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Abstract

Advanced design and scanning technologies facilitates the process of cre-
ation of 3D models. Still, designing a 3D model from scratch remains an
effort and time consuming task. At the same time, the growth of the amount
of 3D digital data available on the Internet and in corporate repositories
gives the possibility to retrieve and reuse already existing models. The nat-
ural way to search for textual information is verbal description, whereas
this can be ambiguous for digital shapes. Recently research in the field of
shape representation and analysis proposes several solutions for shape de-
scription. Being exploited in different application domains like Industrial
Design, Architecture, Medical Imaging and Game Industry shape descrip-
tors might possess different properties important for shape retrieval. Some
of them are robustness to noise, invariance to model’s posture and position
in space, ability to capture overall and partial similarity. At the same time
it is important to have a compact shape descriptor to allow efficient re-
trieval process. Therefore there exists a tradeoff between completeness and
compactness of a shape descriptor. The above-stated issues form a back-
bone of this PhD research which deals with description and retrieval of 3D
models.
Differential topology and Morse theory are exploited to analyze and repre-
sent the topological structure of a model. By defining a Morse measuring
function on the shape we are able to decompose the model into components
representing critical and regular regions of the function. By iteratively bi-
secting saddle regions of the function and merging adjacent extrema and
regular regions we maximize the regions feasible for the further shape anal-
ysis and minimize more complex saddle regions. Each component obtained
after the segmentation and merging phases corresponds to a node in the
Extended Reeb graph and the adjacency of two regions is reflected by the



presence of an edge between the corresponding nodes. Next, the shape of
extrema and regular regions of the measuring function is analyzed with re-
spect to several shape criteria. The shape analysis produces indices of shape
classification which are used as the graph attributes.
We propose to use a Hermitian matrix to represent the attributed topolog-
ical graph in the retrieval process. By imposing several constraints on the
elements of the Hermitian matrix we are able to mimic spectral properties
of the Laplacian matrix. The Fiedler vector of such matrix is used for graph
partitioning and further graph matching. Combination of the overall and
partial graph matching increases the efficiency of the retrieval framework.
The proposed shape retrieval framework is examined using the benchmark
of 3D models gathered from different domains and used for evaluation of
other shape retrieval techniques. Performance evaluation measures prove
the hight efficiency of our framework.
Finally, we propose a preliminary methodology for filling the gap between
geometrical shape features and shape semantics. The proposed methodol-
ogy is considered on the domain of furniture models but can be extended to
other domains.

Keywords: 3D Shape Description, Shape Retrieval, Topological Struc-
ture, Shape Analysis, Graph Matching.
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Chapter 1

Introduction

1.1 Introduction

The amount of digital data on the Internet grows exponentially over the last
decade. Information freely available to each user includes different formats,
text documents, graphical data, software applications etc. Any user in the
network can access and reuse the data coming from the universe repository
of the Internet. Search engines make easier the process of information
seeking and retrieval. These engines take a textual query of a user and
find the documents on the web with the highest number of occurrences of
the provided query. Such a scheme for information retrieval is natural and
efficient if a user seeks for textual documents.

Recent development of sophisticated technologies for creating and ac-
quiring 3D data, such as separate 3D models and complete scenes of 3D
models, resulted in the increasing amount of 3D graphical data available
on the web as well as in corporate repositories. This facilitates the process
of designing new 3D models by providing the possibility to reuse available
data. While a textual query appears to be a natural description of tex-
tual documents in search and retrieval process, it proves to be inefficient
for graphical data. Files containing 3D models cannot be found using a
textual query. Textual information related to files with graphical data,
such as the name of a file, author’s annotations or the text on the page
linking to the graphical data, is not sufficient for retrieval. Due to the use
of different notations and languages, some files with desired 3D model will
not match the query.
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1.2. CONTRIBUTIONS

Recently research in the field of 3D shape retrieval has proposed a new
approach to search for graphical information. Precisely, a sketch or an
example 3D model can be used as a query for retrieval. 3D shape search
engines analyze the shape of the query model using different mathematical
techniques and compare it with the shape of the models in the repository.
The models with the most similar shape are browsed to a user.

While analyzing the shape of a 3D model a search engine constructs a
descriptor of the model. The descriptor is a compact and abstract shape
representation used to compute similarity between two models. The de-
scriptor can represent geometrical and topological features of the model.
Depending on the way how a descriptor is constructed, it can be invariant
to the position of a model in space, its posture, robust to noise and small
shape inconsistence, it can represent a shape globally as well as integra-
tion of local features. Depending on the domain of 3D models some of the
properties of the shape descriptor can be essential for efficient retrieval.

Once a query by sketch or by an example model is provided, a shape
engine works only with geometrical representation of models, and any func-
tional meaning is discharged. How to proceed from the geometry of a 3D
model to its semantics, and how to learn about the geometry of a model
knowing its functionality? To reveal the connection between the geometry
of a shape and semantics intrinsically represented by the geometry, and to
construct two-directional communication with 3D data is a challenge of the
recent research in the field of advanced shape representation and retrieval.

1.2 Contributions

This thesis deals with the issues related to 3D model retrieval. Precisely,
the contributions of the thesis are four-folded:

We propose a new method to segment a shape of a 3D model which
aims to extract the components of a model feasible for further shape
analysis. Moreover, the proposed shape segmentation produces the
components of a model which can be represented by the nodes of the
topological Extended Reeb graph. The nodes corresponding to the
neighbor components are connected by an edge in the graph. Such

2



CHAPTER 1. INTRODUCTION

topological graph can be used as a rough shape descriptor which is
able to divide 3D models into topologically equivalent classes.

We propose a new scheme for local shape analysis of the components
extracted on the previous segmentation step. Shape analysis is per-
formed using three criteria, they are component’s taper/enlargement,
bending and average curvature. The shape criteria define shape clas-
sification, the indices of this classification can be used to attribute the
topological graph representing the model.

We propose a new method to match attributed graphs. The graphs
are topological shape descriptors attributed with indices produced af-
ter shape analysis which is performed locally on the components of a
3D model. The attributed graph is represented by a Hermitian ma-
trix, which is constructed in the way to mimic the spectral behavior
of a Laplacian. The eigenvector associated to the second smallest
eigenvalue is used to partition the graphs into the set of meaningful
subgraphs. The graph partition is done to cope with the problem of
matching the graphs with different number of nodes. The similarity
between the graphs is then measured as the distance between the sec-
ond eigenvectors of the associated Hermitian matrices. The final mea-
sure of graph similarity is the combination of the overall and partial
graph matching. Experimental results for 3D model retrieval prove
high efficiency of the proposed graph matching and shape description
methods.

We propose a new methodology to build the bond between the geom-
etry and topology of the shape and its semantics. To construct this
connection, 3D models should be considered and interpreted within a
specified domain of models, because a shape can have different mean-
ing depending on contest in which it is used. The proposed methodol-
ogy considers the domain of furniture models. A simple shape descrip-
tor is constructed for the models of the domain, and the vocabulary
of the domain is used to map the descriptor to semantic labels. Using
the ontology of the domain and semantic labels of a model, we can
identify the class of the model and its relation with other models in

3



1.3. STRUCTURE OF THE THESIS

the domain. Ontology of the domain allows two-directional interac-
tion with 3D models, i.e. a user can query the system by providing
the textual query which will be used to detect the desired class of 3D
models (going from semantics to geometry), and conversely, when a
user provides a 3D model and the system automatically detects the
class of the model (going from geometry to semantics). The proposed
methodology can be extended to other domains by exploiting differ-
ent shape descriptors and constructing the vocabulary and ontology
of the chosen domain.

1.3 Structure of the Thesis

The thesis is organized as follows:

In Chapter 2 we review the state of the art in the field of shape retrieval.
First, we discuss the architecture and differences of several shape search
engines available on the Internet. Then we overview the properties and
types of shape descriptors used to represent a shape in retrieval process.
We dwell on graph-based shape descriptors and methods for their matching.
Finally, we list measures for evaluation of the efficiency of a shape retrieval
process.

In Chapter 3 we give excerpts from differential topology and Morse the-
ory, which form the theoretical background of the proposed shape segmen-
tation and description techniques. We also discuss several functions used
to map 3D shape to real-valued domain, and the techniques for construc-
tion topological graph-based shape descriptors. We conclude the chapter
reviewing adjacency and Laplacian matrices used to represent a graph, and
spectral properties of these matrices in the application to graph matching.

In Chapter 4 we describe the proposed framework for shape retrieval.
First, we describe two approaches to construct the topological shape de-
scriptor. Second, we give a scheme for local shape analyses for a segmented
model. The result of the topological description and local shape analysis
is the attributed graph based descriptor. Third, we describe the proposed
graph partitioning and matching techniques. We conclude the chapter with
the section, where we propose a new methodology for tying together the

4



CHAPTER 1. INTRODUCTION

geometry and semantics of the shape.
In Chapter 5 we describe the results of the experiments of shape re-

trieval. We discuss the results of the proposed shape segmentation and
analysis, and we also evaluate the efficiency of the whole retrieval system.

In Chapter 6 we review the work fulfilled in the thesis and highlight the
directions of future work.
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Chapter 2

State of the Art

An increasing number of 3D models on the Internet creates a potential
to reuse this data. Having in mind a specific shape or an example model
a user may query a 3D shape search engine by drawing a sketch or by
uploading an example model. The search engine will analyze the query,
extract important geometrical and topological features of the shape, under-
stand its semantics and return to the user models with the similar shape
or models with the same functional meaning. This scenario is a perfect
solution of 3D shape retrieval. However, the problem of understanding a
shape and, especially, the bond between the shape and intrinsic semantics
is ambiguous and is usually studied with application to a restricted domain
of models.

Shape analysis and understanding leads to construction of a shape de-
scriptor, a specific structure (e.g. vector, matrix, graph structures) encod-
ing geometrical, topological and possibly semantic characteristics of the
shape. The purpose of a shape descriptor is to represent a shape in a sim-
ple and compact way in order to identify it as a member of a particular
class of shapes. Thus a shape descriptor should encode those shape features
which allow to distinguish the shape from other shapes in a database.

The process of shape retrieval consists of several phases. Once the ar-
chitecture of a retrieval system is defined, the shape of models stored in
a database or discovered as the result of crawling process is analyzed and
their shape descriptors are extracted and stored along with the models.
Given an input query model, the system analyzes its shape, constructs the
shape descriptor and compare it with the shape descriptors of the models

7



2.1. SHAPE SEARCH ENGINES

in the database. The result of such comparison is a set of real numbers
which reflect the degree of similarity between the models. These numbers,
allow to order the models in the database so that the user first browses the
models most similar to the given query. Each of the phases of the depicted
retrieval process are further reviewed in the sections of the current chapter.

2.1 Shape Search Engines

The growing amount of 3D data populating Internet and corporate databases
requires a new technology to find, describe, index and store such informa-
tion. Several prototypes of search engines of 3D models have been devel-
oped and now available on the Internet. Among them there are the search
engine developed at Purdue University [3], Princeton 3D Model Search
Engine [11], 3D Model Retrieval System based on LightField Descriptors
[2]. All these search engines have similar architecture but differs by the
ways how a query can be formed, by shape descriptors used to find similar
models, by matching techniques for shape descriptors, and, finally, by the
way the retrieval results are browsed to a user.

Query Shape Descriptor Shape Descriptor

Retrieval Results

Shape

Extraction Matching

Repository

Figure 2.1: A scheme of a 3D model search engine.

Figure 2.1 represents a general scheme of a 3D shape search engine. On
the first phase a query is formed. The query can be an example 3D model,
2D or 3D sketch. A query might contain keywords as well. To make use of
textual queries the text on the page containing a link to the file with a 3D
model is processed and matched against the query keywords. The name of
the file of the model is also used in textual matching. On the second step
the query is processed and a shape descriptor is constructed. On the third
step the shape descriptor is matched against shape descriptors of models
in the shape repository. These descriptors are usually extracted, indexed

8



CHAPTER 2. STATE OF THE ART

and stored on the preliminary off-line phase. The result of the matching
of shape descriptors is usually a list of real numbers which indicate the
similarity between corresponding models. Finally, when retrieved models
are browsed to a user, they are ordered with respect to the computed
matching rate.

Figure 2.2: Organization of Princeton 3D Model Search Engine [40].

Figure 2.2 illustrates the architecture of Princeton 3D Model Search En-
gine [40]. The system execution consists of four steps: crawling, indexing,
which are performed off-line, and querying and matching which are done
on-line for each user query. The system allows textual queries, search by
2D and 3D sketches, and by an example model. The constructed shape
descriptor is based on spherical harmonics of the shape function defined on
the voxelized 3D model. The results are browsed to a user as an ordered
list. A user has a possibility to refine a query by clicking the link ”Find
Similar Shape” which would lead to the multimodal query consisted of the
entered keywords and of the shape information of a chosen model.

Figure 2.3 represents the architecture of the shape search engine de-
veloped at Purdue University. The search engine allows to query by an
example model or by a sketch. The retrieved results are both 3D models
and 2D legacy drawings. Additionally to a standard list of the retrieved
models Purdue search engine proposes a new visualization paradigm where
the models of the repository are located in 3D or 2D space. The coordi-
nates of the retrieved models are computed by converting the similarity
space into Euclidean space. Figure 2.4 illustrates the 3D navigation inter-

9



2.1. SHAPE SEARCH ENGINES

Figure 2.3: Organization of Purdue Navigation and Discovery Engine [74].

face.

The search engine developed at Technion University [56] proposes a user
with a possibility to leave a relevance feedback regarding initial retrieval
results by marking relevant items in the browsed list of retrieved models.
Marked models participate further in refining the computation of shape
similarity by separating relevant and irrelevant retrieved models. The re-
fining procedure can take place until a user obtains satisfactory results.
Figure 2.5 illustrates two phases of shape retrieval. On the first phase the
retrieval is performed using only textual query, on the second phase the
query was refined by marking relevant objects.

In the shape repository of AIM@SHAPE project [5] the models are orga-
nized using the metadata, i.e. ”knowledge about shape”, which is inserted
inside the database together with a model by its owner. This metadata
allows browsing models by different categories of shape representation, for
example, boundary, raster or 3D animation shape representation. More-
over, this data is also exploited to organize the models in the repository
using the developed ontology. Semantic search engine [6] use the ontol-
ogy to retrieve models from the repository. Within AIM@SHAPE project
there was also developed and now available online [4] a search engine based
on the analysis of geometrical and topological shape features. This shape
search engine takes as an input a query 3D model or a model from the

10



CHAPTER 2. STATE OF THE ART

Figure 2.4: The 3D navigation interface. The models are positioned in space according
to similarity distance. [74].

shape repository, and using Reeb graph based shape descriptor finds simi-
lar models (See Figure 2.6).

The efficiency of a retrieval system is usually evaluated using the mea-
sures from information theory. We discuss some of them in Section 2.3. The
reviewed measures evaluate the performance of the whole system, where
the number of relevant models is known in advance. The retrieval process,
however, is composed from several complicate phases; some of them are
construction of shape descriptor, matching of shape descriptors, represen-
tation of retrieval results. Efficiency of the whole system depends on the
combination of the performances of each of the components. While de-
signing a retrieval system, it is important to aim at increasing efficiency of
each of the retrieval phases.

In the following section we review several shape descriptors, their prop-
erties and techniques for measuring similarity between them.

11



2.2. SHAPE DESCRIPTORS

a) Intial search b) Retrieval results after a relevance feedback iteration

Figure 2.5: Shape retrieval using relevance feedback [56].

2.2 Shape Descriptors

Shape retrieval process consists of several steps, one of which is construc-
tion of a shape descriptor. Studies conducted in [64] demonstrate that the
search of 3D shape using information stored in a shape descriptor signif-
icantly outperforms the search based on verbal description. This can be
explained by the lack of textual information present in files of 3D models,
by differences in language and notations. Conversely, a shape descriptor, or
as it is also called, a shape signature, stores geometrical and/or topological
information intrinsically represented by the shape of a 3D model.

The efficiency of a shape descriptor depends on its properties. To as-
sure fast retrieval and indexing processes, a shape descriptor should have
compact structure and allow fast matching. This property imposes a com-
promise between being descriptive and compact. The increase of descrip-
tiveness of a shape signature usually leads to the growth of its size and as
a consequence to a longer time needed to compute similarity between two
signatures.

Often shape databases are collections of models which come from differ-
ent designers. As the result the models can be located differently in space.
A shape descriptor should be invariant to affine transformations. In the
domain of articulated 3D models it is also important to have the same or
similar shape descriptors for the models representing the same object but
in different poses. Thus the descriptor should be posture invariant.

The majority of models which can be found on the Internet contain
self-occlusions, holes, and noisy shape representation. Working with such
models a shape descriptor should be robust to noise and small shape per-
turbations.

12



CHAPTER 2. STATE OF THE ART

Figure 2.6: Geometry-based Shape Search Engine of AIM@SHAPE.

The other useful property which a shape descriptor can possess is the
ability to describe the overall shape of a model as the composition of local
shape descriptions. Such a descriptor will further provide a possibility to
detect the overall as well as partial shape similarity.

Unfortunately, there is no a shape descriptor which possesses all the
mentioned properties. Further in this section, we briefly review some shape
descriptors which form state of the art of shape description and represen-
tation. We dwell on graph-based shape descriptors because they allow to
combine topological and geometrical information of the shape and to de-
tect overall and partial shape similarity. We use Extended Reeb Graph as
a shape descriptor in our retrieval framework. Thus we will also review the
applications of a Reeb graph in the fields of shape description and analysis.

Distribution Based Shape Descriptors use the distribution of a
function defined on a shape as its signature. R. Osada et al. [69] inves-
tigated the use of four different functions calculated on points randomly

13



2.2. SHAPE DESCRIPTORS

sampled from the surface of a model. The D2 function of the distance be-
tween two random points gives the most discriminative shape description.
In [43] the distribution of the geodesic distance function is used as a shape
descriptor. The authors of [49] distinguish the distance values between
two random points for which the connecting line segment passes inside a
model, outside or both inside and outside the model. The authors also
showed that the distribution based shape descriptor is able to discriminate
gross shape differences, but tends to the normal distribution when a shape
contains a lot of details.

