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ABSTRACT
During the first part of life, the brain develops while it learns
through a process called synaptogenesis. The neurons, growing and
interacting with each other, create synapses. However, eventually
the brain prunes those synapses. While previous work focused on
learning and pruning independently, in this work we propose a bio-
logically plausible model that, thanks to a combination of Hebbian
Learning and pruning, aims to simulate the synaptogenesis process.
In this way, while learning how to solve the task, the agent trans-
lates its experience into a particular network structure. Namely,
the network structure builds itself during the execution of the task.
We call this approach Self-building Neural Network (SBNN). We
compare our proposed SBNN with traditional feed forward neural
networks (FFNNs) over three OpenAI classic control tasks. The
results show that our model performs generally better than FFNNs.
Moreover, we observe that the performance decay while increasing
the pruning rate is smaller in our model than with FFNNs.
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1 INTRODUCTION
The natural brain is one of the most complex systems we know of.
It can perform complex tasks and adapt to new situations with an
efficiency that is currently unreachable by any modern Artificial
Intelligence (AI) system. These performances derive from a long-
lasting evolutionary process that has harmonized a vast amount of
different elements that work at different scales, and arrange their
structure through a combination of synaptogenesis [6] and pruning
of the less relevant synapses [5].
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In this work, we are interested in linking the growth and organi-
zation of the neurons in the brain to the experience of the agent
during the task, as it happens in the natural brain. To simulate
this process, we combine two well-known mechanisms from the
literature, namely Hebbian Learning (HL) [2], a task-agnostic plas-
ticity model that takes inspiration from the natural neurons, and a
pruning mechanism based on the global magnitude algorithm [3].
The latter is modified in such a way to decide not only how much
(i.e., how many synapses) to prune, but also when prune. We call
the resulting model Self-building Neural Network (SBNN), due to its
capability to compose its own structure based on the experience
perceived by the agent during its life.

We test our proposed SBNN on three OpenAI classic control
tasks, to show the capability of this model in terms of performance
and how the structure of the networks actually depend on the task.

The rest of this paper is organized as follows. Section 2 describes
the methods, and in particular the proposed SBNN. Then, Section 3
shows the results, followed by the conclusions in Section 4.

2 METHODS
Hebbian learning. HL is a plasticity model that allows an NN

to change its weights during the execution of a task. Importantly,
this change is agnostic w.r.t. the reward for the task, because it is
based only on the local knowledge of each synapse, in particular
the activation of the pre-synaptic and post-synaptic neurons. The
ABCD model used in this work updates the weights after each
forward pass of the network using the following rule:

𝑤𝑖, 𝑗 = 𝑤𝑖, 𝑗 + [ (𝐴𝑎𝑖 + 𝐵𝑎 𝑗 +𝐶𝑎𝑖𝑎 𝑗 + 𝐷)

where 𝑎𝑖 is the pre-synaptic activation value, 𝑎 𝑗 is the post-synaptic
value, and 𝑤𝑖, 𝑗 is the weight on the connection between the two
neurons. The 𝐴, 𝐵, 𝐶 , and 𝐷 are parameters to optimize.

Pruning mechanism. The pruning mechanism aims to find a sub-
set of an NN that performs as well as (or better than) the original
network. This process is performed by removing connections based
on a given strategy. In this work, we use the global magnitude
pruning algorithm [3], that simply consists in removing all the
connections whose weights are smaller, in absolute value, than a
threshold that is defined as the 𝑝𝑟 -th percentile, where 𝑝𝑟 is the
desired pruning rate (i.e., the percentage of connections to remove).

Self-building Neural Network. We start from an NN composed of
𝐼 inputs, 𝐻 hidden nodes, and 𝑂 outputs. At the first episode of the
task, the 𝐼 inputs are connected to all the 𝐻 hidden nodes and the
𝑂 outputs. In turn, the 𝐻 hidden nodes are fully connected with
each other (excluding self-loops), and with all the 𝑂 outputs.

We initialize the weights of all these connections to zero. In
this way, we intend to simulate the initial condition where no
connections between neurons exist. Then, within each episode, the
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Hebbian procedure will update the weights based on the ABCD
rule. Note that, in our model, each connection in the network has
its own ABCD rule with its corresponding parameters. In this way,
the network can arrange itself based on the experience that the
agent accumulates during the task. We use a Hebbian rule for each
connection because, starting from a condition where all the weights
are 0, using a single rule could lead all the weights to change in the
same direction, which in turn would make learning ineffective.

