
Vol.:(0123456789)

Risk Management            (2024) 26:1 
https://doi.org/10.1057/s41283-023-00132-2

ORIGINAL ARTICLE

Machine learning techniques for default prediction: 
an application to small Italian companies

Flavio Bazzana1  · Marco Bee2  · Ahmed Almustfa Hussin Adam Khatir3

Accepted: 18 September 2023 
© The Author(s) 2023

Abstract
Default prediction is the primary goal of credit risk management. This problem has 
long been tackled using well-established statistical classification models. Still, now-
adays, the availability of large datasets and cheap software implementations makes 
it possible to employ machine learning techniques. This paper uses a large sample 
of small Italian companies to compare the performance of various machine learn-
ing classifiers and a more traditional logistic regression approach. In particular, we 
perform feature selection, use the algorithms for default prediction, evaluate their 
accuracy, and find a more suitable threshold as a function of sensitivity and speci-
ficity. Our outcomes suggest that machine learning is slightly better than logistic 
regression. However, the relatively small performance gain is insufficient to con-
clude that classical statistical classifiers should be abandoned, as they are character-
ized by more straightforward interpretation and implementation.
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Introduction

In recent years, attention to machine learning (ML) has increased dramatically in 
many fields, and credit risk management makes no exception. Indeed, credit risk 
measurement mainly deals with classification, which is one of the most impor-
tant goals of ML techniques. On the other hand, extensive literature dating back to 
the seminal works by Altman (1968) and Merton (1974) uses statistical methods 
for bankruptcy prediction. In particular, discriminant analysis and logistic regres-
sion are well known and widely employed: see, e.g., Duffie and Singleton (2003) or 
Bolder (2019) for details.

Most approaches to credit risk are based on supervised learning models charac-
terized by a binary target variable y, the so-called default indicator, and d possible 
predictors, usually given by financial ratios and customer-related variables. The size 
of the data ranges from relatively small in the large-corporate case, where the obser-
vations are large companies, to very large in the retail credit framework. Accord-
ingly, the methods of analysis and the independent variables employed are quite 
different: in the former case, financial information contained in balance sheets is 
of paramount importance, whereas in the latter setup, only basic personal data are 
available.

In both the credit risk and the ML literature, many papers about the impact of ML 
methods have been published in the last few years: for a recent overview, see, e.g., 
van Liebergen (2017), Leo et al. (2019), Shi et al. (2022), and the references therein. 
On the practitioners’ side, the major rating agencies, such as Moody’s and Standard 
& Poor’s, have also considered ML techniques: see Bacham and Zhao (2017) and 
Vidovic and Yue (2020). Furthermore, a survey by the Bank of England (Bank of 
England, Financial Conduct Authority 2019) concludes that about two-thirds of the 
respondents use machine learning techniques to some extent.

This paper exploits a large dataset of Italian small companies with various aims. 
We implement the main ML methods and a benchmark statistical approach, namely 
logistic regression (LR), to rank the ML techniques’ performance and compare ML 
to LR. It has generally been found (see, e.g., Shi et al. 2022) that ML outperforms 
statistical techniques in terms of error rate. However, sensitivity and specificity are 
often more important than overall classification accuracy, especially in the credit 
risk setup, where classes are typically imbalanced. Hence, we try to take care of this 
issue by finding the classification cutoff as a function of sensitivity and specificity. 
Moreover, before using the classification algorithms, we perform a predictor-selec-
tion exercise based on three approaches: Random Forest Recursive Feature Elimina-
tion, Chi-Squared Feature Selection, and L1-based Feature Selection.

To sum up, the paper contributes to the credit risk management literature by 
comparing the performance of ML classifiers using a large database of Italian small 
companies. The analysis considers all the steps required by typical credit risks data-
sets, such as predictor selection, consideration of class imbalance, and comparison 
to state-of-the-art statistical techniques. Even though the most recent literature sug-
gests that ML methods are more accurate than classical statistical approaches, to per-
form a fair comparison, one should consider that ML methods are less interpretable, 



Machine learning techniques for default prediction: an… Page 3 of 23     1 

computationally heavier and often require the user to carry out some non-trivial pre-
liminary fine-tuning of input parameters. Thus, we aim to study ML and LR’s rela-
tive usefulness according to all these remarks. Such an analysis is crucial, given the 
possible use of the techniques in the banking sector, where interpretability and ease 
of implementation are crucial.

The rest of the paper is organized as follows. In “Methodology” section, we 
review the main machine learning techniques used in classification setups, particu-
larly on credit risk applications. In “Empirical analysis” section, we perform feature 
selection and apply the methods to an extensive database of Italian small compa-
nies: the analysis is based on the ML methods introduced in the previous section and 
on LR; classification theory is implemented both using the standard 50% classifica-
tion threshold, and a smaller threshold found according to sensitivity and specificity. 
Finally, in “Conclusion” section, we discuss our findings and outline some issues 
open to further research. Some outcomes are reported in an online supplement.

Methodology

Related work

Since the literature about applications of ML approaches in credit risk measurement 
has grown markedly in the last few years, it would be impossible to give a complete 
account here. Hence, in this section, we limit ourselves to discussing some recent 
contributions that analyze the accuracy of ML and statistical classifiers.