Being computed on randomly sampled points and normalized, the dis-
tribution based shape descriptors have the advantage of being invariant to
affine transformations and robust to noise and small shape inconsistencies.
They are compact and fast to compute. Nevertheless, distribution based
shape descriptors fail to distinguish the models with many shape features.
Notice how similar the distributions of two left models on Figure 2.7.

Figure 2.7: Distributions of D2 function for some 3D models. The more details are present
in the shape of a model the less discriminative the distribution.

Similarity between the shape descriptors is simply Euclidean distance, or
other distance measures like Minkowski LN norms, Kolmogorov-Smirnov,
Earth Mover’s distances [69], computed between the vectors of the shape
distributions of two models.

Transformation Based shape descriptors are descriptors which
convert the function defined on the shape to frequency domain. These
descriptors are usually 3D feature vectors.

The transformations that are used most often are Fourier Transform
[95], decomposition into Spherical Harmonics [52], Angular Radial Trans-
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form [77], Zernike moments [68].

A general scheme for construction of a transform-based shape descrip-
tor is the following. First, a 3D model is normalized in order to achieve
invariance of the shape descriptor to affine transformations. The shape
descriptor proposed in [52] is invariant to rotation due to the properties
of spherical harmonics. Descriptors based on Fourier transformation re-
quire a preliminary alignment which is done through Principal Component
Analysis [95]. Invariance to translation and scale is achieved by bringing a
model into the origin of the reference frame and scaling it to the unit size.

Second, the shape is discretized inside voxel grid. The shape function is
computed for the voxels composing the model. Voxelizing the model before
construction of the shape descriptor make the descriptor more robust to
noise and small shape impediments.

Finally, the discrete shape function is transformed into frequency do-
main. The shape descriptor is a vector composed of a certain number of
low frequencies. Figure 2.8 shows the process of construction of a shape
descriptor based on spherical harmonics.

Low frequencies of transformation based descriptors encode gross shape
information whereas higher frequencies store detailed shape characteris-
tics. Such multiscale particularity of transformation frequencies allow to
measure similarity between two models at different scales. However, trans-
formation and distribution based shape descriptors are able to reflect only
the overall shape similarity and do not capture partial resemblance of mod-
els.

To find similarity between transformation based shape descriptors the
L1 and L2 norms are usually computed between two descriptors [52, 95,
77, 100].

LightFiled shape descriptor is a view-based descriptor. Instead of
analysis of the shape of a 3D model, a LightField shape descriptor repre-
sents a composition of descriptors of 2D image.

To construct the LightField shape descriptor proposed in [27], a 3D
model is first placed to the origin of the system and scaled so that maximum
length along one of the axes is one. 10 images of the model are taken
from the vertices of a regular dodecahedron enclosing the model. The
cameras used to take images should be distributed uniformly, and their
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Figure 2.8: Computing the harmonic shape representation [52].

position is switched 60 times to find the most similar views. Moreover, 10
different rotations of the dodecahedron are considered in order to capture
position difference between two 3D models. Zernike and Fourier rotation
invariant descriptors are further extracted from obtained images of the
model. Finally, the LightField shape descriptor of a 3D model is the vector
of coefficients of Zernike and Fourier transformations of the images. Figure
2.9 illustrates the process of construction of the descriptor.

The LightField shape descriptor provides the best retrieval performance.
Based on image description it is robust to noise and shape inconsistencies.
Invariance to rotation, not exact but with small error, is achieved by choos-
ing the most similar views among the set of images obtained after rotating
the dodecahedron and switching camera system. However, the descriptor
is not posture invariant and is not able to capture partial similarity of
models.
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Figure 2.9: Computing the LightField descriptor of a 3D model [27].

The similarity between models represented by LightField Descriptors is
measured as the smallest distance between the vectors composed of Zernike
and Fourier coefficients for all obtained sets of views.

2.2.1 Graph Based Shape Descriptors

The majority of shape descriptors store information of the whole shape of a
model and are not able to detach local shape details. Such descriptors are
used to evaluate overall similarity between two models. In case when one
model is a part of another model, shape descriptors often fail to detect their
partial similarity. Figure 2.10 shows the cases of overall and partial shape
similarity. Representation of a model by a graph-based shape descriptor
allows to reveal partial similarity between models through detection of
graph (sub)isomorphism.

Figure 2.10: Overall (a) and partial (b) shape similarity.

Graph based shape descriptors encode both topology and geometry of a
model in a compact way. The structure of the graph represents the topol-
ogy of the model, and geometrical characteristics of the shape can be stored
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as attributes of nodes and edges of the graph. The advantage of efficient
combination of topological and geometrical shape information pertains to
graph-based shape descriptor. There exist several shape descriptors of a
vector form, where some of vector components represent topological shape
characteristics [56, 28], i.e. genus, number of connected components. How-
ever such descriptors do not reveal the structure and corresponding shape
geometry.

Graph-based shape descriptors correspond to the natural perception of
real solid objects by humans. Looking at a new object we perceive the
shape of each part and the way how the parts are connected to each other.
Thus, we perceive not only the substance of each part, but their integration.
In a graph-based shape descriptor a node usually represents the substance
of a part of an object, and the whole graph structure expresses relations
between the parts.

On the other hand, matching graph based shape descriptors corresponds
to (sub)graph isomorphism detection, which is a known NP-complete prob-
lem. Several heuristics were proposed to reduce the complexity of the prob-
lem of graph matching. Usually, information about a described shape is
used to select nodes and edges in the graphs under comparison. Such se-
lection results in an approximate but easier solution of the graph matching
problem.

Medial Axis for shape description. Probably the most popular
way to encode and represent compactly a shape is Medial Axis Transform
(MAT). Medial Axis (MA) was first defined by H. Blum in 1967 in [24].
The author made analogy of MA and the place of extinguishing of grassfire
fronts, where the fire is set on the boundary of an object. Mathematically,
MA is defined as the loci of the centers of maximal balls within an object,
where a maximal ball is the ball that is not contained in any other ball
enclosed in the object. MAT is Medial Axis together with the value of the
radius of the maximum ball corresponding to each point of the MA.

There exist three main approaches to construct Medial Axis. The first
one is tracing approach [51, 29, 80]. Starting from a convex vertex on the
surface of an object the method proceeds by sweeping along the incident
seam until a junction point of MA is reached. Sweeping is performed
using a tracing step and tracing direction, approximated representation of
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seams of MA is computed during sweeping. Once the junction point is
reached, the sweeping procedure is repeated recursively for each of non
visited adjacent seams.

The second approach uses Voronoi diagrams [12]. Since MA is a subset
of vertices of Voronoi diagram of points sampled on the surface of an object,
the approach first constructs Voronoi diagram of the object and then selects
the subset of Voronoi vertices for medial axis approximation.

The third approach, also called homotopic thinning, discretizes an ob-
ject on a voxel grid and then using distance transform consequently removes
boundary voxels. While removing the voxels, or in other words, thinning
the object, the check on the preservation of the object topology is done.
Other control performed during object thinning is preservation of one-voxel
thin and medial skeleton [14]. However, there exist a large number of ho-
motopic thinning methods that produce non medial skeletons.

MA provides several advantages for the use in shape representation.
First, it is topologically equivalent to the object itself, so it can be used to
represent the topology of a model. As the consequence of this property, MA
is invariant to the position of the model in space. Second, MA has compact
structure. Third, the most important advantage is that it is possible to
reconstruct an object from its MA by using distance transform.

MA is widely used in image representation, shape deformation and an-
imation. However, its application to 3D shape representation is more dif-
ficult since MA is not any more the collection of points and curves but
it can contain surface patches as well. The most known shortcoming of
MA is that it is unstable to noise. Small protrusions on the boundary of
an object can generate big changes in the MA. Moreover, changes of one
vertex on the object boundary can lead to changes of MA in more than
one place. Figure 2.11 illustrates the MA of an object and its changes due
to small boundary perturbations.

To cope with instability to small boundary perturbations several values
are associated to MA, which measure the substance and conductance of
the components of the MA [51]. The components of the MA with higher
substance value have more importance in the graph. The other way to
reduce the instability of the MA is graph pruning [15], where more studies
on graph structure should be done to decide which branches are more
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Figure 2.11: A shape (in dotted line) and its MA (in bold line). MA instability with
respect to small boundary alterations, (b) a small protrusion produces large difference in
MA; (c) boundary alteration in one place may change the MA in several places [51].

important and which are to be pruned.

Shock graphs are defined as the locus of singularities (i.e. shocks)
of Blum’s grassfire transformation. The position of shocks defines Medial
Axis, the radius variation around a shock defines the label of the cor-
responding graph component. Shock graphs are directed acyclic graphs
where the direction of arcs can be defined by the time of shock formation
[84]. Figure 2.12 shows types of shocks used in [84] and an example shock
graph.

a) b)

Figure 2.12: Shock graphs. a)Shock types [84]. b) a shock graph with arc direction
opposite to the Blum’s grassfire direction, image is taken from [78]

The authors of [78] use different shock classification which implies the
directions of arcs in the graph.

Shock graphs inherit all the properties of Medial Axis and are further
attributed by shock types. The edges of the graphs are directed arcs.
These properties make shock graphs more amiable for shape description,
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recognition and matching.

2.2.2 Reeb Graphs

During last years Reeb graphs gain more and more popularity in the field
of shape description and analysis which can be proved by an increasing
number of research articles dealing with applications of Reeb graphs in
different fields. First defined by French mathematician G.Reeb in 1946 [76],
Reeb graphs were rediscovered in application to computer graphics in 1991
by Shinagawa et al [82]. A Reeb graph is used to represent the topological
structure of the manifold of a shape. To this end a measuring function is
defined in the manifold and Morse theory is exploited to study topology
of the manifold through analysis of the measuring function. Morse theory
provides powerful instruments to examine the changes in the topology of
a manifold by tracing the evolution of critical points of a function defined
on it. Therefore, the nodes of the Reeb graph represent the critical points
of the function, and their configuration is reflected by the edges in the
graph. We give theoretical definition of the Reeb graph together with some
useful theorems from Morse theory in Section 3.1. The measuring function
should obey several constraints which are also discussed in Section 3.1.
Obviously, the structure of a Reeb graph depends on the chosen measuring
function. For an example, the configuration of critical points of the height
function differs from those of the width function, thus leading to different
Reeb graphs of the same 3D model (see Figure 2.13). Several measuring
functions used for Reeb graph construction are reviewed in Section 3.2.

h

w

Figure 2.13: Reeb graphs with height and width measuring functions.

There are three main approaches to construct Reeb graphs. The first
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approach proposed in [46] is based on fine-to-coarse decomposition of the
manifold of a shape into connected components. The second approach [21]
analyses the evolution of levelsets of the measuring function defined on
a shape. In [71] the authors propose a fast and robust way to construct
a Reeb graph by exploiting efficiently the correspondence between data
structures of the shape and the graph. In Section 3.3 we discuss all the
three approaches in details.

Reeb graphs are widely used for shape encoding and description, shape
matching and retrieval [46, 21, 19, 92, 90]. There is a number of works
where Reeb graphs are used for visualization of complex scientific data [89,
88, 70, 34]. Reeb graphs are also exploited for shape segmentation [18, 99],
topology repair [98], surface parameterization [72], texture mapping [101]
and shape reconstruction [16]. In [34] the authors explore time-varying
Reeb graphs, and in [50] the graphs are used for topology morphing.

2.2.3 Graph Matching

In the current section we review several method for matching graph-based
shape descriptors. The most important property of graph-based shape de-
scriptors is the ability to separate shape features and to represent them
structurally. Consequently, these descriptors are used to detect partial
shape similarity which is equivalent to the problem of subgraph isomor-
phism detection. The latter is a known NP-complete problem. Several
heuristics were proposed in literature to reduce the complexity of the prob-
lem by exploiting additional information stored in the graph-based shape
descriptors.

One of the methods used for detection of subgraph isomorphism finds
Maximum Common Subgraph MCSG1,G2

of two graphs G1 and G2. MCSG1,G2

is defined as a common subgraph G of G1 and G2 such that there is no other
common subgraph having more nodes than G. The first step in compu-
tation of MCSG1,G2

is to find all possible mappings M between two input
graphs. Second, each pair of mapped vertices m from M is considered as a
candidate for generating the set of common subgraphs. If a pair is a valid
candidate the generated subgraphs will be expanded until no nodes can
be added to the subgraph. This procedure is repeated for each candidate
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pair of mapped vertices. Finally, MCSG1,G2
is a graph with the maximum

number of nodes among all generated common subgraphs.
Considering each pair of mapped vertices for subgraph generation, and

further expansion of each graph in the set of all possible subgraphs lead
to the exponential growth of the number of subgraphs which should be
computed. In [61] the authors approximate the computation of MCSG1,G2

by reducing the subset of considered candidate pairs. This is done by se-
lecting those vertices for which the relevance measure is higher than the
mean relevance value of the nodes in the graph. The proposed relevance
value of a vertex is a vector which represents information about the sub-
graph related the vertex. The distance between the relevance values of two
vertices d(vi, vj) is used to evaluate how the pair (vi, vj) contributes to the
expansion of the common subgraph. Two different methods for selection
of initial candidate pairs of vertices are used in [61] which lead to different
MCS. The method based on grouping the initial set of candidates using
vertex attributes resulted in associating semantically equivalent parts of
two objects.

The second type of the methods used to detect subgraph isomorphism
belongs to the class of inexact graph matching techniques which consider
the vertices of graphs G1 and G2 as two disjoint sets of vertices of a bipar-
tite graph and try to find the best assignment between the vertices from
different sets. The smallest distance between the attributes associated to
the vertices d(v1, v2) is usually used as criterion for assignment two vertices
v1 ∈ G1 and v2 ∈ G2. The problem of searching for the best correspon-
dence, where a vertex from the first set of vertices can be mapped only
to one vertex from the second set, and vice versa, is known as assignment
problem. Formally, the assignment problem is stated as

min

n∑
i=1

n∑
j=1

cijxij

, where cij are the coefficients representing the cost of assignment vertex
vi ∈ G1 to vj ∈ G2, and xij are the elements of the permutation matrix:

n∑
j=1

xij = 1,
n∑

i=1

xij = 1 xij ∈ {0, 1}.

23



2.2. SHAPE DESCRIPTORS

There exist several algorithms aimed to solve assignment problem. Prob-
ably the most known of them is Hungarian algorithm originally proposed
by H. W. Khun in [54].

If a shape is represented by a graph attributed with node and edge labels
the graduated assignment algorithm is used to solve the problem of graph
matching [41].

When the G1 and G2 are not large the brute-force method can be used to
find the best assignment between the vertices. The vertices with smallest
distance between their attributes are mapped to each other and the assess-
ment of graph matching is the sum of the distances between all mapped
vertices.

The lack of bipartite graph matching methods is that the connectivity
relations between the nodes in a graph are completely discharged and only
information stored in the labels of the nodes is used for matching.

The authors of [85] stored the connectivity information of each node
as its label and used matching algorithm for bipartite graphs. Precisely,
information stored along with each node is the sum of eigenvalues of the
adjacency matrix of the graph rooted at that node. The eigenvalues in-
trinsically represent connectivity relations in the graph. Combining the
adjacency information of each node together with bipartite matching algo-
rithm the authors obtained good performance, retrieving in average 70%
of desired models as top results.

Methods using the eigenvalues of a matrix associated to a graph belong
to the class of spectral graph matching methods. The spectrum of a graph
is the vector of eigenvalues of a matrix representing graph structure. Graph
matching methods from these group gain more and more success for they
allow to avoid NP problem of graph isomorphism detection. The corner-
stone idea of spectral graph matching methods is that similarity between
two graphs can be measured as the distance between their spectra. More-
over, the vectors of graph spectrum can be reduced to the same dimension
by padding the spectrum of smaller graphs with zeroes, which corresponds
to insertion of isolated dummy nodes to the graphs. This technique al-
lows to perform efficient indexing methods for retrieval. Spectral graph
matching methods were exploited not only in the field of 3D shape re-
trieval [83, 85, 32] but also for image [97, 32] and music retrieval [73]. We

24



CHAPTER 2. STATE OF THE ART

review spectral graph theory in more details in Section 3.4.

2.3 Evaluation of Efficiency of a Retrieval Process

There exist a large number of values to measure efficiency of shape retrieval
process. Almost all of them were adopted from the field of information
retrieval. The values of precision and recall are the most common measures
used to evaluate efficiency of shape retrieval.

Figure 2.14 illustrates a set of all the objects of a shape repository U and
two subsets, the set of the relevant objects A and the set of the retrieved
objects B. The intersection of the two subsets A

⋂
B indicates the subset

of the relevant objects browsed to a user.

U

A

B

A
⋂

BA
⋂

B

Figure 2.14: The set of all shapes U in a repository, A is the subset of all shapes relevant
to a query, B is the subset of all retrieved shapes. The intersection A

⋂
B is the subset

of shapes relevant to the query and retrieved.

Precision is defined as the ratio of the number of relevant objects
retrieved to the number of retrieved objects:

Precision =
|A
⋂

B|
|B|

(2.1)

The value of precision is usually calculated for several tiers, i.e. for
the first 10 retrieved objects, then for the first 20 etc. PrecisionN means
precision for the first N retrieved objects.

Recall is defined as the ratio of the number of relevant objects retrieved
to the total number of relevant objects in a database:

Recall =
|A
⋂

B|
|A|

(2.2)
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Similarly to precision, RecallN means recall for the first N retrieved
objects.

There are several combinations of the precision and recall values used
to estimated the efficiency of retrieval process. Some of these values can be
difficult to interpret because of the mixture of these two measures. One of
the values is Retrieval Efficiency which is defined as precision while the
number of retrieved objects is less than the number of all relevant objects
|B| < |A|, and as recall otherwise, if |A| < |B|.