The second step of synaptogenesis is the process that prunes the
synapses, as described before. As we will describe later, differently
from HL, pruning occurs across episodes. Note that, as soon as
pruning starts, HL is stopped. Figure 1 summarizes the pruning
procedure, showing the state of the initial network and its devel-
opment. Formally, we can analyze the network before and after
pruning. In particular, before pruning, the hidden nodes are fully
connected with each other and all the inputs are connected with all
the hidden nodes. For this reason, it is not possible to define a fixed
activation order. Hence, we maintain the overall activation order:
firstly, the inputs, then the hidden nodes, and then the outputs. For
the hidden nodes, we randomly select the activation order.

After pruning, the remaining connections define the network.
Differently from before, in this phase we can define an activation
order more easily because the pruning mechanism naturally re-
solves most cycles, especially if the ratio of connections removed
is high enough. Hence, to find the activation order, we can per-
form a topological sort of the underlined graph 𝐺 (𝑉 , 𝐸), where
𝑉 is the set of nodes (i.e., the neurons) and 𝐸 is the set of con-
nections. If, during the topological sort, we find a cycle, we apply
the following procedure. Indicating with 𝑁𝑐 the subset of 𝑉 that
contains all the nodes in the cycle, first we remove all the nodes
in 𝑁𝑐 from 𝑉 and replace them with a fake node, 𝑓 . Then, indi-
cating with 𝐸 (𝑁𝑐 )𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 = {(𝑣, 𝑛) ∀𝑣 ∈ 𝑉 \ 𝑁𝑐 ∧ ∀𝑛 ∈ 𝑁𝑐 }
the subset of 𝐸 composed of the connections that terminate in 𝑁𝑐

and that do not start from 𝑁𝑐 , we add to 𝐸 the set of connections
{(𝑣, 𝑓 ) ∀(𝑣, 𝑣 ′) ∈ 𝐸 (𝑁𝑐 )𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ∧ 𝑣 ′ ∈ 𝑁𝑐 }. We perform the same
operation for the connections outgoing from 𝑁𝑐 . This procedure,
that we apply iteratively and independently for every cycle found
in the graph, results in a new graph 𝐺 ′ where the cycle 𝑁𝑐 is re-
placed by the fake node 𝑓 . All the nodes connected to 𝑁𝑐 are now
connected to 𝑓 , and 𝑓 is connected to all the nodes reached from 𝑁𝑐 .
We store the information that the node 𝑓 replaces the 𝑁𝑐 nodes in
a 𝑐𝑦𝑐𝑙𝑒𝑠_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 variable and then retry to find a topological order.
We repeat this procedure until all the cycles have been replaced,
and a topological order can be defined. Note that the nodes in 𝑁𝑐

can also be fake nodes from a previous iteration of the procedure.
After calculating the topological order of the network, we can

follow that for the activation of the hidden nodes. If we find a fake
node during the activation, we retrieve from 𝑐𝑦𝑐𝑙𝑒𝑠_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 the set
of 𝑁𝑐 nodes that compose the cycle, and proceed with a random
activation order. If a node in 𝑁𝑐 is a fake node 𝑓 ′ covering the 𝑁𝑐′

cycle, we repeat the procedure solving the inner cycle 𝑁𝑐′ , before
continuing with the nodes in 𝑁𝑐 .

Thanks to this process, the network after pruning can have one
of three base structures. (1): the inputs are connected to all the
hidden nodes that in turn are connected to the outputs. This creates
an NN with a single hidden layer. (2): the pruning process cuts
all the connections between the input and hidden nodes. Hence,

the inputs are directly connected to the output nodes, creating a
zero-layer NN. (3): the pruning process removes all the connections
between the inputs and a subset of the hidden nodes, but the hidden
nodes remain connected, creating an NN with more than one layer.

It is worth noticing that, starting from these three base structures,
we can derive more complex structures. For example, each node in
the third case can be a fake node, hence “hiding” a set of nodes.

While in principle promising, this model has drawbacks. Firstly,
the number of weights in the SBNN increases quadratically with
the number of hidden nodes, as each hidden node is fully connected
with all the other hidden nodes. Moreover, each connection is as-
sociated with an ABCD rule with its corresponding 4 parameters.
Secondly, before pruning the hidden nodes compose a single, fully
connected subnetwork on which the activation order can influence
the network’s output, but cannot be uniquely determined.

