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Quantum many-body systems are characterized by their correlations. While equal-time correla-
tors and unequal-time commutators between operators are standard observables, the direct access to
unequal-time anticommutators poses a formidable experimental challenge. Here, we propose a gen-
eral technique for measuring unequal-time anticommutators using the linear response of a system to
a non-Hermitian perturbation. We illustrate the protocol at the example of a Bose-Hubbard model,
where the approach to thermal equilibrium in a closed quantum system can be tracked by measur-
ing both sides of the fluctuation-dissipation relation. We relate the scheme to the quantum Zeno effect
and weak measurements, and illustrate possible implementations at the example of a cold-atom system.
Our proposal provides a way of characterizing dynamical correlations in quantum many-body systems
with potential applications in understanding strongly correlated matter as well as for novel quantum
technologies.
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I. INTRODUCTION

Dynamical correlations involving observables at
unequal times encode many fundamental properties of
quantum many-body systems. They are at the basis
of ubiquitous phenomena ranging from optical coher-
ence [1,2] and transport phenomena [3,4], over far-from-
equilibrium universality [5–9], glassy dynamics and aging
[10–12], as well as dynamical topological transitions
[13], to thermalization, integrability, and quantum chaos
[14–18]. Historically, a groundbreaking role has been
played by the fluctuation-dissipation relation (FDR)
[19–21], which can be viewed as a generalization of the
famous Einstein relation for Brownian motion [22]. In
essence, the FDR connects unequal-time anticommuta-
tors and commutators: in thermal equilibrium, fluctuations
of an observable at any given frequency are intrinsically
connected with the energy dissipated when the system is
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perturbed at that same frequency. As it is governed by a
single global parameter, the temperature, the FDR is an
excellent probe for thermalization of closed quantum sys-
tems [23–30]. Certifying that a given quantum state is
thermal can also be valuable in novel quantum technolo-
gies, e.g., for applying dynamical protocols to detect entan-
glement [31–33]—a key resource for quantum-enhanced
metrology [34,35].

Notwithstanding its fundamental importance, both sides
of the FDR have thus far only been measured for classi-
cal systems [36–38]. For quantum systems, only one side,
the unequal-time commutator, is easily accessible thanks
to Kubo’s celebrated linear response theory [4,21], which
has been extensively used to characterize quantum systems
out of equilibrium [23–30]. A main difficulty regarding the
measurement of dynamical correlations stems from the fact
that a projective von Neumann measurement at a particular
time collapses the quantum state [39], which prevents an
unperturbed measurement at a later time and thus hinders
a measurement of the time-time correlation with respect
to the initial state. Various pioneering proposals for mea-
suring unequal-time correlations on various platforms exist
[30,40–48], but attempts to overcome the inherent difficul-
ties of such a measurement are often specific to certain
setups or apply only to a limited set of observables. As
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of today, an experimental observation of the unequal-time
anticommutator in a quantum many-body system remains
elusive.

Here, we discuss how a linear response to a non-
Hermitian perturbation [49,50] permits direct experimental
observation of the unequal-time anticommutator. Com-
bined with a traditional method for measuring the corre-
sponding unequal-time commutator, e.g., standard linear
response, this scheme gives access to both sides of the FDR
independently, allowing one to track a system’s evolution
towards thermal equilibrium. We illustrate this possibil-
ity by means of numerical simulations at an example
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FIG. 1. (Non-)Hermitian linear response protocol for measur-
ing fluctuation-dissipation relations (FDRs), exemplified for a
Bose-Hubbard chain. (a) Schematic illustration of the protocol
and response of the density 〈n(t)〉 to an (anti-)Hermitian per-
turbation H1(t) = −(i)�sδ(t − tw)n of strength s = 0.05, applied
at the waiting time J tw = 10. (b) Thermalization dynamics of
the dissipative part of the “Hermitian” dynamic susceptibility
χ ′′

nn(tw, ω) (“commutator”) and the reactive part of the “non-
Hermitian” dynamic susceptibility χ ′ (NH)

nn (tw, ω) (“anticommuta-
tor”). (c) Dynamic susceptibilities, rescaled according to the FDR
(13) at early and late waiting times. The effective temperatures
kBT/�J = {4.5, 4.2} for J tw = {0.1, 10}, respectively, are deter-
mined by Eq. (16) using the least-squares method. The FDR is
clearly violated at early times, but it is restored at late times when
the system has thermalized.

motivated by a ground-breaking cold-atom experiment
[51]—a Bose-Hubbard system that is quenched from a
Mott-insulating initial state to the superfluid phase (see
Fig. 1). This analysis provides a blueprint for revealing
the FDR using experimental abilities that are common in
state-of-the-art engineered quantum systems.

The key to measuring unequal-time anticommutators
is the ability to engineer (effective) non-Hermitian per-
turbations. In recent years, a tremendous interest in non-
Hermitian physics has emerged [52,53], stimulated by
the rapid progress in the experimental generation and
control of non-Hermitian systems [54–59]. Indeed, non-
Hermiticity gives rise to a wealth of new physics with
novel (topological) phases and unconventional critical
behavior [60–66], bearing a vast potential for applica-
tions, e.g., in strongly enhanced quantum sensing [67,68]
or adiabatic quantum optimization [69,70]. Leveraging on
this development, we design a specific protocol to gener-
ate effective non-Hermitian dynamics in a system of cold
atoms, enabling access to the fluctuation side of the FDR
(i.e., to the unequal-time anticommutator). Our scheme is
most conveniently phrased as an application of the quan-
tum Zeno effect [71,72], combining outcoupling to an
ancillary system with a projection on the Zeno subspace
given by the empty ancilla. In a cold-atom implementation,
this can be realized through a coherent or dissipative per-
turbation in the linear regime, together with the ability of
distinguishing zero from nonvanishing ancilla population
in postselection. While a single step in the Zeno evolution
yields the unequal-time anticommutator in time domain, an
extended Zeno evolution, which we propose to implement
harnessing engineered dissipation [73,74], allows one to
probe frequency-resolved responses in the same way as
in standard linear response experiments. To demonstrate
the feasibility of our proposal, we benchmark our pro-
tocol by numerically solving the full quantum evolution,
including the stochastic dynamics underlying the dissi-
pative scheme, and discuss experimental error sources.
We also examine formal relations to dissipative quantum
systems, where non-Hermitian dynamics can be gener-
ated by postselecting individual quantum trajectories on
the absence of quantum jumps [58,66,75–77], and estab-
lish general cross-connections between (non-)Hermitian
linear response and ancilla-based weak measurements
of dynamical correlations [43,44] (see Ref. [78] for a
comprehensive review on weak measurements). Our pro-
posed realization of non-Hermitian linear response is fea-
sible even when existing weak measurement protocols
are difficult to engineer experimentally, and it excels in
regimes where projective protocols fail as a consequence
of their restriction to observables with two eigenvalues
[30,41,43–45], as we demonstrate through numerical
benchmarks. Our approach thus opens the door to probing
the FDR in quantum many-body systems in an unbiased
way and for a broad range of observables.
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II. THE FLUCTUATION-DISSIPATION RELATION

For a quantum many-body system in thermal equilib-
rium, the FDR [21] links the symmetrized correlation
spectrum SBA(ω) of any two operators A and B across the
entire frequency spectrum ω to the dissipative part of the
dynamic susceptibility χ ′′

BA(ω) via

SBA(ω) = � coth
(

�ω

2kBT

)
χ ′′

BA(ω), (1)

where � is the reduced Planck constant and kB is the Boltz-
mann constant. This elegant relation requires only a single
parameter as input, the global temperature T. The ease of
accessing χ ′′

BA(ω) can then be exploited to obtain SBA(ω).
However, when the system is far from equilibrium, the two
sides of Eq. (1) become nonstationary and the FDR can be
broken [8,29], making it necessary to devise independent
handles on both sides of the relation, as has been proposed
in Ref. [30].

One can generalize the definitions of S and χ ′′ to such
a nonequilibrium situation by introducing the response
function

φBA(t, t′) = i
�

θ(t − t′) 〈[B(t), A(t′)
]〉0 (2)

and the symmetrized dynamic correlation function

SBA(t, t′) = 1
2

〈{B(t), A(t′)
}〉0 − 〈B(t)〉0 〈A(t′)〉0 , (3)

defined, respectively, in terms of the unequal-time commu-
tator and anticommutator of the Heisenberg operators A(t)
and B(t). Here, θ(t) is the Heaviside step function, ensuring
causality of the response, and the subscript in the expec-
tation value 〈· · ·〉0 signifies that the Heisenberg operators
evolve under the (unperturbed) Hamiltonian H0. In the
context of nonequilibrium quantum field theory, Eqs. (2)
and (3) are also known as the spectral function ρ and the
statistical function F , respectively [79]. Equation (2) is
the nonequilibrium version of Kubo’s well-known linear
response function [21], which determines the evolution of
the expectation value 〈B(t)〉 under the perturbed Hamilto-
nian H(t) = H0 + H1(t), to linear order in the perturbation
H1(t) = −f (t)A, according to

〈B(t)〉 = 〈B(t)〉0 +
∫ t

0
dt′ φBA(t, t′)f (t′). (4)

In contrast to the usual equilibrium linear response sce-
nario, the initial state is not necessarily stationary with
respect to H0. In this situation, it is common to define the
nonequilibrium generalization of the dynamic susceptibil-
ity χ as the Fourier transform of the response function φ

with respect to the relative time �t = t − t′ at fixed central
time τ = (t + t′)/2 [79],

χBA(τ , ω) =
∫ 2τ

−2τ

d�tφBA

(
τ + �t

2
, τ − �t

2

)
eiω�t. (5)

This quantity is commonly decomposed as χBA = χ ′
BA +

iχ ′′
BA into a reactive part χ ′

BA(ω) = [χBA(ω) + χAB(−ω)]/2
and a dissipative (or absorptive) part χ ′′

BA(ω) = [χBA(ω) −
χAB(−ω)]/2i [3], the latter entering the right-hand side of
the FDR (1). The correlation spectrum S(τ , ω) on its left-
hand side can be defined analogously to Eq. (5) as the
Fourier transform of Eq. (3).

For a thermalizing system, we expect χBA(τ → ∞, ω)

and SBA(τ → ∞, ω) to reach steady values that fulfill the
FDR. As such, the restoration of the FDR provides an
excellent probe for how and when a quantum many-body
system approaches thermal equilibrium [30]. On top of
that, the FDR yields the effective temperature at which
the system thermalizes [23–30]. Remarkably, this indepen-
dent way of defining temperature does not require any a
priori assumptions other than the FDR. In our numerical
benchmarks, we find good agreement between the effec-
tive temperature extracted from the FDR and the expected
temperature of a thermal ensemble at the equivalent energy
density (see Sec. IV).

While the commutator in Eq. (2) can be accessed rather
straightforwardly, for example, by studying how energy is
absorbed or how an observable deviates from its equilib-
rium value following a time-dependent perturbation [21],
the determination of the unequal-time anticommutator in
Eq. (3) is, unfortunately, considerably more challenging.
We now employ a recent extension of linear response the-
ory to non-Hermitian Hamiltonians [49,50] as a general
way of gaining access to the left-hand side of Eq. (1),
which enables direct probes of the FDR.

III. NON-HERMITIAN LINEAR RESPONSE
THEORY

Though long established in the context of open quantum
systems [80,81], recent years have seen a surge of inter-
est in quantum systems with non-Hermitian Hamiltonians
[53]. Here, we tap into this development by exploiting the
linear response to a non-Hermitian perturbation [49,50] in
order to extract unequal-time anticommutators.

In contrast to usual linear response theory, we assume
that the system is effectively described by a non-Hermitian
Hamiltonian H(t) = H0 + H1(t), where H0 is the unper-
turbed (Hermitian) Hamiltonian and H1(t) = −if (t)A is an
anti-Hermitian perturbation with a positive semidefinite
operator A and a non-negative time-dependent function
f (t). For example, such a scenario arises in the quan-
tum trajectories’ approach to dissipative quantum systems
[75–77] if the evolution is conditioned on the absence of
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quantum jumps [56,58,66] (see also Sec. VI B). In addi-
tion, we show in Sec. VI A that existing ancilla-based weak
measurement protocols for the unequal-time anticommu-
tator [43,44] can also be rephrased in the framework of
non-Hermitian linear response. In Sec. V, we present a
scheme for engineering effective non-Hermitian Hamilto-
nians based on the quantum Zeno effect to probe such
responses, even frequency-resolved, for a wide range of
observables.

A quantum state described by the density operator ρ(t)
evolves in time under the non-Hermitian Hamiltonian H(t)
according to the von Neumann equation

i�
d
dt

ρ = H(t)ρ − ρH †(t) = [H0, ρ] + {H1(t), ρ} (6)

with initial condition ρ(0) = ρ0.
Using time-dependent perturbation theory, a straightfor-

ward calculation (reported in Appendix A) shows that, to
linear order in the perturbation, the unnormalized expeca-
tion value of a (Hermitian) observable B is given by

Tr [Bρ(t)] = 〈B(t)〉0 − 1
�

∫ t

0
dt′ 〈{B(t), A(t′)

}〉0 f (t′).

(7)

The non-Hermiticity of the perturbed Hamiltonian has the
important consequence that the state ρ(t) is no longer nor-
malized: as can be seen by inserting the identity operator
for B in Eq. (7), its norm decreases with time, to linear
order, as

Tr [ρ(t)] = 1 − 2
�

∫ t

0
dt′ 〈A(t′)〉0 f (t′). (8)

Physically, this decrease can be interpreted as the leak-
age of the wave function into a complementary state space
(see also Sec. V). To account for this loss of probabil-
ity, we consider the normalized expectation value 〈B(t)〉 =
Tr[Bρ(t)]/ Tr[ρ(t)], describing a postselected measure-
ment [78]. Combining Eqs. (7) and (8), the disconnected
correlations drop out to linear order, and we can write the
response as

〈B(t)〉 = 〈B(t)〉0 +
∫ t

0
dt′ φ(NH)

BA (t, t′)f (t′) (9)

with the “non-Hermitian” response function

φ
(NH)

BA (t, t′) = −1
�

θ(t − t′)
[
〈{B(t), A(t′)

}〉0

− 2 〈B(t)〉0 〈A(t′)〉0

]
. (10)

Here, we insert the Heaviside step function θ to ensure
causality of the response. Remarkably, the non-Hermitian

response function in Eq. (10) is the desired measurable
quantity that gives direct access to the unequal-time anti-
commutator (3) by virtue of the relation φ

(NH)

BA (t, t′) =
−2θ(t − t′)SBA(t, t′)/�.

To establish a link between the response function (10)
and the correlation spectrum appearing on the left-hand
side of the FDR (1), we define the “non-Hermitian”
dynamic susceptibility, similarly to Eq. (5), as the Fourier
transform

χ
(NH)

BA (τ , ω) =
∫ 2τ

−2τ

d�tφ(NH)

BA

(
τ + �t

2
, τ − �t

2

)
eiω�t.

(11)

We can split this quantity as χ
(NH)

BA = χ
′ (NH)

BA + iχ ′′ (NH)

BA
into the components (for conciseness, we remove the τ

argument from the following formulas)

χ
′ (NH)

BA (ω) = 1
2

[
χ

(NH)

BA (ω) + χ
(NH)

AB (−ω)
]

, (12a)

χ
′′ (NH)

BA (ω) = 1
2i

[
χ

(NH)

BA (ω) − χ
(NH)

AB (−ω)
]

, (12b)

which we refer to, in analogy to their Hermitian coun-
terparts, as the reactive and dissipative parts of the
non-Hermitian susceptibility, respectively. As shown in
Appendix A, the reactive part, Eq. (12a), gives access
to the correlation spectrum via the identity SBA(τ , ω) =
−�χ

′ (NH)

BA (τ , ω). This allows us to rewrite the FDR (1) in
thermal equilibrium as

χ
′ (NH)

BA (ω) = − coth
(

�ω

2kBT

)
χ ′′

BA(ω), (13)

which is expressed entirely in terms of the susceptibilities
χ

′ (NH)

BA and χ ′′
BA, accessible using non-Hermitian and stan-

dard (Hermitian) linear response, respectively. As such,
linear response theory provides an elegant and general
framework for independently probing both sides of the
FDR (13) out of equilibrium, which works for arbitrary
observables in any quantum many-body system. Com-
pared to projective protocols for measuring unequal-time
anticommutators [30,41,43–45], which are restricted to
observables with two eigenvalues (see also discussion in
Sec. VI B 2), one of the main assets of linear response
theory is its broad applicability.

It is worthwhile emphasizing that the outlined deriva-
tion of the response to a non-Hermitian perturbation is by
no means restricted to the linear regime only, but, as well
known in standard response theory [20], can be extended to
nonlinear responses. In fact, by calculating the expansions
in Eqs. (7) and (8) to the desired nonlinear order, one can in
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principle access an infinite hierarchy of unequal-time cor-
relations, order by order. By perturbing the system at mul-
tiple sites simultaneously, nonlinear responses could there-
fore also enable access to (global) many-body operators,
which are expected not to thermalize and consequently
violate the FDR.