Barboza et al. (2017) conducts a comparative assessment of the bankruptcy pre-
diction performance of support vector machines, bagging, boosting, random forests, 
and neural networks with respect to some statistical models (discriminant analy-
sis, logistic regression). The paper uses data on North American firms from 1985 
to 2013, integrating information from the Salomon Center database and Compustat 
and analyzing more than 10,000 firm-year observations. To improve the prediction 
accuracy of the models, six financial indicators in addition to the original Altman’s 
Z-score are employed; see Carton and Hofer (2006) for details. The takeaway is that 
ML algorithms are approximately 10% more efficient than traditional models.

Similarly, Le and Viviani (2018) carries out a comparative analysis of the pre-
diction accuracy of statistical approaches (discriminant analysis and logistic regres-
sion) relative to three ML methods (neural networks, support vector machines, and 
K-nearest neighbors). The data are collected for five years for US banks so that the 
dataset contains 3000 observations (1438 defaulted and 1562 active banks) with 31 
financial ratios to be used as predictors. The main findings are that neural networks 
and K-nearest neighbors significantly outperform statistical models, whereas sup-
port vector machines are not better.

Moscatelli et al. (2019) try to shed some light on the forecasting performance of 
random forests and gradient-boosted trees with respect to statistical classifiers (dis-
criminant analysis, logistic regression, and penalized logistic regression). The data-
set contains about 300,000 observations of financial ratios and credit behavior indi-
cators for Italian non-financial firms from 2011 to 2017. The authors conclude that 
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ML models provide a more accurate forecasting performance regarding discrimina-
tory power and precision. However, when the dataset size is insufficient to robustly 
estimate the relationships between the predictors and the target variable, the perfor-
mances of ML and statistical models are not significantly different.

Dumitrescu et al. (2022) propose a high-performance and interpretable credit-scor-
ing method called penalized logistic tree regression (PLTR), using Monte Carlo simu-
lation to improve the performance of logistic regression using the information provided 
by decision trees. For this purpose, decision trees are built with the original predic-
tive variables, and rules extracted from various short-depth decision trees are used as 
predictors in a penalized logistic regression model. Applying the algorithm to several 
credit-scoring datasets suggests that PLTR has a better out-of-sample performance with 
respect to traditional linear and non-linear logistic regression, support vector machines, 
and neural networks and is competitive relative to the random forest.

Finally, over the previous decade, Shi et  al. (2022) review many research papers 
using statistical, ML, and deep learning approaches in the credit risk setup. The authors 
also consider further issues, such as data imbalance, dataset inconsistency, model trans-
parency, and inappropriate use of deep learning methods. The outcomes suggest that 
most deep learning models prefer classic ML and statistical classifiers and that the 
ensemble method outperforms single models.

Machine learning techniques

In this section, we describe the machine learning techniques used in the following; the 
reader interested in a more detailed statistical analysis is referred to James et al. (2021). 
Classification algorithms are supervised learning models estimated from training data 
whose class membership is known. The classifiers try to learn the relationship between 
the features and the indicator of class membership, where features (predictors) are indi-
vidual measurable properties of the observed process. The performance of the trained 
model is then assessed on new data, the so-called test set (James et al. 2021).

Let yi and xi = (xi1,… , xid)
T , i = 1,… , n be the training observations, where d is 

the number of features available. In the present setup, y ∈ {0, 1} is a binary variable: 
0 and 1 correspond to non-default and default, respectively. Overall, all the methods 
aim at modeling the relation between x and y. The assumptions about the function 
f ∶ x → y and the techniques employed for its estimation differ widely across classifi-
ers. Ultimately, f will be used to compute the estimated default probability P(y = 1|x) : 
with balanced classes, if P(y = 1|x) > 0.5 , the new observation is classified as Default, 
otherwise the estimated class is Active (see, e.g., James et al. 2021):

Tree‑based methods

A decision tree (DT) is determined by a series of decisions represented as a tree struc-
ture (Breiman et al. 1984). The intermediate nodes are based on a single feature, and 

(1)ŷi =

{
1 if P(yi = 1|x) > 0.5;

0 if P(yi = 1|x) ≤ 0.5.
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the terminal nodes correspond to the final classification. Each split is determined by 
node purity, measured by either the Gini index or the cross-entropy: the higher the 
purity, the stronger the predictive power of the predictor used in the corresponding 
node. The probability that an observation (y, x) in the jth class ends up into the leaf Cs 
is estimated by

where nCs
 is the number of training observations in Cs , and Sj ∈ {0, 1}.

Unfortunately, DTs are non-robust and suffer from high variance. Even though this 
problem can be mitigated (by pruning, for example), they are usually worse than other 
classifiers in terms of prediction accuracy. A significant improvement is provided by a 
straightforward generalization called random forest, which we now detail.

