/3) δki of the metric tensor
Ga,ij = Aa,JiAa,Jj , and read

εa,s = %a Cs2
a tr (devGa,ik devGa,kj)/4, (2.136)

where Csa, in this case, represent the phase shear sound velocity. Thus, the
conjugate variables of the phase distortion fields Aa,Jk are

EAa,Jk = %a Cs2
aAa,Ji devGa,ik, (2.137)

by which the phase moment equations (2.132) can be modified introducing, by
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analogy, the elastic shear stresses σa,ik

∂ua,i
∂t

+∂(ua,iva,k + Paδki + σa,ik)
∂xk

=−ca
N∑
b=1

pb
∂αb
∂xi

+ pa
∂αa
∂xi

+

−ca
N∑
b=1

%bv̄b,kωb,k,i + %av̄a,kωa,k,i

− ca
N∑
b=1

%bsb
∂Tb
∂xi

+ %asa
∂Ta
∂xi

+

+ca
N∑
b=1

%bΛb,i − %aΛa,i

+ ca

N∑
b=1

vb,iχb − va,i.χa,

(2.138)

which are defined as follows

σa,ik = Aa,JiEAa,Jk = Aa,Ji(%a Cs2
aAa,Jj devGa,jk)

= %a Cs2
aGa,ij devGa,jk.

(2.139)

It should also be noted that there are likely to be phase interaction terms
due to Aa,Jk in the RHS of (2.138), but since we do not yet have a rigorous
derivation of the multiple distortions, they are neglected at this point.

The dissipative process related to the strain relaxation source Za,Jk in (2.134),
must again be defined by conjugate variables, as done in 2.2.8. Specifically, for
each constituent, Za,Jk takes the form

Za,Jk := − 1
%a

Υa EAa,Jk , (2.140)

where Υa now is a positive relaxation scaling functions, which is taken equal to

Υa = 3
τ e
a

Cs−2
a det(Aa,Jk)5/3. (2.141)

The parameter τ e
a is the phase-specific strain relaxation time. Namely, it is a

timescale that governs the rate at which the strain, in a given control volume,
is dissipated trough a relaxation process for the phase a. This timescale defines
the stiff nature of the strain relaxation source term towards an equilibrium
state of material deformation, e.g.
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i for τ e
a → 0, the so-called stiff relaxation limit, a state of strain equilibrium

is achieved instantaneously and therefore inviscid flow is retrieved;

ii for τ e
a small with respect to the timescale of flow convection the model

reproduces the Navier-Stokes equations of viscous fluids, for the chosen
shear energy, it can be computed to fit the kinematic viscosity νa of a fluid
as τ e

a = 6νa/Cs2
a ;

iii for τ e
a →∞ the relaxation process is infinitely slow and the behaviour of a

pure elastic solid is retrieved.

The relaxation time τ e
a , in principle can be a function of the state variables,

but often is assumed to be a fixed parameter. In the multiphase context, it
is useful to define it as a function of the volume fraction αa for each phase,
by means of a smooth logarithmic interpolation, which can be computed as
follows

τ e
a = τ e ξ

a τ (e) 1−ξ
o , (2.142)

where ξ can be evaluated by

δα = αa − αm
αM − αm

, δα = max
(

0, min(1, δα)
)
, ξ = δα2 (3− 2 δα), (2.143)

which results in a smooth transition from τ e
a to τ e

o , where τ e
o is usually assumed

to be a small constant like 10−14. Then, αM and αm represent the extrema at
which this operator makes the transition. In this way, where a phase is not
present, the strain is dissipated instantaneously, as for a prefect fluid, and no
stresses are generated in the respective momentum conservation equation. This
rescaling of the relaxation time is well suited to multimaterial problems, and
in the rest of the paper is referred to as vanishing ghost solid relaxation time.
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This chapter is devoted to the derivation of various numerical methods, tailored
to the different mathematical models presented in Chapter 2.

The numerical methods that will be presented in this chapter must deal with
the difficulties involved in describing more than one phase. Overall, there are
three different families of numerical methods for dealing with multi-material
and multiphase problems: (i) Lagrangian and Arbitrary-Lagrangian-Eulerian
(ALE) methods on moving meshes, where the free surface of the fluid and the
fluid-solid interface are exactly solved by the moving computational grid, see
e.g. [11, 15, 17, 21, 50, 73, 101, 102]; (ii) Eulerian sharp interface methods on
fixed meshes with explicit interface reconstruction, see for instance the volume
of fluid (VOF) method originally developed by Hirt and Nichols [89], or the
ghost fluid method of Fedkiw et al. [65, 66] together with the level set approach
[110, 124], or the remarkable work of Menshov et al. in [109, 178, 179] which
is also generalised to arbitrary number of immiscible compressible fluids; (iii)
Eulerian diffuse interface methods on fixed grids, where the presence of each
material is represented only by a scalar function, see e.g. [49, 63, 64, 72, 97,
117] and references therein.

First, a new semi-implicit, staggered finite-volume method is introduced to
solve a simplified BN model, based on the incompressible BN model derived
in (2.1.2) in the low Mach number limit. Specifically, by considering only
rigid body motion for the solid phase, a reduced BN model is obtained, which,
can be applied for the solution of complex non-hydrostatic free-surface flows
interacting with moving solid bodies. The numerical discretization of this
model extends the algorithm already used in the work of Casulli et al. [29, 51]
to a fully FV framework.

Then, a substantial part of this chapter is devoted to the development of a
robust numerical scheme capable of addressing the various difficulties inherent
in a unified theory of compressible multiphase fluid and solids mechanics,
presented in Section 2.2. I detail the numerical techniques I adopted to
address a reduced form of the SHTC BN-type model capable of describing a
continuum consisting of three phases which can describe freely Newtonian and
non-Newtonian, inviscid and viscous fluids, as well as elasto-plastic solids.

All these methods are the basis of efficient MPI-parallel Fortran codes that,
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in terms of applicability, are a valuable tool for the study of complex non-
hydrostatic free-surface flows interacting with moving solid obstacles, but more
importantly, a further step toward the applicability of the multiphase unified
continuum mechanics model in real problems.

3.1 Semi-implicit FV schemes for free-surface
two-phase flows

In this section a numerical method tailored to a simplified BN model is pre-
sented. This underling model is based on the incompressible BN model (2.35)
derived in (2.1.2) with the aid of a classical asymptotic expansion in the low
Mach number limit. As we saw in (2.1.2), in this limit the BN model leads to
a system of incompressible Euler equations in which the second-order pressure
terms p(2)

a (x, t) satisfy a Poisson equation taking into account the local balance
of forces. Thus, the resulting model is hyperbolic-parabolic-elliptic, like the
original incompressible Navier-Stokes equations, and numerically requires spe-
cial approaches, such as those provided in Section 1.2.1, e.g. [8, 23, 29, 37, 160,
161]. Furthermore, the simplified Baer-Nunziato type model considered in this
section cannot be defined as strictly incompressible, since in order to consider
two-phase free-surface flows, i.e. two-phase flows containing a liquid phase, a
solid phase and the surrounding void, the divergence-free conditions for the
velocity field are not directly included in the governing system.

The numerical method presented in this section follows the so-called diffuse
interface approach to describe the two phase free surface flow. This can be
done thanks to the adoption of a suitable mathematical model, as indeed the
BN model is. In fact, according to the so-called diffuse interface approach, the
domain is covered by the liquid phase, the solid phase, and the surrounding
void via a scalar volume fraction function for each phase. This approach allows
arbitrarily complex geometries and complex free-surface flows to be discretized,
despite using simple uniform Cartesian meshes.
The scheme presented in this section is completely formulated in a FV

framework. Moreover, it is important form the beginning to emphasise that
the dynamics of the liquid phase and the motion of the solid are decoupled.
The solid is assumed to be a moving rigid body, whose motion is prescribed.
Only after the advection of the solid volume fraction, the dynamics of the
liquid phase is considered employing an operator splitting strategy. As usual in
semi-implicit schemes, we employ staggered Cartesian control volumes and treat
the nonlinear convective terms explicitly, while the pressure terms are treated
implicitly. The non-conservative products arising in the transport equation
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for the solid volume fraction are treated by a path-conservative approach,
see e.g. [27, 125]. The resulting semi-implicit FV discretization of the mass
and momentum equations leads to a mildly nonlinear system for the pressure
which can be efficiently solved with a nested Newton-type technique recently
introduced and analysed by Casulli et al. in [18, 19]. The time step size is only
limited by the velocities of the two phases contained in the domain, and not by
the gravity wave speed nor by the stiff algebraic relaxation source term, which
requires an implicit discretization.

3.1.1 Governing Partial Differential Equations
The two-phase solid-liquid flows of interest in this work can be mathematically
described by means of a reduced BN model, formulated starting from the low
Mach limit of the BN model (2.35) derived with the aid of a classical asymptotic
expansion in Section 2.1.2. Specifically, considering only rigid-body motion
for the solid phase, assuming a constant density at time t = 0 for the liquid
phase, and considering an interphase velocity relaxation source term, the two
incompressible Euler systems in (2.35) can be strongly simplified to a reduced
three-equation model. It can be written in terms of a solid volume fraction
αs and a liquid volume fraction αl, according to the so-called diffuse interface
approach, and reads

∂αs
∂t

+ vs,k
∂αs
∂xk

= 0, (3.1)

∂αl
∂t

+ ∂(αl vl,k)
∂xk

= 0, (3.2)

∂(αl vl,i)
∂t

+ ∂(αl vl,i vl,k)
∂xk

+ αl
∂pl
∂xi
− ∂σl,ik

∂xk
= −αl gi −

1
λ

(vl,i − Vi), (3.3)

where vl,i is the velocity field of the liquid, vs,i the (known) velocity of the
solid phase, pl is the normalized pressure with respect to the constant density,
g = g (0,−1)T is the vector of gravity acceleration, λ is a time scale for the
velocity relaxation kinetics and the shear stress tensor is denoted by σl,ik,
assuming a viscous incompressible Newtonian fluid. It is given by

σl,ik = αl νl
∂vl,i
∂xk

, (3.4)

where νl = µl/ρl denotes the kinematic viscosity coefficient.
It has to be noted that with respect to the previous low Mach limit of the

BN model in (2.35), the divergence free conditions for both the phases
∂vl,k
∂xk

= 0, ∂vs,k
∂xk

= 0, (3.5)
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are not included in the system (3.1)-(3.3). This, clearly, is not done for the
solid phase since the velocity field of this phase is prescribed. However, the
divergence free condition is not considered for the liquid phase either, to obtain
a more general system capable of describing free surface flows within a diffuse
interface approach.
It can be observed that near the free surface, i.e. only in the narrow zone

when 1 > αl > 0, the velocity field needs not to be discrete divergence free.
In fact, from (3.2) we can see that the velocity field, in this diffused interface
area, satisfies the following equation

∂vl,k
∂xk

= − 1
αl

(
∂αl
∂t

+ vl,k
∂αl
∂xk

)
(3.6)

describing the correct free-surface dynamics. On the other hand, in most of
the domain occupied by the liquid, excluding interfaces, i.e. when αl = 1 the
equation (3.2) simplifies to

∂vl,k
∂xk

= 0, (3.7)

which is the divergence free conditions related to the incompressibility.
In agreement with the assumption that the phase velocities coincide in the

low Mach limit of the BN model (2.35), the inter-phase drag term represented
by the velocity relaxation source term in (3.3) is considered. In Eq. (3.3)
this source is expressed through the velocity of the mixture Vi, but can be
rearranged as follows

1
λ

(vl,i − Vi) = 1
λ

(
(1− αl)vl,i − αsvs,i

)
. (3.8)

It represents one of the reciprocal interactions that can be defined between the
two phases, describing the fact that the velocity of the fluid tends to that of
the solid at the interphase interfaces, if λ is sufficiently small.

The non-conservative system (3.1)-(3.3) can be expressed in a more compact
notation by defining a column vector Q of state variables, a flux tensor F(Q)
which includes the purely conservative part of the PDE system, a so-called
non-conservative product B(Q) ·∇Q and the vector of potentially stiff algebraic
relaxation source terms S(Q),

∂tQ +∇ · F(Q) + B(Q) · ∇Q = S(Q). (3.9)

As proposed in some recent works, in which new families of conservative
pressure-based semi-implicit schemes were introduced on staggered Cartesian
and general unstructured meshes, see e.g. [14, 22, 34, 51, 56, 61, 105, 163–165],
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3.1 Semi-implicit FV schemes for free-surface two-phase flows

the flux tensor and the non-conservative products are now split into different
tensors depending on the discretization that will be adopted, i.e. (∗)i denotes
a term that will be discretized implicitly, while (∗)e denotes one that will be
discretized explicitly. Hence, eq.(3.9) can be rewritten as

∂tQ+∇·
(

Fi
c(Q)+Fe

c(Q)+Fe
ν(Q)

)
+
(

Be
c(Q)+Bi

p(Q)
)
·∇Q = S(Q), (3.10)

where the vector of state variables Q = (αs, αl, αlvl)T, the flux tensors and
the non-conservative products are given as

Fi
c(Q) =


0

αl vl

0

 , Fe
c(Q) =


0
0

αl vl ⊗ vl

 , Fe
ν(Q) =


0
0

−αl νl∇vl

 ,

Be
c(Q) · ∇Q =


vs∇αs

0
0

 , Bi
p(Q) · ∇Q =


0
0

αl∇pl

 ,
(3.11)

and S(Q), the algebraic source term reads

S(Q) =


0
0

−αlg − 1
λ

(
(1− αl)vl − αsvs

)
 . (3.12)

Terms related to the convection are denoted by (∗)c, with (∗)ν the viscous one
and with (∗)p the pressure related. The flux splitting procedure is quite useful
to decouple the complete evolution system (3.10) into a convection-diffusion
subsystem, a pressure subsystem and an algebraic source term subsystem,
which will be discretized explicitly or implicitly according to their properties.
Note that, the resulting split convective fluxes represent the advection system
of the flux-vector splitting scheme of Toro and Vázquez-Cendón [172] also used
in [23, 24].

Throughout this work, for simplicity the two-dimensional case is considered.
The computational domain is denoted by Ω ⊂ R2 in which x1 = x and x2 = y,
where the x-axis is horizontal and the vertical y-axis is oriented upward against
the gravity direction.
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3.1.2 Computational grid and constitutive relationship for the
liquid phase

Within the computational domain Ω ⊂ R2 three staggered overlapping Carte-
sian control volumes are defined, a primal control volume and two staggered
edge-based cells in x and y-directions, see e.g. [60]. In such a control volume Ω,
the liquid and the solid volume fractions αl and αs are related to the volume
occupied respectively by the liquid Vl or by solid Vs by

Vl =
ˆ

Ω

αl dΩ and Vs =
ˆ

Ω

αs dΩ. (3.13)

Figure 3.2 (left) shows all three types of control volumes with their respective
barycenters. The primal control volumes are

Ωi,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], (3.14)

with the barycenters denoted by xi,j = (xi, yj) and having width and height

∆xi = xi+ 1
2
− xi− 1

2
, ∆yj = yj+ 1

2
− yj− 1

2
. (3.15)

The elements of the edge-based staggered mesh in x-direction are denoted by

Ωi+ 1
2 ,j

= [xi, xi+1]× [yj− 1
2
, yj+ 1

2
], (3.16)

having barycenters in xi+ 1
2 ,j

= (xi+ 1
2
, yj). Their width is ∆xi+ 1

2
= xi+1 − xi

and their height is ∆yj . The volumes of the edge-based staggered mesh in the
y-direction are denoted by

Ωi,j+ 1
2

= [xi− 1
2
, xi+ 1

2
]× [yj , yj+1]. (3.17)

Their barycenters are located in xi,j+ 1
2

= (xi, yj+ 1
2
) and they have width ∆xi

and height ∆yj+ 1
2

= yj+1− yj , respectively. In the following description of the
numerical method and for all the tests that will be presented, uniform Cartesian
control volumes with uniform mesh spacing, at least according to each direction,
are taken into account, hence ∆xi = ∆xi+ 1

2
= ∆x and ∆yj = ∆yj+ 1

2
= ∆y.

In order to simplify the subscripts notation, let’s denote the discrete liquid
phase related variables as

αlvl,1 := αlu, αlvl,2 := αlv, pl := p, (3.18)

and in general the subscripts of liquid l and solid s will henceforth be denoted
by superscripts, since subscripts i, j will denote the discretization indices.
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3.1 Semi-implicit FV schemes for free-surface two-phase flows

Fig. 3.1. Representation of the three overlapping Cartesian control volumes, in black the
primal control volume, in red the elements of the edge-based staggered mesh in
x-direction and in blue the volumes of the edge-based staggered mesh in the y-
direction (left). Location of the liquid and solid phase related variables over the
control volumes (right).

Fig. 3.2. Fluid volume defined as a piecewise linear function of the local cell pressure pi,j
and of the local solid phase volume fraction αsi,j .

The discrete quantities in (3.18) at time level tn will be defined at staggered
locations, within the three introduced overlapping Cartesian control volumes, as
represented in Fig. 3.2 (center). The discrete pressure pni,j and the liquid volume
fractions αnl,i,j will be defined as cell-averaged quantities over the primal control
volumes Ωi,j . The state variables αlunl,i± 1

2 ,j
will be defined in the barycenters of

the edge-based staggered mesh in x-direction Ωi± 1
2 ,j

, while the state quantity
associated with the vertical components of the velocity αlvn

i,j± 1
2
, will be defined

in the barycenters of the edge-based staggered mesh in y-direction Ωi,j± 1
2
.
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The system of equations (3.1)-(3.3) needs a closure relation that relates the
pressure to the quantities that are actually evolved by the system. In this thesis
work we assume a linear variability of the pressure in the gravity direction
within each cell with respect to the value in the center

p(x, y, tn) = pni,j + g(yj − y), ∀(x, y) ∈ Ωi,j . (3.19)

which despite its simplicity has proven to be a very effective choice in gravity-
driven free-surface flows, see e.g. [29]. In general, it is possible to specify
a non-linear volume-pressure relationship, such as when solving the mixed
form of the Richards equation, see [32] for details. For the sake of clarity, we
specify that in the former constitutive relationship (3.19), the cell-centered
pressure values pni,j are the solution of the fully non-hydrostatic problem. The
assumption of a cell-local linear pressure (3.19) is needed in order to define
the following integral (3.20) of the liquid phase volume in the case of partially
wet cells in such a way to describe the correct free-surface dynamics with the
transition towards fully wet cells αl = 1. Moreover, thanks to this closure
relation, the overall method reduces to a semi-implicit scheme for the shallow
water equations in the special case where the fluid covers only one single layer
of cells, see [28, 29] for further details.
According to [29], the volume of the liquid phase V l,n

i,j , within the cell Ωi,j ,
is related to the local cell pressure pni,j and to the solid volume fraction αsi,j by
the following constitutive relationship,

V l,n
i,j =

ˆ
Ωi,j

(
1− αs,ni,j

)
H(pni,j + g(yj − y)) dx dy, (3.20)

defined by the Heaviside step function

H =
{

1 if pni,j + g(yj − y) > 0,
0 otherwise.

(3.21)

Eq.(3.20) can be more conveniently expressed in terms of a Jordan decomposi-
tion as

V l,n
i,j = P (pni,j , α

s,n
i,j )(pni,j + β)−Q(pni,j , α

s,n
i,j )(pni,j − β), (3.22)

where β = g∆y
2 , and P and Q are step functions defined as

P (pni,j , α
s,n
i,j ) =


(
1− αs,ni,j

)
∆x
g if pni,j > −β,

0 otherwise
(3.23)
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and

Q(pni,j , α
s,n
i,j ) =


(
1− αs,ni,j

)
∆x
g if pni,j > β,

0 otherwise.
(3.24)

The discrete solid phase volume fraction αs,ni,j and also the velocities us,ni,j , v
s,n
i,j

related to this phase are defined in the centers of the cells Ωi,j . Moreover, for
αsi,j = 1 the corresponding cell, obviously, cannot be occupied by the liquid
phase. Thus, as illustrated in Fig. 3.2 (right), the liquid phase volume is
defined, for each cell, as a piecewise linear function of the local cell pressure
pni,j and of the local solid phase volume fraction αs,ni,j .

3.1.3 Structure of the FV semi-implicit scheme
In this numerical scheme, the dynamics of the liquid phase and the solid phase
motion are decoupled. By solving the solid advection equation

∂tQ + Be
c(Q) · ∇Q = 0, (3.25)

with a prescribed solid velocity field usk, one obtains the new solid volume
fraction distribution αs,n+1, which is needed in the constitutive relationship of
the liquid phase volume and in the relaxation source term. This is numerically
done with the aid of a path conservative second order in space and time
MUSCL-Hancock method, see [171] for details.

Furthermore, to solve the liquid phase related subsystem

∂tQ +∇ ·
(

Fi
c(Q) + Fe

c(Q) + Fe
ν(Q)

)
+ Bi

p(Q) · ∇Q = S(Q), (3.26)

which can be obtained from the flux splitting approach, a specific combination
of explicit and implicit FV discretization on staggered Cartesian control volumes
is introduced. A fully implicit finite volume discretization of the liquid mass
conservation

∂tQ + Fi
c(Q) = 0, (3.27)

is adopted, while for the momentum equations a semi-implicit finite volume
discretization will be employed. The convective and viscous subsystem, referred
to convective and viscous fluxes,

∂tQ +∇ ·
(

Fe
c(Q) + Fe

ν(Q)
)

= 0, (3.28)

is discretized with the aid of an explicit FV method, thus obtaining an inter-
mediate approximation of the conservative variables vector.
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Differently the non-conservative pressure subsystem

∂tQ + Bi
p(Q) · ∇Q = S(Q), (3.29)

is discretized using an implicit discretization over edge staggered grids, based
on the path-conservative approach of Pares and Castro [125], [27]. Moreover,
the algebraic relaxation source term, in S(Q), may also become stiff and thus
require an integral implicit discretization again based on an edge staggered
volume. These implicit subsystem are then coupled to the implicit liquid mass
conservation law, leading to a mildly nonlinear system for the pressure. The
diagonal nonlinearity of this system stems from the definition of volume of
fluid, while the remaining linear part of the system is symmetric and at least
positive semi-definite. Hence, the pressure can be efficiently obtained with the
family of nested Newton-type techniques introduced by Casulli et al. in [18, 19,
32, 33].

3.1.4 Implicit FV discretization of the liquid mass conservation
To discretise implicitly the conservation of the mass of the liquid, represented
in matrix vector notation by the subsystem

∂tQ +∇ · Fi
c(Q) = 0, (3.30)

a two-dimensional physical domain is considered, thus it simply reads

∂tα
l + ∂x(αlu) + ∂y(αlv) = 0. (3.31)

The integration of this mass conservation equation (3.31) over the primal
space-time control volume Ωi,j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] × [tn, tn+1] and

the use of the Gauss theorem yield
x
i+ 1

2ˆ
x
i− 1

2

y
j+ 1

2ˆ
y
i− 1

2

(
αl(x, y, tn+1)− αl(x, y, tn)

)
dydx+

+
tn+1ˆ

tn

y
j+ 1

2ˆ
y
j− 1

2

(
αlu(xi+ 1

2
, y, t)− αlu(xi− 1

2
, y, t)

)
dydt+

+
tn+1ˆ

tn

x
i+ 1

2ˆ
x
i− 1

2

(
αlv(x, yj+ 1

2
, t)− αlv(x, yj− 1

2
, t)
)
dxdt = 0

(3.32)
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With the definitions of the liquid cell volume

V l
i,j =

x
i+ 1

2ˆ
x
i− 1

2

y
j+ 1

2ˆ
y
j− 1

2

αl(x, y, t)dydx, (3.33)

and the liquid fluxes

f l
i+ 1

2 ,j
= 1

∆t∆y

tn+1ˆ

tn

y
j+ 1

2ˆ
y
j− 1

2

αlu(xi+ 1
2
, y, t)dydt, (3.34)

and

gl
i,j+ 1

2
= 1

∆t∆x

tn+1ˆ

tn

x
i+ 1

2ˆ
x
i− 1

2

αlv(x, yj+ 1
2
, t)dxdt (3.35)

the following integral form of (3.31) is obtained

V l,n+1
i,j = V l,n

i,j −∆t∆y(f l
i+ 1

2 ,j
− f l

i− 1
2 ,j

)−∆t∆x(gl
i,j+ 1

2
− gl

i,j− 1
2
). (3.36)

Introducing the liquid cell-average of the liquid volume fraction

αli,j = 1
∆x∆y

x
i+ 1

2ˆ
x
i− 1

2

y
j+ 1

2ˆ
y
j− 1

2

αl(x, y, t)dydx, (3.37)

it is possible to rewrite (3.36) as

αl,n+1
i,j = αl,ni,j −

∆t
∆x(f l

i+ 1
2 ,j
− f l

i− 1
2 ,j

)− ∆t
∆y (gl

i,j+ 1
2
− gl

i,j− 1
2
), (3.38)

which is a discrete form of (3.31). Assuming the liquid velocity field constant
along each edge, denoting these velocities at the new time tn+1 by ul,n+1

i+ 1
2 ,j

and

vl,n+1
i,j+ 1

2
, and defining the effective edge lengths which are occupied by the liquid

as

δyn+1
i+ 1

2 ,j
=

y
j+ 1

2ˆ
y
j− 1

2

αl(xi+ 1
2
, y, tn+1)dy, δxn+1

i,j+ 1
2

=

x
i+ 1

2ˆ
x
i− 1

2

αl(x, yj+ 1
2
, tn+1)dx,

(3.39)

65



3 Numerical methods

it is possible to define the following edge-averaged liquid volume fractions

αl,n+1
i+ 1

2 ,j
=
δyn+1
i+ 1

2 ,j

∆y , and αl,n+1
i,j+ 1

2
=
δxn+1

i,j+ 1
2

∆x . (3.40)

Defining the liquid fluxes in terms of the edge velocities and the edge-averaged
volume fractions as

f l
i+ 1

2 ,j
= αl,n+1

i+ 1
2 ,j
un+1
i+ 1

2 ,j
, and gl

i,j+ 1
2

= αl,n+1
i,j+ 1

2
vn+1
i,j+ 1

2
(3.41)

the liquid volume conservation equation (3.38) can finally be written as

V l,n+1
i,j = V l,n

i,j −∆t
(

(δyu)n+1
i+ 1

2 ,j
− (δyu)n+1

i− 1
2 ,j

)
−∆t

(
(δxv)n+1

i,j+ 1
2
− (δxv)n+1

i,j− 1
2

)
.