Approaching the problem of measuring dynamical cor-
relations from the (non-)Hermitian linear response per-
spective turns out to be fruitful for a number of reasons. For
one, non-Hermitian linear response is completely agnostic
to the way the non-Hermitian perturbation is implemented
and therefore directly benefits from any advancements in
the field of non-Hermitian physics regarding the genera-
tion and control of non-Hermitian Hamiltonians. Further-
more, it provides an ancilla-free interpretation of common
ancilla-based weak measurement schemes for the unequal-
time anticommutator [43,44]. So far, it has not been clear
whether ancilla-free formulations of such protocols allow
for a meaningful physical interpretation [44], but, as we
show in Sec. VI A, this is indeed possible in the light
of non-Hermitian linear response. Conversely, any non-
Hermitian perturbation can in principle be realized with
the help of an ancilla using only unitary evolution and stan-
dard projective measurements, although the required cou-
plings may not always be straightforward to implement.
In Sec. V, we present specific ancilla-based schemes with
experimentally feasible system-ancilla couplings, provid-
ing access to dynamical correlations for a wide range of
observables. Finally, from a linear response point of view,
it is natural to study responses to periodic perturbations
that directly give access to frequency-resolved susceptibil-
ities. As explained in Secs. V B and V C, this becomes
practical within our framework also for non-Hermitian
perturbations by exploiting the quantum Zeno effect.

IV. ILLUSTRATION: QUENCH IN A
BOSE-HUBBARD SYSTEM

In this section, we demonstrate how (non-)Hermitian
linear response allows one to access both sides of the FDR
(13) independently. Such measurements can be used to
either probe thermalization or the absence thereof [30].
If a system of interest is coupled to a large thermal bath,
it will sooner or later always approach thermal equilib-
rium with the bath temperature [81], and the FDR will
eventually hold. In contrast, the question whether and how
a closed quantum system thermalizes once it is brought
out of equilibrium is much more subtle. Remarkably, an
isolated system can act as its own bath [16,17]: a ther-
malizing subsystem behaves after long times as if it was
in thermal equilibrium with the rest of the system at an
effective temperature set by the initial state. According to
the eigenstate thermalization hypothesis [14–18], this pro-
cess occurs on the level of individual eigenstates. Although
the precise conditions for its validity are not yet entirely

understood, it is believed that (eigenstate) thermalization
generally holds for generic states of interacting quantum
many-body systems in the bulk of the spectrum. Important
scenarios where thermalization fails (with concomitant
violation of the FDR) include integrable models [17,26],
many-body localization [82,83], as well as Hilbert space
fragmentation and the related phenomenon of quantum
many-body scars [84–86]. On top of that, breaking FDRs is
a characteristic signature of far-from-equilibrium systems
near a nonthermal fixed point [8,29]. All of these settings
represent promising targets for our (non-)Hermitian lin-
ear response scheme to reveal either the validity or the
breakdown of the FDR.

For illustrative purposes, we focus here on the generic
case where the system does thermalize and the FDR is
expected to hold. In ground-breaking cold-atom experi-
ments, it has been shown that even in very small interacting
quantum systems, expectation values can reach steady
states that are consistent with thermal equilibrium [51].
We now illustrate how such an experiment could go one
step further by demonstrating the validity of the FDR. To
this end, we numerically solve the full quantum evolu-
tion for the Bose-Hubbard chain describing the experiment
in Ref. [51] (we emphasize that our approach does not
depend on such a model choice and can be applied to gen-
eral quantum systems). The Bose-Hubbard Hamiltonian is
given by

H0 = −�J
L∑


=1

(a†

a
+1 + h.c.) + �U

2

L∑

=1

n
(n
 − 1).

(14)

Here, the optical lattice sites are denoted by 
 = 1 . . . L
with associated bosonic annihilation, creation, and num-
ber (density) operators a
, a†


, and n
, respectively. J is
the strength of the nearest-neighbor hopping, for which
we assume periodic boundary conditions, and U the on-
site interaction rate. In our numerics, we do not truncate
the local Hilbert-space dimension and employ an adap-
tive Krylov subspace method for time evolution [87–89].
While previous numerical studies of FDRs in this model
have focused on density autocorrelations at large U/J and
low fillings [30], here we consider quenches into the super-
fluid regime (U/J ∼ 1) at unit filling and also explore
off-site correlations as a function of distance.

The linear response protocol is illustrated at the top of
Fig. 1. We initialize the system of N = L bosons in a
Mott-insulating state at U/J → ∞ and then quench it at
time t = 0 into the superfluid phase at U/J = 1.5625 [90],
chosen consistent with the experiment in Ref. [51]. This
quench throws the system heavily out of equilibrium. After
a variable waiting time tw, we either apply a Hermitian or
an anti-Hermitian perturbation in order access the desired
response functions in Eqs. (2) or (10), respectively. The
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perturbation is applied as a rectangular pulse of strength s
and duration δt, f (t) = �s [θ(t − tw) − θ(t − tw − δt)] /δt.
The exact shape of the pulse is unimportant as long as the
pulse duration is sufficiently short compared to the char-
acteristic time scales of the system (cf. Appendix C). In
this case, the pulse can be approximated by a δ function
as f (t) ≈ �sδ(t − tw). Figure 1(a) shows the time trace
of the response to a (non-)Hermitian perturbation giving
access to density autocorrelations (B = A = n), computed
in a system of L = 12 sites for a perturbation of strength
s = 0.05 and duration J δt = 0.01 [91]. The thermalization
dynamics of the corresponding dynamic susceptibilities
χ ′ (NH) and χ ′′ is depicted in Fig. 1(b). For the purposes
of this section, we evaluate the susceptibilities at fixed
waiting time tw [29], i.e.,

χ
(NH)

BA (tw, ω) =
∫ ∞

−∞
d�tφ(NH)

BA (tw + �t, tw)eiω�t, (15)

using an exponential filter of characteristic frequency
γ /J = 0.2 to ensure convergence of the Fourier inte-
grals (see Appendix B 1 for technical details). χ ′ (NH) is
symmetric in ω and grows as a broad central peak with
small wings of opposite sign that gradually disappear as tw
increases, while χ ′′ is antisymmetric and develops char-
acteristic peaks around nonzero frequencies. To assess
whether the two functions satisfy the FDR, we use the
least-squares method to find the effective temperature T
that best relates the susceptibilities via the FDR (13), i.e.,
for a fixed waiting time tw,

T = arg min
�

∫
dω

[
−χ ′ (NH) tanh

(
�ω

2kB�

)
− χ ′′

]2

.

(16)

In Fig. 1(c), one can see that the FDR is clearly violated
at early times, i.e., there exists no global value of T such
that Eq. (13) holds, but at later times, the agreement is
remarkable and supports the interpretation that the system
undergoes thermalization.

A distinct feature of the FDR in equilibrium is that it
holds for any pair of observables A and B. To confirm this
prediction for our model system, we have computed χ ′ (NH)

and χ ′′ for off-site density correlations corresponding to
A = n
 and B = n
+d as a function of the distance d. The
results are shown in Fig. 2(a), where χ ′ (NH) is rescaled
according to Eq. (13) with the best-fitting effective tem-
perature T obtained from Eq. (16) for each configuration
(tw, d). Qualitatively, it can be seen that the two quanti-
ties deviate for early times, but agree well for late times.
To make this statement more quantitative, in Figs. 2(c)
and 2(d), we show the relative and absolute error of the
FDR, i.e., the L2 norm of the difference between the left-
and right-hand side of Eq. (13) (see Appendix B 1), as
a figure of merit measuring how well the FDR (13) is
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FIG. 2. Thermalization dynamics of density correlations in a
Bose-Hubbard system. (a) Comparison of the dynamic suscepti-
bilities χ ′′

n
n
+d
and χ ′ (NH)

n
n
+d
, rescaled according to the FDR (13),

for different waiting times tw as a function of the spatial distance
d. The effective temperature T is determined for each configu-
ration according to Eq. (16) using the least-squares method. At
early times, clear deviations are visible, but for late times, the
two quantities agree and the FDR (13) is fulfilled. (b) Least-
squares value of the effective temperature T, (c) relative error,
and (d) absolute error of the FDR as a function of the waiting
time tw for several distances d. At small distances, after times on
the order of J −1, the effective temperature approaches a constant
value consistent with the prediction 〈H0〉T = E0 for a thermal
state (gray dashed line), and the relative error becomes small. As
the distance increases, the relative error grows, but the absolute
deviation becomes small (see also Appendix B).

fulfilled at a particular instance of time. For small dis-
tances, the relative error becomes vanishingly small after
waiting times on the order of J −1, while for larger dis-
tances, the error tends to drop later and fluctuates around
a nonzero offset. A similar behavior is exhibited by the
effective temperature [see Fig. 2(b)]: at small distances
and late times, the temperatures are approximately constant
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and agree with each other, while this is no longer true for
larger distances. Only in the former case, where the relative
error is small, the effective temperature can be attributed
the physical meaning of the temperature at which the sub-
system degrees of freedom thermalize. This temperature is
consistent with the one obtained for a thermal state at the
equivalent energy density using the condition 〈H0〉T = E0
[gray dashed line at kBT/�J = 4.27 in Fig. 2(b), calcu-
lated for L = 8 using exact diagonalization], where 〈· · ·〉T
denotes the expectation value with respect to a canonical
ensemble at temperature T, and E0 is the energy of the
initial state after the quench [51].

While global many-body observables are expected to
violate the FDR due to the purity of the global quantum
state, one would expect two-site observables like the off-
site density correlations shown in Fig. 2 to thermalize and
thus satisfy the FDR for sufficiently large systems and
late times. Although the absolute error gradually decreases
with increasing distance due to the lower signal strength
[see Figs. 2(a) and 2(d)], relative discrepancies persist
even after very long times. In Appendix B, we investi-
gate the behavior of the error as a function of system size
and study a similar quench scenario for a two-dimensional
(2D) Bose-Hubbard system of 4 × 4 lattice sites and N =
16 bosons (unit filling). Our analysis reveals that the rela-
tive error at long waiting times decreases with increasing
system size. Furthermore, the larger 2D system exhibits
only a minor trend towards larger relative errors as the dis-
tance increases, and the FDR is overall better fulfilled than
in the smaller one-dimensional (1D) chain. This points to
the conclusion that the observed discrepancies of the FDR
in Fig. 2 for large distances are likely due to finite-size
effects. Thus, our numerical results indicate that for suf-
ficiently large systems, off-site density correlations fulfill
the FDR even at long distances, confirming the expecta-
tion that subsystems consisting of few degrees of freedom
thermalize.

Having illustrated how the FDR becomes accessible via
(non-)Hermitian linear response, we now turn to the ques-
tion of how to realize the corresponding non-Hermitian
perturbations experimentally.

V. REALIZATION OF NON-HERMITIAN LINEAR
RESPONSE

There exists a growing body of work that describes
how non-Hermitian physics can be generated in quantum
many-body systems [52,53]. Non-Hermitian Hamiltoni-
ans naturally arise in the context of dissipative quantum
systems [80,81], where they govern the evolution of indi-
vidual quantum trajectories conditioned on the absence of
quantum jumps [75–77]. This way, it is possible to har-
ness natural sources of dissipation in order to explore novel
non-Hermitian physics [56,58,66]. Over the years, ever

better techniques of screening experiments as much as pos-
sible from any sources of dissipation have been developed,
with the goal of observing clean unitary dynamics in iso-
lated quantum systems. This bears the potential to reintro-
duce channels of engineered dissipation using specifically
designed control schemes.

In this section, we propose an ancilla-based protocol
that relies entirely on synthetic sources of dissipation in
order to realize an effective non-Hermitian Hamiltonian.
The perturbation can selectively be applied as a short pulse
or under continuous modulation of its strength, allow-
ing one to probe frequency-dependent responses in the
same way as in standard linear response scenarios. More-
over, our flexible and experimentally feasible choice of
system-ancilla coupling gives access to a wide range of
observables.

Figure 3 gives an overview of the scheme, which is most
conveniently phrased as an application of the quantum
Zeno effect [71,72]. Depending on the desired perturba-
tion operator A, the relevant subsystem, e.g., a single site
or two neighboring sites in an optical lattice, is coher-
ently coupled to an initially empty ancilla, as depicted in
Figs. 3(a) and 3(b). A measurement of the ancilla popu-
lation projects the system on the subspace with a definite
number of particles in the ancilla. As will become clear
further below, non-Hermitian dynamics is realized by post-
selecting those measurement outcomes where the ancilla
remains empty [see Fig. 3(c)]. Repeating this measure-
ment frequently gives rise to a quantum Zeno effect: as
the measurement frequency tends to infinity, the proba-
bility of populating the ancilla vanishes. If, instead, the
measurement frequency is finite, there is a finite probabil-
ity of populating the ancilla. As illustrated in Fig. 3(d),
this leads to a “pulsed” leakage of probability from the
subspace where the ancilla is empty to a complementary
subspace with nonvanishing ancilla population. Instead of
the pulsed Zeno effect, we can also use the continuous
Zeno effect [72], which can be realized by substituting
the repeated measurements with strong engineered dis-
sipation on the ancilla [73]. This has the advantage of
not requiring any nondestructive measurements during the
evolution, but only a single postselected measurement at
the final evolution time. Both the pulsed Zeno evolution
and the ensemble average over many noise realizations
in the continuous case can be described by an effec-
tive non-Hermitian Hamiltonian [72,92,93] [see Fig. 3(d)],
which realizes the desired anti-Hermitian perturbation for
measuring the unequal-time anticommutator.

While our scheme can be implemented on various plat-
forms, for the sake of concreteness, we focus here on
bosons in optical lattices, where the ancilla may corre-
spond to an auxiliary lattice site or an additional internal
state. A crucial experimental requirement is the ability to
distinguish an empty ancilla from one with nonzero popu-
lation, which enables the projection on the empty-ancilla
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FIG. 3. Realization of an effective non-Hermitian Hamiltonian
using the quantum Zeno effect, illustrated for an optical lattice.
(a) Coupling a single lattice site 
 to an ancilla gives rise to
a perturbation by the density operator A = n
 at that site. (b)
A perturbation by the hopping operator a†


1
a
2 + a†


2
a
1 can be

achieved by coupling two sites 
1 and 
2 simultaneously to an
ancilla. (c) Single step in the quantum Zeno evolution. The prob-
ability p(0) of detecting no particles in the ancilla gradually
decreases over time (red). A measurement of the ancilla pop-
ulation, postselected on the condition that the ancilla is empty
(inset), projects the system on the empty-ancilla subspace. The
coupled evolution plus projection corresponds to an effective
non-Hermitian perturbation (NHH, black). (d) When the projec-
tive measurement is performed frequently as compared to the
strength of the coherent coupling , the system plus ancilla
is kept in the quantum Zeno regime for a prolonged period of
time. The resulting pulsed Zeno evolution (red) is interpolated
by the evolution under an effective non-Hermitian Hamiltonian
(NHH, black). Alternatively, the repeated measurements can be
substituted by strong engineered dissipation on the ancilla. The
light gray lines show 20 trajectories corresponding to different
realizations of engineered classical dephasing noise ξ(t) on the
ancilla, whose ensemble average (gray dashed line) approximates
an effective non-Hermitian evolution.

Zeno subspace. This requirement is met, for instance,
by modern quantum gas microscopes, which reach both
single-site and single-particle resolution [94,95].

It is instructive to first consider a single step in the Zeno
evolution consisting of a short coupling pulse followed by
a projection, as depicted in Fig. 3(c). It turns out that this
scenario corresponds to applying a δ-like perturbation suit-
able for measuring the time trace of the non-Hermitian
response function (10) like in Sec. IV. Subsequently, we
explain how the quantum Zeno effect enables a prolonged
evolution under a non-Hermitian Hamiltonian, focusing
on the scenario with strong engineered dephasing noise
that induces a continuous Zeno effect [cf. Fig. 3(d)]. We

benchmark variants of our scheme for measurements in
both time and frequency domain at the example of the
Bose-Hubbard chain introduced in Sec. IV. Bose-Hubbard
systems subject to dissipation have been extensively stud-
ied with the goal of exploring the rich dynamics of open
quantum systems [66,96,97], whereas here, we use engi-
neered dissipation as a tool [74] to probe dynamical
correlations in closed systems via non-Hermitian linear
response. In Sec. VI, we compare our approach with
other protocols for measuring unequal-time anticommuta-
tors, including ancilla-based weak measurement schemes
[43,44] and projective protocols [30,41,43–45], and dis-
cuss potential sources of errors as well as strategies on how
to mitigate them.

A. Non-Hermitian linear response as a single step in
the quantum Zeno evolution

In this subsection, we discuss a single step in the Zeno
evolution, which corresponds to applying an effective non-
Hermitian δ-like perturbation as in Sec. IV and allows one
to access the unequal-time anticommutator in Eq. (10) in
time domain.

1. Outline of the scheme

We consider a system-ancilla coupling Hamiltonian of
the form

Hcpl = �(b†a + a†b), (17)

where a (a†) and b (b†) represent the bosonic annihilation
(creation) operators of the system mode to be probed and
the ancilla, respectively, and  is the coupling strength. In
the coupling scheme depicted in Fig. 3(a), the operator a
represents a single lattice site 
, giving rise to an effective
anti-Hermitian perturbation by the density (number) oper-
ator A = n
 = a†


a
, as becomes clear below. The scheme
in Fig. 3(b) couples two lattice sites 
1 and 
2, which may
or may not be nearest neighbors, simultaneously to the
ancilla. This corresponds to the replacement a → a
1 +
a
2 in Eq. (17) and produces a non-Hermitian perturba-
tion by the operator A = n
1 + n
2 + a†


1
a
2 + a†


2
a
1 . This

type of perturbation can therefore be used to access FDRs
for the hopping operator a†


1
a
2 + a†


2
a
1 , as we demon-

strate below for nearest neighbors. It is possible to consider
even more general setups [98], e.g., by adding a relative
phase between the two couplings in Fig. 3(b) using laser-
assisted tunneling [99], or by coupling a multitude of sites
to one or more ancillas, enabling global perturbations by
sums of local operators. The general form of the accessible
perturbations is given in Appendix C 2.

