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 Abstract—One of the most challenging problems in the design 
of next-generation Phasor Measurement Units (PMUs) is related 
to the need to minimize the impact of multiple harmonics and 
out-of-band interharmonics (OOBI) on the measurement of 
synchrophasors over short observation intervals. Most of the 
existing solutions aim at removing such narrowband disturbances 
before synchrophasor estimation. However, when data records 
are short, accurate OOBI filtering may be infeasible. The 
algorithm described in this paper tackles this problem through a 
prior estimation of the number and the frequency of the 
significant narrowband interferers emerging from the noise floor. 
This result is achieved using a non-parametric signal detector 
based on random matrix theory and hypothesis testing, followed 
by the application of the estimation of signal parameters via the 
rotational invariance technique (ESPRIT). Once the number and 
the frequency of the narrowband components are known, these 
parameters are used to augment the dimension of the 
frequency-domain linear system of equations employed by the 
Interpolated Dynamic Discrete Fourier Transform (IpD2FT) for 
synchrophasor estimation. The results of multiple simulations 
confirm not only that the proposed approach for narrowband 
components detection is robust and more accurate than other 
model-order estimation algorithms described in the scientific 
literature, but also that the synchrophasor estimation accuracy 
over two-cycle observation intervals is generally higher than using 
other for M Class PMUs algorithms when OOBIs or a mixture of 
OOBIs and harmonics are considered.  
 

Index Terms—Phasor Measurement Units (PMUs), model 
order detection, ESPRIT, Discrete Fourier Transform (DFT).  
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I. INTRODUCTION 
ith the widespread diffusion of both renewable energy 
sources and increasingly nonlinear loads (e.g., plug-in 

electric vehicles and high-efficiency heat pumps), the voltage 
and current waveforms in power systems may exhibit a relevant 
harmonic and interharmonic content. Such narrowband 
interferers (especially the so-called out-of-band interferers - 
OOBIs and the low-order harmonics) can seriously affect 
synchrophasor magnitude and phase measurement, as well as 
fundamental frequency and Rate of Change of Frequency 
(ROCOF) estimation. From this standpoint, the existing digital 
estimation algorithms for Phasor Measurement Units (PMUs) 
can be roughly divided into two broad categories, i.e., the 
techniques that filter or remove such disturbances prior to 
synchrophasor estimation and those that instead estimate the 
parameters of the narrowband disturbances to mitigate their 
impact on the estimation of the fundamental synchrophasor. 
Such a classification and a list of some existing methods 
belonging to either category is reported in Table I. 

The former kind of methods are more common and they 
usually rely on simpler and less computationally intensive 
algorithms, since they do not need to include narrowband 
components in the signal model. For instance, many 
commercial PMUs rely on the down-conversion of the 
spectrum of the acquired waveform around DC, followed by 
digital low-pass filtering. This approach is often called 
Down-conversion and Filtering (DCF) and it is also mentioned 
in Annex D of the IEEE/IEC Standard 60255-118-1:2018 [1] 
(in the following simply referred to as the IEEE/IEC Standard). 
The accuracy of DCF techniques strongly depends on the 
selectivity of the chosen low-pass filters. Linear-phase digital 
filters can be designed to ensure a narrow transition bandwidth 
and a high OOBIs and low-order harmonics attenuation. For 
instance, a conservative low-pass filter design criterion was 
proposed in [2]. Similarly, adaptive filtering techniques based 
on fundamental frequency estimation may strongly mitigate the 
impact of harmonics [3]. However, when linear-phase filters 
are considered, a delicate tradeoff exists between PMU 
passband flatness (required to track possible amplitude and 
phase fluctuations of the fundamental component), OOBI 
rejection capability and filter responsiveness [4] In particular, 
higher filter selectivity requires longer impulse response, which 
may cause an unacceptable latency.  
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TABLE I 
CLASSIFICATION OF DIFFERENT PMU ALGORITHMS ABOUT THEIR ABILITY TO MITIGATE THE IMPACT OF HARMONIC AND INTER-HARMONIC INTERFERERS. 

Category Methods Pros Cons 

Canceling the 
interferers 

DCF [1,2] Low computational complexity Long latency required to achieve 
OOBI rejection Windowed IpDFT [5-7] 

IpD2FT [13] Dynamic signal model 

Disturbances whitening [14] Short observation intervals, good 
harmonic rejection performance 

OOBI rejection performance not 
investigated 

Estimating the 
interferers 

TLTFT [16] Dynamic signal model, model extension 
based on limited number of harmonics  Unable to mitigate OOBIs 

IpDFTc [17] 
Low computational complexity 

Static signal model, unable to mitigate 
OOBIs 

i-IpDFT [18] 
Static signal model, empirically tuned 
threshold for the narrowband 
components detection 

ESPRIT+TFT [22,24] 
Dynamic signal model, OOBIs well 
mitigated 

Empirically tuned threshold for the 
narrowband components detection MP+TFT [23] 

CS-TFT [25,26] Observation of at least three powerline 
cycles 

 
The techniques based on the basic Discrete Fourier Transform 
(DFT) or the Interpolated DFT (IpDFT) exhibit similar 
limitations [5-7]. In fact, such algorithms are computationally 
lightweight and they may strongly mitigate the impact of 
possible stationary narrowband interferers [8], provided that 
the effect of possible off-nominal frequency deviations is 
compensated properly [9], and that both spectral picket-fence 
and leakage effects are restrained, e.g., through suitable 
windowing of the input data record [10, 11]. In fact, the 
effectiveness of window functions on OOBIs can be severely 
impaired when observation intervals shorter than about three 
nominal cycles are considered [12]. This problem affects also 
the Interpolated Dynamic DFT (IpD2FT) algorithm [13], 
despite its better ability to track synchrophasor variations over 
time. In [14], a totally different approach for narrowband 
components removal is proposed. Indeed, such disturbances are 
whitened (i.e. transformed into wideband noise) before 
estimating the synchrophasor parameters through a Taylor–
Kalman filter. Although disturbance whitening is particularly 
effective in improving accuracy over short observation 
intervals, its OOBIs rejection capability (which is essential for 
M Class PMUs) has not been investigated, yet.  

The enhanced IpD2FT (eIpD2FT) algorithm described in 
this paper is an improved version of the algorithm initially 
presented at the I2MTC 2022 conference [15]. While it 
partially relies on the same theoretical background in [14], it is 
based on a totally different perspective, i.e., estimating the 
parameters of possible narrowband interferers, rather than 
filtering or removing them. Therefore, the eIpD2FT algorithm 
belongs to the second category of estimators shown in Table I. 
A further advantage of such methods is that the estimated 
parameters can be exploited for other purposes than phasor 
parameters measurement (e.g., power quality monitoring or 
grid-level harmonic state estimation).  

A deeper qualitative analysis of the key features and the 
novelty of the eIpD2FT algorithm with respect to other 
estimators based on the same underlying rationale is explained 
in Section II. Section III describes the details of the algorithm, 
while Section IV at first reports some results about the 
probability of correct detection of multiple narrowband 
components and then summarizes the estimator performances 

considering not only the M Class testing conditions specified in 
the IEEE/IEC Standard, but also a mixture of harmonics and 
interharmonics affecting the fundamental. Such results are 
compared with those obtained using both the original IpD2FT 
estimator and the Tuned Lightweight Taylor Fourier Transform 
(TLTFT) [16]. Finally, Section V concludes the paper. 

II. RELATED WORK ON PMU ESTIMATION ALGORITHMS BASED 
ON MULTITONE PARAMETERS ESTIMATION 

The idea of estimating the parameters of possible 
narrowband interferers affecting the fundamental 
synchrophasor is not new, although it is less common than the 
solutions described in Section I, which are conceived to filter 
harmonic and interharmonic disturbances. 

