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Abstract

Air source heat pump coupled with PV panels is a
promising solution for hydronic heating systems in
high performance buildings. However, the configura-
tion and operation of these systems must be properly
designed considering the specific needs of high per-
formance buildings. In the literature, several works
dealt with the optimal coupling of HVAC systems in
buildings but there is no agreement on the choice of
the cost functions in the optimization problems.
This study presents an analysis on the extent to which
the choice of the optimization objectives affects the
design of a hydronic heating system in four reference
buildings.

Introduction

The coming into force of the mandatory European
Directive 2009/28/CE requires to increase the role
of renewable energy sources to satisfy the energy
consumptions of new buildings and major renova-
tions. In this respect, the vapor-compression heat
pump coupled with PV panels is a promising so-
lution and, consequently, it is increasingly used for
residential heating applications. This HVAC solu-
tion is especially advantageous in high performance
building when low temperature hydronic systems
are adopted. However, it has been observed that
some issues arise in the control of the HVAC sys-
tems due to the fast changes in energy demand.
Hence, the building might be easily subject to poor
comfort conditions when the energy systems are in-
stalled in high performance houses which approach
the nZEB target while maintaining economical con-
venience (Penna et al. (2015)). Besides, the seasonal
performance of the heating system is strongly de-
pendent on HVAC design, such as the system sizes
(heat pump, water storage tank, PV battery), and
on the adopted system control strategies. An opti-
mal concurrent design of the HVAC and control sys-
tems installed in high performance building is essen-
tial to ensure the reduction of energy consumption
and the achievement of thermal comfort for the en-
tire heating season (Carlon et al. (2016)). In the lit-
erature, several works dealt with the optimal coupling
of HVAC systems in buildings and some of them focus

on high performance buildings. In the optimization
problems different choices of cost functions can be
done (Evins (2013)). Hasan et al. (2008) optimized
the life cycle cost while Bichiou and Krarti (2011)
added to this goal also the utility cost that is closely
related to the energy consumption. Ihm and Krarti
(2013) focused on energy savings and life cycle
costs while Fesanghary et al. (2012) used life cycle
costs and CO2 emissions. Similarly, CO2 savings
and investment costs were adopted in other works
(Hamdy et al. (2011a); Evins et al. (2012); Pountney
(2012)). Thermal comfort is an objective that is
often combined with the energy consumption. In
this respect, PMV index (Magnier and Haghighat
(2010); Eisenhower et al. (2012)), adaptive index
(Hamdy et al. (2011b)), the number of discom-
fort hours (Asadi et al. (2014); Ascione et al. (2015);
Wright et al. (2016)) or the long term discomfort
indexes, like in Carlucci et al. (2013), are often
adopted. Only few works used renewable cover-
age factor or sustainability indicators as optimization
goals. For instance, Ko et al. (2015) added an index
of renewable coverage in addition to economic and
CO2 targets. On the contrary, Wang et al. (2005) op-
timized the life cycle cost and life cycle environmental
impact indexes while Verbeeck and Hens (2007) used
life cycle assessment in addition to energy consump-
tion and net present value.
This study presents an analysis on the extent to which
the choice of the optimization objectives affects the
design of an air source heat pump (ASHP ) system
installed in high performance buildings. The complex
interactions among building, occupants, weather con-
ditions and HVAC systems are considered by means
of a dynamic simulation tool. Moreover, the trade-off
solutions among different optimization objectives are
evaluated by coupling the dynamic simulation tool
with a genetic algorithm code developed in Matlab.