A single Zeno step of duration δt corresponds to a
unitary evolution described by the time evolution opera-
tor U(δt) = exp(−iHδt/�), followed by a projection on
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the Zeno subspace defined by the performed measure-
ment [72]. During the coupling, the total Hamiltonian is
given by H = H0 + Hcpl, but for sufficiently short δt, it is
permissible to neglect the evolution under H0 (for simplic-
ity, we assume the ancilla to have no internal dynamics).
A measurement of the ancilla population projects the sys-
tem on one of the Zeno subspaces with a fixed number of
particles in the ancilla, which can be realized experimen-
tally via postselection. Prior to the coupling, we require
the ancilla to be in the vacuum state. Let P denote the
projection operator on the empty-ancilla subspace. Then,
during one Zeno step, the state ρ(tw) at the waiting time tw
changes, up to a normalization, as

ρ(tw) → ρ ′(tw + δt) = PU(δt)ρ(tw)U†(δt)P . (18)

As shown in Appendix C 1, to leading order in the effec-
tive coupling strength s = (δt)2/2, this process corre-
sponds to the evolution under an effective non-Hermitian
Hamiltonian,

ρ ′(tw + δt) = e−iHeffδt/�ρ(tw)eiH†
effδt/� + O(s2), (19)

with Heff = H0 − i�sA/δt and A = a†a.
For the purpose of measuring the non-Hermitian linear

response in time domain, a single Zeno step is suffi-
cient. The system subsequently evolves unitarily under the
unperturbed Hamiltonian H0 up to the final observation
time t > tw + δt. The unnormalized expectation value of
an observable B is then given by

Tr
[
Bρ ′(t)

] = 〈B(t)〉0 − s 〈{B(t), A(tw)}〉0 . (20)

In the linear regime, the probability of detecting no par-
ticles in the ancilla after the coupling reads p(0) = 1 −
2s 〈A(tw)〉0, which can be found by inserting the identity
operator for B in Eq. (20). Normalizing Eq. (20) by this
probability yields, to leading order in s, the conditional
expectation value

〈B(t)〉P = 〈B(t)〉0 − s
[
〈{B(t), A(tw)}〉0

− 2 〈B(t)〉0 〈A(tw)〉0

]
, (21)

representing a postselected measurement conditioned on
the empty ancilla. As anticipated, a comparison with
Eqs. (4) and (10) shows that this result effectively cor-
responds to a linear response after applying the anti-
Hermitian perturbation H1(t) = −i�sδ(t − tw)A, giving
direct access to the symmetrized correlation function (3)
via SBA(t, tw) = − [〈B(t)〉P − 〈B(t)〉0] /2s. As required in
Sec. III, the perturbation operator A = a†a is indeed posi-
tive semidefinite, in line with the physical intuition that the
norm of the state can only decrease through outcoupling
followed by a projection.

It is instructive to compare the result in Eq. (21) with
the one obtained if no projection on the empty-ancilla
subspace is performed, e.g., if the measurement appara-
tus is unable to distinguish an empty ancilla from one with
nonvanishing population or the result of the ancilla mea-
surement is ignored. In this case, a simple average over all
ancilla populations is obtained, where, to leading order in
the effective coupling strength s, only single occupancies
of the ancilla contribute. The unconditional response then
reads (see Appendix C)

〈B(t)〉 = 〈B(t)〉0 − s
〈 {

B(t), a†(tw)a(tw)
}

− 2a†(tw)B(t)a(tw)
〉
0. (22)

The last term stems from a process where a single particle
ends up in the ancilla after the coupling. Postselecting on
the empty ancilla eliminates this undesired contribution,
yielding a pure non-Hermitian evolution that gives access
to the unequal-time anticommutator.

2. Numerical benchmark: non-Hermitian linear
response in time domain

To benchmark our scheme, we numerically solve the
full quantum evolution describing a measurement of
SBA(t, tw) for a thermal state ρT = exp(−H0/kBT)/Z(T)

in a Bose-Hubbard chain of L = 8 sites at unit filling
and with periodic boundary conditions. Here, Z(T) =
Tr[exp(−H0/kBT)] is the canonical partition sum, and the
temperature T is chosen such that the mean energy 〈H0〉T =
Tr(H0ρT) corresponds to that of a Mott-insulating state.
A thermal state is an ideal benchmark for our purposes
since the temperature T is known and the FDR is sat-
isfied exactly, so any deviations from the FDR indicate
deficiencies of the method.

In Figs. 4(a) and 4(c), we show the time traces of the
responses to perturbations corresponding to the coupling
configurations in Figs. 3(a) and 3(b), respectively, i.e., for
on-site densities (A = B = n
) and nearest-neighbor cor-
relators (A = n
 + n
+1 + a†


a
+1 + a†

+1a
, B = a†


a
+1 +
a†


+1a
). From the latter measurement, the response for the
combination A = B = a†


a
+1 + a†

+1a
 can be obtained

by subtracting the response of the same observable B to
perturbations A involving only the densities at the rele-
vant sites. Experimentally, the nearest-neighbor correlator
〈B〉 = 〈a†


a
+1 + h.c.〉 can be measured, e.g., by projecting
the system on noninteracting double wells and monitoring
the double-well occupancy as a function of time [100,101].
The coupling to the ancilla is applied as a rectangular
pulse of duration J δt = 0.01 and its strength is chosen
such that the effective coupling becomes s = 0.05 for the
density and s = 0.02 for the correlator, corresponding to
a decay of the norm by about 10% in both cases. As
can be seen in Figs. 4(a) and 4(c), the simulated ancilla
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FIG. 4. Simulation of the linear response to a non-Hermitian
perturbation generated by a single step in the Zeno evolution of
coupling to an ancilla followed by a projection on the empty-
ancilla subspace [see Fig. 3(c)]. (a) Time trace of the density
after applying the perturbation to a single site as in Fig. 3(a). The
unnormalized and normalized responses correspond to Eqs. (20)
and (21), respectively. The result agrees well with the response
to a non-Hermitian perturbation by the density operator A = n


(NHH, green dashed line). (b) The correlation spectrum extracted
from the response in (a) agrees well with the exact result SBA.
The FDR (1) between χ ′′

BA and SBA, calculated using the known
temperature kBT/�J = 4.27 of the thermal state, is shown for
comparison. (c) Time trace of the nearest-neighbor correlator
after coupling two neighboring sites simultaneously [black, see
Fig. 3(b)] or individually [gray, Fig. 3(a)] to the ancilla. Subtract-
ing the latter quantity from the former yields the response to a
perturbation by the hopping operator A = a†


a
+1 + a†

+1a
. The

respective responses agree well with their effective descriptions
in terms of non-Hermitian Hamiltonians (NHH, green dashed
lines). (d) The extracted correlation spectrum reproduces the
exact one to good accuracy.

measurement agrees well with the description in terms of
the effective non-Hermitian Hamiltonian in Eq. (19). In
Figs. 4(b) and 4(d), we compare the correlation spectra
extracted from the responses in Figs. 4(a) and 4(c), respec-
tively, with the exact result. The Fourier integrals have
been calculated using exponential filters of characteristic
frequencies γ /J = 0.1 for the density and γ /J = 0.05 for
the correlator. Due to the sizable static contribution to the
response in the latter case, the height of the central peak in
Fig. 4(b) strongly depends on the choice of γ , but this is
irrelevant for probing FDRs because the value of the cor-
relation spectrum at ω = 0 is not constrained by the FDR
(1). Up to small deviations resulting from nonlinear effects,
which can be reduced at the cost of a lower signal-to-noise
ratio (see discussion in Sec. VI C), our scheme provides an
accurate measurement of the correlation spectrum for both
densities and correlators.

B. Non-Hermitian linear response via the pulsed
quantum Zeno effect

We now explain how to realize a prolonged evolu-
tion under a (possibly time-dependent) effective non-
Hermitian Hamiltonian, suitable for probing frequency-
resolved responses as is common in standard linear
response experiments. To this end, we generalize the cou-
pling Hamiltonian in Eq. (17) by allowing for an arbitrary
modulation g(t) of the coupling strength, i.e.,

Hcpl(t) = g(t)�
(
b†a + a†b

)
. (23)

We first note that the naive approach of extending the
coupling duration in the previous scheme, consisting of a
single Zeno step of coupling plus projection, does not yield
the desired result. If the coupling duration in Eq. (18) is
prolonged up to the final measurement time t > tw, instead
of Eq. (20), we obtain to leading order the response

Tr
[
Bρ ′(t)

] = 〈B(t)〉0 − 2
∫ t

tw
dt′ g(t′)

∫ t′

tw
dt′′ g(t′′)

× 〈B(t)a†(t′)a(t′′) + a†(t′′)a(t′)B(t))〉0 .
(24)

The three-time correlations in the integrand appear because
the leading perturbative contribution to the response is
of quadratic order in the coupling Hamiltonian (see
Appendix C 3 for details). If g(t) is properly normalized
and has compact support on the interval [tw, tw + δt] with
δt sufficiently short as compared to the characteristic time
scales of H0, Eq. (24) reduces to Eq. (20), but in general
does not yield the desired two-time anticommutator.

The key to obtaining a response as in Eq. (7) is to iter-
ate the Zeno step presented in the previous subsection as
depicted in Fig. 3(d). Such a repeated series of measure-
ments is the common scenario for the pulsed quantum
Zeno effect [71,72,93]. To this end, we split the inter-
val [tw, t] into n steps such that tw = t0 < t1 < · · · < tn = t
with ti+1 − ti = δt = (t − tw)/n. The evolution from ti to
ti+1 is described by Eq. (18), corresponding to an individ-
ual Zeno step of unitary evolution under the Hamiltonian
H(t) = H0 + Hcpl(t), followed by a measurement of the
ancilla population that projects the system on the subspace
with empty ancilla (realizations where one or more parti-
cles are detected in the ancilla are discarded). Thus, the
state evolves, up to a normalization, as

ρ(tw) → ρ ′(t) = PUnP · · ·PU1ρ(tw)U†
1P · · ·PU†

nP ,
(25)

where Ui = U(ti, ti−1) denotes the time evolution operator
from time ti−1 to ti. This equation describes the evolu-
tion under a continuously applied system-ancilla coupling
with intermittent measurements of the ancilla population.
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The role of the measurements is to destroy the coherences
between the relevant Zeno subspaces, giving rise to a dif-
ferent evolution than in Eq. (24), where a measurement is
performed only once at the final time. In Appendix C 3, we
show that, to leading order in the coupling and for δt suffi-
ciently short as compared to the characteristic time scales
of H0 and g(t), the (unnormalized) expectation value of an
observable B after the Zeno evolution is given by

Tr
[
Bρ ′(t)

] = 〈B(t)〉0 − s
n−1∑
i=0

g2(ti) 〈{B(t), A(ti)}〉0 , (26)

with A = a†a and s = (δt)2/2. Approximating the
sum by an integral, this result coincides with a lin-
ear response to the anti-Hermitian perturbation H1(t) =
−if (t)A according to Eq. (7), where f (t) = g2(t)2δt/2.
Since the operator f (t)A is positive semidefinite (cf.
Sec. III), this effective non-Hermitian Hamiltonian
describes a gradual leakage of probability out of the
empty-ancilla Zeno subspace [see Fig. 3(d)].

C. Non-Hermitian linear response via the continuous
quantum Zeno effect

Unfortunately, implementing the pulsed Zeno effect
without destroying the sample during the intermittent mea-
surements poses a prohibitive layer of complexity for
many experiments. For this reason, we instead exploit the
continuous Zeno effect in what follows [see Fig. 3(d)]. This
formulation of the Zeno effect arises in the presence of
a strong coupling to an external system, which plays the
role of a measurement apparatus and leads to wildly fluc-
tuating phases between the relevant Zeno subspaces [72].
One way of generating such a continuous Zeno effect is by
adding engineered classical noise to the system, which has
been proposed, e.g., in Ref. [73] to constrain the dynam-
ics of quantum simulators for lattice gauge theories. Here,
we apply this idea to realize a time-dependent effective
non-Hermitian perturbation.

1. From engineered dissipation to non-Hermitian
dynamics

We consider the ancilla to be subject to classical dephas-
ing noise, as indicated in Fig. 3. Such a source of noise
can be engineered via a rapidly fluctuating effective detun-
ing, e.g., in form of a Zeeman or ac Stark shift, acting on
the ancilla only. We assume that the fluctuations are suffi-
ciently fast compared to all relevant physical time scales,
such that their effect can be approximated by a Gaus-
sian white-noise process ξ(t) satisfying 〈〈ξ(t)〉〉 = 0 and
〈〈ξ(t)ξ(t′)〉〉 = δ(t − t′), where 〈〈· · ·〉〉 denotes the ensem-
ble average over all noise realizations. For example, using
lasers to generate an ac Stark shift, this technical require-
ment can be fulfilled using acousto-optical devices [102].

The evolution of the density operator ρ(t) can then be
described by the stochastic von Neumann equation [73]

dρ = − i
�

[H(t), ρ] dt − i
√

2κ
[
b†b, ρ

]
dW(t), (27)

with dephasing rate κ > 0 and Wiener increments dW(t) =
ξ(t)dt, subject to the Stratonovich interpretation of stochas-
tic calculus [103,104] (see also Appendix D). The deter-
ministic part of Eq. (27) is governed by the Hamilto-
nian H(t) = H0 + Hcpl(t), where the coupling Hamiltonian
Hcpl(t) is given by Eq. (23).

By virtue of stochastic calculus, it can be shown (see
Appendix D 1) that the noise-averaged density operator
σ(t) ≡ 〈〈ρ(t)〉〉 satisfies the Lindblad master equation

d
dt

σ = − i
�

[H(t), σ ] − κ
({

L†L, σ
} − 2LσL†) , (28)

with the Hermitian Lindblad operator L = b†b. The
stochastic differential Eq. (27) represents a diffusive unrav-
eling [105] of the master Eq. (28). Such diffusive unravel-
ings typically arise in the theory of continuous measure-
ments, where a quantum system is continuously monitored
and the resulting measurement back action gives rise to
diffusive quantum trajectories [106,107]. By contrast, in
our case, there are no actual measurements involved and
Eq. (27) describes a random unitary evolution with pure
dephasing [108,109]. In fact, there exists an infinite num-
ber of stochastic unravelings, both diffusive and jump-
like, whose ensemble average is described by Eq. (28)
[75,81,110]. As an alternative to the approach in Eq. (27)
using engineered dephasing, we could also start from
Eq. (28) with the Lindblad operator L = b, describing a
spontaneous decay of particles in the ancilla at a decay rate
κ . As shown in Appendix D, such a setting gives rise to the
same effective non-Hermitian Hamiltonian as considered
below.

The quantum Zeno effect is realized in the strong-noise
limit κ → ∞ [73]. The strong dissipation leads to an
exponential decay of coherences between Zeno subspaces,
in analogy to the effect of repeated measurements, and
thereby suppresses the buildup of population in the ancilla.
As shown in Appendix D 2, to leading order in perturbation
theory, the density operator σP(t) = Pσ(t)P , projected on
the subspace with no particles in the ancilla, obeys the
evolution equation

i�
d
dt

σP = Heff(t)σP − σPH †
eff(t), (29)

generated by the effective non-Hermitian Hamilto-
nian Heff(t) = H0 − if (t)A with A = a†a and f (t) =
g2(t)�2/κ . As required in Sec. III, the perturbation oper-
ator A is positive semidefinite and f (t) is non-negative,
describing a leakage of probability out of the empty-ancilla
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subspace. In Fig. 3(d), we illustrate that this effective non-
Hermitian dynamics arises as the ensemble average over
stochastic trajectories governed by Eq. (27). The crucial
advantage of the continuous Zeno effect over the pulsed
formulation, where repeated nondestructive measurements
are required, is that a single projection at the final measure-
ment time is sufficient, which can conveniently be realized
as a postselection on measurement outcomes where no
particles are detected in the ancilla.

2. Numerical benchmark: non-Hermitian linear
response in frequency domain

We now demonstrate how our scheme enables access
to the FDR directly in frequency domain. From the struc-
ture of the general linear response formula (4) it becomes
clear that by applying a non-Hermitian perturbation under
a suitable periodic modulation f (t) continuously until the
final observation time tf , it is possible to directly measure
non-Hermitian dynamic susceptibilities of the form

χ
(NH)

BA (tf , ω) =
∫ tf

−tf
d�tφ(NH)

BA (tf , tf − �t)eiω�t. (30)

It is our goal to extract the reactive part χ ′ (NH) of this quan-
tity from the linear response to the effective non-Hermitian
Hamiltonian in Eq. (29). For simplicity, we focus on the
common case where χ ′ (NH) corresponds to the real part
of Eq. (30), and we consider Hermitian operators A and B
such that the response function (10) is real. Due to the non-
negativity constraint on f (t), it is not possible to modulate
the effective coupling around zero. Instead, we choose the
modulation in Eq. (27) as g(t) = √

2 cos[ω(tf − t)/2], for
a fixed final observation time tf , such that f (t) = [1 +
cos ω(tf − t)]�2/κ . According to Eq. (9), the response
is then given by

〈B(tf )〉P = 〈B(tf )〉0 + �2

κ

∫ tf

0
dt φ(NH)

BA (tf , t)

+ �2

κ

∫ tf

0
dt φ(NH)

BA (tf , t) cos[ω(tf − t)],

(31)

where 〈B(tf )〉P = Tr
[
BσP(tf )

]
/ Tr[σP(tf )] is the condi-

tional expectation value obtained from postselection. The
first two terms on the right-hand side of Eq. (31) repre-
sent the response to a static non-Hermitian perturbation
with g(t) ≡ 1 and the last term is proportional to the
desired real part of Eq. (30), which can be seen after
changing the integration variable to �t = tf − t. Thus,
it is possible to extract the quantity χ

′ (NH)

BA (tf , ω) for a
given probe frequency ω from two linear response mea-
surements, one with a periodic modulation and one with a
constant perturbation, the latter being subtracted from the
former.