A pair of IpDFT-based solutions that aim at estimating and 
compensating the detrimental effect of possible narrowband 
disturbances are the Corrected IpDFT (IpDFTc) [17] and the 
iterative IpDFT (i-IpDFT) algorithm [18]. Both techniques rely 
on a static synchrophasor model and mitigate the spectral 
interference produced by the negative image of the 
fundamental tone and the most critical narrowband 
components. While the IpDFTc does not compensate for the 
effect of possible OOBIs, the i-IpDFT addresses this problem, 
but it relies on an empirically tuned threshold for narrowband 
interferers detection, which may exhibit unexpected robustness 
issues if the Signal-to-Noise Ratio (SNR) is low. The eIpD2FT 
algorithm described in this paper relies instead on a phasor 
dynamic model and includes the narrowband components that 
emerge from the noise floor with a level of confidence that is 
almost independent of the actual SNR value. 

One of the most famous PMU algorithms that includes the 
estimation of multiple narrowband components is the 
Taylor-Fourier Transform (TFT) [19]. The TFT extends the 
Taylor’s based dynamic phasor model of the fundamental 
(initially presented in [20]) to the case of harmonic phasors. 
Also, the TFT was further optimized and enhanced in the case 
of three-phase signals [21]. In the TFT estimator, the phasors of 
both the fundamental component and a given number of 
harmonics are regarded as dynamic quantities and the 
variations of each of them over time are described by the 
Taylor’s series of each phasor truncated to a specified order.  
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Fig. 1.  Flow chart of the eIpD2FT algorithm 

The Taylor’s series coefficients (and consequently the 
synchrophasor amplitude and phase) are then estimated by 
finding the least-squares solution of an overdetermined linear 
system resulting from the expression that relates the time 
domain model of the signal to the record of acquired samples. 
Unfortunately, the performance of the original TFT degrades 
when the frequency of the fundamental differs from its nominal 
value. Moreover, the basic TFT does not include the 
interharmonics into the signal model since their number and 
their frequencies are completely unknown.  

Various techniques based on signal and noise subspace 
decomposition can be used to estimate the frequency of 
multi-tone disturbances so enabling TFT accuracy 
improvement [22-24]. Among them, the multiple signal 
classification (MUSIC), the estimation of signal parameters via 
rotational invariant techniques (ESPRIT) or the matrix pencil 
method can be used. Unfortunately, a wrong model order 
selection may severely degrade the TFT estimation accuracy. 

In [16] it was heuristically observed that the estimation 
accuracy degradation can be avoided if the fundamental 
frequency is properly estimated and an appropriate window 
function is used to weigh the input data record. Also, a very 
limited number of harmonics (depending on the observation 
interval length) should be included in the TFT signal model. 
Nonetheless, also in this case the lack of knowledge on possible 
OOBIs leads to poor performance, unless reasonably long 
observation intervals are considered.   

The Compressive Sensing Taylor-Fourier Multifrequency 
technique [25] (recently extended for harmonics estimation 
[26]) tackles this problem and provides good OOBI detection 
capability and high frequency and synchrophasor estimation 
accuracy. Nonetheless, also this technique apparently requires 
the observation of at least three power line cycles to counteract 
the effect of large OOBIs. 

Compared  the TFT-based solutions mentioned above, and 
the preliminary eIpD2FT version presented in [15], the 
eIpD2FT estimator described in this paper has a key advantage, 
i.e., it can estimate the actual number of narrowband 
components with a high level of confidence through a 

non-parametric hypotheses testing algorithm based on random 
matrix theory. As a consequence, the detection of possible 
narrowband components is particularly robust and the 
synchrophasor estimation results obtained by augmenting the 
linear systems of equations of the original IpD2FT estimator 
exhibits high accuracy over two-cycle-long observation 
intervals even under the effect of both harmonics and OOBIs. 
To the best of Authors’ knowledge, this is an unprecedented 
achievement. 

III. EIPD2FT ALGORITHM DESCRIPTION 
The multitone eIpD2FT estimation algorithm consists of 

three main steps, i.e. 
1. Non-parametric estimation of the number of stationary 

narrowband components; 

2. Estimation of fundamental, harmonic and interharmonic 
frequencies based on ESPRIT [27]; 

3. Fundamental, harmonics and interharmonics 
synchrophasor estimation through the IpD2FT 
algorithm [13]. 

Steps 1 and 2 rely on the same well-established theoretical 
framework, namely on the decomposition of the vector space of 
PMU signals into two orthogonal subspaces related to 
narrowband components and broadband noise, respectively. 
The underlying theoretical background is recalled in Section 
III.A. The algorithm for detecting the number of stationary 
narrowband components (which is essential to ensure 
high-accuracy results in steps 2 and 3) is described in Section 
III.B and it represents a major advancement compared with the 
purely heuristic threshold-based approach used in [15]. The 
ESPRIT technique for the frequency estimation of all detected 
components is summarized in Section III.C. Section III.D is 
instead devoted to the description of a multi-tone 
implementation of the IpD2FT algorithm. Finally, in Section 
III.E the algorithm computational complexity is analyzed. Fig. 
1 depicts the flowchart of the whole eIpD2FT algorithm.  
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A. General theoretical background 
Let  

 ( ) ( ) ( )( ) 

1
cos  2 ( )d

s

D
f

d df
d

x n A n n n nπ ϕ ε
=

= + +∑  (1) 

be the discrete-time sequence of a voltage or current waveform 
acquired by the PMU with sampling frequency fs and consisting 
of both: 

1. D narrowband components of amplitude, mean frequency 
and phase denoted as Ad(n), fd and φd(n), respectively, for 
d=1,…,D (where d=1 refers to the fundamental term and 
D is unknown); 

2. Broadband (i.e., almost white) normally distributed noise 
with zero mean and variance σ2. 

Observe that in (1) both Ad(n) and φd(n) are potentially 
time-varying quantities, i.e., they can be subjected to dynamic 
oscillations or sudden changes. Also, the term φd(n) includes 
the effect of frequency variations around fd. Considering that 
the PMU signals are digitized, the respective average 
normalized angular frequencies of the D narrowband 
components are 2 d

s

f
d fω π= , for d=1,…,D. It is worth noting 

that the fundamental frequency f1 may differ from the nominal 
value fnom = 50 Hz or 60 Hz by a relative off-nominal frequency 
deviation in the order of a few per cent. According to the 
IEEE/IEC Standard, the angular rotation due to such possible 
off-nominal frequency deviations must be taken into account 
when the synchrophasor angle is estimated.  

A sequence of M > 2D consecutive samples of signal (1) can 
be rearranged into a column vector 

( ) [ ]( ) ( 1) ... ( 1) Tn x n x n x n M= + + −y  where T denotes the transpose 

operator. In practice, ( )ny can be rewritten as  

 ( ) ( ) ( )1
2

n n n= +Bs εy  (2) 

where ( ) ( ) ( )1 2 Dω ω ω=   B E E E  is an M × 2D 

matrix with 
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and ε(n) represents the vector of additive wideband noise 
samples. If the amplitude, phase and frequency fluctuations of 
the narrowband components are assumed to be negligible,  
recalling that M  > 2D, the M M×  autocorrelation matrix of 

( )ny can be decomposed as follows [27], i.e.  

 ( ) ( )( ) 21
4

T H
D ME n n σ= = +R BR B Iy y  (5) 

where E(·) and H denote the expectation and the Hermitian 
operator, respectively, ( )2 2 2 2

1 1diag , ,..., ,D D DA A A A=R  is the 

2 2D D× autocorrelation matrix of the signal vector subspace 
including the D narrowband components, and IM is the identity 

matrix (of size M M× in this case). If the Singular Value 
Decomposition (SVD) is applied to matrix R, it results that 
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  
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where ( )1diag ,..., Mλ λΛ = is the diagonal matrix including 
the singular values of R, the columns of submatrices UD and UN 
of U are the orthonormal singular vectors associated, 
respectively, with the subspace including the narrowband 
components and with the noise subspace only. It is worth 
recalling that R is positive definite by construction. Hence, its 
singular values and eigenvalues actually coincide so that the 
columns of U are not only the singular vectors, but also the 
eigenvectors of R. For this reason, the terms eigenvalues and 
singular values will be used interchangeably in the rest of this 
manuscript.  