Method

Genetic Algorithm (GA) Implementation

In order to perform the multi-objective optimization
(MOO) a genetic algorithm was developed in Matlab.
The implemented GA is an Elitist Non-dominated
sorting GA algorithms NSGA-II firstly proposed by
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Deb (2002). Nonetheless, several customizations of
the code are used such as sampling, crossover, muta-
tion, selection procedure and stopping criteria. These
adjustments coupled with the selection of mutation
rate, population size, crossover fraction are adopted
with the purpose of increasing the GA performances.
The first step in the GA procedure is the selection of
the initial population. In this regard, random sam-
pling could lead to an over-focus on same regions of
the hyperspace without sampling in others, whereas
a uniform random number generation produces uni-
form sample when the population size is high, as
pointed out by Saltelli et al. (2004). For this rea-
son, the code was complemented with a Sobol se-
quence sampling in order to overcome the cluster-
ing which can occur with sample random sampling
or quasi random generator. Sobol sequence is a low-
discrepancy sequence, which aims to give a uniform
distribution of values in higher dimensions.The ran-
dom starting point in the Sobol sequence was ob-
tained through a pseudo-random generator proposed
by Matsumoto and Nishimura (1998). Once the fit-
ness function is evaluated, the GA proceeds with the
selection of the best individuals. The selection is
the procedure by which GA chooses parents for the
next generation. In this study we adopted the tour-
nament selection without replacement presented in
Goldberg et al. (1989) and Goldberg and Deb (1990).
In this method, a short list of four eligible parents
are randomly chosen and the best individual out of
that set to be a parent. Following on from this
point, the code combines the genetic characteristics
of both parents, giving rise to the new generation.
The recombination procedures implemented is based
on arithmetic weighting of parents genes to create
children. Children are a random arithmetic mean
of two parents, uniformly on the line between the
parents (Burjorjee (2013)). The adopted crossover
fraction, i.e. the fraction of the next generation pro-
duced by the crossover, was set to 0.8. The remain-
ing individuals in the next generation becomes from
mutation of population. Mutation is applied at a
random point in a random individual. In particu-
lar, by means of Mersenne-Twister pseudo random
generator, a randomly selected gene is replaced by
a uniformly distributed random value that meet the
gene range. The hypervolume measure, originally
proposed by Zitzler and Thiele (1999), was used as
a stopping criterion. Although with the drawback of
the higher computational cost in the evaluation of the
size of dominated space, the maximization of this in-
dex is the necessary and sufficient condition for the
Pareto optimal solutions of a discrete MOO problem,
as proved by Fleischer (2003).

Simulation layout

A coupled simulation of the house and its heating
system was set up in the TRNSYS simulation suite.
Standard and TESS libraries are used to model the

building, storage tank, PV modules and battery sys-
tems, while the new subroutine proposed in Bee et al.
(2016) was adopted to simulate the part load behav-
ior of an inverter air source heat pump (ASHP ).
The simulations were carried out considering the
weather data of Trento, that is a city in the Northern
Italy having a 4A climate according to ASHRAE 90.1
(2007) classification. Moreover, several simplified ref-
erence buildings were investigated with the purpose
of broaden the results validity. The semi-detached
house presented in Prada et al. (2015) was modified
in order to consider the influence of the insulation
level and the thermal capacitance of the building en-
velope on the optimal coupling of the HV AC system.
For this reason, concrete block (C) and timber enve-
lope (T ) with either a low (1) or a high (2) insulation
level were studied (Table 1).
The heating system is based on an ASHP , with vari-
able speed compressor, coupled with radiant floor
panels. The ASHP part load operation is described
by a performance curve defined in Bee et al. (2016)
and depending on the capacity ratio (CR) accord-
ing to the EN 14285 (2012). The performance curve
provides the ratio of the part load COP normalized
by the COPrated given by the manufacturer starting
from a full load test at the source temperatures of
7◦ C and 35◦ C. Two points fully identify the change
in the ASHP operation at part-load. The first is
the CRdeg where the COP begins to degrade due to
the on/off cycles. The second is the CRmax value
providing the maximum COP . An on/off controller
with a dead-band (DBHP,adj) turns the ASHP off
when it reaches the lower modulating limit and water
is warmed up more than required. A water storage
tank separates the circuit in the supply side, with
the ASHP , and in demand side, with the circulation
pump and radiant panel loops. The heating system is
powered by either grid or photovoltaic (PV) electric
power in an UPS like mode avoiding the batteries
operation in parallel with the grid, according to the
Italian legislation. Hence, the system is connected to
the grid only when the battery has been completely
discharged. The radiant floor design referred to a
typical commercial configuration with a pipe spacing
of 0.1 m and cross-linked polyethylene pipes having
a diameter of 0.016m, a thickness of 0.002m and a
thermal conductivity of 0.44W m−1 K−1. The radi-
ant panels supply temperature is adjusted according
to an outdoor temperature reset curve defined by the
minimum supply temperature Tsupp,min at the bal-
ance point and by the curve slope sclim,adj .The water
discharge is controlled by a thermostat with a pro-
portional band (PB). The set point temperature of
the ambient thermostat was set to 20 ◦ C while the
set back temperature (TSB) and the time to set back
start (SBstart) and stop (SBstop) are optimization
variables.
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Table 1: Envelope properties according to
EN ISO 6946 and EN ISO 13786