To benchmark our protocol, we resort to the previous
example of the density autocorrelation spectrum SBA(ω) =
−�χ

′ (NH)

BA (ω) (B = A = n) of a thermal state in a periodic
1D Bose-Hubbard chain. For this purpose, we numerically
solve the stochastic von Neumann Eq. (27)—the most fun-
damental equation in our approach—using stochastic Mag-
nus integration [111–113]. By comparing the results of the
stochastic simulation to those obtained based on Eqs. (28)
and (29), we demonstrate the validity of the approxima-
tions underlying the effective description in terms of a
non-Hermitian Hamiltonian.

When choosing the final evolution time tf , which deter-
mines the cutoff of the integrals in Eq. (31), it is important
to keep in mind the trade-off between signal-to-noise ratio
and accuracy: while a longer propagation time tf can yield
a more accurate approximation of the Fourier integral in
Eq. (30), the strength of the perturbation must typically
be reduced accordingly in order to stay within the linear
response regime, which lowers the signal-to-noise ratio.
The optimal balance between these effects depends on
several conditions, such as the targeted frequency range,
the properties of the response function, and the resolu-
tion of the measurement apparatus. For concreteness, in
the following benchmark example we choose J tf = 2 for
all probed frequencies ω. While this truncation affects the
form of the extracted spectrum at low frequencies [114], it
yields an adequate approximation of the Fourier integral at
higher frequencies most relevant for probing the FDR.

To account for the different sensitivities of the responses
at different probe frequencies, we parametrize the per-
turbation strength in terms of the norm decay q due
to the effective non-Hermitian Hamiltonian. That is, for
each frequency ω, given the fixed final observation time
tf and the dephasing rate κ , we adjust the coupling
strength  such that according to Eq. (8) the norm of
the state has decreased by the amount q at the end of
the evolution. For a translationally invariant system at
unit filling, we have 〈A(t)〉0 = 〈n(t)〉0 = 1, and there-
fore  = [

κq/2tf [1 + sinc(ωtf /π)]
]1/2, where sinc(x) =

sin(πx)/πx.
In Fig. 5, we compare various simulations of the scheme

based on Eqs. (27)–(29) for a system of L = 4 lattice sites.
Figure 5(a) illustrates a typical decay of the norm over
time due to the effective non-Hermitian perturbation. The
perturbation strength is adjusted such that by the final evo-
lution time J tf = 2 the norm has dropped approximately
by an amount q = 0.15, which results in a good signal-to-
noise ratio, but lies slightly beyond the onset of the nonlin-
ear regime (longer propagation times may require balanc-
ing with a reduced perturbation strength). The simulated
unnormalized and normalized (conditional) responses as a
function of frequency are shown in Fig. 5(b), from which
we extract the correlation spectra presented in Fig. 5(c).
The results are compared to the exact correlation spec-
trum, which is evaluated for the same truncation J tf = 2
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(a) (b)

(c)

FIG. 5. Simulation of the non-Hermitian linear response
scheme for measuring the density autocorrelation spectrum in
frequency domain. The effective non-Hermitian perturbation
is generated through coupling to an ancilla subject to strong
engineered dephasing, exploiting the continuous quantum Zeno
effect. The simulations are based on the stochastic von Neumann
Eq. (27) (SvNE), the master Eq. (28) (ME), and the effective non-
Hermitian Hamiltonian (29) (NHH). The stochastic simulation
has been averaged over 200 realizations, and the error bars show
the ensemble standard deviation of the mean. (a) Decrease of
the norm resulting from the projection on the empty-ancilla sub-
space for the probe frequency ω = 0 and norm decay q = 0.15
up to the final evolution time J tf = 2. A stronger dephasing
rate κ improves the agreement between the ME (SvNE) and
NHH descriptions at early times, while the deviations at later
times are due to nonlinear effects. (b) Unnormalized and normal-
ized (conditional) responses, corresponding to Eqs. (7) and (31),
respectively, as a function of frequency for a fixed final time
J tf = 2 and norm decay q = 0.15. (c) Correlation spectra Snn
extracted from the responses in (b) according to Eq. (31), in com-
parison with the exact result and the FDR (1) between S and χ ′′
(evaluated for the same truncation J tf = 2). The different com-
binations of the parameters κ and q for the ME simulation show
that the agreement with the exact result can be improved by going
deeper into the limit of strong dissipation and weak perturbations.

of the Fourier integral in Eq. (30) to allow for a consis-
tent benchmark. For the stochastic simulation, we choose
the accessible dephasing rate κ/J = 10. As can be seen in
Fig. 5, the stochastic simulation based on Eq. (27) agrees
with the simulation based on the master Eq. (28) within
the statistical error bars that show the ensemble standard
deviation of the mean for an accessible number of 200
realizations. Moreover, Fig. 5(c) shows that these parame-
ters already yield the correlation spectrum at a reasonable
accuracy suitable for certifying the validity of the FDR (1).
The description in terms of the effective non-Hermitian

Hamiltonian in Eq. (29) is closer to the exact result than
the description in terms of the master Eq. (28) for the
same parameters, revealing that the linear regime is wider
for the former than for the latter, which could be reme-
died through extrapolation. In the effective non-Hermitian
description (29), the coupling strength  and the dephasing
rate κ enter only via the ratio 2/κ , which is propor-
tional to the norm decay q, while these two parameters
enter Eqs. (27) and (28) individually. Going deeper into
the Zeno limit of large κ improves the validity of Eq. (29)
at early times and at higher frequencies, shown in Fig. 5
for κ/J = 100. Decreasing at the same time the effective
coupling strength, as illustrated in Fig. 5(c) for q = 0.05,
the agreement between the extracted correlation spectrum
and the exact result improves further, which shows that, at
the cost of decreasing the signal-to-noise ratio, the exact
correlation spectrum can in principle be approximated to
arbitrary accuracy.

VI. DISCUSSION

In this section, we put our non-Hermitian linear response
approach for measuring dynamical correlations and FDRs
in perspective with other schemes. We first demonstrate
that common ancilla-based weak measurement protocols
[43,44] fit into this general framework since their ancilla-
free formulations can be interpreted as a non-Hermitian
linear response. In addition, we compare the ancilla-based
technique for realizing non-Hermitian linear response pre-
sented in Sec. V with other schemes for accessing non-
Hermitian dynamics or measuring dynamical correlations,
including noninvasive and projective protocols [30,41,
43–45]. We conclude with a discussion of experimental
aspects and potential error sources.

A. General relation between non-Hermitian linear
response and ancilla-based weak measurements

To reveal the close connection between non-Hermitian
linear response and ancilla-based weak (or noninvasive)
measurements of the unequal-time anticommutator, we
first briefly review common protocols of the latter kind.
While these weak measurement protocols have originally
been developed for spin systems [43,44], here we for-
mulate them for general quantum systems and allow for
arbitrary durations of the system-ancilla coupling (typ-
ically, only short coupling pulses are considered). For
further details on the following points, see Appendix E.

System and ancilla are assumed to be initially in a
product state, ρ0 = ρS ⊗ ρA. The noninvasive protocol of
Refs. [43,44] starts by evolving the system under the
unperturbed Hamiltonian H0 up to a certain waiting time
tw, while the ancilla does not participate in the dynamics.
System and ancilla are then coupled by the Hamiltonian

Hcpl(t) = f (t)A ⊗ X , (32)
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where A and X are Hermitian operators acting on system
and ancilla, respectively, and f (t) represents an arbitrary
time-dependent modulation. The form of the coupling
Hamiltonian is one of the main differences to our protocol
in Sec. V A (see discussion in the next subsection). After a
coupled evolution up to time t > tw, one measures projec-
tively the observables B on the system and Y on the ancilla,
respectively. Instead of directly correlating the measure-
ment outcomes as proposed in Refs. [43,44], we consider
here conditional expectation values in order to reveal the
connection to non-Hermitian linear response. As derived
in Appendix E, the expectation value of B under the condi-
tion that the ancilla measurement of Y yields the outcome
y is given, to linear order in the coupling, by

〈B(t)〉y = 〈B(t)〉0 − i
�

∫ t

tw
dt′ f (t′)

× {
λy

[〈B(t)A(t′)〉0 − 〈B(t)〉0 〈A(t′)〉0
] − c.c.

}
(33)

with λy = 〈PyX 〉0 / 〈Py〉0 ∈ C. Here, Py is the projector
on the eigenspace of eigenvalue y and c.c. denotes the
complex conjugate. The key to access the unequal-time
anticommutator is to choose the ancilla state as well as
the operators X and Y such that the expectation value
〈PyX 〉0 = Tr[ρAPyX ] becomes purely imaginary (choos-
ing 〈PyX 〉0 real instead yields the commutator). The con-
ditional expectation value of B is then formally equivalent
to the non-Hermitian linear response in Eq. (9). In fact, by
tracing out the ancilla, it can be shown (see Appendix E)
that the coupled evolution of system and ancilla corre-
sponds to the evolution under the effective non-Hermitian
Hamiltonian Heff = H0 − isf (t)A with s = iλy ∈ R. Inter-
estingly, this leads to the insight that any such weak mea-
surement protocol for the unequal-time anticommutator
can be interpreted as the linear response to a non-Hermitian
perturbation.

The general connection between non-Hermitian linear
response and ancilla-based weak measurements is benefi-
cial for both disciplines: particular observables previously
accessible only via ancilla-based schemes may be obtain-
able more efficiently in an ancilla-free way using the tools
of non-Hermitian physics, while certain non-Hermitian
Hamiltonians difficult to engineer directly may be realized
with the help of an ancilla.

B. Comparison to other schemes

1. Ancilla-based weak measurements

One of the main challenges of the ancilla-based weak
measurement scheme for the unequal-time anticommuta-
tor discussed above is to engineer the ancilla state as well
as the observables X and Y in such a way that 〈PyX 〉0
becomes purely imaginary. While Refs. [43,44] discuss

suitable configurations for spin systems, it is far less obvi-
ous how to choose the setup in an experimentally feasible
way on other platforms such as bosons in optical lattices
(for example, as discussed in Appendix E, to access den-
sity correlations, number nonconserving coupling Hamil-
tonians may be required, which cannot be realized with
massive particles).

By contrast, our ancilla-based scheme in Sec. V relies on
the system-ancilla coupling in Eq. (17), which is quadratic
in the creation and annihilation operators. Despite its sim-
ple form, the coupling can flexibly be adapted to measure
the unequal-time anticommutator of a wide range of pre-
viously inaccessible observables such as nearest-neighbor
correlators, as discussed in Sec. V A and Appendix C 2. In
addition, our choice of the initial ancilla state in the form of
the vacuum is particularly easy to prepare experimentally.
On the formal level, an important difference to the com-
mon weak measurement approach is that for our choice of
the coupling Hamiltonian (17), the linear order in pertur-
bation theory vanishes and the leading contribution to the
response stems from the quadratic order (see Appendix C),
where the anticommutator naturally arises and can be iso-
lated by postselection on realizations without any particles
in the ancilla.

2. Projective protocols

Projective protocols allow one to probe dynamical cor-
relations of dichotomic observables (observables with two
eigenvalues) by performing consecutive projective mea-
surements directly on the system and correlating the out-
comes in a suitable way [30,41,43–45]. As such, com-
pared to schemes based on weak perturbations such as
linear response, projective protocols are backaction-free
and feature a higher signal-to-noise ratio. Despite these
advantages, the fact that projective protocols work only for
dichotomic observables restricts their general applicability.

In Ref. [30], it has been analyzed how projective
protocols can be applied to approximately dichotomic
observables, in particular densities in Bose-Hubbard sys-
tems close to the hard-core limit. In Appendix F, we
present numerical benchmarks comparing the performance
of projective protocols and non-Hermitian linear response
for measuring the unequal-time anticommutator in Bose-
Hubbard systems at various fillings and on-site interac-
tions. Our analysis shows that projective protocols per-
form well at low fillings and large on-site interactions,
but yield unsatisfactory results when applied beyond this
regime, i.e., as soon as multiple occupancies can no
longer be neglected. In particular, the relevant scenario
of Bose-Hubbard systems at unit filling and moderate
values of U/J , which we study in Sec. IV inspired by
the experiment of Ref. [51], remains beyond the scope
of projective protocols. By contrast, our non-Hermitian
linear response approach does not have restrictions on
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observables regarding the number of eigenvalues and per-
forms well across the entire parameter space explored
in Appendix F. Thus, our scheme allows one to reliably
access unequal-time anticommutators and the associated
FDRs also in regimes outside the range of projective pro-
tocols, e.g., in the pair superfluid phase of dipolar bosons
[115] or other phases where multiple occupancies play an
essential role.

3. Dissipative dynamics and postselected quantum
trajectories

The structure of the second term on the right-hand side
of Eq. (22), characterizing the unconditional response after
coupling to the ancilla without measuring the ancilla popu-
lation, resembles to the “recycling term” in Lindblad mas-
ter equations [77,81]. In fact, the short coupling pulse to
the ancilla can be viewed as an effective dissipative pertur-
bation, ρ(tw) → ρ(tw + δt) = ρ(tw) + δtD[ρ(tw)], where
D[ρ] = γ

(
2aρa† − {a†a, ρ}) is the Lindblad dissipator

with dissipation rate γ = s/δt. This yields Eq. (22) for
the expectation value of an observable B after a unitary
evolution up to time t. In the quantum trajectories picture
[75–77], the Lindblad dissipator D[ρ] generates an evolu-
tion under the non-Hermitian Hamiltonian H1 = −i�γ a†a,
subject to quantum jumps described by the “recycling
term” 2γ aρa†. By postselecting on the absence of quantum
jumps, it is possible to isolate the pure non-Hermitian evo-
lution [56,58,66]. From this point of view, the projection
on the empty-ancilla subspace in Eq. (18) can be inter-
preted as a postselection on the absence of quantum jumps,
i.e., particles hopping to the ancilla. This allows us to elim-
inate the undesired contribution in Eq. (22) due to the
“recycling term” and obtain instead the result in Eq. (21),
reflecting a purely non-Hermitian perturbation that gives
access to the unequal-time anticommutator.

C. Experimental considerations and error sources

Many experimental setups such as quantum gas micro-
scopes permit the simultaneous readout of all site popula-
tions in a single shot [94,95]. This is convenient for simul-
taneously measuring the responses of different observables
B, e.g., B = n
 for 
 = 1 . . . L, to a fixed perturbation
A determined by the coupling scheme. In addition, for
the single Zeno step and the continuous Zeno evolution
in Secs. V A and V C, respectively, the measurement of
the ancilla population can be deferred up to the final
observation time t and measured along with the other
site populations (cf. Ref. [43]). The projection on the
empty-ancilla subspace is then achieved by postselect-
ing those realizations where no particles are detected in
the ancilla. Since the effective coupling s needs to be
chosen sufficiently weak to stay within the regime of lin-
ear response, the fidelity of the postselection is typically
high [see Fig. 3(c)]. However, there is the usual linear

response trade-off between maximizing the measurement
signal (large s) and staying within the perturbative regime
where the linear approximation is valid (small s).

One can distinguish two types of detection errors: false
positives, i.e., at least one particle is detected in the ancilla,
but there is actually none, and false negatives, i.e., no par-
ticles are detected, but there is at least one. Let α be the
false positive rate and let β be the false negative rate. If
the measurement is postselected on the condition that no
particles are detected in the ancilla, which may in some
cases be erroneous, the conditional state in Eq. (18) is
replaced by ρ ′ = (1 − α)PρP + βQρQ, where ρ is the
state right after the coupling and before the projection,
and Q = 1 − P is the projector on the subspace with
a nonvanishing ancilla population (for simplicity, we do
not distinguish different false-negative probabilities within
the Q subspace since the error due to single occupan-
cies dominates in the linear regime). This shows that false
positives lower the measurement fidelity, while false neg-
atives contribute a systematic error to the result, arising
from the inadvertent projection on a complementary sub-
space [see the discussion in the context of Eq. (22) and
Appendix C 1].

VII. CONCLUSION

In this work, we have demonstrated that non-Hermitian
linear response enables access to the unequal-time anti-
commutator as the missing piece for the direct observation
of the FDR in quantum systems. As an illustration, we
have discussed how a Bose-Hubbard system after a global
quench reaches thermal equilibrium, and we have derived
techniques to generate the required non-Hermitian dynam-
ics in cold-atom systems coupled to an ancillary mode by
exploiting the quantum Zeno effect. This proposal provides
a concrete scenario for the direct observation of the FDR
and an unbiased way of probing thermalization dynam-
ics in state-of-the-art experiments on synthetic quantum
matter.