Random forests are ensembles of decision trees (Breiman 2001): B trees are built on 
bootstrapped samples obtained from the observed sample, and each tree uses a subset 
of randomly chosen features. Since each tree yields a predicted class, the RF predic-
tion uses the majority vote criterion (James et al. 2021, p. 341) so that the predicted 
category is the most commonly occurring predicted class in the B bootstrapped trees.

With respect to decision trees, random forests have a marginally heavier compu-
tational burden but dramatically cut the variance, so that they have largely replaced 
decision trees in most practical applications.

psj =
#{(y, x) ∈ Cs ∶ y = Sj}

nCs

,

Algorithm 1  Random Forest
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Artificial neural networks

The peculiarity of an artificial neural network (NN) is the approximation of the 
non-linear function f linking the features x1,… , xd to the dependent variable y. A 
single-layer NN with K hidden units has the form f (X) = �0 +

∑K

i=1
�khk(X) , where 

Ak = hk(X) = g(wk0 +
∑d

j=1
wkjxj) , k = 1,… ,K, are the so-called activations, or hid-

den units, and g is the prespecified activation function. Each activation is a different 
transformation of the original features. The activations map the hidden layer into the 
output layer:

The most common activation function is the ReLU (Rectified linear unit, James 
et al. 2021, p. 405):

All the parameters in (2) are estimated by minimizing a squared-error loss. The non-
linearity of the activation function g is essential: if it were linear, (2) would just 
reduce to a linear model. Nowadays, most NNs used in practice are based on either 
one hidden layer with many hidden units or on more than one hidden layer (multi-
layer neural networks).

Neural networks are a complex approach with many parameters, requiring a large 
sample size to be adequately trained. Hence, they have become more successful in 
recent years, mainly because of the availability of large datasets that guarantee an 
efficient learning process.

K‑nearest neighbor

The K-Nearest Neighbor (KNN) algorithm is a simple non-parametric algorithm: 
it classifies a new observation with predictors x∗ in the class of the majority of the 
K-nearest neighbors of x∗ in the training dataset. The metric determining the nearest 
neighbors is usually the Euclidean distance. After identifying the neighborhood N0 , 
the posterior probability of class j, j = 1,… ,C , where C is the number of classes, is 
estimated as

and x∗ is assigned to the class with the largest posterior probability.

(2)f (X) = �0 +

K∑

i=1

�kAk.

g(z) =

{
0 z < 0,

z otherwise

P(Y = j|X = x∗) =
1

K

∑

i∈N0

1(yi = j), j = 1,… ,C,
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The algorithm’s flexibility can be tuned by varying the “size” of the neighborhood 
(i.e., the parameter K). Since the method becomes more flexible as K decreases, too 
small values of K may overfit the training data.

Accuracy measures

The models are ranked according to the established evaluation measures in credit 
scoring. In particular, we use the area under the ROC curve (AUC; James et  al. 
2021, Sect. 4.4.2) and the average accuracy (equal to 1 − er , where er is the error 
rate). To better interpret the analysis, we also compute the sensitivity (true positive 
rate, equal to 1 − Type II error) and the specificity (true negative rate, equivalent to 
1 − Type I error) (see James et al. 2021, p. 152).

Average accuracy, sensitivity, and specificity are given by

where the quantities TP, TN, FP, and FN are shown in the so-called confusion 
matrix below. 

Predicted

Positive Negative

Actual Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

The relevance of sensitivity and specificity in a default prediction model is 
related to the fact that the misclassification of a company can occur in two ways. 
If the predicted class of a defaulting client is non-default, the main cost for the 
bank is the loss of interest and capital. On the other hand, when the model clas-
sifies a non-defaulting customer as default, the bank faces the opportunity cost of 
not lending to a non-defaulting client, which is a lost business opportunity. The 
cost of the former (i.e., a false negative) is typically higher for a bank.

In the literature, it is well known (see, e.g., Dopuch et  al. 1987; Koh 1992; 
Nanda and Pendharkar 2001) that incorporating sensitivity and specificity into 
the models can lead to more accurate predictions, especially when the two types 
of error imply different costs. Hence, for decision-making purposes, if a bank can 
estimate the cost of Type I and Type II errors, sensitivity and specificity measures 
are often more important than accuracy.

Av. Acc. =
TP + TN

n
, Sens. =

TP

TP + FN
, Spec. =

TN

TN + FP
,
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Threshold adjustment

In the presence of balanced classes, standard classification theory proves that it is 
best to predict Default according to (1), i.e., when P(y = 1|x) > 0.5 . However, in 
credit risk management applications, where the classes are imbalanced because of 
few “positive” events (defaults), this way of proceeding yields a low sensitivity 
(Kuhn and Johnson 2013). Hence, it is essential to seek a threshold different from 
0.5, obtained by maximizing some function of sensitivity and specificity, since 
they cannot be maximized simultaneously. It would also be possible to use over- 
and under-sampling techniques: this approach is more common in other fields, 
but see Hussin Adam Khatir and Bee (2022) for an application to credit risk.