A closer analysis of Λ apparently suggests that in the case at 
hand the problem of estimating the number D of narrowband 
components has a straightforward solution. Indeed, by 
computing the ratio of pairs of consecutive eigenvalues 
(arranged in a non-ascending order as in (6)), the dimension of 
the narrowband components’ subspace can be easily identified 
as soon as the ratio of consecutive singular values becomes 
equal to 1 twice in a row. Unfortunately, R in practice can be 
estimated by using a limited amount L of finite-length data 
records. As a consequence, the estimated singular values, 
arranged in a non-increasing order, exhibit a smoothed trend 
[28]. Thus, such values are different from the diagonal elements 
of Λ and the estimation of the number of narrowband 
components is inherently a stochastic problem, whose solution 
can be quite involved, as it will be explained in the next 
subsection. 

B. Estimation of the number of narrowband components 
The problem of detecting an unknown number of signals 

from noise is well-known in the scientific literature and it has 
been addressed with various techniques, most notably the 
Minimum Description Length (MDL) algorithm [29] and the 
Akaike Information Criterion (AIC) [30]. In the algorithm 
described in this paper, neither one of such common solutions is 
adopted, although their performance is reported for comparison 
in Section IV.A. The chosen approach relies instead on a 
slightly modified version of the estimation algorithm based on 
Random Matrix Theory (RMT) [28]. The rationale of this 
choice is threefold. Firstly, even if the MDL estimator is 
consistent when the number of observations L (i.e., the number 
of data records of the input signal (1)) tends to infinity, the 
detection threshold is larger than the asymptotic limit 
approximately by a factor 2log L  [28]. Secondly, the MDL 
detection performance tends to drop as the Signal-to-Noise 
(SNR) ratio decreases [31]. In fact, the AIC detection accuracy 
is generally better than the MDL’s one for low SNR values, but 
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the AIC estimator is not consistent [32]. Finally, neither the 
MDL, nor the AIC estimator are expected to perform very well 
when the number of data collected in each observation M is 
comparable with L [20]. This is instead the most likely scenario 
in the PMU case, since the value of M is limited by the number 
of samples that can be acquired within a few power line cycles, 
while L is constrained by both the computational burden and 
the detection latency. On the other hand, the RMT estimator is 
expected to offer a higher detection accuracy with a reasonable 
computational burden. Such expectations are indeed confirmed 
by the simulation results reported in Section IV.A. The 
RMT-based estimation relies on the maximum likelihood 
estimator of matrix R, i.e.  

 ( ) ( )
1

1

0

ˆ
L

T
L

l
n l M n l M

−

=

= − ⋅ − ⋅∑R y y . (7) 

Therefore, in practice the SVD is applied to (7) rather than to 
(5). Note that in R̂  the dependence on variable n is omitted 
because the acquired signal is assumed to be stationary. 
Furthermore, it is important to emphasize that the random 
matrix theory relies on the assumption that the elements of 
vectors ( )⋅y  in (7) are all independent and identical 
distributed (i.i.d.). In the case at hand, this assumption holds 
true if the following two conditions are met, i.e., 
1. The data records collected by the PMU are not 

overlapped (which is a major difference compared with 
[15], where instead the L data records are shifted sample 
by sample and thus differ by just one sample at a time); 

2. The initial phase angles of the D narrowband 
components in the L data records used to compute R̂ are 
uniformly distributed within [0, 2π). 

The first condition arises from the fact that if the vectors of 
PMU data used to estimate R̂  are overlapped, then they are 
correlated too. In this case, the variance of the estimated 
eigenvalues of the noise subspace is expected to be larger than 
in the case when the vectors are i.i.d. Moreover, to the best of 
Authors’ knowledge, no known probability density models 
exist at the moment to describe the stochastic distribution of the 
noise subspace eigenvalues estimated by using strongly 
correlated data, while instead this is possible when the data 
records are independent [33]. Therefore, if correlated 
observations are used, the threshold for signal detection could 
just be set heuristically (e.g., through Monte Carlo 
simulations), which however may pose serious robustness 
issues when the signal model parameters change unexpectedly. 
The main disadvantage of using nonoverlapped data records is 
the longer initial delay to detect the number of narrowband 
components. However, this is not a problem in quasi-stationary 
conditions if synchrophasor estimation is performed in parallel 
to narrowband components detection, as it will be described in 
Section III.D.  

The second condition mentioned above is needed to properly 
estimate the autocorrelation of the D narrowband components. 
Indeed, they can be regarded as random processes only if their 
instantaneous phase angle is uniformly distributed within 
[0, 2π). In practice, to implement this condition by using the 
data collected over subsequent observation intervals, it is 
preferable to use records that are longer than a power line cycle 

and with duration M/fs that must not be a multiple of the period 
of any one of the components to be detected. Details of possible 
values are in fact reported in Section IV. 

Following the same approach described in [28], the 
estimation of the number of narrowband components relies on 
an iterative hypothesis testing. In particular, if the M singular 
values of R̂  are computed and arranged in a descending order, 
the null and alternative hypotheses of the problem are:  

• H0: the (2j+1)-th singular value of R̂  does not exceed 
the threshold for narrowband components’ detection, 
i.e., 2 1

ˆ
j jTλ + ≤ ;  

• H1: the (2j+1)-th singular value of R̂  exceeds the 
threshold for narrowband components’ detection, i.e., 

2 1
ˆ

j jTλ + > ; 
where jT  is indeed the detection threshold computed in the j-th 
iteration of the algorithm itself. Such a threshold is proportional 
to the estimated variance of wideband noise, and it is updated in 
each iteration, as it will be explained in the following (see 
expression (10)). 

Observe that the hypothesis testing considers only odd 
singular values, because real narrowband components always 
exhibit couples of singular values. Thus, if the null hypothesis 
is rejected for 2 1

ˆ
jλ + , it must be rejected for 2 2

ˆ
jλ +  too. Also, the 

null hypothesis is certainly rejected for 1̂λ  since the 
fundamental component is always present in the application at 
hand. Therefore, the first pair of singular values can be skipped, 
and the algorithm is supposed to converge after D-1 iterations, 
i.e., as soon as the null hypothesis is accepted. 

More in details, the steps of the RMT-based algorithm for the 
estimation of the number of narrowband components are 
summarized below. 

1. First, singular values of ˆ ,R  namely the elements of matrix 

( )1
ˆ ˆ ˆdiag ,..., Mλ λΛ = are computed and arranged in a 

descending order. 

2. Afterwards, starting from j=1, D̂  is initialized to 1 and the 
variance of the noise floor is estimated to eventually 
compute jT  in step 3. As explained in Section III.A, all 
eigenvalues of the noise subspace should theoretically be 
equal to σ2. Thus, a possible basic estimator of the noise 
variance is just the average of all eigenvalues that are 
assumed not to be related to the narrowband components, 
i.e., 2 1

ˆ ˆˆ0| 2 12
ˆˆ M
mD m DM D

σ λ
= +− ∑= . Of course, if one or more of 

the singular values in the sum refers instead to some 
undetected narrowband component, is likely to be 
considerably greater than σ2, which should lead to the 
rejection of hypothesis H0. However, even if D̂ D= , it is 
shown in [34] that 2

ˆ0|
ˆ

Dσ  is a biased estimator of σ2, due to 

the limited size of the data records used to compute R̂ . 
Thus, for a given value of D̂ , the following iterative 
estimator can mitigate the bias [28], i.e.,  
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ˆ2

2
ˆ ,|

1 1

1 ˆˆ ˆ2

M D

m d tt D
m dM D

σ λ ρ
= =

 
− 

−  
∑ ∑=  (8) 

where each coefficient ,d tρ is the largest real-valued 
solution of the second-degree algebraic equation 

 2 2 2
ˆ ˆ, , 1| 1|

ˆ2ˆ ˆˆ ˆ1 0d t d t d dt D t D

M D
L

ρ ρ λ σ λ σ
− −

  −
− + − + =      

. (9) 

In particular, the corrective terms given by (9) and used in 
(8) can compensate for the bias due to supposed D̂
narrowband component [28, 34]. Observe that (9) depends 
on 2

ˆ1|
ˆ

t Dσ
−

, i.e., on the noise variance estimated in the 

previous iteration, which can be initialized to 2
ˆ0|

ˆ .Dσ  
However, a few iterations (usually no more than 10) are 
enough to ensure that the 2

ˆ|
ˆ

t Dσ  values returned by (8) 
converge to a constant value with fluctuations within  ±1% 
[34].  
A sign analysis of the discriminant of (9) reveals that 
real-valued solutions of (9) exist if 

( )2
ˆ2 2

ˆ1|
ˆˆ0 1 .M D
d Lt Dσ λ −

−
< ≤ + This condition is generally 

met in practice if values of d̂λ  for d=1,…, ˆ2D  are at least 
comparable with those of the noise floor variance.  

