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Abstract

The �p=p ratio published by AMS-02 shows an excess of �p at rigidities above 60 GV , which
can potentially be from WIMP annihilation. To that end, one has to decouple the contribution
of secondary �p coming from standard p + He=H ! �p + X process. However models com-
puting the latter component are affected by astrophysical and nuclear uncertainties. To reduce
the former, the �10Be=�9Be ratio is calculated by analysing 10 years of AMS-02 Be data. A
set of selection criteria is developed to extract a pure sample of Be, and a fit model is con-
structed to extract the counts of the Be isotopes viz. 7Be, 9Be, and 10Be. Additionally, the
detector acceptance is computed using the AMS-MC datasets for Be, and the RTI information
from the AMS-02 data is employed to calculate the exposure time. Using these components,
the detector level fluxes are calculated for each of the isotopes which is then unfolded using a
Bayesian iterative unfolding procedure to extract the particle level fluxes. These fluxes are then
utilised to compute the ratios, �10Be=�9Be and �7Be=�Total Be. The former is compared with
various theoretical models for computation of galactic halo sizes from the �10Be=�9Be ratio;
which suggests that the AMS-02 results severely challenges our understanding of halo sizes.

Furthermore, for the measurement of the �p production cross-section, p beam at various energies
from the CERN Super Proton Synchrotron are directed at a liquid He target within the COM-
PASS++/AMBER experimental hall. For this purpose, the COMPASS-RICH detector is used
for �p identification. As such, a Monte-Carlo simulation of the detector is developed in Geant4,
and a reconstruction algorithm is written. This work is presented as an appendix to the thesis.
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Chapter 1

Introduction

1.1 Overview

”Is our Universe really Dark?”

To place the above sensational comment in perspective, we need to note that unravelling the

composition of our Universe is still a daunting question for Physicists. Evidence from numer-

ous astrophysical and cosmological sources, and observations has resulted in aStandard Model

of Cosmologywherein the ordinary matter constitutes only about5% of the universe and the

nature of the remaining95%remains “dark” or unknown to us. Around68%of the Universe's

energy budget is in form ofDark Energy, which has been hypothesised to explain the current

acceleration of the expanding universe. The remaining� 27%is in the form ofDark Matter

(DM) which is hypothesised to be non-baryonic, non-luminous, non-relativistic form of matter

that constitutes about85%of the matter content of the universe.

Theorists have come up with several scenarios to explain the particle nature of DM. Those theo-

ries rely on going beyond theStandard Model of Particle Physics. The Standard Model (SM) of

Particle Physics is a massively successful theory providing high-precision theoretical estimates

for experimental data, and it describes theWeak, ElectromagneticandStrong Forces. Despite

being a major breakthrough in physics, SM cannot explain the origin, existence and properties

of DM. Although there has been no statistically signi�cant results from any accelerator based

experiments including the LHC, of Physics beyond SM, we have strong evidence from other

experiments that SM is at best a low energy effectiveQuantum Field Theory.

We have scant knowledge about DM as a particle, however, any candidate for (most of) DM

must obey the observational constraints. In cosmological terms, the relic abundance of the can-

didate particle should account for the observedCold Dark Matter(CDM) abundance, should

be non-relativistic (and hence the name cold) in nature to allow structure formation in the early

universe, and among others, its lifetime should be larger than the age of the universe, or in

other words, it should be cosmologically stable. Among the various candidate theories for DM,

Weakly Interacting Massive Particles(WIMPs) are of great interest and have been widely con-

27



sidered theoretically which has further instigated enormous experimental endeavours to detect

them. What makes WIMPs theoretically interesting is that they arise naturally in several exten-

sions of the SM, such as theMinimal Supersymmeteric Standard Model(MSSM).