(3.42)

Equation (3.42) represents an implicit finite volume discretization of the con-
tinuity equation, as the semi-implicit method proposed in [29]. Furthermore,
it is worth noting that the discrete form of the liquid volume conservation
given in Eq. (3.42) implies a consistent discretization of the incompressibility
condition in (3.7) if the Ωi,j cell is a full cell. Namely, Eq. (3.42) simplifies to

un+1
i+ 1

2 ,j
− un+1

i− 1
2 ,j

∆x +
vn+1
i,j+ 1

2
− vn+1

i,j− 1
2

∆y = 0. (3.43)

The effective edge-integrated volume fractions δyn+1
i+ 1

2 ,j
and δxn+1

i,j+ 1
2
, in (3.42),

available to liquid phase through the edges, can be evaluated from the liquid
volumes within the cells that share the edge by taking the average, the upwind,
or the maximum cell volumes. For instance, if the average is chosen, then
δyn+1
i+ 1

2 ,j
and δxn+1

i,j+ 1
2
read

δyn+1
i+ 1

2 ,j
= ∆y1

2
(
αl(pn+1

i,j ) + αl(pn+1
i+1,j)

)
= 1

2∆x
(
V l(pn+1

i,j , αs,n+1
i,j ) + V l(pn+1

i+1,j , α
s,n+1
i+1,j )

)
,

(3.44)

δxn+1
i,j+ 1

2
= ∆x1

2
(
αl(pn+1

i,j ) + αl(pn+1
i,j+1)

)
= 1

2∆y
(
V l(pn+1

i,j , αs,n+1
i,j ) + V l(pn+1

i,j+1, α
s,n+1
i,j+1 )

)
,

(3.45)

where for the computation of the liquid cell volume V l the constitutive rela-
tionship defined in (3.22) has to be used.
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3.1.5 Semi-implicit FV discretization of the momentum equations
As illustrated in Section 3.1.3 the system (3.26) is discretized with the aid
of a specific combination of explicit and implicit FV methods on staggered
Cartesian control volumes.

Explicit discretization of the convective terms

The convective subsystem for the liquid phase is discretized explicitly. In
particular, it is useful to integrate this subsystem within the primary control
volumes in order to have a classical Godunov-type FV scheme, in which all
state variables are defined at the centre of Ωi,j , as illustrated in Fig. 3.2.

Likewise, a FV explicit discretisation is adopted for the advection of the solid
phase (3.30) within the primary control volumes Ωi,j . Therefore, although the
dynamics of the solid and liquid phases are decoupled, it is useful to illustrate
their explicit discretization in a single step. Thus the system considered in this
paragraph reads

∂tQ +∇ · Fe
c(Q) + Be

c(Q) · ∇Q = 0. (3.46)

It should be pointed out, however, that while the following explicit FV
discretization yields an integral solution for the solid phase αs,n+1 at time
tn + 1, an intermediate solution is obtained for the state variables related to
the liquid phase, due to the fact that the splitting operator is used to evaluate
the dynamics of the latter phase. This integral intermediate solution within
the primary control volumes Ωi,j is denoted with Q∗i,j . Specifically, for the
sake of clarity, the state variable vector Q∗i,j solution of the following explicit
discretization will be

Q∗i,j =
(
αs,n+1
i,j , αl,ni,j , (αu)∗i,j , (αv)∗i,j

)T
, (3.47)

which can be rewritten as

Q∗i,j =
(
αs,n+1
i,j , αl,ni,j , (δyu)∗i,j , (δxv)∗i,j

)T
(3.48)

introducing in the FV discretization the integral definitions of the effective
fluxes (δyu)ni,j , (δxv)ni,j over the primary control volumes Ωi,j

(δyu)ni,j = (αu)ni,j∆y = 1
∆x

xi+1ˆ
xi

yj+1ˆ
yj

αlu(x, y, tn)dxdy, (3.49)

where (δxv)ni,j can be defined similarly.
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Furthermore, since the velocity components un
i± 1

2 ,j
, vn

i,j± 1
2
and the fluxes

(δyu)n+1
i± 1

2 ,j
and (δxv)n+1

i,j± 1
2
are defined over the edges of the primal control

volumes in the discrete liquid volume conservation equation (3.42), an interpo-
lation of the velocity field or fluxes from one mesh to another is needed. This
interpolation, to evaluate centered values on the primal control volumes, is
achieved as follows

(δyu)ni,j = 1
2

(
(δyu)n

i+ 1
2 ,j

+ (δyu)n
i− 1

2 ,j

)
(3.50)

and

(δxv)ni,j = 1
2

(
(δxv)n

i,j+ 1
2

+ (δxv)n
i,j− 1

2

)
(3.51)

and an average of the same type can be used to return to staggered values on
the edges of the primal control volumes.

Starting from the known solution Qn
i,j at time tn, the integration of the

subsystem (3.46) over the primal space-time control volume Ωi,j × [tn, tn+1]
yields

Q∗i,j = Qn
i,j −

∆t
∆x

(
f c
i+ 1

2 ,j
− f c

i− 1
2 ,j

)
− ∆t

∆y

(
gc
i,j+ 1

2
− gc

i,j− 1
2

)

− ∆t
∆x

(
Dc
i+ 1

2 ,j
+ Dc

i− 1
2 ,j

)
− ∆t

∆y

(
Dc
i,j+ 1

2
+ Dc

i,j− 1
2

)
,

(3.52)

where fluxes are written as Fe
c(Q) = (f c(Q),gc(Q))T. The FV discretization

in (3.52) has to be completed with the definition of the numerical fluxes and
path-conservative jump terms. In this work, a Rusanov-type flux is chosen in
x and y-direction and is defined as

f c
i+ 1

2 ,j
= 1

2

(
f c(Q−

i+ 1
2 ,j

) + f c(Q+
i+ 1

2 ,j
)
)
− 1

2 |s
x
max|

(
Q+
i+ 1

2 ,j
− Q−

i+ 1
2 ,j

)
(3.53)

and

gc
i,j+ 1

2
= 1

2

(
gc(Q−

i,j+ 1
2
) + gc(Q+

i,j+ 1
2
)
)
− 1

2 |s
y
max|

(
Q+
i,j+ 1

2
− Q−

i,j+ 1
2

)
(3.54)

where the maximum signal speeds sxmax and symax are computed as the maximum
of the eigenvalues of the explicit convective subsystem in x and y, respectively.
The path-conservative jump terms [27, 125] read

Dc
i+ 1

2 ,j
= 1

2B̃c,x(Q̃i+ 1
2 ,j

)
(

Q+
i+ 1

2 ,j
− Q−

i+ 1
2 ,j

)
, (3.55)
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Dc
i,j+ 1

2
= 1

2Bc,y(Q̃i,j+ 1
2
)
(

Q+
i,j+ 1

2
− Q−

i,j+ 1
2

)
, (3.56)

with Q̃i+ 1
2 ,j

= 1
2(Q+

i+ 1
2 ,j

+ Q−
i+ 1

2 ,j
), Q̃i,j+ 1

2
= 1

2(Q+
i,j+ 1

2
+ Q−

i,j+ 1
2
) and

Bc,x(Q) =


us 0 0
0 0 0
0 0 0

 , Bc,y(Q) =


vs 0 0
0 0 0
0 0 0

 . (3.57)

Furthermore, in order to reach second order of accuracy the boundary-
extrapolated and time-evolved values are computed via a standard total varia-
tion diminishing (TVD) MUSCL-Hancock scheme as follows

Q∓
i+ 1

2 ,j
= Qn

i,j ±
1
2∆x∂xQn

i,j + 1
2∆t∂tQn

i,j , (3.58)

Q∓
i,j+ 1

2
= Qn

i,j ±
1
2∆y∂yQn

i,j + 1
2∆t∂tQn

i,j (3.59)

with the gradient in space approximated using the classical minmod slope
limiter

∂xQn
i,j = minmod

(
Qn
i+1,j −Qn

i,j

∆x ,
Qn
i,j −Qn

i−1,j
∆x

)
, (3.60)

∂yQn
i,j = minmod

(
Qn
i,j+1 −Qn

i,j

∆y ,
Qn
i,j −Qn

i,j−1
∆y

)
, (3.61)

while the derivative in time is computed as

∂tQn
i,j =−

f c(Qn
i,j + 1

2∆x∂xQn
i,j)− f c(Qn

i,j − 1
2∆x∂xQn

i,j)
∆x

−
gc(Qn

i,j + 1
2∆y∂yQn

i,j)− gc(Qn
i,j − 1

2∆y∂yQn
i,j)

∆y

−Bc,x

(
Qn
i,j

)
∂xQn

i,j −Bc,y

(
Qn
i,j

)
∂yQn

i,j ,

(3.62)

see the Toro textbook [171] for details.
From this explicit finite volume scheme the intermediate solution (δyu)∗i,j ,

(δxv)∗i,j will be obtained, and from this average values on primal control volume
it it possible to go back to staggered values on the edges by interpolation
obtaining (δyu)∗

i+ 1
2 ,j
, (δxv)∗

i,j+ 1
2
.
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Explicit discretization of the viscous terms

The parabolic viscous subsystem

∂tQ +∇ · (Fe
ν(Q)) = 0 (3.63)

is discretized explicitly as well. Notably, the subsystem in (3.63) represents an
evolution law for the momentum variables only, which is why the other state
variables contained in Q can be excluded in this discretisation step. Thus, the
two equations which constitute the viscous subsystem (3.63) are

∂t(αlu) + ∂x(ν αl∂xu) + ∂y(ν αl∂yu) = 0,
∂t(αlv) + ∂x(ν αl∂xv) + ∂y(ν αl∂yv) = 0.

(3.64)

The equations in (3.64) are discretized on two different edge based staggered
cells in the x and y-directions, respectively. In fact, as it has been done in the
previous section when considering the convective terms, it is necessary at the
end of this further explicit step to obtain new intermediate states (δyu)∗∗

i+ 1
2 ,j

and (δxv)∗∗
i,j+ 1

2
for flows defined in staggered positions, on the edges of the

primary control volumes Ωi,j . To have discrete quantities that can then be
cast in the discrete liquid volume conservation equation (3.42) in order to get
a final pressure based system.
Let us consider the discretization of the first equation in (3.64), in the x-

direction. Starting from the known solution at time tn, the FV integration
of this equation over the edge-based staggered space-time control volume
Ωi+ 1

2 ,j
× [tn, tn+1] yields

(αu)∗∗
i+ 1

2 ,j
= (αu)n

i+ 1
2 ,j

+ ∆t
∆x

(
fνi+1,j − fνi,j

)
+ ∆t

∆y

(
gν
i+ 1

2 ,j+
1
2
− gν

i+ 1
2 ,j−

1
2

) (3.65)

with the definitions

(αu)∗∗
i+ 1

2 ,j
= 1

∆x∆y

xi+1ˆ
xi

y
j+ 1

2ˆ
y
j− 1

2

αlu(x, y, tn)dxdy, (3.66)

fνi+1,j = 1
∆t∆y

tn+1ˆ

tn

y
j+ 1

2ˆ
y
j− 1

2

fν(xi+1,y,t)dydt, (3.67)
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and

gν
i+ 1

2 ,j+
1
2

= 1
∆t∆x

tn+1ˆ

tn

xi+1ˆ
xi

gν(x,y
j+ 1

2
,t)dxdt. (3.68)

As in the previous paragraph, the liquid cell-average flux in x-direction (αu)∗∗
i+ 1

2 ,j

can be expressed by the the effective edge-integrated volume fraction (δy)∗∗
i+ 1

2 ,j

as follows

(δyu)∗∗
i+ 1

2 ,j
= (αu)∗∗

i+ 1
2 ,j

∆y = 1
∆x

xi+1ˆ
xi

y
j+ 1

2ˆ
y
j− 1

2

αlu(x, y, tn)dxdy, (3.69)

and assuming constant fluxes along each edge, it is possible to rewrite the
discrete eqn.(3.65) in terms of effective volume fractions

(δyu)∗∗
i+ 1

2 ,j
= (δyu)∗

i+ 1
2 ,j

+ ∆t
∆x

(
fνi+1,j − fνi,j

)
+ ∆t

∆y

(
gν
i+ 1

2 ,j+
1
2
− gν

i+ 1
2 ,j−

1
2

)
,

(3.70)

where, for the sake of brevity, the initial value (δyu)n
i+ 1

2 ,j
has been replaced

by the preliminary quantities obtained from the explicit discretisation of the
convective terms (δyu)∗

i+ 1
2 ,j

in order to have a final update formula for all
explicitly discretized terms.

To complete the FV discretization in (3.70), classical two-point fluxes based
on mid-point rule are chosen and defined in x and y-direction as

fνi+1,j = νδyni+1,j

un
i+ 3

2 ,j
− un

i+ 1
2 ,j

∆x ,

gν
i+ 1

2 ,j+
1
2

= νδyn
i+ 1

2 ,j+
1
2

un
i+ 1

2 ,j+1 − u
n
i+ 1

2 ,j

∆y ,

(3.71)

with

δyni+1,j = 1
2(δyni+1/2,j + δyni+3/2,j),

δyn
i+ 1

2 ,j+
1
2

= 1
2(δyni+1/2,j+1 + δyni+1/2,j).

(3.72)

The same can be done in the y-direction. The discretization of the gravity con-
tribution, included in the source term, is explicitly added to these intermediate
states (δyu)∗∗

i+ 1
2 ,j
, (δxv)∗∗

i,j+ 1
2
.
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Implicit discretization of the pressure subsystem and source term

The non-conservative pressure subsystem

∂tQ + Bi
p(Q) · ∇Q = S(Q), (3.73)

is discretized using an implicit discretization over edge staggered grids, based
on the path-conservative approach of Pares and Castro [125], [27]. Similarly to
the viscous subsystem described in the previous paragraph, even the subsystem
in (3.73) represents an evolution law for the momentum variables only, which
is why the other state variables contained in Q can be excluded at this stage of
discretization. Thus, the two equations in x and y-direction which constitute
the viscous subsystem (3.63) are

∂t(αlu) + αl∂xp = 0 and ∂t(αlv) + αl∂yp = 0. (3.74)

Again, for the same reasons as described in the previous paragraph for the
viscous subsystem, the equations in (3.74) are discretized on two different
staggered edge based cells in the directions x and y-direction, respectively.
In x-direction, the PDE is integrated over the staggered edge-based cells
Ωi+ 1

2 ,j
× [tn, tn+1], which is represented in Figure 3.3, and reads

tn+1ˆ

t∗∗

xi+1ˆ
xi

y
j+ 1

2ˆ
y
j− 1

2

∂αlu

∂t
dxdydt+

tn+1ˆ

t∗∗

xi+1ˆ
xi

y
j+ 1

2ˆ
y
j− 1

2

αl
∂p

∂x
dxdydt = 0. (3.75)

Assuming that the discrete pressure is piecewise constant in each cell

p(x) =

pi,j if x 6 xi+ 1
2
,

pi+1,j if x > xi+ 1
2
,

then ∂p

∂x
= δ

(
x−xi+ 1

2

)
(pi+1,j−pi,j), (3.76)

and integrating in x-direction, the non-conservative product reads

∆x∆y
(

(αlu)n+1
i+ 1

2 ,j
−(αlu)∗∗

i+ 1
2 ,j

)
+

tn+1ˆ

t∗∗

y
j+ 1

2ˆ
y
j− 1

2

α̃i+ 1
2 ,j

(pi+1,j−pi,j) dydt=0, (3.77)

where the α̃i+ 1
2 ,j

is defined with the path integral along the straight-line
segment path ϕ = αi + s(αi+1 − αi) and results α̃i+ 1

2 ,j
= 1

2(αi+1,j + αi,j).
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Fig. 3.3. Representation of the discrete states over the different staggered control volumes,
in black the primal control volumes, in red the element of the edge-based staggered
mesh in x-direction over which the pressure subsystem is integrated.

Then introducing this definition in (3.77) and integrating, the following implicit
discretization of the pressure terms is obtained

∆x∆y
(

(αlu)n+1
i+ 1

2 ,j
− (αlu)∗∗

i+ 1
2 ,j

)
+ ∆t∆y δyn+1

i+ 1
2 ,j

(
pn+1
i+1,j − p

n+1
i,j

)
= 0, (3.78)

where δyn+1
i+ 1

2 ,j
= ∆y α̃i+ 1

2 ,j
= ∆y 1

2(αli+1,j + αli,j).
The two discrete momentum equations, in x and y-direction, including the

discretization of the non-conservative pressure terms therefore read

(δyu)n+1
i+ 1

2 ,j
= (δyu)∗∗

i+ 1
2 ,j
−∆t δyn+1

i+ 1
2 ,j

(
pn+1
i+1,j − p

n+1
i,j

)
∆x (3.79)

and

(δxv)n+1
i,j+ 1

2
= (δxv)∗∗

i,j+ 1
2
−∆t δxn+1

i,j+ 1
2

(
pn+1
i,j+1 − p

n+1
i,j

)
∆y . (3.80)

The algebraic velocity relaxation source term contained in S(Q) still needs
to be discretized. It requires an implicit discretization on the same staggered
control volumes, where a simple backward Euler scheme is used. By adding
this contribution to (3.79- 3.80), the final semi-implicit discretization of the
momentum equations is obtained as

(δyu)n+1
i+ 1

2 ,j
= (δyu)∗∗

i+ 1
2 ,j
− ∆t

∆xδy
n+1
i+ 1

2 ,j
(pn+1
i+1,j − p

n+1
i,j )

− ∆t
λ

δyn+1
i+ 1

2 ,j
(un+1
i+ 1

2 ,j
− us,n+1

i+ 1
2 ,j

)αs,n+1
i+ 1

2 ,j
,

(3.81)

(δxv)n+1
i,j+ 1

2
= (δxv)∗∗

i,j+ 1
2
− ∆t

∆y δx
n+1
i,j+ 1

2
(pn+1
i,j+1 − p

n+1
i,j )

− ∆t
λ

δxn+1
i,j+ 1

2
(vn+1
i,j+ 1

2
− vs,n+1

i,j+ 1
2

)αs,n+1
i,j+ 1

2
,

(3.82)
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where αs,n+1
i+ 1

2 ,j
and αs,n+1

i,j+ 1
2
are referring to the edge, then can be evaluated either

as the maximum or the average of the ones in the adjacent cells.
Manipulating the previous equations, (δyu)n+1

i+ 1
2 ,j

and (δxv)n+1
i,j+ 1

2
can be ex-

pressed as follows:

(δyu)n+1
i+ 1

2 ,j

(
1 + ∆t

λ
αs,n+1
i+ 1

2 ,j

)
= (δyu)∗∗

i+ 1
2 ,j
− ∆t

∆xδy
n+1
i+ 1

2 ,j
(pn+1
i+1,j − p

n+1
i,j )

+∆t
λ

δyn+1
i+ 1

2 ,j
us,n+1
i+ 1

2 ,j
αs,n+1
i+ 1

2 ,j
, (3.83)

(δxv)n+1
i,j+ 1

2

(
1 + ∆t

λ
αs,n+1
i,j+ 1

2

)
= (δxv)∗∗

i,j+ 1
2
− ∆t

∆y δx
n+1
i,j+ 1

2
(pn+1
i,j+1 − p

n+1
i,j )

+∆t
λ

δxn+1
i,j+ 1

2
vs,n+1
i,j+ 1

2
αs,n+1
i,j+ 1

2
, (3.84)

which can be re-written as

(δyu)n+1
i+ 1

2 ,j
= λ

αs,n+1
i+ 1

2 ,j
∆t+ λ

(
(δyu)∗∗

i+ 1
2 ,j
− ∆t

∆xδy
n+1
i+ 1

2 ,j
(pn+1
i+1,j − p

n+1
i,j )

)

+
αs,n+1
i+ 1

2 ,j
∆t

αs,n+1
i+ 1

2 ,j
∆t+ λ

δyn+1
i+ 1

2 ,j
us,n+1
i+ 1

2 ,j
, (3.85)

(δxv)n+1
i,j+ 1

2
= λ

αs,n+1
i,j+ 1

2
∆t+ λ

(
(δxv)∗∗

i,j+ 1
2
− ∆t

∆y δx
n+1
i,j+ 1

2
(pn+1
i,j+1 − p

n+1
i,j )

)

+
αs,n+1
i,j+ 1

2
∆t

αs,n+1
i,j+ 1

2
∆t+ λ

δxn+1
i,j+ 1

2
vs,n+1
i,j+ 1

2
. (3.86)

Two different types of coefficients can be identified, for both equations, as
βn+1
i+ 1

2 ,j
, γn+1

i+ 1
2 ,j

and βn+1
i,j+ 1

2
, γn+1

i,j+ 1
2
; they read:

βn+1
i+ 1

2 ,j
= λ

αs,n+1
i+ 1

2 ,j
∆t+ λ

, γn+1
i+ 1

2 ,j
=

αs,n+1
i+ 1

2 ,j
∆t

αs,n+1
i+ 1

2 ,j
∆t+ λ

,

βn+1
i,j+ 1

2
= λ

αs,n+1
i,j+ 1

2
∆t+ λ

, γn+1
i,j+ 1

2
=

αs,n+1
i,j+ 1

2
∆t

αs,n+1
i,j+ 1

2
∆t+ λ

.

Note the behaviour of these coefficients as ε→ 0, assuming αs = 1, i.e. inside
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the solid phase, or assuming αs = 0 in the liquid phase

lim
ε→0

βn+1
i+ 1

2 ,j

∣∣∣∣
αs=1

= 0, lim
ε→0

γn+1
i+ 1

2 ,j

∣∣∣∣
αs=1

= 1,

lim
ε→0

βn+1
i+ 1

2 ,j

∣∣∣∣
αs=0

= 1, lim
ε→0

γn+1
i+ 1

2 ,j

∣∣∣∣
αs=0

= 0. (3.87)

Thus, when a cell is completely occupied by the solid phase, the momentum
equations automatically and naturally force the velocity of the residual liquid
phase to tend to the velocity of the solid phase.

3.1.6 Final pressure system

Inserting the discrete momentum equations (3.86) into the finite volume dis-
cretization of the continuity equation (3.42 ) yields the following system for
the unknown pressure pn+1

i,j

V (pn+1
i,j )− ∆t2

∆x

(
βn+1
i+ 1

2 ,j
δyn+1
i+ 1

2 ,j
(pn+1
i+1,j − p

n+1
i,j )− βn+1

i− 1
2 ,j
δyn+1
i− 1

2 ,j
(pn+1
i,j − p

n+1
i−1,j)

)
− ∆t2

∆y

(
βn+1
i,j+ 1

2
δxn+1

i,j+ 1
2
(pn+1
i,j+1 − p

n+1
i,j )− βn+1

i,j− 1
2
δxn+1

i,j− 1
2
(pn+1
i,j − p

n+1
i,j−1)

)
= bni,j , (3.88)

with the known right hand side bni,j

bni,j = V (pni,j)−∆t
(
γn+1
i+ 1

2 ,j
(δyu)s,n+1

i+ 1
2 ,j
− γn+1

i− 1
2 ,j

(δyu)s,n+1
i− 1

2 ,j

)
−∆t

(
γn+1
i,j+ 1

2
(δxv)s,n+1

i,j+ 1
2
− γn+1

i,j− 1
2
(δxv)s,n+1

i,i− 1
2

)
−∆t

(
βn+1
i+ 1

2 ,j
(δyu)∗

i+ 1
2 ,j
− βn+1

i− 1
2 ,j

(δyu)∗∗
i− 1

2 ,j

)
−∆t

(
βn+1
i,j+ 1

2
(δxv)∗

i,j+ 1
2
− βn+1

i,j− 1
2
(δxv)∗∗

i,j− 1
2

)
.