3. Once the noise variance is estimated, the detection 
threshold is given by [28]:  

 ( )( )2
ˆ ˆ ˆ| , 2 , 2

ˆj RMT D L M D L M DT sσ µ β ξ
− −

= +  (10) 

where  

 ˆ, 2

1 1 1ˆ2
2 2L M D L M D

L
µ

−

 
= − + − −  

 
, (11) 

 
ˆ, 2

ˆ, 2

1 1
ˆ1/ 2 2 1/ 2

L M D
L M D L L M D

µ
ξ −

−

 
= +  − − − 

 (12) 

are the centering and scale parameters, respectively, of the 
probability density function of the ratio between the 
largest estimated noise subspace eigenvalue of R̂ and σ2, 
while ( )s β  represents the β-quantile of wrongly rejecting 

H0, i.e., ( )( ) 1TWF s β β= −  where, 

 ( )
2

2 1 , 2

,
, 2

 const

ˆ
lim Pr D L M D

TW L M
L M DM

L

F s s
λ σ µ

ξ
+ −

→∞
−

→

 − = ≤ 
  

 (13) 

is the Tracy-Widom cumulative distribution function and 
{}Pr ⋅  is the probability operator [28].  Quite importantly, 

it is shown in  [28, 35] that if 1β <<  then 

 ( ) ( )( )
2
33

2 log 4s β π β≈ − . (14) 

4. Finally, the hypothesis testing is performed by comparing 

2 1
ˆ

jλ +  with the threshold value given by (10). If the null 
hypothesis H0 is rejected (namely if H1 holds), then both 
index j and the value of D̂ are incremented by 1 and the 
algorithm starts over from step 2; otherwise, the null 

hypothesis is supposed to be true and the algorithm ends. 
In this case, the number of detected narrowband 
components is D̂ j= . Quite importantly, if D̂  is really 

equal to D, the noise variance estimator 2
ˆ|

ˆ
RMT Dσ  based on 

(8) and (9) is almost unbiased, i.e. 

( ) ( )2
2 2 1

ˆ|
ˆ

RMT D D L
E Oσ σ

=
= +  [34]. 

C. Frequency estimation based on ESPRIT 

If the amplitude, phase and frequency of the D̂  narrowband 
components detected in the previous step are almost stationary, 
the ESPRIT algorithm can estimate the individual frequency 
values by using the same theoretical background described in 
Section III.A, as well as the shift invariance property of the 
periodic signals of the narrowband components’ subspace [27]. 
In particular, if we denote with [ ]1 1D M D−=ˆ ˆU I 0 U  and 

[ ]2 1D M D−=ˆ ˆU 0 I U , the ( ) ˆ1 2M D− ×  matrices consisting of 

rows from 1 to M−1 and from 2 to M of matrix DÛ , 

respectively, it follows that 2 1D D=ˆ ˆU ΨU , where Ψ  is a 

rotation matrix because the columns of 1DÛ  and 2DÛ  are the 

singular vectors or eigenvectors of R̂  (namely pairs of 
quadrature sequences at different frequencies) shifted by just 
one time samples [15]. Thus, the rotation matrix can be 
estimated through linear regression as follows, i.e., 

 ( ) 1

1 1 1 2
ˆ ˆ ˆ ˆ ˆT T

D D D D

−
=Ψ U U U U . (15) 

The exponents of the eigenvalues of matrix Ψ̂ resulting from 
(15), properly arranged into matrix 

( )1 1diag  D Dj jj je e e eω ωω ω −−= ˆ ˆˆ ˆˆ ˆˆ , , , ,Ω  are the positive and negative 

normalized angular frequencies of the detected narrowband 
components. 

D. IpD2FT algorithm extension 
Let N be the length of each data record used for 

synchrophasor estimation. In practice, N is chosen in such a 
way that approximately and integer number of power line 
cycles (i.e., within the resolution of ±1 sample) is collected 
when the waveform fundamental frequency f1 = fnom. Therefore, 
N must be different from M, which instead, as explained in 
Section III.B, must be chosen in such a way that M/fs is not a 
multiple of the period of any one of the narrowband 
components to be detected.  

In the rest of this paper, without loss of generality, N is 
chosen as an odd number so that the synchrophasor, the 
frequency and the ROCOF of the fundamental component can 
be computed exactly in the center of each observation interval 

1 1
2 2 ,...,N Nn − −= − . Also, the data records are assumed to be 

refreshed by one sample at a time. 
As shown in Fig. 1, to limit the overall PMU estimation 

latency, the IpD2FT-based synchrophasor estimation can be 
run in parallel to the estimation of parameters D̂  and ˆdω  for 
d=1,…, D̂  as described in Sections III.B and III.C. Until the 
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number of stationary narrowband components is available, the 
basic IpD2FT algorithm presented in [13] can be used for 
synchrophasor estimation in any case, although with reduced 
accuracy. This indeed equivalent to assume that ˆ 1D =  and 

1 nomω̂ ω= . Afterwards, when the number and the frequencies of 
other possible narrowband components are estimated, the 
IpD2FT estimator can be enhanced by including the phasors of 
the D̂  detected components in the vector of unknowns and by 
using the values of normalized frequency ˆdω  for d=1,…, D̂  to 
tune the elements of the system matrix, as it will be explained 
more in detail in the rest of this Section. 

In this regard, it is worth recalling that the dynamic behavior 
of the phasor of each narrowband component can be 
approximately described by its Taylor’s series around the 
center of the considered data record and truncated to the Kh-th 
order term. Therefore, signal (1) can be rewritten as [13]:  

 ( ) ( ) ( )
ˆ

*
, ,

1 1

1
2

h
d d

KD
j n j nk k

d k d k
d k

x n n p e n p e nω ω ε−

= =

 
≈ + + 

 
∑ ∑  (16) 

where ( )
,

1 1
!

k
k

d k d
s

p p
k f

 
=  

 
represents the k-th coefficient of the 

Taylor’s series of the d-th narrowband component, ( )k
dp is the 

k-th order derivative of ( ) ( )dj n
dA n e ϕ  computed in the center of 

the collected data record and superscript “*” denotes the 
complex conjugate operator. In this paper, the Taylor’s series 
order K1 of the fundamental phasor is set to 2, in accordance 
with the original IpD2FT definition [13]. The Taylor’s series 
order of all the other narrowband component is instead set to 0, 
because i) such disturbances are indeed assumed to be 
stationary even in the first two steps of the algorithm and ii) 
possible time-varying fluctuations of harmonics and OOBIs are 
expected to produce a negligible impact on the estimation 
accuracy of the fundamental parameters. Assuming, to a first 
approximation and for the sake of simplicity, that the wideband 
noise term ε(∙) in (1) is negligible, the windowed Discrete-Time 
Fourier Transform (DTFT) of (16) normalized by the DC gain 
of the chosen window function is  

 

( ) ( ) ( )

( ) ( )

( ) ( ){ }

1

1
22

10
2

*
1, 1 1, 1

0

*
,0 0 ,0 0

2

1
(0)

ˆ ˆ          

ˆ ˆ

N

j n
N

Nn

K

k k k k
k

D

d d d d
d

X x n w n e
W

p W p W

p W p W

π ν
ν

ν ν ν ν

ν ν ν ν

−

−

−
=−

=

=

=

≈ − + +

+ − + +

∑

∑

∑

 (17) 

where variable ν denotes the normalized frequency expressed 
in bins, ( )ˆ ˆ / 2d d Nν ω π=  is the normalized estimated 
frequency of the dth narrowband component and 

 ( ) [ ]
2

1
22

10 0
2

1
(0) (0)

N

N
k kj nk N

k k
Nn

j d WW n w n e
W W d π

π ν

ν

ν
ω

−

−

−
=−

= =∑  (18) 

is proportional to the kth derivative of the DTFT of the window 

function w(∙). Note that, due to the even symmetry of usual 
window functions, (18) is purely real if k is even and purely 
imaginary if k is odd.  