Here, we use the Geometric Mean (G-Mean) of sensitivity and specificity as a 
metric that evaluates the balance between the classification performances in the 
majority and minority classes. A low G-Mean value often denotes a poor per-
formance in the classification of positive cases (Akosa 2017), which is an issue 
that should be avoided in a credit risk setup. Hence, the rationale of the G-mean 
approach is to find the value of the threshold � ∈ [0, 1] that balances sensitivity 
and specificity or, in other words, avoid overfitting the negative class and under-
fitting the positive class. In a binary classification setup, the threshold �̂� is for-
mally defined as follows (Wald et al. 2013):

Accordingly, the classification rule (1) becomes

Feature‑selection techniques

Feature selection (or variable elimination) is the process of determining relevant 
features for prediction purposes. It is important from various points of view, such as 
interpreting data, reducing the computational burden, avoiding the curse of dimen-
sionality, and improving prediction accuracy (Chandrashekar and Sahin 2014). 
Here, we review some methods employed in “Empirical analysis” section to select 
the most important predictors. Note that, even though two of the methods presented 
in the following three sections exploit some specific classifier (random forest recur-
sive feature elimination is based on RFs and the L1-based approach uses support 
vector machines), all of these approaches are “self-contained.” Hence, after select-
ing the features using any of the approaches described in “Random forest recursive 
feature elimination,” “Chi-squared feature selection,” “Feature selection with L1 sup-
port vector machines” sections, it is possible to perform the classification task via 
any other algorithm.

�̂� = argmax 𝛾∈[0,1]

√
Sensitivity ⋅ Specificity.

ŷi =

{
1 if P(yi = 1|x) > �̂�;

0 if P(yi = 1|x) ≤ �̂� .
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Random forest recursive feature elimination

Random Forest Recursive Feature Elimination (RFRE; Zhou et al. 2014; Gregorutti 
et al. 2016) is based on the use of the RF classifier of ”Tree-based methods” section. 
It ranks the features by iteratively measuring the classifier performance and eliminat-
ing predictors accordingly. RFRE starts by training the classifier with all d features 
and calculating the importance of each feature via the information gain method or 
the mean reduction in the Gini index (James et al. 2021, p. 336; Ustebay et al. 2018). 
Subsequently, subsets of predictors of progressively smaller sizes m = d, d − 1,… , 1 
are obtained by iterative elimination. Within each subset, the model is retrained, and 
its accuracy is recomputed. Hence, RFRE is a feature-selection method that exploits 
the mean reduction in the Gini index in a random forest framework, as outlined in 
Algorithm 2 (see Ustebay et al. 2018 for details).

Chi‑squared feature selection

In this approach, we employ the well-known chi-squared test of independence 
to assess the null hypothesis of independence between the category label and 
each feature (Alshaer et al. 2021). Since continuous features must be discretized, 
denote with ms the number of classes of the sth predictor. The d tests are given by

where O and E are the observed and expected frequency, respectively, and k is the 
number of classes of the target variable.

(3)�2
s
=

ms∑

i=1

k∑

j=1

(Oij − Eij)
2

Eij

, s = 1,… , d,

Algorithm 2  RFRE
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Large values of �2
s
 correspond to solid evidence against the null hypothesis of 

independence of y and xs ; since the distribution of (3) under the null is �2
(k−1)(ms−1)

 , 
the critical values are given by the quantiles of this distribution. We discard from 
the model the predictors xs for which independence from y cannot be rejected.

Feature selection with L
1
 support vector machines

The feature-selection method presented in this section is based on support vector 
machines (SVM—James et al. 2021, Chap. 9). SVMs map the data into a high-
dimensional space and find an optimal separating hyperplane, obtained using 
kernel functions. As pointed out by Zhu et al. (2003), the most common version 
is based on the L2 norm, but L1 norm-based SVM may have some advantages. 
Expanding on this remark, Brankl et al. (2002) propose a feature-selection tech-
nique that exploits L1-based SVM.

When the kernels are linear, i.e., K(x, v) = x
T
v , the L1-based SVM prediction of a 

new observation x can formally be written as pred(x) = sign(w0 +
∑n

i=1
wiK(x, xi)) , 

where xi ∈ Rd , i = 1,… , n are the predictors in the training set, and w is a vector 
of weights that can be computed explicitly as follows (Brankl et al. 2002; Zhu et al. 
2003):

with the constraint ||w||1 ≤ s , where [x]+
def
= max{x, 0}.

Given a new observation (y∗, x∗) , the SVM algorithm checks whether the linear 
combination w1x

∗
1
+⋯ + wdx

∗
d
 is larger or smaller than −�0 , and classifies (y∗, x∗) 

accordingly (Brankl et al. 2002). The j-th feature is more likely to be important if the 
absolute value of its weight wj is large, since it will likely drive

w1x
∗
1
+⋯ + wdx

∗
d
 well above (or below) the threshold. Hence, this feature-selec-

tion method retains the features whose absolute weights |wj| are large. This type 
of feature weighting is rather intuitive: a predictor with a small |wj| has a smaller 
impact on the predictions and can be ignored; see Sindhwani et al. (2001) for a theo-
retical justification.