(3.89)

Discretizing the edge-integrated volume fractions δxn+1
i,j+ 1

2
, δyn+1

i+ 1
2 ,j

and the
velocities of the objects us,n+1, vs,n+1 implicitly, the system (3.88) becomes
strongly nonlinear and thus difficult to solve. Actually, the solid related
variables us,n+1, vs,n+1 and αs,n+1 are known at at time tn+1 due to the fact
that the kinematics of the solid is decoupled from the dynamics of the liquid
phase, thus the non-linearity affects only the edge-integrated volume fractions.
Therefore, a Picard iteration technique has to be adopted in order to make the
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edge-integrated volume fractions δxn+1
i,j+ 1

2
, δyn+1

i+ 1
2 ,j

explicit again, as suggested
in [32].
Introducing k to denote the index of the Picard iterations, the following mildly
nonlinear system for the pressure pn+1,k+1

i,j is obtained

V (pn+1,k+1
i,j )− ∆t2

∆x

(
βn+1
i+ 1

2 ,j
δyn+1,k
i+ 1

2 ,j
∆pn+1,k+1

i+ 1
2 ,j

− βn+1
i− 1

2 ,j
δyn+1,k
i− 1

2 ,j
∆pn+1,k+1

i− 1
2 ,j

)
− ∆t2

∆y

(
βn+1
i,j+ 1

2
δxn+1,k

i,j+ 1
2

∆pn+1,k+1
i,j+ 1

2
− βn+1

i,j− 1
2
δxn+1,k

i,j− 1
2

∆pn+1,k+1
i,j− 1

2

)
= bni,j , (3.90)

with ∆pn+1,k+1
i+ 1

2 ,j
= pn+1,k+1

i+1,j − pn+1,k+1
i,j and ∆pn+1,k+1

i,j+ 1
2

= pn+1,k+1
i,j+1 − pn+1,k+1

i,j .

The system (3.90) needs to be solved for the pressure pn+1,k+1
i,j at each Picard

iteration. Using a more compact notation, the above system can be written as
follows

V(pn+1,k+1) + T pn+1,k+1 = bn, (3.91)

with the vector of the unknown new pressure pn+1,k+1 = (pn+1,k+1
i,j ) and where

V(pn+1,k+1) = V (pn+1,k+1
i,j ) denotes the corresponding fluid volumes; bn is the

known right hand side vector and T is a sparse, symmetric and penta-diagonal
matrix which arises from the linear terms in equation (3.90). The matrix
T in the system (3.91) is symmetric and at least positive semi-definite. For
the solution of system (3.91), we apply the nested Newton-type technique
introduced by Casulli et al. in [18, 19, 32, 33], associated with a matrix-free
implementation of the conjugate gradient method. For implementation details
and the convergence proofs of these Newton-type techniques applied to mildly
nonlinear systems the reader is referred to the above references.
Once the pressures pn+1,k+1

i,j are evaluated, the quantities δyn+1,k
i+ 1

2 ,j
and δxn+1,k

i,j+ 1
2

at the next Picard iteration can be easily obtained from (3.44) and (3.45).
As confirmed by numerical simulations, only very few Picard iterations are
needed to obtain an accurate solution. At the end of the last Picard iteration
pn+1
i,j := pn+1,k+1

i,j is set and the velocity field is easily obtained from the discrete
momentum equations (3.86). The time step is only limited by a mild CFL
condition based on the liquid and solid phase velocities and on the kinematic
viscosity. Since the solid phase is also governed by an advection equation which
is explicitly discretized and since the velocity of the solid phase is prescribed a
priori, a stability condition that is valid for both phases can be easily formulated.
For the explicit advection terms of both phases and for all the test problems
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shown in this thesis the CFL time restriction reads:

∆t ≤ CFL
smax
x
∆x + 2ν

∆x2 + smax
y

∆y + 2ν
∆y2

, (3.92)

where the choice of the maximum wave speed is smax
x = 2 max(|u|, |us|) and

smax
y = 2 max(|v|, |vs|) and ν is the kinematic viscosity coefficient. The stability
condition is not affected by the gravity wave speed, thus the method is efficient
for low Froude number flows, too.

3.1.7 Advection of the solid volume fraction using a subgrid

The solid phase kinematics is prescribed and is evaluated through an advection
equation, as described in (3.1). However, it is necessary for the advection of
the solid phase to be accurately computed in order to preserve the properties
of a solid, i.e. to remain sharply defined and to spread only slightly over time
due to the numerical viscosity of the scheme. Usually, a numerical method
is able to produce better solutions as the mesh size is refined. However, the
adoption of a too severe grid refinement, to ensure an accurate advection of the
solid phase, can easily become computationally prohibitive for the evaluation
of the liquid phase dynamics, which requires, at each time-step the solution
of the pressure based system described in Section 3.1.6. A practical solution,
which is adopted in all the test problems shown in this work, is to keep the
main computational grid at a reasonable size and adopt a sub-grid strategy
to evaluate the advection of the solid volume fraction αs and the effective
edge-integrated volume fractions δyn+1

i+ 1
2 ,j

and δxn+1
i,j+ 1

2
, similar to the subgrid

methods introduced in other contexts in [31, 53].
As represented in Fig. 3.4, starting from the main grid, which consists of
rectangular control volumes Ωi,j = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] with barycenters

in (xi, yj) and having width ∆xi and height ∆yj , a sub-grid consisting of N×M
sub-elements for each rectangular control volumes Ωi,j is defined.
The cell-averaged solid volume fraction αs is defined on this sub-grid as follows

αsn,m = NM
∆x∆y

x
n+ 1

2ˆ
x
n− 1

2

y
m+ 1

2ˆ
y
m− 1

2

αs(x, y) dy dx, (3.93)

while on the main grid, a cell-averaged solid volume fraction αsi,j can be
evaluated by means of the values in these subcells

αsi,j = 1
NM

N,M∑
n,m=1

αsn,m. (3.94)
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M
sub.elements

N
sub.elements

Fig. 3.4. Representation of the main grid for the evaluation of the liquid phase related
variables (left). Representation of the sub-grid within the main grid for the
evaluation of the refined solid phase variables (right). In gray is depicted the
variability of the solid volume fraction αsn,m over the sub-grid.

Furthermore, the edge-integrated effective volume fractions can be more accu-
rately assessed, in agreement with the more accurate distribution of the solid
phase on the sub-grid. Considering for instance the edge-integrated effective
volume fraction δyn+1

i+ 1
2 ,j

shown in Fig. 3.4, it can be evaluated over the sub-grid
as follows:

δyi+ 1
2 ,j

= N
2∆x

M∑
m=1

(
V l(pi,j , αsn,m) + V l(pi+1,j , α

s
1,m)

)
, (3.95)

where the liquid cell volume V l is evaluated by the constitutive relationship
scaled for the sub-grid and where the sub-grid cell-averages of the solid volume
fraction αsn,m which shares the same edge are involved.
Furthermore, for the sake of clarity, let us recall that the advection of the
solid phase is solved through a second-order FV method in space and time
by means of a MUSCL-Hancock TVD method, illustrated in the 3.1.5 section,
even though the dynamics of the solid and liquid phases are decoupled.

3.1.8 Remark

When the vertical mesh spacing ∆y is large enough to contain the entire water
layer of depth H, we can drop the vertical index j and set (δy)ni+1/2 = Hn

i+1/2.
Since for one single layer pni = g(ηni − yb) with ηni the free surface elevation
and yb the location of the barycenters of the only row of cells in y direction,
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the previous scheme reduces to

V n+1
i = V n

i −∆t
(

(Hu)n+1
i+ 1

2
− (Hu)n+1

i− 1
2

)
, (3.96)

(Hu)n+1
i+ 1

2
= (Hu)∗

i+ 1
2
− ∆t

∆xH
n
i+ 1

2
(pn+1
i+1 − p

n+1
i ), (3.97)

which is a consistent and mass and momentum conservative discretization of
the 1D shallow water equations

∂η

∂t
+ ∂(Hu)

∂x
= 0, (3.98)

∂(Hu)
∂t

+ ∂(Hu2)
∂x

+ gH
∂η

∂x
= 0. (3.99)
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3.2 Explicit FV scheme for compressible multiphase
fluid and solid mechanics

As the BN model is one of the most popular mathematical models for describing
two-phase flow, there are many works that address this problem numerically.
However, only a very limited number of publications exist on the mathematical
and computational issues of BN models for multi-phase flows describing more
than two phases. It is therefore very attractive to numerically address the
BN-type SHTC multi-phase model presented in the previous Section 2.3, which
has been generalised to fluid and solid mechanics.
In this section we numerically address a simplified version of the BN-type

SHTC model introduced in Section 2.3. The mixture considered here consist at
most of three phases. However, they can be freely chosen as gaseous, viscous
or inviscid liquid, or elasto-plastic solid.
The numerical method presented in this section will follow the so-called

diffuse interface approach, thanks to the suitable mathematical description
of the mixture through volume fractions. An operator splitting approach is
employed, in order to numerically solve the resulting simplified system, which
will be detailed in the next section. The procedure consists of two steps. At
each time step, the homogeneous part of the PDEs system, which also includes
all non-conservative terms, is discretized with the aid of an explicit second-order
path-conservative FV scheme, [171]. A preliminary solution is thus obtained.
Then, since the time scales associated with the relaxation sources are much
shorter than those given by the stability condition of the explicit scheme used
to solve the homogeneous part of the PDE, two different implicit methods
are employed. Namely, for the stiff, but linear, sources related to velocity
relaxation, an time integrator based on backward Euler is employed. While
a semi-analytical time integration method is adopted for the nonlinear stiff
source governing the relaxation of the distortion matrix Aa. Moreover, as we
shall see, the accurate integration of the distortion matrix evolution equation
is a rather challenging task, especially in the context of multiphase flows, thus
some additional efforts will be required.

3.2.1 Three phase reduced BN-type SHTC model

The numerical test problems, presented below, concern one and two-dimensional
three-phase flow. Thus, the BN-type form of the SHTC mixture equations for
a = 1, 2, 3, presented in Section 2.3, and further extended with the generalization
to elasto-plastic solids and viscous fluid constituents, is considered.
As stated in the introduction of this numerical section, the mathematical
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3.2 Explicit FV scheme for compressible multiphase fluid and solid mechanics

model is further simplified, but in such a way as to preserve its multi-phase
and multi-material properties. In this thesis, we restrict ourselves to relatively
low Mach number flows, e.g. M ' 0.1. In this context shock waves are either
totally absent, or very weak. Thus considering the conservation of phase
entropy, which has much simpler dynamics, rather than phase energy leads to a
negligible error. Therefore, the phase entropy equations can be retrieved from
the SHTC equations (2.112g), using the conservation of total mass (2.112f),
and read

∂sa
∂t

+ Vk
∂sa
∂xk

= Πa − πa. (3.100)

Then, neglecting the phase pressure relaxation towards a common pressure
for all the phases (Φa = 0), assuming the absence of phase transformations
(χa = 0), temperature relaxation (πa = 0), and assuming the isotropy of the
phase velocity relaxation process (λab,k = diag(λ1, λ2, ... , λN), k = 1, 2, 3), the
mathematical model, that is numerically addressed, can be represented by the
following system of PDEs

∂%a
∂t

+ ∂ua,k
∂xk

= 0 (3.101a)

∂Aa,Jk
∂t

+ ∂ (Aa,Jlva,l)
∂xk

+ va,i

(
∂Aa,Jk
∂xi

− ∂Aa,Ji
∂xk

)
= Za,Jk, (3.101b)

∂ua,i
∂t

+ ∂

∂xk

(
ua,iva,k + Paδi,k − σa,ik

)
= −ca

N∑
b=1

pb
∂αb
∂xi

+ pa
∂αa
∂xi

(3.101c)

− ca
N∑
b=1

%bv̄b,kωb,k,i + %av̄a,kωa,k,i (3.101d)

+ ca

N∑
b=1

λb%b (vb,i − Vi)− λa%a (va,i − Vi) , (3.101e)

∂sa
∂t

+ Vk
∂sa
∂xk

= λa
Ta
ca (va,k − Vk)2 , (3.101f)

∂αa
∂t

+ Vk
∂αa
∂xk

= 0, (3.101g)

In order to simplify notation for discussing the numerical method, we introduce
a compact matrix-vector notation so that system (3.101) can be written as

∂tQ +∇ · F(Q) + B(Q) · ∇Q = S(Q) (3.102)

with Q = {Q1,Q2,Q3} being the vector of conservative state variables, and
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Qa being the conservative variables for each phase a = 1, 2, 3

Qa = (%a,ua, sa, αa,Aa,1,Aa,2,Aa,3), (3.103)

where we use the fact that each distortion matrix Aa is in fact a triad of
three basis vectors, i.e. Aa = {Aa,1,Aa,2,Aa,3} and for each J = 1, 2, 3,
Aa,J = {Aa,J1, Aa,J2, Aa,J3} is a 3-vector.

The flux tensor F(Q) in (3.102) is decoupled with respect to the phases, i.e.
F(Q) = {F1(Q1),F2(Q2),F3(Q3)}, and can be written as the sum of several
contributions as follows

Fa(Qa) = Fc
a(Qa) + Fp

a(Qa) + Fs
a(Qa) + Fd

a(Qa), (3.104)

where each term depends only on Qa and is defined as

Fc
a(Qa) =



ua
ua ⊗ va

03×1
03×1
03×1
03×1
03×1


, Fp

a(Qa) =



03×1
PaI
03×1
03×1
03×1
03×1
03×1


,

Fs
a(Qa) =



03×1
σe
a

03×1
03×1
03×1
03×1
03×1


, Fd

a(Qa) =



03×1
03×3
03×1
03×1

Aa,1vaI
Aa,2vaI
Aa,3vaI


.

(3.105)

The tensor Fc
a(Qa) contains the convective terms for the mass and momentum

balance equations, Fp
A(Qa) is the phase related pressure flux tensor, Fs

a(Qa) is
the flux tensor containing contribution due to shear viscous and elastic stresses,
while Fd

a(Qa) contains advective terms from the distortion PDE.
The so-called non-conservative matrix-vector product in (3.102) contains

the phase coupling terms and can be presented as a sum of the following
contributions

B(Q) · ∇Q =
[
Bc(Q) + Bp(Q) + Bw(Q) + Bd(Q)

]
· ∇Q, (3.106)

where the convective part is given by (components restricted to phase a)

(Bc(Q) · ∇Q)a = (0,0,V · ∇sa,V · ∇αa,0,0,0)T, (3.107)
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while the non-conservative products related to the multiphase and multi-
material nature of the model read

(Bp(Q) · ∇Q)a =



0
ca
∑3
b=1 pb∇αb − pa∇αa

0
0
0
0
0


, (3.108)

(Bw(Q) · ∇Q)a =



0
ca
∑3
b=1 %b(∇vb−∇vT

b )(vb−V )−%a(∇va−∇vT
a)(va−V )

0
0
0
0
0


,

(3.109)

(
Bd(Q) · ∇Q

)
a

=



0
0
0
0(

∇Aa,1 −∇AT
a,1

)
va(

∇Aa,2 −∇AT
a,2

)
va(

∇Aa,3 −∇AT
a,3

)
va


. (3.110)

The source term vector S(Q) can be written as the sum of two different
vectors that will be discretized by two different approaches,

S(Q) = Sw(Q) + Ss(Q), (3.111)

where Sv(Q) is stiff but linear in Q (relative velocity relaxation), while Ss(Q)
is related to the strain relaxation source terms of the distortion matrix, which
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is nonlinear and can be extremely stiff. These source term vectors read

Sw(Qa) =



0
ca
∑3
b=1 λb%b (vb−V )−λa%a (va−V )

0
λa
Ta
ca (va−V )2

0
0
0


, Ss(Qa) =



0
0
0
0

Za,1
Za,2
Za,3


,

(3.112)

where Za = {Za,1,Za,2,Za,3} is the phase strain relaxation matrix defined in
(2.140). Furthermore, to better address some of the specific problems usually
encountered in the numerical solution of multiphase flow models. In these
models there are complex interfaces described by the volume fractions of the
different phases and usually through conserved variables Q one tends to consider
the evolution of combined quantities, such as %a and ua, i.e. expressed in terms
of V, αaρa and αaρava. Thus, a cell-local conservative variable polynomial
reconstruction could give rise to non-physical discontinuities, e.g. in the
reconstructed evaluation of velocity and density fields, as well as violations of
positivity in the reconstructed mass fraction values. Whereas, a reconstruction
in the primitive variable space, for a second-order MUSCL-Hancock TVD
scheme, significantly mitigates these problems, see e.g. [36, 113, 177] and
references therein.

Therefore, alongside with the vector of conservative variables Q = (Qa,Q2,Q3)
a vector of primitive variables V = (V1,V2,V3) is considered, where for each
phase a = 1, 2, 3,

Qa = (%a,ua, sa, αa,Aa), Va = (ρa,va, pa, αa,Aa), (3.113)

The primitive-to-conservative transformation operator will be denoted by C
and its complementary conservative-to-primitive by P, i.e.

Va(x, y) = P[Qa(x, y)], and Qa(x, y) = C[Va(x, y)]. (3.114)

In the mixture context, these operators must be defined with care to avoid
division by zero when a phase vanishes. In the following, we illustrate how
these conversion operators are defined in our numerical method to address this
issue and to satisfy the unit sum constraints on the volume fractions.

First, a sum of the volume fractions over the phases is evaluated

αtot =
N∑
a=1

αa, (3.115)
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from which a preliminary phase volume fraction is computed as

α∗a = max(ε,min (1, αa/α∗tot)) , (3.116)

where ε = 10−14 is a small constant introduced to avoid division by zero in the
following formula. Then the conservative-to-primitive P operator reads

P[Qa] =


%a/α

∗
a

ua%a/(%2
a + ε2)

P [%a/α∗a, sa]
max(ε,min (1, αa/α∗tot))

Aa

 , (3.117)

where P [%a/α∗a, sa] is the pressure function that can be defined according to
the EOS chosen for the phase.

3.2.2 Eigenvalue estimates
From the very nature of the hyperbolic equations, it is important to understand
the characteristic structure of the PDE system (3.101) under consideration.
However, even if simplified with respect to the full SHTC model in (2.112), this
system remains too complex for analytical calculation of all eigenvalues due to
coupling of convective, acoustic, and shear parts, as well as due to coupling
between the phases. Therefore, since the FV method requires the knowledge
of the maximum sound speeds, some estimates for the eigenvalues discussed
below will be used.

To get some estimates of the eigenvalues of the Jacobian Ck = C · n̂k, where
the direction xk is specified by the unit vector n̂k. The complete matrix C, can
be formally defined from the general first order balance law (3.102) considering
the vector of primitive variables for each phase Va, defined in (3.113), as

C =
(
∂Qa

∂Va

)−1 (∂F(Qa)
∂Va

+ B̃(Va)
)
, and B̃ = B(Qa)

∂Qa

∂Va
(3.118)

and, therefore, with (3.118), the system of PDEs (3.102) can be written in a
quasi-linear form

∂tVa + C∇Va = S(Va). (3.119)

Because the Jacobian matrix is large it is also computationally very expensive
to numerically calculate the eigenvalues at each time and at every cell. For this
reason, as will be seen in the next sub-section, a Rusanov Riemann solver will
be chosen, which only requires an estimate of the maximum absolute eigenvalue
λMk of the Jacobian (3.118).
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As has been suggested in [34], a practical and effective choice for estimating
the spectral radius of the Jacobian matrix of a two-fluid model coupled with
the GPR model is to compute the maximum sound speed λMk in each direction
xk as

λMk = max
a

(|va · n̂k + λ|, |va · n̂k − λ|) , with λ =
√
λ2
p + λ2

s (3.120)

where λp accounts for pressure waves of the multiphase model, and λs is an
estimate of the contribution due to shear waves, which are derived in the
following.
Let us consider system (3.101), without the extension to elastic solids and

viscous fluids (3.101b), i.e. neglecting Aa and associated shear stresses σe
a,ik

for the moment. Then a simplified vector of primitive state variables can be
written as

V̂a = (ρa, va,1, va,2, va,3, pa, αa)T, (3.121)
and we can define the matrix C1, with respect to the first direction x1, as
follows

C1 =

D1 O2 O3
O1 D2 O3
O1 O2 D3

 (3.122)

where Da, Oa ∈ R6x6 and are the diagonal and off-diagonal components of C1
and read

Da=



va,1 ρa 0 0 0 (va,1−V1)ρa/αa
0 va,1 (1−ca)(va,2−V2) (1−ca)(va,3−V3) 1/ρa pa/ρ
0 0 ca(va,1−V1)+V1 0 0 0
0 0 0 ca(va,1−V1)+V1 0 0
0 paγa 0 0 va,1 pa(va,1−V1)γa/αa
0 0 0 0 0 V1


,

(3.123)

Oa =



0 0 0 0 0 0
0 0 −ca(va,2 − V2) −ca(va,3−V3) 0 pa/ρ
0 0 ca(va,1−V1) 0 0 0
0 0 0 ca(va,1−V1) 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (3.124)

For this simplified system, in which the extension to elastic solids and viscous
fluids (3.101b) is excluded, it is possible to explicitly evaluate the eigenvalues.
The resulting non-zero and non-repeating eigenvalues are listed in the following
vector

λa = (va,1, V1, va,1 ±
√
paγa/ρa), (3.125)
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where paγa/ρa is the adiabatic phase sound velocity C2
a . Therefore, in the

estimate of the spectral radius of the Jacobian matrix of the complete system,
the term which takes the pressure waves of the multiphase model into account,
is given by

λp = Ca = paγa/ρa. (3.126)

Regarding the contribution due to shear waves λs, analogously to [34, 54] we
consider the following estimate

λs =
√

4 Cs2
a/3. (3.127)

The expression (3.127), concerning the contribution of shear waves to the
spectral radius evaluation of the Jacobian matrix of the complete system, is
obtained considering a fluid (or solid) in its resting state and introducing
the assumption of small deformations, i.e. when Aa → I. Then linearised
estimates for the eigenvalues can be recovered. Moreover, through numerical
experiments, it can be verified that (3.127) is quite safe also for the complete
problem, leading only to occasional slight overestimates.

Therefore, the time step and the evaluation of the eigenvalues used in Rusanov
flux dissipation can be computed by means of the simple evaluation of (3.120).

3.2.3 Data representation, reconstruction and slope limiting

The computational domain Ω ⊂ R2 is partitioned in Cartesian elements,
denoted by

Ωij =
[
xi −

∆xi
2 , xi + ∆xi

2

]
×
[
yj −

∆yj
2 , yj + ∆yj

2

]
, (3.128)

where the indices i and j go from 1 to the total number of elements in each
direction. From now on, to avoid possible confusion of spatial and discretization
indices, we shall use x for the direction x1, and y for the direction x2.
The discrete solution of the conservative and primitive state variables for

a generic element Ωij at time tn is denoted by Qn
i,j and Vn

ij , and which are
defined as volume (area) averaged values, i.e.