Expression (17) can be used to improve the estimation 
accuracy of the original IpD2FT algorithm. In particular, if the 
vector p including the unknown coefficients of the Taylor’s 
series of the fundamental synchrophasor is augmented by 
adding the phasors of the other ˆ 1D − detected narrowband 
disturbances, expression (17) can be rearranged in a matrix 
form as  
 ( ) ( )P I= + *ˆ ˆX W p W pν ν  (19) 
where: 
• 

1 0 1 1 1 2 2 0 0

T

Dp p p p p =  , , , , ,p 

; 

• [ ]1
T

Dν νˆ ˆ ˆ
ν = ; 

• ( ) ( ) ( ) ( ) ( )1 1 1 2ˆ ˆ ˆ ˆ ˆ1 1
T

DX X X X Xν ν ν ν ν= − +  X 
 is the 

( )ˆ 2D + -long column vector comprising the DTFT samples 

computed at the estimated narrowband frequencies and two 
additional DTFT samples, located one bin below and one 
bin above 1̂ν , respectively;  

• ( )ˆPW ν  and ( )ˆIW ν  are ( ) ( )ˆ ˆ2 2D D+ × +  matrices whose 

elements can be computed from (18) once the vector of 
frequency values estimated by ESPRIT is known, i.e. 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 2 0 1 2 0 1

ˆ0 2 0 1 2 0 1

ˆ0 2 0 1 2 0 1

ˆ0 2 1 2 2 1 0 0 2

ˆ ˆ ˆ0 1 2 1 0 2 0

ˆ ˆ ˆ ˆ1 1 1 1
ˆ ˆ ˆ ˆ0 0

ˆ ˆ ˆ ˆ1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ

D

D

D

D

D D D

P

W W W v v W v v
W W W v v W v v
W W W v v W v v

W v v W v v W W v v

W v v W v v W v v W

− − − − − −

− −

− + − +

− − −

− − −

 
 
 
 

=  
 
 
 
  

W

 

 

 

 

     

 

ν

 

and 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ0 1 2 1 0 1 2 0 1

ˆ0 1 2 1 0 1 2 0 1

ˆ0 1 2 1 0 1 2 0 1

ˆ0 2 1 2 2 1 0 2 0 2

ˆ ˆ ˆ ˆ0 1 2 1 0 2 0

ˆ ˆ ˆ ˆ ˆ ˆ2 1 2 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ2 1 2 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ

D

D

D

D

D D D

I

W v W v W v v W v v
W v W v W v v W v v

W v W v W v v W v v
W v v W v v W v W v v

W v v W v v W v v W v

− − + − + −

+ + +

+ +
+ + +

=
+ + +

+ + +

W

 

 

 

 

     

 

ν

( )D

 
 
 
 
 
 
 
 
  

 

If equation (19) and its complex conjugate counterpart are 
combined into a single linear system, the Taylor’s series 
coefficients of the phasors of all identified components can be 
simply estimated as follows, i.e. 

 ( ) ( )
( ) ( )

1

P I

I P

−
    

=     
    

* ** *

ˆ ˆˆ W ν W νp X
ˆ ˆˆ W ν W νp X

. (20) 

Quite importantly, unlike the original IpD2FT algorithm, in 
this there is no need to solve (20) iteratively, as the static 
frequencies of the narrowband components, including the 
fundamental one, are estimated through ESPRIT.  

Ultimately, the fundamental synchrophasor at a given 
reference time is simply 1,0p̂ , while the corresponding values 
of frequency and ROCOF can be estimated through [20] 

 { }*
1,1 1,0

1 nom2
1,0

ˆ ˆImˆ
2 ˆ

s
p pf

f f
pπ

= + , (21) 
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  { } { } { }* * *2
1,2 1,0 1,1 1,0 1,1 1,0

2 4
1,0 1,0

ˆ ˆ ˆ ˆ ˆ ˆIm Re Im
ROCOF

ˆ ˆ
s

p p p p p pf

p pπ

 
 = −
 
 

. (22) 

Recalling that the results of both (21) and (22) are particularly 
sensitive to wideband noise [36], and that in any case the results 
at the output of the PMUs should be decimated prior to be 
transmitted at a given reporting rate, the frequency and ROCOF 
values computed sample-by-sample can be averaged over one 
reporting period to mitigate the detrimental impact of wideband 
noise. 

E. Computational complexity evaluation 
In principle, the computational complexity of the overall 

algorithm depends on the sum of the complexity of the three 
main steps summarized at the beginning of Section III, i.e., 
RMT-based narrowband components detection, ESPRIT-based 
frequency estimation of such detected components and 
IpD2FT-based synchrophasor estimation.  
• The computational complexity of the detection algorithm of 

possible narrowband components is dominated by (7) and 
by the subsequent SVD computation. The former task 
requires ( )2O LM  operations, while the complexity of 

SVD is ( )3O M . The complexity of the RMT-based 

hypotheses testing algorithm can be hardly estimated 
exactly, as it depends on the time spent in the innermost 
loop to determine 2

ˆ|
ˆ

RMT Dσ  at every iteration. Assuming that 
the solutions of the second-degree equation (9) are 
computed by using closed-form expressions (namely with a 
negligible computational burden), the complexity of (8)-(9) 
is just slighlty greater than ( )ˆ2O M D+ , where D̂  is 

increased from 1 to D. Since the iterative estimator 2
ˆ|

ˆ
RMT Dσ  

based on (8)-(9) requires about 10 iterations to converge to a 
steady value, the overall computation complexity of the 
innermost loop for noise variance estimation is about 

( )( )10 1O M D+ + . The computation of the threshold value 
through (10) has a negligible computational cost once the 
input parameters are given. However, in principle D 
hypothesis testing must be performed before the null 
hypothesis H0 is accepted. Therefore, the overall order of 
complexity of the RMT-based detection step is 
approximately ( )( )10 1 .O D M D+ + Ultimately, the 
complexity of the whole first stage of the proposed 
algorithm is ( )( )2 3 10 1O LM M D M D+ + + + . Obviously, 

the weight of the last term is usually negligible compared 
with the other two, because in practice D M<< .  

• The complexity of the ESPRIT-based frequency estimator 
depends on the number of operations in (15) and on the 
subsequent eigenvalue computation. Assuming that all 
narrowband components are detected (i.e., D̂ D= ), 
expression (15) requires to perform three matrix products 
between matrices of size 2D M× and 2M D× , and the 
computation of an inverse matrix of size 2 2D D× . Thus, 
the overall complexity to compute (15) is 

( )( )2 312 1 8 .O D M D− + The eigenvalue decomposition of 

the resulting Ψ̂  matrix requires further ( )38O D  

operations. Observe that even if the overall complexity 
increases cubically with D , it grows just linearly with M. 
Therefore, the computational burden of the ESPRIT-based 
frequency estimation step is expected to be lower than the 
burden for narrowband components detection. 

• The IpD2FT-based synchrophasor estimation step described 
in Section III.D for a single set of estimates requires: 

( )( )2O N D +  operations to calculate the DFT spectral 

samples at the wanted frequency bins; ( )( )22 2O N D +  

operations to determine the elements of matrices ( )ˆPW ν  

and ( )ˆIW ν  in (20); and ( ) ( )( )3 28 2 4 2O D D+ + +  

operations to solve (20). The frequency and ROCOF 
estimators (21) and (22) require just a few further operations 
with a constant additional burden. Thus, also the complexity 
of the IpD2FT-based synchrophasor estimation step grows 
cubically with D  but just linearly with N. 