OpenAI tasks. To measure the performance of the proposed
SBNN, we use three OpenAI classic control tasks [1], namely Cart
Pole (CP), Mountain Car (MC), and Lunar Lander (LL). We refer the
interested reader to [1] for a complete description of these tasks.
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Figure 1: Scheme of the SBNN over the episodes. Initially,
we set all the connections to 0 (red); then during the task
Hebbian plasticity changes the weights, leading to the second
NN, where different thickness indicates different weights.
At a certain time, the pruning mechanism cuts the weakest
connections, resulting in the final structure of the NN.

3 RESULTS
In this section, we analyze the performance and behavior of the
SBNN in comparisonwith a feed forward neural network (FFNN) for
which we apply the same pruningmechanism used in the SBNN, but
before fitness evaluation. Note that, in our implementation, we use
as activation function the 𝑡𝑎𝑛ℎ function, both on the hidden nodes
and on the input/output nodes, for both the SBNN and the FFNN.
Concerning the fitness evaluation, we measure the performance
of the agent as the average reward over 100 episodes seen during
training. In the case of the FFNN, as the pruning process happens
before the first episode, the fitness by construction is measured
after pruning. On the contrary, as for the SBNN the pruning process
happens during the life of the agent (i.e., across episodes), in this
case the fitness contains two components, one before and one after
pruning (which are then averaged). We divide our experiments into
two parts, to answer two different research questions:
RQ1 What is the performance of the SBNN? What are the main

hyperparameters of this model that affect the performance?
RQ2 Is there any structural difference between the networks pro-

duced by the SBNN and an FFNN?
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To answer these questions, we perform a campaign of simula-
tions varying the three main hyperparameters of the SBNN: the
number of hidden nodes ℎ𝑛, the pruning rate 𝑝𝑟 , and the pruning
time 𝑝𝑡 , the latter indicating when pruning is applied. To calculate
𝑝𝑡 , we consider the number of episodes in the task, i.e., 𝑝𝑡 = 10
means that pruning happens after the 10-th episode.

For each combination of these parameters, we perform 30 in-
dependent runs. To optimize the parameters of the network (i.e.,
the weights for the FFNN, or the parameters of the ABCD rules for
the SBNN), we use the Covariance Matrix Adaptation Evolution
Strategies (CMA-ES) [4]. We stop the evolution after the generation
of a fixed number of 2000 individuals for LL and CP, and 4000 for
MC. In all cases, we set _ = 4 + ⌊3 ∗ 𝑙𝑛( |p|)⌋ and ` = _

2 , where p is
the vector of parameters to optimize. Table 1 summarizes the tested
configurations. Note that we omit the results obtained on the CP
task as there were no significant differences between the FFNN and
the SBNN: in fact, all the individuals using both models solved the
task, that is comparatively simpler than the other two. We make
our code available at https://github.com/ndr09/SBM.

Parameter CP MC LL

No. fitness evaluations 2000 4000 2000
No. hidden nodes (ℎ𝑛) 3, 4 3, 4 5, 6, 7, 8, 9
Pruning time (𝑝𝑡 ) 5, 10 1, 5, 10 1, 5, 10, 15, 20
Pruning rate (𝑝𝑟 ) 40, 60 40, 60 20, 40, 60, 80

Table 1: Parameter settings used for the RQ1 experiments.
For RQ2, we use a subset of these configurations.

3.1 RQ1: Performance
Figure 2 shows the results for the MC environment. The upper
and lower row relate, respectively, to an FFNN with one layer with
ℎ𝑛 = 3 or ℎ𝑛 = 4. The left and right column present, respectively,
the results with a 𝑝𝑟 of 40% and 60%. In each subfigure, we plot the
average results of the best individual over 30 independent runs. The
first three boxplots indicate the results of the SBNN with different
𝑝𝑡 , namely 10, 5, and 1, respectively from left to right. The last
boxplot shows the baseline results of the FFNN. In MC, the results
indicate that the SBNN reaches similar or better performance w.r.t.
an FFNN with the same 𝑝𝑟 .

Interestingly, we observe a clear trend on 𝑝𝑡 , i.e., the performance
increases when decreasing 𝑝𝑡 , regardless of 𝑝𝑟 and ℎ𝑛. Hence, we
can conclude that, after the first episode, the agent has already
received enough experience (information) to build the network.