Qn
i,j = 1

|Ωij |

ˆ
Ωij

Q(x, y, tn)dΩ, Vn
i,j = 1

|Ωij |

ˆ
Ωij

V(x, y, tn)dΩ. (3.129)

In order to achieve a second-order accuracy, it is necessary to perform a data
reconstruction that, for each cell, yields a first-degree polynomial representation
of the state variables, named Qr

ij(x, y, t) and Vr
ij(x, y, t).
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A cell-local primitive variable polynomial reconstruction Vr
ij(x, y, t) is now

reconstructed, for each element Ωij , from the discrete primitive state vector
Vn
ij at time tn. For each Cartesian cell Ωij , a jump in primitive variables

through each edge can be evaluated. These are then combined in a non-linear
fashion in order to obtain a slope in the x and y-direction respectively and to
guarantee non-oscillatory properties of the resulting scheme. For instance, in
the x-direction, left and right jumps are evaluated as

∆VL = Vn
i,j −Vn

i−1,j and ∆VR = Vn
i+1,j −Vn

i,j , (3.130)
respectively. These are then combined in a non-linear fashion to obtain a
preliminary slope ∆̃Vi by means of a slope limiter. In this implmentation, a
limiter that is usually referred to as the Generalised minmod slope limiter is
used, and is given by

∆̃Vi = ∆VR max
[

0, min
(
β∆V2

R, ∆VR∆VL

)]
2 ∆V2

R + ε2

+ ∆VL max
[

0, min
(
β∆V2

L, ∆VL∆VR

)]
2 ∆V2

L + ε2
,

(3.131)

where ε is a small constant that avoids division by zero, e.g. ε = 10−14, and
β defines a family of minmod limiters. For β = 1, the classic minmod slope
limiter is obtained, whereas it reduces to the MUSCL-Barth-Jespersen limiter
for β = 3, and β = 2 represents an good compromise between robustness and
dissipation, and this value will be assumed for all the subsequent numerical
tests.
In fact the slope ∆̃Vi is not the final slope but a preliminary one since it

was found useful to adopt a slope rescaling approach presented in [34]. Thus,
after ∆̃Vi is computed it is then corrected to impose an upper or lower limit
for certain variables; in this way, the positivity of the reconstructed density
values is guaranteed and the upper and lower bounds of the volume fractions
of the phases are respected. We list below the steps to achieve this rescaling

∆Vi = ∆̃Vimin
(
1, Φ+

i , Φ−i
)
, (3.132)

with

Φ+
i =

[(
| ∆̃Vi | +∆̃Vi

)
(VM −Vi) +

(
| ∆̃Vi | −∆̃Vi

)
(Vm −Vi)

]
∆̃Vi

2 | ∆̃V
3
i | +ε3

,

Φ−i =

[(
| ∆̃Vi | −∆̃Vi

)
(Vi −VM ) +

(
| ∆̃Vi | +∆̃Vi

)
(Vi −Vm)

]
∆̃Vi

2 | ∆̃V
3
i | +ε3

,

(3.133)
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where, the vectors Vm and VM represent the lower and upper bounds for each
variable of the primitive state vector, and are set, for each phase, as

Vm, a = (0,−h,−H, 0,−H)T
a, and VM, a = (H,h, H, 1,H)T

a, (3.134)

where the values of H, h and H can be set to a scalar, a vector or an arbitrary
large matrix to represent the absence of bounds. The analogous steps are
performed in y-direction to calculate a reconstruction of the slope ∆Vj .
After the spatial reconstruction, at a given time instant tn, the cell-local

space-time primitive variable polynomial reconstruction, in each cell Ωij , is
written in terms of a space-time Taylor series expanded about xi, yi and tn as

Vr
i,j(x, y, t) = Vn

i,j + (x−xi,j)
∆Vi

∆x + (y− yi,j)
∆Vj

∆y + (t− tn) ∂tVi,j . (3.135)

The time derivative, in (3.135), is computed in terms of primitive variables
in two steps, through a straight-forward application of the operator splitting
approach. Thus, to determine ∂tVi,j , we consider

∂tVi,j = − (C · n̂x) ∂xV− (C · n̂y) ∂yV + S, (3.136)

where C is defined for the quasi-linear form in (3.118). To solve (3.136), we
split it into the homogeneous part

∂tVi,j = − (C · n̂x) ∂xV− (C · n̂y) ∂yV, (3.137)

and a source part
dVi,j

dt̂
= S(Vi,j), t̂ ∈ [tn, t]. (3.138)

In order to approximate the spatial derivatives of the primitive state variables
in (3.137), we use a central finite difference with respect to the cell center xij
by using the boundary primitive reconstructed values from within the cell Ωi,j ,
as

∂tVi,j ≈
(
C(Vn

i,j) · n̂x
) ∆Vi

∆x +
(
C(Vn

i,j) · n̂y
) ∆Vj

∆y . (3.139)

Hence, using (3.139), one can compute an update for each cell, such that V∗i,j
is the solution of (3.137) at time t with an initial value Vn

i,j , as follows

V∗i,j = Vn
i,j + (t− tn) ∂tVi,j . (3.140)

In the second step, we consider the contribution of the stiff source terms via
solving the initial value problem

dVi,j

dt̂
= S(Vi,j), t̂ ∈ [tn, t], Vi,j(tn) = V∗i,j , (3.141)
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whose solution at time t is denoted by V∗∗i,j . This initial value problem is solved
with two different implicit methods discussed in detail in Section 3.2.5.

Finally, by introducing the discrete solution V∗∗ij of ∂tVi,j in (3.135), the
cell-local primitive variable polynomial reconstruction reads

Vr
i,j(t, x, y) = V∗∗i,j(t) + (x− xi,j)

∆Vi

∆x + (y − yi,j)
∆Vj

∆y , (3.142)

which we also refer to as the cell-local space-time predictor.

3.2.4 Explicit finite volume discretization of the homogeneous
system

After obtaining the local space-time predictor (3.142), the final solution Qn+1
i,j

at tn+1 of the MUSCL-Hancock scheme is also computed using the splitting
approach, in which we first compute the solution of the homogeneous PDE
system

∂tQ +∇ · F(Q) + B(Q) · ∇Q = 0, (3.143)
with the initial data obtained by extrapolating the reconstructed polynomials
towards the cell boundaries and by applying the standard explicit FV update
formula to (3.143).

Considering a space-time control volume Ωij × [tn, tn+1] on a fixed Cartesian
grid, the volume differential element dx = dx dy and the surface element
dS are defined to compactly write integrals on the control volume Ωij and
on its boundary ∂Ωij respectively. By integrating the PDE (3.143) over the
space-time element and applying Gauss’s theorem for integrating the divergence
of fluxes in space, we obtain the weak formulationˆ tn+1

tn

ˆ
Ωij
∂tQ dx dt+

ˆ tn+1

tn

ˆ
∂Ωij

F(Q) · n̂ dS dt

+
ˆ tn+1

tn

ˆ
Ωij

B(Q) · ∇Q dx dt = 0,
(3.144)

where n̂ defines the outward unit normal vector on the element boundary.
Then, by using the reconstructed polynomials Vr

i,j(t, x, y) and treating the
non-conservative terms using the path-conservative approach by Castro and
Parés [27, 125], the usual path-conservative FV discretization is obtained
ˆ tn+1

tn

ˆ
Ωij
∂tQ dx dt+

ˆ tn+1

tn

ˆ
∂Ωij

(
F(Vr,−

i,j ,V
r,+
i,j ) + D(Vr,−

i,j ,V
r,+
i,j )

)
· n̂ dS dt +

+
ˆ tn+1

tn

ˆ
Ωij\∂Ωij̃

B(Vr
i,j) · ∇Vr

i,j dx dt = 0, (3.145)
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where, within the framework of path-conservative schemes, the new term D was
introduced to take into account the jumps of the primitive solution V across
the space-time element boundaries ∂Ωij , while the last term is the integral
over the smooth part of the non-conservative terms.
Using notations (3.129), the fully discrete one-step update formula for the

solution Q(1)
i,j of the homogeneous part of the system at time tn+1 reads

Q(1)
i,j = Qn

i,j −
∆t
∆x

(
FRS
i+1/2,j − FRS

i−1/2,j + Di+1/2,j + Di−1/2,j
)

+

− ∆t
∆y

(
FRS
i,j+1/2 − FRS

i,j−1/2 + Di,j+1/2 + Di,j−1/2
)

+

+ ∆t
∆xB̃1

[
Vr
i,j

(
t n+1/2, xi, yj

)]
∆Vi+

+ ∆t
∆y B̃2

[
Vr
i,j

(
t n+1/2, xi, yj

)]
∆Vj .

(3.146)

where FRS is the generic conservative numerical flux, which can be compute
with different approximate Riemann solvers.

In order to describe easily each term in (3.146), a compact notation for the
boundary-extrapolated primitive states vR and vL, evaluated from the solution
of the cell-local space-time predictor (3.142), is introduced. In particular,
the space-time midpoint values for each face, of generic index i+ 1

2 , j in the
x-direction or i, j + 1

2 in the y-direction, read

(VL)i+ 1
2 ,j

=Vr
i,j(tn+ 1

2 , xi+ 1
2
, yj), (VR)i+ 1

2 ,j
=Vr

i+1,j(tn+ 1
2 , xi+ 1

2
, yj),

(VL)i,j+ 1
2
=Vr

i,j(tn+ 1
2 , xi, yj+ 1

2
), (VR)i,j+ 1

2
=Vr

i,j+1(tn+ 1
2 , xi, yj+ 1

2
).

(3.147)

Thus, using this simpler notation, we illustrate how conservative numerical
FRS flows are defined. In this work, the simple Rusanov Riemann solver is
employed

FRS
i+1/2,j(VL,VR)=1

2
(
F1(VL)+F1(VR)

)
− 1

2s
max
1

(
C[VR]− C[VL]

)
,

FRS
i,j+1/2(VL,VR)=1

2
(
F2(VL)+F2(VR)

)
− 1

2s
max
2

(
C[VR]− C[VL]

)
,
(3.148)

where F1 and F2 are the conservative fluxes in the first and in the second space
direction, in which are included the contributions of the convective, pressure
and stress tensor components, as illustrated in (3.149). For clarity, in terms of
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the primitive state vector, the conservative flux in x-direction reads

F1(Va) =



αa ρa va,1
αa ρa va,1 va,1 + αaPa + αaσ1,1

αa ρa va,2 va,1 + αaσ2,1
αa ρa va,3 va,1 + αaσ3,1

0
0

fAa


, (3.149)

with

fAa, k =

A1,1v1 +A1,2v2 +A1,3v3 0 0
A2,1v1 +A2,2v2 +A2,3v3 0 0
A3,1v1 +A3,2v2 +A3,3v3 0 0


a

. (3.150)

Analogously one can obtain F2 in y-direction.
The Rusanov numerical flux requires the knowledge of an estimate for the

maximum wave velocity smax for each direction. In this paper, keeping in mind
that we are interested in problems with not high Mach numbers, the absolute
value of the maximum eigenvalue of the PDE system linearized at the states
VL and VR can be a good estimate for smax. Therefore, the maximum wave
speed estimates read

smax
1 (VL,VR) = max ( λmax

1 (VL), λmax
1 (VR) ) ,

smax
2 (VL,VR) = max ( λmax

2 (VL), λmax
2 (VR) ) .

(3.151)

The maximum eigenvalues of (3.101) can be estimated as described in Section
3.2.2.

The nonconservative products appearing in the BN model are treated within
the framework of path-conservative schemes [27, 52, 125]. Thus, at each cell
interface the following path integrals must be prescribed

DΨ(VL,VR) · n̂ = 1
2

ˆ 1

0
B̃ [Ψ(VL,VR, s)] · n̂

∂Ψ
∂s

ds

= 1
2

(ˆ 1

0
B̃ [Ψ(VL,VR, s)] · n̂ ds

)(
VR −VL

)
,

(3.152)

in which Ψ(VL,VR, s) = VL + s(VR −VL) is a simple segment path function
connecting the left and right states in the primitive state space. These path
integrals, which are denoted by Di+1/2,j and Di,j+1/2 in (3.146), are computed
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with a three-point Gauss-Legendre quadrature rule with points sk ∈ [0, 1] and
weights wk as follows (see [52])

Di+1/2,j = 1
2

3∑
k=1

wk B̃1
[
Ψ(VL,VR, sk)

] (
VR −VL

)
,

Di,j+1/2 = 1
2

3∑
k=1

wk B̃2
[
Ψ(VL,VR, sk)

] (
VR −VL

)
.

(3.153)

Therefore, by these means we compute the preliminary state vector Q(1)
i,j , which

is the updated solution of the left hand side of (3.102). To get the final solution
Qn+1
i,j , it remains to compute the solution of the relaxation source terms, which

is done in the next section.
Before describing in detail the implicit solver for the relaxation source terms,

we note that in order to guarantee stability of the explicit FV time-stepping
described above, the time-step size is restricted by

∆t ≤ kCFL
1

∆x/λmax1 + ∆y/λmax2
, (3.154)

where λmaxk the maximum absolute value of all eigenvalues found in the domain,
associated to k-direction and computed according to (3.120). Also, kCFL ≤ 1 is
a Courant-type number [39], which is typically chosen as kCFL = 0.9 for all the
simulations presented in this work.

3.2.5 Integration of relaxations sources
As previously mentioned, to account for the algebraic relaxation source terms
in the numerical solution, a splitting approach is adopted. It is a simple but
robust strategy since it allows to separate the contribution of relaxation terms
from the reversible part of the time evolution equations. Here, we discuss the
details of the implicit method that is used to solve the ordinary differential
equations (ODE)

dQi,j

dt = S(Qi,j), t ∈ [tn, tn+1], Qi,j(tn) = Q(1)
i,j . (3.155)

In Section 3.2.1, the source terms were separated into Sw(Qa), which contains
the velocity relaxation terms and are stiff, but linear with respect to the relative
velocity, and Ss(Qa), which contains the strain relaxation terms of the distortion
matrix Aa, and which is non-linear and can be very stiff. The integration
of these two different source terms is carried out with two different implicit
approaches.
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Relative velocity relaxation

In the following, we describe the system of ODEs arising from the source vector
Sw(Q) in (3.112), related to the relative velocity relaxation. Since there are
zeros in Sw(Qa) corresponding to the conservation equations of mass, volume
fraction, and distortion matrix, they are remained constant over time in (3.155).
Therefore, these quantities can be considered as constant parameters and can
be omitted from the state vector Qi,j of the initial value problem (3.155).
The integration of the remaining quantities, the phase momenta ua and

entropies sa, is carried out in terms of the primitive state variables. More
precisely, instead of (3.155) we consider the following reduced ODE system for
the vector Ṽ = (v1,v2,v3, s1, s2, s3)

dṼij

dt = S(Ṽij), t ∈ [tn, tn+1], Ṽij(tn) = Ṽ(1)
ij , (3.156)

where Ṽ(1) is the primitive variable reduced state vector obtained in (3.146)
as the solution to the the homogeneous PDE system. The later ODE system
can be easily integrated by means of the backward Euler method to obtain an
updated solution Ṽ(2) at time tn+1.

For instance, it can be seen that for each spatial direction xk, k = 1, 2, one
can decouple the phase velocity equations from the phase entropy ones, and
this velocity subsystem reads
dv1,k
dt = λ

(
c1(v1,k−Vk) + c2(v2,k−Vk) + c3(v3,k−Vk)− (v1,k−Vk)

)
,

dv2,k
dt = λ

(
c1(v1,k−Vk) + c2(v2,k−Vk) + c3(v3,k−Vk)− (v2,k−Vk)

)
,

dv3,k
dt = λ

(
c1(v1,k−Vk) + c2(v2,k−Vk) + c3(v3,k−Vk)− (v3,k−Vk)

)
,

(3.157)

where the phase kinetic coefficients λab,k, that define the time scale for friction
relaxation dissipative process, are assumed to be equal throughout all phases
and directions, i.e. λab,k = λ. It is also usually assumed that this parameter is
larger than 1/∆t, where ∆t is the time-step given by the stability condition in
(3.154). Thus, we can say that we have a stiff relaxation source term, and an
implicit discretization is needed. For such a system (3.157), in which all the
sources are linear, the following discretization can be written for each cell Ωijv1,k

v2,k
v3,k


(2)

ij

= (I−∆tM)−1

v1,k
v2,k
v3,k


(1)

ij

(3.158)
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where the matrix inverse can be evaluated analytically and, defining λ∗ = ∆t λ,
reads

(I−∆tM)−1 = 1
1 + λ∗

1 + λ∗ c1 λ∗ c2 λ∗ c3
λ∗ c1 1 + λ∗ c2 λ∗ c3
λ∗ c1 λ∗ c2 1 + λ∗ c3

 . (3.159)

Now it remains to solve the independent ODEs related to the entropies of the
phases, which read

ds1
dt = λ c1

T1

((
v1,1 − V1

)2 +
(
v1,2 − V1

)2 +
(
v1,3 − V1

)2)
,

ds2
dt = λ c2

T2

((
v2,1 − V1

)2 +
(
v2,2 − V1

)2 +
(
v2,3 − V1

)2)
,

ds3
dt = λ c3

T3

((
v3,1 − V1

)2 +
(
v3,2 − V1

)2 +
(
v3,3 − V1

)2)
.

(3.160)

where we can use the updated velocities evaluated in (3.158). Finally, to
discretize the three ODEs in (3.160), a generic implicit backward Euler time
integrator based on Newton’s method can be used in order to deal with the
nonlinearity inherent to the definitions of the phase temperatures Ta(ρa, sa).

Strain relaxation

In contrast to the relative velocity relaxation subsystem (3.156), an accurate
integration of the non-linear stiff source Ss(Q) governing the strain relaxation
of the distortion matrix Aa is a more challenging task, especially in the context
of multiphase flows. Let begin with some remarks on the evolution equations
of the phase distortion fields Aa, which are defined for each phase a = 1, 2, 3.
In the multiphase context, the evolution of the three distortion fields Aa,

a =, 1, 2, 3 given by

∂tAa +∇
(
Aa · va

)
+
(
∇Aa −∇AT

a

)
· va = − 3

τ e
a

(detAa)5/3 Aadev
(
AT
aAa

)
.

(3.161)
may occur over a very wide range of time scales in a single computational
cell Ωij . Namely, there might be infinitely slow strain relaxation time scale
(τ e
a = 1014) in an elastic solid phase and extremely fast relaxation of shear

stresses in the inviscid (τ e
a = 10−14) and viscous fluid phase (τ e

a ∼ 10−6−10−3).
These different time scales are quantified by means of the relaxation time τ e

a in
the evolution equation of the phase distortion field.

The interpretation of the strain relaxation timescale τ e
a and its definition in

the multiphase context were described in Section 2.3.2. From that description,

95



3 Numerical methods

it is clear that one of the major difficulties in solving the unified multiphase
model of continuum mechanics is conditioned by the presence of these stiff and
very non-linear strain relaxation source terms. Therefore, it is necessary to
solve the associated ODE systems with care using an appropriate implicit time
integrator.

Following the ideas in [83], an efficient and robust method for a semi-analytical
implicit integration of the strain relaxation ODE systems was introduced by
Chiocchetti and co-authors in [166] in the context of strain relaxation in the
damaged solids, and further developed in [34, 35] for finite-rate pressure and
strain relaxation in multiphase flows. The key idea of this time integrator is
a reduction of the problem by using the polar decomposition for each phase
distortion matrix Aa

Aa = Ra G1/2
a with G1/2

a = Ea Ĝ1/2
a E−1

a , (3.162)

where Ra is an orthogonal matrix with a positive unit determinant, while the
matrix square root G1/2

a can be defined by means of eigen-decomposition of the
symmetric positive definite matrix Ga, where Ea is the matrix whose columns
are eigenvectors and Ĝ1/2

a is the diagonal matrix whose diagonal elements are
the roots of the eigenvalues.

Indeed, the distortion field Aa represents three local basis vectors representing
the volume, shape, and the orientation of the phase control volume. Its 9
independent components (degrees of freedom), therefore, encodes two different
types of information. Six degrees of freedom are strictly related to the definition
of the stress tensor σe

a = %aCs2
a(GadevGa) via the six independent components

of the metric tensor Ga, and the three remaining degrees of freedom that define
the angular orientation of the control volume.
Numerically, the matrix G1/2

a can be simply evaluated using the Denman-
Beavers algorithm. Thus, for any given state Aa, one can easily compute Ga,
its square root G1/2

a , and eventually the inverse G−1/2
a . After that, the rotation

matrix can be computed as

Ra = Aa G−1/2
a . (3.163)

Moreover, the invariance of the rotational component of the distortion matrix
under strain relaxation can be proven following the arguments in [34, 83], which
means that during the strain relaxation step, one can use the evolution PDE
for the metric tensor

∂tGa +
(
∇Ga

)
va + Ga∇va − (∇va)TGa = − 6

τ e
a

(det Ga)5/6 GadevGa ,

(3.164)
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instead of the PDE for the full distortion matrix.
We now have all the ingredients to describe the following steps in order

to obtain the final solution for the distortion matrix. First, we calculate the
update A(1)

a of the distortion matrix Aa obtained from the left hand side of
the evolution equation (3.161), as presented in (3.146). From this solution, a
rotation matrix can be calculated independently of the non-linear source terms
as

R(1)
a = A(1)

a G(1) −1/2
a with G(1)

a =
(
A(1)
a

)T
A(1)
a , (3.165)

with G(1) −1/2
a computed by means of the Denman-Beavers algorithm. Then,

the following nonlinear ODE system should be solved

dGa

dt = L(1)
a −

6
τ e
a

( det Ga)5/6 Ga dev Ga , (3.166)

where L(1)
a is a constant convective/productive forcing term evaluated simply

as

L(1)
a = G(1)

a −Gn
a

∆t , with G(1)
a =

(
A(1)
a

)T
A(1)
a , Gn

a = Ga (tn) . (3.167)

This term, which takes into account the left-hand side of (3.164), is introduced
to converge to the asymptotically correct state in the stiff limit of the equa-
tions. This alternative ODE problem (3.166) is then solved by computing the
analytical solution of a sequence of linearized problems that approximate the
original non-linear ODE, according to the procedure outlined in [34]. Once
the source term applied to the metric tensor is integrated, and thus obtaining
G(2)
a at time tn+1, the information can be mapped back to get the updated

distortion field as

A(2)
a = R(1)

a

(
G(2)
a

)1/2
. (3.168)

3.2.6 Further remarks on the distortion field

Before assembling the final solution of the entire PDE system, we must make
some important remarks concerning the challenges related to the numerical
computation of the distortion field Aa.

97



3 Numerical methods

Algebraic constraints

In the numerical solution of the evolution equation (3.162) for the phase
distortion field Aa, particularly when describing liquid phases, one must be
careful to preserve the nonlinear algebraic constraint

ρa = ρoa detAa. (3.169)

This constrain stems from the fact that the phase mass conservation equation
(3.101a) is the consequence of the time evolution (3.162) for the distortion
matrix Aa, see e.g. [80, 135]. However, in computational practice it is preferable
not to eliminate the mass conservation equation system of governing equations,
for the clear reason that (3.101a) is a conservation law, for which therefore the
Rankine-Hugoniot jump conditions are clearly defined. Therefore, in order to
ensure that the solution is represented by a compatible state with respect to
(3.169), the constraint must be actively applied as the numerical scheme can
in principle introduce significant errors that grow over time.

A simple but effective approach is to manually impose the constraint at each
time iteration, specifically the distortion field, solution of the homogeneous
problem, is enforced to satisfy the following ratio

detA(1)
a = ρ

(1)
a

ρoa
. (3.170)

Similarly, in the procedure for integrating the source term of the distortion field,
in Section 3.2.5, i.e., in the semi-analytic solver presented in [34, 35], special
care is taken to preserve the nonlinear algebraic constraint detGa(t,x) =
(ρa(t,x)/ρoa)2 .

Linear combination of pure rotational fields

Numerical discretization, in all its parts from data representation to explicit
discretization with the FV update formula, is applied to the vector and tensorial
quantities in a component-wise manner. This is not a problem for the velocity
field, but the distortion field requires more attention due to its rotational
component. From our experience, an improper treatment of the rotational
matrix Ra can lead to artificial stresses and other numerical artifacts.

It is clear that even in the case of a simple component-by-component linear
combination of two rotational matrices, such as that presented by an average
operator for example, the resulting matrix is a rotational matrix only in the
case of infinitesimal rotations. In this case, in fact, by defining a rotation vector
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δϑ, an infinitesimal rotation about an arbitrary axis can be written in the
following matrix form by neglecting second order terms of a series expansion,

Rδϑ = I + (δϑ · n̂x Mx + δϑ · n̂y My) ≡ I + δϑ ·M (3.171)

with

Mx =

 0 0 0
0 0 −1
0 1 0

 My =

 0 0 1
0 0 0
−1 0 0

 (3.172)

where M is called the infinitesimal rotation generator as it can be used to
generate any infinitesimal rotation matrix Rδϑ when combined with the rotation
vector δϑ. It is straightforward to see how to combine two infinitesimal rotations
δϑ1 and δϑ2, and it turns out that the order in which infinitesimal rotations
are applied is irrelevant,

Rδϑ12 = (I + δϑ1 ·M) (I + δϑ2 ·M)

'I + (δϑ1 + δϑ2) ·M
(3.173)

where in the last line we have dropped terms quadratic in the infinitesimal
rotation angles again.
The equation (3.173) implies that the correct way to combine infinitesimal

rotations is by the addition of angle vectors, which justifies at the infinitesimal
level a component-by-component discretization of the distortion field. However,
the additivity rule does not in general hold for finite rotations. For example,
we have observed in our numerical experiments, in which the solution of
the distortion field is not particularly smooth, that simple averaging of the
rotational matrices results in artificial stresses. This happened in tests such
as the lid-driven cavity test, Section 4.2.5 if no special treatment is applied.
In this test, the boundary conditions produce a velocity gradient singularity
at the corners of the cavity, which results in a locally discontinuous distortion
field. On the other hand, no issue arises in the double shear layer problem,
Section 4.2.4. For this reason, a different approach would be required to
describe the rotational component of the information encoded by Aa, by means
of a auxiliary mathematical representation of these quantities that allows a
component-by-component treatment even for rotations of finite amplitude.
Thus, in this paper, we propose a simple but effective approach to address

this issue. It employs the efficiency of the Chiocchetti semi-analytical solver
[34] in the infinitely stiff relaxation regime, τ e

a → 0. In particular, in this limit,
the strains encoded in the metric tensor Ga dissipate almost instantaneously,
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resulting in a distortion field that is represented by a pure rotation matrix, i.e.
Aa = Ra and Ga = I.

