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Various processes, such as cell differentiation and disease spreading, can be modelled as quasi-

reaction systems of particles using stochastic differential equations. The existing Local Linear 
Approximation (LLA) method infers the parameters driving these systems from measurements 
of particle abundances over time. While dense observations of the process in time should in 
theory improve parameter estimation, LLA fails in these situations due to numerical instability. 
Defining a latent event history model of the underlying quasi-reaction system resolves this 
problem. A computationally efficient Expectation-Maximization algorithm is proposed for 
parameter estimation, incorporating an extended Kalman filter for evaluating the latent reactions. 
A simulation study demonstrates the method’s performance and highlights the settings where it is 
particularly advantageous compared to the existing LLA approaches. An illustration of the method 
applied to the diffusion of COVID-19 in Italy is presented.

1. Introduction

An increasing number of natural phenomena can be described by quasi-reaction systems of stochastic differential equations, as 
these are able to capture the inherent stochasticity of many processes. Examples include the stem cell differentiation process (Pellin 
et al., 2019, 2023), the dynamics of a biological system (Wilkinson, 2018) or of an infectious disease spreading (Britton and Pardoux, 
2019), and the diverse applications of diffusion processes (Craigmile et al., 2023). The dynamics of these systems depend critically 
on parameters which are often unknown. Estimating these parameters is therefore important for characterizing and predicting the 
evolution of a dynamic system.

The likelihood of the intermittently observed process has rarely an explicit form (Wilkinson, 2018). To overcome this problem, 
Local Linear Approximation (LLA) methods provide an explicit approximation of the likelihood function under some assumptions 
(Shoji and Ozaki, 1998). Nevertheless, both in the case when observations are too spaced out in time and when the inter-observations 
times are too close, estimates based on the LLA are biased. Komorowski et al. (2011) present an extensive study on the effects of 
correlation between molecule concentrations on statistical inference, in the specific case of stochastic chemical kinetics models. 
Various approaches for reducing the variance of parameter estimators in a generic multi-response, non-linear model are available 
and could be used also in the case of dynamic systems. In the context of D-optimal designs, the most commonly used criterion 
assumes knowledge of the variance-covariance matrix (Fedorov, 2013). Although alternatives exist that use only an estimate of 
this matrix (Cooray-Wijesinha and Khuri, 1987), recent studies have observed that minimising the determinant of the information 
matrix is computationally efficient but not very robust (Hatzis and Larntz, 1992). An alternative approach is the use of Tikhonov 
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regularisation techniques (Engl et al., 1996). However, if the measurements are taken very close together in time, the concentrations 
can be constant, leading to zero standard deviations and making also regularisation infeasible.

An approach to overcome these limitations is proposed. Intuitively, when the particles in the system are observed very close in 
time, one may be able to reconstruct which events of the stochastic process have taken place in order to result in a change of the 
system from the current to the next time point. Thus, the core element of the proposed approach involves integrating event history 
analysis into the framework of quasi-reaction systems. Originally conceived for sociological studies, event history models have been 
used on a range of applications, from engineering to medicine, economics, political science and psychology (Box-Steffensmeier and 
Jones, 2004). As the rates governing the evolutions of the state of the system and of the underlying event counting process are clearly 
linked, and they depend on the previous state of the system, the first contribution of the paper will be to formalise a joint statistical 
model that couples the two processes.

The second contribution of the paper is to develop an inferential procedure for the proposed model. As the occurrence of the 
events is not observed, an Expectation-Maximation (EM) algorithm for parameter estimation is derived. In particular, at the E-step, 
Kalman filter (Kalman, 1960) is used for the prediction of the latent events from the dynamics of the system observed on the entire 
time interval. The most popular version of Kalman filtering is for the case of Gaussian linear systems. However, an extension is 
required. Firstly, since the latent event counts are not Gaussian, the Poisson distribution is approximated with a continuous Gamma 
distribution, which is then transformed to a Gaussian distribution via a marginal transformation. Secondly, since the resulting system 
is non-linear, an extended Kalman filtering procedure is proposed for estimating the latent state of the event count process (Anderson 
and Moore, 2012). This allows the evaluation of the Q-function, which is then maximised at the M-step of the EM algorithm. In 
this way, the approach relates to other implementations of EM algorithms with an embedded Kalman filter, such as (Shumway and 
Stoffer, 1982; Ghahramani and Hinton, 1996) for dynamic linear systems, and more recent extensions for non-linear systems, such 
as the EM extended Kalman filter of Bar-Shalom et al. (2001), the EM unscented Kalman filter of Wan and Van Der Merwe (2000)

and the EM particle filter of Zia et al. (2008).

The rest of the paper is organized as follows. In Section 2, the latent event history model for quasi-reaction systems is formalized. 
In Section 3, the EM algorithm for parameter estimation is described. In Section 4, a simulation study demonstrates the method’s 
performance and highlights the settings where it is particularly advantageous compared to the existing LLA approaches. In Section 5, 
an illustration of the method on the modelling of the COVID-19 transmission dynamics in Italy is presented. Finally, in Section 6, 
conclusions and directions for future work are discussed.

2. Modelling quasi-reaction systems

Consider a closed system in which 𝑝 substrates interact, each denoted as 𝑄𝑙 with 𝑙 = 1, … , 𝑝. These substrates could represent the 
compartments of an infectious disease model, the cell types in a cell differentiation model, or the different molecules in a biochemical 
reaction system. The 𝑗-th chemical reaction can generally be described as

𝑘1𝑗𝑄1 + ...+ 𝑘𝑝𝑗𝑄𝑝

𝛽𝑗
←←←←←←←←←→ 𝑠1𝑗𝑄1 + ...+ 𝑠𝑝𝑗𝑄𝑝 𝑗 ∈ 1,… , 𝑟, (1)

where 𝑟 indicates the number of reactions describing the dynamic system. Let  denote the set of possible reactions. The stoichiometric 
coefficients 𝑘𝑙𝑗 and 𝑠𝑙𝑗 are fixed integer values that describe the amount of substrate 𝑙, as reactant and product, respectively, that is 
needed for reaction 𝑗 to occur, while 𝜃𝑗 = exp(𝛽𝑗 ) ∈ℝ+ is the rate at which reaction 𝑗 occurs.

The log-reaction rates 𝜷 = (𝛽1, … , 𝛽𝑟)⊤ characterize the evolution of the dynamic system. These are the parameters that need to 
be estimated, given realizations of the state of the system over time. Let then 𝑌𝑙(𝑡) denote the amount of the 𝑙-th particle at time 
𝑡, with 𝑡 ∈ [0, 𝑇 ]. Let Y(𝑡) = (𝑌1(𝑡), … , 𝑌𝑝(𝑡))𝑇 ∈ ℕ𝑝

0 denote the state of the system at time 𝑡. Even if reaction equations like (1) are 
often used to represent kinetic models, as these facilitate a qualitative understanding of the dynamics, from a mathematical point of 
view chemical reactions are modelled primarily as systems of stochastic differential equations (Wilkinson, 2018). This methodology 
enables a quantitative interpretation of the dynamics, as it allows to study the temporal variation of the counts Y from the dynamics 
at the unit level.

According to the underlying dynamic system, particles encounter resulting in an instantaneous firing of one of the reactions. As a 
result, the system moves to the next state. Two viewpoints can be taken in the characterization of the stochastic process that induces 
changes in the state Y over time. The first viewpoint, presented in Section 2.1, models the stochastic process by which reactions 
occur and, as a by-product, the state of the system Y moves to a new configuration, deterministically. A second viewpoint, presented 
in Section 2.2, directly describes the change of the system based on the amount of particles available at a certain point in time and 
the hazard rate of each reaction at that point in time. As the occurrence of reactions is not observed, the second viewpoint is the most 
direct approach for modelling dynamic systems. Indeed, this is the approach considered in the literature and the one that results in 
the traditional LLA approaches for parameter estimation.

Instead, when the system is observed at small time intervals, one may be able to reconstruct the underlying process of reactions, 
leading to a more accurate characterization of the dynamic system. The main reason is the high temporal correlation between the 
states at small time scales. Motivated by this, Section 2.3 shows how the two viewpoints can be unified into a joint statistical model.

2.1. Event process

Let 𝑒𝑗 ∶= (𝑡𝑗 , 𝑟𝑗 ) be the event that reaction 𝑗 ∈  occurs at time 𝑡𝑗 . Associated with this marked point process and with each 
2

reaction 𝑗, there is a multivariate counting process
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𝑁𝑗 (𝑡) = #{Reactions of type 𝑗 occurring in time interval [0, 𝑡], 𝑗 ∈}.