Our non-Hermitian linear response approach is com-
pletely agnostic to specific platforms and implementations,
and as such can be applied in any non-Hermitian system.
It is independent of microscopic details such as inter-
actions, geometry, or particle statistics, and can thus be
used with bosons, fermions, or spins alike. Higher orders
in the response may be used to access nested unequal-
time anticommutators of increasing order. Moreover, we
have shown that common ancilla-based weak measure-
ment protocols for dynamical correlations fit in the same
framework, as these can be interpreted in the light of
(non-)Hermitian linear response. Our proposed ancilla-
based realization of non-Hermitian linear response per-
mits the extraction of dynamical correlations for a wide
range of previously inaccessible observables beyond den-
sity correlations, even frequency-resolved. While we have
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focused on lattice systems, our protocol can immedi-
ately be applied to continuous systems, e.g., via spatially
focused laser beams, giving access to dynamical corre-
lations of the field operator coarse-grained over a small
region in space [116]. The discussed framework thus pro-
vides an array of possibilities to experimentally—and also
numerically [8,29]—characterize quantum systems in and
out of thermal equilibrium.
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APPENDIX A: NON-HERMITIAN LINEAR
RESPONSE THEORY

1. Derivation of the non-Hermitian linear response
formula

To derive Eq. (7), we first transform to the interac-
tion picture with respect to the unperturbed (Hermitian)
Hamiltonian H0. The von Neumann Eq. (6) then reads

d
dt

ρ̃ = − i
�

{
H̃1(t), ρ̃

}
, (A1)

where ρ̃(t) = eiH0t/�ρ(t)e−iH0t/� is the density operator
and H̃1(t) = −if (t)Ã(t) with Ã(t) = eiH0t/�Ae−iH0t/� is the
anti-Hermitian perturbation in the interaction picture. This
equation can equivalently be expressed in integral form as

ρ̃(t) = ρ̃(0) − i
�

∫ t

0
dt′

{
H̃1(t′), ρ̃(t′)

}
, (A2)

with ρ̃(0) = ρ0. To linear order in the perturbation, we can
replace ρ̃(t′) in the integrand by ρ0, yielding

ρ̃(t) = ρ0 − 1
�

∫ t

0
dt′

{
Ã1(t′), ρ0

}
f (t′). (A3)

The expectation value of an observable B can be computed
in the interaction picture as 〈B(t)〉 = Tr[B̃(t)ρ̃(t)], where

B̃(t) = eiH0t/�Be−iH0t/�. Inserting Eq. (A3) into this expres-
sion and using the cyclic property of the trace leads to the
result in Eq. (7).

2. Connection between correlation spectrum and
non-Hermitian dynamic susceptibility

To show that SBA(τ , ω) = −�χ
′ (NH)

BA (τ , ω), we first note
that the symmetric correlation function (3) obeys the
symmetry relation SBA(t, t′) = SAB(t′, t). In what follows,
we use the short-hand notation SBA(τ , �t) = SBA(t = τ +
�t/2, t′ = τ − �t/2). Then, the aforementioned identity
reads SBA(τ , �t) = SAB(τ , −�t). This allows us to express
the correlation spectrum as

SBA(τ , ω) =
∫ 2τ

−2τ

d�tSBA(τ , �t)eiω�t

=
∫ 2τ

0
d�t SBA(τ , �t)eiω�t

+
∫ 2τ

0
d�t SAB(τ , �t)e−iω�t. (A4)

Using further Eq. (10), noting that the Heaviside step
function allows us to extend the integration domain to
negative �t, as well as the definition of the generalized
susceptibility, Eq. (5), we arrive at

SBA(τ , ω) = −�

2

∫ 2τ

−2τ

d�t φ
(NH)

BA (τ , �t)eiω�t

− �

2

∫ 2τ

−2τ

d�t φ
(NH)

AB (τ , �t)e−iω�t

= −�

2

[
χ

(NH)

BA (τ , ω) + χ
(NH)

AB (τ , −ω)
]

= −�χ
′ (NH)

BA (τ , ω). (A5)

By contrast, if we consider the Fourier transform at fixed
waiting time tw as in Eq. (15), the integrand SBA(tw +
�t, tw) does not possess a symmetry with respect to the
relative time �t in general. Thus, out of equilibrium,
we generally have SBA(tw, ω) = −�χ

′ (NH)

BA (tw, ω), but this
relation is restored once the system reaches a stationary
state.

APPENDIX B: FLUCTUATION-DISSIPATION
RELATIONS AFTER A QUENCH IN A

BOSE-HUBBARD SYSTEM

In this Appendix, we provide details on our analysis in
Sec. IV of FDRs following a quench in a Bose-Hubbard
system. In particular, we investigate in more detail the
behavior of the deviation from the FDR for off-site density
correlations as a function of distance. To this end, we study
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the error as a function of system size and compare our
results in Sec. IV to a similar analysis for a Bose-Hubbard
system in 2D.

1. Technical details on the computation of dynamical
susceptibilities

The susceptibilities appearing in the FDR (13) can be
found by varying both the waiting time tw and the obser-
vation time t = tw + �t, and computing the Fourier trans-
form with respect to the relative time �t at fixed central
time τ according to Eqs. (5) and (11). However, since at
early times τ the integration domains of the Fourier inte-
grals in Eqs. (5) and (11) are limited to only a short range
of �t, we consider instead the nonequilibrium generaliza-
tion of the susceptibility as the Fourier transform of the
response function at fixed waiting time tw [29] according
to Eq. (15) (and analogously for its Hermitian counterpart).
This form has the advantage that the integration domain is
unbounded, and it is often more efficient to compute as
the integrand is directly obtained from the linear response
at fixed waiting times. In practice, the integral in Eq. (15)
needs to be regulated appropriately, for example, by trun-
cating it once the correlations have decayed sufficiently or
by means of a frequency filter accounting for a finite spec-
tral resolution in experiments. Unless stated otherwise, we
follow the latter approach, using an exponential filter of
characteristic frequency γ /J = 0.2, which amounts to the
replacement eiω�t → e(iω−γ )�t in the Fourier integral (15).

Note that out of equilibrium, the susceptibilities
in Eqs. (11) and (15) generally disagree, and, in
particular, SBA(tw, ω) = −�χ

′ (NH)

BA (tw, ω) in general (cf.
Appendix A 2). Once the system has reached a stationary
state, the response functions depend only on the relative
time �t and the different conventions become equivalent,
provided the integration domains are chosen appropriately.
For our purposes, we probe the FDR out of equilibrium in
the form of Eq. (13), expressed in terms of the susceptibili-
ties obtainable from the (non-)Hermitian linear response at
fixed waiting time as in Eq. (15).

Moreover, the susceptibility components in Eq. (12)
are in general complex [3] and require measurements of
both the response of B to a perturbation by A and vice
versa. Sufficient conditions for them to be real include
the case B = A†, or, if A and B are Hermitian, the prop-
erty 〈B(t)A(t′)〉 = 〈A(t)B(t′)〉. The latter is fulfilled, for
instance, if A and B are on-site observables in a system
that is invariant under both translations and reflections, as
it is the case for density-density correlations in a Bose-
Hubbard chain with periodic boundary conditions. Thus,
for our model system and our choice of observables, the
reactive and dissipative parts of the dynamic susceptibility
are real and correspond, respectively, to the real and imag-
inary parts of the susceptibility (11) [and similarly for the
Hermitian susceptibility in Eq. (5)].

We quantify deviations from the FDR (13) by the abso-
lute error

εabs =
∥∥∥∥−χ ′ (NH) tanh

(
�ω

2kBT

)
− χ ′′

∥∥∥∥
2

, (B1)

where ‖·‖2 denotes the L2 norm, which we define by

‖f ‖2
2 = 1

||
∫



dω |f (ω)|2. (B2)

In our numerical benchmarks, we choose the fixed inte-
gration domain  = [−10 J , 10 J ]. The relative error is
obtained by normalizing the absolute error with respect to
the sum of the individual norms,

εrel = εabs

‖χ ′ (NH) tanh(�ω/2kBT)‖2 + ‖χ ′′‖2
. (B3)

2. One-dimensional Bose-Hubbard system

To better understand the significance of the increase of
the relative error as a function of distance in Fig. 2(c), we
show in Fig. 6 the extracted FDRs at early and late wait-
ing times for the individual distances. The data are the
same as in Fig. 2 and the susceptibility χ ′ (NH) has been
rescaled according to the FDR (13) using the indicated
effective temperature T obtained from the least-squares fit
in Eq. (16). At early waiting times, there is no global value
of T to make χ ′ (NH) and χ ′′ overlap, and the FDR is clearly
violated (in some cases, an attempted fit can even yield
unphysical negative temperatures). By contrast, at late
waiting times, χ ′ (NH) and χ ′′ fulfill the FDR and at small
distances, the extracted effective temperatures are consis-
tent with the temperature kBT/�J = 4.27 of a thermal state
at the same energy density as the initial state (calculated
for L = 8 using exact diagonalization). At larger distances,
some peaks in Fig. 6 exhibit clear deviations, which persist
even after very long times and contribute to the increased
relative error in Fig. 2(c).

For an ergodic system in the thermodynamic limit, it
is generally expected that a two-site subsystem, regard-
less of the distance between the two sites in real space,
eventually thermalizes and thus satisfies the FDR. The
observed deviations in Figs. 2 and 6 may therefore be an
artifact of the finite system size. Apart from that, numeri-
cal errors induced in the course of the data analysis, such
as integration and truncation errors in the evaluation of
Fourier integrals or distortions caused by the frequency fil-
ter, may contribute to the deviation. We have checked that
improving on the latter points does not alter the picture
qualitatively.

To study the influence of finite-size effects, we have
calculated the error as a function of the particle number
N (corresponding to the number of lattice sites L at unit
filling) up to N = L = 16. Figure 7 shows the relative
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FIG. 6. FDRs for off-site density correlations at early and late
waiting times tw for several distances d. The dynamic susceptibil-
ity χ ′′ (blue) is compared to χ ′ (NH) (red), rescaled according to
the FDR (13) using the least-squares result for the effective tem-
perature indicated in the plots. At small distances and late times,
the curves overlap well, while at larger distances discrepancies
persist even after long times.

and absolute errors at the moderate waiting time J tw =
10 for all possible distances d in the respective systems.
Note that for a periodic chain of length L, the maximum
distance is d = �L/2�. The Fourier integrals have been
truncated at J�t = 30 using an exponential filter of char-
acteristic frequency γ /J = 0.1. Both the relative and the
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FIG. 7. Finite-size behavior of the deviations from the FDR.
(a) Relative error and (b) absolute error as a function of the parti-
cle number N (equal to the number of lattice sites L at unit filling)
at waiting time J tw = 10 for all possible distances in the periodic
chain. Both errors clearly decrease with increasing system size.

absolute errors for all distances decrease as the system size
increases until the relative error saturates at a value close
to zero. Although the exponential growth of the Hilbert-
space dimension makes an exact numerical treatment of
even larger systems inaccessible, the clear trend in Fig. 7
suggests that the deviations from the FDR in Figs. 2 and 6
at large distances for L = 12 are likely due to finite-size
effects. Our analysis thus confirms the expectation that
the two-site subsystems relevant for off-site density cor-
relations thermalize and thus fulfill the FDR, provided the
system is not too small.

3. Two-dimensional Bose-Hubbard system

To show that our results for the 1D Bose-Hubbard chain
are generic, we study the analogous quench scenario in a
2D Bose-Hubbard system. We consider a system of 4 × 4
lattice sites with N = 16 particles (unit filling) and peri-
odic boundary conditions in each direction. The larger
system size compared to the 1D setting above allows us
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FIG. 8. Same as Fig. 2, but for the 2D Bose-Hubbard system.
After waiting times tw on the order of J −1, the relative error (c)
of the FDR remains small for all distinct lattice distances d.
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to support the conjecture that the FDR is better fulfilled as
the system size increases. As before, we initialize the sys-
tem in a Mott-insulating state and quench at time t = 0 into
the superfluid phase at U/J = 1.5625.

In Fig. 8, we present the same analysis for the 2D system
as carried out in Fig. 2 for the 1D chain (cf. Sec. IV). Due
to the periodic boundary conditions and the isotropy of the
hopping, the curves fall into five classes corresponding to
distances d = 0 . . . 4 between the perturbed and probed lat-
tice site. Note that these distances do not correspond to the
physical distances in the 4 × 4 lattice, but to the minimum
number of hopping events connecting the two sites. Simi-
larly to the 1D setting, the FDR is violated at short waiting
times, indicated by the large relative error in Fig. 8(c).
After times on the order of J −1, the errors decrease dramat-
ically and the FDR is fulfilled for all accessible distances
with only a minor trend towards larger relative errors for
larger distances. The effective temperatures in Fig. 8(b)
for the individual distances reach approximately constant
values that mutually agree up to deviations of about ten
percent or less. Furthermore, the effective temperatures are
close to the temperature kBT/�J = 8.91 of a thermal state
at the same energy density as the initial state (calculated
for a 3 × 3 system using exact diagonalization).

The fulfillment of the FDR at late times is further
illustrated in Fig. 9 (analogously to Fig. 6), where the
agreement between χ ′′ and the rescaled χ ′ (NH) is remark-
able. This supports our conclusion in Appendix B 2 that
the deviations observed for smaller systems are likely

−10 −5 0 5 10

−0.1

0.0

0.1 d = 0

kBT/̄hJ

6.8
7.5

−10 −5 0 5 10
−0.025

0.000

0.025 d = 1

kBT/̄hJ

11.4
7.5

−10 −5 0 5 10

−0.01

0.00

0.01
d = 2

kBT/̄hJ

16.6
7.7

−10 −5 0 5 10
−0.02

0.00

0.02 d = 3

kBT/̄hJ

15.2
8.2

−10 −5 0 5 10
ω/J

−0.05

0.00

0.05 d = 4

kBT/̄hJ

10.3
7.7

Jtw
Jtw

= 0.1
= 10

−h̄χ (NH)×
tanh(h̄ω/2kBT)
h̄χ

Sp
ec

tr
um

[J
−

1
]

Frequency ω/J

FIG. 9. Same as Fig. 6, but for the 2D Bose-Hubbard system.
The data are the same as in Fig. 8. At long waiting times, the
dynamic susceptibility χ ′′ (blue) agrees well with χ ′ (NH) (red)
after the latter is rescaled according to the FDR (13).

due to finite-size effects, while sufficiently large systems
thermalize as expected.

APPENDIX C: DERIVATION OF
NON-HERMITIAN LINEAR RESPONSE VIA THE

PULSED QUANTUM ZENO EFFECT

In this Appendix, we derive how an effective non-
Hermitian perturbation can be generated by coupling the
system to an ancilla and exploiting the quantum Zeno
effect (see Fig. 3). We first discuss in detail a single
step in the Zeno evolution, which corresponds to a δ-
like non-Hermitian perturbation that allows one to access
the unequal-time anticommutator in time domain. Further-
more, we derive the general form of perturbation operators
that can be realized this way. Finally, we explain how the
pulsed Zeno effect, generated by repeatedly projecting the
coupled system on the subspace with no particles in the
ancilla, allows one to realize an effective evolution under
a non-Hermitian Hamiltonian for an extended period of
time.

1. Single Zeno step

In what follows, we use time-dependent perturbation
theory to derive Eqs. (21) and (22), describing, respec-
tively, the conditional and unconditional response after a
single step in the Zeno evolution of coupling to the ancilla
followed by a projection on the empty-ancilla subspace, as
depicted in Fig. 3(c).

The protocol starts by evolving the initial state ρ0 under
the Hamiltonian H0 up to the waiting time tw, at which the
perturbation is applied. Before the coupling, the state is
given by ρ(tw) = e−iH0tw/�ρ0eiH0tw/�. In Sec. V A, we have
approximated a δ-like perturbation as a rectangular pulse
of duration δt. Here, we consider a slightly more general
scenario where we allow for an arbitrarily shaped pulse
g(t) as in Eq. (23). The corresponding total Hamiltonian
reads H(t) = H0 + g(t)Hcpl with Hcpl given by Eq. (17). It
is convenient to work in the interaction picture with respect
to the unperturbed Hamiltonian H0. Time evolution is then
governed by the von Neumann equation

i�
d
dt

ρ̃(t) = [
g(t)H̃cpl(t), ρ̃(t)

]
, (C1)

where ρ̃(t) = eiH0t/�ρ(t)e−iH0t/� and H̃cpl(t) = �
[
ã†(t)b

+ b†ã(t)
]

with ã(t) = eiH0t/�ae−iH0t/� denote, respectively,
the density operator and the coupling Hamiltonian in
the interaction picture. Rewriting Eq. (C1) as an inte-
gral equation and substituting the left-hand side into the
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right-hand side, we arrive at

ρ̃(t) = ρ̃(tw) − i
�

∫ t

tw
dt′ g(t′)

[
H̃cpl(t′), ρ̃(tw)

] − 1
�2

×
∫ t

tw
dt′ g(t′)

∫ t′

tw
dt′′ g(t′′)

[
H̃cpl(t′), H̃cpl(t′′)ρ̃(t′′)

]
.

(C2)

For the discussion of a single step in the quantum Zeno
evolution, we consider a pulse g(t) with compact sup-
port on the interval [tw, tw + δt], normalized such that∫ tw+δt

tw
dt g(t) = δt. If the pulse duration δt is much shorter

than the characteristic time scales of H0, we can approx-
imate ρ̃(t′′) ≈ ρ̃(tw) and H̃cpl(t′) ≈ H̃cpl(t′′) ≈ H̃cpl(tw) in
the integrands, yielding, up to second order in δt, the result

ρ̃(tw + δt) ≈ ρ̃(tw) − i
�

δt
[
H̃cpl(tw), ρ̃(tw)

]

− δt2

2�2

( {
H̃ 2

cpl(tw), ρ̃(tw)
}

− 2H̃cpl(tw)ρ̃(tw)H̃cpl(tw)
)
. (C3)

We require the ancilla to be empty before the coupling.
More specifically, we assume that the combined state of
system and ancilla at the waiting time tw is given by the
product state ρ̃(tw) = ρ̃S(tw) ⊗ ρ̃A, where the ancilla is
in the pure vacuum state ρ̃A = |0〉〈0|. (For concreteness,
we focus here on bosonic systems, but the derivation for
fermions proceeds analogously and yields the same result
for the unequal-time anticommutator.) Inserting this state
into Eq. (C3), we obtain

ρ̃(tw + δt) = ρ̃S(tw) ⊗ |0〉〈0|
− iδt [ã(tw)ρ̃S(tw) ⊗ |1〉〈0| − h.c.]