Therefore, the idea of decoupling of the evolution of the two types of infor-
mation encoded in Aa (at least numerically) is straightforward. This can be
done by adding an auxiliary evolution equation (3.161) for a new auxiliary
distortion field Ãa subject to a relaxation timescale τ̃ e

a → 0. This auxiliary
distortion field Ãa carries only the information about the rotational component
of the original distortion Aa, i.e. Ãa = R̃a. Moreover, thanks to this almost
instantaneous relaxation (numerically we use τ̃ e

a = 10−14), the artificial stresses
that may arise from the combination of finite amplitude rotations are dissipated
instantaneously, both at the level of the predictor, Section 3.2.3, and at the
level of the final solution at each time-step, Section 3.2.4 and Section 3.2.5.

On the other hand, due to this decoupling, the original distortion field Aa at
each time step carries only the information about the strains, i.e. Aa = G1/2

a

and Ra = I, both at the level of the predictor and the solution updated at time
tn+1. Therefore, expression (3.168), in the source term integration process for
the original distortion field Aa, should be rewritten as

A(2)
a = I

(
G(2)
a

)1/2
. (3.174)

3.2.7 Final solution for the complete problem
The final solution Qn+1

i,j of the complete problem (3.102) can now be retrieved
by considering the solution of the homogeneous problem, the contribution
of the source terms, and the remarks on rotational matrices discussed above.
Thus, including formally the auxiliary phase distortion field Ãa to the set of
state parameters, the final solution of each phase a = 1, 2, 3 reads

Qn+1
a,i,j =

(
%(1)
a ,u(2)

a , s(2)
a , α(1)

a ,A(3)
a , Ã(2)

a

)
i,j
, (3.175)

where the complete phase distortion field A(3)
a is computed as

A(3)
a = R̃(1)

a

(
G(2)
a

)1/2
. (3.176)
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This chapter provides and discusses an extensive collection of numerical ex-
periments in order to validate both numerical methods presented in Section 3.
The results consist of a large set of validation benchmarks and application to
multiphase problems.
The first section will present the computational results, published in [69,

70], obtained with the semi-implicit finite volume scheme presented in Section
3.1 for solving a simplified BN model. As we shall see, this numerical sheme
can be applied for the solution of complex non-hydrostatic free-surface flows
interacting with moving solid bodies.
The following Section will provide some rather unique results yet to be

published [71], related to the behavior of multiphase flows for more than
two phases, which make clear the potential inherent in a description of the
continuum through a unified model of compressible multiphase fluid and solid
mechanics, as well as constituting a step forward in terms of its applicability
to real problems.
Throughout this chapter, unless explicitly noted, we adopt SI units for all

quantities.

4.1 Semi-implicit FV schemes for incompressible
two-phase flows

Throughout this section, the numerical scheme presented in Section 3.1 is
validated on a set of classical benchmark problems for incompressible Navier-
Stokes equations, ranging from the Blasius boundary layer, the Hagen-Poiseuille
flow and the lid-driven cavity test to more challenging free-surface problems
where the liquid phase interacts with moving solid bodies. It is interesting to
note that, most of the tests are formulated in such a way that two phases, the
solid and liquid phase, are always present. This is to test the ability of the
method to automatically solve two-phase flows, i.e. two phases are simulated
quite often in order to asses that the boundary conditions between phases are
automatically well imposed by solving the PDE.

In all the tests, the time step ∆t is computed according to the CFL condition
expressed in (3.92), based on the liquid and solid velocity and on the kinematic
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viscosity, assuming a CFL number set to 0.9. Moreover, the gravity is assumed
to be constant and equal to g = g (0,−1)T with g = 9.81, (unless where
specified differently) and it is recalled that p was defined, in Section 3.1.1,
as the normalised pressure, i.e. the pressure divided by the density, which
is assumed to be constant and equal to ρ = 1000. Finally, after conducting
various numerical tests, it was found that it is enough to assume the scale for
the velocity relaxation kinetics equal to λ = 10−4.
It should also be specified that, in the tests involving the solid phase, we

choose a subgrid consisting of 2×2 subelements for each principal control volume
Ωi,j to evaluate the decoupled advection of the solid phase.

4.1.1 Dambreak problems
The so-called dambreak problem is a common test for numerical methods
applied to the shallow-water equations. It consists of removing a vertical
weir instantly, which separates two different piecewise constant states of water
from each other. In the initial stages of dambreak flow, the shallow water
assumption of small vertical velocities and accelerations does not hold. For
this reason, it is of interest to apply a more complete model that is able to deal
with non-hydrostatic flows. First, in this section the new numerical method
proposed in this paper is run on a mesh that consists of only vertical layer and
thus simplifies to a consistent and conservative discretization of the hydrostatic
one-dimensional shallow water equations. The obtained results are compared
against the exact solutions of the shallow water equations, both, for the wet
bed and for the dry bed case. For exact solutions of the Riemann problem of
the shallow water equations see [170].
Then, in 2D, it is interesting to compare the behavior at small times and at
large times with each other. For an experimental study of the initial instants
of dambreak flow, see e.g. [158].

Hydrostatic simulations with only one vertical layer

The two-dimensional conservative method is simplified to a discretization of the
hydrostatic one-dimensional equations by taking the vertical resolution ∆y as
large as the maximum vertical flow height, as illustrated in Section 3.1.8. This
one-dimensional resulting method is used to solve the following 1D Riemann
problems, which represent the dambreak problem over a wet bed and over a
dry one. The exact solution of the dambreak problem over a dry bed has been
derived by Ritter [142] in 1892.
The tests are run over a fixed spatial domain Ω = [−1; 1] × [0; 1] covered

by a uniform grid consisting of 100× 1 cells, with mesh spacing ∆x = 0.01 in
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the x-direction, while in the vertical y-axis, oriented upward along the gravity
direction, a single cell of size ∆y = 1 is taken. The simulations are carried
out using a CFL number of CFL = 0.9, based on the maximum eigenvalue of
the system, until the final time. Wall friction and fluid viscosity are neglected.
The initial conditions of the following Riemann problems are given by

αs(x, y, 0) = 0, vl(x, y, 0) = ul(x, y, 0) = 0, (4.1)

while initial volume fraction and pressure are defined as follows

αl(x, y, 0) =
{
αlL if x > 0,
αlR if x ≤ 0,

p(x, y, 0) =
{
αlLβ if x > 0,
(αlR − 0.5) ∆y g if x ≤ 0,

(4.2)

where β = g∆y/2, as defined in Section 3.1.2. For the first Riemann problem
(RP1) the initial left and right volume fractions are αlL = 1, αlR = 0.1; for the
second Riemann problem (RP2) are αlL = 1, αlR = 0.

The results obtained with the new method are depicted for RP1 in Fig. 4.1
and for RP2 in Fig. 4.2. These figures clearly show that the problems are
solved correctly even in the numerically more complex case over a dry bed. In
Fig. 4.1 it is possible to observe that the shock is located in the right position
and the post-shock values are also correct. Furthermore, it is possible to note
the typical numerical dissipation (numerical viscosity) at the waves, which,
however, is reasonably low for the numerical method used here, since the shock
wave is well resolved. In Fig. 4.2 the Riemann problem over a dry bed is
shown and compared against the exact solution of the shallow water equations
obtained by Ritter [142]. In this case, there are no shock waves involved and
the flow can be considered as smooth.

Fig. 4.1. Exact and numerical solutions evaluated with the conservative method for the
(RP1), at time 0.25 s.
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Fig. 4.2. Exact and numerical solutions evaluated with the conservative method for the
(RP2), at time 0.2 s.

Non-hydrostatic simulations: dambreak over a dry bed

In order to preserve the non-hydrostatic behaviour of the flow, it is sufficient to
take the vertical resolution ∆y smaller than the maximum vertical flow height.
First, the classical dambreak over a dry bed is presented. As mentioned

before, the exact solution to this problem, using the hydrostatic shallow-
water model, is the Ritter solution. The rectangular computational domain is
Ω = [−5; 5]× [0; 2]. For this test the initial conditions are given by

αs(x, y, 0) = 0, vl(x, y, 0) = ul(x, y, 0) = 0, p(x, y, 0) = g y

αl(x, y, 0) =
{

1 if x ≤ 0 ∨ y < 1.5,
0 otherwise,

(4.3)

The domain is covered by a uniform grid consisting of 1000×200 cells, with mesh
spacing ∆x = 0.01, ∆y = 0.01 in both the x-direction and y-direction. The
boundary conditions are reflective wall on all the borders of the computational
domain Ω. Wall friction and fluid viscosity are neglected. The results obtained
at time t = 0.5 with our new method proposed in this paper are presented in
Fig. 4.3. The results are compared against the exact solution of the shallow
water equations obtained by Ritter [142] for each time. At early times, the
non-hydrostatic results are in good agreement with the previously computed
results by Dumbser [49], which have been compared with the results obtained
by the smooth particle hydrodynamics (SPH) scheme of Ferrari et al. [68]. It
can be shown that the free-surface profile tends to be a good approximation
of the analytical solution of the one-dimensional shallow water equations only
as the spatial and the temporal domain increase. This is in total agreement
with the fact that in the initial times, the vertical acceleration, as well as the
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Fig. 4.3. Numerical solutions for free surface profile and pressure field, evaluated with the
2D non-hydrostatic conservative methods for the dambreak into dry bed problem,
at time t = 0.5. The volume fraction is shown at the top and the pressure field
contours at the bottom. A red line shows the solution obtained under the shallow
water assumption.

pressure gradient in the vertical direction, are the main component of the flow,
and thus the hydrostatic pressure assumption of the shallow water model is
not verified. This initially strongly non-hydrostatic behaviour can also be seen
in the pressure field depicted in Fig. 4.3. Here, the pressure field turns sharply
to the x-axis until it becomes orthogonal to it.

Non-hydrostatic simulations: dambreak into a wet bed

Now, a dambreak into a wet bed case is considered. The rectangular compu-
tational domain is Ω = [−7.5; 5] × [0; 2]. The fluid is initially at rest and is
confined in both the left and right parts of the domain, i.e. the the initial
conditions are given by

αs(x, y, 0) = 0, vl(x, y, 0) = ul(x, y, 0) = 0, p(x, y, 0) = g y

αl(x, y, 0) =
{

1 if x ≤ 0 ∨ y < 1.5 or x > 0 ∨ y < 0.75,
0 otherwise,

(4.4)

The domain is covered by a uniform grid consisting of 1000×200 cells, with
mesh spacing ∆x = 0.01 in the x-direction, ∆y = 0.01 in the y-direction and
the computation is carried out until the final time tend = 1.
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Fig. 4.4. Numerical solutions for free surface profile and pressure field, evaluated with the
2D non-hydrostatic conservative methods for the dambreak into wet bed problem,
at time t = 1.0. The volume fraction is shown at the top and the pressure field
contours at the bottom. A red line shows the solution obtained under the shallow
water assumption.

Experimental observations [96] show that wave breaking can occur in a
dambreak into a wet bed. However, the higher the water level on the right side
of the dam, the smaller becomes the breaking wave. In this test case, the level
of the right layer of water is quite high, so at most, a very small breaking wave
can occur.
At the time t = 1.0, in Fig. 4.4, small-scale free surface waves are visible

in the constant region between the shock and the rarefaction wave. Again,
the results are in agreement with those previously obtained by the two-phase
flow model of Dumbser [49] and by the SPH method of Ferrari et al. [68]-
[67]. Furthermore, the solution is even closer to the one achieved with the
SPH method. In fact, smaller surface waves are predicted by the latter and
particularly it shows a small breaking of waves at the moving right front. In
Fig. 4.4 the volume fraction shows a tendency for the crest of the wave to
break via smaller volume fractions.

We emphasize that at the initial stages the obtained solution does not agree
with the solution of the shallow-water model, represented by a red line in Fig.
4.4. This disagreement, for short times, is due to the fact that the hydrostatic
shallow water model neglects vertical accelerations, which are quite important
in the early stages of dambreak flow.
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4.1.2 The first problem of Stokes

The first problem of Stokes [154] is one of the few test problems for which an
exact analytical solution of the unsteady Navier-Stokes equations is known.
This problem consists of the time-evolution of an infinite incompressible shear
layer. The computational domain is Ω = [−0.5; 0.5]× [−0.5; 0.5], with velocity
imposed on the left and right boundaries and periodic boundary conditions
along the y-direction. The initial conditions of the problem are given by

αl(x, y, 0) = 1, αs(x, y, 0) = 0, p(x, y, 0) = β,

ul(x, y, 0) = 0, vl(x, y, 0) =
{

+0.1 if x > 0,
−0.1 if x ≤ 0,

(4.5)

where β = g∆y/2 as defined in Section 3.1.2. Simulations are performed
assuming three different kinematic viscosities ν = 10−2, ν = 10−3 and ν = 10−4.

The exact analytical solution of the incompressible Navier-Stokes equations
for the velocity component u is given by the following error function

v(x, y, t) = v(x, y, 0) erf
(1

2
x√
νt

)
(4.6)

The computational domain is covered by a uniform rectangular grid consisting
of 100 × 100 elements, with mesh spacing ∆x,∆y = 0.01 in both x and y
directions. The comparison between the computational results along the line
y = 0, up to the final time t = 1.0, and the exact solution of the first problem
of Stokes for the Navier-Stokes equations are depicted in Fig. 4.5. Even with a
quite coarse mesh the numerical solution is in good agreement with the exact
solution, also by varying the kinematic viscosity.

Fig. 4.5. 1D cut through the the computational domain at position y = 0. Exact (solid
line) and numerical solution of the first problem of Stokes for the Navier-Stokes
equations for the velocity component u at time = 1. Different viscosities are
simulated, from left to right, ν = 10−2, ν = 10−3 and ν = 10−4.
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4.1.3 2D Taylor-Green vortex
The Taylor-Green vortex is another test problem for which an exact solution of
the incompressible Navier Stokes equations with periodic boundary conditions
can be found. This test is widely used for testing the accuracy of numerical
schemes, because it has a smooth unsteady analytical solution, which is a
two-dimensional decaying vortex. In other words, the initial sinusoidal velocity
field is smoothed over time by the viscous stresses. In a two-dimensional space,
the analytical solution reads

u(x, y, t) = sin(x) cos(y)e−2νt,

v(x, y, t) = − cos(x) sin(y)e−2νt,

p(x, y, t) = 1/4(cos(2x) + cos(2y))e−4νt.

(4.7)

The computational domain is Ω = [0; 2π]2, with periodic boundary conditions
on all the boundaries. In order to conduct a convergence study, the initial
condition of the problem is given by the exact solution (4.7), assuming t = 0,
and the kinematic viscosity is assumed to be ν = 10−1. The standard way to
get the numerical order of accuracy is to refine the mesh spacing and to look at
the ratio of the obtained numerical errors. Four simulations were carried out
and Tab. 4.1 lists the meshes used, denoted by Mi with i = 1, ..., 4. For these
tests a final time tend = 0.1 is considered and the time step ∆t is determined
following the CFL condition.

The computational results, for the coarsest mesh M1, are depicted in Fig. 4.6,
where the pressure contour and the velocity field are represented. A comparison

Fig. 4.6. Numerical solution for the Taylor-Green vortex at the final time t = 0.1, for
the coarsest mesh M1 and with a viscosity of ν = 10−1 (left). 1D comparison
of the velocity components u, v, with the exact solution of the incompressible
Navier-Stokes equations along the x and the y axis (right).
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of the two velocity components with the exact solution of the incompressible
Navier-Stokes equations is shown on the right. A simple qualitative observation
shows excellent agreement between the numerical solution and the reference
solution, for both velocity components.
The L1 and the L2 norms of the error and the corresponding convergence

rates are presented in Tab. 4.1 for the variable u, and are defined as follows

E(u)=||u−uMi ||(Lp(Ω)), OLp(uMi/Mj
)= log

(
E(u)Mi

E(u)Mj

)
/ log

(
hMi

hMj

)
, (4.8)

where p denotes the order of the norm. The calculated convergence rates,

Mesh Elements EL1 OL1 EL2 OL2

M1 50x50 4.5913e-02 8.8420e-03
M2 100x100 1.2508e-02 1.87 2.4232e-03 1.87
M3 200x200 3.3405e-03 1.90 6.5442e-04 1.89
M4 400x400 8.8514e-04 1.92 1.7394e-04 1.91

Tab. 4.1. Mesh name, mesh elements, L1 and L2-error norms and their respective numerical
convergence rates, OL1 andOL2 , for the variable u, applied to the 2D Taylor-Green
vortex.

corresponding to the two norms, are also shown in the Tab. 4.1, and, as
expected, the numerical scheme, here presented, essentially achieves second
order of accuracy.

4.1.4 Blasius boundary layer

The boundary layer equations of Prandtl [137] were solved for the first time in
the particular case of a steady laminar boundary layer over a flat plate by Blasius
in [10]. For an overview of of boundary layer theory, see the textbook [154].
Blasius proposed a similarity solution that reduces the boundary layer equations
to the solution of a third order non-linear ordinary differential equation, which
reads

f ′′′ + ff ′′ = 0, (4.9)

where the prime denotes derivation with respect to η, which is the introduced
self-similar variable η = y

√
U

2νx . Then the boundary conditions which have
to be imposed are the no-slip condition, the impermeability of the wall and
the free stream velocity outside the boundary layer, u(x, 0) = 0, v(x, 0) = 0
and u(x,∞) = U , where U is the free stream velocity and it is a constant.
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This ODE can be easily solved numerically, e.g. the reference solution in this
paper is computed by a Runge-Kutta scheme of order 4 in combination with a
classical shooting technique.

The computational domain is Ω = [−0.004; 0.1]× [−0.5; 0.5], hence it includes
the solid wall, and is discretized with 2000× 208 rectangular elements. The
initial condition of the problem for each phases, are given by

αl(x, y, 0) =
{

1 if x > 0,
1e−14 if x ≤ 0,

αs(x, y, 0) =
{

1e−14 if x > 0,
1 if x ≤ 0,

p(x, y, 0) = pout,

usi (x, y, 0) = 0, v(x, y, 0) = 0, u(x, y, 0) = 1.

(4.10)

The kinematic viscosity is assumed to be very low ν = 10−5, which leads to a
very thin boundary layer and then the Reynolds number of the flow is Re = 105.
At the right and top outlet boundary condition are set by imposing a constant
pressure pout = 50β while at x = 0 the inflow boundary condition is given
by the initial conditions. It is important to note that it is not necessary to
impose the no-slip boundary conditions along the flat plate, i.e. along the solid
phase; the relaxation source term and the numerical method automatically
impose these boundary conditions between the two phases in the correct way
by solving the PDE. As the shape of the solid phase becomes more complex,
this feature of the method will be of primary importance.
In Fig. 4.7 (left), the computational results obtained for the horizontal

velocity field u, computed at time t = 10, are shown, together with a velocity
profile at x = 0.1. A comparison of this numerical velocity profile against

Fig. 4.7. Numerical solution for the laminar boundary layer over a flat solid plate (dark
blue), with Re = 105, at the final time t = 10.0. The horizontal velocity u contours
and a velocity profile in x = 0.1 are shown (left). Comparison of the numerical
velocity profile at x = 0.1 against the Blasius reference solution (right).
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the Blasius reference solution is made in Fig. 4.7 (right). The solid phase,
characterized by us(x, y, t) = vs(x, y, t) = 0, is shown in Fig. 4.7 in dark blue.
A very good agreement between these two solutions can be observed, despite
the fact that the no-slip boundary conditions along the flat plate is not imposed
explicitly but just via the presence of a solid volume fraction for y < 0 and
the stiff velocity relaxation source terms present in the PDE. This confirms
the validity of the proposed numerical method to compute boundary layers
correctly and thus to compute viscous incompressible two phase flows in a
correct way.

4.1.5 Planar Hagen-Poiseuille flow
The Hagen-Poiseuille flow describes a steady-state velocity and pressure dis-
tribution for a viscous fluid in laminar flow between two plates whose length
L is much greater than the constant distance d separating them. The flow
is driven by a constant pressure gradient −∆p prescribed by the boundary
conditions, which is balanced by the viscous drag along both plates. This test,
which satisfies the Hagen-Poiseuille flow, has a well known parabolic solution
for the horizontal velocity profile u, given by

u = 1
2

∆p
νL

(
d2

4 − y
2
)
. (4.11)

This test is simulated on a domain Ω = [−2.5; 2.5] × [−0.3; 0.3] which is
discretized with 1000× 120 rectangular elements, and the initial condition for
each phases are given by

αl(x, y, 0) =
{

1 if |x| ≤ 0.25,
1e−14 if |x| > 0.25,

αs(x, y, 0) =
{

1 if |x| > 0.25,
1e−14 if |x| ≤ 0.25,

p(−2.5, y, 0) = 10β + 2.4, p(2.5, y, 0) = 10β,
usi (x, y, 0) = ui(x, y, 0) = 0.

(4.12)

The kinematic viscosity is assumed to be ν = 10−2. Therefore, the pressure
gradient imposed between the left inflow and the right outlet is ∆p = 2.4.
These conditions, according to the Hagen-Poiseuille flow, result in a mean flow
velocity of ū = 1 and a maximum flow velocity of umax = 1.5. At the left
inflow and at the right outlet the boundary condition are given by the initial
conditions, whereas, again, it is not necessary to impose the no-slip boundary
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Fig. 4.8. Numerical solution for the laminar flow between two solid plates (dark blue)
at a final time of t = 50.0. The horizontal velocity u contours is shown (left).
Comparison of the numerical velocity profile at x = 0.0 against the reference
solution of Hagen-Poiseuille flow (right).

conditions along the flat plates, i.e. along the solid phase. The boundary
conditions are implicitly imposed via the stiff velocity relaxation source terms.

On the left-hand side of the Fig. 4.8 shows the computational results obtained
for the horizontal velocity field u, computed at time t = 50, while in the right one
a comparison of this numerical velocity profile against the parabolic reference
solution is made. The numerical solution is in good agreement with the reference
solution of the Hagen-Poiseuille flow. The laminar flow is very well reproduced
and the boundary condition between the two phases are well resolved too.

4.1.6 Two dimensional lid-driven cavity problem
The lid-driven cavity is a fully two-dimensional classical reference problem for
numerical methods applied to the incompressible Navier-Stokes equations, see
[76], [161], [60]. In this test, a solid square cavity is considered, opened at the
top and containing liquid which is driven by a lid imposed at the top.
This test is simulated on a domain Ω = [−0.55; 0.55] × [−0.55; 0.5] which is
discretized with 220× 210 rectangular elements, and the initial condition for
each phases are given by

αl(x, y, 0) =
{

1e−14 if |x| > 0.5 or y < 0.5,
1 otherwise,

αs(x, y, 0) =
{

1 if |x| > 0.5 or y < 0.5,
1e−14 otherwise,

p(x, y, 0) = 10β, usi (x, y, 0) = 0, ui(x, y, 0) = 0,

(4.13)

where β = g∆y/2, as defined in Section 3.1.2. The kinematic viscosity is
assumed to be ν = 10−2. The lid velocity is assumed to be equal to u(x, 0.5, t) =

112



4.1 Semi-implicit FV schemes for incompressible two-phase flows

Fig. 4.9. Numerical solution for the lid driven cavity flow at time t = 10. The Reynolds
number of the flow is Re = 100. The velocity module ||u|| contour plot and
streamlines are shown (left). Comparison of 1D cuts of the velocity field against
the Navier-Stokes reference solution of Ghia et al. [76] (right)

1. Therefore, the Reynolds number of the flow is Re = 100. Also in this case
it is not necessary to impose the no-slip boundary conditions along the solid
phase square cavity explicitly, but they are automatically taken care of by the
stiff velocity relaxation source term.
In Fig. 4.9, the computational results are shown and a comparison against

the Navier-Stokes reference solution of Ghia et al. [76] is provided at time
t = 10. In Fig. 4.9 (left) the velocity modulus contours are shown, while
in dark blue the solid square cavity can be distinguished. It is important
to emphasize that the description of the two phases has still been correctly
resolved, automatically imposing the right boundary conditions. Again the
numerical solution is in very good agreement with the reference solution.