Empirical analysis

Dataset description

The data source for this study is the AIDA (Analisi Informatizzata Delle Aziende 
Italiane, https://aida.bvdinfo.com) database, which contains accounting 
records and financial ratios of all Italian companies required to file their accounts. 
The total number of observations is about one million. We consider various financial 

min
w

n∑

i=1

[
1 − yi

(
w0 +

n∑

j=1

wjK(x, xi)

)]

+



Machine learning techniques for default prediction: an… Page 11 of 23     1 

indicators for 2014–2018, focusing on small companies: according to the definition 
given by the European Commission (https://single-market-economy.
ec.europa.eu/smes/sme-definition_en), a company is small if its total 
annual revenue is no larger than 10 million Euro.

For each company, the candidate predictors in the dataset can be grouped into 
four categories:

• Financial characteristics (balance sheet and income statement);
• Dimensionality, measured by the total assets discretized in three classes: Small 

(companies with total assets from the minimum to the first quartile), Medium 
(total assets between the first quartile and the mean), and Big (total assets 
between the mean and the maximum);

• Geographical area, identified by the region (North, Center and South);
• Type, which can be Limited Liability (Società a Responsabilità Limitata - 

S.R.L.) or Public Limited Companies by share (Società Per Azioni - S.P.A.).

In addition, each company’s status (Default or Active) is described by a binary target 
variable. According to Ciampi and Gordini (2013), default is defined as the begin-
ning of a legal proceeding for debt, such as bankruptcy or liquidation. Based on 
the information reported on AIDA’s website, the default flag corresponds to one of 
liquidation, bankruptcy, voluntary liquidation, or compulsory administrative liquida-
tion. Table 1 details the features; note that “Solvency” in AIDA is measured by the 
“Solvency ratio,” given by “Shareholder’s funds divided by Total assets.”

The full dataset contains 35,081 Italian small companies operating in Italy in dif-
ferent sectors. However, the financial ratios of small companies may be contami-
nated by missing values and outliers, also because many of these companies are 

Table 1  Description of the features in the dataset

No Variable name Description

1 Region Geographical location of the company
2 Liquidity ratio (Total current assets − Total inventories)/Payable due within 

12 months
3 Current liability/Total 

asset
Payables due within 12 months/(Payables due within 12 months 

+ Payables due beyond 12 months)
4 Leverage Total assets/Shareholder’s funds
5 Interest/turnover (Total financial charges/(Revenues from sales and services + 

Other revenues)*100
6 Solvency (Shareholder’s funds/Total assets)*100
7 EBITDA/Sales (Operating margin + Depreciation, amortization and writ-

edowns)/(Revenues from sales and services + Other 
revenues)*100

8 Company size Company’s total amount of asset
9 ROA (Operating margin/Total assets)*100
10 Company type Type of company (S.R.L. or S.P.A.)
11 Net working capital Total current assets − Payables due within 12 months
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characterized by weak financial stability. Thus, we must clean the data to build a 
more stable and accurate default prediction model. Descriptive statistics are dis-
played in Table  2. Note that Company size and Net working capital are missing 
because they have become categorical after discretization.

As for missing data, every observation x containing one or more missing val-
ues is dropped from the dataset. As concerns outliers, we employ the classical box-
plot approach based on the interquartile range (IQR) to detect and remove outliers: 
all data points that lie below Q1 − 1.5 ⋅ IQR or above Q3 + 1.5 ⋅ IQR (where Qi , 
i = 1, 3 , is the i-th quartile) are considered to be outliers and discarded. Various cut-
offs have been tried in the box-plot method. For example, instead of Q1 − 1.5 ⋅ IQR , 
Q3 + 1.5 ⋅ IQR , we have replaced Q1 and Q3 with the 10th and 90th percentile, or 
with the 15th and 85th percentile, but the outcomes obtained with Q1 and Q3 seem 
preferable, since they give higher accuracy without significantly increasing the num-
ber of observations discarded.

Another possibility would be to cap outliers, but we prefer to avoid this solu-
tion since it can introduce bias into the analysis and make the data distribution more 
skewed, especially if the number of outliers is large.

After performing these two steps, the sample size reduces to 17,973 companies. 
Among them, 2660 defaulted, and the remaining 15,313 did not. Hence, the percent-
age of defaulted companies is 14.8%, so we face a class-imbalance problem, albeit 
less strong than in similar credit risk applications based on different datasets: for 
example, the default rate of Italian non-financial firms in the period 2011–2017 was 
always smaller than 5% (Moscatelli et al. 2019, Table 1).

Selecting the features

The selection of the financial ratios employed in the analysis is based on two stages. 
In the first step, we choose candidate features according to the results of previous 
investigations in the bankruptcy prediction literature (Beaver et  al. 1967; Altman 
1968; Blum 1974; Altman and Sabato 2005; Altman et al. 2010) and their known 
ability to measure the firm performance in terms of liquidity, profitability, and sol-
vency. According to these criteria, nine financial variables are considered. Moreover, 

Table 2  Descriptive statistics

CL current liability, TA total assets, lever leverage, turn turnover, Solv. solvency

Liq. ratio CL/TA Lever. Interest/Turn. Solv. EBITDA/Sales ROA

Mean 1.65 0.83 5.01 0.41 29.07 5.97 6.03
Std 0.65 0.18 3.48 0.45 17.39 5.17 6.08
Min 0.01 0.25 − 6.73 0.00 − 39.86 − 11.25 − 12.04
25% 1.19 0.70 2.45 0.06 15.10 2.47 2.03
50% 1.50 0.88 3.88 0.24 25.60 4.88 4.84
75% 2.00 1.00 6.56 0.60 40.54 8.65 9.49
Max 3.66 1.00 16.63 2.00 92.48 23.78 22.98
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as said in “Dataset description” section, we include the geographical area and the 
type as predictive variables.