Retrieval Efficiency =

{
Precision, if |B| < |A|
Recall, if |A| < |B|

The other combined value is F-Measure which is by definition a har-
monic mean of precision and recall values:

F−Measure =
2 · Recall · Precision

Recall + Precision

F-Measure is high if both precision and recall values are high.
Average dynamic recall is defined as the average of the relevant

objects within first i retrieved objects:

ADR =
N∑

i=1

|Ai

⋂
Bi|

i

0.5 Precision recall is defined as the recall value for which the preci-
sion is below 0.5.

Error Rate is the ratio of the number of non-relevant objects retrieved
to the number of all retrieved objects

ErrorRate =
|(U − A)

⋂
B|

|B|

The average ranking is the average position of all relevant objects in
the order they returned as the retrieval result. Low value of the average
ranking means that relevant objects appear on the top of the list of retrieval
results.

AverageReanking =

∑
i∈A Rank(i)

|A|
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However, the measure of the average ranking can be significantly influ-
enced by the high rank of few relevant objects, inadequately reflecting the
retrieval performance of the whole system.

Normalized Average Ranking varies in the interval [0; 1] and it takes
on the value of 0 for ideal retrieval and approaches 1 as retrieval results
worsen:

R =
1

|U | · |A|

(∑
i∈A

Rank(i)− |A| · (|A| − 1)

2

)
The percentage of success of the first and the second retrieved ob-

jects is defined as their probability to be relevant. The probability of suc-
cess for the first and second retrieved objects is computed for each query,
and then it is averaged over the whole set of queries.

The last place ranking indicates the position of the last relevant
object in the list of retrieval results. This value is computed as

L = 1− Rank(Last)− |A|
|U | − |A|

Defined in this way, the value of the last ranking varies within the interval
[0; 1] and it takes on the value of 1 for the ideal retrieval process when
Rank(Last) = |A|.

All the listed values can be calculated for each query separately. Usually
the performance measures are further averaged over each category of the
models in a database providing the possibility to analyze the performance
of the whole system as well as the efficiency of a shape descriptor for
different types of shapes. Finally, the performance measures are averaged
over the whole database.

Often to evaluate the efficiency of a retrieval system the Discounted
Cumulated Gain vector is used. This measure provides the advantage
of having the lowest standard deviation among other standard measures.

Gain vector G is the vector whose entry Gi is 1 if the retrieved object
of the rank i is relevant to the query, and 0 otherwise. Then Cumulated
Gain vector CG is defined as:

CGi =

{
G1, i = 1
CGi−1 + Gi, otherwise

27



2.3. EVALUATION OF EFFICIENCY OF A RETRIEVAL PROCESS

Table

Human

Skateboard

Phone

Mug

Missile

Plane

Chair

Sub

Car

T
ab

le

H
um

an

Sk
at

eb
oa

rd

P
ho

ne

M
ug

M
is

si
le

P
la

ne

C
ha

ir

Su
b

C
ar

Figure 2.15: Distance matrix [69], which darkest diagonal entries correspond to the highest
self-similarity values of the objects.

Discounted Cumulated Gain vector dampens the influence of less similar
objects by adequately reducing the entry of the Gain vector:

DCGi =

{
G1, i = 1
DCGi−1 + Gi/ log2 i, otherwise

Graphical Performance Measures. There are several plots and his-
tograms used to visualize the performance of a retrieval system.

One of the most used visual evaluation is the distance matrix, which
gray scale entries reflect pairwise similarity between objects in a database.
The rows and the columns of the distance matrix correspond to the objects
in the shape repository which are usually grouped into relevant classes. The
more similar two object i and j are, the smaller is the distance between
them and the darker is the entry (i, j) of the matrix. Distance matrix allows
to visually estimate which kind of shapes are more or less similar to each
other according to exploited shape descriptor and matching techniques.

Precision plot and Recall plot are graphics of the precision and recall
depending on the number of retrieved objects. From the definition of these
measures (2.1), (2.2) it follows that recall grows as the number of retrieved
objects increases whereas precision drops at the same time.

Precision Recall plot is a commonly used visual technique to compare
efficiency of several retrieval systems. There exist a trade-off between recall
and precision. The increase of the number of retrieved objects makes recall
grow but at the same time reduces precision. The only way to increase
both recall and precision is to improve the efficiency of a search engine by
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Figure 2.16: Recall and precision plots vs. the number of retrieved objects.

Figure 2.17: Precision Recall plot [52]. The top most plot corresponds to the most efficient
retrieval.

introducing better techniques for shape representation and retrieval. The
higher the efficiency of a retrieval system the more the Precision-Recall
plot is shifted to the top-right.

In Chapter 5 we use some of the listed above evaluation measures to
estimate the performance of our retrieval system.

2.4 Conclusions

In this section we have reviewed the main phases of the shape retrieval
process.

The architecture of several prototypes of search engines available nowa-
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days online was discussed. Mainly, functioning of a search engine can be
divided into five phases, they are indexing of a shape repository, query for-
mation, extraction of a shape descriptor from the query, search for the best
matching of shape descriptors, and finally browsing the retrieval results to
a user.

Different search engines use different shape descriptors to represent 3D
models and to detect similarity between them. Shape descriptors can be
divided into feature distribution based shape descriptors, transformation-
based, view-based and finally graph-based shape descriptors. Descriptors
from the latter group represent both topology and geometry of 3D models,
allow to detect partial similarity of the models, but they are more difficult
to compare. The methods used to detect partial similarity, or subgraph
isomorphism of the descriptors, are usually approximation of exact graph
matching techniques, where shape information stored in the descriptor is
exploited to reduce the computation complexity.

Finally several measures for evaluation of efficiency of retrieval process
were listed in this chapter. The most used measure are precision, recall,
and discounted cumulated gain vector. Using precision-recall plot it is
possible to compare efficiency of several search engines because the top
and right most position of the plot indicates the greater efficiency.

In the following chapters we will reuse the Reeb graph based shape
descriptor, and we will extend spectral graph matching techniques. Finally,
to evaluate the efficiency of our framework we will use some of the listed
evaluation measures.
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Chapter 3

Theoretical Background

Differential topology together with Morse theory provides powerful tools
for analysis and description of the shape of 3D models. These tools allow
to study the topological properties of the manifold representing the shape
through the critical points of a function defined on the manifold. This
function is often called a measuring function as the value of the function
at a point represents its measure and its significance in the context of
the whole shape. A measuring function is also called a mapping function
as it maps the points from the manifold of the shape to the codomain
of the function. Configuration of critical points of the mapping function
represents the topology of the shape. This configuration can be compactly
encoded by a Reeb graph, which is used as a shape descriptor of 3D models.
To estimate similarity between Reeb graphs of two different 3D models,
spectral properties of the graphs can be exploited.

3.1 Differential Topology and Morse Theory

The theory of differential topology provides tools for shape analysis and
description. In order to describe a shape we map the manifold representing
a shape to a real-valued domain usually of lower dimension, called chart. To
perform such a map we define a measuring function f on on the manifold.
This function sets a correspondence between the points of the manifold
and the chart f : M → R. Topological properties of the manifold M can
be studied trough the analysis of critical points of the mapping function f .

A point p is a critical point of a function f , if all partial derivatives
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∂f
∂xi

(p) vanish at this point.

The Hessian matrix is the square matrix of partial derivatives of f :

H(f) =

[
∂2f

∂xi∂xj

]
. (3.1)

A critical point p is non-degenerate if the determinant of the Hessian matrix
is not zero: ∣∣∣∣ ∂2f

∂xi∂xj
(p)

∣∣∣∣ 6= 0. (3.2)

The meaning behind a non-degenerate critical point is that the derivative
f ′(x) takes on the value of 0 just once in the vicinity of the critical point
p. Hence, non-degenerate critical points can be separated.

A smooth function defined on a smooth manifold is called Morse func-
tion if all its critical points are non-degenerate. A Morse function whose
critical points have different values is called simple, otherwise it is com-
plicated Morse function (see Figure 3.1 for illustration of degenerate and
non-degenerate critical points). Complicated Morse functions can be easily
turned into simple functions by slight local shape perturbation as shown
in Figure 3.2b unless it is required to preserve the properties of invariant
Morse function [39]. Consequently, any smooth function can be approxi-
mated by Morse function.

h

a) b) c)

Figure 3.1: Critical points of the height measuring function. (a) degenerate critical points,
(b) non-degenerate critical points with a single critical point per each critical value, (c)
and with several critical points for the same critical value.

If a function used for analysis of the topology of a shape is a simple
function, the shape manifold can be decomposed into regions which con-
tain only a single critical point. In other words, the critical points of the
mapping function can be separated. Such division of the manifold into
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a) b)

Figure 3.2: Degenerate critical points and non-degenerate critical points of a complicated
Morse function. a) handling degenerate critical points by slight rotation; b) separating
non-degenrate critical points with the same value of the mapping function by minor local
shear.

critical regions corresponds to the decomposition into cells of different ho-
motopy groups.

The number of negative eigenvalues λ of the Hessian matrix (3.1) at the
critical point p is called the index of p. λ defines the type of the critical
point: precisely, if λ = 0 (all eigenvalues are positive) then the critical
point p is minimum; if all eigenvalues of the Hessian matrix are negative
then p is maximum; otherwise p is a saddle point.

The index of a critical point is related to the homotopy type of the
corresponding critical region, called λ-cell. If we define a level set f−1

i of
the function f as f−1

i = {x|x ∈ M, f(x) = fi}, then the topology evolution
of the manifold M can be studied through the analysis of the evolution of
level sets.

Suppose that an interval Mab = {x|x ∈ M, f(a) ≤ f(x) ≤ f(b)} does
not contain a critical point of f . Then two level sets f−1(a) and f−1(b)
are diffeomorphic. Moreover, if the level sets f−1(a) and f−1(b) are regular
values of f (they are diffeomorphic to a circle), then the segment Mab is
diffeomorphic to a finite cylinder with two boundary components.

Consider now what happens when there is a critical point between two
level sets f−1(a) and f−1(b).

Theorem 1 ([38]) Let the function f be Morse function on a compact
smooth n-manifold M (without a boundary), and lower set Ma be defined
as Ma = {x|f(x) ≤ a}.

1. Suppose that 0 is a critical value of f , and that there is only one
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critical point p in Mab with index λ. Then Mb can be obtained from
Ma by attaching a λ-cell.

2. The manifold M can be built by starting with the empty set, and at-
taching in succession a finite number of λ-cells, one λ-cell for each
critical point of f of index λ. That is, f determines a cell decomposi-
tion of M .

From the theorem it follows that two level sets f−1(a) and f−1(b) of
the interval Mab have different homotopy types if the interval contains a
critical point. If the boundary of the interval Mab (a < b), denoted as δM ,
is the union of two level sets f−1(a) and f−1(b), then if f−1(a) or f−1(b) is
empty then there is a minimum, or respectively maximum in Mab − δM ,
[47]. If we trace the changes in the sequence of the level sets f−1(x) of the
interval Mab of a 2D manifold M(a ≤ x ≤ b) which are diffeomorphic to a
circle, then each minimum corresponds to the introduction of a circle, i.e.
attaching a 0-cell [96].

Similarly, according to the Theorem 1, extinguishing of a circle between
two level sets f−1(a) and f−1(b) corresponds to the maximum occurrence
in the interval Mab, or, in other words, to attaching of 2-cell.

Finally, the union of two circles in the interval Mab, with consequent
formation of a new circle, corresponds to a saddle point on it, i.e. attaching
1-cell. Similarly, there is a saddle in the interval Mab when there occurs
a disconnection of one circle, which forms two new circles (the situation
opposite to the described before).

Figure 3.3 illustrates introduction, extinguishing, union and split of cir-
cles which correspond to minimum, maximum and saddle points respec-
tively.

Due to the fact that a Morse function can be defined on every compact
smooth manifold, Theorem 1 implies that any compact smooth manifold
has cell decomposition [38].

The graph with the nodes representing cells after decomposition of the
manifold, and the edges reflecting the adjacency of two cells, is called
Extended Reeb Graph (ERG). The ERG was defined in [21] as the config-
uration of critical areas of the surface.
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Figure 3.3: Cell decomposition of the torus. a) Attaching 0-cell corresponds to introduc-
tion of a circle. b) Attaching 1-cell corresponds to the union of two circles. c) Attaching
of 1-cell corresponds to the disconnection of a circle and to formation of two new circles
from one. d) Attaching 2-cell corresponds to extinguishing of a circle [45].

We, first, give a definition of Reeb Graph originally proposed in [76]
and further studied in [82] with the application to the surface analysis and
coding. Next, we will adduce the definition of the Extended Reeb graph.

Definition 1 (Reeb graph) Let f : M → R be a real valued function
on a compact manifold M . The Reeb graph of M with respect to f is the
quotient space of M × R defined by the equivalence relation ”∼”, which
states that (X1, f(X1)) ∼ (X2, f(X2) if and only if:

1. f(X1) = f(X2);

2. X1, X2 are in the same connected component of f−1(f(X1)) (or
f−1(f(X2))).

The Reeb graph encodes the evolution of level sets of the mapping func-
tion f . A node of the Reeb graph represents a level set where the function
takes on a critical value; an edge between two nodes in the graph repre-
sents the adjacency of the corresponding critical level sets, no topological
changes of the manifold occur along the edges of the graph. Figure 3.4
illustrates several level sets of the height mapping function of a model and
the corresponding Reeb graph.
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h

Figure 3.4: Contour driven approach for Reeb graph construction.

Extended Reeb Graph was first defined in [21]. It extends the equiv-
alence relation given in Definition 1 from level sets to the critical areas.

Definition 2 (Extended Reeb Graph) An Extended Reeb equivalence
between two points X1, X2 ∈ M is given by the following conditions:

1. f(X1) and f(X2) belong to the same critical area of a critical point
P ∈ M ;

2. f(X1) and f(X2) belong to the same connected component of f−1(f(p));

ERG corresponds to the cell decomposition of the manifold, for it relates
critical areas of the mapping function to topologically different regions of
the manifold. Figure 3.5 illustrates cell decomposition of the model and
corresponding ERG.

h

Figure 3.5: Cell decomposition approach for Extended Reeb graph construction.
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3.2 Measuring Functions for Reeb Graph Construc-

tion.

Decomposition of a manifold into cells of different homotopy types and
construction of a Reeb graph requires definition of a simple function on
the manifold. In the current section we discuss several functions and their
properties which are used to construct Reeb graphs. Some of them are not
Morse and can have degenerate critical points. However, as illustrated on
Figure 3.2 such cases can be resolved by slight local shape perturbations
or by additional controls, as will be discussed further in Section 3.3. All of
the listed below measuring functions, except height function, are invariant
to rotation. The invariance to scale is usually achieved by normalizing the
function so that it varies in the range [0..1].

Heigth function is a function which measures the elevation of a shape.
After the shape is aligned as desired, the function represents just y-coordinate:

H(x, y, z) = y.

Barycenter distance function is a function measuring the distance
between each point of a manifold and its center of mass. The center of mass

is defined as C(x̄, ȳ, z̄) = (
∑i<N

i=0 xi

N ,
∑i<N

i=0 yi

N ,
∑i<N

i=0 zi

N ), where N is the num-
ber of vertices. Sometimes weighted center of mass is used: C(x̄, ȳ, z̄) =∑i<N

i=0 Si(Ai+Bi+Ci)
3S where N is the number of triangles, S is the total surface

area, Si is the area of the i-th triangle, A, B and C are the vertices of the
triangle.

The barycenter distance function is then computed as

B(x, y, z) =
√

(x− x̄)2 + (y − ȳ)2 + (z − z̄)2

.
Integral Geodesic distance function measures the average distance

between a point and all the other points over the surface of a model:

G(v) =
N∑

i=0

geod dist(v, vi)

The geodesic distance between two vertices on the surface is computed
using Dijkstra algorithm which finds the shortest path between the two
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vertices on the surface made up by n vertices. The complexity of the algo-
rithm is O(n log n). To reduce the complexity the authors of [46] approx-
imated integral geodesic function which computes the distance between a
point and all base points. The base points are scattered over the surface of
a model almost uniformly, they occupy almost equal areas on the surface.
The distance between a point on the surface and a base point is weighted
with the area adjacent to the base vertex. Hence, the approximate geodesic
distance function is computed as:

G apprv =

Nbi∑
i=0

geod dist(v, bi) · area(bi).

The complexity of computation of the approximate integral geodesic func-
tions for all n vertices composing the mesh of a model and using b base
points is O(bn log n).

Integral angular distance is a function which measures the average
angle between the normal at a given vertex and the normals of all other
vertices on the surface. The angle between to vertices with are not incident
is computed as the smallest angle accumulated along the path connecting
the vertices. Similarly to integral geodesic distance, integral angular dis-
tance can be approximated by calculating the shortest angular paths only
from the base points.

A(v) =

Nbi∑
i=0

(nv, nbi
),

where Nv is the unit normal at the vertex v computed as the average of
normals of the triangles incident to v and normalized to a unit size.

Laplacian eigenfunction is usually the first eigenfunction of a Lapla-
cian matrix defined on the shape. In [102] the authors overview several
Laplacian matrices which encode geometrical shape information together
with its topology. Once Laplacian matrix L is defined on a shape, the
eigen decomposition of L can me computed to find the Laplacian spec-
trum {λ0, λ1 . . . λn} together with eigenvectors {[e0], [e1] . . . [en]}. The i-th
Laplacian eigenfunction on the vertex v which is represented by k-th row
and column in the Laplacian matrix is computed as:

Lfi(vk) =
√

λi · eik.
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The complexity of computation of the Laplacian eigenfunctions depends
on how sparse the Laplacian matrix and varies from O(n log n) till O(n2).