4.1.7 Viscous flow over a circular cylinder
In this section, the viscous flow over a circular cylinder is considered for different
Reynolds numbers. In previous work [69], an inviscid flow around the cylinder
has been presented, in order to obtain a steady potential flow. Here, the viscous
case is considered in order to observe the formation of the von Kármán vortex
street.

The computational domain is taken sufficiently large Ω = [−3; 15]× [−10; 10],
to ensure that the boundary conditions affect the flow close to the cylinder the
least. In order to obtain accurate results, unstructured meshes, see for instance
as [161], are usually used to ensure a good representation of the geometry of
the circular cylinder. However, in this work a simple uniform Cartesian grid is
used and this leads to a particularly demanding test, since the geometry is only
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resolved via the diffuse interface approach. A rather large domain relative to
the circular cylinder is required and at the same time a sufficiently refined grid is
needed to represent the object correctly and to ensure that numerical viscosity
is as low as possible. The domain is discretized with 720 × 800 rectangular
elements. The initial condition for each phases are given by

αl(x, y, 0) =
{

1e−2 if
√
x2 + y2 ≤ 1,

1 otherwise,

αs(x, y, 0) =
{

1− 1e−2 if
√
x2 + y2 ≤ 1,

0 otherwise,
p(x, y, 0) = pout, usi (x, y, 0) = 0, v(x, y, 0) = 0, u(x, y, 0) = uL,

(4.14)

where pout is the pressure outside the domain while uL is the inlet velocity,
taken with the value 0.5. Different kinematic viscosity values are assumed to
obtain simulations related to different Reynolds numbers, Re = 75, 100, 125, 150.
At the upper, lower and right boundaries, the outlet boundary conditions are
set by imposing a constant pressure pout = 50β, while at the left boundary the
velocity uL is prescribed. It is not necessary to impose the no-slip boundary
conditions along the solid phase circular cylinder.

As a first result, in Fig. 4.10 the von Kármán vortex street obtained at time
t = 300 is shown for a Re = 100 flow. Here, to better visualize the typical
structures of this viscous flow, the contour plot of a tracer added to the in-flow
is shown. Moreover, to provide a qualitative comparison for this numerical

Fig. 4.10. Numerical solution for the laminar viscous flow past a circular cylinder at time
t = 300, with Re = 100. The contour plot represents the concentration of the
added tracer.
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test, the Strouhal number of the vortex shedding can be computed as

St = fL

u
, (4.15)

where f is the frequency of the oscillating flow mechanisms, L is the character-
istic length of the cylinder, namely the diameter and u is the modulus of the
flow velocity. The vortex-shedding frequency can be evaluated from the time
series of the drag and lift coefficients. In fact, for a solid phase immersed in a
viscous liquid phase, a net force can be evaluated from the pressure differences
due to the flow. The lift component of this force is the one perpendicular to
the incoming flow and the drag is the one parallel to the flow direction. From
these two components the lift and drag coefficients can be evaluated, which
read

Cl = 2Fl
ρAu2 and Cd = 2Fd

ρAu2 (4.16)

where Fd id the drag force, namely the resulting pressure force along the
x-direction, and Fl the lift pressure force, A is the projected cylinder area and
u again is the velocity of the oncoming flow.
In Fig. 4.12 the lift and drag coefficients are represented for Re = 100.

It is interesting to see how this numerical method is able to evaluate in a
smooth way the pressure forces acting on the solid phase, and how the von
Kármán vortex street develops over time to reach a periodic signal with a
constant frequency and amplitude. This is the vortex-shedding frequency
from which the Strouhal number of this oscillating signal can be computed.

Fig. 4.11. The lift coefficient Cl for the solid circular cylinder immersed in a viscous flow.
The Reynolds number of the flow is Re = 100.
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Fig. 4.12. The drag coefficient Cd for the solid circular cylinder immersed in a viscous flow.
The Reynolds number of the flow is Re = 100.

Fig. 4.13. Strouhal-Reynolds number relationship for the present numerical method com-
pared with the experimental data of Williamson and Brown [175] and the numerical
result of Tavelli and Dumbser [161].

Carrying out several simulations with different Re, it is possible to recover the
Strouhal-Reynolds number relationship.
Figure 4.13 shows a qualitative comparison between the numerical results

obtained and some reference solutions, which are those obtained with the
staggered space-time DG method [161] and the experimental data of Williamson
and Brown [175]. It is possible to see that the Strouhal-Reynolds number
relationship obtained with the numerical method presented in this paper is
in agreement with experimental data and other numerical method. However,
a small discrepancy, which becomes more relevant as the Reynold number
increases, can be seen from the reference solutions. This is due to numerical
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viscosity, in fact achieving mesh convergence is computationally expensive for
such a large domain using a uniform Cartesian grid.

4.1.8 Sloshing in a moving tank

In these last tests, some computational results are shown for incompressible
two-phase flow problems, such as water flows interacting with moving solids
and vacuum. In particular, this test considers the sloshing motion of a liquid
phase in a partially filled solid tank, i.e. a free-surface flow problem in a
moving solid geometry. The resulting flow is quite complex, characterized
by the presence of high-amplitude oscillations and wave breaking, thus the
non-hydrostatic effects cannot be neglected. Furthermore, in order to solve
such a problem, a numerical method is required that is able to deal with the
motion and interaction of two phases or with moving geometries. Actually, the
most common method to solve this kind of problem is to use mobile geometries,
i.e. to move the mesh according to the movement of the sloshing tank, as it
has been done, for example, in [21, 50]. A thorough description of the testcase,
as well as references to analytical studies and numerical results can be found in
[21, 50] and references therein. Laboratory measurements of the wave height
and hydrodynamic pressure have also been collected and reported, such as
those carried out by Faltinsen et al. [59].
As introduced earlier, to solve this problem through the numerical method

presented in this paper, the dynamics of the liquid phase and the solid phase
motion are decoupled. By solving the solid advection equation (3.1), with a
prescribed solid velocity field usk, one obtains the new solid volume fraction
αs distribution, which is needed in costitutive relationship of the liquid phase
volume (3.22) and in the relaxation source term. From the solution of (3.1) it
is therefore possible to solve the system for the liquid phase (3.10).
The simulations presented in this paper refer to the numerical solutions

obtained in [21, 50], which in turn refer to the tests presented in the work of
Shao et al. [157], who presented an improved SPH method for the modelling
liquid sloshing dynamics. The numerical methods presented in these papers,
although different, include some kind of turbulence model in order to properly
describe the effects of turbulence, since in the tests that will be addressed, the
Reynolds number is of the order of Re = 106. However, in the semi-implicit
finite volume scheme presented in this paper, a turbulence model has not been
implemented, assuming that the eddy viscosity, as a rough approximation, is
proportional to the numerical viscosity (ILES).
In this article, an idealized two-dimensional case is considered, where the

tank, i.e. the solid phase, moves with a purely horizontal sinusoidal velocity
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and the vertical component of the velocity is zero, namely

us = (−ωδxA sin(ωt), 0) (4.17)

where ω = 2π
T is the frequency of the oscillation and T is the period, while δxA

represent the amplitude of the horizontal tank displacement which is assumed
constant for all the tests and equal to δxA = 0.032. The computational domain
is taken large enough to include the experimental material and its displacements
used for the laboratory measurements carried out by Faltinsen et al. [59], and
large enough to describe the tank with a solid phase distribution, thus is taken
equal to Ω = [−1 + δxA; 1 + δxA]× [−0.1; 1.2].
The initial condition for each phases are given by

αl(x, y, 0) =
{

1 if y ≤ hw,
1e−4 otherwise,

αs(x, y, 0) =
{

1− 10−4 if |x− δxA| ≥ 0.865 ∨ y < 0,
0 otherwise,

p(x, y, 0) = β

(
2 αl

(1− αs) − 1
)
, ui(x, y, 0) = 0,

(4.18)

therefore the fluid and the tank are set to be initially at rest and hw is the
initial free surface elevation. We emphasise that in all free-surface tests, a
two-phase flow containing a liquid phase, a solid phase and the surrounding
void is considered, thus the sum of the volume fractions is not equal to 1. The
kinematic viscosity is assumed to be ν = 10−6.

The domain is discretized with 720× 800 rectangular elements. Also in this
test, the classical no-slip wall boundary conditions for the liquid phase, on the
solid one, is automatically well imposed via the stiff velocity relaxation source
terms. Three simulations were carried out with three different parameter pairs,
namely the first pair of parameters T = 1.3 and hw = 0.6, the second one
T = 1.5 and hw = 0.6 and the last pair T = 1.875 and hw = 0.5.
The sloshing dynamics, for the parameter pairs T = 1.5 and hw = 0.6, is

depicted in Fig. 4.14 by nine instants representing a period of oscillation of the
solid phase, namely the solid tank. Here, it is possible to see the presence of
high-amplitude oscillations of the free surface occurring as the solid geometry
moves, and the solid phase motion is also clearly detectable. Figure 4.15 shows
a comparison, for the first pair of parameters T = 1.3 and hw = 0.6, between
the computed numerical solution, the experimental data provided by Faltinsen
et al. [59] and the numerical results of Dumbser et al. in [50]. ∆H is the
perturbation of the free surface elevation with respect to the initial at rest
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Fig. 4.14. The sloshing dynamics represented with the aid of the liquid volume fraction
contours, for the parameter pairs T = 1.5 and hw = 0.6, at times 3.0, 3.2, 3.4, 3.6,
3.8, 4.0, 4.2, 4.4 and 4.5 s. The vector lines, shown as arrows, show the velocity
field of the mixture. A red asterisk on the left indicates the probe point.

condition. The numerical results were collected at the same probe point used
in the two reference papers, which is fixed with respect to the solid phase,
hence it moves together with the tank. This point is located 0.05 m away from
the left wall and ∆H is evaluated at each time step as

∆H =

∑
j

αlip,jdy

− hw (4.19)

where ip is the discrete index, in the x-direction, associated to the probe point
which is moving horizontally according to the solid phase. It can be seen that
the liquid phase reacts with a certain inertia to the movement of the solid phase.
As the solid phase starts to move towards the left, the free surface on the left
tends to decrease and then increase as the solid phase slows down to change
direction around 1.2 s. The liquid phase keeps moving following the described
periodic cycle of the solid phase with a free surface perturbation which is
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4 Numerical results

Fig. 4.15. Comparison for the sloshing in a moving tank test between the computed numerical
solution, the experimental data provided by Faltinsen et al. [59] and the numerical
results of Dumbser et al. in [50]. For the first pair of parameters T = 1.3 and
hw = 0.6.

in overall good agreement with the experimental data and the numerically
computed results of Dumbser et al. in [50].
Two more comparisons, for the second pair T = 1.5 and hw = 0.6 and the

last pair T = 1.875 and hw = 0.5 of parameters, are depicted in Fig. 4.16. Here
it can be noticed how the amplitude of the wave progressively increases over
time, due to a resonance effect. Again, the results are in good agreement with
the experimental data, and it can be seen that the resonance phenomenon is
well captured in the case of the test on the left in Fig. 4.16 compared to that
obtained by an explicit method in [50].

Fig. 4.16. Comparison for the sloshing in a moving tank test between the computed numerical
solution, the experimental data provided by Faltinsen et al. [59] and the numerical
results of Dumbser et al. in [50]. For the second pair of parameters T = 1.5 and
hw = 0.6 and the last pair T = 1.875 and hw = 0.5.
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4.1.9 Water entry of a symmetric wedge with prescribed velocity
In this last numerical simulation, a solid-fluid coupling problem is treated again
in a free-surface flow context. In this test case a symmetric wedge impacting
the free surface with prescribed velocity is considered. Indeed, the water entry
of a solid through the free surface is also a widely investigated field in the
literature, since the knowledge of the pressure field acting on objects is a
fundamental criterion for their design. In addition, being able to evaluate
the pressure field acting on an object with sufficient accuracy could, in future
method development, allow the dynamics of the solid phase to be evaluated
directly, rather than imposing an a priori kinematic law.
As for the sloshing phenomena studied in the previous section, the water

entry of a two-dimensional symmetric wedge has been investigated both through
analytical studies and numerical simulations, which are validated by comparing
with experimental data, see e.g. the experiment which has been carried out by
Zhao et al. [180] and the SPH method of Oger et al. [123]. Actually, this test
case of a symmetric wedge impacting the free surface, refers to the experiment
carried out by Zhao et al. [180], for which the motion of the wedge, i.e. the
solid phase, was experimentally recorded and reported in Fig. 4.17.
The resulting flow and the solid-liquid interaction in general is even more

complex in this test than in the previous one. Here, the wedge impact against
calm water generates a large free surface deformation, which is followed by the
formation of two jets running out along the edges of the wedge. An important
feature is that the flow separates in a fixed separation point, which corresponds
to the end of the edge, and it can be shown that the flow leaves the edge
tangentially in the initial stages of the flow separation. Then, at a later stages

Fig. 4.17. The vertical drop velocity of the wedge recorded experimentally and prescribed
numerically (left). The geometry of the wedge section having a deadrise angle of
30 degrees (right).
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it will no longer be a jet, gravity will start to play a role and as the wedge
penetrates the liquid the flow separation will also no longer be tangent to the
edge.

Considering pressure, as the wedge enters the water the maximum pressure
will be located along the side at the highest wetted point, whereas after the
flow separates, the pressure value near the separation point drops rapidly
and the maximum pressure moves towards the bottom of the wedge. It is
expected that the numerical method will be able to reproduce these resulting
flow characteristics qualitatively.

The computational domain is taken large enough to include the experimental
material used for the laboratory measurements carried out by Zhao et al. [180],
thus the domain is taken equal to Ω = [−0.5; 0.5] × [−0.5; 0.5]. The initial
condition for each phases, according to the the geometry of the experimental
section, which consider a wedge with a dead-rise angle of 30◦ illustrated in Fig.
4.17, are given by

αl(x, y, 0) =
{

1 if y ≤ 0,
1e−2 otherwise,

αs(x, y, 0) =
{

1− 1e−2 if |x| ≤ 0.25 ∧ y ≥ |x tan(π6 )| ∧ y ≤ 0.25 tan(π6 ),
0 otherwise,

p(x, y, 0) = β

(
2 αl

(1− αs) − 1
)
, ui(x, y, 0) = 0,

(4.20)

therefore, the fluid is set to be initially at rest while the wedge is entering
the water free surface with an initial vertical velocity of vs(x, y, 0) = 6.15 m/s.
In this test, the motion of the wedge, i.e. the motion of the solid phase, is
the drop velocity experimentally recorded by Zhao et al. [180] and reported
in Fig. 4.17; while the horizontal velocity component is assumed to be zero,
i.e. us(x, y, t) = 0 m/s. The domain is discretized with 720× 800 rectangular
elements and periodic boundaries condition are set. The kinematic viscosity is
assumed to be ν = 10−6.
The numerical results, for this impact test, are represented in Figure 4.18.

From the top to the bottom results for three different instants are shown,
namely for t = 0.00437 s, t = 0.0158 s and t = 0.02021 s. From the left to the
right, the liquid volume fraction αl, the pressure field p and a comparison with
the analytical local pressure profile along the wedge boundary of Zhao et al.
[180] are shown. The free-surface evolution, during the water entry of a wedge,
illustrated in Figure 4.18 on the left, shows quite well the formation of two jets
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Fig. 4.18. From the left to the right, the liquid volume fraction αl, the pressure field p and
a comparison with the analytical local pressure profile along the wedge boundary
of Zhao et al. [180] are shown. From the top to the bottom results for three
different instants are shown, namely for t=0.0043 s, t=0.0158 s and t=0.0202 s.

running out along the edges of the wedge. At time t = 0.0158 these two jets
reach the separation point, which corresponds to the end of the edge. It can
be seen that the flow leaves the edge tangentially at this initial stage of flow
separation. Then, at t = 0.0202 it is possible to see that the flow separation
is no longer tangent to the edge and a sort of breaking wave is developed.
This shape of jet is substantially different from the one obtained through the
SPH method of Oger et al. [123], however, it is qualitatively similar to the
experimental illustration given in the article of Zhao et al. [180].

Considering instead the pressure evolution, represented at the centre of figure
4.18 it is possible to observe how the numerical method presented in this article
succeeds in evaluating a much more uniform, symmetrical and smooth pressure
field than the one obtained with the SPH method of Oger et al. [123].

Furthermore, unlike SPH methods, where the estimation of the pressure field
is a complex procedure, mainly in near boundary areas, in this pressure-based
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scheme the pressure field is obtained as directly and naturally as possible, in
every part of the domain. A comparison is shown in the right-hand column of
figure 4.18 with the Zhao’s analytical results, represented with a dash line. The
notation is the same as the one used in the article of Zhao et al. [180], p denotes
the local pressure, po is the reference pressure assumed to be equal to β, vs(t) is
the vertical velocity of the solid phase, z is the vertical coordinate on the wedge
edge, zk the vertical coordinate of the keel and zd of the highest part of the solid
phase. With respect to the first instant t = 0.0043, the pressure profile along
the edge is in good agreement with Zhao’s analytical ones, then for later time
frames the numerical results over-estimate the pressure values especially in the
lower part of the wedge. However, the values are still qualitatively comparable.
As the wedge enters into the water the maximum pressure values are located
along the side at the highest wetted point, whereas after the flow separates,
the pressure value near the separation point drops rapidly and the maximum
pressure moves towards the bottom of the wedge.
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4.2 Explicit FV scheme for compressible multiphase
fluid and solid mechanics

This section provides results that will be published in [71], obtained with
the numerical scheme presented in Chapter 3.2 addressing the reduced SHTC
three phase BN-type model described in Section 3.2.1. The numerical scheme
presented in this work considers the entropy inequalities of each phase, instead
of the energy conservation laws explicitly. This choice was made in order to
make the mathematical model less complex, in fact entropy has a much simpler
dynamics, however, it should be emphasised that the future intention is to
develop a numerical scheme more suited to the model under consideration, i.e.
thermodynamically compatible (HTC) scheme where the fully-discrete energy
conservation is obtained as a mere consequence of the thermodynamically
compatible discretization of the PDEs, see e.g. [1, 25, 168]. Therefore, the
following numerical test problems will also aim to prove that considering the
conservation of phase entropy rather than phase energy leads to a negligible
error and that the scheme is capable of calculating correct solutions for problems
with relatively weak shocks.

Furthermore, the results consist of a wide range of validation benchmarks
and applications to problems involving several phases. Results are shown for
multiphase flows in the limit behaviour of the Newtonian inviscid and viscous
fluid, as well as in the limit of nonlinear hyperelasticity for phases behaving
as elastic and elasto-plastic solids. In both cases the numerical results are
comparable with results obtained from established standard models, i.e. the
Euler or Navier-Stokes equations for fluids, or the classical hypo-elastic model
with plasticity, but, notably, everything within a unified multi-phase model of
continuum mechanics.

In all the tests, the time step ∆t is computed according to the CFL condition
expressed in (3.154), in order to guarantee the stability of the explicit FV
time-stepping. Furthermore, the initial conditions for volume fractions are
defined with respect to a minimum value αmin = ε = 10−6; i.e. when a phase
is not present, a minimum tolerance is imposed.

4.2.1 Numerical convergence study

First, a numerical convergence study is presented by solving the isentropic
vortex problem proposed in [4, 92], considering the one-phase limit of the model:
α1 = 1 − 2ε, α2 = ε, α3 = ε. For this problem there is an exact analytical
solution for the compressible Euler equations, i.e. in the stiff inviscid limit
τ e

1 → 0 of the SHTC BN-type model considered in this work.
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The initial condition consists of a linear superposition of a homogeneous
background field and some δ perturbations, which in terms of primitive variables
for the first phase read

V1 = (1 + δρ1, 1 + δv1,1, 1 + δv1,2, 1 + δp1, 1− 2ε, I), (4.21)

where the phase distortion field is initially set equal to the identity, while the
quantities for the absent phases are set in the same way except for the volume
fractions. The computational domain is Ω = [0; 10] × [0; 10] and periodic
boundary conditions are applied everywhere. In this domain, the perturbations
of velocities δv1,k and temperature δT1 are given by(

δv1,1
δv1,2

)
= 5

2π e
0.5(1−r2)

(
5− y
x− 5

)
, δT1 = −(γ1 − 1) 52

8 γ1π2 e1−r2
, (4.22)

then, since we are considering an isentropic vortex, we assume that the per-
turbation of the entropy δs1 is zero, hence the perturbations for density and
pressure result

δρ1 = (1 + δT1)
1

γ1−1 − 1, δp1 = (1 + δT1)
γ1
γ1−1 − 1. (4.23)

The exact analytical solution of the problem represented by these initial con-
ditions, for the compressible Euler equations, is represented simply by the
time-shifted initial condition (4.22), (4.23), convected following the mean veloc-
ity v̄ = (1, 1). The physical parameters that remain to be defined are assumed
to be γ1 = 1.4, Cv1 = 1, Cs1 = 0.5, τ1 = 10−14.
This test is performed up to a final time of t = 1.0 using a sequence of

successively refined equidistant meshes composed of Nx ×Ny control volumes.
The L1 and L2 error norms at the final time for the density ρ1, the velocity
component v1,1 and the phase entropy s1 are shown in Tab. 4.2 and Tab. 4.3

Nx ×Ny L1
ρ1 L1

v1,1 L1
s1 Oρ1 Ov1,1 Os1

32 2.5094E-1 5.1290E-1 1.3009E-2
64 5.2676E-2 1.1826E-1 5.4240E-3 2.25 2.11 1.26
128 1.0012E-2 2.7041E-2 9.9400E-4 2.39 2.12 2.44
256 1.8412E-3 6.3160E-3 1.5781E-4 2.44 2.09 2.65

Tab. 4.2. Mesh elements, L1-error norms and their respective numerical convergence rates
for the density ρ1, the velocity component v1,1 and the phase entropy s1, applied
to the isentropic vortex problem.
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Nx ×Ny L2
ρ1 L2

v1,1 L2
s1 Oρ1 Ov1,1 Os1

32 6.6187E-2 1.3959E-1 4.4700E-3
64 1.4075E-2 3.4710E-2 2.3585E-3 2.23 2.01 0.93
128 2.6702E-3 8.5657E-3 4.9292E-4 2.40 2.02 2.26
256 4.8569E-4 2.0754E-3 7.6455E-5 2.46 2.05 2.69

Tab. 4.3. Mesh elements, L2-error norms and their respective numerical convergence rates
for the density ρ1, the velocity component v1,1 and the phase entropy s1, applied
to the isentropic vortex problem.

together with the corresponding convergence rates. From the results shown
in the tables, it can be seen that second-order accuracy is achieved for this
inviscid problem, i.e. in the stiff limit of the governing PDE system.

4.2.2 Shear motion in solids and fluids

In the context of this work, this test has a twofold purpose of showing that
the unified model for fluid and solid mechanics and the developed numerical
scheme can indeed model the behavior of viscous fluids and elastic solids at
once. We consider a simple shear motion in solids and fluids in the single-phase
limit of the entire multiphase model: α1 = 1− 2ε, α2 = ε, α3 = ε.

Similar to the previous numerical test in Section 4.2.1, the time evolution of
an incompressible shear layer is one of the few test problems for which the exact
analytical solution of the non-stationary Navier-Stokes equations is known, and
for the velocity component v1,1 is given by the following error function

v1,1(x, y, t) = v1,1(x, y, 0) erf
(1

2
x√
ν1t

)
. (4.24)

However, because we are discretizing compressible equations with an explicit
scheme, the best we can do is to simulate the problem at sufficiently low
Mach number, e.g. M1 = 0.1 was sufficient to obtain an almost incompressible
behavior.
The computational domain is Ω = [−0.5; 0.5]× [−0.0625; 0.0625], with the

opposite velocities imposed on the left and right halfs of the domain in the
x-direction, while we use periodic boundary conditions in the y-direction. The
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initial conditions of the problem for the first phase, are given by

α1 = 1− 2ε, ρ1 = 1, p1 = 1
γ1
, A1 = I

v1,1 = 0, v1,2(x, y) =
{

+0.1 if x > 0,
−0.1 if x ≤ 0.