− (δt)2

2

[
{ñ(tw), ρ̃S(tw)} ⊗ |0〉〈0|

− 2ã(tw)ρ̃S(tw)ã†(tw) ⊗ |1〉〈1|
+

√
2
(
ã2(tw)ρ̃S(tw) ⊗ |2〉〈0| + h.c.

) ]
,

(C4)

where ñ(tw) = ã†(tw)ã(tw) is the number operator and h.c.
denotes the Hermitian conjugate.

After coupling the system to the ancilla, a single step
in the Zeno evolution is completed by measuring the pop-
ulation of the ancilla, projecting the state on a subspace
with a definite number of particles in the ancilla. Let Pn =
1 ⊗ |n〉〈n| be the projection operator on the subspace with
n particles in the ancilla. Since [Pn, H0] = 0, the measure-
ment can optionally be deferred up to the final observation

time (cf. Ref. [43]). The projected states read

P0ρ̃(tw + δt)P0 = (ρ̃S(tw) − s {ñ(tw), ρ̃S(tw)})
⊗ |0〉〈0|, (C5a)

P1ρ̃(tw + δt)P1 = 2sã(tw)ρ̃S(tw)ã†(tw) ⊗ |1〉〈1|, (C5b)

where s = (δt)2/2 is the effective coupling strength, and
Pnρ̃(tw + δt)Pn = 0 for n ≥ 2, up to second order in δt.
The probability of detecting n particles in the ancilla is then
given by p(n) = Tr[Pnρ̃(tw + δt)Pn], which yields

p(0) = 1 − 2s 〈n(tw)〉0 , (C6a)

p(1) = 2s 〈n(tw)〉0 , (C6b)

and p(n ≥ 2) = 0, up to second order in δt. Here, we have
used Tr[ρ̃(tw)ñ(tw)] = Tr[ρ0n(tw)] = 〈n(tw)〉0.

Remarkably, the result in Eq. (C5a) can, to leading order
in the coupling, be expressed as the evolution under an
effective non-Hermitian Hamiltonian,

P0ρ̃(tw + δt)P0 = e−iH̃eff(tw)δtρ̃(tw)eiH̃†
eff(tw)δt, (C7)

with H̃eff(t) = −i�sÃ(t)/δt and perturbation operator A =
n = a†a.

According to Lüders’ rule [117], the conditional state,
given that n particles have been detected in the ancilla,
is obtained by normalizing the projected states (C5)
by the respective probabilities (C6), i.e., ρ̃(tw + δt|n) =
Pnρ̃(tw + δt)Pn/p(n). Up to leading order in s, we find

ρ̃(tw + δt|0) = ρ̃(tw) − s
[ {ñ(tw), ρ̃(tw)}

− 2 〈n(tw)〉0 ρ̃(tw)
]
, (C8a)

ρ̃(tw + δt|1) = ã(tw)ρ̃(tw)ã†(tw)

〈n(tw)〉0
, (C8b)

where we have discarded (or traced out) the ancilla and
omitted the subscripts indicating system density operators.
By contrast, if the ancilla population is not measured or if
the measurement outcomes are ignored, the state after the
coupling is instead described by the unconditional density
operator

ρ̃(tw + δt) =
∑

n

p(n)ρ̃(tw + δt|n)

= ρ̃(tw) − s
( {ñ(tw), ρ̃(tw)}

− 2ã(tw)ρ̃(tw)ã†(tw)
)
, (C9)

which can be obtained directly from Eq. (C4) after tracing
out the ancilla.

For times t > tw + δt, the coupling is switched off and
the system evolves solely under the Hamiltonian H0.
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According to Eq. (C1), this evolution is trivial in the inter-
action picture, such that ρ̃(t) = ρ̃(tw + δt). The (unnormal-
ized) expectation value of an observable B with respect
to the state (C5a) projected on the empty-ancilla subspace
reads

Tr
[
B̃(t)P0ρ̃(t)P0

] = Tr
[
B̃(t)ρ̃(tw)

]
− s Tr

[
B̃(t) {ñ(tw), ρ̃(tw)}]

= Tr [B(t)ρ0]

− s Tr [B(t) {n(tw), ρ0}]
= 〈B(t)〉0 − s 〈{B(t), n(tw)}〉0 , (C10)

where, in the second step, we have transformed from the
interaction picture to the Heisenberg picture, and in the
last step, we have used the cyclic property of the trace.
This is the result reported in Eq. (20) in the main text.
For the conditional state (C8a), we recover Eq. (21), which
describes a postselected measurement conditioned on the
empty ancilla.

If we were to postselect on the condition that a sin-
gle particle is detected in the ancilla, corresponding to the
conditional state Eq. (C8b), we would instead obtain

Tr
[
B̃(t)ρ̃(t|1)

] = 〈a†(tw)B(t)a(tw)〉0

〈n(tw)〉0
. (C11)

This quantity contributes a systematic error in the case
of faulty detection with false negatives (see the discus-
sion in Sec. VI B). From the derivation in this Appendix
it becomes clear that, up to second order in δt, i.e., up to
linear order in the effective coupling strength s, the error
is dominated by single occupancies of the ancilla site.
Finally, the unconditional expectation value (22) follows
from Eq. (C9). This shows that postselection is essential in
order to remove the undesired contribution in form of the
“recycling term” due to Eq. (C8b), enabling access to the
unequal-time anticommutator.

2. General system-ancilla coupling

The coupling schemes in Figs. 3(a) and 3(b) are
designed to realize non-Hermitian perturbations by the
density operator and the hopping operator, respectively.
We now consider the general situation where an arbitrary
number of system modes is coupled to up to M ancillary
modes. This scenario is described by the general coupling
Hamiltonian

Hcpl =
M∑

m=1

�m
(
b†

mαm + α†
mbm

)
, (C12)

where the operator

αm =
∑




λm
a
 (C13)

is a linear combination of system modes a
 with coeffi-
cients λm
 ∈ C, coupled to the mth ancilla with coupling
strength m ≥ 0. The configuration in Fig. 3(a), a single
lattice site 
∗ coupled to a single ancilla, is recovered for
M = 1 and λ1
 = δ

∗ , while Fig. 3(b), two sites 
1 and 
2
simultaneously coupled to a single ancilla, corresponds to
M = 1 and λ1
 = δ

1 + δ

2 .

As before, we consider a short coupling pulse of dura-
tion δt such that the state after the coupling is given
by Eq. (C3). Subsequently, a measurement of the indi-
vidual ancilla occupancies is performed and the state
is conditioned on the outcome of that measurement (as
mentioned above, the measurement may also be deferred
up to the final observation time). Given the outcome
(n1, . . . , nM ), the postmeasurement state, up to a normal-
ization, reads Pn1...nM ρ̃(tw + δt)Pn1...nM , where Pn1...nM =
1 ⊗ |n1 · · · nM 〉〈n1 · · · nM | is the projection operator on the
subspace with a definite ancilla population corresponding
to the measurement outcome.

Up to leading order in the coupling, only processes
where at most a single particle ends up in one of the ancil-
las contribute. Let P0 = P0...0 denote the projector on the
subspace with all ancillas empty. The projector on the sub-
space with a single particle in the mth ancilla and all others
empty can then be expressed as P (m)

1 = b†
mP0bm. Using the

bosonic commutation relations

[αm, bm′] =
[
αm, b†

m′
]

= 0, (C14a)
[
bm, b†

m′
]

= δmm′ , (C14b)

we find the (unnormalized) postmeasurement states

P0ρ̃(tw + δt)P0 = ρ̃(tw)

−
M∑

m=1

sm
{
α̃†

m(tw)α̃m(tw), ρ̃(tw)
}

,

(C15a)

P (m)

1 ρ̃(tw + δt)P (m)

1 = 2smãm(tw)ρ̃(tw)ã†
m(tw), (C15b)

where we have traced out the ancillas and introduced the
effective coupling strengths sm = (mδt)2/2. We note that
this result holds for fermions as well, where instead of
Eq. (C14) the corresponding fermionic anticommutation
relations apply. The respective probabilities of finding no
particles in any ancilla or a single particle in the mth ancilla
read

P0 = 1 − 2
M∑

m=1

sm 〈α†
m(tw)αm(tw)〉0 , (C16a)

P(m)

1 = 2sm 〈α†
m(tw)αm(tw)〉0 . (C16b)

A comparison of Eqs. (C15) and (C16) with Eqs. (C5)
and (C6) shows that the coupling to the mth ancilla in the
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general coupling Hamiltonian (C12) generates an effective
non-Hermitian perturbation by the operator

Am = α†
mαm =

∑


′

λ∗
m
λm
′a†

l a
′ . (C17)

Coupling to multiple ancillas simultaneously can be used
to realize perturbation by (arbitrarily weighted) sums of the
operators Am. This demonstrates that our scheme enables
flexible access to unequal-time correlations and FDRs for
a wide range of observables, two specific examples of
which, namely densities and nearest-neighbor correlators,
we have illustrated in Sec. V.

3. Prolonged non-Hermitian evolution via the pulsed
quantum Zeno effect

To gain a deeper understanding of how the pulsed quan-
tum Zeno effect enables a prolonged evolution under an
effective non-Hermitian Hamiltonian, we consider in detail
two consecutive steps in the Zeno evolution, using a sim-
ilar formalism as in Ref. [72], and investigate the role of
the projective measurement after the first step.

To this end, let P denote the projection operator on the
empty-ancilla subspace HP and Q = 1 − P the projector
on the complementary subspace HQ = H ⊥

P with at least
one particle in the ancilla. It is convenient to write the den-
sity operator ρ on the total Hilbert space H = HP ⊕ HQ
in the form

ρ =
(

ρPP ρPQ
ρQP ρQQ

)
, (C18)

where ρPP = PρP and ρQQ = QρQ are the populations
of HP and HQ, respectively, and ρPQ = PρQ = ρ

†
QP

are the coherences between these two subspaces. Similarly,
the time evolution operator from time t0 to t corresponding
to Eq. (C1) can be expressed as

U(t, t0) =
(

UPP(t, t0) UPQ(t, t0)
UQP(t, t0) UQQ(t, t0)

)
(C19)

with UPQ(t, t0) = PU(t, t0)Q.
Let us denote the initial state ρ̃(tw) of the Zeno evolu-

tion by ρ0 and set t0 = tw. To keep the notation simple, for
the purposes of this subsection, we omit the tilde indicat-
ing interaction picture operators and use the abbreviation
H(t) ≡ g(t)H̃cpl(t). Since the ancilla is initially empty, we
have ρ0

PQ = ρ0
QQ = 0. The unitary evolution from time t0

to t1 in the presence of the system-ancilla coupling changes
the state as

ρ0 =
(

ρ0
PP 0
0 0

)

U(t1,t0)−→ ρ1 =
(

U1
PPρ0

PP(U1
PP)† U1

PPρ0
PP(U1

QP)†

U1
QPρ0

PP(U1
PP)† U1

QPρ0
PP(U1

QP)†

)
,

(C20)

where Ui
PQ = PU(ti, ti−1)Q. From Eq. (C2), using P2 =

P ,Q2 = Q,PQ = QP = 0, andPH(t)P = 0, we obtain
the populations and coherences of ρ1, up to quadratic order
in the coupling, as

ρ1
PP = ρ0

PP − 1
�2

∫ t1

t0
dt′

∫ t′

t0
dt′′

× [
HPQ(t′)HQP(t′′)ρ0

PP + h.c.
]

, (C21)

ρ1
PQ = i

�

∫ t1

t0
ρ0
PPHPQ(t′)

− 1
�2

∫ t1

t0
dt′

∫ t′

t0
dt′′ ρ0

PPHPQ(t′′)HQQ(t′),

(C22)

ρ1
QQ = 1

�2

∫ t1

t0
dt′

∫ t1

t0
dt′′ HQP(t′)ρ0

PPHPQ(t′′), (C23)

where HPQ(t) = H†
QP(t) = PH(t)Q = g(t)�P ã†(t)

bQ. Measuring the ancilla population projects the state
on the subspace with a definite number of particles in the
ancilla. Without registering the measurement outcome, this
yields the unconditional state Pρ1P + Qρ1Q. Crucially,
the measurement process destroys any coherences ρPQ and
ρQP between the Zeno subspaces HP and HQ. We are
interested in measurement outcomes where no particles
are detected in the ancilla. Conditioning the state on this
outcome corresponds to a projection on the empty-ancilla
subspace HP ,

ρ1 =
(

ρ1
PP ρ1

PQ
ρ1
QP ρ1

QQ

)
P−→ Pρ1P =

(
ρ1
PP 0
0 0

)
. (C24)

The second Zeno step proceeds analogously to Eqs. (C20)
and (C24): the state first evolves unitarily from time t1 to t2
in the presence of the system-ancilla coupling and is then
projected on the empty-ancilla subspace HP ,

Pρ1P U(t2,t1)−→ ρ2 =
(

ρ2
PP ρ2

PQ
ρ2
QP ρ2

QQ

)

P−→ Pρ2P =
(

ρ2
PP 0
0 0

)
, (C25)

with

ρ2
PP = UPP(t2, t1)ρ1

PPU†
PP(t2, t1)

= U2
PPU1

PPρ0
PP(U1

PP)†(U2
PP)†

= ρ0
PP − 1

�2

( ∫ t1

t0
dt′

∫ t′

t0
dt′′ +

∫ t2

t1
dt′

∫ t′

t1
dt′′

)

× [
HPQ(t′)HQP(t′′)ρ0

PP + h.c.
]

, (C26)

up to leading order in the coupling. It is instructive to
compare this result to the one obtained if no measurement
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is performed after the first step. The state then receives
additional contributions from the coherences, yielding, to
leading order in the coupling,

ρ2 ′
PP = PU(t2, t1)ρ1U†(t2, t1)P

= U2
PPρ1

PP(U2
PP)† + U2

PPρ1
PQ(U2

PQ)†

+ U2
PQρ1

QP(U2
PP)† + U2

PQρ1
QQ(U2

PQ)†

= ρ2
PP −

∫ t1

t0
dt′

∫ t2

t1
dt′′

× [
ρ0
PPHPQ(t′)HQP(t′′) + h.c.

]

= ρ0
PP −

∫ t2

t0
dt′

∫ t′

t0
dt′′

× [
HPQ(t′)HQP(t′′)ρ0

PP + h.c.
]

. (C27)

The result in the last line could have been directly obtained
from Eq. (C2) for t = t2 by applying the projector P on
both sides. This is evident because without the projection
after the first step, the system plus ancilla evolves unitarily
from time t0 to t2. However, Eq. (C27) explicitly exposes
the crucial effect of the measurement after the first step: the
last term in the second-to-last line is precisely the contribu-
tion from the coherences ρ1

PQ and ρ1
QP , which is missing

in Eq. (C26) since the coherences have been destroyed by
the measurement.

Iterating the Zeno evolution for n steps up to time tn
(including projections after each step), the resulting state
is given, to leading order in the coupling, by

ρn
PP = ρ0

PP − 1
�2

n−1∑
i=0

∫ ti+1

ti
dt′

∫ t′

ti
dt′′

× [
HPQ(t′)HQP(t′′)ρ0

PP + h.c.
]

. (C28)

If the duration ti+1 − ti of each Zeno step is sufficiently
short as compared to the time scales of the unperturbed
Hamiltonian as well as the modulation g(t), the inte-
grand in each integral is approximately constant, yielding
Eq. (26). As discussed in Sec. V B, this result can in turn be
interpolated by a continuous evolution under an effective
non-Hermitian Hamiltonian [see Fig. 3(c)].

By contrast, if the state is only projected at the final
observation time, but no projections are performed during
the evolution as in Eq. (C27), we obtain, to leading order
in the coupling,

ρn ′
PP = ρ0

PP − 1
�2

∫ tn

t0
dt′

∫ t′

t0
dt′′

× [
HPQ(t′)HQP(t′′)ρ0

PP + h.c.
]

, (C29)

which corresponds to Eq. (24) in the main text. Since
the evolution time tn − t0 may be on the same order or

longer than the characteristic time scales of the unper-
turbed Hamiltonian, it is not possible to approximate the
integrand as constant here. Consequently, this procedure
does not yield the desired two-time anticommutator in
general.

As these discussions show, exploiting the Zeno effect
allows us to apply effective non-Hermitian perturbations
for an extended period of time. The essential mecha-
nism is the destruction of the coherences between the
Zeno subspaces due to the intermittent measurements. As
explained in Sec. V C and Appendix D, this effect can be
mimicked if the ancilla is exposed to strong (engineered)
dissipation, which represents an alternative way of realiz-
ing non-Hermitian linear response via the quantum Zeno
effect.

APPENDIX D: DERIVATION OF THE EFFECTIVE
NON-HERMITIAN HAMILTONIAN FROM

ENGINEERED DISSIPATION

In this Appendix, we use stochastic calculus to derive
the Lindblad master Eq. (28) by noise averaging the
stochastic von Neumann Eq. (27), which describes the
engineered dephasing scenario in Sec. V C 1. We then con-
sider the strong noise limit and show how the continuous
quantum Zeno effect gives rise to the evolution under an
effective non-Hermitian Hamiltonian.

1. Derivation of the master equation

The Gaussian white-noise process ξ(t) considered in
Sec. V C 1 can be viewed as the idealization of a smooth
physical noise process with finite correlation time, aris-
ing, for example, from a rapidly fluctuating electric or
magnetic field. As such, it is appropriate to interpret the
stochastic von Neumann Eq. (27) as a stochastic differ-
ential equation (SDE) in Stratonovich form, which obeys
the rules of ordinary calculus [103,104]. In addition, in
the form of Eq. (27), unitary evolution of each realization
(d Tr[ρ(t)]/dt = 0) is only guaranteed if the Stratonovich
interpretation is used [108].