Efforts have been made worldwide to detect WIMPs using various methods, such as direct, indi-

rect, and collider searches. However, there has not been a de�nitive WIMP detection signature

thus far. The DAMA/LIBRA collaboration [74, 246] has reported a sustained annual modu-

lation in its detector, which could be due to changes in the relative velocity between galactic

WIMPs and Earth caused by Earth's rotation around the Sun. DAMA usesNaI (T l) crystals to

measure WIMP scattering, and the detected signal indicates a WIMP mass of around10GeV if

the scattering fromNa ions is taken into consideration. The data collected from DAMA phase

1 and phase 2 [75], which corresponds to an exposure of2:46 tons � yr , has a combined

signi�cance of 12.9� C.L. [116]. Another collaboration called CRESST [57] has also reported

an excess of data that suggests WIMP masses in the range of10� 60 GeV with a WIMP nu-

cleon scattering cross section between10� 43 and10� 40 cm2. CoGENT [7] has observed event

excesses and annual modulation similar to the DAMA experiment, with a signi�cance of 2.8

� C.L.. The results from the DAMA, CoGENT, and CRESST experiments are dif�cult to rec-

oncile with the simplest models of DM [190, 248], and the parameter space that these models

suggest for the relationship between WIMP mass and WIMP nucleon scattering cross-section

seems to be inconsistent. This con�ict is also apparent when comparing these positive signals

to the null results from experiments such as LUX [39], XENON-1T [58], and PANDA [262],

which have set the most stringent limits on WIMP nucleon spin-independent cross-sections.

These limits constrain the WIMP nucleon scattering cross section to below10� 45 cm2 for light

DM, with WIMP masses below100GeV. As a result, it is worthwhile to explore the WIMP

nucleon cross-section for lighter WIMPs, using complementary techniques such as indirect de-

tection or searches at colliders.

WIMPs can potentially be created as a result of proton-proton collisions at the LHC, along-

side one or more QCD (Quantum Chromodynamics) jets, photons, and other detectable par-

ticles from the SM. However, the DM produced in this way would not be detected due to its

very weak interaction cross-section. Therefore, experiments are looking for missing transverse

energy (ET ) signals, which could indicate the presence of dark matter. Searches at the col-

lider involve looking forET and speci�c SM particles in predicted �nal states, often involving

searches for SUSY particles that can further decay to DM candidates. However, so far, no such

signatures have been found, and results from collider searches are consistent with SM expec-

tations. The ATLAS [4], CMS [252], and LHCb [5] experiments at the LHC have set strong

limits on DM candidates. MiniBooNE experiment at Fermilab [35] also contrain Sub-GeV DM

candidates. Efforts to detect DM in the sub-GeV mass range has also been actively pursued at

�xed target experiments and with high intensity, low-energy colliders. In particular, Search for

dark photons decaying into light DM has also been conducted ate+ e� colliders such as BaBar

(see chapter 16 of Ref. [128]). However, it's important to note that the limits set by colliders

are model-dependent, and hence the interpretation of these limits should be done, taking into
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consideration the underlying mechanisms that couple DM to the SM particles.

Indirect searches are often used in combination with direct detection and collider-based searches

to detect DM. They involve searching for the products of the annihilation and decay of WIMPs

in regions where there is a high concentration of DM, such as the center of the sun, earth, and

galaxy. This can manifests as distortions in gamma-ray spectra or anomalies in rare compo-

nents ofCosmic Rays(CRs), such as antimatter components like anti-protons, anti-deuterons,

and positrons. Speci�cally, CR antimatter components have the potential to detect the products

of DM annihilation in addition to standard astrophysical production.

� + � ! q�q; W� ; W+ ; : : : ! �p; �d; e+ ; 
; � ; (1.1)

where� is a generic symbol for a DM candidate.

The AMS-02 experiment, which is a state-of-the art accelerator type magnetic spectrometer

installed on theInternational Space Station(ISS), offers us a unique platform with its high

precision results of antimatter spectrum [27] to probe the possible DM channels. In particular,

the positron and antiproton channels have received attention in recent time to investigate ex-

cess over SM prediction. However, the excess of cosmic positrons observed cannot be solely

attributed to DM, as it may also be caused by the emission of positrons from nearby astro-

physical sources of leptons or galactic pulsars [135, 136, 202, 214, 271]. This contradicts the

predictions of standard models for the production of cosmic positrons [11, 32]. The present

isotropy (or anisotropy) of the cosmic positron �ux cannot be relied upon to completely differ-

entiate between the various scenarios [213]. Consequently, the anti-proton spectrum remains

a privileged channel for indirectly searching for dark matter. However, to that purpose, it is

crucial to assess the uncertainties related to the production and propagation of anti-protons in

the galaxy.