In the second step, we use, in turn each of the three feature-selection algo-
rithms introduced in “Feature selection techniques” section to find the variables 
with the largest discriminatory power. Table  3 lists the features yielded by the 
RFRE, Chi-squared and L1-based support vector machine feature-selection 
method.

Figure 1 shows the mean decrease in the Gini index (James et  al. 2021), the 
key quantity for variable selection in the RFRE approach.

Figure 2 displays the p values of the Chi-squared test, and the penultimate col-
umn of Table  3 highlights the selected features. Finally, the last column of the 
table lists the predictors included by the L1-based SVM selection technique.

Comparing the sets of features selected via the first two methods shows that 
both techniques find seven predictors. The L1-based support vector machine cri-
terion selects six variables: all of them are also selected by RFRE, and four by 
the chi-squared method. Four variables (Current liability/total assets, interest/
turnover, Company size, and Net working capital) are always selected. Hence, 
the relevant predictors’ choice seems relatively robust with respect to the feature-
selection algorithms.

Implementation details

We employ all combinations of the five classifiers introduced in “Machine learning 
techniques” section and the three feature-selection techniques presented in “Feature 
selection techniques” section. However, since the accuracies obtained with the three 
feature-selection techniques are very similar, here we only show the outcomes based 
on the RFRE feature-selection approach, which is slightly better than Chi-squared 
and L1.

To train the models and compare the performance of the classifiers, each of the 
four datasets (aggregate, North, Center, South) is randomly split into a training and a 

Table 3  Predictors selected by the three algorithms

No Feature Type RFFE Chi-squared L
1
-based

1 Region Categorical ✕ ✓ ✕
2 Liquidity ratio Numerical ✓ ✓ ✕
3 Current liab/T.asset Numerical ✓ ✓ ✓
4 Leverage Numerical ✓ ✓ ✕
5 Interest/turnover Numerical ✓ ✓ ✓
6 Solvency Numerical ✓ ✓ ✕
7 EBITDA/sales Numerical ✓ ✕ ✓
8 ROA Numerical ✓ ✕ ✓
9 Net W Cap Categorical ✓ ✓ ✓
10 Company size Categorical ✓ ✓ ✓
11 Company type Categorical ✕ ✓ ✕
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test set containing 75% and 25% of the observations, respectively. The classifiers are 
estimated in the former, whereas the latter is used to test prediction accuracy. The 
implementation is based on the following packages of the Python programming 
language: Pandas for data manipulation, Matplotlib and Seaborn for data 
visualization, and Scikit-learn for data preprocessing and model fitting.

The numerical values of the main inputs of the classifiers have been found via 
k-fold cross-validation (CV) with k = 5 . For RF, NN, and LR, the cross-validated 
values are equal to the default ones used by the Python commands; for DT and 
KNN, some of them are different. In any case, for all algorithms, the numerical val-
ues are reported below.

In DT, node-splitting is performed according to node purity, measured by the 
Gini index. The minimum number of samples required to split an internal node and 

Fig. 1  Mean decrease in Gini index in Random Forest Recursive Feature Elimination

Fig. 2  p Values of the predictors in Chi-squared Feature Selection
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to be at a leaf node equals 74 and 17, respectively. These values are found by CV 
and are different from the default ones.

For random forests, at each node, the mean decrease in the Gini index measures 
the quality of a split. The number of trees in the forest is 100, and the number of pre-
dictors employed as split candidates is equal to 

√
d.

The neural network uses one hidden layer with 100 hidden units, and the activa-
tion function is ReLU. The optimization is performed using the adam algorithm 
(Kingma and Ba 2014), which works well on relatively large datasets. To avoid 
overfitting, we employ L2 regularization with � = 0.0001 , which is the default value, 
double-checked via CV.

In regularized logistic regression, the norm of the penalty is L2 and the log-likeli-
hood is maximized using the L-BFGS algorithm. In the subsequent analysis, all the 
parameters are significantly different from zero at the 5% level.

The KNN algorithm employs a number of neighbors K = 13 , different from the 
default value K = 5 . This choice results from CV, according to the procedure illus-
trated in James et al. (2021, Sect. 5.1.5).

Classification results

This section shows the outcomes obtained using the classifiers presented in “Meth-
odology” section combined with the RFRE feature-selection technique.

The ROC curves corresponding to all classifiers are shown in Figs. 3, 4, 5, and 
6 for aggregate data, Northern Italy, Central Italy, and Southern Italy, respectively. 
The big picture represented by these graphs suggests that, in each dataset, there is 
little difference between the methods. Similarly, the geographical area does not sig-
nificantly affect classification accuracy. More insight is provided by the accuracy 
measures displayed in Tables 4, 5, 6, and 7.