The master Eq. (28) can be derived from the stochas-
tic von Neumann Eq. (27) by averaging over all noise
realizations. However, in the Stratonovich interpretation,
the Wiener increments dW(t) and the stochastic variable
ρ(t) are not statistically independent at equal times, i.e.,
〈〈ρ(t)dW(t)〉〉 = 0 in general. To arrive at Eq. (28), it is
therefore advantageous to convert Eq. (27) to an Itô SDE
[103,104]. According to the conversion rules, the linear
Stratonovich SDE dρ = L0(t)ρdt + L1(t)ρdW is equiva-
lent to the linear Itô SDE dρ = [

L0(t) + L2
1(t)/2

]
ρdt +

L1(t)ρdW. In the case of Eq. (27), L0 and L1 are given
by the Liouvillian superoperators L0(t)ρ = −i [H(t), ρ] /�

and L1ρ = −i
√

2κ
[
b†b, ρ

]
, respectively. Thus Eq. (27) is
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equivalent to the Itô SDE

dρ = − i
�

[H(t), ρ] dt − κ
({

L†L, ρ
} − 2LρL†) dt

− i
√

2κ
[
b†b, ρ

]
dW (D1)

with L = b†b. Since the solution of an Itô SDE is nonantic-
ipating [103,104], we have 〈〈ρ(t)dW(t)〉〉 = 0. Therefore,
taking the ensemble average of Eq. (D1), the stochastic
term vanishes, and the noise-averaged density operator
σ(t) = 〈〈ρ(t)〉〉 obeys the master Eq. (28).

2. Derivation of the effective non-Hermitian
Hamiltonian

To derive the effective non-Hermitian Hamiltonian gov-
erning the evolution in Eq. (29), following Ref. [73], we
consider the strong noise limit of Eq. (28) projected on
the empty-ancilla subspace. It is convenient to work in the
interaction picture, i.e., in a rotating frame with respect to
the unperturbed Hamiltonian H0. Equation (28) then reads

d
dt

σ̃ = − i
�

[
H̃cpl(t), σ̃

] − κ
({

L†L, σ̃
} − 2Lσ̃L†) , (D2)

where σ̃ (t) = eiH0t/�σ(t)e−iH0t/� and H̃cpl(t) = g(t)�[
ã†(t)b + b†ã(t)

]
with ã(t) = eiH0t/�ae−iH0t/�. The opera-

tors b and b† as well as the Lindblad operators remain
unchanged as they act on the ancilla only and therefore
commute with H0.

We now use the projection operator on the empty-ancilla
subspace P = P0 as well as its complement Q = 1 − P to
derive coupled equations for the populations σ̃PP = P σ̃P
and σ̃QQ = Qσ̃Q of the two subspaces, as well as for
their coherences σ̃PQ = P σ̃Q and σ̃QP = Qσ̃P . The pro-
jection operators are Hermitian and satisfy the properties
P2 = P , Q2 = Q, PQ = QP = 0, as well as [P , H0] =
[Q, H0] = 0, the latter following from the fact that H0 does
not change the number of particles in the ancilla. Further-
more, since P projects on the empty-ancilla subspace, we
have bP = Pb† = 0. Applying the projectors P and Q to
Eq. (D2) from the left and from the right yields the coupled
system of equations

d
dt

σ̃PP = − i
�

(
H̃PQσ̃QP − σ̃PQH̃QP

)
, (D3a)

d
dt

σ̃PQ = − i
�

(
H̃PQσ̃QQ − σ̃PPH̃PQ

)

+ i
�

σ̃PQQH̃cplQ − κσ̃PQQL†LQ, (D3b)

d
dt

σ̃QP = − i
�

(
H̃QP σ̃PP − σ̃QQH̃QP

)

− i
�
QH̃cplQσ̃QP − κQL†LQσ̃QP , (D3c)

d
dt

σ̃QQ = − i
�

(
H̃QP σ̃PQ − σ̃QPH̃PQ

)

− i
�

[
QH̃cplQ, σ̃QQ

]
− κQ

({
L†L, σ̃QQ

} − 2Lσ̃QQL†)Q, (D3d)

where the operators H̃PQ(t) = g(t)�P ã†(t)bQ and
H̃QP(t) = g(t)�Qb†ã(t)P mix the two subspaces. In
deriving Eq. (D2), we have considered the engineered
dephasing scenario described by the stochastic von Neu-
mann Eq. (27), in which case the Lindblad operator L =
b†b is Hermitian and the projectors commute with L. In
the alternative setting, where the ancilla is subject to spon-
taneous decay, the Lindblad operator is given by L = b
and does not commute with the projectors. In this case,
Eqs. (D3a)–(D3c) receive an additional contribution from
the “recycling terms” 2κbσ̃QQb†, whose effect is to inco-
herently remove particles from the ancilla. Since these
terms are proportional to σ̃QQ, which is initially zero and
whose growth is suppressed by the Zeno effect, their pres-
ence does not change the following line of arguments.
Nonetheless, it is possible to get rid of these terms com-
pletely by keeping track of all the modes the ancilla decays
to and postselecting on the condition that the ancilla plus
these additional modes are empty. To see this, we can
assume that the ancilla decays only to a single mode with
associated annihilation and creation operators c and c†.
The corresponding Lindblad operator L = c†b now con-
serves the number of particles in the ancilla plus the extra
mode. Consequently, the contribution from the “recycling
terms” to Eqs. (D3a)–(D3c) vanishes due to the action of
the projector P .

We now consider the strong noise limit of Eq. (D3).
The terms on the right-hand side of the equations for the
coherences (D3b) and (D3c) rotate at characteristic fre-
quencies of the unperturbed Hamiltonian H0 via ã(t) =
eiH0t/�ae−iH0t/� as well as via the modulation function g(t),
whose role is to probe dynamic correlations in the system
at a given frequency. In contrast, the terms proportional
to the dissipation rate κ cause a damping of the coher-
ences. If κ is sufficiently large, in particular, if it is much
larger than the characteristic frequencies of H0, we can
make the approximation that the coherences are instanta-
neously damped to a momentary equilibrium state given
by dσ̃PQ/dt ≈ 0 (and analogously for σ̃QP ). This allows
us to adiabatically eliminate the fast incoherent dynamics
and to solve Eqs. (D3b) and (D3c) for the coherences. To
leading order in /κ , we find

σ̃PQ = − i
�κ

(
H̃PQσ̃QQ − σ̃PPH̃PQ

) (
QL†LQ

)−1
,

(D4a)
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σ̃QP = − i
�κ

(
QL†LQ

)−1 (
H̃QP σ̃PP − σ̃QQH̃QP

)
,

(D4b)

where (· · · )−1 denotes the Moore-Penrose pseudoinverse.
To leading order in /κ , we can furthermore neglect the
terms proportional to σ̃QQ, which is initially zero and
grows, according to Eqs. (D3b) and (D3c), only slowly at a
rate 2/κ . This suppression of the growth of population in
the ancilla is precisely a manifestation of the Zeno effect.
Thus, plugging Eq. (D3b) into Eq. (D3c), we obtain

d
dt

σ̃PP = − i
�

{
H̃eff(t), σ̃PP

}
(D5)

with the effective non-Hermitian Hamiltonian

H̃eff(t) = −ig2(t)
�2

κ
P ã†(t)b

(
QL†LQ

)−1
b†ã(t)P .

(D6)

Due to the action of the projector P in this expression, the
pseudoinverse acts only on states with exactly one particle
in the ancilla, where it reduces to a multiplication by unity.
Thus, the effective non-Hermitian Hamiltonian takes the
simple form H̃eff(t) = −ig2(t)�2P ã†(t)ã(t)P/κ . Finally,
Eq. (29) follows after transforming back to the nonrotating
frame.

APPENDIX E: CONNECTION BETWEEN
ANCILLA-BASED WEAK MEASUREMENTS OF

DYNAMICAL CORRELATIONS AND
(NON-)HERMITIAN LINEAR RESPONSE

Ancilla-based weak measurement schemes for dynami-
cal correlations can be adapted to probe either the unequal-
time commutator or anticommutator through a suitable
choice of the ancilla state, the system-ancilla coupling,
and the projective measurement performed on the ancilla
[43,44]. It has been shown that those variants that probe the
unequal-time commutator can be cast into an ancilla-free
formulation [44], giving rise, e.g., to rotation-based pro-
tocols [30,41,43–45]. For weak perturbations, e.g., small
rotation angles, these ancilla-free schemes correspond in
fact to (standard) linear response. By contrast, the interpre-
tation of ancilla-based weak measurement protocols that
target the unequal-time anticommutator is far less obvi-
ous. For instance, Ref. [44] poses the question of whether
an ancilla-free measurement of this quantity is possible
in general. Here, we show that, indeed, any ancilla-based
weak measurement protocol for the unequal-time anticom-
mutator can be described in an ancilla-free way as a non-
Hermitian linear response, exposing the close connection
between these frameworks.

To this end, we consider a general ancilla-based weak
measurement that uses only projective measurements of

standard (Hermitian) operators on the ancilla. The follow-
ing derivation proceeds in analogy to the one for spin
systems presented in Refs. [43,44], but here we consider
a more general scenario: we do not specify the type of sys-
tem, work with general mixed states, and consider arbitrary
durations of the system-ancilla coupling. Let us denote the
initial state of system and ancilla by ρS and ρA, respec-
tively, and assume the combined system to be in a product
state initially, ρ0 = ρS ⊗ ρA. The target system evolves
under the Hamiltonian H0, while we assume the ancilla to
have no internal dynamics. System and ancilla are coupled
via the general coupling Hamiltonian

Hcpl(t) = f (t)A ⊗ X , (E1)

with a time-dependent function f (t) and Hermitian oper-
ators A and X acting on system and ancilla, respec-
tively. The total Hamiltonian of the combined system then
reads H(t) = H0 ⊗ 1 + Hcpl(t). It is convenient to work in
the interaction picture, ρ̃(t) = eiH0t/�ρ(t)e−iH0t/�. The von
Neumann equation

i�
d
dt

ρ̃(t) = [
H̃cpl(t), ρ̃(t)

]
(E2)

can equivalently be expressed in integral form as

ρ̃(t) = ρ̃(0) − i
�

∫ t

0
dt′

[
H̃cpl(t′), ρ̃(t′)

]

� ρ̃(0) − i
�

∫ t

0
dt′

[
H̃cpl(t′), ρ̃(0)

]
, (E3)

where H̃cpl(t) = f (t)Ã(t) ⊗ X is the interaction-picture
coupling Hamiltonian with Ã(t) = eiH0t/�Ae−iH0t/�. In the
last line, we have assumed the coupling to be sufficiently
weak such that we can replace ρ̃(t′) in the integral, to linear
order in Hcpl, by ρ̃(0). Note that the validity of this linear
approximation is not necessarily restricted to short times t,
but can also be ensured for longer times by a sufficiently
weak coupling strength f (t).

After a coupled evolution up to time t, during which
system and ancilla become entangled, we measure projec-
tively the observable B ⊗ Y, where B and Y are Hermitian
operators acting on system and ancilla, respectively, and
postselect on the outcome of the ancilla measurement.
Although in practice system and ancilla are often mea-
sured simultaneously, it is instructive to treat this process
as a consecutive measurement of the ancilla first and the
system second. Without loss of generality, we assume the
observable Y to have a discrete spectrum of (real) eigenval-
ues {y}. Let Py denote the projector on the eigenspace of
the eigenvalue y. After obtaining this outcome, according
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to Lüders’ rule [117], the state collapses to

ρ̃y(t) = 1
p(y)

Py ρ̃(t)Py , (E4)

where p(y) = Tr
[
Py ρ̃(t)Py

]
is the probability of measur-

ing the outcome y. For the coupling Hamiltonian (E1), the
unnormalized postmeasurement state reads

Py ρ̃(t)Py = ρS ⊗ PyρAPy − i
�

∫ t

0
dt′ f (t′)

×
[
Ã(t′)ρS ⊗ PyX ρAPy − h.c.

]
, (E5)

where h.c. denotes the Hermitian conjugate, while the
probability of measuring y becomes

p(y) = 〈Py〉0 − i
∫ t

0
dt′ f (t′) 〈A(t′)〉0

[〈PyX 〉0 − 〈X Py〉0

]
.

(E6)

Here, 〈O(t)〉0 denotes the expectation value of the Heisen-
berg operator O(t), evolving under the unperturbed Hamil-
tonian H0, with respect to the initial state ρ0 = ρS ⊗ ρA.
Note that expectation values involving only ancilla oper-
ators are time independent since we assumed the ancilla
to have no internal dynamics. Using (1 + x)−1 = 1 − x +
O(x2), we obtain the normalized, conditional postmeasure-
ment state, to linear order in the coupling, as

ρ̃y(t) = ρS ⊗ PyρAPy

〈Py〉0
− i

�

∫ t

0
dt′ f (t′)

×
{[

Ã(t′)ρS ⊗ PyX ρAPy

〈Py〉0
− 〈A(t′)〉0

〈PyX 〉0

〈Py〉0

]

− h.c.
}

. (E7)

Next, we are interested in the conditional expectation value
of the system observable B, given that the measurement of
Y on the ancilla yields the outcome y. In a first step, we
trace out the ancilla,

TrA
[
ρ̃y(t)

] = ρS − i
�

∫ t

0
dt′ f (t′)

×
{ 〈PyX 〉0

〈Py〉0

[
Ã(t′) − 〈A(t′)〉0

]
ρS − h.c.

}
.

(E8)

This yields the conditional expectation value

〈B(t)〉y = Tr
[
B̃(t)ρ̃y(t)

]

= 〈B(t)〉0 − i
�

∫ t

0
dt′ f (t′)

{ 〈PyX 〉0

〈Py〉0

[〈B(t)A(t′)〉0

− 〈B(t)〉0 〈A(t′)〉0
] − c.c.

}
, (E9)

where c.c. denotes the complex conjugate. With this result
at hand, we can choose the ancilla state ρA as well as the
ancilla operators X and Y such that the integrand contains
either the unequal-time commutator or the anticommu-
tator of the system observables A and B. If 〈PyX 〉0 =
Tr[PyX ρA] is real, i.e. 〈PyX 〉0 / 〈Py〉0 = −s with s ∈ R,
Eq. (E9) gives access to the unequal-time commutator,

〈B(t)〉y = 〈B(t)〉0 + i
�

s
∫ t

0
dt′ f (t′) 〈[B(t), A(t′)

]〉0 .

(E10)

This expression coincides with Kubo’s linear response for-
mula [cf. Eqs. (4) and (2)] up to a constant factor in the
response function. There are two special cases worth dis-
cussing. First, if X = 1, 〈PyX 〉0 = 〈Py〉 is always real
and the scheme always yields the unequal-time commu-
tator. This is not surprising: for X = 1, system and ancilla
always remain in a product state and the coupling Hamil-
tonian (E1) corresponds to a Hermitian perturbation on the
target system only, which is exactly the linear response
scenario. Second, it is instructive to consider the uncondi-
tional expectation value 〈B(t)〉 = ∑

y 〈B(t)〉y p(y), which
corresponds to not measuring the ancilla at all or disregard-
ing the outcome of the ancilla measurement. By combining
Eqs. (E6) and (E9), and using the completeness relation∑

y Py = 1, we find, to linear order,

〈B(t)〉 = 〈B(t)〉0 − i
�

〈X 〉0

∫ t

0
dt′ f (t′) 〈[B(t), A(t′)

]〉0 ,

(E11)

which again always yields the unequal-time commuta-
tor. These two examples illustrate two essential ingredi-
ents for extracting the unequal-time anticommutator from
ancilla-based weak measurements: firstly, the coupling
must entangle system and ancilla, and secondly, it is nec-
essary to correlate the measurement on the target system
in some way with the outcome of the ancilla measurement,
e.g., through postselection.

In order to extract the unequal-time anticommutator
from Eq. (E9), 〈PyX 〉0 must be purely imaginary, i.e.,
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〈PyX 〉0 / 〈Py〉0 = −is with s ∈ R, yielding

〈B(t)〉y = 〈B(t)〉0 − 1
�

s
∫ t

0
dt′ f (t′)

× [〈{B(t), A(t′)
}〉0 − 2 〈B(t)〉0 〈A(t′)〉0

]
. (E12)

This expression corresponds, up to a constant factor in
the response function, directly to the non-Hermitian linear
response scenario in Eqs. (9) and (10).

Equations (E10) and (E12) demonstrate the fact that
any ancilla-based weak measurement designed to probe
the (anti)commutator can effectively be described as a
(non-)Hermitian linear response. To make this connec-
tion even more explicit, we trace out the ancilla in the
unnormalized postmeasurement state (E5),

TrA
[
Py ρ̃(t)Py

]

= 〈Py〉0 ρS − i
�

∫ t

0
dt′ f (t′)

[
〈PyX 〉0 Ã(t′)ρS − h.c.

]
.

(E13)

In analogy to Ref. [44], to linear order, this result can be
rewritten in terms of generalized measurement (or Kraus)
operators [107,118] as

TrA
[
Py ρ̃(t)Py

] = MyρSM †
y , (E14)

with

My =
√

〈Py〉0 exp
{
− i

�

〈PyX 〉0

〈Py〉0

∫ t

0
dt′ f (t′)Ã(t′)

}
.