𝑁𝑗 (𝑡) is assumed to follow a non-homogeneous Poisson process

𝑁𝑗 (𝑡) ∼ Poisson(Λ𝑗 (𝑡)),

with cumulative rate

Λ𝑗 (𝑡) =𝐸[𝑁𝑗 (𝑡) |𝑡− ] =

𝑡

∫
0

𝜆𝑗 (𝒀 (𝑢);𝜷)𝑑𝑢,

where 𝑡− is the history of the process up to, but excluding, time 𝑡.
The hazard rate 𝜆𝑗 (𝒀 (𝑡); 𝜷) depends on the state of the system at time 𝑡 as well as on the amount of particles of each type that are 

needed for each reaction to occur, i.e., the stoichiometric coefficients 𝑘𝑙𝑗 in (1). In particular, it holds that (Wilkinson, 2018)

𝜆𝑗 (𝒀 (𝑡);𝜷) = exp(𝛽𝑗 )
𝑝∏
𝑙=1

(
𝑌𝑙(𝑡)
𝑘𝑙𝑗

)
, (2)

where 
(𝑌𝑙(𝑡)
𝑘𝑙𝑗

)
= 0, for all 𝑌𝑙(𝑡) < 𝑘𝑙𝑗 .

2.2. Particle count process

The state of the system 𝒀 (𝑡) is itself also a continuous time discrete Markov process. In the particular setting of a quasi-reaction 
system, it is possible to establish the temporal evolution of the probability distribution 𝑃 (Y; 𝑡), i.e., the probability that Y is the state 
of the system at time 𝑡. This will again depend on the state of the system just before time 𝑡. In particular, the distribution can be 
shown to satisfy the chemical master equations (Wilkinson, 2018)

𝑑𝑃 (𝒀 ; 𝑡)
𝑑𝑡

=
∑
𝑗∈

[
𝜆𝑗
(
𝒀 (𝑡) − 𝑉⋅,𝑗 ;𝜷

)
𝑃
(
𝒀 − 𝑉⋅,𝑗 ; 𝑡

)
− 𝜆𝑗 (𝒀 (𝑡);𝜷)𝑃 (𝒀 ; 𝑡)

]
, (3)

where 𝑉 denotes the net effect matrix, with (𝑙, 𝑗) entry given by 𝑣𝑙𝑗 = 𝑠𝑙𝑗 − 𝑘𝑙𝑗 .

A solution of (3) gives the full transition probability kernel for the system dynamics. The master equations, however, can be 
solved analytically only in a small number of cases, due to the vast spectrum of conceivable state configurations (McQuarrie, 1967). 
On the other hand, from the master equations, one can derive the conditional expectation and variance of the rate of changes of the 
system. These are given, respectively, by

𝔼[Y(𝑡+ 𝑑𝑡) − Y(𝑡) | Y(𝑡)]
𝑑𝑡

= 𝑉 𝝀(𝒀 (𝑡);𝜷), (4)

𝕍 [Y(𝑡+ 𝑑𝑡) − Y(𝑡) | Y(𝑡)]
𝑑𝑡

= 𝑉 diag(𝝀(𝒀 (𝑡);𝜷))𝑉 𝑇 .

These two moments form the basis of the LLA solution to the master equations via a generalised least-squares approach (Pellin et al., 
2019). Alternative approximations based on the van Kampen expansion have been proposed within a Bayesian inferential approach 
(Capistrán et al., 2012).

2.3. Latent event history model

The two characterizations described above are now merged into one joint model based on realizations of the process at discrete 
time points. Let then Y𝑖 = Y(𝑡𝑖), 𝑖 = 0, … , 𝑁 , be the state of the process at 𝑁 + 1, not necessarily equispaced, time points. Under the 
non-homogeneous Poisson process described in Section 2.1 and assuming that the hazard rates remain constant within the 𝑁 time 
intervals, the increments of event counts follow a Poisson distribution, conditional on the history of the process. In particular,

Δ𝑁𝑖𝑗 =𝑁𝑗 (𝑡𝑖) −𝑁𝑗 (𝑡𝑖−1) |𝑡𝑖−1
∼ Poisson(𝜇𝑖𝑗 (Y𝑖−1;𝜷)), 𝑗 = 1,… , 𝑟, (5)

where

𝜇𝑖𝑗 (Y𝑖−1;𝜷) = (𝑡𝑖 − 𝑡𝑖−1)𝜆𝑗 (Y𝑖−1;𝜷), (6)

with 𝜆𝑗 (Y𝑖−1; 𝜷) defined as in Equation (2). For the rest of the manuscript, ΔN𝑖 and 𝝁𝑖 denote the vectors of reaction counts Δ𝑁𝑖𝑗

and rates 𝜇𝑖𝑗 (Y𝑖−1; 𝜷), respectively, in the interval (𝑡𝑖−1, 𝑡𝑖] across the 𝑟 reactions.

It is clear how knowledge of the increments ΔN𝑖 would allow for perfect prediction of the state of the system at time 𝑡𝑖 , since 
Y𝑖 −Y𝑖−1 = 𝑉 ΔN𝑖. Combined with (5), this implies that Y𝑖 −Y𝑖−1 is a linear combination of Poisson random variables, conditional on 
the history of the process. However, this linear combination does not have an explicit distribution in itself, and, more importantly, 
the increments for different particle types are not independent, leading to a further complication in the likelihood. For this reason, 
3

an approximate state-space formulation of the process that circumvents a direct full likelihood approach is proposed.
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Fig. 1. Latent event history model DAG. The state of the system at time 𝑡𝑖, Y𝑖 , depends on the previous state, Y𝑖−1 , and on the number of reactions X𝑖 that occur 
in the interval (𝑡𝑖−1, 𝑡𝑖]. The latent X𝑖 is approximated with a Gamma distribution and connected deterministically with a Gaussian random vector Z𝑖 , via a marginal 
transformation 𝐺. Notice how Z𝑖 is independent of future states, Y(𝑖+1)∶𝑁 , conditional on current and past states, Y0∶𝑖 .

To this end, an approximation of the Poisson distribution of ΔN𝑖 with a continuous distribution is proposed. In particular, a 
Gamma distribution with a mean and variance matching that of ΔN𝑖, and with a similar skewness, is considered. In this way, the 
process can be rewritten as a Gaussian state space model. More in detail, the discrete increments Δ𝑁𝑖𝑗 in Equation (5) are associated 
to the continuous random variable 𝑋𝑖𝑗 = 𝐹−1

𝑖𝑗
(Φ𝑖𝑗 (𝑍𝑖𝑗 )), where 𝐹𝑖𝑗 is the CDF of a Gamma distribution with scale parameter 1 and 

shape parameter 𝜇𝑖𝑗 (Y𝑖−1; 𝜷) from Equation (6), and Φ𝑖𝑗 is the CDF of a Gaussian distribution with mean and variance both equal 
to 𝜇𝑖𝑗 (Y𝑖−1; 𝜷). So 𝑍𝑖𝑗 is the Gaussian random variable that is uniquely associated to the Gamma distributed random variable 𝑋𝑖𝑗 , 
and with the same conditional mean and variance as the original Δ𝑁𝑖𝑗 variable. In the remaining of the paper, Z𝑖 will denote the 𝑟-
dimensional vector of Gaussian random variables associated to the event counts in the interval (𝑡𝑖−1, 𝑡𝑖], X𝑖 the corresponding Gamma 
random variables and 𝐺 the function that transforms Z𝑖 into X𝑖, namely

X𝑖 =𝐺(Z𝑖) =
(
𝐹−1
𝑖1 (Φ𝑖1(𝑍𝑖1)),… , 𝐹−1

𝑖𝑟 (Φ𝑖𝑟(𝑍𝑖𝑟))
)
.

With the latent event counts ΔN𝑖 approximated by X𝑖, it follows that, approximately, Y𝑖 −Y𝑖−1 = 𝑉 X𝑖 = 𝑉 𝐺(Z𝑖). In the following, 
the state space model will be formulated more generally, so as to account also for possible measurement error in the observations 
Y𝑖, which may be relevant in some applied settings. In particular, the following latent event history model is proposed:{

Z𝑖 = 𝝁𝑖 + 𝜺𝑖, 𝜺𝑖 ∼ (
0,diag(𝝁𝑖)

)
,

Y𝑖 = Y𝑖−1 + 𝑉 𝐺(Z𝑖) +𝝍 𝑖, 𝝍 𝑖 ∼ (0,Σ), 𝑖 = 1,… ,𝑁,
(7)

where 𝝍 𝑖 is a Gaussian noise vector with mean zero and variance-covariance Σ = diag(𝜎21 , … , 𝜎2𝑝 ). The case of no measurement error 
in Y𝑖, which will be considered in the simulations, will correspond to the special case of 𝜎2

𝑙
= 0, 𝑙 = 1, … , 𝑝. Fig. 1 summarizes the 

dependence structure associated to the proposed model.