Case
U κint

[Wm−2 K−1] [kJm−2 K−1]
Radiant Floor

C1 0.80 50.9
T1 0.80 36.9
C2 0.29 50.6
T2 0.29 36.5

Wall and Ceiling
C1 0.80 54.1
T1 0.80 30.4
C2 0.29 54.0
T2 0.29 31.1

Optimization Variables

Two different types of variables have to be optimized
in order to improve the performance of an HV AC
system and to better design the coupling with the
building. Firstly, the design variables affecting the
HV AC performance have to be correctly designed by
considering the specific characteristics of the build-
ing construction and operation. In this respect, the
variables optimized in this work were the sizes of the
main components such as ASHP , storage tank, PV
modules and batteries. Besides, the optimal tilt and
orientation angles of the PV modules and the param-
eters of the part load curve of the ASHP were also
considered (Table 2). These variables affect the initial
cost of the heating systems (IC) since they change the
size and quality of the components. For this reason,
starting from a market survey, the following regres-
sion curves were obtained for the estimation of the
initial cost of the systems when the cost is used as an
optimization goal.

ICASHP = COP 2.1305
rated · (127.03 + 20.71 · ϕrated)

ICstor = 2.60 · 10−3 · Vstor + 456.4

ICPV = 1550 + 862.5 · nstr

ICbatt = 0.274 ·Q0.9376
batt · nbatt

Moreover, the variables governing the operation of the
energy systems must be adjusted in order to increase
the performances of the system. In this case, the
modification of the HV AC controls represents an en-
ergy saving measure without additional costs. In this
research we considered the modification of the cli-
matic adjustment curve, the deadband of the ASHP
thermostat, the PB of the ambient thermostat and
the set back temperature and schedule (Table 2).

GA objectives

The fitness function of the GA code is a MatLab
script that writes down the input file and launches
TRNSYS model for the energy simulation. After the
model execution, the script reads the TRNSYS out-
puts and post-processes the simulation results. Fol-