In conclusion, even if the overall computational complexity 
looks considerable, in practice the actual number of operations 
is constrained by: i) the number of narrowband components D 
(which is in the order of a few tens at most); ii) the fact that the 
value of M is constrained by both the limited PMU sampling 
frequency (in the order of a few kHz) and the short duration of 
each record (i.e., between one and two power line cycles); iii) 
the fact that the value of L should be preferably comparable 
with M to maximize detection sensitivity (further details on this 
crucial point are provided in Section IV). In addition to such 
constraints, it is of course essential to keep the value of N as 
small as possible, e.g., by collecting and processing the samples 
of no more than two power line cycles at a time. 

IV. SIMULATIONS AND RESULTS 
In order to evaluate the performance of the proposed 

algorithm, a three-step analysis is described in the following. 
Firstly, the accuracy of the RMT-based method for narrowband 
components detection is assessed under different conditions 
and it is compared with the results obtained using the AIC [29], 
and the MDL [30] techniques. The results of this analysis are 
summarized in Section IV.A. Secondly, the accuracy of the 
ESPRIT-based frequency estimation for the narrowband 
components detected with the RMT-based method is analyzed 
in Section IV.B. Finally, the overall estimation accuracy of the 
eIpD2FT algorithm (both in the M Class testing conditions 
specified in the IEEE/IEC Standard [1] and in the presence of a 
critical mixture of harmonics and OOBIs) is evaluated in 
Section IV.C. In this latter analysis, a comparison with the 
original IpD2FT estimator [13] and the TLTFT algorithm [16] 
is also provided. The TLTFT was chosen as a benchmark 
because, unlike the standard TFT approach, it embeds two 
additional features that enable a fairer comparison with the 
proposed algorithm, i.e., i) a preliminary estimation of 
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Fig. 2.  Probability curves of correctly accepting the null hypothesis H0 when the collected signals contain: (a) two interhamonics (one in the frequency band within 
[10 Hz,25 Hz] and another one in the band [75 Hz, 100 Hz], with the interharmonics frequency values changing randomly 100 times); (b) the first 10 harmonics; (c) 
the first 20 harmonics. In all cases the amplitude of the D-1 narrowband interferers is changed randomly between a given lower bound (which is increased linearly 
and used to label the x-axis of the probability curves) and 10% of the fundamental. The different curves in each plot refer to the RMT-based detector and the AIC 
and MDL model order estimators, respectively. 

the fundamental frequency with a consequent adjustment of the 
coefficients of the system matrix; ii) a criterion to choose the 
number of narrowband components to be included in the signal 
for a given observation interval length [16]. 

Assuming that the PMU sampling frequency fs = 6.45 kHz 
(i.e., large enough to avoid aliasing) and SNR=60 (considering 
the fundamental component only) is 60 dB [37], the values of 
parameters M, L, and N used to run all simulations were set to 
173, 100 and 257, respectively. The rationale for this choice is 
the following.  

As briefly explained in Section III.B, the values of M should 
be chosen in such a way that i) more than one power line cycle 
is observed and ii) the value of frequency fs/M does not coincide 
with the frequency of the fundamental, of one of its harmonics 
or of any possible OOBI (e.g., components within [10 Hz, 25 
Hz] or [75 Hz, 100 Hz] if the PMU reporting rate is 50 
frames/s). The conditions i) and ii) mentioned above are met if 
the value of fs/M lies within [27.5 Hz, 37.5 Hz]. Thus, the 
smallest possible odd value of M that satisfies such conditions 
results from M = fs/37.5 + 1 = 173. It is explained in [34] that 
the asymptotic limit of detection of a narrowband component 
for large values of M and L is 2 /M Lσ . Therefore, if 

/ 1M L ≈ , namely if the value of L is not only large enough, 
but also comparable to M, the detection limit approximates the 
noise variance. Nonetheless, it was verified through 
simulations that, in the case at hand, the value of L can be 
decreased by about 40% without degrading detection 
performance. Thus, L was finally set to 100 to keep the 
computational burden as low as possible. 

As far as the length of the observation intervals for 
synchrophasor estimation is concerned, data records of 
duration equal to two nominal powerline cycles plus 1 sample 
(so that the Taylor’s series coefficients of all phasors can be 
computed exactly in the center of each observation interval) are 
considered in the following. Hence, if fs = 6.45 kHz and 
fnom = 50 Hz, the record length results N = 257 samples. Quite 
importantly, to the best of Authors’ knowledge, no other 
estimation algorithms for PMUs are currently able to comply 
with the M Class OOBI rejection requirements of the IEEE/IEC 
Standard over only two-cycle-long observation intervals. 

A. Performance evaluation of the RMT-based algorithm for 
narrowband component detection 

To evaluate and to compare the narrow-band components 
detection capability of the RMT-based algorithm, the AIC 
technique and the MDL estimator, repeated Monte Carlo 
simulations were performed in three different scenarios, i.e., by 
including: (a) two interhamonics (one in the frequency band 
within [10 Hz, 25 Hz] and another one in the band [75 Hz, 
100 Hz], with the interharmonic frequency values changing 
randomly 100 times in the selected bands); (b) the first 10 
harmonics and (c) the first 20 harmonics. In every scenario, the 
minimum ratio between the smallest eigenvalue of the 
narrowband components and the noise variance was increased 
linearly between 1 (which represents the ideal asymptotic limit 
of detection when M, L → ∞) and 16. For every value of this 
ratio, 500 detection tests were performed by changing 
randomly the amplitude of the D-1 narrowband interferers up to 
reach 10% of the fundamental (namely the M Class relative 
maximum amplitude of harmonics and interharmonics 
specified in the IEEE/IEC Standard). Based on the results of 
such tests, the probability of correctly detecting the actual 
number of narrowband components was computed. The 
probability curves obtained in the three scenarios mentioned 
above with the RMT-based algorithm for β=0.01 (solid lines), 
the AIC technique (dashed lines) and the MDL estimator 
(dotted lines) are shown in Fig. 2(a)-(c), respectively. 

It is quite evident that in all analyzed cases the detection 
threshold of the RMT-based technique is lower than the 
thresholds of the other estimators (particularly the MDL one). 
Moreover, the AIC techniques seems to be very sensitive to the 
number of narrowband components. Therefore, it is not robust 
when the amount of narrowband interferers grows. On the other 
hand, when the RMT-based algorithm is used, the narrowband 
components are correctly detected with a 99% level of 
confidence when the minimum ratio 2/jλ σ  for j=1,…,2D+1 
ranges between about 3.5 and 4.5. Recalling that in (6) 

2
4
M

j jAλ = ⋅ , it follows that, if SNR=60 dB and M = 173 

samples, the minimum detectable amplitude of a narrowband 
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component is about 0.2% of the fundamental component, i.e., 
small enough to assume that the impact of the missed detection 
of such interferers on synchrophasor estimation is negligible. 

B. Accuracy of the frequency estimation for the narrowband 
interferers 

The accuracy of the ESPRIT-based frequency estimation of 
the detected quasi-stationary narrowband components is rather 
important, as it also affects the uncertainty of the elements of 
the system matrix in (20). Such accuracy has been assessed by 
multiple Monte Carlo simulations performed in two different 
scenarios. In the former one, two OOBIs (one in the frequency 
band [10 Hz, 25 Hz] and another one within [75 Hz, 100 Hz]) 
are overlapped to the fundamental component. In the second set 
of simulations, the 2nd, 3rd, 4th, and 5th harmonics are 
subsequently added to the fundamental. In both cases, 500 
simulation runs were performed assuming that the initial phase 
of the various narrowband components is randomly chosen in 
[0, 2π) and that their relative amplitude with respect to the 
fundamental is 0.5% (i.e., just slightly above the detection 
threshold), 1% (intermediate size) or 5% (i.e., large enough to 
be regarded as critical). In order to take the frequency deviation 
of the fundamental into consideration, the fundamental 
frequency is also changed randomly with uniform distribution 
in the band [45 Hz, 55 Hz]. The individual maximum absolute 
frequency errors associated to each pair of OOBIs and those 
associated with different harmonics are shown in Fig. 3 and 
Fig. 4, respectively. In both Figures, the frequency estimation 
errors related to the fundamental are purposely not shown 
because: i) they would be hardly visible, since they are orders 
of magnitude lower than the reported ones; ii) they are 
superseded by the results of the cascaded IpD2FT dynamic 
estimator, which will be shown in Section IV.C.  