3. Inference

This section discusses statistical inference of the latent event history model (7). Denoting with Y the (𝑁 + 1) × 𝑝 matrix of 
observations at the 𝑁 +1 time points and Z the (𝑁 +1) × 𝑟 matrix of latent variables, estimation of 𝜷 and Σ requires the optimization 
of the marginal log-likelihood

𝓁Y(𝜷,Σ) = log∫
Z

𝐿Z,Y(𝜷,Σ)𝑑Z. (8)

As common in the presence of latent variables, an Expectation-Maximisation (EM) algorithm for parameter estimation is derived 
(Dempster et al., 1977). To this end, the complete log-likelihood, conditional on the initial state Y0 and assuming some measurement 
error in Y𝑖 (Σ ≠ 0), can be factorized into

𝓁Z,Y(𝜷,Σ) =
𝑁∑
𝑖=1

[
𝓁Z𝑖|Y𝑖−1 (𝜷) + 𝓁Y𝑖|Z𝑖 ,Y𝑖−1 (Σ)], (9)

where

𝓁Z𝑖|Y𝑖−1 (𝜷) = −1
2

{
𝑟 log(2𝜋) + log(|diag(𝝁𝑖)|) + [Z𝑖 − 𝝁𝑖]𝑇 (diag(𝝁𝑖))−1

[
Z𝑖 − 𝝁𝑖

]}
and

𝓁Y𝑖|Z𝑖 ,Y𝑖−1 (Σ) = −1
2

{
𝑝 log(2𝜋) + log(|Σ|) + [Y𝑖 − Y𝑖−1 − 𝑉 𝐺(Z𝑖)

]𝑇Σ−1[Y𝑖 − Y𝑖−1 − 𝑉 𝐺(Z𝑖)
]}

.

4



Computational Statistics and Data Analysis 198 (2024) 107996M. Framba, V. Vinciotti and E.C. Wit

The EM algorithm will then consist in the following two steps, which are iterated until convergence:

• E-step: Setting 𝜷 and Σ to the current estimate of the parameters, 𝜷∗ and Σ∗, respectively, compute the expected value of the 
complete log-likelihood (9) with respect to the distribution of the latent variables given the observations:

𝑄(𝜷,Σ|𝜷∗,Σ∗) = 𝔼Z|Y,𝜷∗ ,Σ∗ [𝓁Z,Y(𝜷,Σ)]. (10)

• M-step: Find the optimal 𝜷 and Σ by maximising the objective function (10) with respect to 𝜷 and Σ.

In the next two sections, the computational aspects associated to the two steps, respectively, are discussed in detail.

3.1. E-step: extended Kalman filtering

With the complete log-likelihood written as in (9), the Q-function (10) with slight abuse of notation is given by

𝑄(𝜷,Σ|𝜷∗,Σ∗) = 𝔼[𝓁Z|Y(𝜷)|Y0∶𝑁 ] + 𝔼[𝓁Y|ZY(Σ)|Y0∶𝑁 ], (11)

where Y0∶𝑁 denotes the data across all time points. Under model (7), the first term involves the following expectation

𝔼[𝓁Z|Y(𝜷)|Y0∶𝑁 ] =𝔼
[
− 1

2

𝑁∑
𝑖=1

{
𝑟 log(2𝜋) + log(|diag(𝝁𝑖)|) + [Z𝑖 − 𝝁𝑖]𝑇 diag(𝝁𝑖)−1

[
Z𝑖 − 𝝁𝑖

]}|Y0∶𝑁

]

∝− 1
2

𝑁∑
𝑖=1

{
𝔼
[
Z𝑇𝑖 |Y0∶𝑁

]
diag(𝝁𝑖)−1𝔼

[
Z𝑖|Y0∶𝑁

]
+ Tr

[
diag(𝝁𝑖)−1𝕍 [Z𝑖|Y0∶𝑁 ]

]
− 2𝔼

[
Z𝑇𝑖 |Y0∶𝑁

]
⋅𝟏+ 𝝁𝑇𝑖 ⋅𝟏

}
,

while expectation of the second term results in

𝔼[𝓁Y|ZY(Σ)|Y0∶𝑁 ] =𝔼
[
− 1

2

𝑁∑
𝑖=1

{
𝑝 log(2𝜋) + log(|Σ|) + [ΔY𝑖 − 𝑉 𝐺(Z𝑖)

]𝑇Σ−1[ΔY𝑖 − 𝑉 𝐺(Z𝑖)
]}|Y0∶𝑁

]

∝− 1
2

𝑁∑
𝑖=1

{
−2ΔY𝑇

𝑖 Σ
−1𝑉 𝔼

[
𝐺(Z𝑖)|Y0∶𝑁

]
+ 𝔼

[
𝐺(Z𝑖)𝑇 |Y0∶𝑁

]
𝑉 𝑇Σ−1𝑉 𝔼

[
𝐺(Z𝑖) ∣ Y0∶𝑁

]
+ Tr(Σ−1𝑉 𝕍

[
𝐺(Z𝑖)|Y0∶𝑁

]
𝑉 𝑇 )

}
,

with ΔY𝑖 = Y𝑖 − Y𝑖−1 and keeping only the terms dependent on the latent variables.

In particular, the calculation of the Q-function requires the evaluation of the following first and second moments: 𝔼[Z𝑖|Y0∶𝑁 ], 
𝕍 [Z𝑖|Y0∶𝑁 ], 𝔼[𝐺(Z𝑖)|Y0∶𝑁 ], and 𝕍 [𝐺(Z𝑖)|Y0∶𝑁 ]. To this end, a Kalman filter approach is considered. Firstly, notice how the depen-

dences implied by model (7) are such that

𝔼[Z𝑖|Y0∶𝑁 ] = 𝔼[Z𝑖|Y0∶𝑖],

𝕍 [Z𝑖|Y0∶𝑁 ] = 𝕍 [Z𝑖|Y0∶𝑖],

𝔼[𝐺(Z𝑖)|Y0∶𝑁 ] = 𝔼[𝐺(Z𝑖)|Y0∶𝑖],

𝕍 [𝐺(Z𝑖)|Y0∶𝑁 ] = 𝕍 [𝐺(Z𝑖)|Y0∶𝑖],

since Z𝑖 is independent of future states, Y(𝑖+1)∶𝑁 , conditional on current and past states, Y0∶𝑖 (Fig. 1). In the following, the first two 
quantities are denoted with ẑ𝑖|𝑖 and 𝑉𝑖|𝑖, respectively. This means that the smoothing step of a traditional Kalman filtering procedure 
is not needed, and only the prediction and update steps are. Secondly, the non-linearity in Z𝑖 induced by the marginal transformation 
𝐺 means that a standard Kalman filter approach is not applicable. Thus, in order to calculate the first and second moments of 𝐺(Z𝑖), 
an extended Kalman filter is considered, where the function 𝐺 is approximated with a second order Taylor expansion.

According to the derivations in Appendix A, the first two expectations are given by

ẑ𝑖∣𝑖 = 𝔼
[
Z𝑖 ∣ Y0∶𝑖

]
= ẑ𝑖∣𝑖−1 +𝐾𝑖

[
Y𝑖 − Y𝑖−1 − 𝑉

(
g𝑖|𝑖−1 + 1

2
vect(𝑉𝑖|𝑖−1𝐻𝑖|𝑖−1))],

𝑉𝑖∣𝑖 = 𝔼
[(

Z𝑖 − ẑ𝑖∣𝑖
)(

Z𝑖 − ẑ𝑖∣𝑖
)𝑇 ∣ Y0∶𝑖

]
=
(
𝕀𝑟 −𝐾𝑖𝑉 𝐽𝑖|𝑖−1)𝑉𝑖∣𝑖−1,
5
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Algorithm 1 Extended Kalman Filter (E-step).