Inelastic scattering of CRs off the ISM is responsible for the dominant part of the anti-protons

in our galaxy and it sets the background against which contribution from exotic sources is inves-

tigated. AMS-02 has measured the�p �ux and �p=pratio with an exceptional degree of accuracy,

to within a few percent. These measurements cover a broad energy range, from below1 GeV

up to several hundredsGeV. The �ndings indicate that the�p=pratio remains steady above60

GV rigidity, and is quite �at.

The anti-proton (secondary) component generated by CRs is expected to decrease more rapidly

than the primary proton spectrum, although those theoretical predictions are affected by sev-

eral uncertainties. Two major sources of uncertainties which af�ict the prediction of anti-

protons for indirect DM search are the astrophysical uncertainty due to propagation in the

galaxy andHeliosphere[83–86,90,150,151,167], and the anti-proton-production cross-section

[137, 140, 156, 197, 239, 278]. The AMS-02 measurements will help reduce the astrophysi-

cal one, by constraining the propagation of CRs and re�ning the diffusion model of CRs in
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the galaxy and theSolar System. For the latter uncertainty, we note that, nuclei heavier than

proton and helium contributes a paltry amount to the secondary production of CRs, either as

projectiles or targets, and hence they play a trivial role in the production of secondary an-

tiprotons [197]. Consequently, the dominant reactions are those involving protons and Helium

(p + p; p + 4 He;4 He + p;4 He + 4 He). Approximately 40% of the�p production across the

entire energy spectrum involves interactions where4He is either the target or the projectile.

To decrease uncertainty regarding the secondary�p production cross section and determine if

there are any indications of exotic components from DM annihilation or decay in the AMS-02

data, it is essential to conduct precise measurements of the�p production cross section in both

p + p collisions andp + 4 He collisions at energies ranging from10 GeV to a fewTeV. The

Apparatus for Meson and Baryon Experimental Research(AMBER) at the M2 beam line of

Super-Proton Synchrotron(SPS) at CERN, offers us the possibility to explore the production

cross-sections of interest. AMBER is a60m long �xed target experiment, and is a two-staged

spectrometer with numerous tracking detectors, particle identi�cation and calorimetry. To carry

out the proposed physics program, data were collected using a liquid helium (LHe) target and

would be collected using a liquid hydrogen (LH2) target in the future.

In the light of the above, there are two components to the doctoral work. The �rst part which

serves as the primary focus of the thesis pertains to improving the CR propagation models to

reduce astrophysical uncertainty. In order to achieve this objective, the Beryllium (Be) isotope

analysis is performed using 10 years of AMS-02 data. Be is primarily produced in the spallation

reaction of Carbon (C), Nitrogen (N), and Oxygen (O) with the ISM, and is a rare component

of CRs. It has three major isotopes,7Be;9 Be, and10Be. Out of them,9Be is stable, while10Be

is � � radioactive, and has a relatively longer half-life (T1=2 = 1:39� 106 years). The relatively

small amount of10Be, when compared to the9Be abundance, presents us with a radioactive

clock that can be used to measure the residence time of CRs in the Galaxy. The measurement
10Be=9Be can also constrain the astrophysically important ratioH 2=D, whereH is theHalo

Half Size, andD is theDiffusion Coef�cientin Cosmic Ray Transport Equations[153]. A dis-

cussion on the theory is done in explicit details in chapter 2 (See 2.7.1).