In all cases, the ESPRIT-based frequency estimation 
accuracy increases when the relative amplitude of either OOBIs 
or harmonics also grows. This is rather important, because it 

implies that the elements of the system matrix in (20) are 
computed with greater accuracy, when the disturbances 
perturbing the synchrophasor estimation become more severe.  

Figs. 3 and 4 provide also some further complementary 
information. In particular, the results in Fig. 3 show clearly (and 
quite reasonably) that the frequency estimation accuracy in the 
presence of multiple OOBIs tends to degrade as the spectral 
distance between them and the fundamental decreases. Fig. 4 
confirms instead that estimation accuracy of multiple harmonic 
frequencies is rather insensitive to their number.  

C. Overall estimation results and accuracy analysis 
In the following, the M Class testing conditions specified in 

the IEEE/IEC Standard to evaluate the accuracy of the overall 
eIpD2FT algorithm are listed and briefly recalled.  

• Test a (Fdev only): Off-nominal frequency deviations 
ranging from -5 Hz to 5 Hz; 

• Test b (Fdev+harm): Off-nominal frequency deviations 
ranging from -5 Hz to 5 Hz, and harmonic distortion 
obtained by including one harmonic at a time from the 2nd 
up to the 50th one, with amplitude equal to 10% of the 
fundamental.  

• Test c (OOBI only): A single OOBI interferer of amplitude 
equal to 10% of the fundamental and frequency increasing 
by 1 Hz at a time within intervals [10 Hz, 25 Hz] and 
[75 Hz, 95 Hz].  

• Test d (AM): Amplitude modulation with modulation index 
0.1 and modulating tone frequency up to 5 Hz. 

Fig. 4.  Maximum absolute frequency estimation errors obtained at the 
output of the ESPRIT stage when an increasing number of harmonics 
(from the 2nd to the 5th) affect the fundamental component. The bar 
diagrams in (a), (b) and (c) refer to harmonics of amplitude equal to 0.5%, 
1% and 5% of the fundamental, respectively.  
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Fig. 3.  Maximum absolute frequency estimation errors of different pairs 
of OOBIs obtained at the output of the ESPRIT stage. The OOBIs 
frequencies are symmetrically chosen below (solid bars) and above 
(brick-patterned bars) the fundamental one. Different colors refer to 
different OOBI amplitude values (0.5%, 1% and 5%).  
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TABLE II 
MAXIMUM TVE, |FE| AND |RFE| VALUES RETURNED BY THE EIPD2FT, IPD2FT AND TLTFT ALGORITHMS OVER 2-CYCLE-LONG OBSERVATION INTERVALS IN 

DIFFERENT TESTING CONDITIONS. ALL OF THEM, EXPECT THE LAST ONE, ARE SPECIFIED IN THE IEC/IEEE STANDARD. IN ALL CASES, THE HANN WINDOW IS USED 
AND SNR = 60 DB. THE LIMITS OF THE IEC/IEEE STANDARD (WHEN DEFINED) ARE ALSO SHOWN FOR COMPARISON. 

TABLE III 
MAXIMUM SYNCHROPHASOR, FREQUENCY AND ROCOF RESPONSE TIMES OBTAINED WITH EIPD2FT, IPD2FT AND TLTFT ALGORITHMS OVER 2-CYCLE-LONG 
OBSERVATION INTERVALS DURING STEP CHANGE TESTS. THE M CLASS LIMITS SPECIFIED IN THE IEEE/IEC STANDARD ARE ALSO SHOWN FOR TH COMPARISON. 

 
Synchrophasor response time 

(cycles) 
Frequency response time 

(cycles) 
ROCOF response time 

(cycles) 

Test case Std 
limit eIpD2FT IpD2FT TLTFT Std 

limit eIpD2FT IpD2FT TLTFT Std 
limit eIpD2FT IpD2FT TLTFT 

g Amp 
step 7 0.7 0.7 0.9 14 2.7 2.6 2.8 14 2.8 2.8 2.9 

h Phase 
step 7 1.2 1 1.3 14 2.7 2.6 2.7 14 2.8 2.8 2.8 

 
• Test e (PM): Phase modulation with modulation index 0.1 

rad and modulating tone frequency up to 5 Hz. 
• Test f (F. ramp): Frequency ramps increasing or decreasing 

at ±1 Hz/s within fnom±5 Hz. 
• Test g (Amp. step): ±10% amplitude step changes. 
• Test h (Phase step): ±π/18 phase step changes. 
To enable a fair comparison between the proposed algorithm, 

the original IpD2FT estimator and the TLTFT technique, the 
classic Hann window was adopted in all cases, as it provides a 
good trade-off between spectral main-lobe width and 
long-range spectral leakage suppression capability. 

The maximum values of Total Vector Error (TVE), 

 ( ) ( )

( ) ( )

1

1

0
1 1,0

0
1

ˆ0
0

j

j
T

A e p
A

VE
e

ϕ

ϕ
=

−
,  (23) 

absolute Frequency Error (FE)  
 1 1̂FE f f= −   (24) 
and absolute ROCOF errors (RFE),  
 RFE ROCOF ROCOF= −   (25) 

obtained in the Tests a to f are reported in Table II. The 
response time values obtained in Tests g and h (namely the time 
intervals between the instants at which the measured values of 
synchrophasor, frequency or ROCOF as a result of a 
fundamental amplitude or phase step change exceed 1%, 5 mHz 
or 0.1 Hz/s, respectively, and the time after which the measured 
values steadily remain under such thresholds) are instead 

reported in Table III. The IEEE/IEC Standard limits for a 
reporting rate of 50 frames/s are also shown for the sake of 
comparison. The reported values are computed over 200 
repeated tests by changing randomly the initial phase of all 
sinusoidal components with uniform probability within [0, 2π).  

In the case of Test a, the estimation accuracy of all estimators 
is basically almost the same, as expected since no narrowband 
interferers are present. The only difference is that the original 
IpD2FT estimates the off-nominal frequency deviation 
iteratively, whereas the eIpD2FT and TLTFT algorithms 
estimate the fundamental frequency through ESPRIT and a 
preliminary IpDFT, respectively. 

In the case of Test b, the eIpD2FT and the TLTFT algorithms 
provides much better results than those of the original IpD2FT 
estimator, because the former two algorithms estimate the 
harmonics (particularly the 2nd and 3rd one which are the most 
critical), while the original IpD2FT does not and, in addition, 
the results over two-cycle-long intervals are strongly affected 
by the spectral leakage of the 2nd harmonic, which is the main 
responsible of the large values shown in Table II.  

In the case of Test c, even TLTFT accuracy strongly 
degrades due to the fact that the OOBIs are not included in the 
model. On the contrary, the proposed eIpD2FT approach 
provides much more accurate results than the other techniques 
and full compliance with M Class requirements thanks to the 
reliable OOBIs detection and to the estimation of the 
corresponding phasors.  