Require: Y, 𝜷∗, Σ∗ , 𝑉
for 𝑖 = 1, … , 𝑁 do

1. Prediction step
ẑ𝑖|𝑖−1 = 𝝁𝑖
𝑉𝑖|𝑖−1 = diag(𝝁𝑖)

2. Update step
ẑ𝑖|𝑖 = ẑ𝑖∣𝑖−1 +𝐾𝑖

[
Y𝑖 − Y𝑖−1 − 𝑉

(
g𝑖|𝑖−1 + 1

2
vect(𝑉𝑖|𝑖−1𝐻𝑖|𝑖−1))]

𝑉𝑖∣𝑖 =
(
𝕀−𝐾𝑖𝑉 𝐽𝑖|𝑖−1)𝑉𝑖∣𝑖−1

with

𝐾𝑖 = (𝑉 𝑉𝑖|𝑖−1𝐽𝑖|𝑖−1)𝑇 (𝑉 𝐽𝑖|𝑖−1𝑉𝑖|𝑖−1𝐽𝑇
𝑖|𝑖−1𝑉 𝑇 + Σ)−1

𝜇𝑖𝑗 = exp(𝛽𝑗 ) 
∏𝑝

𝑙=1
(𝑌𝑙𝑡𝑖−1

𝑘𝑙𝑗

)
(𝑡𝑖 − 𝑡𝑖−1) 𝑗 = 1, … , 𝑟

end for

where

𝐾𝑖 = (𝑉 𝑉𝑖|𝑖−1𝐽𝑖|𝑖−1)𝑇 (𝑉 𝐽𝑖|𝑖−1𝑉𝑖|𝑖−1𝐽𝑇𝑖|𝑖−1𝑉 𝑇 +Σ)−1,

and where the various quantities predicted from data up to time 𝑡𝑖−1, which are formally defined in Appendix A, are dependent on a 
current estimate of parameters 𝜷∗ and Σ∗. As for the moments of 𝐺(Z𝑖), these are approximated by

𝔼
[
𝐺(Z𝑖)|Y0∶𝑖

]
≈ g𝑖|𝑖 + 1

2
vect(𝑉𝑖|𝑖𝐻𝑖|𝑖),

𝕍
[
𝐺(Z𝑖)|Y0∶𝑖

]
≈ 𝐽𝑖|𝑖𝑉𝑖|𝑖𝐽𝑇𝑖|𝑖,

with

g𝑖|𝑖 =𝐺(Z)|ẑ𝑖|𝑖 , 𝐽𝑖|𝑖 = 𝜕𝐺(Z)
𝜕Z

|ẑ𝑖|𝑖 , 𝐻𝑖|𝑖 = 𝜕2𝐺(Z)
𝜕Z2 |ẑ𝑖|𝑖 .

In particular, note how these moments depend on the moments of Z𝑖 derived above, i.e., ẑ𝑖∣𝑖 and 𝑉𝑖∣𝑖, so the latter are the main 
quantities that need to be calculated at the E-step.

Algorithm 1 summarizes the calculations required for the Kalman filter at the E-step of the algorithm, based on a current es-

timate of parameters, 𝜷∗ and Σ∗. The Kalman filter predictions of the latent states are used in the evaluation of 𝑄(𝜷, Σ|𝜷∗, Σ∗) =
𝔼[𝓁Z|Y(𝜷)|Y0∶𝑁 ] + 𝔼[𝓁Y|ZY(Σ)|Y0∶𝑁 ], with

𝔼[𝓁Z|Y(𝜷)|Y0∶𝑁 ] = −1
2
𝑁𝑟 log(2𝜋) − 1

2

𝑁∑
𝑖=1

{
log(|diag(𝝁𝑖)|) + ẑ𝑇𝑖|𝑖diag(𝝁𝑖)−1ẑ𝑖|𝑖 + Tr

[
diag(𝝁𝑖)−1 ⋅ 𝑉𝑖|𝑖]− 2ẑ𝑇𝑖|𝑖 ⋅ 𝟏+ 𝝁𝑇𝑖 ⋅ 𝟏

}
, (12)

𝔼[𝓁Y|ZY(Σ)|Y0∶𝑁 ] = − 1
2
𝑁 log

(
(2𝜋)𝑝

𝑝∏
𝑙=1

𝜎2
𝑙

)
− 1

2

𝑁∑
𝑖=1

{
ΔY𝑇

𝑖 Σ
−1ΔY𝑖 − 2ΔY𝑇

𝑖 Σ
−1𝑉

(
g𝑖|𝑖 + 1

2
vect(𝑉𝑖|𝑖𝐻𝑖|𝑖))

+ (g𝑖|𝑖 + 1
2

vect(𝑉𝑖|𝑖𝐻𝑖|𝑖))𝑇 𝑉 𝑇Σ−1𝑉 (g𝑖|𝑖 + 1
2

vect(𝑉𝑖|𝑖𝐻𝑖|𝑖))+ Tr
(
Σ−1𝑉 𝐽𝑖|𝑖𝑉𝑖|𝑖𝐽𝑇 𝑉 𝑇

)}
, (13)

and 𝜷∗ and Σ∗ the current values of the parameters used for the Kalman filter quantities ẑ𝑖|𝑖 and 𝑉𝑖|𝑖.
3.2. M-step

The M-step maximizes the conditional expectation of the complete log-likelihood with respect to the parameters. Thus, the M-step 
involves the maximisation of the Q-function (11) with respect to 𝜷 and Σ. Since the first term (12) does not depend on Σ, while the 
second term (13) does not depend directly on 𝜷 , the M-step results in the optimization of the first term (12) for the estimation of 𝜷
and of the second term for the estimation of Σ. The latter is in fact available in closed form and is given by

Σ̂ = 1
𝑁

𝔼
[ 𝑁∑
𝑖=1

(Δ𝑌𝑖 − 𝑉 𝐺(Z𝑖))(Δ𝑌𝑖 − 𝑉 𝐺(Z𝑖))𝑇
||||Y0∶𝑁

]

= 1
𝑁

𝑁∑
𝑖=1

{
Δ𝑌𝑖𝑌 𝑇

𝑖 − 2Δ𝑌𝑖(𝑔𝑖|𝑖 + 1
2
𝑉𝑖|𝑖𝐻𝑖|𝑖)𝑇 𝑉 𝑇 + 𝑉 (𝑔𝑖|𝑖 + 1

2
𝑉𝑖|𝑖𝐻𝑖|𝑖)(𝑔𝑖|𝑖 + 1

2
𝑉𝑖|𝑖𝐻𝑖|𝑖)𝑇 𝑉 𝑇 + 𝑉 𝐽𝑖|𝑖𝑉𝑖|𝑖𝐽𝑇𝑖|𝑖𝑉 𝑇

}
. (14)

The optimal values of 𝜷 and Σ from the M-step are used as the new 𝜷∗ and Σ∗, respectively, for computing a new expected 
log-likelihood at the E-step. This iterative procedure is repeated until convergence, e.g., until the estimates of 𝜷 do not change 
6

significantly. Algorithm 2 summarizes the proposed EM algorithm.



Computational Statistics and Data Analysis 198 (2024) 107996M. Framba, V. Vinciotti and E.C. Wit

Algorithm 2 EM algorithm.

Require: Y, 𝑉 , 𝜷 𝑖𝑛𝑖, Σ𝑖𝑛𝑖 , 𝜎2, 𝑡𝑜𝑙, 𝑚𝑎𝑥𝑖𝑡
while 𝑒𝑟𝑟 ≥ 𝑡𝑜𝑙 & 𝑖𝑡 <𝑚𝑎𝑥𝑖𝑡 do

for 𝑖 = 1, … , 𝑁 do

1. E-step:

Extended Kalman Filter: calculate ẑ𝑖|𝑖 , 𝑉𝑖|𝑖 from Y, 𝑉 , 𝜷𝑜𝑙𝑑 Σ𝑜𝑙𝑑

2. M-step:

𝜷𝑛𝑒𝑤, Σ𝑛𝑒𝑤 ← argmax𝜷,Σ𝑄(𝜷, Σ|𝜷𝑜𝑙𝑑 , Σ𝑜𝑙𝑑 , ̂z𝑖|𝑖 , 𝑉𝑖|𝑖)
𝑒𝑟𝑟 ←max ||𝜷𝑛𝑒𝑤 − 𝜷𝑜𝑙𝑑 ||11
𝜷𝑜𝑙𝑑 ← 𝜷𝑛𝑒𝑤
Σ𝑜𝑙𝑑 ← Σ𝑛𝑒𝑤

𝑖𝑡 ← 𝑖𝑡 + 1.

end for

end while

3.3. Computational cost

The computational cost of the proposed EM algorithm is the combination of the computational cost of the E- and M-steps. At the 
E-step, the latent variables Z𝑖 across the 𝑁 time intervals are of dimension 𝑟, with 𝑟 the number of reactions, and their covariance 
𝑉𝑖|𝑖 requires the inversion of a 𝑝 × 𝑝 matrix, where 𝑝 is the number of substrates. Thus, the total complexity of the E-step is (𝑁𝑟𝑝3). 
On the other hand, the M-step concerns the optimization of an 𝑟-dimensional vector of parameters 𝜷 and involves 𝑁 inversions of 
an 𝑟 × 𝑟 matrix for the calculation of the objective function. Thus, the total complexity of the M-step is (𝑁𝑟3𝑝). This results in a 
computational cost of the full algorithm of the order (𝑁𝑟3𝑝3), although this may vary depending on the speed of convergence of 
the numerical algorithm used for the optimization of the Q-function at the M-step.