For completeness, the second part of the work which involves the measurement of anti-proton

production cross-section is provided as an appendix to this thesis. For identi�cation of the anti-

protons, the COMPASSRing Imaging Cherenkov Detector(RICH) [10], is the most important

one. The RICH is a relatively large detector with a volume of80m3, and it containsC4F10 gas

as a refractive medium. The mirror system of the RICH consists of two very ultra-violet (VUV)

re�ecting spherical surfaces, with a total area larger than21m2. Monte Carlo (MC) simulations

of the detector using the Geant4 platform was performed for the RICH detector. Furthermore,

to improve the velocity reconstruction from the RICH Cherenkov Rings, the necessary physics

processes calculations were implemented in C++ and visualised using ROOT classes. Along

with that, both test beam with a deuteron target and actual measurements with a liquid helium

target were conducted in November 2022, and in July 2023, respectively. Further data acqui-

sition with a hydrogen and deuteron target is scheduled to be held in 2024 as of writing this
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thesis. The ongoing analysis of the data would help reducing nuclear uncertainties.
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Chapter 2

Cosmic Rays and Propagation Models

2.1 A brief peak into history

The beginning of the 20th century, thede factogolden period of modern physics, saw the par-

allel development of Cosmic Ray (CR) Physics and Elementary Particle Physics. In fact, in the

absence of particle accelerators, CRs provided the background for the discovery of several new

particles that could be observed only at high energies.

Towards the end of the 19th century, Becquerel's discovery of spontaneous radioactivity re-

sulted in a widespread belief that ionizing radiation in the atmosphere was solely derived from

radioactive elements present in the earth or their derivatives. Subsequently, a signi�cant amount

of experimental work was conducted in the early 1900s to comprehend the properties and

essence of this ionizing radiation. This involved conducting experiments underground, un-

derwater, and at high altitudes to investigate its intensity in relation to distance from the ground

and its variations across different geographical locations. In 1910, Wolf [206] observed a pos-

sible radiation from outer space by measuring ionization rates with an electroscope at the top of

the Eiffel Tower. The intensity of this radiation did not decrease as much as it would have if the

source of the radiation was on the ground, suggesting it could have originated from extrater-

restrial sources. The signi�cant progress occurred when Victor Hess conducted experimental

measurements starting in 1911, which involved multiple balloon �ights at different altitudes

above sea level (Fig. 2.1). Hess discovered that the rate of ionization began to increase at

altitudes of around 1.5 km, leading him to conclude that a new form of radiation from outer

space was causing this observed increase [178]. In 1911, Domenico Pacini [229] and, indepen-

dently in the 1920s, Robert Millikan conducted underwater observations and both con�rmed

the existence of a new type of radiation that was originating from beyond Earth. This radia-

tion was later identi�ed as cosmic rays. During that period, the nature of cosmic rays was still

unclear, speci�cally whether they were composed of charged particles or neutral photons. The

debate was so intense that it even made the front page of newspapers like New York Times

(2.1). Millikan initially supported the idea that cosmic rays were high-energy gamma rays with

some secondary electrons produced by Compton scattering, while charged particles were con-

sidered as candidates for Compton. After the era of the electroscope, there were a few key

32



Figure 2.1: Left: Victor Hess (center) and his crew on the balloon departing from Vienna in
1911. Right: Cover page of The New York Times reporting the heated discussion between
Millikan and Compton on the nature of CRs.

technical breakthroughs that greatly advanced the study of cosmic rays. These included the

development of Geiger-Muller tubes, the implementation of coincidence techniques re�ned by

Bruno Rossi [241], and the introduction of imaging devices such as bubble/cloud chambers

and photographic emulsions. These advancements provided a wealth of new information about

cosmic rays in the 1930s. It was discovered early on that the particles observed in cosmic rays

were capable of passing through substantial amounts of material. This raised concerns about

the original theory that cosmic rays were primarily composed of photons.

An important development in understanding the charged nature of cosmic rays occurred in the

early 1920s, when scientists realized they could use the Earth's magnetic �eld to their advan-

tage. They realized that if cosmic rays were made up of charged particles, their trajectories

would be affected by the magnetic �eld, causing greater radiation intensity near the poles than

at the equator.

Building on the earlier work of Carl Stoermer on the Earth's geomagnetic �eld, Rossi predicted

that if CR were predominantly of one charge, an East-West �ux asymmetry should be observed,

with the maximum effect occurring around the geomagnetic equator. In 1934, Rossi con�rmed

this prediction by measuring the East-West effect [242], which was an important milestone in

the understanding of cosmic rays.