The listed measuring functions have different critical points and conse-
quently lead to different description of a manifold. In some applications it
is important to study and compare several measuring functions in order to
ascertain which critical points are redundant and which are characteristic
for the manifold in question. The easiest way to compare several measuring
functions is to find the correlation between them:

Corrfg =

∑n
i=1(fi − f̄)(gi − ḡ)√

[
∑n

i=1(fi − f̄)2] · [
∑n

i=1(gi − ḡ)2]
(3.3)

where f̄ = 1
n

∑n
i=1 fi and ḡ = 1

n

∑n
i=1 gi are the mean values.

However, the correlation between two functions defined on the mesh esti-
mates the global similarity, and does not consider the connectivity between
the vertices. In order to capture such information and to evaluate similar-
ity between a set of measuring functions the authors of [35] propose a new
measure. Computed for two functions at one point it evaluates the area of
the parallelogram spanned by the gradients of these functions. Hence, the
similarity measure between two functions computed on the manifold M is
integrated over the surface:

κ(f, g) =

∫
x∈M

||∇f(x)×∇g(x)||dx/area(M) (3.4)

The other approach to compare measuring functions was proposed re-
cently in [23]. The defined correlation factor for the set of measuring
functions f1, · · · , fn is computed as:

σ(f1, · · · , fn) =

√∑n
i=1
∑

j≥i[aij − ā]2

n
(3.5)

where ā = 1
n(n+1)

∑n
i=1
∑

j≥i aij and aij is defined as κ(fi, fj) in (3.4).
Figure 3.6 illustrates the color maps of scalar fields defined by some of

the listed above measuring functions. Blue color corresponds to low and
red to high values of a mapping function.

Table 3.1 shows the correlation (3.3) between some of the listed above
functions. These values were computed for 10 different 3D models and
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Height Barycenter Integral Integral
Geodesic Angular

Figure 3.6: Color maps of measuring functions.

finally averaged. The negative values of the correlation coefficient between
height and the other measuring functions reflect the fact that the points
where the height function take on its minimal values are the points on
maximum values for the other functions. The high correlation value be-
tween barycenter and integral geodesic distance indicates the fact that
these functions have similar values in the same regions of a manifold.

Table 3.1: Global correlation of measuring functions. Here H is the height function, B is
the function of the distance from the barycenter, G appr is approximate integral geodesic
distance, and A is approximate integral angular distance

H B G appr A
H 1 -0.09 -0.01 -0.09
B -0.09 1 0.63 0.25

G appr -0.01 0.63 1 0.21
A -0.09 0.25 0.21 1

3.3 Methods for Reeb Graph Construction.

Once the value of the measuring function is computed for all the vertices
of a manifold, the Reeb graph can be constructed to describe its topology.
There are three main approaches to construct a Reeb graph. The first
approach is based on mutiresoltutional decomposition of the manifold of
a shape into connected components. The decomposition proceeds in fine-
to-coarse direction. In the beginning the manifold is subdivided into K
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intervals according to the value of the function, where K is the finest
resolution of the decomposition.

K−1⋃
i=0

[fmin + i · h; fmin + (i + 1) · h], (3.6)

where h = fmax−fmin

K (see Figure 3.7). Each connected component after
such division corresponds to a node in the Reeb graph of the K-th resolu-
tion. There is an edge between two nodes of the graph if the corresponding
connected components are adjacent (Figure 3.7b). Next, the coarser resolu-
tion Reeb graph is constructed by unifying adjacent nodes (Figure 3.7c,d).
The nodes of the coarser resolution are parents of the child nodes of the
finer resolution. On Figure 3.7 the node n5 is a parent of the nodes n1

and n0, the node n6 is a parent of the node n2. The relation between the
graphs of different resolution is expressed by the presence of edges between
the nodes of the Reeb graphs of different resolution. The nodes of graphs
of different resolution correspond to different colors on the Figure 3.7; the
edges between these nodes are depicted with red dotted lines on Figure
3.7e.

a) b) c) d) e)

Figure 3.7: Multiresolutional Reeb Graph, K=4 [46]. (a) Manifold division and decompo-
sition into connected components. (b) Construction of the Reeb graph of 4th resolution.
(c) Construction of the Reeb graph of 2nd resolution. (d) Construction of the Reeb graph
of 0th resolution (the whole model corresponds to one node). (e) Red doted lines are
edges between the nodes of graphs of different resolutions.

The complexity of the construction of the Multiresolutional Reeb graph
is O(V ) [46], where V is the number of vertices in the triangular mesh of
a model. However, the precision of the graph description depends on K
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value. In other words, the smaller the intervals of the mapping function (see
formula 3.6), the higher the probability to reveal all topological details of
a model. Therefore, if a 3D model contains small holes or other shape fea-
tures which are completely included in the interval [fmin+i·h fmin+(i+1)·h]
then such topological details will not be revealed in the graph. Hence,
Multiresolutional Reeb graph should be considered as an approximate de-
scription of the topology of a shape.

While matching Multiresolutional Reeb graphs the hierarchy between
parent and child resolutions is exploited to avoid NP problem of graph
isomorphism detection. Matching proceeds in coarse-to-fine direction. Two
nodes can be matched if they belong to the same resolution level [fi; fi+1]
and if their parent nodes are matched. If two nodes are mapped to each
other, the matching label is propagated in the graph in the direction of
increase and decrease of the mapping function. This creates an additional
constraint for matching, i.e. two nodes can be mapped if the lists of their
matching labels coincide. The three constraints for matching of two nodes
reduce the number of nodes to be compared, this consequently leads to the
reduction of the complexity of graph matching.

The second method to construct the Reeb graph was proposed in [81,
82] and further studied and extended in [13]. The method is based on
tracing the evolution of level sets of the mapping function. It is a direct
application of Morse theory to discrete representation of shapes. First,
a set of contours corresponding to K different level sets is inserted into
the mesh. In [81] each inserted contour, or cross section as named by
authors, corresponds to a node in the graph. An edge is inserted between
two nodes corresponding to two subsequent level sets. When a level set is
composed by more than one component the decision about connection of
corresponding nodes with edges is based on the smaller distance between
contours. Of course, such approximation of shape topology can introduce
loss of important topological features.

The authors of [13] extended the approach proposed in [82]. Instead
of tracing the evolution of level sets, the authors consider the homotype
of each component obtained after insertion of contours corresponding to
K level sets of the mapping function. A component containing a critical
point, instead of a contour, is represented by a node in the Extended Reeb
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graph. The adjacency between two nodes in the ERG is defined by ex-
panding the critical region corresponding to the first node until the second
critical region is reached. Moreover, the authors defined the rules to han-
dle degenerate critical areas avoiding small local shape perturbations. To
distinguish between a regular region, flat maximum or handle-like maxi-
mum the value of the mapping function on the boundaries of the critical
region is controlled. A regular region has different values of the mapping
function on its boundaries, whereas generate maximum region has two or
more boundary components with the same value of the mapping function
and descending value in the adjacent regions. To discriminate handle-like
and flat maximums, the inclusion of boundary components is controlled.
Similar examinations are performed to distinguish between saddle and de-
generate minimum or maximum regions. Additionally, the authors control
whether all holes of the analyzed shape are revealed. This control is per-
formed for each component. If there is a hole in a component, an additional
contour is inserted inside the component. Constructed in this way ERG
guarantees that all holes present in the shape of a 3D model are reflected
in the graph structure. However small minimum and maximum regions
which size is less then the interval between two subsequent level sets will
be lost.

Recently the new approach to construct the Reeb graph was proposed
in [71]. The method is fast and robust, independent on the dimension of
the manifold and can work even with non-manifold shape representation.
The proposed approach exploits efficient data structures for both shape
and graph representations and links between them. The approach is based
on the consideration that the Reeb graph is obtained by shrinking the level
sets of a mapping function into a point. The graph construction is done
on-fly while reading the sequences of vertices and triangles representing a
model. For each new vertex, a Reeb node is constructed. For each three
edges of a triangular, unless they have already been read, a new arc in the
Reeb graph is inserted. Two paths connecting the highest and the lowest
vertices in the triangle are merged as in merge sort algorithm. While
merging the arcs in the graph, the position of the nodes is updated, it is
averaged over the positions of nodes in the merged paths. To ease the
traversal between the graph and the shape, the arcs in the graph point to
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the edges of the mesh intersected by the corresponding level set; an edge
points to the highest arc in the graph which points to this edge. Figure
3.8 shows the main steps of the Reeb graph construction process.

Figure 3.8: The main steps of the proposed in [71] approach for construction of the Reeb
graph. a) For a new vertex v1 insert a new node n1 in the Reeb graph. b-c) For each
new edge e2 and e0 insert a corresponding arc in the graph. d) For each triangle (after all
its vertices and edges have been read) merge two paths a1, a4 and a2, a0 connecting the
lowest and the highest vertices in the triangle.

The constructed in this way Reeb graph is embedded inside the shape
repeating its outline. It is done by representing the arcs not by the two
endpoints but by the sequence of buckets of intermediate position, where
each bucket is represented as a couple of the number of corresponding
vertices in the mesh and the vector of their average position. Figure 3.9
shows the embedding of the Reeb graphs.

The approach proposed in [71] avoids introduction of new edges inside
the original mesh as the result of intersection of the mesh with level sets
of the mapping function. Consequently, it reduces the complexity of the
graph construction.

The Reeb graph of [71] exactly follows the shape in the increasing direc-
tion of the value of the mapping function, revealing all topological details of
the shape. This makes the Reeb graph be applicable for topology control,
when small defects are not visible and models are very big.
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Figure 3.9: The Reeb graphs and their embedding [71]. The colors of the models shows
the values of the mapping function. Blue corresponds to the low and red to the high
values of the function.

3.4 Pattern Vectors for Graph Representation.

The next phase in the retrieval process after construction of shape descrip-
tors is evaluation of their similarity. Working with the Reeb graph based
shape descriptor, we are interested in the methods for detection of sub-
graph isomorphism. Some of the methods have been reviewed in Section
2.2.3. Recently, techniques from spectral graph theory gain more success
for assessment of similarity between two graph structures, because they
reduce the problem of the subgraph isomorphism detection to the com-
putation of the distance between the vectors representing the graphs. In
this section we review adjacency and Laplacian matrices which are used to
represent graphs and discuss their useful properties which can be exploited
in graph matching.

A graph G is an ordered pair (V, E), where V is a set of graph nodes, or
vertices; and E is the set of pairs of vertices (vi, vj), called edges or arcs.
The size of the graph G is the number of edges |E|, the order of the graph
is the number of graph vertices |V |. The degree of a vertex vi, denoted as
deg(vi), is the number of incident edges.

Adjacency matrix A(G) of the graph G is the matrix which rows and
columns correspond to graph vertices, and which entry aij is defined as:

aij =

{
1, if vi and vj are adjacent
0, otherwise
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The adjacency matrix of the undirected graph is symmetric.
Consider a weighted undirected graph and let each edge (vi, vj) ∈ E have

an associated real number wij which satisfies the following conditions:

wij = wji, where vi, vj ∈ V (3.7)

wij ≥ 0, where vi, vj ∈ V (3.8)

wij 6= 0, iff vi and vj are adjacent in G (3.9)

The adjacency matrix of the weighted graph is the matrix which entries
aij are define as:

aij =

{
wij, if vi and vj are adjacent
0, otherwise

If we normalize the adjacency matrix so that the sum of each row equals
to 1, i.e.

∑n
j=0 aij = 1, then the adjacency matrix can be interpreted as the

matrix of probabilities to perform a walk in the graph. The main eigenvec-
tor of the matrix is known as the vector of steady-state probabilities which
i-th entry indicates the probability of being in the vertex i in the steady
state. This vector as well as the vector composed of eigenvalues of the
adjacency matrix are often used to represent the graph in a compact way.
The sorted vector of the eigenvalues (λ1, λ2 . . . λn), called graph spectrum,
is permutation invariant. Due to this property graph spectrum is often
used as its signature.

In case of a directed graph, the adjacency matrix is not symmetric
and the eigenvalues are complex, hence the magnitudes of the complex
eigenvalues are used as the graph signature.

The similarity between two graphs is calculated as the distance between
its signatures.

Dist =

√√√√ n∑
i=0

(λ1i − λ2i)2 (3.10)

Suppose two graphs G1 and G2 have different number of nodes n and m,
(let n < m) resulting in graph signatures of different length. To calculate
the distance using (3.10) the signature of G1 is padded with zeroes till the
length of signature of G2. This corresponds to insertion of isolated dummy
nodes in the original graph.
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Permutation invariance of the graph spectrum guarantees that isomor-
phic graphs have the same spectrum. However, the opposite is not always
true. In other words, non-isomorphic graphs can have the same spectrum.
Two graphs are called cospectral if they have equal spectrum with respect
to the same representation matrix. It was shown in [103] that among more
than 2 million different trees with 21 nodes there is 21,3% of cospectral
trees for adjacency matrix representation. This figure is reduced to 0,05%
for Laplacian matrix representation. Additionally, it was shown that simi-
lar graphs have similar spectrum. Small graph perturbations, like edge and
node deletion, lead to small changes in graph spectra. The results shown in
[103] lead to the immediate conclusion that Laplacian spectrum provides a
descriptive and stable way to represent a graph in matching process. Re-
cently the properties of the spectrum and eigenvectors of Laplacian matrix
are used in different fields of shape analysis, segmentation and matching.

Laplacian matrix L(G) of the graph G is defined as L(G) = D(G) −
A(G), where D(G) is the diagonal matrix which elements equal to the
degree of the corresponding vertex di = deg(vi), and A(G) is the adjacency
matrix. The Laplacian matrix for a weighted graph is defined as the matrix
whose elements satisfy the following conditions:

lij =


−wij, if i 6= j

n∑
j=0

wij, if i = j
(3.11)

The weights wij in (3.11) should satisfy the conditions (3.7)-(3.9).

The smallest eigenvalue of the Laplacian matrix λ1 is equal to 0. The
multiplicity of this eigenvalues corresponds to the number of connected
components in the graph. The second smallest eigenvalue of the Lapla-
cian matrix λ2 is known as algebraic connectivity of the graph. It car-
ries probably the most important information about the graph. In [65]
the author surveyed the bounds of several graph invariants which involve
λ2. The eigenvector associated to the second smallest eigenvalue is called
Fiedler vector after the Czech mathematician Miroslav Fiedler who studied
the properties of eigenvalues and eigenvectors of the Laplacian matrix for
measuring the algebraic graph connectivity. Fiedler vector is often used to
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solve the problems of graph partitioning [75, 87].

3.5 Conclusions

In this chapter we have given the theoretical background for analysis of
topology of a shape using Morse and differential topology theories. Sev-
eral functions can be used for studying the topological properties of the
shape. The functions with the lowest computational complexity and invari-
ant to the rotation and posture of a model in space are the most valuable.
Configuration of the critical points of the measuring function represents
topological changes of the manifold, it can be encoded by the Reeb graph.
We have reviewed three main techniques for Reeb graph construction. The
method based on examining the homotopy type of each component of a
shape is reused in the following section for construction of the Extended
Reeb graph based shape descriptor and shape analysis. In this chapter we
have also discussed the properties of the eigenvalues and eigenvectors of
adjacency and Laplacian matrices. These matrices are often exploited in
the estimation of similarity between two different graphs. In the following
chapter we reuse some of these properties to match the graph based shape
descriptors enriched with local geometrical shape characteristics.
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Chapter 4

Shape Description and Retrieval

The process of shape retrieval consists of several phases, among which
extraction of shape descriptors and their matching are the most essential.

Extraction of a shape descriptor requires careful analysis of both topol-
ogy and geometry of the shape of a 3D model. These two shape charac-
teristics can be integrated and represented using a graph structure. In the
current chapter we describe how to represent the topology of a model with
an Extended Reeb graph, and how enrich pure topological structure with
local geometrical features.

Shape matching, where a shape is represented by the ERG, is analo-
gous to the detection of graph isomorphism. To cope with the NP problem
of searching graph isomorphism we propose to represent the ERG by the
eigenvector of the Hermitian matrix associated to the graph. The distance
between the vectors of two graphs represents the degree of similarity be-
tween them. Moreover, using the same vector we partition the graphs in
order to solve the problem of matching graphs of different sizes.

Finally, in this chapter we present the methodology for synthesis of ge-
ometrical and topological description of a shape and its semantics. The
methodology is proposed for models from furniture domain and uses a
simple shape descriptor. However, it can be extended to other domains by
exploiting more sophisticated techniques for shape analysis and represen-
tation.

49



4.1. CONSTRUCTION OF A REEB GRAPH

4.1 Construction of a Reeb Graph

A Reeb graph represents the topology of a shape in a compact graph struc-
ture. Topological changes of the manifold of the shape are studied trough
the analysis of the critical points of the mapping function. To reveal the
critical points we trace the evolution of contours inserted inside the man-
ifold, where each contour is a connected component of a level set of the
function (for boundary representation of 3D models a contour is homeo-
morphic to a circle). Hence, constructing the Reeb graph we, first, compute
the values of the mapping function on the vertices of the triangular mesh
representing the model. Throughout this chapter we will use the term
scalar field of a vertex to refer to the value of the mapping function at this
vertex. The second step in the construction of the Reeb graph is definition
of the number of the contours to be inserted inside the manifold. This
number should be adapted to the complexity of the model in question.
The more topological features are present in the model the more contours
are needed to be inserted inside the mesh in order to reveal the features in
the graph structure. After the insertion of the initial number of contours,
the topology of each interval confined by two contours from consecutive
level sets should be analyzed. If the interval contains a through hole which
should be revealed in the graph, an additional contour can be inserted
inside the interval.

Working with triangular mesh boundary representation of 3D models,
contours are composed by vertices and edges. In order to construct a a
contour for the particular value fi of the mapping function f we search
for the edges which endpoints v1 and v2 are located on the different sides
from the current value f(v1) ≤ fi ≤ f(v2). Such edges are split in two
new edges and the splitting point belongs to the corresponding level set. If
scalar fields of the endpoints of an edge equal to the current value fi then
the edge is a constituent of the contour.