When considering the entire dataset, Table 4 shows that RF and NN achieve the 
best performance in terms of accuracy and AUC. However, the remaining classi-
fiers produce similar results, with accuracies larger than 95% . As for sensitivity and 
specificity, the latter is always higher than the former, probably because of the class 
imbalance: since defaulters are fewer than non-defaulters, the algorithms tend to 
favor the majority class. It is worth noting that, in terms of sensitivity and specific-
ity, LR performs extremely well.

The results of this section allow us to notice that the Random Forest model has 
the highest AUC, except in Northern and Central Italy, where NN is preferable. In 
terms of AUC, the worst classifier is a decision tree. Second, focusing on logistic 
regression, its accuracy is only marginally ( 0.12% to 0.83% ) lower than the best clas-
sifier’s accuracy, always with the second or third largest accuracy.

Overall, there are no significant differences between aggregate and regional level 
results. The reason is likely to be that we are assessing the probability of default, 
which measures the likelihood of a firm failing to meet its financial obligations and 
is primarily determined by factors such as the firm’s financial health, the indus-
try conditions, and the market dynamics. The regionality of a firm, referring to its 
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geographic location or markets, does probably not directly impact this probability. 
Factors like firm’s creditworthiness, market conditions, diversification strategies, 
and risk management practices are more influential in assessing credit risk. It is 
worth noting that, while the regionality of a firm may have little effect on the prob-
ability of default, regional factors can indirectly influence a firm’s financial health 
and credit risk. For example, a severe economic downturn or political instability in 
a specific region may affect the firm’s overall performance and increase its credit 
risk. However, these effects are typically incorporated into the broader assessment 
of creditworthiness and are not solely determined by regionality.

Even though the values of the AUC are quite large, there are at least two reasons 
why we do not think they are caused by overfitting. First, the AUC and the accu-
racy evaluation measures (accuracy, sensitivity, and specificity) are computed in the 

Table 4  Accuracy measures for 
aggregate data

Model Accuracy Sensitivity Specificity AUC 

RF 0.958 0.772 0.992 0.972
DT 0.952 0.765 0.986 0.951
KNN 0.952 0.729 0.993 0.957
NN 0.960 0.804 0.989 0.970
LR 0.956 0.744 0.994 0.956

Fig. 3  Aggregate data: ROC curves for all classifiers
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Fig. 4  Northern Italy: ROC curves for all classifiers

Fig. 5  Central Italy: ROC curves for all classifiers
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test set. Second, all the methods are implemented through regularization and/or the 
numerical values of their inputs are double-checked via cross-validation.

Fig. 6  Southern Italy: ROC curves for all classifiers

Table 5  Accuracy measures for 
companies in Northern Italy

Models Accuracy Sensitivity Specificity AUC 

RF 0.966 0.743 0.995 0.959
DT 0.960 0.746 0.988 0.927
KNN 0.965 0.718 0.996 0.943
NN 0.966 0.771 0.991 0.962
LR 0.964 0.715 0.996 0.955

Table 6  Accuracy measures for 
companies in Central Italy

Models Accuracy Sensitivity Specificity AUC 

RF 0.928 0.628 0.996 0.964
DT 0.931 0.769 0.967 0.969
KNN 0.948 0.756 0.991 0.974
NN 0.951 0.814 0.981 0.981
LR 0.952 0.788 0.988 0.973
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Using the adjusted threshold

In “Classification results” section, we have classified as Default the companies with 
estimated posterior probability of default larger than 50%. However, since the per-
centage of defaulted companies in our data is 14.8%, we now focus on the approach 
introduced in “Threshold adjustment” section, which allows us to consider the class-
imbalance issue.

The results obtained with the adjusted cutoff �̂� given by the G-mean method of 
“Threshold adjustment” section are shown in Tables 8, 9, 10, and 11. Only the accu-
racy measures corresponding to the predictors selected by RFRE are displayed here; 
the remaining results are reported in the online appendix.

As can be seen from the tables, the adjusted threshold is considerably smaller 
than 0.5, as expected, because the Default class is underrepresented. Whereas the 
numerical results are similar across all datasets, i.e., aggregate and regional data, 
there are some significant differences with respect to the outcomes in “Classification 
results” section. 

Table 7  Accuracy measures for 
companies in Southern Italy

Models Accuracy Sensitivity Specificity AUC 

RF 0.942 0.795 0.978 0.970
DT 0.931 0.774 0.969 0.945
KNN 0.934 0.732 0.983 0.959
NN 0.934 0.795 0.968 0.962
LR 0.937 0.758 0.981 0.956

Table 8  G-mean approach: 
accuracy measures for aggregate 
data

Models Accuracy Sensitivity Specificity AUC Threshold

RF 0.930 0.937 0.891 0.972 0.18
DT 0.927 0.944 0.837 0.960 0.25
KNN 0.875 0.866 0.921 0.945 0.18
NN 0.945 0.958 0.871 0.970 0.23
LR 0.932 0.942 0.842 0.956 0.21

Table 9  G-mean approach: 
accuracy measures for 
companies in Northern Italy

Models Accuracy Sensitivity Specificity AUC Threshold

RF 0.947 0.961 0.847 0.958 0.20
DT 0.924 0.932 0.868 0.948 0.14
KNN 0.893 0.896 0.871 0.922 0.18
NN 0.956 0.969 0.859 0.959 0.16
LR 0.934 0.946 0.847 0.952 0.15
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1. The threshold is mostly between 15% and 25%, which is close to the percentage 
of defaulting companies in the dataset, equal to 14.8%.