Table 2: Optimization variables

Variable Units Min Max Step
HVAC design variables

Vstor m3 0.05 2.00 0.05
ϕrated kW 4 14 0.2

COPrated - 2.5 5.0 0.1
CRdeg - 0.20 0.40 0.05
CRmax - 0.45 0.60 0.05

PV strings (nstr) - 1 8 1
PV tilt angle deg 0 90 10
PV azimuth deg -90 90 45

Qbatt Wh 108 2376 108
nbatt - 1 4 1

HVAC control variables
Tsuppmin

◦C 25 35 1
sclim,adj - 0 0.33 0.033
DBHP,adj

◦C 0.5 2.5 0.5
TSB

◦C 15 19 0.5
SBstart h 19 23 1
SBstop h 5 8 1
PB ◦C 0.5 1 0.5

lowing on from this point, the code computes the
optimization objectives and it returns them to the
NSGA−II algorithm. Four different objectives were
adopted, since the aim of the work is to point out the
effect of the objective choice on the optimal HV AC
configurations. The first objective index is the an-
nual power consumption for heating (Qh). This ob-
jective was calculated by summing for each timestep
the energy required by the circulation pump and by
the ASHP . The second objective is the PV self con-
sumption (AC) that is closely related to the renew-
able coverage factor. This index computed the annual
energy of the ASHP and of the auxiliary systems
that comes from the batteries or from the PV panels.
This index is computed in TRNSYS by means of an
equation and by an integration type. The third GA
objective is the total number of unmet hours (UH)
during the occupied periods. This index identifies the
period of time in which the internal air temperature
does not meet the set point due to the low HV AC
capacity or the high inertia of the heating system.
This index is related to the thermal comfort percep-
tion since the air temperature is one of the four main
variables of the PMV . Finally, the last GA objec-
tive is an economical index. In this respect, the net
present value (NPV ) is calculated to define economic
benefits of each HV AC configuration. This approach
allows the analysis of different time series of cash flows
related to each solution based on a lifespan that was
considered equal to 30 years. The NPV takes into ac-
count the initial investment cost, the annual running
costs, the maintenance cost, the replacement costs,
and the residual value, according to the EN 15459
(2007). The initial cost were defined starting from
a market survey, by defining a pattern of costs as
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Table 3: Optimization runs with the choice of differ-
ent optimization goals

Code Qh NPV UH AC
Opt1 x x
Opt2 x x
Opt3 x x
Opt4 x x
Opt5 x x
Opt6 x x
Opt7 x x x
Opt8 x x x
Opt9 x x x
Opt10 x x x
Opt11 x x x x

a function of the main product characteristics, espe-
cially to the optimized variables.
These four objectives were then combined with each
other in a full factorial plan in order to assess how the
selection of the objective in the optimization prob-
lem may change the characteristics of the HV AC op-
timal configurations (Table 3). For this reason, 11
optimization runs were performed for each reference
building defined in previous sections.

Results

The results are a series of Pareto fronts and surfaces
showing the trade-offs among the different objectives.
The frequency of each optimization variable in the
Pareto optimal solutions as been analyzed, since the
purpose of research is to highlight the effects of the
cost function selections on the optimum solutions.
For this reason, the first and third quartile of any
optimization variable distribution in the optimal solu-
tions are simultaneously plotted for each optimization
runs with the different choice of the cost functions.
The radar plots in Figure 1 to 4 show the minimum
(blue dotted line), the maximum (red dotted line),
the first quartile (blue line) and the third quartile (red
line) of the solutions belonging to the Pareto fronts for
the main optimization variables. The surface between
the red and blue line represents the range of each op-
timization variable, within which are contained the
50% of the optimal solutions. A detailed analysis of
the effects of the cost functions on the four optimiza-
tion variables with the most interesting results are
presented in the following sections.

Storage Tank

Firstly, it is interesting to note the significant dif-
ference in optimum storage volume obtained for the
four different buildings when only two objectives are
set in the Genetic Algorithm (Figure 1a to 4a). The
greater the thermal capacitance of the building en-
velope the lower the optimal storage volume. These
results are related to the greater possibility in using
the thermal inertia of the building envelope especially