Working with accurate models which are represented by the consistent
triangular mesh it is guaranteed that the models do not contain degenerate
contours, which are tangent, open contours and contours consisting only
of one point. A contour can be degenerate only when it is inserted at a
critical value of the mapping function. In this case we can slightly rotate the
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model as shown on Figure 3.2 or shift the current contour corresponding
to fi value by a small quantity ε, so that the new current value of the
mapping function is fi = fi − ε.

Further, the construction of the Reeb graph can be proceeded using two
alternative approaches. In the first approach we consider a contour as an
approximation of the adjacent areas. Every contour is represented by a
node in the graph. There is an edge between two nodes if the correspond-
ing contours are reachable through the mesh without intersecting any other
contour. This approach is described in more details in Section 4.1.1. We
use the first approach in order to distinguish between the contours which
represent a model and those representing its inner cavities. Consequently,
we construct the Reeb graph of a 3D model, which is necessary connected
because of the requirement for the connected and consistent mesh repre-
sentation, and the Reeb graph for the complement of the model, which can
be disjoint.

In the second approach a node of the Reeb graph represents a section
of the shape confined between two contours from consecutive level sets.
This kind of the Reeb graph was proposed in [20] and it is called Extended
Reeb Graph (ERG). The nodes of the ERG encode the areas of the manifold
where the topological changes occur. The edges of the ERG represent the
adjacency relation of two neighbor shape segments. We explain the reasons
for turning from the contour driven to the component driven approach in
Section 4.1.2 and described the component driven approach in more details
in Section 4.1.3.

4.1.1 Contour Driven Reeb graph

In applications of computer graphics where topology analysis is involved
the use of the complement of an object, also called as background, is
widespread [79], [44]. The analysis of topology of both an object and its
complement captures important information about the entire object struc-
ture. Inspired by this approach we analyze the topology of a 3D model and
its complement to obtain better shape description. Consequently, we con-
struct two Reeb graphs. We require the first Reeb graph which describes
the topology of the model to be connected, whereas the second Reeb graph
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representing the complement can be disconnected.

After the set of contours is inserted inside a model, we separate them
into two groups. The first group of contours represents the model, or in
other words, its outer surface. The second group of the contours represents
the complement, or the surface of the inner cavities and holes. In order to
separate the inserted contours in two mentioned groups we use the parity
count method.

Parity count method is used in computer graphics for mesh simplifica-
tion and repair [67], [37] when the detection of inner and outer parts of
an object is required. We consider the set of the contours at each level
set of the shape measuring function separately. For each contour from the
current level set we draw three rays intersecting the contour, and we count
how many times it intersects the other contours from the same level set.
If the number of intersections of a ray and the contours, different from
the considered contour, is even, then the contour represents the model,
otherwise, it represents the complement. Our decision to draw three rays
instead of one is determined by the possibility to draw a ray tangent to one
of the contours from the same level set. In this case parity count wrongly
defines the classification group. The final classification group of the con-
tour is defined as the voting result of the three drawn rays. Figure 4.1
illustrates the parity count method.

After separating the contours into two groups we construct two different
Reeb graphs for the contours representing the model and the complement.

While inserting the contours inside the mesh representing the model
we also calculate several geometrical shape characteristics of the contours.
We use these characteristics as labels of the corresponding nodes of the
graph. The shape characteristics which we compute are perimeter, area
and average curvature of the contour [92], [55].

Each contour inserted inside the mesh is represented by a node in the
Reeb graph, geometrical characteristics of the contour are stored as labels
of the node. The edges of the Reeb graph represent the adjacency of the
contours. If one contour can be reached from another through the mesh
without intersecting any other contour, then there is an edge between the
corresponding Reeb nodes. In order to detect if two contours are adjacent
we trace their connectivity by traversing the triangular mesh.
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N1 = 0 N2 = 1
N3 = 2

NBlue = {0, 1, 2} ⇒ Model

NGreen = {1, 1, 1} ⇒ Complement

Figure 4.1: The triple parity count for the blue vertex of the contour results in 1,2 and
0 intersections. The voting result is that the contour represents the model (the majority
of the intersection numbers is even). For the green vertex of the second contour the
parity count gives 1 intersection for all three rays. Thus the second contour describes the
complement.

Consider two contours from the consecutive level sets fi and fi+1, fi <

fi+1. Starting from the triangles adjacent to the contour of fi level set and
expanding the mesh in the direction of increasing value of the mapping
function we try to reach the contour of fi+1 level set. If it is possible we
insert a new edge between the nodes representing the considered contours.
While tracing the connectivity between two contours we mark all visited
triangles to avoid looping by traversing always the same path. The mesh
traversal is terminated once the contour of the higher level set fi+1 is
reached or no unvisited triangles are left between the considered level sets.
Figure 4.2 illustrates the process of tracing the connectivity between two
contours.

fi

i
fi

i

i

fi

i
fi

i

i
i

i
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fi+1

i

fi+1 fi+1 fi+1

Figure 4.2: Tracing the connectivity of two adjacent contours.

The control if one contour is reachable from another through the mesh
is performed for each pair of contours from two subsequent level sets. As

53



4.1. CONSTRUCTION OF A REEB GRAPH

a result of constructing the contours and tracing the connectivity between
them we obtain a graph structure (V, E) of the vertices and edges. However
such graph representation is not unique for a 3D model, because the number
of nodes and edges depends on the number of considered level sets. To avoid
this ambiguity we perform graph smoothing. We keep the nodes of the
graph representing the contours of critical values of the mapping function
and remove the nodes representing regular values of the mapping function.
A contour represents a maximum value of the mapping function if there
is no any contour from the higher level set which can be reachable from
it. Similarly, a contour represents minimum if it is not reachable from any
contour of the lower lever set. A contour corresponds to a saddle critical
point of the measuring function if it is adjacent to more then two contours
from both higher and lower level sets. If a contour is reachable from two
contours, where one of them is from the higher and the other is from the
lower level sets, then the considered contour represents a regular value of
the mapping function. While smoothing the graph, we remove regular
nodes and edges incident to them. At the same time in order to preserve
the topology representation we insert a new edge between the two nodes
incident to the removed regular node. Figure 4.3 shows the result of graph
smoothing. In this way we guarantee the topological equivalence of the 3D
model in question and its Reeb graph. The final graph representation is
unique, each node represents a critical point of the mapping function and
the edges represent their adjacency.

Figure 4.3: Smoothing the Reeb graph.

Constructing the Reeb graph for both model and its complement we
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are able to reveal all topological features of the shape. Moreover, the
geometrical shape characteristics stored as labels of the nodes can be used
to distinguish topologically equivalent models with different geometry.

To compute the complexity of construction of the Reeb graph we need to
consider the complexity of contour insertion, parity check, mesh traversal
and graph smoothing separately.

To make less time consuming the insertion of the contours inside the
mesh, the edges can be ordered with respect to the value of the mapping
function on the endpoints. The edge ordering requires O(n log n) opera-
tions, where n is the number of vertices composing the mesh. If we denote
with nC the number of vertices composing all inserted contours, then the
number of checks for the edges to be split is O(n + m) = O(max(n, m)).
The number of edge intersections is equal to the number of the vertices
composing the contours, i.e. O(m). Therefore, the overall insertion of con-
tours inside the mesh is O(m+n log n+max(n, m)) = O(max(n log n,m)).

The parity check method considers the contours from each level set, and
checks for the intersection of the ray and each edge composing the contour.
Hence, integrating overall contours the complexity of the parity check is
O(m).

While tracing the connectivity between contours and traversing the
mesh, the visited triangles are marked in order to avoid lopping. Therefore,
the complexity is O(n) (the number of vertices, edges and triangles in the
mesh are of the same order).

The complexity of graph smoothing depends on the number of regular
nodes in the graph structure, which is of much lower order than the number
of vertices n.

Finally, the whole process of Reeb graph construction is O(max(n log n,m))+
O(m) + O(n) = O(max(n log n, m)).

4.1.2 From Contour Driven to Component Driven Reeb graph

The construction of the Reeb graphs for a 3D model and its complement
gives good description of the whole topological structure of the model.
However, geometric information stored as weights of the nodes of the Reeb
graph is not appropriate for the entire shape description. Usually geo-

55



4.1. CONSTRUCTION OF A REEB GRAPH

metric characteristics of the contours such as perimeter, area, curvature,
texture are associated to the corresponding Reeb nodes and are used in
further matching process. For models with simple topology a few number
of contours is sufficient to reveal all topological changes. However the ge-
ometric characteristics calculated only for a few number of slices can be
insufficient for the entire shape representation. In order to describe prop-
erly the topology of the shape together with its geometry we decided that
a node of the Reeb graph should represent a section of the shape confined
between two contours from consequent level sets. In this case the edges
represent adjacency of two sections. Geometric characteristics stored as
attributes of the Reeb graph are calculated for the entire section, which is
a volumetric part and not a planar contour. This approach was also used
in [13], [46], [92].

Representing a model with one graph which reveals all topological char-
acteristics gives also an advantage when measuring similarity between two
models. Obviously, the task of graph isomorphism detection is easier to
perform if a model is represented by a unique connected graph than by two
graphs where one of them can be disjoint, i.e. the graph representing the
complement.

Keeping in mind these observations in the following section we propose
the new approach for constructing Extended Reeb Graph, which nodes
represent volumetric components of a model.

4.1.3 Component Driven Extended Reeb Graph

Extended Reeb graph is a graph which nodes represent the critical areas,
i.e. the regions containing a critical point of the mapping function. Hence,
the nodes of the ERG represent the volumetric components of a model un-
like the nodes of the Reeb graph representing cross sections. The method
for the ERG construction was first proposed in [21] and further studied in
[20]. The novelty of our approach described in the current section consists
in decomposition of a model into components where topological changes
occur while maximizing cone- and cylinder-like components and minimiz-
ing branching parts. Our decision of such decomposition is determined by
the fact that the shape of cone- and cylinder-like parts is easier to analyze
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than the shape of branching parts. Due to the same reason in [66] several
geometrical shape characteristics are proposed for cone and cylinder-like
segments while providing just a few for branching components. Construct-
ing a shape descriptor which will be exploited in further retrieval process
we need to find the best compromise between exhausting shape description
and better shape compression. To this end, it is important to maximize
the regions which can be easier described geometrically (called simple)
and to minimize the regions difficult for the further analysis and repre-
sentation (called complex). In this section we explain the segmentation
process which decomposes a model into large cone- and cylinder-like com-
ponents and small branching parts. In the next section we propose shape
classification for the first two types of the components.

The idea of the shape segmentation consists in iterative bisection of the
surface of a 3D model. The iterative bisection is represented in the tree
structure ”left child - right sibling” (see Figure 4.4). Connected compo-
nents obtained after bisection of the model are stored as the child nodes in
the tree. The choice of such representation of the segmentation is deter-
mined by the fact that we do not know in advance how many connected
components we obtain after a bisection step. It means that we cannot
forecast the number of child nodes created at each iteration. We decide
also to associate to a node the subpart of the triangle mesh representing
the corresponding segment. By doing this we simplify the further process
of shape analysis which is described in the following section. In addition,
we associate to a node of the tree the list of indices of boundaries of the
corresponding segment which will be useful during the further process of
simplification of the segmentation.

In the beginning the whole model represents the root of the tree. We
define the initial partition of a model M into K intervals by inserting K−1
contours.

M = (Mmin, M1)
⋃

(M1, M2)
⋃

. . .
⋃

(MK−1, Mmax)

The difference of the value of the mapping function f on the boundaries
of each interval in this case is 4f = fmax−fmin

K . The process of the segmen-
tation of the model is equivalent to its decomposition into a set of disjoint
components. When a contour is inserted into the mesh, the constituting
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Figure 4.4: Iterative segmentation and postprocessing merging. The model is taken from
AIM@SHAPE Shape Repository [5].

edges and vertices are labeled with the ordinal number of the contour. For
the decomposition of the model we require that each segment has its own
boundary. To achieve this, vertices and edges composing the boundary
should be duplicated, so that each vertex, edge and triangle belong only
to one segment. In this way we decompose a model into the set of disjoint
segments. The connectivity relations between edges and the endpoints as
well as between triangles and the edges should be updated.

When a model is decomposed into a set of disjoint components we check
each of the components if it has a non-zero genus or represents a saddle
region. Such components are classified as complex regions. We calcu-
late the genus of each component as g = E−V−T−B+2

2 [60], where E, V

, T , and B are the number of edges, vertices, triangles, and boundaries
correspondingly. The components representing saddle regions have more
than three boundaries from two different level sets. We continue bisecting
complex components until the difference of the measuring function 4f on
the boundaries of the component reaches the predefined threshold. Com-
ponents obtained at each segmentation step are stored as child nodes of
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the complex bisected component. In order to make more efficient the use
of memory, we do not keep the triangle mesh representing the processed
component, because now it can be represented as the union of the tri-
angulations of its children. The iterative bisection terminates when all
components associated to leaf nodes of the segmentation tree are classified
as simple or have the size less then the predefined threshold.

Figure 4.4 shows that after segmentation several adjacent components
with less then three boundaries can be generated. These components can
be merged on the post-processing step. To this end, we create the list of
the leaf nodes representing simple components. The possibility to merge
these components is verified for each couple of nodes in the list. Two
components can be merged if they have a common boundary or, in other
words, if the intersection of their lists of boundary indices Bi is not empty

Bi ∩Bj 6= ∅. (4.1)

After the process of the segmentation and simplification is terminated,
each of the components is represented by a node in the ERG. The adjacency
of the components is revealed by the edges in the ERG. Precisely, there is
an edge between two nodes in the ERG, if the intersection of the lists of
boundary indices of the corresponding components is not empty (4.1), or
in other words, if these components share a common boundary. The shape
of each components of the ERG can be classified as cone-, cylinder-like or
branching which corresponds to the components with one, two and more
boundaries. Cone-like components represent the regions of maximum or
minimum values of the mapping function. Cylinder-like components rep-
resent regions of regular values of the mapping function. The components
with two boundaries may as well represent degenerate or handle-like max-
imum or minimum regions, what can be easily detected controlling the
values of the mapping function on the boundaries. However, the shape
analysis described in the following section for handle-like and degenerate
maximum regions with two boundaries is the same as for cylinder and
cone-like components correspondingly. The components with branching
shape are those having more than two boundaries, they represent saddle
or degenerate minimum or maximum regions.

Here we would like to underline that the resulting ERG contains the
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nodes representing regular regions of the mapping function. Such regions
may be revealed in the ERG only if they are adjacent to two saddle regions.
This is done with the goal to avoid multiple edges in the ERG. The graphs
without multiple edges can be represented by more sophisticated matrix
structure which can be exploited in further spectral graph matching.

Iterative bisection of a 3D model increases the number of generated
segments but at the same time minimizes the complex areas. The merging
step reduces the number of the created segments by enlarging the size of
simple areas. As the result of such segmentation the model is divided into
large simple and small complex components. The segmentation described
in this section guarantees that all topological characteristics of a shape are
revealed in the ERG, unless they are concentrated in relatively small areas
with respect to the overall size of the model.

An additional advantage of the proposed segmentation is that it directly
implies the possibility of parallel implementation, i.e. the iterative process
of bisection of saddle regions can be performed simultaneously for each of
the regions.

To compute the complexity of shape segmentation and ERG construc-
tion, we need to consider the complexities of each of steps separately. These
steps are contour insertion, mesh division, extraction of connected compo-
nent, check for adjacent simple components and their merging.

Let us denote with n the number of vertices composing the original
mesh, and with m the number of vertices composing all the contours. We
define ni as the average number of vertices composing a branching compo-
nent, and mi as the average number of vertices composing the contours of
one level set, so that

∑Nls

i=1 mi = m. We denote with s the number of saddle
regions of the model, with Iter the number of iterations needed to perform
before the bisection process terminates, and with ls0 the initial number of
considered level sets used to insert seed contours inside the original mesh.

Similarly to the complexity of contour insertion discussed in Section
4.1.1, we compute the complexity of iterative contour insertion. In the be-
ginning we consider ls0 number of level sets of the mesh composed by n ver-
tices, this requires O(mils0+n log n) operations. Further, we continue to in-
sert the contours inside branching regions until the iterative process termi-
nates. It corresponds to s · Iter insertions of contours inside saddle region,
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where each insertion has the complexity O(mi + ni log ni). Therefore the
overall complexity of the iterative insertion of contours requires operations
O(mils0 +n log n+ sIter(mi +ni log ni)). We would like to make a remark
here about the dependency of the method on the number of saddle regions.
When a 3D model has a simple topology with no branching regions, the iter-
ative insertion of contours is just O(mils0 +n log n) = O(max(n log n,m)).
When a model has many saddle regions the more iteration are required
to bisect them, hence the complexity is determined by the second term
O(sIter(mi + ni log ni)).

The process of mesh division consists of duplicating the vertices and
edges of contours and updating the adjacency relation of the incident tri-
angles. Therefore the process depends on the number of vertices composing
the contours and has the complexity O(m).

Extraction of connecting components after mesh division requires travers-
ing all triangles of the mesh which has O(n) complexity (the number of
triangles are of the same order as the number of vertices). Similarly, to iter-
ative contour insertion, the number of extractions of connected components
depends on the number of branching regions and on the number of iter-
ations needed to perform before the segmentation terminates. Therefore,
the complexity of the whole process of extraction of connected components
is O(n + sIter · ni).

After the iterative segmentation terminates, all extracted simple com-
ponents are checked on the possibility to be merged. Merging of mesh
components is inverse to mesh division and is linear on the number of
vertices composing the boundary. Each couple of simple components is
checked on the possibility to be merged, which in the worst case leads to
the complexity of merging O(N 2

scmi), where Nsc is the number of simple
components extracted after segmentation.

Finally, the total complexity of the iterative segmentation and merging
has the complexity O(mils0 + n log n + sIter(mi + ni log ni)) + O(m) +
O(n + sIter · ni) + O(N 2

scmi), which is after simplifying

O((mils0 + n log n)︸ ︷︷ ︸
Initial segmentation

+ sIter(mi + ni log ni)︸ ︷︷ ︸
Iterative segmentation

+ N 2
scmi︸ ︷︷ ︸

Merging

)

. Here, the complexity of the segmentation of models without branching
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regions, for which Nsc = ls0 + 1, will be determined by terms O(n log n +
ls2

0mi). The complexity of the segmentation of models with many branch-
ing regions will be determined by the term O(sIter(mi + ni log ni)).