3.4. Standard errors of reaction rates

Estimates of the reaction rates 𝜽 = exp(𝜷) are the main output of the EM inference. Uncertainties on these point estimates can be 
summarised by their standard errors. Since the marginal log-likelihood in (8) is not a direct result of the EM algorithm, the standard 
errors are calculated from the Fisher information matrix associated to the Q-function, evaluated at the point estimates of 𝜽 and Σ
(Oakes, 1999). In particular, this is given by

𝐼(�̂�) = − 𝜕2

𝜕𝜽2
𝑄(𝜽|�̂�, Σ̂)|||𝜽=�̂�. (15)

The variance of �̂�𝑗 is then given by (𝐼(�̂�)−1)𝑗𝑗 .
If necessary, standard errors can be constructed also on 𝜷. In particular, using the Delta method (Dorfman, 1938), the variances 

of 𝜷 can be approximated by

𝕍 (𝛽𝑗 ) =
2∑𝑁

𝑖=1

(2(�̂�2
𝑖|𝑖,𝑗 + 𝑉𝑖|𝑖,𝑗 )
�̂�𝑖𝑗

− 1
) ,

with �̂�𝑖𝑗 and �̂�𝑖|𝑖,𝑗 denoting the 𝑗-th elements of the vectors �̂�𝑖 and ẑ𝑖|𝑖, respectively, and 𝑉𝑖|𝑖,𝑗 the diagonal entry of 𝑉𝑖|𝑖, all evaluated 
at the optimal point estimates of the parameters.

3.5. Model selection

In empirical settings, one may be interested in comparing different quasi-reaction systems of possibly varying complexity. Sim-

ilarly to the derivation of the standard errors, a modified version of standard model selection criteria is considered, where the 
log-likelihood is replaced by the Q-function, which is instead a direct output of the EM algorithm (Ibrahim et al., 2008). In particu-

lar, the optimal model is taken as the one that minimizes the information criterion

𝐼𝐶 = −2𝑄(�̂�, Σ̂|�̂�, Σ̂) + 𝑃 (�̂�), (16)

with 𝑄(�̂�, ̂Σ|�̂�, ̂Σ) the Q-function (11) evaluated upon convergence of the EM algorithm and 𝑃 (�̂�) a term penalizing model complexity. 
In the real application, the Bayesian Information Criterion (BIC) will be considered, where 𝑃 (�̂�) = 𝑟 log(𝑁), with 𝑟 the number of 
reaction rates in the model and 𝑁 the number of time intervals.

4. Simulation study

In this section, a simulation study is provided to evaluate the performance of the proposed method under different settings and 
to highlight those where it is particularly advantageous compared to the existing LLA approaches. For the simulation, a dynamic 
system with a low number of particles (𝑝 = 4) and reactions (𝑟 = 6) is considered, in order to mimic a setting that is common in 
7

many applications, such as the cell differentiation process studied by Pellin et al. (2023). In the specifics, the 6 reactions contain one 
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Fig. 2. Specifications of the cell differentiation process used in the simulation study. (a) Structure of the process with 𝑝 = 4 particles. Each substrate is represented 
by a coloured node, whereas birth, death and differentiation reactions are denoted by full, dotted and dashed edges, respectively. (b) The corresponding quasi-reaction 
system. (c) An example of trajectories generated by means of a Gillespie algorithm. (d) Cumulative counts of the reactions increments ΔN𝑖 (full lines) and of their 
Gamma approximations X𝑖 (dotted lines).

duplication, two death and three differentiation reactions. Fig. 2a provides a graphical representation of the system, while Fig. 2b 
reports the 6 reactions. These correspond to the net effect matrix

𝑉 =
⎛⎜⎜⎜⎝
1 −1 0 −1 0 0
0 0 0 2 −1 −1
0 0 0 0 2 0
0 0 −1 0 0 2

⎞⎟⎟⎟⎠ .
The parameters are set to

𝜷 𝑡𝑟𝑢𝑒 = log(𝜽𝑡𝑟𝑢𝑒) = (5.30,1.10,−0.11,−0.22,−0.22,−1.61)𝑇 ,

and no measurement error is considered (Σ = 0). Starting with initial particle counts set to y0 = (50, 100, 100, 200), a Gillespie 
algorithm is used to generate the stochastic process over time (Gillespie, 1977). Fig. 2c reports one run of the algorithm, while 
Fig. 2d shows how the reaction counts N𝑖 are close to those based on the Gamma approximation X𝑖 of ΔN𝑖, with the Gamma 
distribution defined using the true parameters 𝜷 .

Improvement over local linear approximation approach. In the first simulation study, the performance of the algorithm is compared 
against the existing LLA approach in terms of parameter estimation. Given the motivation behind the proposed methodology, one 
would expect an improvement when the interval between consecutive observations is particularly small, as this generates a strong 
temporal correlation among the particle counts. Moreover, one would expect the difference to be more pronounced at low sample 
sizes, i.e., a small number of time points, as this will make statistical inference more challenging in general and may amplify the 
effect of strong temporal correlations.

In order to test these hypotheses, a subset of the trajectories generated by the Gillespie algorithm is considered. In particular, 
observations are retained at every 10, 15, 20, 25 and 30 time points out of the originally sampled trajectories. These are referred to 
8

as jumps. The larger the jump is, the larger the gap between consecutive time points where the process is observed. This will generally 



Computational Statistics and Data Analysis 198 (2024) 107996M. Framba, V. Vinciotti and E.C. Wit

Fig. 3. Comparison between EM and LLA methods. On the left, the KL measure, in the log scale, shows that parameter estimation with the EM algorithm is closer 
to the true parameters than with the LLA approach. On the right, the plots show how, for one of the parameters (𝛽1), estimates are more accurate with the EM than 
with the LLA approach. The true value is indicated by the horizontal red line. All plots show how the effects are more pronounced with 𝑁 = 5 (3a, 3b) than with 
𝑁 = 50 (3c, 3d) time intervals. The boxplots are obtained across 100 simulations.

translate into a large number of reactions that may have occurred between one time point and the next, although this will depend 
also on the dynamics of the process at the specific time interval. In order to test also the effect of sample size, in each of the settings, 
two scenarios are considered: one where the first 𝑁 = 5 time intervals are considered and a second one where the first 𝑁 = 50 time 
intervals are considered, generated as above.

Parameter estimation is conducted for each of the datasets using LLA and the proposed EM algorithm. LLA uses the moments in (4)

as the basis of a generalised least-squares approach given the particle count data Y. For the EM algorithm described in Algorithm 2, 
the LLA solution is set as starting value for 𝜷 (𝜷𝑖𝑛𝑖), Σ = 0, the net effect matrix is set to 𝑉 defined as above, the tolerance for 
convergence to 𝑡𝑜𝑙 = 0.002 and the maximum number of iterations to 𝑚𝑎𝑥𝑖𝑡 = 300. Upon convergence, the quality of the estimation is 
evaluated by calculating the Kullback-Leibler divergence between the estimated and the true parameters. In particular, this is defined 
by

𝐾𝐿(�̂�,𝜷𝑡𝑟𝑢𝑒) = 𝔼y+ [log𝑝(y+|𝜷𝑡𝑟𝑢𝑒) − log𝑝(y+|�̂�)],
where y+ indicates an additional dataset with the same characteristics as the one used for inference, and generated from the same 
underlying process defined by 𝜷𝑡𝑟𝑢𝑒. The lower this value is, the closer the inferred process is to the true one.

Fig. 3 reports the results in the form of boxplots across the 100 simulations for each of the settings. The results show how 
parameter estimation with the proposed EM algorithm is better than with the existing LLA approach, both in terms of the KL 
divergence (left panel) and estimation of one of the parameters (𝛽1, right panel). All plots show how the effects are more pro-

nounced with small sample sizes (𝑁 = 5, Fig. 3a and 3b) than with larger sample sizes (𝑁 = 50, Figs. 3c and 3d). Finally, Fig. 3d 
in particular shows how the two approaches tend to converge to a similar performance for larger time intervals (i.e., a large 
jump). This is to be expected, since temporal correlation will become less strong the larger the time interval. At the same time, 
the reconstruction of the reactions that have taken place within that time interval will also be less accurate. However, Fig. 3d 
shows how, even in this case, estimation from the EM algorithm appears to be less biased and more accurate than with the LLA 
approach.

Computational cost in terms of number of time points, reactions, particles. A second simulation study explores how the computational 
9

cost of the algorithm varies with respect to the number of time points (𝑁), the number of reactions (𝑟) and the number of particles (𝑝). 
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Fig. 4. Computational cost of EM algorithm. Average computational time (in seconds) of one iteration of the EM algorithm in terms of (a) the number of time 
intervals (𝑁), (b) the number of particles (𝑝), (c) the number of reactions (𝑟). Median, first and third quartiles are shown across 100 simulations.