In the AM and PM tests (Tests d and e), all algorithms exhibit 

 

maxTVE (%) maxFE (mHz) maxRFE (Hz/s) 

Test case Std 
limit eIpD2FT IpD2FT TLTFT Std 

limit eIpD2FT IpD2FT TLTFT Std 
limit eIpD2FT IpD2FT TLTFT 

a Fdev only 1 0.06 0.06 0.07 5 0.3 0.3 0.3 0.1 0.07 0.07 0.07 

b Fdev+harm 1 0.07 5.58 0.10 25 1.2 >102 1.6 - 0.32 >102 0.46 

c OOBI only 1.3 0.12 9.99 10.1 10 1.6 >102 >102 - 0.42 >102 >102 

d AM 3 0.07 0.07 0.06 300 9.4 9.9 7.0 14 2.2 2.2 1.8 

e PM 3 0.07 0.07 0.05 300 11.7 13.2 14.3 14 2.4 1.9 1.5 

f F ramp 1 0.07 0.07 0.07 10 0.7 0.7 0.7 0.2 0.18 0.18 0.18 
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comparable accuracy. This is due to the fact that possible 
in-band oscillations close to the fundamental tone are not 
recognized by the eIpD2FT as narrowband interferers. 
Therefore, they are not used to increase the size of (19). As a 
consequence, the eIpD2FT and the original IpD2FT algorithm 
rely on a linear system with the same size, like in the case of 
Test a. In addition, the use of a common Taylor’s series 
synchrophasor model truncated to the second order makes the 
three estimation algorithms rather equivalent. The same 
behavior can be observed in the case of Test f, since the linear 
frequency change of the frequency ramp test is so slow that the 
waveforms collected over two-cycle observation intervals can 
be regarded as quasi static. In conclusion, in the testing 
conditions d, e and f, the three algorithms exhibit almost the 
same accuracy. 

In the amplitude and phase step changes tests (Tests g and h), 
the response times of three algorithms are also almost the same 
and they are well below the limits specified in the IEEE/IEC 
Standard due to the short (i.e., two-cycle-long) 
observation intervals. 

In order to highlight the benefits of the eIpD2FT algorithm 
with respect to the original IpD2FT and the TLTFT estimators, 
two further tests (not included in Table II) involving multiple 
narrowband components were performed. The first one is an 
extension of Test b in which the harmonics from the 2nd to the 
10th (all with amplitude equal to 10% of the fundamental) have 

been progressively included into (1). Again, the static 
off-nominal frequency deviations are swept linearly from -5 Hz 
to 5 Hz. The corresponding maximum TVE, |FE| and |RFE| 
values obtained with the eIpD2FT algorithm are: 0.07, 3.4 mHz 
and 1.8 Hz/s, respectively. Such results are slightly better than 
those obtained with the TLTFT algorithm (i.e., 0.13, 6.1 mHz 
and 2.2 Hz/s) and, not surprisingly, they are much better than 
those returned by the original IpD2FT, which are still 
dominated by the spectral infiltration of the 2nd harmonic.  

A further testing condition was derived from Test c by 
adding the 2nd harmonic to the OOBI. Two extreme cases were 
considered in this kind of tests. In the former one, both 
narrowband disturbances are very small, i.e., with amplitude 
equal to 0.5% of the fundamental. In the latter one, they are 
instead rather large, i.e., with relative amplitude equal to 10% 
of the fundamental. The former condition aims at showing the 
higher sensitivity of the RMT-based algorithm to narrowband 
component detection and the consequent benefits on 
synchrophasor, frequency and ROCOF estimation. The latter 
one is instead conceived to further investigate the robustness of 
the overall algorithm. In both cases, the OOBI frequency is 
varied within bands [10 Hz, 25 Hz] and [75 Hz, 95 Hz]. The 
corresponding maximum TVE, |FE| and |RFE| values are 
shown in Figs. 5 and 6, respectively. Different line styles refer 
to different estimators, i.e., the proposed RMT-based eIpD2FT 
algorithm (solid lines), the basic IpD2FT estimator 
(dash-dotted lines), the TLTFT estimator (dotted lines) and the 

Fig. 5.  Maximum TVE, |FE| and |RFE| values obtained with the eIpD2FT, 
the IpD2FT and the TLTFT algorithms over two-cycle-long observation 
intervals as a function of the 0.5% OOBI frequency fOOBI, when an 
additional 0.5% second-order harmonic is included in the signal model. 
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Fig. 6. Maximum TVE, |FE| and |RFE| values obtained with the eIpD2FT, 
the IpD2FT and the TLTFT algorithms over two-cycle-long observation 
intervals as a function of the 10% OOBI frequency fOOBI, when an 
additional 10% second-order harmonic is included in the signal model. 
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preliminary eIpD2FT algorithm with a threshold-based based 
on a heuristic threshold [15].  

Observe that under the effect of mild interferers (Fig. 5), the 
original threshold-based eIpD2FT yields the same results as the 
IpD2FT, because it is unable to detect the narrowband 
components of amplitude 0.5%. On the contrary, the 
RMT-based eIpD2FT algorithm returns the lowest TVE, |FE| 
and |RFE| values.  

Under the effect of strong interferers instead (Fig. 6), the 
RMT-based eIpD2FT algorithm returns the same results as the 
original threshold-based eIpD2FT, because both of them are 
able to detect the narrowband interferers correctly. In this case, 
both solutions return TVE, |FE| and |RFE| values that are from 
one to some orders of magnitude lower than those achieved 
with the IpD2FT and TLTFT estimators.  

A final point that deserves attention is a comparison of the 
computational complexity of the four algorithms involved in 
the analysis. Of course, the RMT-based algorithm exhibits the 
largest computational complexity. As explained in Section III.E, 
this grows cubically with M and D, but just linearly with N. The 
computational complexity of the original threshold-based 
eIpD2FT algorithm, although roughly comparable, is a bit 
lower since the RMT-based detection step (whose complexity 
is ( )( )10 1O D M D+ + ) is replaced by a plain comparison 

between the singular values of matrix R̂  and the heuristic 
threshold computed a priori. 

The computational complexity of the original IpD2FT 
algorithm is almost the same as that of the last step of the 
RMT-based algorithm only. However, two important 
differences exist: i) the number of narrowband components in 
the original IpD2FT was implicilty assumed to be one, and ii) 
the system of equation (20) must be solved iteratively a few 
times to compensate for the effect of possible off-nominal 
frequency deviations. Thus, the overall computational 
complexity is ( )O I N⋅ , where I denotes the number of 
iterations required by the algorithm to converge. 

Finally, based on what reported in [16], the TLTFT estimator 
consists of two stages: an initial IpDFT applied to the filtered 
data record to extract the off-nominal frequency deviation of 
the fundamental tone and a weighted least-squares estimator. 
The computational complexity of the first stage is ( )O N . In 
the second stage, up to four harmonics are included in the signal 
model when two-cycle-long intervals are considered and the 

overall complexity is ( )2O N . Therefore, the computational 

complexity of this synchrophasor estimator per se is expected 
to be higher than that of the last stage of the RMT-based 
eIpD2FT. However, the processing burden of the RMT-based 
technique is dominated by the R̂  estimation and the SVD 
computation.  

V. CONCLUSIONS 
In this paper, an enhanced version of the IpD2FT (eIpD2FT) 

for synchrophasor estimation is presented and characterized. 

By utilizing a non-parametric hypotheses testing algorithm 
based on random matrix theory, the potential multiple 
narrowband components in the input signal can be detected 
with a high level of confidence, thus adapting the size of both 
the ESPRIT-based frequency estimator and the IpD2FT-based 
synchrophasor estimator to the actual number of harmonics and 
interharmonics. The chosen narrowband components detector 
exhibits superior sensitivity and robustness compared with 
other state-of-the-art solutions for model order estimation. In 
addition, the cascaded synchrophasor estimator exhibits higher 
accuracy than both the original IpD2FT and the techniques 
based on the Taylor Fourier Transform. As a consequence, the 
eIpD2FT algorithm ensures full compliance with the M Class 
PMU requirements defined in the IEEE/IEC Standard 
60255-118-1:2018 (particularly the out-of-band interharmonics 
test) even when just two-cycle-long observation intervals are 
acquired and processed. Such results are preserved when either 
multiple harmonics or a mixture of harmonics and 
interharmonics is added to the fundamental component, as it 
may happen in the case of voltage or current waveforms 
affected by severe nonlinear distortion.  
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