4.2 Geometric Characteristics and Shape Analysis

The ERG constructed in the previous section represents the topological
structure of a 3D model, hence it can be used as a rough filter for dividing
models into topologically equivalent classes. Using the ERG as a shape
descriptor in retrieval process we can find models with the same topology
but having different geometrical characteristics. In order to distinguish
both topology and geometry of different 3D models we can analyze locally
the geometry of the components of a model, which are represented by the
nodes in the graph. The revealed geometrical information can be stored as
labels of the corresponding nodes and can be used in similarity estimation
between different shape descriptors.

The Reeb graph enriched with geometrical information was proposed
in [46], [13], [92], [22], [17]. In [66] the authors segmented 3D models into
cone-, cylinder- and branching parts and they proposed several geometrical
shape characteristics for the first two types of segments while providing just
a few for the third type. In [17] the authors assign the weight to each node
of the topological graph which encodes the shape of level curves defined
on a topologically homogeneous part of a 3D model. However, the aim of
such encoding is shape reconstruction and not shape retrieval.

We propose to use several non-dimensional measures to describe the
overall geometry of a segment, and also to perform detailed shape analysis
for cone- and cylinder- like parts. These shape characteristics together with
the topological Reeb graph can be used further as the shape descriptor in
the retrieval process.

Each component of a model obtained after segmentation can be char-
acterized by the following values:

• the number of boundary components Nb;
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• the nondimensional measure of segment’s weight in the whole model

SW =
AC

AM
(4.2)

defined by the relation of the surface area of the component AC and
the surface area of the whole model VM . This value can be used in
graph matching to estimate the influence of a node on the whole graph
structure, i.e. bigger segments have greater impact;

• convexity measure Conv = AC

ACH
which is defined as the ration of the

surface area of the component AC to the surface area of its convex
hull ACH [28];

• hull packing Hp = 1− VC

VCH
defined as the convex hull volume VV H not

occupied by the volume of the component VC [28];

• compactness measure Comp = AC
3

VC
2 defined as the ratio of the surface

area cubed over the volume of the component squared.

For cone- and cylinder-like components we propose to perform more
detailed shape analysis. The main idea of the proposed shape analysis
scheme is that the components with one and two boundaries have two
reference points which define the main axis of the component. For the
components with one boundary, the first reference point is the tip of the
component, which is the point with the maximum/minimum value of the
measuring function. The second reference point is the barycenter of the
boundary component. For the components with two boundaries, both
reference points are the barycenters of the boundaries. The two reference
points define the line which we propose to use as the main axis for further
shape analysis. Further, intersecting the component with equally spaced
planes perpendicular to the main axis we obtain the set of contours. The
analysis of the evolution of these contours gives us advanced information
about the shape of the component. We provide three tables for shape
analysis for components both with one and two boundaries. The tables
contain the name of a component and the image of its standard shape
with corresponding characteristics.
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Table 4.1 gives the description of component’s taper/enlargement through
tracing the changes of the area of the cross sections. If the area of the cross
sections is constant to the extent of a predefined threshold then the com-
ponent belongs to the first type of the proposed classification. If the cross
area changes (increases or decreases) we analyze the average speed of the
cross area alteration. Suppose we locate N − 1 cross sections at equal
distances along the main axis of a model component M . The inserted
contours define N equal intervals

(Mmin, M1)
⋃

(M1, M2)
⋃

. . .
⋃

(MN−1, Mmax).

We calculate the average cross area alteration and we define that the
alteration is smooth if the apex angle of the induced cone or pyramid is less
than 90◦, which corresponds to the inequality ri

hi
< 1, where ri is the average

radius of the i-th cross section and hi is the height of the corresponding
cone. The area of the cross sections increases/decreases sharply in case
when ri

h1
> 1. If the alteration of cross areas changes its behavior, for

example increasing and then decreasing, then we define the component as
having multiple area alterations. If the main axes has almost zero length,
the component is flat, which corresponds to the case when the apex angle
of the induced cone is 90◦.

Table 4.2 gives the description of component’s bending, specifying if it
is straight or curved. In order to classify a component according to its
bending we keep track of the position of the main axis with respect to each
cross section. If the axis passes through all sections then the component is
straight. If the axis is located outside several consequent sections then the
component has single bending. In the case when the axis is outside two or
more sections while passing through the sections located in between, the
component has multiple bending.

Table 4.3 classifies components with respect to the average curvature
of each cross section. We distinguish only three kinds of cross sections,
namely sections having the average curvature 60◦, 90◦ and more degrees.
If the curvature of the cross sections is preserved along the main axis,
then the component has the constant curvature, otherwise it has curvature
alteration.
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Table 4.1: Analysis of a component’s taper/enlargement
Constant cross
area

Cross sections have approxi-
mately equal areas

Smooth
increasing\
decreasing cross
areas

The area of cross sections changes
smoothly increasing or decreasing

Sharp
Increasing\
Decreasing cross
area

The area of cross sections changes
sharply increasing or decreasing

Multiple cross
area alterations

The area of cross sections changes
increasing and decreasing, char-
acterized by the number of alter-
ations

Flat component The length of the main axes is al-
most zero

Shape classification given in Tables 4.1, 4.2 and 4.3 is not exhaustive and
can be extended according to the precision of the retrieval system. The
intersection of the three defined categories produces 76 kinds of shapes
which can be used for rough approximation of each segment of a model.
Figure 4.5 demonstrates the example of such approximation.

The final topological graph augmented with the geometrical character-
istics can be stored in the following structure

(V, E) = ({(Nbi, SWi, Hcpi, Hpi, Hci, Class1i, Class2i, Class3i)|vi ∈ V },
{(vi, vj)|(vi, vj) ∈ E}).

In the next section we describe the process of similarity estimation between
two different shape descriptors, where the shape descriptor is represented
by the ERG enriched with local geometrical information.
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Table 4.2: Analysis of a component’s bending
No bending The main axis of the component

passes through all cross sections

Single bending The medial axis passes through
the cross sections which are close
to the reference points

Multiple bend-
ing

The main axis passes through the
cross sections occasionally. Char-
acterized by the number when the
main axis is outside the cross sec-
tion

Table 4.3: Analysis of component’s curvature alteration
Constant curva-
ture

The average curvature is pre-
served throughout all sections.
The single curvature value char-
acterizes the whole component

Curvature alter-
ation

The average curvature changes
along the component. The com-
ponent is characterized by the
values of curvature in the vicinity
of reference points

4.3 Graph Matching

In the current section we propose a new method for matching the ERGs
enriched with local geometric information. The method uses spectral prop-
erties of the Hermitian matrix representing the ERG. Imposing several con-
straints on the elements of the Hermitian matrix, we are able to mimic the
behavior of the Laplacian matrix, known for its wide application in graph
matching and partitioning.
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Figure 4.5: Rough approximation of a model as the result of shape classification.

4.3.1 Shape Representation for Shape Retrieval

To represent a 3D model during retrieval we use the ERG constructed in
Section 4.1.3. The nodes of the graph represent volumetric parts of the
model which can be classified as simple (having one and two boundaries)
and complex (having more than two boundaries). Due to the iterative
segmentation and further merging, two simple components can never be
adjacent, otherwise they should be merged.

When a model has simple topology, as for example the model on Figure
4.6, after segmentation it is represented by two simple adjacent compo-
nents, one minimum and one maximum regions. If we merge these compo-
nents, then the model will be represented by a single node, and the matrix
representing the empty ERG will just a zero 1× 1 matrix. To improve the
descriptiveness of the ERG we do not merge these two simple components,
but insert in the middle a regular interconnecting node.

Figure 4.6: Segmentation of a model without saddle regions and its ERG.

Similarly, two saddles can never be adjacent. Iterative bisection of
branching regions leads to division of saddle points concentrated in the
region and as a consequence to the insertion of regular regions between
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two saddles. A complex saddle region is not separated and as the conse-
quence is represented by a single node in the ERG only when saddle points
are concentrated in a small area which size is less then the predefined
threshold.

In the ERG representing a 3D model simple nodes are connected to
saddle nodes and vice versa. An edge in the ERG is always incident to
one simple or interconnecting node. This allows to attribute an edge with
the shape characteristics of the incident simple region proposed in Section
4.2. Figure 4.7(c) illustrates the ERG with the attributed edges after
segmentation (a) and merging (b) phases.

Figure 4.7: ERG construction. (a) Shape segmentation. (b) Merging simple adjacent
components. (c) ERG with edge attributes: shape index and segment weight.

4.3.2 Graph Representation

After shape segmentation and shape analysis each 3D model is represented
by the attributed ERG. To estimate the similarity between the graphs we
follow the ideas of [97] and propose to associate the Hermitian matrix which
encodes edge attributes together with graph connectivity. By imposing
several constraints on the elements of the Hermitian matrix we succeed to
mimic the spectral properties of the Laplacian matrix.
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A Hermitian matrix is the square matrix that is equal to its conjugate
transpose, i.e. Hab = Hba, where Hba denotes the conjugate of the complex
number Hba. The complex entries of the Hermitian matrix can be written
in the polar form as Hab = −wabe

iyab, where wab is the magnitude and yab is
the phase of the complex number. To mimic Laplacian spectral properties
the magnitude wab of the complex entries should satisfy the conditions
(3.7-3.9). A phase of the complex number should satisfy the following
conditions:

ya,b = −yb,a (4.3)

−π < ya,b < π (4.4)

The first condition (4.3) ensures that H is equal to its own conjugated
transposed matrix. By obeying the second constraint (4.4), phase wrapping
can be avoided.

To make the sum of magnitudes of the entries of each row sum up to
zero we set the on-diagonal entries to be real numbers defined as:

Haa =
∑
b 6=a

Wa,b (4.5)

The Hermitian matrix defined in this way mimics the behavior of the
Laplacian matrix from spectral point of view. Precisely, the spectrum and
the eigenvectors of the Hermitian matrix can be used for graph partitioning
and graph matching.

We now choose the graph attributes which could be encoded in the
Hermitian matrix and thus should satisfied the imposed constraints.

Magnitude of Hermitian elements. As was described in Section
4.3.1, an edge in the graph connects a saddle node and a simple node. As
a consequence, the calculated shape characteristics of the simple segment
can be stored as the attributes of the edge incident to the corresponding
simple node. We decide to use indices of the shape classification described
in Section 4.2 as the magnitude of the entries of the Hermitian matrix.

The values of shape indices are chosen based on visual shape similar-
ity as well as on the alteration of criteria used for shape analysis. Table
4.4 illustrates the list of indices of all possible shape types produced by
combining cross area and bending criteria. As it can be seen from the
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Cross Area Bending Shape Index

constant zero 0.04
constant single 0.06
constant multiple 0.08
alteration zero 0.12
alteration single 0.14
alteration multiple 0.16

smoothly decreasing zero 0.24
smoothly decreasing single 0.26
smoothly decreasing multiple 0.28
smoothly increasing zero 0.32
smoothly increasing single 0.34
smoothly increasing multiple 0.36

flat 0.64
sharply decreasing zero 0.68
sharply decreasing single 0.7
sharply decreasing multiple 0.72
sharply increasing zero 0.76
sharply increasing single 0.78
sharply increasing multiple 0.8

body 1

Table 4.4: Shape indices.

table, the variation of the cross area criterion has a greater influence on
the difference in shape index than the bending criterion. This choice can
be explained by the fact that semantically equivalent subparts of artic-
ulated models frequently have different bending properties, e.g. straight
and bended arms. The curvature criteria was not considered in the choice
shape indices because working with articulated models it does not pro-
duce distinct shape types. However, working with CAD models this shape
criteria can be involved and more shape indices can be defined.

Mapping the shape indices to the interval (0; 1] allows their use as mag-
nitude of complex entries of the Hermitian matrix. The positive shape
index of the segment is invariant to edge direction thus satisfying the con-
straints (3.7)-(3.9).

Phase of Hermitian elements. The segment weight SW (4.2) can
be used as the phase value yab for the complex entries of the Hermitian
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matrix. To obey the antisymmetric condition (4.3) we set yab as:

yab =

{
SWab, if deg(a) > deg(b)
−SWab, if deg(a) < deg(b)

The value of SWab is bounded by the interval (0; 1). Scaling this interval
up to (0; Π) and using the above definition of yab we satisfy the constraint
(4.4) for the phase value of the complex entries of the Hermitian matrix.

4.3.3 Fiedler Vectors for Graph Matching.

The spectrum of the defined Hermitian matrix mimics the behavior of the
Laplacian matrix from the spectral point of view. Precisely, the spectrum
of the Hermitian is equal to the spectrum of the Laplacian matrix which en-
tries are the magnitudes of the complex Hermitian entries. Consequently,
the information stored in the phases of the complex elements is not pre-
served in the Hermitian spectra. The eigenvectors of the Hermitian matrix
are complex-valued vectors which encode the graph attributes stored both
in magnitudes and phases of the elements of the Hermitian matrix. We
propose to use the eigenvector of the Hermitian matrix associated to the
second smallest eigen value. The corresponding eigenvector for the Lapla-
cian matrix is called Fiedler eigenvector. We preserve this name for the
Hermitian matrix as it is analogous to the Laplacian one from spectral
point of view.

Differently from the matrix spectrum, the eigenvectors are not permuta-
tion invariant. In order to use the Fiedler vector as the graph signature in
the retrieval process we, first, order its entries lexicographically. Precisely,
suppose a graph has n nodes, then the Fiedler vector of the Hermitian
matrix is n-dimensional complex-valued vector. We order this vector lex-
icographically and then we interlace the real and imaginary parts in the
following way:
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ak + ibk

al + ibl

...

an + ibn

 →



al

bl

ak

bk

...

an

bn


(4.6)

if al < ak, or ak = al and bl ≤ bk.
As the result we transform n-dimensional complex-valued into 2n-dimensional

real-valued vector which we use for the retrieval process.
The similarity between two models represented by the graphs of the

same size is computed as the Euclidean distance between the transformed
Fiedler vectors. However, in practice the graphs representing even similar
models are of different size which leads to the Fiedler vectors of different
dimensions. Working with the graph indexing using spectra it is a common
approach to pad with zeroes the spectra of a smaller size till the size of the
largest spectrum. This technique is equivalent to inserting dummy discon-
nected nodes in the graph, and consequently increasing the multiplicity of
the smallest, i.e. zero, eigenvalue.

Following this approach we pad with zeroes the smaller transformed
Fielder vector to the size of the Fiedler vector of the bigger graph. The
similarity between two models represented by the attributed graphs is cal-
culated as the distance between the Fiedler vectors of the same size:

dfull(G1, G2) =

√√√√ 2n∑
i=1

(F1(i)− F2(i))2 (4.7)

where F1 and F2 are the sorted, interlaced complex Fiedler vectors of graphs
G1 and G2 respectively.

The described techniques is sensitive to the different level of detail which
can be revealed during the segmentation phase. Suppose two similar mod-
els are represented by similar graphs of different size. This may happen
because of more details present in the shape of one of the models. As the

72



CHAPTER 4. SHAPE DESCRIPTION AND RETRIEVAL

result a larger distance will be found between the corresponding Fiedler
vectors as the result of the distance calculation between dummy and real
nodes. Moreover, matching the Fiedler vectors of two whole graphs does
not take into account partial matching.

Still, Fiedler vector as the graph signature give good results for the
overall graph matching. Following these considerations we propose to use
Fiedler vector both for overall and partial matching. In the next section
we describe how Fiedler vector is employed in partitioning the graph into
non-overlapping subgraphs. Further the combination scheme for overall
and partial graph matching is proposed in Section 4.3.5.

4.3.4 Fiedler Vectors for Graph Partitioning.

A common way to calculate partial similarity is to construct all possible
subgraphs of the graphs to be matched and to compute similarity between
the subgraphs of the same size [62, 31]. This approach, however, leads
to the exponential growth of all possible constructed subgraphs, and as
the consequence to the excessive computation of similarity between them.
Moreover, some of the possible subgraphs could be semantically meaning-
less. Figure 4.8 illustrates a model of a dog and the corresponding ERG
together with two subgraphs, where the first subgraph represents the front
part of the model, and the second subgraph represents the interconnec-
tion of different parts of the model without reflecting semantics of any
single part. In [31] the authors reduced the complexity of similarity com-
putation for the cases of integral spectra variation [86, 53]. Unfortunately,
in practice the integral spectra variation during extraction of all possible
subgraphs happens quite rarely.

In this section we follow the idea of [75] where the authors use the Fiedler
vector of the Laplacian matrix for graph partitioning into non overlapping
supercliques. The superclique is composed of a central node an its im-
mediate neighbors. A central node is a node with the highest assigned
importance, where the importance of the node proposed in [75] depends
on the value of the corresponding entry in Fiedler vector, the degree of
the node and the position of the node in the graph. The nodes which are
located closer to the graph perimeter and have higher degree and Fiedler
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a) b) c)

Figure 4.8: Subgraphs of the ERG. a) A segmented model of a dog and the correspond-
ing ERG. b) The subgraph representing the front part of the dog. c) The meaningless
subgraph.

entry gain more importance and, thus, are chosen as central nodes.
Considering that the ERG are the graphs often without edges which

could constitute the graph perimeter, we assign the importance of the
node depending on its degree and the value of the corresponding Fiedler
entry of the Hermitian matrix.

The main steps of the graph partitioning are the following:

1. Sort the entries of the complex Fiedler vector lexicographically in de-
creasing order Π = (a1 + jb1, a2 + jb2, . . . , an + jbn), where a1 > a2, or
a1 = a2 and b1 ≥ b2.