(E15)

It is easy to verify that, to linear order, these operators
fulfill the completeness relation

∑
y M †

y My = 1. The mea-
surement operator My describes the effect of the system-
ancilla coupling, conditioned on the outcome y of the
ancilla measurement, without explicitly referencing the
ancilla. This ancilla-free description corresponds to the
evolution under the effective Hamiltonian Heff(t) = H0 +
H1(t) with

H1(t) = 〈PyX 〉0

〈Py〉0
f (t)A. (E16)

For real 〈PyX 〉, this evolution is unitary [44] and cor-
responds to standard (Hermitian) linear response, giv-
ing access to the unequal-time commutator. Remark-
ably, the case of purely imaginary 〈PyX 〉, which accord-
ing to Eq. (E12) probes the unequal-time anticommu-
tator, corresponds to an anti-Hermitian perturbation and
maps directly to the non-Hermitian linear response sce-
nario described in Sec. III. This shows that for any

ancilla-based weak measurement of dynamical correla-
tions there is a corresponding ancilla-free linear response
description.

Conversely, any linear response protocol can, at least
in principle, be realized via an ancilla-based weak mea-
surement. While obvious for standard (Hermitian) linear
response, in the non-Hermitian case, the challenge is to
choose the ancilla state as well as the ancilla operators
X and Y appropriately such that 〈PyX 〉 ∈ iR. To see that
this is always possible in general, let Y be any Hermi-
tian operator on a (complex) Hilbert space of dimension
two or higher with at least two distinct eigenvalues y1
and y2. Then, take the ancilla state to be the equal super-
position of the corresponding eigenstates, |φ〉 = (|y1〉 +
|y2〉)/

√
2, with ρA = |φ〉〈φ|. Now, let Py = Py1 be the pro-

jector on the eigenspace with eigenvalue y1 and set X =
−i(|y1〉〈y2| − |y2〉〈y1|). Then, we have 〈PyX 〉0 / 〈Py〉0 =
−i, as desired. Clearly, for a given anti-Hermitian per-
turbation, the choice of ρA, X , and Y is not unique, and
the challenge consists in finding the configuration that is
most convenient for the desired application. Appropriate
choices for spin systems have been discussed, for instance,
in Refs. [43,44], but their experimental realization on other
platforms, e.g., bosons in optical lattices, is unfortunately
not straightforward. To illustrate this, assume we are inter-
ested in perturbations by the density operator A = n and
consider the above scenario of achieving purely imagi-
nary 〈PyX 〉0 for a bosonic ancilla, which translates to Y =
b†b (measurement of the occupancy), X = −i(b − b†),
and |φ〉 = (|0〉 + |1〉)/√2. However, neither the superpo-
sition of Fock states |φ〉 nor the coupling Hamiltonian
Hcpl ∝ n ⊗ X , which would be cubic in boson operators,
can be realized with massive, nonrelativistic particles.
More generally, in order to probe unequal-time anticom-
mutators involving the density A = n through a particle
number measurement Y = b†b on a bosonic ancilla, the
operator X cannot be diagonal in the Fock basis, as this
would imply 〈PyX 〉 ∈ R, regardless of the ancilla state.
In other words, a particle number nonconserving coupling
Hamiltonian would be required in such a setting. In our
proposal of Sec. V, this difficulty does not arise because the
leading contribution to the response is quadratic in the cou-
pling Hamiltonian, which enables non-Hermitian pertur-
bations for a wide range of observables including densities
and correlators with experimentally feasible system-ancilla
couplings.

All in all, we have established a general connec-
tion between ancilla-based weak measurement proto-
cols for dynamical correlations and (non-)Hermitian lin-
ear response theory. In particular, our results pave
the road to measuring the left-hand side of the FDR
(1), i.e., the unequal-time anticommutator, via non-
Hermitian linear response in an ancilla-free fashion,
harnessing the rapidly developing toolbox of non-
Hermitian physics [52,53].
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APPENDIX F: COMPARISON BETWEEN
PROJECTIVE PROTOCOLS AND

NON-HERMITIAN LINEAR RESPONSE

In this Appendix, we assess to what extent projective
protocols [30,41,43–45] represent a good alternative for
measuring unequal-time anticommutators of observables
that are not strictly dichotomic. To this end, we first for-
mulate the protocol for general observables A and B, where
A has precisely two eigenvalues. We then investigate with
the help of numerical benchmarks at the example of the
Bose-Hubbard model how well the scheme reproduces the
exact density autocorrelation spectrum in comparison to
non-Hermitian linear response as a function of both the
filling and the on-site interaction.

1. General projective protocol

We begin by briefly reviewing the projective protocol
for measuring unequal-time anticommutators [30,41,43–
45]. Here, we formulate the scheme for a general Hermi-
tian operator A with two distinct eigenvalues a1, a2 ∈ R.
Let P1 and P2 be the projection operators on the cor-
responding eigenspaces such that A = a1P1 + a2P2 with
P1 + P2 = 1. This allows us to express both projectors
entirely through the operator A and the known eigenvalues,

P1 = 1
a1 − a2

(A − a21) , (F1a)

P2 = 1
a2 − a1

(A − a11) , (F1b)

which would not be possible if A had more than two eigen-
values. The protocol starts by evolving the initial state
ρ0 (under the target Hamiltonian H0) to the waiting time
tw. Then, the observable A is measured projectively and
the state is conditioned on the outcome a1 or a2 of this
measurement, yielding the conditional postmeasurement
states

ρ(tw|ai) = 1
p(ai)

Piρ(tw)Pi (F2)

with i ∈ {1, 2}, where p(ai) = Tr[Piρ(tw)Pi] is the prob-
ability of obtaining the measurement outcome ai at time
tw. Subsequently, the conditional state is evolved to the
final observation time t ≥ tw. The conditional expectation
values of an observable B then reads

〈B(t)〉ai = Tr [Bρ(t|ai, tw)]

= 〈A(tw)B(t)A(tw) − aj {B(t), A(tw)} + a2
j B(t)〉

p(ai)(ai − aj )2 ,

(F3)

with (i, j ) ∈ {(1, 2), (2, 1)}, where we have switched to
the Heisenberg picture. Solving for the unequal-time

anticommutator, we obtain

〈{B(t), A(tw)}〉 = 〈B(t)〉 (a1 + a2)

+ [〈B(t)〉a1
p(a1) − 〈B(t)〉a2

p(a2)
]

× (a1 − a2) . (F4)

The probabilities p(ai) can be expressed through the
expectation value 〈A(tw)〉 with the help of Eq. (F1), yield-
ing

〈{B(t), A(tw)}〉 = 〈B(t)〉a1
[〈A(tw)〉 − a2]

+ 〈B(t)〉a2
[〈A(tw)〉 − a1]

+ 〈B(t)〉 (a1 + a2) . (F5)

This result states that the desired unequal-time anticom-
mutator of A and B can be extracted from a measurement
of the unconditional expectation value 〈B(t)〉 (without pre-
vious projective measurement) as well as the conditional
expectation values 〈B(t)〉a1

and 〈B(t)〉a2
, given that the out-

comes a1 and a2 have been obtained from the projective
measurement of A at the waiting time tw, respectively.

A few remarks are in order. The projective measurement
of A at time tw can be deferred up to the final observation
time t with the help of an ancilla using shelving techniques
[30]. This way, the need for nondestructive measurements
can be avoided. Furthermore, it is worth emphasizing that
there is no restriction on the number of eigenvalues of the
operator B, i.e., the dichotomic constraint applies only to A.

2. Numerical benchmark: projective protocols versus
non-Hermitian linear response

We now specialize the projective protocol in Eq. (F5)
to density correlations in a Bose-Hubbard system. In the
hard-core limit U/J → ∞, multiple occupancies of the
same lattice site are prohibited. The density n
 at site 
 then
becomes a dichotomic observable with only two eigen-
values 0 and 1. We thus recover the protocol reported in
Ref. [30],

〈{n
2(t), n
1(tw)
}〉 = 〈n
2(t)〉 + 〈n
2(t)〉1 〈n
1(tw)〉

− 〈n
2(t)〉0

(
1 − 〈n
1(tw)〉) . (F6)

For soft-core bosons, Eq. (F6) does not hold in general
since the density operator A = n
1 can take more than
two eigenvalues. However, the projective protocols in
Eqs. (F4) and (F5) can still be used to measure the exact
unequal-time anticommutator for an arbitrary observable
B and any dichotomic observable A. For instance, a pos-
sible choice of A is the parity �
 of the particle number
at site 
, which in conventional quantum gas microscopes
is even more easily accessible than the density itself due
to pairwise atom loss caused by the near-resonant imag-
ing light [74]. If we associate the eigenvalues aeven = 0
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and aodd = 1 with even and odd parity, respectively, the
operator �
 = aevenP
,even + aoddP
,odd coincides with the
density in the hard-core limit. Thus, in the regime where
multiple occupancies can be neglected, we can approxi-
mate the density-density anticommutator in Eq. (F6) by the
(exactly obtainable) quantity 〈{n
2(t), �
1(tw)}〉.

An alternative strategy to approximate 〈{n
2(t), n
1(tw)}〉
for soft-core bosons is to take Eq. (F6) literally and
compute the conditional expectation values 〈n
2(t)〉0 and
〈n
2(t)〉1 from only those realizations where the projec-
tive measurement of n
1(tw) yields the outcomes 0 and
1, respectively, discarding realizations with higher occu-
pancies. By contrast, 〈n
2(t)〉 still represents the (full)
unperturbed expectation value. This way, the asymptotic
behavior of the unequal-time anticommutator for t � tw
is correctly reproduced: two local observables A and B
typically become uncorrelated in an ergodic system after
sufficiently long times and the anticommutator reduces to
the disconnected product 2 〈B(t)〉 〈A(tw)〉. For the Bose-
Hubbard model, the conditional expectation values of the
local densities in Eq. (F6) are expected to eventually re-
equilibrate to their unperturbed value 〈n
2(t)〉, such that
the right-hand side indeed becomes 2 〈n
2(t)〉 〈n
1(tw)〉. As
long as the system is sufficiently close to the hardcore
limit, we can expect Eq. (F6) to reproduce the unequal-
time anticommutator for any t ≥ tw to good accuracy. In
what follows, we analyze how well this approximation
works for on-site densities (B = A = n
) as a function of
the filling and the on-site interaction.

In Fig. 10, we compare the performance of the pro-
jective protocol in Eq. (F6) to that of the non-Hermitian
linear response scheme discussed in Sec. IV for a 2D Bose-
Hubbard system as a function of the filling. To this end,
we vary the number of particles N on a square lattice with
open boundary conditions consisting of 4 × 4 sites, labeled
by a pair of indices (
x, 
y) with 
x, 
y ∈ {1, . . . , 4}. We
initialize the system in a single Fock state where the par-
ticles are distributed to maximize their mutual distances
without initially occupying the interior site (2, 2), at which
we probe the density correlations. Figure 10(a) shows the
probability p(n) of finding zero, one, or more than one par-
ticle at the probe site for U/J = 5 as a function of time.
The initial oscillations quickly damp and the probabilities
become approximately stationary. In Fig. 10(b), we show
the probability p(n) = t−1

∫ t
0 dt′ p(n, t′), time-averaged up

to time Jt = 10, as a function of the particle number N .
For small N , higher occupancies n > 1 can be neglected
and the density operator at the probe site is approxi-
mately dichotomic. Figures 10(c) and 10(d) show, respec-
tively, the time trace of the unequal-time anticommutator
(B = A = n2,2) and the reactive part of the non-Hermitian
dynamic susceptibility χ ′ (NH) (correlation spectrum) at
the waiting time J tw = 10 for several values of N . The
exact results are compared to those extracted using the
projective protocol and the non-Hermitian linear response
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FIG. 10. Comparison of the projective protocol (P) and non-
Hermitian linear response (LR) for extracting the unequal-time
anticommutator of the on-site density (B = A = n2,2) in a 4 × 4
Bose-Hubbard system with on-site interaction U/J = 5 as a
function of the filling. (a) Time trace of the probability p(n)

of finding n particles at site (2, 2). (b) Time-averaged probabil-
ity p(n) as a function of the particle number N . For small N ,
higher occupancies are negligible and the on-site density n2,2 is
approximately dichotomic. (c) Time trace of the unequal-time
anticommutator and (d) correlation spectrum extracted from sim-
ulations of the different measurement schemes at J tw = 10. (e)
Relative error and (f) absolute error of the correlation spectra
in (d) with respect to the exact results. The projective protocol
(P) yields good accuracy at low fillings where multiple occu-
pancies are suppressed, but fails as the filling approaches unity.
Increasing the on-site interaction U extends the regime of valid-
ity. The non-Hermitian linear response scheme (LR) performs
well irrespective of the filling and the value of U/J .

scheme. For the latter, we have used a rectangular pulse of
duration J δt = 0.01 and a perturbation strength s = 0.05
as in Sec. IV. The Fourier integral in Eq. (11) has been
computed using an exponential filter of characteristic fre-
quency γ /J = 0.2 (see Appendix B 1). While for small
N the projective protocol correctly reproduces both the
exact time trace and the exact spectrum, there are siz-
able deviations as the number of particles N (and thus the
contribution of higher occupancies) grows. By contrast,
the non-Hermitian linear response scheme reproduces the
exact results to good accuracy regardless of the filling.
In Figs. 10(e) and 10(f), we show, respectively, the L2

norm of the relative error ‖χ ′ (NH)

sim − χ
′ (NH)
exact ‖2/‖χ ′ (NH)

exact ‖2

and the absolute error ‖�χ
′ (NH)

sim − �χ
′ (NH)
exact ‖2 of the spec-

tra extracted from the simulated measurement protocols in
Fig. 10(d). For the projective protocol, both errors increase
with increasing particle number, while the errors remain
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small for the non-Hermitian linear response scheme. For
larger on-site interactions U, higher occupancies are sup-
pressed more strongly, which delays the rise of the error
curve for the projective protocol as the filling increases:
given a certain acceptable tolerance for the relative error
of, say, less than 20%, the projective protocol for U/J = 5
(U/J = 10) yields acceptable results for up to N = 4 (N =
9) particles.

We now investigate the performance of projective proto-
cols for the scenario in Sec. IV, i.e., a quench in a 1D Bose-
Hubbard chain of length L = 12 with periodic boundary
conditions at unit filling, initially prepared in a Mott-
insulating state. Since 〈n
(t)〉 ≡ 1 in this case, the projec-
tive protocol in Eq. (F6) reduces to 〈{n
2(t), n
1(tw)}〉 ≈
1 + 〈n
2(t)〉1. If we evaluate this expression at t = tw,
the right-hand side takes the value 2 and therefore the
connected anticommutator extracted from the projective
protocol vanishes. This behavior is qualitatively different
from that of the true anticommutator, which is maximal
at t = tw. Consequently, Eq. (F6) represents a rather poor
approximation of the unequal-time anticommutator in this
scenario, especially at small U/J . To obtain a slightly
better approximation, we resort to the projective proto-
col in Eq. (F4), which is no longer equivalent to Eq. (F5)
if A has more than two eigenvalues. However, unlike
Eq. (F5), the protocol in Eq. (F4) does not reproduce
the correct asymptotic behavior of the anticommutator for
t � tw if A is not dichotomic. This can be fixed by replac-
ing 〈B(t)〉 (a1 + a2) on the right-hand side by α 〈B(t)〉 with
α = 2 〈A(tw)〉 − (a1 − a2)[p(a1) − p(a2)]. Since 〈B(t)〉 is
usually stationary in the regime of interest, this replace-
ment merely contributes a constant offset to the time trace
of the anticommutator, which ensures 〈{B(t), A(tw)}〉 →
2 〈B(t)〉 〈A(tw)〉 for t � tw and avoids spurious static peaks
in the correlation spectrum.

In Fig. 11, we present a similar analysis as in Fig. 10
for the 1D system at unit filling as a function of the on-
site interaction U. In Fig. 11(b), it can be seen be seen
that there is a significant contribution from states with
higher occupancies at small on-site interactions U/J . As
expected, the projective protocol does not perform well
in this regime, while the non-Hermitian linear response
scheme yields good results. As we move to larger U/J ,
we enter the Mott-insulating regime where single occupan-
cies dominate and the dynamics is governed by particle-
hole excitations [119]. Although the probability of higher
occupancies p(n > 1) diminishes with increasing U/J , its
contribution remains on the same order as that of the prob-
ability for vacancies p(0). Thus, the density is nowhere
well approximated by a dichotomic observable since the
neglected higher occupancies (particle excitations on top
of the Mott insulator) are of equal importance as vacan-
cies (hole excitations). This explains why the absolute
error of the projective protocol in Fig. 11(f) decreases
substantially with increasing U/J , while the relative error
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FIG. 11. Same as Fig. 10, but for a 1D Bose-Hubbard system
at unit filling as a function of the on-site interaction U. Despite
the suppression of higher occupancies at large U (b), the rela-
tive error (e) of the projective protocol (P) remains sizable. By
contrast, the non-Hermitian linear response scheme (LR) yields
good results for any value of U.

in Fig. 11(e) decreases only slowly and remains compar-
atively large even at large U/J . We have checked that
the error behaves similarly if we approximate the density-
density unequal-time anticommutator by replacing A = n
1
with the parity �
1 , as discussed above. Thus, as opposed
to non-Hermitian linear response, projective protocols are
not well suited for probing unequal-time anticommutators
and the associated FDRs for densities at unit filling.

Our numerical benchmarks suggest that projective pro-
tocols generally work well at low fillings and large on-site
interactions, where multiple occupancies can be neglected.
However, they do not represent a good alternative to mea-
sure unequal-time anticommutators and FDRs in regimes
where the relevant observables are not approximately
dichotomic. In our example of the Bose-Hubbard model,
this limitation unfortunately applies to a major part of the
physical parameter space, including the relevant setting of
a system at unit filling and moderate on-site interaction
strengths. In order to explore these regimes of interest,
we must therefore resort to alternative methods like non-
Hermitian linear response, which performs well across the
entire parameter space.
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