To understand the effect of pruning on the performance, we
make an additional analysis, by comparing the average reward
before and after pruning. For instance, considering 𝑝𝑡 = 10, we
measure separately the average reward until the 10-th episode, i.e.,
before pruning, and the average reward after the 10-th episode, i.e.,
the post-pruning one. Based on this procedure, we observe that,
after pruning, the performance receives a 7 − 13% boost on MC.

Figure 3 presents the results for the LL environment. For this en-
vironment, we consider ℎ𝑛 between 5 and 9, because of the greater
complexity of the task. Here, the results are shown differently from
Figure 2: in particular, we plot the median rewards for the best
individuals of each evolutionary run, varying 𝑝𝑟 while keeping 𝑝𝑡
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Figure 2: Results on the MC environment. The red dashed
line indicates the solving threshold for the environment.

and ℎ𝑛 fixed. In this way, we highlight two points. The first one is
that the performances of the SBNNs are in most cases equal to or
better than the ones obtained by the FFNN for the same 𝑝𝑟 . The
second point is that, while increasing 𝑝𝑟 , the drop in performance
for the SBNN is lower than what observed with the FFNN baseline.
We can also observe that this trend is maintained when comparing
solutions with a comparable number of connections. For example,
the SBNN with ℎ𝑛 = 5 and the FFNN with ℎ𝑛 = 9 have a similar
number of connections (respectively, 117 and 108). Moreover, we
can see the same trend observed in MC, i.e., 𝑝𝑡 = 1 yields the best
results. Hence, also in this task a single episode contains enough
information to learn about the prunable connections. This suggests
that, in the tested tasks, the SBNN is capable to exploit the network
structure (and the information therein) better than the FFNN.

We perform the same analysis done before, dividing the results
before and after pruning and observing the average results. Also
for LL there is an increase in performance after pruning, in this
case between 6% and 100%. This improvement indicates again the
importance of pruning and its complementary effect w.r.t. HL.

3.2 RQ2: Difference between SBNN and FFNN
We now analyze the structural difference between the network
foundwith the SBNN and the FFNN. For this reason, we characterize
the networks based on the number of working connections, i.e., the
connections that link inputs to outputs after pruning. To calculate
these connections, we remove the synapses that lead to sink or
come from source nodes. While a sink is a node with only incoming
connections that is not an output node, a source is a node with only
outgoing connections that is not an input node.

Figure 4 shows, for the LL task, the distribution of working con-
nections for a representative subset of the configurations presented
in the previous section, considering the best solution (one per each
evolutionary run) obtained for each considered configuration. We
omit, due to space limitations, the same figure for MC. On the x-
axis, we indicate the percentage of remaining working connections
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Figure 3: Median reward on the LL task. The red dashed line
indicates the solving threshold.

(after pruning) w.r.t. the total number of synapses, grouped every
10%, while on the y-axis we indicate how many networks (out of
30, one per run) have that number of connections. For example, if
we consider a point at 𝑥 = 40%, 𝑦 = 0.5, we mean that in 50% of
runs (i.e., 15 out of 30) networks after pruning have a number of
working connections in the range (30%, 40%].

We can observe a quite clear pattern: all the FFNN configurations
use the majority of the connections available. On the other hand,
the distributions of working connections for the SBNN have two
peaks: the first one occurs between 10% and 20% for the MC task
(not reported here) and between 20% and 40% for the LL one; the
second peak is in common between the two tasks at around 90%. We
visually analyzed all the networks and discovered that the SBNNs
that compose the first peak have a structure where all the hidden
nodes are disconnected. Interestingly, the percentage of this kind
of structures increases when 𝑝𝑡 increases, as the first peak is higher
for higher values of 𝑝𝑡 . This suggests that the later pruning occurs,
the more probable it is that connections to the hidden nodes are
pruned, thus leaving only input-output connections. Our intuition
is that this form of simplification somehow correlates with the
complexity needed to solve the task.
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Figure 4: No. of connections after pruning on the LL task.

4 CONCLUSIONS
In this work, we took inspiration from the synaptogenesis process
occurring in natural brains to propose a new learning model that
combines both plasticity and pruning. We called this model Self-
building Neural Network (SBNN), as it changes its structure based
on the experience of the agent during the episodes of the task.

We tested our model on three classic control tasks from Ope-
nAI, varying the three main parameters of the model, affecting
respectively when to prune, how much to prune, and the number of
hidden nodes. We showed that, in general, the SBNN reaches better
performance than the FFNN. Furthermore, we assessed the effect
of the model’s parameters, in particular regarding when and how
much to prune, and showed the advantages of the SBNN.
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