2. Associate a score with every node in the graph: F (i) = α×degree(i)+
β/rank(i), where rank(i) is the position of the node in the sorted
Fiedler vector Π, and α and β are two balancing factors. For the
experiments reported in Chapter 5 we used the balancing factors α =
β = 0.5

3. Traverse through the list of the sorted Fiedler vector Π and select
center nodes. A node is a center node if its score is higher than the
scores of all its neighbors.

4. Remove the center node and its adjacent nodes from the list; together
they form a subgraph. Continue processing the graph this way until
all nodes are in a subgraph.

The described procedure partitions the graph in non-overlapping mean-
ingful subgraphs. For an example, see Figure 4.9, where a segmented model
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Figure 4.9: Subgraph decomposition of a model of a goat.

of a goat is displayed, together with a view of its 3D graph and extracted
subgraphs. The first extracted subgraph corresponds to the back (tail and
back legs), the second subgraph corresponds to the middle part (body, neck
and fore legs) and the third subgraph corresponds to the front part (head,
nose and ears).

To be able to capture small alterations in the structure of subgraphs
we introduce the fifth step which decomposes yet more the subgraphs ex-
tracted using the above procedure.

5. Decompose each subgraph even further by reporting every possible
combination of the center node and its adjacent nodes of size 2 up to
the size of the original subgraph.

Finally, each of the extracted subgraphs is represented by their trans-
formed Fiedler vector (4.6). The distance between two graphs g1 and g2 is
then defines as the average of the weighted pairwise subgraph distances.
The subgraph distances are calculated only between the subgraphs of the
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same size and are weighted with the corresponding subgraph size:

dsg d =
1

n×m

n∑
i=1

m∑
j=1

dfull(g
i
1, g

j
2) (4.8)

where gi
1 and gj

2 are the i − th and j − th subgraphs of size d of graphs
g1 and g2, and n and m are the number of subgraphs of size d that were
extracted from g1 and g2.

A subgraph distance contributes more to the total similarity if the size
of the subgraphs is larger. The total distance between graphs g1 and g2

based on their subgraphs is defined as

dsg(g1, g2) =
1

MaxD× (|g1|+ |g2|)

MaxD∑
d=1

d× dsg d (4.9)

where |g1| and |g2| are the number of nodes in g1 and g2 respectively, and
where MaxD is the smallest maximal subgraph that could be decomposed
from either g1 or g2.

Using this distance function, a ranked list of all the database objects
can be produced for a given query. Together with the ranked list based on
the comparison of complete graphs described in Section 4.3.3, two comple-
mentary ranked lists are produced for one query. These two ranked lists
can be combined to produce better retrieval results which capture both
overall and partial similarity. In the next section the we propose the way
to combine two ranked lists.

4.3.5 Combination of Two Ranked Lists

There is a large amount of research around combination of similarity mea-
sures or ranked lists produced by different techniques which aims at the
best retrieval performance. In [25] the authors experimented several com-
bination schemas of distance measure produced by different shape descrip-
tors. The first schema assumes that all shape descriptors produce equally
important ranking lists, thus the resulting combined distance measure be-
tween a query and an object dc(q, o) is an unweighted sum of normalized
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distances computed using different shape descriptors:

dc(q, o) =
N∑

i=1

bCi

di(q, o)

dmaxi(q, o)
,

where N is the number of the shape descriptors, di(q, o) is the distance mea-
sure produced by the i-th shape descriptor, and bCi

is a binary coefficient
which indicates if the i-th shape descriptor participates in the combination
c of the descriptors.

The other schema studied in [25] assumes that a shape repository is
preclassified and hence a relevant measure purity(fi, q, k) can be calculated
for each shape descriptor fi. This measure indicates the maximum number
of relevant models present among first k retrieval results using fi descriptor.
The combined distance measure in the second schema is the weighted sum
of all distances:

dc(q, o) =
N∑

i=1

(purity(fi, q, k)− 1)
di(q, o)

dmaxi(q, o)
,

In [64] the authors combined the ranks produced by estimating textual
and shape similarity. Four combination schemas were experimented: linear
weighted average combination, minimum matching score, minimum rank,
and confidence limits method. The combination method which uses the
minimum normalized score improved the retrieval performance by 5.8%.

In Sections 4.3.3 and 4.3.4 we have defined two distance functions (4.7)
and (4.9). The values of these distances can vary greatly, because each of
the distances depends on the value of entries of the graph spectrum, which
in its turn depends on the number of nodes in the graph. Hence the value
of the distance of the overall graph matching is usually much higher than
the value of the distance for the partial graph matching. Observed this,
we decide to combine the ranks produced by the two distances, and not
distances themselves. The two ranked lists appears very complementary,
i.e. the retrieved models relevant to the query are usually on the top of one
of the ranked lists. Therefore, combining the ranked lists we would like to
increase the influence of the higher and to damp the influence of the lower
ranks. The range of the values
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If we denote with rfull(i) the position of the i-th model in the ranked list
produced using the distance for complete graph matching, and with rsg(i)
the position in the ranked list for partial graph matching, then we combine
the two ranks:

score(i) = log(rsg(i)) + log(rfull(i)).

The value score(i) defines the position of the model i in the new list of
retrieved items. The logarithms in the formula decrease the influence of
lower ranks on the final score.

The results of the proposed in this section shape representation, match-
ing and retrieval techniques are described and discussed in the following
chapter.

4.4 Semantics and Shape Descriptor

In this section we propose the preliminary methodology to relate geometri-
cal and topological shape characteristics to shape semantics. The research
in the field of knowledge structuring suggests to use ontology for describing
the knowledge of a chosen domain [26]. The author of [42] defines ontol-
ogy as a specification of a representational vocabulary for a shared domain
of discourse which may include definitions of classes, relations, functions
and other objects. Therefore, if we know the domain in which the 3D
shapes are constructed, the ontology of the domain can be built. Then
mapping between low level features and ontology concepts is performed.
Finally, 3D shapes are annotated and become well-defined structure under
human-perspective.

In [59, 63] the authors build the vocabulary that maps the low level
geometrical description of regions on an image to semantic labels. The
considered geometric characteristics are shape, position, color and texture
of a region. The vocabulary represents the ontology of objects and scenes
which might be present on an image. In [58] the wide visual concept ontol-
ogy was proposed to map domain knowledge to low-level vision numerical
descriptors. In [91] the ontology of 3D shapes was introduced with the
purpose to fill the gap between knowledge-level representation of shapes in
the human mind and their low-level shape representations.
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Within the Network of Excellence Aim@Shape the ontology of shapes
has been developed. The purpose of the ontology is to integrate concepts
and properties which can be used to annotate the models in Aim@Shape
shape repository and at the same time be present in the developed domain
ontologies. The authors of [36] developed a tool, called TopMesh, which
automatically extracts topological properties of the shape formalized in
Shape Acquisition and Processing ontology.

In this section we propose the methodology for relating the distribution
based shape descriptor [69] to the semantic labels of s chosen domain,
that is the domain of furniture models. In the next subsections we, first,
state several assumptions about the models of the chosen domain. Second,
we explain which shape descriptor is used to represent a model on low
level. Third, we describe how low-level shape descriptors can be mapped
to semantic labels. Next, we show how a shape can be retrieved using
the domain ontology. We conclude the section discussing the possibilities
to extend the proposed methodology to other domains using other shape
descriptors.

4.4.1 Assumptions on Shape Representation

The fist assumption which we would like to take regardless the chosen do-
main is that a model can be completely described by connectivity relations
between its constituents and their shape. This assumption means that the
color and texture of a model do not influence its semantic. Resting the
domain of models to the furniture one allows us to assume that models
are created using Constructive Solid Geometry (CSG) approach. Thus the
furniture models are assemblies of meaningful atoms that are similar to
geometric primitives. To prove that this assumption does not constrict
too much the number of 3D models which can be used in the proposed
approach we performed a search of 3D furniture models in Internet. We
have downloaded 98 furniture models from Princeton Shape Benchmark
[11] and Free Stuff of 3D Cafe [8]. After examining them we found that
63% of furniture models are compound models (here we notice that 88% of
models from Princeton Benchmark are compound), and 75% of compound
models are models composed from geometrical primitives. We suppose
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that these figures can increase when a 3D database is created by designers
from the same industrial domain. Consequently, our second assumption
will be valid for the majority of CAD models, because assembly modelling
is effective approach, which allows designers to work together on a complex
model and gives a possibility of the further reuse of designed objects.

4.4.2 Shape Descriptor

Assuming that the models from furniture domain are compositions of con-
ceptual parts, we start the analysis of a model from its decomposition into
the constituents. We load the triangle mesh, representing the given model,
and then we decompose it into connected components. Next, we analyze
the shape of each constituent of the model using the approach suggested
in [69]. For each constituent we construct the vector of shape distribu-
tion. The choice of the distribution-based shape descriptor is determined
by simplicity of construction, invariance to affine transformations and good
discriminative results for the models similar to geometrical primitives, like
cubes, spheres, cylinders, etc [48]. According to the assumptions stated in
Section 4.4.1, we consider the models that are the compositions of geomet-
rically simple objects. Hence we can build the finite set of the geometric
primitives, which can be used to construct CAD models. For each of such
geometrical primitives we extract the distribution based shape descriptor,
and we label primitives with the corresponding name. The phase of the
construction of the database of geometrical primitives and labeling them
with corresponding names is done manually. The number of geometri-
cal primitives which can be used for the composition of furniture model
is finite, thus once the database has been constructed it can be used for
annotating the constituents of a model without user intervention. Figure
4.10 illustrates some geometric primitives which can be used as atoms for
designing furniture models, and their shape descriptions. After the decom-
position of a given 3D model into constituents, we compare each part with
geometrical primitives from Figure 4.10. The smallest distance between the
shape distribution vectors identifies the shape of the analyzed constituent.
The constituent inherits the label of the most similar geometric primitive.
The process continues for all parts of the model. As a result the shape de-
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Figure 4.10: Geometrical primitives for Constructive Solid Geometry and their shape
distributions.

scriptor of a model is a vector which elements are the names of constituent
parts. For better description we also analyze the connectivity relations be-
tween the parts. We propose to compute pairwise angles between the main
axes of each component found through the Principal Component Analy-
sis. In this way we obtain n × (n − 1) values of angles between model
constituents, where n is the number of connected components.

To illustrate the proposed shape analysis we consider the example of a
3D model of a table. Figure 4.11 shows this process.

In the next section we propose a method to map the shape descriptor
to the vector of semantic labels.

4.4.3 Mapping Shape Descriptor to Semantic Labels

In order to map geometrical and topological features of a model from a
chosen domain to semantically meaningful labels we propose to create a
vocabulary describing all models of the domain. Table 4.5 illustrates the

81



4.4. SEMANTICS AND SHAPE DESCRIPTOR

Figure 4.11: Feature vector extraction. 1) Input model. 2) Model decomposition. 3)
Shape distributions of the model’s constituents. 4) Labelling model’s constituents as
shape primitives. 5) Output feature vector.

description of models of the table on Figure 4.11.

The vocabulary should describe all concepts present in the ontology of
the domain. Thus, querying it by the feature vector we can output as a
result the vector of semantic labels. For instance taking the model of the
table of the previous example, we get {top,leg×4}, and having the given
semantic vector we can identify the category of the model in the ontology
of the domain.

4.4.4 Ontology for Shape Annotation

Before building an ontology we should define its scoping, i.e. its domain,
and its purpose, i.e. the intended usage [93]. In our case the domain
that the ontology will formalize is that of furniture. In the first phase
the intended usage of the furniture ontology is the annotation of models
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Table 4.5: Mapping from low-level features to semantic labels.
Component Geometrical Connectivity Cardinality Semantic

primitive (pairwise label
angle between
components

1 rect sheet {90,90,90,90} 1 top
2 rect rod {90,0,0,0} 4 leg

in the database with ontology concepts. In a second phase we want to
investigate the possibility of retrieving the models by textual queries. We
regard the 3D models as a syntactic domain and the ontology language
as a semantic domain. An interpretation function will assign to each ”3D
model” a concept from ontology. In this way we can say that a certain 3D
model is a ”Chair”, while another 3D model is a ”Table”, where ”Chair”
and ”Table” are concepts in our ontology. Since the classes of models
are distinguished at the syntactic level by the feature vectors extracted
and explained in Section 4.4.2, there are two interesting questions that an
ontology based shape annotation system should answer:

1. What is the system precision? The precision of the system in this case
is defined as:

P =
MCann

Mann
× 100% (4.10)

where MCann- is the number of correctly annotated models and Mann

is the number of all annotated models. Since the system we propose is
not implemented we cannot quantify its precision, but we can make an
interesting observation. The upper boundary of what can be achieved
is already known. If the properties that distinguish two ontology con-
cepts cannot be mapped to distinct sets of syntactic features then
the system will fail to correctly annotate the models. Let’s suppose
for example that there are two concepts named ”YellowChair” and
”BlueChair” in our ontology. Both concepts have as their superclass
the concept ”chair” and they are distinguished only by the color: re-
spectively yellow and blue. Because the above mentioned algorithm
cannot extract the color of an object the system will fail to correctly
annotate ”BlueChair” and ”YellowChair” models. However, assuming
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that for designers the shape of a model is a more important matter
than its color, we suppose that the feature vector extracted on the
previous step completely describes a model.

2. The second relevant parameter is the recall of the system that is de-
fined as:

R =
Mann

MT
× 100% (4.11)

where MT is the total number of models in a dataset. If all models
are well formed the recall will be 100%.

We can start building the furniture ontology using Wordnet Domains [57].
Developed at IRST, Wordnet Domains, is PWN (Princeton Wordnet) 1.6
[33] augmented with a set of Domain Labels. PWN 1.6 synsets have been
semi-automatically linked with a set of 200 domain labels taken from Dewey
Decimal classification, the world most widely used library classification
system. The domain labels are hierarchically organized and each synset
received one or more domain labels. We are interested in the synsets that
are annotated with the domain ”furniture”. Because PWN is a linguistic
resource and many concepts found there are not suitable for building an
ontology of furniture we want to make use in our work of other ontologies
and specialized thesauri.

We can encode our ontology in OWL language. In the beginning the
ontology is a simple taxonomy enriched with a relation ”hasPart” that
specifies the parts of objects in the furniture domain. We make use also of
cardinality restrictions as the following example, which describes the entry
for the concepts ”BackRestChair” and Back Rest Chair ”BackRestChair-
WithFourLegs”, shows:

<owl:Class rdf:ID="BackRestChair">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:

ID="hasPartLeg"/>

</owl:onProperty>
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<owl:someValuesFrom rdf:

resource="#Leg"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:

resource="#BackRest"/>

<owl:onProperty>

<owl:ObjectProperty rdf:

ID="hasPartBackRest"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:

ID="BackRestChairWithFourLegs">

<rdfs:subClassOf rdf:

resource="#BackRestChair"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:

about="#hasPartLeg"/>

</owl:onProperty>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int"

>4</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The above OWL representation says that a ”BackRestChair” has as a part
exactly one ”BackRest” and that a ”BackRestChairWithFourLegs” IS-A

85



4.4. SEMANTICS AND SHAPE DESCRIPTOR

”BackRestChair” and has exactly four legs. The only kind of inference
needed in the example is the ”inheritance” of properties from super-classes
to their subclasses.

4.4.5 Retrieval through Annotations

After we annotated 3D models with ontology concepts users have two pos-
sibilities. First they can make retrieval of 3D objects by textual query. A
query can be typed by the user or can be formed by ontology browsing. For
example, a user interested in ”barber chair” models can input the concept
in a text box. Alternatively, he can browse the ontology and select the
appropriate concept. The system will answer the user query by returning
all the models annotated with the input concept or with a subconcept of
the input concept. An enhanced retrieval system based on textual queries
can take advantage of Boolean operators.

The second possibility is to query by an example model. Here a user
can browse all models within the category of the input model and au-
tonomously search for more similar models. Such approach groups all ob-
jects into quite large classes. The other way to search for similar models is
to find the smallest dissimilarity measure (i.e. the smallest distance value)
between feature vectors of the constituents of a sample model and corre-
sponding parts of models from the same category. Such approach reduces
the number of comparisons needed to retrieve similar models. As a result
the overall dissimilarity measure will be the sum of dissimilarities between
corresponding constituent parts.

4.4.6 Extension to Other Domains

In the current section we have presented the methodology for the synthesis
of shape description and ontology-based annotation and retrieval. Per-
forming shape analysis we decompose a 3D model into its constituents and
we analyze the shape and connectivity between each of the parts of the
model. As a result we output the feature vector describing the 3D model.
Using a vocabulary defining all concepts of the ontology of the given do-
main (here furniture), we map the extracted feature vector to the vector
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of semantic labels. Finally, the ontology of the considered domain can be
used in model annotation and then key word based retrieval of furniture
models. More detailed ontology of the considered domain will result in
more accurate retrieval process. The proposed method offers two options
to a user: textual query and query by a sample model. As a result, the
proposed method succeeded in term of shape-to-text (shape annotation)
and text-to-shape (query shape by text) schemes.

The proposed method of shape annotation for furniture models can
be easily extended to other domains, using possibly different techniques
for shape segmentation and analysis. Recently the method for automatic
segmentation and annotation of a virtual human was proposed in [30].
To annotate segmented shape of a scanned body, a special dictionary was
defined which tie together geometrical characteristics of the shape of parts
of human body and their semantics.

A shape should be interpreted within a specific domain to avoid possible
ambiguities in its meaning. Consequently, the rules for shape annotation
should be derived depending on the chosen domain of shapes. The vocab-
ulary of the domain represents the annotation rules for the constituents
of 3D models; the constituents, models and relations between them are
further represented formally in the domain ontology.

4.5 Conclusions

In the current chapter we have presented all phases of the retrieval frame-
work. The framework can be queried by an example 3D model, which
is represented by manifold triangle mesh. The shape of the query is seg-
mented into simple and complex regions. As the result of the segmentation
the Extended Reeb Graph is constructed to represent the topological struc-
ture of the model. The shape of simple regions is further studied locally.
Three shape classification schemas are defined according to taper, bending
and curvature of the region. The indices of the shape classification are
stored as attributes of the ERG.