2. The average decrease in accuracy is small (approximately 1–3%) for most meth-
ods; only KNN’s accuracy decreases more significantly;

3. Sensitivity increases considerably at the price of a small decrease in specificity. 
This means that the use of a smaller threshold reduces the false negatives. For a 
bank, this is probably the most important outcome.

Conclusion

In this paper, we shed some light on the performance of the most widespread ML 
classifiers compared to the classical logistic regression approach. The empirical 
results convey the following main messages.

Among the ML methods, neural networks and random forests are preferable. 
However, logistic regression has a very close classification accuracy. More explic-
itly, our findings suggest to rank the methods as follows: neural networks and ran-
dom forests are first, with a similar performance, logistic regression follows at a 
short distance, and the remaining methods are one step behind.

These remarks remain true also when the analysis is based on the adjusted thresh-
old found by maximizing the geometric mean of sensitivity and specificity. Such 
a threshold is significantly smaller than 50%, and, as pointed out in the previous 
section, the sensitivity associated with the adjusted threshold is considerably larger. 
This is an important result, as fewer defaulting customers are erroneously classified 
as non-defaulting when using the adjusted threshold. Accordingly, the take-home 
message is that, due to class imbalance, one should classify observations using a 
threshold chosen to increase sensitivity.

Table 10  G-mean approach: 
accuracy measures for 
companies in Central Italy

Models Accuracy Sensitivity Specificity AUC Threshold

RF 0.910 0.904 0.935 0.971 0.23
DT 0.927 0.948 0.832 0.960 0.32
KNN 0.833 0.809 0.942 0.952 0.18
NN 0.923 0.926 0.910 0.973 0.22
LR 0.927 0.936 0.884 0.971 0.23

Table 11  G-mean approach: 
accuracy measures for 
companies in Southern Italy

Models Accuracy Sensitivity Specificity AUC Threshold

RF 0.913 0.921 0.876 0.953 0.24
DT 0.860 0.857 0.870 0.925 0.23
KNN 0.839 0.826 0.892 0.917 0.18
NN 0.919 0.925 0.892 0.962 0.19
LR 0.910 0.923 0.854 0.951 0.19
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The drivers of the overperformance of neural networks and random forests are 
hard to identify. Generally speaking, if the most flexible methods such as NN and 
RF are better, the reason is that the relationships between the target variable (i.e., 
the default indicator) and the predictors are “highly nonlinear.” However, investigat-
ing such relationships, even with a moderate number of predictors, is quite diffi-
cult. Moreover, since the fitted models are also difficult to interpret, they do not shed 
much light on the relative importance of the predictors. This is a common problem 
with advanced ML techniques: the results are often very good, but it is difficult to 
understand thoroughly why ML approaches perform better.

From the point of view of a bank that needs to decide about the practical imple-
mentation of these methods, the rather modest gain of ML-based classifiers with 
respect to LR suggests the following conclusions.

• In principle, it is worth implementing both LR and the most efficient ML classi-
fiers, i.e., random forests and neural networks; running the models side by side 
would also make it possible to double-check the robustness of the algorithms.

• LR has a lighter computational burden and a more straightforward implementa-
tion, as it does not require to pre-set numerical values of input parameters (such 
as, for example, the number of neighbors K in KNN, or the minimum number of 
observations at each node in DT). In addition, interpreting the results is easier, in 
particular as concerns the relationship of each predictor to the target variable.

• If regulators must scrutinize default prediction models, traditional statistical 
approaches such as LR may be less problematic since they have been employed 
and tested in the industry for a long time and are less dependent on the discre-
tionary interventions of the users of the models.

• Finally, LR is more interpretable and allows the final user to assess quantitatively 
both the relative importance of the explanatory variables and the impact of each 
predictor on the target variable, via the logit transformation (see, e.g., James 
et al. 2021, Sect. 4.3.4).

Since ML methods tend to perform better and better when the sample size increases, 
the previous remarks may become even more meaningful when the databases are 
smaller than in the present work.

It may be interesting to perform further analyses based on these methods: in par-
ticular, it would be important to study whether the results are stable across different 
sectors.

Another issue that would be worth exploring is the development of a model eval-
uation procedure that takes into account the number of predictors used by a model: 
for example, the L1-based feature-selection technique yields only six predictors, i.e., 
a more parsimonious model with respect to the ones based on the RFRE or Chi-
squared feature-selection techniques. Finding a way of incorporating this parsimony 
into some model evaluation procedure would be quite useful.
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