In the 1940s and 1950s, a comprehensive and consistent understanding of cosmic rays was

developed based on these foundations. It was discovered that the primary radiation is mainly

made up of protons, with a smaller amount of heavier nuclei, and that the particles observed on

the Earth's surface are secondary cosmic rays that are created through interactions between the

primary cosmic rays and the atmosphere 2.3.
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Figure 2.2: Original mea-
surements from one of the
ascents performed by Viktor
Hess [178]. The increase of
rate of discharge with alti-
tude implies that the ioniz-
ing radiation responsible for
it is extraterrestrial

Dirac's theory on the existence of anti-particles and Einstein's theory on the equivalence be-

tween mass and energy were both experimentally con�rmed through the discovery of the

positron in 1932, which was observed by Anderson while studying cosmic rays using a cloud

chamber [55]. This discovery, along with the later measurement of pair conversion
 ! e+ e� ,

contributed to the understanding of new interactions and particles that were postulated in the

1930s. In the 1940s, the discovery of muons [257], pions [227], and kaons [240] in cosmic rays

helped to clarify this puzzle further [133]. These discoveries in the �eld of cosmic rays led to

the creation of two complementary �elds of research: high-energy elementary-particle physics

and cosmic-ray astrophysics. These two �elds have effectively merged today in the astroparti-

cle domain, where fundamental physics processes are investigated using cosmic radiation as a

source with high-energy physics instruments.

The launch of Sputnik I in 1957 was a signi�cant breakthrough that marked the beginning of

the space era. This allowed for advancements such as the ability to observe primary cosmic

rays using satellites equipped with Geiger-Muller counters and magnetic spectrometers. One

of the most notable discoveries was the existence of the Van Allen belts, which are regions

around Earth with intense radiation levels due to low-energy charged particles trapped in the

geomagnetic �eld. TheSouth Atlantic Anomaly, a region where the lowest Van Allen belt is

near Earth's surface, is discussed in subsequent chapters due to its impact on measurements

made by the AMS-02 experiment.

34




	Introduction
	Overview

	Cosmic Rays and Propagation Models
	A brief peak into history
	Cosmic Rays
	Composition
	Energy Spectrum

	Cosmic Ray Sources and Acceleration Mechanisms
	Second Order Fermi Acceleration
	First Order Fermi Acceleration

	Galactic Propagation of Cosmic Rays
	Galactic Magnetic Field
	Deflection of Cosmic Rays by Magnetic fields
	Cosmic Ray Propagation equation
	The Leaky-Box Model
	Numerical Solution of Transport Equation

	Heliosphere and Solar Modulation
	The Force-Field approximation

	Magnetosphere and Rigidity Cutoff
	Cosmic Ray Composition as a Tool for Astrophysics
	Unstable Secondary to Stable Secondary Ratio
	Back of the envelope thumb rules for CR transport
	Beryllium in Cosmic Rays

	Antimatter in Cosmic Rays

	The AMS-02 Experiment
	Introduction
	The AMS-02 Detector
	The Permanent Magnet
	Silicon Tracker Detector
	The Transition Radiation Detector (TRD)
	The Time-Of-Flight (TOF)
	Anti-Coincidence Counter (ACC)
	The Ring Imaging Cherenkov Detector (RICH)
	Electromagnetic Calorimeter (ECAL)
	Trigger Logic and Data Acquistion System
	The Trigger Logic
	Data Acquisition System (DAQ)
	Livetime

	Data Taking
	Data Processing and Event Reconstuction
	AMS-02 Monte Carlo Simulation

	AMS-02 Be Isotope Data Analysis
	Data Reconstruction
	Data Reduction (Trigger)
	Geomagnetic Environment and timestamp (RTI)
	AMS-02 Monte-Carlo Simulations
	General Quality Selections
	Time and Location Based cuts
	Event Geometry and Reconstruction Selections


	Identification of Beryllium Events
	Principal Signal Purification with Charge (Inner Tracker)
	Background from Heavy Nuclei Fragmentation
	Reduction of Fragmentation Background
	Contamination from Interacting Heavier Nuclei