To avoid NP problem of graph matching we exploit spectral properties
of the ERG. In order to store as more information as possible we use the
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Hermitian matrix for graph representation, where shape information is
encoded both in the magnitude and the phase of the complex entries. By
obeying several constraints on the construction of elements, the Hermitian
matrix mimics spectral behavior of the Laplacian.

The problem of matching graphs of different size is solved by partition-
ing the graphs into smaller subgraphs. The partitioning is accomplished
using topological information stored in the eigenvector of the Hermitian
matrix corresponding to the second smallest eigenvalue. We call this vec-
tor as Fiedler vector of the Hermitian matrix. Consequently, each 3D
model is represented by the complete ERG and smaller subgraphs. Each
of these graphs is further represented by Fiedler vector. Two distances are
calculated for a pair of 3D models, the distance between Fiedler vectors of
complete ERG graphs and the average normalized distance between Fiedler
vectors of the subgraphs. The ranks produced by these two distances are
combined in the way to increase the influence of more similar models (small
distance value) and damp impact of less similar models (bigger distance
between Fiedler vectors).

Finally, we presented the methodology to bridge the gap between the
geometrical and topological description of a shape and its semantics. To
this end, the domain of the considered 3D models should be defined and
the vocabulary describing the models of the domain should be constructed.
The vocabulary developed within the ontology of the domain is used to map
geometrical shape characteristics to semantic labels. Finally, the ontology
formalizing both concepts of the domain and the relations between them
can be used for model annotation and text-based retrieval. We presented
the methodology for the domain of furniture models but it can be applied
to other domains using appropriate shape segmentation and description
techniques.
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Chapter 5

Experimental Results

The retrieval process consists of many phases. The efficiency of each of the
phases influences the final performance of the retrieval system but hardly
can be evaluated separately. Some observations can be done about the
correctness of the shape segmentation for some particular classes of mod-
els, as well as about the local shape analysis of extracted components.
However, the efficiency of both these phases will be revealed while eval-
uating the performance of the whole framework. To test the framework
we use the benchmark of 3D models prepared for Watertight Model Track
of SHREC 2007, SHape REtrieval Contest organized in conjunction with
Shape Modeling International Conference. The benchmark is the collection
of 400 models divided in 20 classes, 20 models per each class. The mod-
els were collected from National Design Repository at Drexel University
[10], the AIM@SHAPE repository [5], the Princeton Shape Benchmark
[11], the CAESAR Data Samples [7], the McGill 3D Shape Benchmark
[9], the 3D Meshes Research Database by INRIA GAMMA Group [1], the
Image-based 3D Models Archive. The collection was divided into classes
manually by the organizers of Watertight Models Track [94]. Figure 5.1
shows the classified benchmark.

The classes of the collection were defined using semantics of the mod-
els. Consequently, the shape of the models within the same class can vary
greatly, including diverse position and posture of models and different sub-
stantial shape features.
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5.1 Shape Segmentation

In this section we show the results of shape segmentation using iterative
bisection method described in Section 4.1.3. The results are shown for 3D
models from different classes and using different mapping functions. Pre-
cisely, we used height, distance from the barycenter and integral geodesic
distance functions for the segmentation. The experiments demonstrate
that the height function gives better results for CAD models. Here say-
ing ”better results” we mean the segmentation which gives large simple
segments feasible for the further shape analysis. Such results can be ex-
plained by the fact that CAD models are usually correctly oriented during
the design process. The Figure 5.2 shows the results of the segmentation of
a mechanic model using height, distance from the barycenter and integral
geodesic distance measuring functions. However, the segmentation based
on the height mapping function is not invariant to the position of a model
in space and, in general, requires a preliminary alignment.

On the contrary, for free-form models, like animals, toys and humans,
better results are obtained when the measuring function is the distance
from the barycenter or integral geodesic distance. Figure 5.3 illustrates
segmentation of a free form model using height, barycenter and integral
geodesic distance functions.

The function of the distance from the barycenter as well as geodesic
distance function gives the advantage of being invariant to rotation. More-
over, the latter is also robust to different postures of a model but it requires
more computational time. Figure 5.4 shows segmentation results using in-
tegral geodesic distance function for a model located differently in space
and having diverse postures.

5.2 Shape Analysis

The results of shape analysis described in Section 4.2 are shown for some
models on Figure 5.5.

The robustness of the shape analysis depends on the number of contours
inserted inside each component and on the threshold used to decide weather
the shape is increasing or decreasing. Inserting a few contours we risk to
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miss some shape features identifying, for example, the models of spring with
multiple bending as components with single bending. On the other hand,
if we increase the number of inserted contours and at the same time reduce
the threshold for taper/enlargement decision we may reveal insignificant
local shape features which influence the final shape classification.

Moreover, shape analysis depends on the measuring function used to
segment a shape, because it defines the boundary of components. The
function of the distance from the barycenter as well as integral geodesic
distance function produces curved boundaries. The reference points de-
fined by such boundaries can be very close to each other, leading to flat
classification of the region, even when it is of high curvature. Such regions
can be detected while separating complex saddle regions.Similar situation
can occur for regions of maximal minimum values of the geodesic distance
function(see Figure 5.6). In oder to avoid extraction of thin segments be-
tween two saddle regions the threshold used in shape segmentation for
iterative bisection should be increased.

5.3 Efficiency of the 3D Model Retrieval Framework

The results of shape retrieval which will be presented further in this section
are obtained by segmenting models of the benchmark using iterative bisec-
tion method and integral geodesic distance function with approximately
200 base points scattered over the surface of a model. The shape of simple
components was analyzed according to the proposed in Section 4.2 schema
using only four intermediate contours. Finally, the shape is represented
by the attributed ERG, as shown in Section 4.3.1. To evaluate efficiency
of the framework and to compare it with others methods proposed by
participants of SHREC 2007, we computed the same performance mea-
sures. These measures are precision and recall after 20, 40, 60 and 80
retrieved models, average dynamic recall (ADR), percentage of success for
the first (PS1) and the second (PS2) retrieved items, average ranking (AR),
last place ranking (LPR), cumulated and discount cumulated gain vectors
(CGV and DCGV). We refer to Section 2.3 for the definitions of these
measures.
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Table 5.1: Performance values for some selected classes of models.

Human Ant Mechanic Bearing Bust
P20 0,94 0,66 0,47 0,51 0,40
R20 0,94 0,66 0,47 0,51 0,40
P40 0,49 0,46 0,35 0,36 0,29
R40 0,98 0,91 0,70 0,72 0,58
P40 0,33 0,33 0,28 0,26 0,21
R40 0,99 0,99 0,83 0,79 0,63
P80 0,25 0,25 0,22 0,21 0,18
R80 1 1 0,90 0,85 0,70
ADR 0,95 0,87 0,65 0,67 0,63
LR 0,99 0,92 0,23 0,20 0,21
AR 12 17 51 59 87
PS1 100% 100% 100% 100% 100%
PS2 90% 100% 90% 80% 80%

Each model from the benchmark is used as a query and the listed values
are calculated for each query. The computed values are further averaged
over the classes and finally over the whole benchmark.

Before we list the values of performance values computed for the whole
benchmark, we would like to adduce here observations over some separate
classes.

As can be seen from figures in Table 5.1 our framework performs better
for free-form models with substantial shape features. The classes of hu-
mans, ants, armadillos, teddies etc. are the classes for which the framework
gives the best retrieval results. This can be explained by the presence of
elongated shape components which are revealed after shape segmentation,
and for which the schema of the proposed shape analysis fits perfectly.

Let us now consider the class of bearings. The performance of this
class is similar to the classes of springs and glasses, where the models have
simple topology. After the segmentation phase, the models are usually
represented by two simple components, corresponding to maximum and
minimum regions of the mapping function. The resulting ERG graph is a
graph with only two edges. Hence, using only the topological information
we would not be able to discriminate so simple models. The indices of shape
analysis stored as labels of the ERG significantly improves the performance.
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Still, the small size of the graphs leads to lower performance values for these
three classes.

The last observation we would like to make here is about the class of
busts. Our framework shows the worst performance for this class. The
first and obvious reason is that the shape of models within this class varies
greatly. As can be seen from Figure 5.7 some models from this class are
just heads, others have some clothes and hat features, some are without
hair and others have sophisticated coiffure. The second reason of such
a low performance is that our segmentation method reveals larger shape
features (e.g. a hat, curls, pedestal) that are not essential for busts, and
thus can be absent in other models of the class.

On average, however, our segmentation, shape analysis and shape match-
ing techniques perform very well, surpassing almost all the participants of
watertight SHREC 2007 contest. According to the computed performance
measures, our shape retrieval techniques ranks behind only one partici-
pant, the method where the authors used Multiresolution Reeb graph [92].
The performance measures calculated over the whole benchmark together
with the values of the other SHREC participants are shown in Tables 5.2,
5.3 and 5.4. Values for LPR and AVGR were not given exactly in [94],
but plotted in charts. Hence these values in the Table are read from these
charts.

Figure 5.8 illustrates the retrieval results for some queries. The results
show that the majority of models within the same class are identified cor-
rectly regardless the position and posture of the models. Due to robust
shape analysis, the models with slight shape deformations, e.g. the models
from armadillo class, are also retrieved correctly.
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Table 5.2: Precision after 20, 40, 60 and 80 retrieved items. CFV refers to the proposed
approach, using complex Fiedler vectors.

method P20 P40 P60 P80

Akgul et al. 0.63 0.37 0.26 0.21
Chaouchet al. 0.55 0.33 0.24 0.19
Napoleon et al. 0.60 0.37 0.26 0.21
Daras et al. 0.56 0.35 0.25 0.20
Tung et al. 0.71 0.41 0.29 0.23
CFV 0.60 0.40 0.29 0.23

Table 5.3: Recall after 20, 40, 60 and 80 retrieved items. CFV refers to the proposed
approach, using complex Fiedler vectors.

method R20 R40 R60 R80

Akgul et al. 0.63 0.73 0.79 0.82
Chaouch et al. 0.55 0.66 0.72 0.76
Napoleon et al. 0.60 0.73 0.79 0.82
Daras et al. 0.56 0.69 0.76 0.80
Tung et al. 0.71 0.83 0.87 0.90
CFV 0.60 0.80 0.88 0.93

Table 5.4: Further performance measures. ADR = Average Dynamic Recall, LPR = Last
Place Ranking, AVGR = Average rank of relevant item, PS1 = percentage of success for
the first retrieved item, PS2 = percentage of success for the second retrieved item.

method ADR LPR AVGR PS1 PS2
Akgul et al. 0.79 0.54 48 100% 94.0%
Chaouch et al. 0.72 0.51 68 100% 92.8%
Napoleon et al. 0.78 0.61 52 100% 95.9%
Daras et al. 0.75 0.55 54 100% 93.3%
Tung et al. 0.86 0.74 31 100% 97.7%
CFV 0.77 0.69 35 100% 92.3%
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Figure 5.1: Watertight Shape Benchmark of SHREC 2007 [94].
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Figure 5.2: A mechanical model segmented using height, distance from the barycenter
and geodesic distance measuring functions.

Figure 5.3: A model of a human is segmented using height, distance from the barycenter
and geodesic distance measuring functions.

Figure 5.4: Armadillo’s models located differently in space and having diverse postures
are segmented using integral geodesic distance function.
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Shape Analysis of a model of a hand
Node 1 2 3 4 5 6 7 8 9 10 11
SW 0.06 0.07 0.09 0.10 0.05 0.09 0.12 0.22 0.17 0.20 0.21
Cl1 1 1 1 1 1 4 Br. Br. Int. Br. Int.
Cl2 1 1 1 1 1 1 Br. Br. Int. Br. Int.
Cl3 3 3 3 3 3 3 Br. Br. Int. Br. Int.

Shape Analysis of a model of a human
Node 1 2 3 4 5 6 7 8
SW 0.17 0.16 0.06 0.06 0.06 0.13 0.36 0.24
Cl1 4 4 6 6 4 Br. Br. Int.
Cl2 2 2 2 2 1 Br. Br. Int.
Cl3 3 3 3 3 3 Br. Br. Int.

Figure 5.5: Shape analysis of segmented models. In the tables: SW = Segment Weight,
Cl1 = classification according to component’s taper/enlargement (1 - Constant, 4 -
Smooth Decreasing, 6 - Multiple), Cl2 = classification according to component’s bend-
ing (1 - No bending, 2 - Single Bending), Cl3 = classification according to component’s
curvature (3 - > 90◦). The entry Int. stands for ”Interconnecting node” and Br. for
”Branching node”

Figure 5.6: Segmentation of a model of a camel using geodesic distance function. Curved
boundaries can lead to flat classification of curved regions, as for the green region of
camel’s paunch.
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Figure 5.7: Variety of shape of the models within class of busts.

Query: Human, id 136

Query: Armadillo, id 62

Query: Octopus, id 33

Query: Teddy bear, id 85

Figure 5.8: Example retrieval results: for four queries the top 10 retrieved items are
displayed. Colored border means successful hit.
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Chapter 6

Conclusion and Perspective

6.1 Conclusions

An increasing number of 3D models on the Internet and in corporate
repositories provides a strong potentiality to reuse this information and
to simplify design process. However, organizing, classifying, indexing and
searching 3D models are challenging problems. Text-based description of
3D shapes creates many ambiguities and is not efficient for retrieval. A
shape descriptor aims to encode topological and/or geometrical properties
of a 3D model and represent it in shape retrieval process.

In this thesis we worked mainly on four issues related to 3D model
retrieval.

First, we explored the topological structure of a 3D model, and we
represented it using Extended Reeb graph. Precisely, we proposed a new
iterative bisection algorithm for segmenting a shape. The results of the seg-
mentation are shape components appropriate for the further shape analysis.
Each of the components is represented by a node in the ERG, and nodes
representing neighbor components are connected by an edge.

Second, we proposed a schema for local shape analysis of simple com-
ponents of a model extracted on the previous segmentation step. The shape
analysis is performed using three criteria, they are shape taper/enlargement,
bending and curvature. These three criteria produces more than 76 shape
types, which can be used for shape representation in retrieval process. To
this end, we attribute the ERG representing topology of a model, with the
indices of the shape classification.
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Third, we proposed a new method for shape matching which are rep-
resented by the attributed ERGs. Precisely, we constructed a Hermitian
matrix for the graph-based shape descriptor, and by imposing several con-
straints on the elements of the matrix we succeeded to mimic spectral
behavior of the Laplacian matrix. Hence, we exploited the properties of
the eigenvalues and eigenvectors of the Hermitian matrix for graph par-
titioning and matching. We calculated two similarity measures for each
couple of graphs. The first measure is the similarity between two complete
graphs, whereas the second measure is the similarity between two sets of
their subgraphs. The two measures are mutually complementary, thus we
combine them to obtain a unique rank by dampening the influence of less
similar and increasing the impact of more similar models.

Finally, we proposed the methodology for bringing together geometry,
topology and semantics of a shape. Similarly to ambiguity of words having
different meaning depending on the context in which they are used, there
exists ambiguity of a shape. By specifying the domain we can build the
vocabulary of models of the domain. The vocabulary is used for mapping
geometrical and topological shape characteristics to semantic labels. The
ontology of the domain can be used for model annotation and text-based
retrieval.

6.2 Future Work

The work fulfilled in this thesis suggests several directions for future work.

6.2.1 Shape segmentation and analysis

The segmentation and shape analysis techniques proposed in Sections 4.1
and 4.2 are dependent on the exploited mapping function, and moreover
they provide an approximate representation of a shape. Even if the function
of the integral geodesic distance appears to be quite robust to the position
and posture of a model, the final segmentation may vary for strong shape
deformations caused by different poses of the model. The shape segmen-
tation and analysis are also dependent on the number of contours used
for mesh decomposition. For simple models a few number of contours can
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be sufficient to produce correct shape description. Working with complex
models we need to consider more level sets of the mapping function in
order to reveal all shape details. On the other hand, higher number of
level sets may lead to noisy shape descriptors as the result of detection of
small insignificant shape perturbations. Hence, in future we would like to
explore techniques for more precise shape description. We are interested
in investigating the methods for construction a graph-based shape descrip-
tor regardless the number of considered level sets. Another challenging
question is combination of different measuring functions for shape descrip-
tion. Here the research on efficient shape description versus computational
complexity should be conducted. Finally, we are interested in studying
shape description techniques for the models which are represented by non-
manifold meshes, as the number of such models on the Internet continues
to increase.

6.2.2 Graph matching

In the thesis we have proposed a new technique for graph matching ex-
ploiting the spectral properties of the Laplacian matrix. By partitioning
the graphs and further matching the sets of the subgraphs we succeeded
to capture the similarity between graphs with slightly different structure.
As can be seen from Figure 5.8 the retrieved models can have different
segmentation, and hence they are represented by the ERGs with distinct
structure and of different size. Our technique for graph matching succeeds
to captures partial similarity between these graphs. In future we would
like to investigate the ability of the proposed technique to detect partial
similarity between the graphs with significantly different number of nodes,
or with substantially diverse graph structure but having a few common
components, e.g. the model of a hand and a model of a human.

6.2.3 Encapsulating shape properties into Domain Ontology.

In this work we have proposed the methodology for bringing together ge-
ometrical and topological properties of the shape and its semantics. The
vocabulary of a chosen domain can be build with the goal to map the
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shape characteristics to semantic labels. An interesting research field is
investigation of the way topological properties of a shape can be encode in
the ontology of the domain. The only relation which is commonly used in
ontologies and shape analysis is ”hasPart”. Other topological and geomet-
rical relations between constituents of a 3D model, like overlap, underlap,
tangent etc, can be formalized and encapsulated into the domain ontology
using mereotopology theory. As the consequence the richer ontology will
result in more precise shape annotation and retrieval. The issue of bridg-
ing the gap between shape and its intrinsic semantics has been addressed
by European NoE project Aim@Shape, and continues to be a hot research
topic involving experts from the fields of shape reasoning and understand-
ing, knowledge processing and structuring.
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