(4.25)

with the physical parameters set to γ1 = 1.4, Cv1 = 1, Cs1 = 1. The strain
relaxation time τ e

1 = 6ν1/Cs2
1 is chosen for various values of the fluid kinematic

viscosity ν1, while for the elastic solid limit is set to τ e
1 = 1014. For the elastic

solid limit, this initial condition leads to two shear waves travelling to the left
and right with the shear sound speed. In this case, a reference solution for the
solid limit was obtained for the single-material GPR model using a classical
second-order MUSCL-Hancock scheme [171] on a fine mesh of 32000 cells.

Fig. 4.19. Numerical solution at time t = 0.4 obtained with the explicit FV scheme for
compressible multiphase fluid and solid mechanics applied to a simple shear flow
in fluids and in an elastic solid. Results for the solid limit (top left) and for fluids
with different viscosities ν1 = 10−2 (top right), ν1 = 10−2 (bottom left) and
ν1 = 10−2 (bottom right). For fluids, the analytical solution of the first problem
of Stokes is used as the reference solution.
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Simulations are carried out on a grid composed of 256× 32 control volumes
up to a final time of t = 0.4. The comparison between the numerical results
and the previously mentioned reference solutions is presented in Fig. 4.19,
where an excellent agreement between the two can be observed for both solid
and liquid behaviour.

4.2.3 Riemann problems

We continue the validation of our numerical scheme with a set of Riemann
problems to quantify the error encountered by considering the conservation
of phase entropy rather than phase energy and to see that the correct wave
structure can still be reproduced for problems with relatively weak shocks. In
this section, we solve a series of Riemann problems with initial data according
to Tab. 4.4, for the Euler equations of compressible gas dynamics, which can
be retrieved in the stiff relaxation limit τ e

1 → 0.

RP ρL1 vL1,1 vL1,2 pL1 ρR1 vR1,1 vR1,2 pR1

RP1 1.0 0.0 0.0 1.0 0.125 0.0 0.0 0.1
RP2 1.0 0.75 0.0 1.0 0.125 0.0 0.0 0.1
RP3 1.0 0.0 -0.2 1.0 0.5 0.0 0.2 0.5

Tab. 4.4. Left initial state (L) and right initial state (R) for the quantities related to the
first phase. In particular the density ρ1, velocity v = (v1,1, v1,2, 0) and pressure
P are defined for three different Riemann problems. These Riemann problems
(RP1), (RP2) and (RP3) can be referred to the solution of the Euler equations,
i.e. τ e

1 = 10−14.

The computational domain Ω = [−0.5; 0.5]× [−0.0625; 0.0625] is partitioned
into two regions with constant states, left (L) and right (R), separated by a
discontinuity normal to the x-direction, located at xd. The distortion field is
initially set equal to the identity A1 = I, while the equation of state parameters
are taken as γ1 = 1.4, Cv1 = 1.0, Cs1 = 1.0 and Riemann problems. Simulations
are carried out on a grid composed of 512× 64 control volumes up to a final
time of t = 0.2.

In Figure 4.20, the one-dimensional profiles of the density ρ1, the x-component
of the velocity field v1,1 and pressure p1 for the Riemann problems RP1 (xd = 0)
and RP2 (xd = −0.2) are shown. The results are compared with the exact
solution of the compressible Euler equations. From the results it can be
observed that the correct wave structure is overall reproduced properly for the
Riemann problem RP1, while as the shock wave becomes stronger, as for RP2,
the error introduced due to the use of phase entropy balance laws increases.

129



4 Numerical results

Fig. 4.20. Numerical results (dashed line) for density ρ1, velocity component v1,1 and pressure
P1 in the inviscid limit τ1 = 10−14, for the Riemann problem RP1 (xd = 0) (top
left, bottom left and right), for the Riemann problem RP2 (xd = −0.2) (top
right). The exact solution of the compressible Euler equations (black solid line).

Fig. 4.21. Numerical results for density ρ1 and velocity component v1,2 in the inviscid limit
τ1 = 10−14, at time t = 0.2, for the Riemann problem RP3 (xd = 0) (dashed
line). The exact solution of the compressible Euler equations (black solid line).

This is why we limit ourselves to sufficiently low Mach number flows, and RP2
clearly demonstrates the well-known fact that satisfying the conservation of

130



4.2 Explicit FV scheme for compressible multiphase fluid and solid mechanics

energy is essential to correctly solve problems involving shock waves. RP2 was
proposed by Toro in [171] and includes a sonic rarefaction, however this test
cases is well resolved and does not present any sonic glitches.
The numerical results obtained for the Riemann problem RP3 (xd = 0) is

shown in Fig. 4.21. In this case, the shock present is even weaker, the solution
is very close to an isoentropic one, and therefore the numerical solution is in
very good agreement with the exact one.

4.2.4 Double shear layer problem

The numerical scheme is now applied to solve the double shear layer test
problem, see e.g. [8, 25, 34, 54, 162]. It is another classical benchmark problem
which is useful for the validation of the viscosity model and the numerical
algorithm. Again, here a single phase is considered, therefore the volume
fractions are α1 = 1 − 2 ε, α2 = ε, α3 = ε. For this test the computational
domain is Ω = [0; 1]2, with periodic boundary conditions imposed everywhere.
The initial conditions contain a sharp velocity gradient and are defined as
follows

α1 = 1− 2ε, ρ1 = 1, p1 = 100
γ1

, A1 = I,

v1,1(x, y) =
{

tanh
(
(y − 0.25)ρ̄

)
, if x ≤ 0.5,

tanh
(
(0.75− y)ρ̄

)
, if x > 0.5,

v1,2(x, y) = δsin(2πx),

(4.26)

where the parameters that determine the shape of the velocity field are set
to δ = 0.05 and ρ̄ = 30. The other physical parameters are assumed to be
γ1 = 1.4, Cv1 = 1, Cs1 = 8.0 while two different viscosity coefficients were
set in two separate runs of the test problem, ν1 = 2× 10−3 (Re ' 1000) and
ν1 = 2× 10−4 (Re ' 10000) respectively, which result in τ e

1 = 1.875 · 10−4 and
τ e

1 = 1.875 · 10−5, respectively.
Simulations are carried out up to a final time of t = 1.8 on a grid consisting

of 1280× 1280 control volumes. Figure 4.22 shows the time evolution of the
A1,12 component of the distortion field at times t = 1.2 (top), t = 1.6 (center)
and t = 1.8 (bottom), for the two different viscosity coefficients considered
(left) and (right), respectively. The dynamics of the flow, as already described
in [8, 25, 34, 54, 162], is represented by the evolution of the initially perturbed
shear layers into different vortices, which exhibit particularly complex flow
structures.
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The results in Fig. 4.22, highlight the incredible capability of the distortion
field to describe the details of the flow structures, which in particular are
encoded in the rotational component R1 of the distortion field A1. The
results obtained are in excellent agreement with those obtained in [25], where a
thermodynamically compatible scheme is used and with those in [34] obtained
through a semi-implicit structure-preserving scheme, despite the fact that in
these works a four times finer grid was used.

4.2.5 Lid-driven cavity

As a last numerical test considering a single-phase liquid, we present the
lid-driven cavity problem, see [76]. It is a classical benchmark problem for
numerical methods applied to incompressible Navier-Stokes equations, see [161],
however it can be used to validate compressible flow solvers in the low Mach
number regime [9, 51, 164].
Moreover, it has already been successfully solved with the GPR model in

[14, 54] and with a thermodynamically compatible scheme in [25]. However,
in these works, high-order schemes or schemes that make use of particular
discretizations have been used, e.g. on staggered grid or thermodynamically
compatible discretization. These could be the reasons why it would appear
that the problem associated with the discretization, i.e. the combination, of
purely rotational fields presented in Section 3.2.6 does not arise in these works,
whereas it does for the classical MUSCL-Hancock discretization, specifically in
this test where the boundary conditions produce a velocity gradient singularity
in the corners.

The computational domain is given by Ω = [−0.5; 0.5]× [−0.5; 0.5] and the
initial condition are simply

α1 = 1− 2ε, ρ1 = 1, v1 = 0, p1 = 100
γ1

, A1 = I. (4.27)

The fluid flow inside the cavity is driven by lid velocity on the upper boundary,
which is set to v1,1 = 1, with respect to which, therefore, the Mach number
of this test problem reads M1 = 0.1. On all the other boundaries a no-slip
wall boundary condition with v1 = 0 has to be imposed. Furthermore, the
parameters of the model are set to γ1 = 1.4, Cv1 = 1, Cs1 = 8.0 and the
dynamic viscosity is chosen as ν1 = 10−2 so that the Reynolds number of the
test problem is Re = 100.

Simulations are carried out up to a final time of t = 10 on a grid consisting of
512×512 control volumes. To correctly set the no-slip wall boundary conditions,
it is necessary to compute and prescribe a specific distortion field ABC using
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Fig. 4.22. Filled contours of one component of the distortion field A1, namely of the A1,12
component, for the double shear layer problem at times t = 1.2 (top), t = 1.6
(center) and t = 1.8 (bottom); for two values of kinematic viscosity ν1 = 2× 10−3

(Re ' 1000) (left) and ν1 = 2× 10−4 (Re ' 10000) (right).
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the values taken in the edge-adjacent cell. First, the information encoded by
the distortion field is expressed through RBC (1) and GBC (1), by means of a
polar decomposition. Subsequently, the inverse of the rotational component
can be easily evaluated as R−1

BC (1) = RT
BC (1). At this point the information

can be mapped back to obtain the boundary condition for the distortion field
as

ABC = RT
BC (1) G1/2

BC (1). (4.28)

Figure 4.23 shows the computational results obtained using the approach
described in Section 3.2.6. This approach separates the evolution of the two
types of information encoded in Aa and leverages the capabilities of a semi-
analytical solver to efficiently solve the equations in the stiff relaxation regime.
Excellent agreement between the numerical solution and the Navier-Stokes
reference solution of Ghia et al. [76] was obtained.

Also for this test, Fig. 4.24 shows the time evolution of the A1,12 component
of the distortion field. It can again be seen that the distortion field components
are excellent candidates for flow visualisation, revealing in detail the evolution
of the flow and keeping track of the rotations that the fluid element undergoes
over time.

Fig. 4.23. Lid driven cavity at Reynolds number Re = 100. Numerical results obtained at
time t = 10.0. Colour contours of the velocity module (left), and a comparison
with the reference solution of Ghia et al. [76] of the velocity components v1,1 and
v1,2 for 1D cuts along the x and y axis.
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Fig. 4.24. Filled contours of one component of the distortion field A1, namely of the A1,12
component, for the lid-driven cavity problem atRe = 100, at times t = 1.0, t = 2.0,
(top), t = 4.0, t = 6.0, (center) and t = 8.0, t = 10.0 (bottom).
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4.2.6 Elastic vibrations of a beryllium plate
Finally, we begin to test a further element of the mathematical model, namely
its ability to describe the two main branches of continuum mechanics, i.e. fluid
mechanics and solid mechanics, in a single PDE. Moreover, this represents the
first test in which two phases are genuinely simulated. This test consists of
simulating the purely elastic vibrations of a beryllium plate subjected to an
initial velocity distribution. The setup follows [13, 20, 106, 133, 151], but with
the notable modification that, instead of initialising a single solid surrounded
by vacuum, we define two separate density fields, thus initialising a gas and a
solid phase via their respective volume fractions.

Compared to the Lagrangian setup, used in the previously mentioned works,
the computational domain considered here is larger, as in [26], and is assumed
to be Ω = [−4.0; 4.0]× [−2.0; 2.0] and the initial conditions for the first phase
are

α1(x, y) =
{

1− 2ε if x ∈ Ω1,

ε if x /∈ Ω1,
v1(x, y) =

{
(0,v1,2) if x ∈ Ω1,

(0, 0) if x /∈ Ω1,

ρ1 = 1.845, p1 = 10−4, A1 = I,
(4.29)

while the second phase (the gas) is initialised as follows

α2(x, y) =
{
ε if x ∈ Ω1,

1− 2ε if x /∈ Ω1,

ρ2 = 10−3, v2 = 0 p2 = 10−4, A2 = I,
(4.30)

where Ω1 = [−3.0; 3.0]× [−0.5; 0.5] is the subdomain that defines the initial
geometry of the beryllium bar, and the initial vertical velocity component v1,2,
according to Boscheri et al. [13], is given as

v1,2(x) = C1ω
(
C2(sinh(C3(x+ 3)) + sin(C3(x+ 3)))

− C4(cosh(C3(x+ 3)) + cos(C3(x+ 3)))
) (4.31)

with C3 = 0.7883401241, C2 = 0.2359739922, C1 = 0.004336850425, C4 =
57.64552048 and C2 = 56.53585154. The third phase has α3 = ε. The other
parameters and physical quantities that define the properties of the beryllium
material and that are required to use the stiffened-gas EOS (2.72) are chosen
as γ1 = 1.4, Cv1 = 1000, Cs1 = 0.905, ρoa = 1.845, Co1 = 1.287 and po1 = p1.
Additinally, to have an ideal elastic material we set τ e

1 = 1014. For the gas
phase surrounding the solid phase, the EOS of ideal gases is used and the
physical parameters are γ2 = 1.2, Cv2 = 1000, Cs2 = 1.0 and ν2 = 10−4.
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The simulation is carried out, according to [20], up to the final time tf = 53.2
which corresponds approximately to two complete periods of vibration and the
computational domain is discretized with an uniform Cartesian mesh composed
of 1024 × 512 control volumes. In contrast to Lagrangian schemes, it is not
necessary to impose boundary conditions on the surface of the solid, as the
solid-gas boundary condition is directly taken into account within the governing
PDE system. Hence, in our simulation, periodic boundaries are set everywhere.

In Fig. 4.25 we represent the contour map of the volume fraction function α1,
which represents the geometry of the bar at time t = 8 and in the same figure,
we also depict the time evolution of the vertical velocity component v1,2(0, 0, t)
at x̄ = (0, 0), i.e. in the barycenter of the bar. For comparison, we also show
the results obtained with a third-order ALE ADER-WENO scheme (black line),
against which our numerical solution (red line) is in good agreement.
In Fig. 4.26, the first component of the stress tensor σ1,11 and the vertical

component of the velocity v1,2 are shown on the left and right panels respectively
for the intermediate times t = 8, t = 15, t = 23 and t = 30, covering
approximately one bending period. Note that the colour scales for both
quantities are different depending on the time instant, depending on whether
or not the bar has returned to its original position. Our computational results
compare visually well with the reference solutions available in the literature,
see [13, 20, 106, 133, 151], which have all been realised with pure Lagrangian
or arbitrary Lagrangian-Eulerian schemes on moving meshes, despite the fact
that in our case we use a diffuse interface approach on a fixed Cartesian grid,
as in [26].

Fig. 4.25. Filled contour map of the volume fraction function α1 for the first phase, which
represents the geometry of the beryllium bar at time t = 8 (left). The time
evolution of the vertical velocity component v1,2(0, 0, t) at x̄ = (0, 0), i.e. in the
barycenter of the bar (right).
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Fig. 4.26. Results for the elastic vibrations of a beryllium plate, at times t = 8, t = 15,
t = 23 and t = 30 (from top to bottom), for the first component of the stress
tensor σ1,11 (left) and the vertical component of the velocity v1,2 (right).

A final remark concerns the second phase, which was on purpose chosen
three orders of magnitude less dense than the solid one, in order not to affect
the dynamics of the beryllium bar and also according to physics, since air is
much less dense than any solid material. However, this gaseous phase has its
own fully resolved viscous dynamics, in subsequent tests more space will be
given to the multiphase dynamics.
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4.2.7 Taylor bar impact

In the previous test, we considered an ideal elastic material, which is the solid
limit case for τ e

1 →∞. In this test, we show how a material can also exhibit
non-linear elastic-plastic behaviour. Here we consider the Taylor bar impact
problem, which is a classical benchmark for an elasto-plastic target that impacts
on a rigid solid wall, see [13, 46, 106, 151] for pure Lagrangian or ALE schemes
on moving meshes and [26] for an Eulerian diffuse interface approach.

As with the previous test, we define two separate density fields, initialising a
gas and a solid phase through their respective volume fractions. The computa-
tional domain considered here is larger than in the Lagrangian setup in order
to include the space occupied by the gas phase around the solid. The compu-
tational domain under consideration, as in [26], is Ω = [−150,+150]× [0, 600]
and the initial conditions for the first phase are

α1(x, y) =
{

1− 2ε if x ∈ Ω1,

ε if x /∈ Ω1,
v1(x, y) =

{
(0,v1,2) if x ∈ Ω1,

(0, 0) if x /∈ Ω1,

ρ1 = 2.785, p1 = 10−4, A1 = I,
(4.32)

where Ω1 = [−50,+50] × [0, 500] is the subdomain that defines the initial
geometry of the solid bar and the initial vertical velocity component is v̄1,2 =
−0.015; while the second phase is initialised as follows

α2(x, y) =
{
ε if x ∈ Ω1,

1− 2ε if x /∈ Ω1,

ρ2 = 10−3, v2 = 0 p2 = 10−4, A2 = I.
(4.33)

According to [13, 46, 106, 151], the first phase, i.e. the solid one is assumed
to be an aluminium bar, then the other parameters and physical quantities
that define the properties of such a material using the stiffened-gas EOS are
γ1 = 1.4, Cv1 = 1000, Cs1 = 0.305, ρoa = 2.785, Co1 = 0.533 and po1 = p1. To
obtain a non-linear elasto-plastic material behaviour the relaxation time τ e

1
has to be choosen as a non-linear function of an invariant of the shear stress
tensor as follows [133]

τ1 = τo

(
σo
σ̄1

)m
, (4.34)

where τo = 1 is the scaling constant, σo = 0.003 is the yield stress of the
material under quasi static conditions, the exponent parameter is chosen equal
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to m = 20 (the higher m is the less rate-dependent the effective yield strength
is [6, 133]) and the von Mises stress σ̄1 is given by

σ̄1 =
(1

2
(

(σ1,11 − σ1,22)2 + (σ1,22 − σ1,33)2 + (σ1,33 − σ1,11)2

+ 6(σ2
1,21 + σ2

1,31 + σ2
1,32)

))1/2
.

(4.35)

For the gas phase surrounding the solid phase, the EOS of ideal gases is used
and the physical parameters are γ2 = 1.2, Cv2 = 1000, Cs2 = 1.0 and ν2 = 10−4.
The simulation is carried out, according to [26, 106], up to the final time

tf = 5000 and the computational domain is discretized with a uniform Cartesian
mesh composed of 2048 × 1024 control volumes. In contrast to Lagrangian
schemes, it is not necessary to impose boundary conditions on the surface of
the solid; in our simulation, periodic boundaries are set in x-direction while
reflective slip wall boundary conditions are set in y-direction.
In Fig. 4.27 we present the results computed at output times t = 2500

and t = 5000. The volume fraction (left), the density distribution (center)
and the plastic rate η1 = σ̄1/σo (right) are depicted. It can be observed that
the numerical solution is reasonably in agreement with that presented in [13,
106], although the models used are significantly different. Moreover at time
t = 5000, the final length of the aluminium bar is Lf = 455, which fits the
results achieved in [13, 106] within a 2% error.

4.2.8 Multiphase Rayleigh-Taylor instability

The two previous tests focused mainly on the validation of the unified model
for elasto-plastic solid mechanics, thus not much emphasis was placed on the
dynamics of the second phase. In this test, however, we will finally put to the
test one of the main features of the model and the numerical scheme, namely
the ability to describe several interacting phases. To this end, we will simulate
a true two-phase relatively low-Mach, M1 'M2 ' 0.1, viscous Rayleigh–Taylor
instability.

The approach follows [34, 102], but with the notable modification that instead
of initialising a single fluid with a jump in the density, we define two fluids
through the volume fraction each with constant phase densities. This makes
the problem more challenging because the quasi-vacuum states of either phase
are introduced almost throughout the entire computational domain, however
it introduces much more freedom in defining the material characteristics of
each phase. The computational domain under consideration, as in [34], is
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Fig. 4.27. Results for the non-linear elasto-plastic Taylor bar impact, at times t = 2500 and
t = 5000 (from top to bottom): the volume fraction (left), the density distribution
(center) and the plastic rate η1 = σ̄1/σo (right).

Ω = [0, 1/3]× [0, 1] and the initial conditions for the first phase, the upper and
heavier one, are

α1(x, y) = s̄(1− 2ε) + (1− s̄)ε, ρ1 = 2.0, v1 = 0,
p1 = s̄pt + (1− s̄)pb, A1 = I,

(4.36)

and for the lighter fluid (at the bottom) are

α2(x, y) = 1− α1 − ε, ρ2 = 1.0, v2 = 0,
p2 = s̄pt + (1− s̄)pb, A2 = I,

(4.37)

where s̄ is a switch function introduced to impose a smooth transition between
the two states and avoid an inaccurate representation of the initial condition
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on the discrete Cartesian grid. This function s̄ is defined as

s̄ = 1
2 + 1

2erf
(
y − yI
δ

)
, (4.38)

where yI = 0.5 + 0.01 cos(6π x) is the initially perturbed interface between
phases and δ = max( 0.004, 6∆x ) can be seen as the thickness of this interface.
The initial phase top and bottom pressures, in (4.36), (4.37), are defined as

pt = 1 + ρ1 (1− y)g n̂y,
pb = 1 + 0.5 ρ1 g n̂y + ρ2 (0.5− y) g n̂y.

(4.39)

where the gravity vector is g = (0,−0.1, 0)T. The other parameters and physical
quantities are equal for the two gas phases and using the ideal-gas EOS are set
as γ = 1.4, Cv = 1000, Cs = 0.3 and the dynamic viscosity µ = 6× 10−5, which
translates to τ e

1 = 2× 10−3 and τ e
2 = 4× 10−3 so that the Reynolds number of

the test problem is Re ' 2000 for the both phases.
Two simulations are carried out up to the final time tf = 10 on two different

uniform Cartesian meshes in order to verify mesh convergence of the solution
algorithm. In these simulations, periodic boundaries are set in x-direction
while reflective slip wall boundary conditions are set in y-direction. Fig. 4.28
shows on the left the result for the mixture density ᾱ = α1 ρ1 + α2 ρ2 + α3 ρ3
obtained with a mesh consisting of 512× 1536, while on the right the result
obtained by doubling the mesh resolution, both at time t = 7. It is possible to

Fig. 4.28. Mesh convergence test for the Rayleigh-Taylor instability problem, at times t = 7;
on the left the result obtained with a mesh consisting of 512× 1536 is shown, and
on the right the result obtained by doubling the mesh resolution.

142



4.2 Explicit FV scheme for compressible multiphase fluid and solid mechanics

Fig. 4.29. Results for the multiphase Rayleigh-Taylor instability problem, at times t = 6,
t = 7 and t = 8 (from left to right); the volume fraction α1 (top) and the A1,12
component of the distortion field for the first phase (bottom) are represented.

see that mesh convergence has already been achieved with the coarsest mesh,
since the macroscopic structure of the flow does not depend on mesh size.
Fig. 4.29 shows the time evolution of both the volume fraction function α1

and the A1,12 component of the distortion field, for the first phase.
It is interesting to note that for a sufficiently low Mach number test, mixture

density, depicted in Fig. 4.28 is macroscopically proportional to the volume
fraction structure in Fig. 4.29. Moreover, due to velocity relaxation, both
distortion fields encode the same flow structure, except that they satisfy two
different algebraic constraints, so that each phase mass conservation equation
is the consequence of the time evolution of each phase distortion field.

Our computational results, in particular the temporal evolution in Fig. 4.29,
compare visually well with the reference solutions available in the literature,
see [102], obtained in this case with ALE schemes on moving meshes.
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4.2.9 Multi-phase and multi-material triple point problem
Finally, in this section, we will test all the capabilities of the model and the
numerical scheme developed, i.e. the ability to describe several, up to three,
interacting phases. The problem that will be addressed is a typical test of
the ALE community, namely the so-called triple point problem. This test is a
three state, two material, 2D Riemann problem in a rectangular domain that
generates vorticity, which is why it is very popular in the ALE community for
testing the ability of a code to handle the motion of a complex mesh. It was
introduced in [103] and was used to compare ALE approaches in the case of a
two-material Riemann problem in [17, 101, 102] or the simplified one-material
case in [11, 15, 73]. In the Eluerian context, this problem has been addressed
with an interface-capturing approach considering three immiscible compressible
fluids in [179]. In the context of this thesis, the main aim of this problem is to
verify the ability of the code and model to correctly propagate shock waves
over multi-phase and multi-material regions.