in well insulated and massive buildings. Similarly,
the low thermal mass of the building walls also in-
creases the variability of the storage tank volumes
in the Pareto solutions. This is highlighted by the
higher distances between the first (blue curve) and
third quartile curves (red line).
The radar plots show also a star shapes of the curve,
thus a noticeable dependence of the storage volume
of the cost functions is pointed out. The introduction
of the NPV in optimizations with two cost functions
leads to a considerable reduction of the optimum stor-
age volumes whatever the second objective for all the
reference buildings. In these cases, the optimum vol-
ume of the 50% of the optimal solutions is between
200 and 300 liters for the case C1, between 50 and
250 for the C2, between 200 and 700 for the T1 and
between 100 and 400 for T2. On the contrary, the
volumes are greater in optimizations in which the two
objectives are a combination of Qh, UH and AC. In
these cases, the volume of the storage tank is between
500 and 1000 liters in the 50% of the optimal solu-
tions, for all the reference buildings. The optimal
storage volumes exceed the 1000 liters in the opti-
mization (Opt5), in which UH is minimized and AC
is maximized. In fact, having a large reserve of en-
ergy is important especially when the heating sys-
tem is switched on in the morning hours, when the
low outdoor temperatures limits the COP and, con-
sequently, the ASHP capacity. Similarly, it is im-
portant to obtain the simultaneity of PV production
with the energy consumption to maximize the AC
goal. Thus, the charge of a large storage tank in the
morning tends to optimize this objective, especially
when this solution is combined with the east orienta-
tion of the PV modules.
Another interesting result is related to simultaneous
optimization of three cost functions. The introduc-
tion of the third objective leads to similar storage
solutions, except for the optimization run in which
NPV is the missing goal (Opt9). In the latter case,
in fact, the optimal volume within which are the 50%
of the optimal solutions becomes from 500 to 1100
liters except for the C1 building.
Finally the optimization conducted with all the four
goals leads to a volume range that is not affected by
the reference building. In Opt11, the interquartile
range is larger than the other optimization runs and
the optimal storage volumes ranging from 400 to 900
liters, regardless to the envelope characteristics.

Battery Total Capacity

These results show a limited dependence of the in-
terquartile range from the reference building’s char-
acteristics (Figure 1b to 4b). Weak differences are
caused only by the building energy demand. The
higher the building energy needs (cases C1 and T1),
the greater the battery total capacity in the Pareto
front solutions. This influence is more evident on the
the first quartile values with respect to the third quar-
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tiles. This means that the optimal solutions tend
to flatten over medium-high battery capacity, thus
showing a lower diversification of the front.
The cost function that obviously leads to further bat-
tery capacity is the maximization of AC. In this case,
however, there is a significant variation according to
the second objective considered in the optimization.
If fact, the NPV limits the maximum total capacity
that never exceeds 6 kWh in all the buildings. This is
because theNPV tends to penalize the batteries with
greater Qbatt due to the higher initial cost. Besides,
the values of Qbatt are frequently included between
950 and 1450Wh corresponding to about 80−120Ah
in all optimizations runs. Hence, the modulation of
the total battery capacity arises primarily from vari-
ation in the number of installed batteries.
Similar results were also obtained for the optimiza-
tions with three cost functions. The optimizations
with the AC goal (i.e Opt8 ÷ Opt10) show very sim-
ilar changes in the first and third quartiles. Generally,
the 50% of the optimal solutions has a total capac-
ity of the batteries between 2 and 6.5 kWh in all the
considered building configurations. Only in T1 the
choice of Qh, NPV and AC leads to the selection
of total capacity up to 8 kWh. The three cost func-
tion optimization without the AC objective induces
the selection of lower battery capacity, which vary
between 950 and 3000Wh. Finally, the optimization
with four goals leads to similar results in cases with
the same insulation level of the building envelope re-
gardless the heat capacitance. In fact, the 50% of the
Pareto solutions have a total capacity between 2.2
and 5.5 kWh in cases with the low insulation level
(i.e. C1 and T1) while C2 and T2 show a variability
from 1.5 to 6 kWh.