The results are shown in Fig. 4. The first scenario (Fig. 4a) considers the same generative process as before, fixing 𝑗𝑢𝑚𝑝 = 30 and 
letting the number of time intervals vary in 𝑁 = 5, 10, 15, 20, 25, 30, 40. The plot shows how the average computational time of the 
EM algorithm is approximately linear in 𝑁 .

The second scenario (Fig. 4b) evaluates how the computational time varies with respect to the number of particles 𝑝. The three 
systems in Table B.1 of Appendix B are considered, with 𝑗𝑢𝑚𝑝 = 40 and 𝑁 = 10. The systems are characterized by the same number 
of reactions as before (𝑟 = 6), but an increasing number of particles, namely 𝑝 = 6, 12, 18, respectively. Fig. 4b does not show the 
cubic dependence in 𝑝, that was anticipated. Given that the computational time is the combined time from the E- and the M-steps, 
this suggests a much slower M-step.

Finally, the third scenario (Fig. 4c) evaluates how the computational time varies with respect to the number of reactions 𝑟. As 
before the parameters are set to 𝑗𝑢𝑚𝑝 = 40 and 𝑁 = 10, but the three systems in Table B.2 of Appendix B are now considered. These 
are characterized by the same number of particles as before (𝑝 = 6), but an increasing number of reactions, namely 𝑟 = 6, 12, 18, 
respectively. The plot shows a super-linear dependence in 𝑟.

5. Illustration on Italian COVID-19 data

This section provides a real data illustration focusing on the COVID-19 pandemic. Worldwide, more than 700 million infections 
and almost 7 million deaths were recorded as of August 16, 2023 (WHO, 2020). As a result, significant efforts have been made in 
order to understand the phenomenon and find strategies to control the spreading of the disease. Italy has been one of the countries of 
interest during the pandemic, being the first European country to experience a significant outbreak of the disease (Liao et al., 2020). 
The first case was confirmed on 31 January 2020. Since then, for more than two years, data were collected daily. The sufficiently 
close interval between observations is ideal for the application of the method, as it generates strong temporal correlations. The 
following analysis focusses on daily data within three specific time intervals, characterized by three different levels of contagion:

• Phase 1: 9th March - 4th May, 2020. Strong restrictions on travel throughout the country, banning all forms of gathering in 
private and public places (Conte, 2020c);

• Phase 2: 4th May - 7th October, 2020. Containment measures were relaxed, allowing the travelling for visits to relatives (within 
a region) and the restart of several production activities (Conte, 2020b);

• Phase 3: 8th October, 2020 - 14th January, 2021. Wearing of masks became compulsory both outdoor and indoor, and assemblages 
were restricted (Conte, 2020a).

Within each of the three phases and using data from all 21 Italian regions, the proposed EM algorithm is used to fit the parameters 
of the following two dynamic systems:

Model A Model B

𝐼𝑘
𝜃1𝑘
←←←←←←←←←←←←←→ 2𝐼𝑘 𝐼𝑘

𝜃1𝑘
←←←←←←←←←←←←←→ 2𝐼𝑘

𝐼𝑘
𝜃2
←←←←←←←←←←→𝑅𝑘 𝐼𝑘

𝜃2𝑘
←←←←←←←←←←←←←→𝑅𝑘

𝐼𝑘
𝜃3
←←←←←←←←←←→𝐷𝑘 𝐼𝑘

𝜃3𝑘
←←←←←←←←←←←←←→𝐷𝑘

The systems correspond to simple SIR compartmental models, where I is the number of infectious individuals, R the number of 
recovered individuals and D the number of deceased individuals (Simon, 2020). In particular, the first reaction models the creation 
of one infectious individual once a susceptible individual meets an infectious one. Note how the number of susceptible individuals S
has been omitted, as it is almost constant throughout the observation period. The second and third reactions correspond to the cases 
10

of an infectious individual recovering and dying, respectively. The index 𝑘 denotes the region. Thus, model B is characterized by 
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Fig. 5. Visualization of the estimated 𝑅0 values in Italy. On the left, the system of kinetic reactions for the 𝑘-th region. On the right, a visualization of the 
estimated values of the basic reproductive numbers for each Italian region, in the 3 phases of interest, categorised according to the colour coding used by the Italian 
government. An additional shade of dark red has been added to highlight the regions with the most critical 𝑅0 values.

region-specific rates for all three reactions. This results in a system with 𝑝 = 63 particles and 𝑟 = 63 rates. On the other hand, model 
A hypothesizes a simpler model where the recovery and death rates are assumed to be the same across Italy, under an assumption 
that these depend primarily on the specifics of the virus and are not as affected by the level of contagion in the population.

The proposed EM algorithm is used, with a tolerance 𝑡𝑜𝑙 = 10−5, for the estimation of the reaction rates 𝜽 and of the noise Σ. 
Using Equation (16) with a BIC penalty term, model A and model B result in 9.66 ⋅ 105 and 2.64 ⋅ 105 BIC values, respectively. This 
leads to the choice of the more complex model B, with region-specific recovery and death reaction rates. Since the BIC tends to 
select sparser models compared to other model selection criteria, this suggests that other model selection criteria would have led to 
the same conclusion. As for the parameter estimates, the error variances were generally far from zero, suggesting that some of the 
recorded cases were subject to a measurement error.

Fig. 5 visualises the results in terms of the basic reproduction number 𝑅0, which is the number of new infections that each infected 
individual produces on average (Wood and Wit, 2021). This can be estimated from the fitted models by calculating 𝜃1𝑘∕(𝜃2𝑘 + 𝜃3𝑘)
In Fig. 5, these values are categorized according to the colour coding used by the Italian government to evaluate the severity of the 
disease spread. In particular, values below the boundary of 𝑅0 = 1 are associated to a long-term decrease of the epidemic, while 
values above 1 indicate a long-term increase of the epidemic, with larger values (darker colours) associated to progressively more 
severe scenarios. The estimated 𝑅0 values are in line with those from other studies (Giordano et al., 2020; Remuzzi and Remuzzi, 
2020; Mingliang et al., 2022). The results in Fig. 5 show how during Phase 2 the infection was limited, as a consequence of the 
containment measures implemented in Phase 1. During Phase 3, a revival of the disease spread is observed, in particular in the 
southern regions of Italy. The standard errors of 𝑅0, calculated using the Delta method from the standard errors of the estimated 
reaction rates 𝜽 given by (15), show significant differences in 𝑅0 values between two consecutive phases at a 95% significance level, 
with the only exception of the Autonomous Province of Bolzano between phase 1 and phase 2, and Molise and Sicily between phase 
2 and phase 3. Moreover, although not assumed by the model, the 𝑅0 estimates show some geographical clustering, which is to be 
expected given the movements of individuals between neighbouring regions.

6. Conclusions

A novel procedure for the statistical inference of quasi-reaction systems has been proposed. Local linear approximation methods 
tend to perform poorly when the system is observed at fine time intervals. This is due to numerical instability caused by strong cor-

relations in the observations from one time point to the next. The proposed method focuses instead on reconstructing the underlying 
process of latent reactions. To this end, a latent event history model of the observed count process driven by a latent process of 
reactions is developed. A computationally efficient EM algorithm for parameter estimation is proposed, incorporating an extended 
Kalman filtering procedure for predicting the latent states. A simulation study demonstrates how the proposed method performs bet-

ter than the existing LLA approach, particularly when the time intervals between consecutive observations are small and the number 
of time points is low.

The method is illustrated by an application on the Italian Covid 19 data during the critical phase of the pandemic, between March 
2020 and January 2021. The basic reproduction number 𝑅0 of the 21 Italian regions estimated by the method in three consecutive 
phases of the pandemic shows higher values at the beginning and at the end of the time period. This is to be expected given the 
evolution of the disease and the societal restrictions that were imposed by the Italian government during this period.

The simple epidemic model considered is clearly a simplification of the pandemic process. The model does not consider inter-

regional infections, nor effects from outside Italy or heterogeneity in the population. Most likely, ignoring this type of effects means 
that 𝑅0 has been over-estimated by the models (Gomes et al., 2022). Future work will consider applying the same methodology to 
fit more complex models, such as the compartmental model of Wood and Wit (2021), which includes hospital infections and other 
11

types of interactions.
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Data availability

The data used in this paper are available from the Dipartimento della Protezione Civile and the Istituto Nazionale di Statis-

tica (ISTAT) via the webpage of the department (http://dati .istat .it /Index .aspx ?QueryId =18460) and a Github repository (https://

github .com /pcm -dpc /COVID -19).