Specifically, in this thesis, we follow the setting presented in [103], but with
the significant modification that instead of initialising a two-material Riemann
problem, we set up an initial problem involving three phases, where two of
them have the same material parameters. The computational domain of the
triple point problem Ω = [0; 7]× [0; 3] is divided into three subdomains filled
with three phases describing different perfect gases, thus yielding a three-phase,
two-material problem. The initial condition, in our diffuse interface framework,
can be easily set by means of jumps in volume fraction as follows. The first
phase, with a state of high pressure and high density, is initialized as

α1(x, y) =
{

1− 2ε if x ∈ Ω1,

ε if x /∈ Ω1,
with Ω1 = [0; 1]× [0; 3]

ρ1 = 1.0, v1 = 0, p1 = 1.0, A1 = I,
(4.40)

the second phase, with a state of low pressure high density, as

α2(x, y) =
{

1− 2ε if x ∈ Ω2,

ε if x /∈ Ω2,
with Ω2 = [1; 7]× [0; 1.5]

ρ2 = 1.0, v2 = 0, p2 = 0.1, A2 = I,
(4.41)

and the third, with an initial low pressure and low density state, is initialized
as

α3(x, y) =
{

1− 2ε if x ∈ Ω3,

ε if x /∈ Ω3,
with Ω3 = [1; 7]× [1.5; 3.0]

ρ3 = 0.125, v3 = 0, p3 = 0.1, A3 = I.
(4.42)
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All the phases represent ideal inviscid gases, thus we are in the stiff limit of
the model and the relaxation times are τ e

1 = τ e
2 = τ e

3 = 14−14. Furthermore,
according to [103], since the first phase and the third phase represent the same
material, the other parameters and physical quantities for these phases are
γ1 = γ3 = 1.5, Cv1 = Cv3 = 1, Cs1 = Cs3 = 1.0. Finally, the other parameters
and physical quantities for second phases, which represent a different perfect
gas, are γ2 = 1.4, Cv2 = 1, Cs2 = 1.0.
The simulation is carried out up to the final time tf = 5 discretizing the

computational domain with a uniform Cartesian mesh composed of 3584×1536
control volumes; reflective slip wall boundary conditions are set in all the
directions.
In Fig. 4.30 and 4.31 we present the results obtained for the multi-phase

and multi-material triple point problem at time t = 3 and t = 5, respectively.
In particular, we illustrate the evolution of the different volume fractions (top),
where the first phase is shown in blue, the second in yellow and the third in
blue-green. These contour levels clearly show that the vortex shape is well
resolved and a zoom is shown on the right to better visualise the vorticity
formation resulting from the initial contact discontinuity. From these results,
it is clear how suitable a modelling and numerical description via an Eulerian
diffuse interface approach is for describing these mixing areas characterised by
high vorticity.

From the representation of the density field, in Fig. 4.30 and 4.31, the entire
dynamics of the problem can be well understood. The fluid flow after the
initial discontinuity has broken is characterised by a rarefaction wave pointing
to the left and two shock waves pointing to the right, separated by a horizontal
contact discontinuity. Moreover, these two shock waves have different velocities,
as the densities of the materials are different, and this leads to the formation
of a strong vortex. Our computational results compare visually well with
reference solutions available in the literature [73, 102, 103], proving the ability
of the code and model to correctly propagate shock waves over multi-phase
and multi-material regions, despite the results being obtained on a simple fixed
Cartesian grid.
Additionally, in Fig. 4.30 and 4.31, we present the evolution of the A1,12

component of the first phase distortion field. However, as emphasised in the
previous test case, the distortion fields of all phases encode the same flow
structure, except that they satisfy three different algebraic constraints (3.169),
thus the representation in Fig. 4.30 and 4.31 is indicative of the flow structure
of all phases. We note once again an extremely useful ability of the distortion
field (encoded in its rotational component R1) to demonstrate the details of the
flow structures hidden otherwise. Thus, thanks to this ability of the distortion
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field, it is possible to identify a strong shear zone along a contact discontinuity
inside the second phase (the yellow one) that otherwise would not have been
visible using the other state variables.

4.2.10 Water entry of a symmetric wedge

In all the previous test cases all three phases were formally considered, but some
of them had identical material parameters. In this sense, the test addressed
in this section is more general, and all three phases will be considered having

Fig. 4.30. Results for the multi-phase and multi-material triple point problem at time
t = 3: the contour plots of the volume fractions (first phase in blue, second phase
in yellow and the third one in blue-green) (top), the A1,12 component of the
distortion field for the first phase (center) and the mixture density (bottom). A
zoom in the region [2.0, 4.0]× [0.5, 2.5], which illustrates the formation of vorticity
resulting from the initial contact discontinuity, is shown (right).
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very different material parameters. Namely, we consider one solid, one liquid
and one gaseous phase.
The aim of this numerical test is to reproduce, as fully as possible, the

experiment conducted by Zhao et al. [180], which we have already considered
in the validation of the semi-implicit numerical method in Section 4.1.9 and
which consists of the impact of a symmetrical wedge with a free surface. Unlike
the previous work, using the explicit FV scheme developed in this paper for
the compressible multiphase fluid and solid mechanics, we have a possibility
to reproduce the experimental setup [180] in its completeness. Namely, by

Fig. 4.31. Results for the multi-phase and multi-material triple point problem at time t = 5:
the contour levels of the volume fractions (first phase in blue, second phase
in yellow and the third one in blue-green) (top), the A1,12 component of the
distortion field for the first phase (center) and the mixture density (bottom). A
zoom in the region [3.0, 5.0]× [0.5, 2.5], which illustrates the formation of vorticity
resulting from the initial contact discontinuity, is shown (right).
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imposing only the initial velocity of the solid wedge, we can now evaluate
the complete dynamics of the three phases resulting from their interaction.
Therefore, the vertical velocity of the wedge recorded experimentally by Zhao
et al. [180] and reported in Fig. 4.32, which was prescribed in the previous work
[70] and in the numerical test by Oger et al. [123], now becomes an excellent
indicator to judge about the validity of the multiphase simulation presented
here.

In this numerical experiment, we follow the geometric setup used previously
in Section 4.1.9, which traces the setup of the laboratory measurements carried
out by Zhao et al. [180], but with the significant modification of defining
an initial problem involving three phases. The computational domain Ω =
[−0.5; 0.5]× [−0.5; 0.5] is divided into three subdomains occupied with three
phases describing an ideal elastic solid, a viscous liquid phase and a viscous
gaseous phase. The initial condition for each phases are set by means of jumps
in volume fraction. The first phase, the solid one, is defined according to the
the geometry of the experimental section, which consider the wedge with a
dead-rise angle of 30◦ illustrated in Fig. 4.17; specifically the initial conditions
for this phase are set

α1(x, y) =
{

1− 2ε if |x| ≤ 0.25 ∧ y ≥ |x tan(π6 )| ∧ y ≤ 0.25 tan(π6 ),
ε if otherwise,

ρ1 = 7×103, v1 = (0,−6.15), p1 = 103, A1 = I, (4.43)

where the density is evaluated to obtain the total weight of the measuring
section used in the experiment by Zhao et al. [180], which corresponds to
255.5 kg; thus the density is calculated as the weight of the instrumental tools
divided by the effective area described by the wedge in this numerical setup.
The initial condition for the second phase, defining the viscous liquid phase,
are

α2(x, y) =
{

1− 2ε if x ∈ Ω2,

ε if x /∈ Ω2,
with Ω2 = [−0.5; 0.5]×[−0.5; 0.0]

ρ2 = 103, v2 = 0, p2 = 103, A2 = I,
(4.44)

while the third one, defining the gaseous phase, is initialized as

α3 = 1− α1 − α2, ρ3 = 1, v3 = 0, p3 = 103, A3 = I. (4.45)

For the solid and liquid phase, the stiffened gas EOS is used; the other material
parameters are γ1 = γ2 = 1.4, Cv1 = Cv2 = 1, Cs1 = 120, Cs2 = 100,
Co1 = Co2 = 120 and po1 = po2 = p1. For the viscous gas, the ideal gas EOS
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is used with the following parameters γ3 = 1.4, Cv3 = 1, Cs3 = 60.0 and
ν3 = 10−1. To consider an ideal elastic material, the relaxation time for the
first phase is chosen to be τ e

1 = 1014, while a kinematic viscosity ν1 = 10−6 is
adopted for the viscous liquid phase.
Two simulations are carried out up to the final time tf = 0.025 on two

different uniform Cartesian meshes composed of 1024× 1024 and 2048× 2048
control volumes, in order to verify qualitatively the mesh convergence of the
solution. In these simulations, reflective slip wall boundary conditions are set
in all the directions.
Fig. 4.32 (left) shows the distribution of the different volume fractions in

accordance with the initial conditions describing the geometric and experimental
setup of the test water entry of a symmetric wedge. The solid phase is shown in
yellow, the liquid phase in blue-green and the gas phase in blue. Moreover, in
Fig. 4.32 (right) we present a comparison that verifies the validity of the results
obtained. In this comparison, the vertical velocity of the wedge experimentally
recorded by Zhao et al. [180] is compared with the purely elastic solid body
velocity computed in this test by evaluating an averaged vertical velocity using
the volume fraction, in accordance with the following definition

|v1,2| =
|
∑N1N2
ij α1,ijv1,2|∑N1N2
ij αij

, (4.46)

N1 and N2 are the discrete elements in the first and in the second directions,
respectively. It is possible to observe how qualitatively the dynamics of the
impact is well represented, in particular the deceleration over time follows
the correct trend, i.e. deceleration increases in modulus until about half the
simulation time and then tends to decrease. Furthermore, both the results
obtained with a 1024 × 1024 mesh and that obtained by doubling the mesh
resolution are represented, and it can be seen that the numerical solution is
getting closer to that recorded experimentally by Zhao et al. [180] as mesh is
getting more finer. The main reason for the discrepancy from the experimental
result has to be found in the low Mach nature of the test. Indeed, this impact,
in which the solid must maintain a particularly rigid behaviour, represents a
complex test for an explicit numerical scheme. Moreover, it should be noted
that this is the first time this test has been solved by considering the interaction
of three phases through a monolithic mathematical model for compressible
multiphase fluid and solid mechanics.
In Fig. 4.33 the temporal evolution of volume fractions obtained with the

explicit FV scheme for compressible multiphase fluid and solid mechanics is
represented in the left-hand column. For the sake of comparison, the results
previously obtained in Section 4.1.9 for the validation of the semi-implicit
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Fig. 4.32. Filled contour map of the different volume fractions of the constituents to represent
the initial test condition (left). Comparison with the reference vertical wedge fall
velocity experimentally recorded by Zhao et al. [180] of the average components
of the vertical velocity of the solid wedge v1,2 evaluated with the explicit FV
scheme for the complete compressible multiphase fluid and solid mechanics on
two different uniform Cartesian meshes (right).

numerical method are shown too, in the right-hand column. From the top
to the bottom the results for three different instants are shown, namely for
t = 0.005, t = 0.015 and t = 0.020. Again, it can be observed that the
phenomenological evolution of the free surface during the entry of water into a
wedge, obtained with the new numerical method that solves the entire three-
phase dynamics, is in agreement with what was previously obtained in Section
4.1.9. The first time instant shows quite well the formation of two jets escaping
along the edges of the wedge. At time t = 0.015 these two jets reach the point
of separation, which corresponds to the end of the edge. It can be seen that the
jet leaves the edge almost tangentially at this initial phase of flow separation.
Then, at t = 0.020 the jets tend to develop more vertically as well as breaking.
This shape is qualitatively similar to the experimental illustration in the article
by Zhao et al. [180].

Furthermore, Fig. 4.33 shows the velocity fields obtained with both numerical
methods. One can see that the gas phase was not considered in [70] presented
in the left column, while the dynamics of all three phases is taken into account
in this paper. The interraction of the liquid jets and the gas phase might in
particular be responsible for the slight differences in jets shape between the
two simulations.
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Fig. 4.33. Filled contour map of the different volume fractions of the constituents and
velocity field of the mixture, the solid phase is shown in yellow, the liquid phase
in blue-green and the gas phase in blue. Results obtained with the explicit FV
scheme for compressible multiphase fluid and solid mechanics (right), with the
semi-implicit numerical method in Section 4.1.9, [70] (left). From the top to
the bottom results for three different instants are shown, namely for t = 0.005,
t = 0.015 and t = 0.020.
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4.2.11 Multi-phase and multi-material solid impact
This is the last test presented in this thesis, the aim of which is to show from
a qualitative point of view the wide applicability of the model and numerical
scheme presented. As in the previous test, all the capabilities of the developed
model and numerical scheme are tested in the problem that will be tackled,
namely the dynamics of three phases with different material properties. To this
end, an impact of true multi-material three-phases will be simulated, which
exhibits elastic and also elasto-plastic behaviour in a inviscid fluid environment.
In this test, we roughly follow the approach presented in [16, 41], which

has been modified by not paying particular attention to physical material
characteristics, as the interest is in qualitatively verifying the method’s ability
to solve such a complex test. Thus, while maintaining a geometry similar to the
tests in the literature, the parameters and physical quantities that define the
properties of the aluminium bar in Section 4.2.7 are used. Therefore, this test
case is relative to an aluminium ball moving toward a aluminium plate on the
east boundary and the surrounding fluid is a perfect gas. The computational
domain Ω = [−0.5; 0.5]× [−0.5; 0.5] is divided into three subdomains filled with
three phases describing two solids with the same properties and a perfect gas.
As for the previous test, the initial conditions are set by means of jumps in
volume fraction; the first phase, that defines the aluminium ball, is initialized
as

α1(x, y) =
{

1− 2ε if ((−0.125− x)2 + (0.5− y)2)0.5 ≤ 0.075,
ε if otherwise,

ρ1 = 2.785, v1 = (0.002, 0), p1 = 10−6, A1 = I,
(4.47)

the second phase, defining the aluminium plate, as

α2(x, y) =
{

1− 2ε if x ∈ Ω2,

ε if x /∈ Ω2,
with Ω2 = [0.05; 0.225]× [−0.35; 0.35]

ρ2 = 2.785, v2 = 0, p2 = 10−6, A2 = I,
(4.48)

and the third, defining the surrounding perfect gas, is initialised as

α3 = 1− α1 − α2, ρ3 = 10−3, v3 = 0, p3 = 10−6, A3 = I. (4.49)

Since the first and second phases represent the same material, i.e. aluminium,
the other parameters and physical quantities that define the properties of such
a material using the stiffened gas EOS are γ1 = γ2 = 1.4, Cv1 = Cv2 = 1000,
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Cs1 = Cs2 = 0.305, Co1 = Co2 = 0.533 and po1 = po2 = p1. For the inviscid
gas phase surrounding the solid phases, the ideal gas EOS is used and the
physical parameters are γ3 = 1.2, Cv3 = 1000, Cs3 = 0.0 and τ e

3 = 10−14.
In a first simulation, the solid materials are assumed to have purely elastic
behaviour, so the relaxation time is assumed to be τ e

1 = τ e
2 = 1014 for both

phases. Subsequently, to obtain a non-linear elasto-plastic behaviour of the
material, the relaxation time τ e

1 , τ
e
2 is chosen as a non-linear function of an

invariant of the shear stress tensor as done in the previous test, see (4.34). In
this case, however, the yield stress of the material is set to a lower number, i.e.
σo = 2.5×10−4, for the sake of making the plastic deformations more visible.

Two simulations are carried out up to the final time tf = 200 discretizing the
computational domain with a uniform Cartesian mesh composed of 2048×2048
control volumes; periodic boundary conditions are set in all the directions.
Fig. 4.35 shows the volume fraction of the first and second phase at times

t = 60, t = 100 and t = 140 from left to right, respectively. The first time
instant represents the moment of impact with the plate. As one can see from
the subsequent instants the behavior of an elastic collision is qualitatively well
represented by the numerical solution. It should be emphasized that, in a
diffuse interface approach, and if both the solid objects are represented by
the same volume fraction function, it is not obvious that the two solids would
bounce instead of sticking to each other. The results for multibody problems
in which the solids are carrying their own volume fractions is, therefore, of
considerable interest. Additionally, Fig. 4.34 shows the A12 component of the

Fig. 4.34. Results for the multi-phase and multi-material elasto-plastic solid impact, the
contour levels of one component of the distortion field A of the mixture, namely
of the A12 component, at times t = 60, t = 100 and t = 140 (from left to right),
respectively.
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4 Numerical results

Fig. 4.35. Results for the multi-phase and multi-material elastic solid impact, the contour
levels of the volume fractions of the first and the second phases at times t = 60,
t = 100 and t = 140 (from left to right).

Fig. 4.36. Results for the multi-phase and multi-material elastic solid impact, the contour
levels of the von Mises stresses of the first σ̄1 and the second σ̄2 phases are
represented, at times t = 60, t = 100 and t = 140 (from left to right), respectively.

mixture distortion field, obtained through the following relation

A12 = α1A1,12 + α2A2,12 + α3A3,12. (4.50)

This allows the dynamics of the gas phase to be clearly shown as well, making
it evident that the dynamics of all three phases have been resolved through
a distortion field for each phase. It is possible to see the two fluid jets with
non-trivial vorticity being generated at the moment of impact.
Similarly, Fig. 4.37 shows a collision of the same solid objects but withe

plasticity effect taken into account. The obtained results visually compare
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Fig. 4.37. Results for the multi-phase and multi-material elasto-plastic solid impact, the
contour levels of the volume fractions of the first and the second phases at times
t = 60, t = 100 and t = 140 (from left to right).

Fig. 4.38. Results for the multi-phase and multi-material elasto-plastic solid impact, the
contour levels of the von Mises stresses of the first σ̄1 and the second σ̄2 phases are
represented, at times t = 60, t = 100 and t = 140 (from left to right), respectively.

well with the one in [16]. To better understand how the different definitions of
material properties in these two tests affect the behavior of solids, it is useful
to observe the von Mises stress of the first phase σ̄1 and the second phase σ̄2,
evaluated as in (4.35), and presented in Fig. 4.36 and 4.38. It can be seen that
the stress in an ideal elastic material propagates through the body by means
of waves, which are reflected over time from the body boundaries. On the
contrary, in the case of an elasto-plastic material, it can be observed that the
stress reaches a lower magnitude than in the ideal elastic case, due to the stress
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4 Numerical results

Fig. 4.39. Results for the multiphase and multi-material elastic-plastic solid impact. The
contour levels of the the gas pressure p3 and the contours of the solids presented
at times t = 60, t = 100, and t = 140 (from left to right).

relaxation process in the inelastic deformations. Furthermore, it is evident
that over time, the highest stress values are localised in the area undergoing
plastic deformations, while the regions far from the impact, in this case, are
less stressed.

Finally, to emphasize the multimaterial character of the test, Fig. 4.39 shows
the gas pressure p3 and the contours of the solid objects. One can see quite
complicated flow structures consisting of multiple shock waves interracting
with the boundaries of the solid bodies and with each other.
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5 Conclusions and outlook

In one part of this thesis we have formulated a novel staggered, semi-implicit,
finite-volume method for the solution of a simplified BN model for two-phase
free-surface flows, derived starting from the works of Casulli et al. [29, 51],
the results of which are published in [69, 70]. This method is the basis of a
highly efficient Fortran MPI-parallel code that in terms of applicability is a step
forward for the study of real-world problems related to complex non-hydrostatic
free-surface flows interacting with solid moving obstacles.

However, the main work developed in this dissertation aims at the develop-
ment and numerical solution of a set of hyperbolic partial differential equations
capable of describing a generic multi-phase and multi-material continuum in a
unified manner via a diffuse interface approach, after highlighting the problems
inherent in the traditional formulation of multiphase flows through an excursus
in the complex literature inherent in this topic. Thus, it can be said that this
work presents novelties in both the theoretical aspects of modelling multiphase
flows and the design of numerical algorithms for solving such models.
A reformulation of the multiphase SHTC model originally proposed by

[143] is presented. In this reformulation of SHTC mixture theory, the unified
continuum mechanics model introduced in [131], is included from the beginning,
deriving the complete model as a whole from variational principles. Thus, a
simplified, nonconservative reformulation of the model was derived and solved
numerically by addressing the various challenges that this mathematical model
poses from the numerical analysis standpoint. Finally, through an extensive
collection of numerical experiments, the numerical method is validated, but
more importantly, the very wide range of applicability of the derived theory
and the numerical method developed to deal with it is shown.
Future work will cover further developments that can be made to the mul-

tiphase theory of fluid mechanics and compressible solids developed in this
thesis, from both a modeling and numerical point of view, below we briefly
introduce some of the research directions that will be sought.

Explicit structure-preserving numerical method. The original multi-phase
unified model of continuum mechanics derived, as a whole, from variational
principles in this thesis is an excellent starting point for future work. In fact, a
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simplified non-conservative reformulation of the model has been solved numeri-
cally in this thesis work. It lacks the energy conservation, thus, numerically
addressing the complete multi-phase SHTC model, without making use of the
BN-type reformulation, is now the natural next step. The complete multiphase
and multi-material SHTC model derived in Section 2.2 is based on phase en-
tropy inequalities as primary evolution equations, while the energy conservation
law for the mixture is obtained as a consequence by a linear combination of
the governing equations. Furthermore, dissipative processes, i.e. relaxation
source terms, are defined in such a way as to satisfy the first and second laws
of thermodynamics, i.e. entropy production and energy conservation. For the
numerical scheme to be Hyperbolic Thermodynamically Compatible (HTC), it
must fulfil these compatibility conditions at the discrete level. In this direction,
recently, significant progress has been made in solving the entropy inequality
instead of energy conservation, using so-called HTC schemes. Single-phase
flow was considered in [1], while, for the first time, a full non-barotropic SHTC
model of compressible two-fluid flow with more than one entropy inequality
was numerically solved in [168]. Therefore, the development of a new thermo-
dynamically compatible finite volume scheme based on this work to solve the
complete model presented in this thesis will be of central importance in work
in the near future.

Extension to additional physical processes The multiphase SHTC model
presented in 2.2 can be further extended to include phenomena such as phase
change and surface tension. Indeed, chemical kinetics phenomena, i.e. phase
exchange, have already been considered in the SHTC mixture equations that
has been presented. In fact, within the SHTC theory, the phenomenon of phase
transformation can be mathematically described through dissipative processes
proportional to a gradient of total potential energy. Specifically, it is necessary
to introduce a source contribution into the true mass density equations. On
the other hand, more attention should be paid to the further development of
the unified first-order hyperbolic formulation for continuum mechanics in order
to account for surface tension. In particular it will be preferable to include
a first-order hyperbolic model for surface tension for reasons of consistency
with the complete model and for several numerically interesting features that
can be retrieved. An interesting strategy for modelling interface dynamics,
presented in Schmidmayer et al. [155], is achieved by introducing a Galilean
invariant evolution equation for a new interface vector field b, representing the
gradient of a colour function c. In this way, the governing equations can be
written as a system of first-order PDEs, completely avoiding the calculation of
local curvature values and interface normal vectors by including the geometric
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concept of interface at the PDE level. Thus, the surface tension tensor can be
calculated directly from the state variables as a nonlinear algebraic function;
the work done by Chiocchetti et al. in [34] is of considerable importance in this
direction.

Extension of the structure-preserving properties of the scheme At this
point, one will have a unified first-order hyperbolic multiphase model of con-
tinuum mechanics capable of capturing a wide range of physical phenomena,
consistent with the first and second laws of thermodynamics, grounded on
geometric principles and furthermore admitting a variational formulation [132].
The geometric origin, which gives such a general character to the unified model
of continuum mechanics, can be identified in the involution constraints that
arise in some of the governing equations. For instance, the last geometric
concept introduced, is the interface vector field b. Since it has been defined as
a gradient of a scalar function, it must satisfy a curl-type involution constraint
and from a numerical point of view, as pointed out in [36], the physical consis-
tency of the numerical solution is completely lost if this involution constraint is
violated. In the multiphase SHTC system considered so far, there are further
involution constraints, specifically a curl involution on the relative velocity and
a set of curls of the distortion matrix vectors. Consequently, the development of
special structure-preserving numerical schemes will be crucial. For instance, to
satisfy these geometric constraints, I can adopt special staggered discretizations,
which guarantee curl-free condition at the discrete level, e.g. [14, 45] or suitable
Generalized Lagrangian Multiplier (GLM) curl cleaning strategies, which are
an extension to curl involutions of the successful GLM approach of Munz et al.
[42, 115].

Efficient semi-implicit numerical scheme In many environmental or indus-
trial applications, there is no interest in resolving acoustic waves, but rather the
focus is on slow dynamics, such as related to convection transport phenomena.
In these applications, the velocity of the flow is significantly slower than the
sound speeds, and this difference in scale imposes a severe time-step stability
restriction on explicit schemes, which enforce an all-wave resolution. This is the
case for flows in the so-called low Mach number regime, i.e. weakly compressible
regimes. Therefore, in order to obtain an accurate description of the slow
waves only, the development of semi-implicit schemes will be important. In
this perspective, a close collaboration with Dr. A. Thomann could lead to
promising new results on incompressible limit systems and the development of
asymptotic-preserving schemes.
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