ASHP Rated Capacity

The optimal size of the heat pumps are scarcely af-
fected by the building characteristics (Figure 1c to
4c). The rated capacity of the 50% of the Pareto so-
lutions are comprised between 4 and 5 kW in most of
the optimization runs regardless the insulation level
and the envelope thermal capacitance.
Different results are highlighted by the dependence
on the cost function selections. Notice that the in-
troduction of the AC objective leads to an increase
of the optimal ASHP sizes, especially as regards the
Opt3 in which AC and Qh are simultaneously opti-
mized. In Opt3 the third quartile is considerable in-
creased while the first quartile remains substantially
unaltered. Hence AC causes an increased dispersion
of the optimal ASHP rated capacity that varies be-
tween 4 and 8.4 kW when the second cost function
is Qh. The competitiveness of the two optimization
goals causes the greater dispersion of the rated capac-
ity. In fact, the PV self-consumption is promoted by
the worst performance of the ASHP caused by the
operation at a low part load ratio, while Qh needs
an operation at high part load ratio in order to re-

duce the energy consumption. On the contrary, the
selection of AC and UH as cost functions induces a
lower dispersion of the ASHP rated capacity in 50%
of the solutions. In fact both the indexes cause an
ASHP oversizing. Hence the optimal rated capacity
ranges from 10 to 12.5 kW for timber envelopes and
it is closed to 10 kW for C1 case. Instead, the high
thermal capacitance and the insulation level in case
C2 smooth down the variation range between 6.8 and
8.8 kW .
Optimizations with three goals show both a general
increase of the ASHP rated capacity and a greater
interquartile range when the excluded cost function is
either theQh or theNPV in timber buildings. A sim-
ilar behavior is noted even in concrete buildings for
the same optimization runs and also for Opt8 when
UH is the unused cost function. Finally, it should be
reported as the optimizations with all the four cost
functions produce similar results regardless the enve-
lope characteristics also for this optimization variable.

Number of PV strings

In the simulations we considered strings made up of
3 modules connected in series, each with an open cir-
cuit voltage of 37V . The parameter optimized and
diagrammed in the Figure 1d to 4d is the number of
strings connected in parallel.
The shape of the radar plot highlights a similar be-
havior for the four test cases. Slight variations are
found only in the Opt8 when Qh, AC and NPV are
the considered cost functions. In this case, there is
a reduction of the value of the third quartile in well-
insulated buildings (i.e. C2 and T2) with respect to
the building with a less insulated envelope.
Regarding the differences in the optimization runs,
the introduction of the AC obviously increases the
number of PV strings in the Pareto front solutions. It
should also be underlined the great dispersion in Opt6
when the NPV and AC are used. This is related to
the high competitiveness of the two objectives. The
maximization of self-consumption of PV production
requires an increasing number of PV stings whereas
the number is greatly limited by the initial cost con-
sidered in the NPV . The numbers of PV strings in
the Pareto front solutions are close to the upper limit
of the variable range in most of the optimizations with
two goals. The only two optimization runs for which
the 50% of the front solutions has a lower number of
PV strings are tied to the choice of NPV with either
Qh or UH.
The Opt9 run is particularly interesting in the op-
timizations with three goal. In this simulation the
NPV is the neglected cost function. For this op-
timization run, the first quartile tends to the third
quartile, thus the dispersion in the number of PV
stings is severely restricted. This result therefore
shows how the only goal that penalizes the number
of PV strings is the NPV .
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Figure 1: Concrete envelope with low insulation (case C1)
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Figure 2: Concrete envelope with high insulation (case C2)
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Figure 3: Timber envelope with low insulation (case T1)
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Figure 4: Timber envelope with high insulation (case T2)
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Finally, the front solutions obtained with the simul-
taneous optimization of the four cost functions show
a greater dispersion of the number of PV strings. For
C2 and T2, the number of strings ranges between 3
and 8 in the 50% of the optimal solutions. This ranges
is restricted to 4 and 8 in T1 and to 5 to 8 in C1.

Conclusion

The paper presents an analysis on the variation of
optimal HVAC design and control characteristics due
to the choice of different optimization goals in the
multi-objective optimization.