Appendix A. Kalman filtering (E-step)

This section discusses the extended Kalman filtering procedure that was developed for the evaluation of 𝔼[Z𝑖|Y0∶𝑖], 𝕍 [Z𝑖|Y0∶𝑖], 
𝔼[𝐺(Z𝑖)|Y0∶𝑖], and 𝕍 [𝐺(Z𝑖)|Y0∶𝑖].

Prediction step. The prediction step calculates the first and second moments of Z𝑖 conditional on Y0∶𝑖−1. According to model (7), 
these are in fact the conditional moments of Z𝑖 given the state of the system at the previous time point, Y𝑖−1. Thus

ẑ𝑖∣𝑖−1 = 𝔼
[
Z𝑖 ∣ Y𝑖−1

]
= 𝝁𝑖,

𝑉𝑖∣𝑖−1 = 𝕍
[
Z𝑖 ∣ Y𝑖−1

]
= diag(𝝁𝑖). (A.1)

Update step. Following from the prediction step, the update step refines these predictions by comparing them to the observed values 
at time 𝑖. In particular, the conditional distribution of Z𝑖 is updated from the past with the information coming from Y𝑖 by first 
deriving the joint distribution of Y𝑖 and Z𝑖 conditional on Y0∶𝑖−1. According to model (7), this is a multivariate Gaussian distribution, 
which can be written generically as

Z𝑖
Y𝑖

||||Y0∶𝑖−1 ∼
([

m1
m2

]
,

[
𝑆11 𝑆12
𝑆21 𝑆22

])
. (A.2)

From the prediction step (A.1), m1 and 𝑆11 are already known. As regards to the other elements of the mean and covariance,

m2 = 𝔼[Y𝑖|Y0∶𝑖−1] = 𝔼[Y𝑖−1 + 𝑉 𝐺(Z𝑖) +𝝍 𝑖|Y0∶𝑖−1] = Y𝑖−1 + 𝑉 𝔼[𝐺(Z𝑖)|Y0∶𝑖−1],

𝑆12 =ℂ𝑜𝑣[Z𝑖,Y𝑖|Y0∶𝑖−1] =ℂ𝑜𝑣[Z𝑖,Y𝑖−1 + 𝑉 𝐺(Z𝑖) +𝝍 𝑖|Y0∶𝑖−1] = 𝑉 ℂ𝑜𝑣[Z𝑖,𝐺(Z𝑖)|Y0∶𝑖−1]𝑉 𝑇 ,

𝑆22 = 𝕍 [Y𝑖|Y0∶𝑖−1] = 𝕍 [Y𝑖−1 + 𝑉 𝐺(Z𝑖) +𝝍 𝑖|Y0∶𝑖−1] = 𝑉 𝕍
[
𝐺(Z𝑖)|Y0∶𝑖−1

]
𝑉 𝑇 +Σ. (A.3)

In order to calculate the first and second moments of 𝐺(Z𝑖), the non-linear function 𝐺 is approximated with its Taylor expansion 
of order 2 centred at ẑ𝑖|𝑖−1, i.e.,

𝐺(Z𝑖) ≈ g𝑖|𝑖−1 + 𝐽𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1) + 1
2

diag(Z𝑖 − ẑ𝑖|𝑖−1)𝐻𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1).
The first term of the expansion is the deterministic vector of size 𝑟

g𝑖|𝑖−1 =𝐺(ẑ𝑖|𝑖−1).
The other terms have a simplified form due to the fact that the 𝑗-th element of the function 𝐺 is a function only of the 𝑗-th element 
of Z𝑖. Thus, the 𝑟 × 𝑟 matrix of first derivatives is a diagonal matrix, with (𝑗, 𝑗) element given by

[
𝐽𝑖|𝑖−1]𝑗𝑗 = [𝜕𝐺(Z)𝜕Z

|ẑ𝑖|𝑖 ]𝑗𝑗 = 𝜕𝐺𝑗

𝜕𝑧𝑖𝑗

||||�̂�𝑖𝑗|𝑖−1 =
𝜕(𝐹−1

𝑖𝑗
(Φ𝑖𝑗 (𝑍𝑖𝑗 ))

𝜕𝑧𝑖𝑗

||||�̂�𝑖𝑗|𝑖−1 =
(
𝜕𝐹𝑖𝑗

𝜕𝑥𝑖𝑗

||||𝐺(�̂�𝑖𝑗|𝑖−1)
)−1 𝜕Φ𝑖𝑗

𝜕𝑧𝑖𝑗

||||�̂�𝑖𝑗|𝑖−1 ,
where, using the functional form of the Normal and Gamma CDFs

𝜕Φ𝑖𝑗

𝜕𝑧𝑖𝑗
(𝑧) = 𝑒

−
(𝑧−𝔼[𝑍𝑖𝑗 ])2

2𝕍 [𝑍𝑖𝑗 ]√
2𝜋𝕍 [𝑍𝑖𝑗 ]

,
𝜕𝐹𝑖𝑗

𝜕𝑥𝑖𝑗
(𝑥) = 𝑒−𝑥𝑥𝔼[𝑋𝑖𝑗 ]−1

Γ(𝔼[𝑋𝑖𝑗 ])
1[𝑥>0].

Similarly, the 𝑟 × 𝑟 × 𝑟 Hessian matrix, can be written as an 𝑟 × 𝑟 diagonal matrix with second derivatives on the diagonal, namely

[
𝐻𝑖|𝑖−1]𝑗𝑗 = 𝜕

𝜕𝑧𝑖𝑗

[(
𝜕𝐹𝑖𝑗

𝜕𝑥𝑖𝑗

|||𝐺(�̂�𝑖𝑗|𝑖−1)
)−1 𝜕Φ𝑖𝑗

𝜕𝑧𝑖𝑗

||||�̂�𝑖𝑗|𝑖−1
]

=
− 𝜕2𝐹𝑖𝑗

(𝜕𝑥𝑖𝑗 )2
||||𝐺(�̂�𝑖𝑗|𝑖−1) 𝜕𝐺𝑗

𝜕𝑧𝑖𝑗

||||�̂�𝑖𝑗|𝑖−1 𝜕Φ𝑖𝑗

𝜕𝑧𝑖𝑗

||||�̂�𝑖𝑗|𝑖−1 + 𝜕𝐹𝑖𝑗

𝜕𝑥𝑖𝑗

||||𝐺(�̂�𝑖𝑗|𝑖−1) 𝜕
2Φ𝑖𝑗

(𝜕𝑧𝑖𝑗 )2
||||�̂�𝑖𝑗|𝑖−1(

𝜕𝐹𝑖𝑗

𝜕𝑥𝑖𝑗

||||𝐺(�̂�𝑖𝑗|𝑖−1)
)2 ,
12

http://dati.istat.it/Index.aspx?QueryId=18460
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where

𝜕2Φ𝑖𝑗

𝜕𝑧2
𝑖𝑗

(𝑧) =
(𝑧− 𝔼[𝑍𝑖𝑗 ])𝑒

−
(𝑧−𝔼[𝑍𝑖𝑗 ])2

2𝕍 [𝑍𝑖𝑗 ]√
2𝜋𝕍 [𝑍𝑖𝑗 ]3∕2

,
𝜕2𝐹𝑖𝑗

𝜕𝑥2
𝑖𝑗

(𝑥) =
𝑒−𝑥𝑥𝔼[𝑋𝑖𝑗 ]−2(𝔼[𝑋𝑖𝑗 ] − 𝑥− 1)

Γ(𝔼[𝑋𝑖𝑗 ])
1[𝑥>0].