Firstly, the rated capacity of the ASHP is scarcely
affected by the choice of the cost functions. The opti-
mum ASHP size is roughly equal to 4 kW , whatever
the choice of targets, for all the test cases used in the
study. The optimization carried out with UH and
AC as objectives is the only optimization run leading
to an oversizing of the rated ASHP capacity. This
choice tends to oversize all the HVAC components as
showed by the radar plots in which the storage vol-
ume, the battery total capacity and the number of
PV strings are close to the upper limit of the varia-
tion range of the parameter in Opt5. Furthermore,
it is observed as the first and third quartiles are gen-
erally close to each other in the Opt5 run. This im-
plies a weak variation in the characteristics of the
Pareto front solutions. Hence, UH and AC are not
competing goals since they tend to favor similar solu-
tions. These results show that the choice to maximize
the renewable coverage while minimizing the hours of
not meeting the internal setpoint temperature leads
both to the selection of the HVAC solutions with low
energy performance. These objectives are therefore
strongly competing with the choice of reducing the
energy consumption. This is not the case of opti-
mization runs with the NPV goal. Even if the cost
minimization could drive the decision maker toward
solutions with a lower initial cost, that are also char-
acterized by lower energy performance. This does
not happen because the NPV also covers the opera-
tional costs related to the energy consumption which
therefore pose a constraint to the minimum energy
performance.

The use of AC and Qh as optimization objectives
leads to the choice of large storage tank, high bat-
teries capacitance and high PV surface. The results
also show that the NPV is the only objective that
limits the size of the storage tanks and the number
of PV modules. Thus the NPV in most of the cases
is the only competitive goal with respect to the other
three technical objective. Hence the limit on the size
of the ideal plant components is the primary effect of
the introduction of NPV in the optimization. This is
also evidenced by the optimization with three objec-
tives in which the NPV is the neglected goal. Also in
this case the solutions of the front tend to maximize
as far as possible the production and accumulation of

energy from renewable sources.
Finally, the increasing number of cost functions tends
to make the distribution of each variable in the Pareto
front solutions less sensitive to either the insulation
and to the thermal capacitance of the building en-
velope. On the contrary, the choice of only two ob-
jectives leads to the most sensitive solutions to the
characteristics of the building, this especially for solu-
tions related to the powers and plant optimum yields
and the accumulation capacity requests (both ther-
mal and electrical).
The analysis was carried out on the Pareto set con-
taining a large number of HV AC solutions by inves-
tigating the interquartile range of each variable distri-
bution. From the building owner and/or designer per-
spective, the consideration of all the non-dominated
solutions can be prohibitive and an inefficient task.
For this reason a post Pareto analysis is required to
achieve a smaller practical set, i.e the pruned Pareto
front, which can be more suitable for the decision
maker. In this respect, the choice of the cost func-
tions can also affect the post Pareto results.

Nomenclature
AC Auto-consumption of the PV production

[kWh]

COP Coefficient of performance [−]

CR Capacity ratio according to EN 14285 [−]

ϕrated Rated capacity of the ASHP [kW ]

IC Initial cost of the solution [e]

κint Internal areal capacitance according to
EN ISO 13786 [kJ m−2 K−1]

nbatt Number of batteries [−]

nstr Number of PV strings [−]

NPV Net present value [e]

nZEB Nearly zero energy building [−]

MOO Multi-objective optimization problem [−]

PMV Fanger’s predicted mean vote [−]

Q1 First quartile of the variable distribution [−]

Q3 Third quartile of the variable distribution [−]

Qbatt Battery capacity [kWh]

Qh Energy consumption for heating [kWh]

U Thermal transmittance according to
EN ISO 6946 [W m−2 K−1]

UH Unmet hours during occupied periods [h]

UPS Uninterruptible power supply [−]

Vstor Volume of the storage tank [m3]
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