Going back to (A.3), the Taylor approximation can now be used to calculate the required conditional expectations. In particular,

𝔼
[
𝐺(Z𝑖)|Y0∶𝑖−1

]
≈𝔼

[
g𝑖|𝑖−1 + 𝐽𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1) + 1

2
diag(Z𝑖 − ẑ𝑖|𝑖−1)𝐻𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1)|Y0∶𝑖−1

]
=g𝑖|𝑖−1 + 𝐽𝑖|𝑖−1𝔼

[
Z𝑖 − ẑ𝑖|𝑖−1|Y0∶𝑖−1

]
+ 1

2
𝔼
[
diag(Z𝑖 − ẑ𝑖|𝑖−1)𝐻𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1)|Y0∶𝑖−1

]
=g𝑖|𝑖−1 + 1

2
vect(𝑉𝑖|𝑖−1𝐻𝑖|𝑖−1),

ℂ𝑜𝑣[Z𝑖,𝐺(Z𝑖)|Y0∶𝑖−1] ≈ℂ𝑜𝑣
[
Z𝑖,g𝑖|𝑖−1|Y0∶𝑖−1

]
+ℂ𝑜𝑣

[
Z𝑖, 𝐽𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1)|Y0∶𝑖−1

]
+ℂ𝑜𝑣

[
Z𝑖,

1
2

diag(Z𝑖 − ẑ𝑖|𝑖−1)𝐻𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1)|Y0∶𝑖−1

]
=ℂ𝑜𝑣

[
Z𝑖, 𝐽𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1)|Y0∶𝑖−1

]
= 𝕍𝑎𝑟[Z𝑖|Y0∶𝑖−1]𝐽𝑖|𝑖−1 = 𝑉𝑖|𝑖−1𝐽𝑖|𝑖−1,

𝕍
[
𝐺(Z𝑖)|Y0∶𝑖−1

]
≈ 𝕍

[
g𝑖|𝑖−1 + 𝐽𝑖|𝑖−1(Z𝑖 − ẑ𝑖|𝑖−1)|Y0∶𝑖−1

]
= 𝐽𝑖|𝑖−1𝕍

[
Z𝑖 − ẑ𝑖|𝑖−1|Y0∶𝑖−1

]
𝐽𝑇
𝑖|𝑖−1 = 𝐽𝑖|𝑖−1𝑉𝑖|𝑖−1𝐽𝑇𝑖|𝑖−1.

Finally, plugging these expressions into (A.1), it follows that

m2 ≈ Y𝑖−1 + 𝑉

[
g𝑖|𝑖−1 + 1

2
vect(𝑉𝑖|𝑖−1𝐻𝑖|𝑖−1)

]
,

𝑆22 ≈ 𝑉 [𝐽𝑖|𝑖−1𝑉𝑖|𝑖−1𝐽𝑇𝑖|𝑖−1]𝑉 𝑇 +Σ,

𝑆12 ≈ 𝑉 𝑉𝑖|𝑖−1𝐽𝑖|𝑖−1,
which, together with m1 and 𝑆11 derived previously, define the joint distribution (A.2) of Z𝑖 and Y𝑖 conditional on Y𝑖−1. From this, 
using the formulae for the conditional distributions from a jointly Gaussian random vector, it follows that Z𝑖, conditional on Y0∶𝑖, 
has a multivariate Gaussian distribution, with mean and covariance given, respectively, by

ẑ𝑖∣𝑖 = 𝔼
[
Z𝑖 ∣ Y0∶𝑖

]
= ẑ𝑖∣𝑖−1 +𝐾𝑖

[
Y𝑖 − Y𝑖−1 − 𝑉

(
g𝑖|𝑖−1 + 1

2
vect(𝑉𝑖|𝑖−1𝐻𝑖|𝑖−1))],

𝑉𝑖∣𝑖 = 𝔼
[(

Z𝑖 − ẑ𝑖∣𝑖
)(

Z𝑖 − ẑ𝑖∣𝑖
)𝑇 ∣ Y0∶𝑖

]
=
(
𝕀𝑟 −𝐾𝑖𝑉 𝐽𝑖|𝑖−1)𝑉𝑖∣𝑖−1,

where

𝐾𝑖 = (𝑉 𝑉𝑖|𝑖−1𝐽𝑖|𝑖−1)𝑇 (𝑉 𝐽𝑖|𝑖−1𝑉𝑖|𝑖−1𝐽𝑇𝑖|𝑖−1𝑉 𝑇 +Σ)−1.

Note how the update step refines the conditional expectation found in the prediction step in proportion to the difference between the 
actual and estimated observations, i.e., the prediction error. Moreover, this is directly proportional to the magnitude of the Kalman 
gain matrix 𝐾𝑖, which captures the linear relationship between the noise and the variance of the latent variable (Kim and Bang, 
2018).

Similarly to the earlier derivations,

𝔼
[
𝐺(Z𝑖)|Y0∶𝑖

]
≈ g𝑖|𝑖 + 1

2
vect(𝑉𝑖|𝑖𝐻𝑖|𝑖),

𝕍
[
𝐺(Z𝑖)|Y0∶𝑖

]
≈ 𝐽𝑖|𝑖𝑉𝑖|𝑖𝐽𝑇𝑖|𝑖,

with

g𝑖|𝑖 =𝐺|ẑ𝑖|𝑖 , 𝐽𝑖|𝑖 = 𝜕𝐺(Z)
𝜕Z

|ẑ𝑖|𝑖 , 𝐻𝑖|𝑖 = 𝜕2𝐺(Z)
𝜕Z2 |ẑ𝑖|𝑖 .

Appendix B. Dynamic systems used for the simulation study

This section reports the systems of reactions that were used in Section 4 for evaluating the computational complexity of the 
13

algorithm with respect to the number of particles 𝑝 (Table B.1) and the number of reactions 𝑟 (Table B.2).
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Table B.1

Three dynamic systems with 𝑟 = 6 reactions, and an increasing number of particles (𝑝 =
6, 12, 18).

𝑝 = 6 𝑝 = 12 𝑝 = 18⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌1
𝜃1
←←←←←←←←←→ 𝑌2

𝑌1
𝜃2
←←←←←←←←←→ 𝑌3

𝑌2
𝜃3
←←←←←←←←←→ 𝑌4

𝑌1
𝜃4
←←←←←←←←←→ 𝑌4

𝑌4
𝜃5
←←←←←←←←←→ 𝑌6

𝑌5
𝜃6
←←←←←←←←←→ 𝑌5

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌1 + 𝑌7
𝜃1
←←←←←←←←←→ 𝑌2 + 𝑌8

𝑌1 + 𝑌7
𝜃2
←←←←←←←←←→ 𝑌3 + 𝑌9

𝑌2 + 𝑌8
𝜃3
←←←←←←←←←→ 𝑌4 + 𝑌10

𝑌1 + 𝑌7
𝜃4
←←←←←←←←←→ 𝑌4 + 𝑌10

𝑌4 + 𝑌10
𝜃5
←←←←←←←←←→ 𝑌6 + 𝑌12

𝑌5 + 𝑌11
𝜃6
←←←←←←←←←→ 𝑌5 + 𝑌11

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌1 + 𝑌7 + 𝑌13
𝜃1
←←←←←←←←←→ 𝑌2 + 𝑌8 + 𝑌14

𝑌1 + 𝑌7 + 𝑌13
𝜃2
←←←←←←←←←→ 𝑌3 + 𝑌9 + 𝑌15

𝑌2 + 𝑌8 + 𝑌14
𝜃3
←←←←←←←←←→ 𝑌4 + 𝑌10 + 𝑌16

𝑌1 + 𝑌7 + 𝑌13
𝜃4
←←←←←←←←←→ 𝑌4 + 𝑌10 + 𝑌16

𝑌4 + 𝑌10 + 𝑌16
𝜃5
←←←←←←←←←→ 𝑌6 + 𝑌12 + 𝑌18

𝑌5 + 𝑌11 + 𝑌17
𝜃6
←←←←←←←←←→ 𝑌5 + 𝑌11 + 𝑌17

Table B.2

Three dynamic systems with 𝑝 = 6 particles, and an increasing number of reactions (𝑟 = 6, 12, 18).

𝑟 = 6 𝑟 = 12 𝑟 = 18

6 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌2
𝜃1
←←←←←←←←←→ 𝑌1 + 𝑌3

𝑌3
𝜃2
←←←←←←←←←→ 𝑌2 + 𝑌4

𝑌4
𝜃3
←←←←←←←←←→ 𝑌3 + 𝑌5

𝑌5
𝜃4
←←←←←←←←←→ 𝑌4 + 𝑌6

𝑌5
𝜃5
←←←←←←←←←→ 𝑌6

𝑌6
𝜃6
←←←←←←←←←→ 𝑌1

12 ∶6 ∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌8
𝜃1
←←←←←←←←←→ 𝑌7 + 𝑌9

𝑌9
𝜃2
←←←←←←←←←→ 𝑌8 + 𝑌10

𝑌10
𝜃3
←←←←←←←←←→ 𝑌9 + 𝑌11

𝑌11
𝜃4
←←←←←←←←←→ 𝑌10 + 𝑌12

𝑌12
𝜃5
←←←←←←←←←→ 𝑌11

𝑌7
𝜃6
←←←←←←←←←→ 𝑌12

18 ∶12 ∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌14
𝜃1
←←←←←←←←←→ 𝑌13 + 𝑌15

𝑌15
𝜃2
←←←←←←←←←→ 𝑌14 + 𝑌16

𝑌16
𝜃3
←←←←←←←←←→ 𝑌15 + 𝑌17

𝑌17
𝜃4
←←←←←←←←←→ 𝑌16 + 𝑌18

𝑌18
𝜃5
←←←←←←←←←→ 𝑌17

𝑌13
𝜃6
←←←←←←←←←→ 𝑌18
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