	Isotopic Distinction with AMS-02
	The Mass Formula
	Rigidity (R) 
	Measuring Rigidity
	Track Quality Selections: Improving the R Resolution
	Final Rigidity Resolution

	Velocity 
	Velocity Measurement
	ToF  Measurement and ToF  Resolution
	RICH  Measurement and RICH  resolution
	RICH Charge Measurement

	Beta and Energy per Nucleon Range for the Analysis

	Data Selection Summary and Final Mass Distributions
	Fit on Be Mass Distribution
	Fit Method
	Measurement Principle
	Parametrisation on Single-Isotope Template MC
	Fit Results and Template Verification
	Full Mass-Distribution Model (The Three-Isotope Template)

	Monte-Carlo validation of the Fit-Model
	Realistic Mixture of Isotopes in MC (Tuning the Spectrum)
	Fit on Monte-Carlo Distributions


	Measured Be Isotopic Fraction on Data
	Fit Procedure on Data
	A note on the Energy Binning
	A note on Template Fitting Procedure
	A note on the Nature of the Data


	Isotope Fluxes and Experimental Results
	Flux of Cosmic ray species
	The Exposure Time
	Avoiding Bias to the Isotope Ratio
	Live-time Fraction and Exposure Time

	Acceptance
	Geometric Acceptance
	Monte Carlo Acceptance
	Data Driven Efficiency Corrections
	Corrected Acceptance and Uncertainty

	Unfolding
	Detector Smearing of True Spectrum
	Mathematical Formalism of the Unfolding problem
	D'Agostini's Iterative Bayesian Unfolding Method
	Unfolding Factor for the Be isotope fluxes

	Systematic Uncertainties, Final Flux and Flux Ratios result
	Comparison with theory and sensitivity to halo thickness parameter


	Conclusion
	AMBER experiment at CERN
	Introduction
	Spectrometer for Hadron Physics
	Beam line

	Beam particle identification
	CEDAR detector
	Positive Beam Separation

	Target Region
	Recoil Proton Detector
	Sandwich Veto Detector

	Tracking Detectors
	Very Small Area Tracker
	Scintillating Fibre Detectors (SciFi)
	Silicon Microstrip Detectors
	PixelGEM Detectors

	Small Area Trackers
	Micromegas Detectors
	GEM Detectors

	Large Area Tracker
	Drift Chambers
	Straw Tube Chambers
	Multiwire Proportional Chambers
	Large Area Drift Chamber
	Rich Wall


	Particle Identification Detectors
	Calorimeters
	Electromagnetic Calorimeter
	Hadronic Calorimeter


	Trigger
	Beam trigger
	Veto Detectors
	Beam Killers
	Sandwich Veto Detector
	Hodoscope Veto System

	Proton Trigger
	Multiplicity trigger
	Calorimeter Trigger

	Data Acquisition and Reconstruction

	Ring Imaging Cherenkov Detector
	Introduction
	Theory of Cherenkov Radiation
	Cherenkov Emission Angle
	Qualitative Description of the Cherenkov Process
	Cherenkov Energy Spectrum (Frank-Tamm Formula)
	Velocity Measurement from Cherenkov Angle
	Upper Momentum limit for Separation of Two Particles

	COMPASS-AMBER RICH-1
	RICH Vessel and the Radiator Gas
	The Focusing Mirrors
	The CLAM System

	Data Analysis and Reconstruction
	CORAL
	RICHONE
	Primary functions of the RICHONE package



	Dark Matter: WIMP and Detection Channels
	Introduction
	Evidence of Dark Matter
	Relic Abundance

	Antiproton Excess as a Channel for Dark Matter Search
	Anti-protons in Cosmic Rays
	Secondary Anti-Protons
	Anti-protons from DM annihilation
	AMS-02 Anti-Proton to Proton Ratio

	Theoretical Uncertainties in DM Interpretation from Anti-Proton Spectrum 
	Astrophysical Uncertainties
	Nuclear Uncertainties
	Maximal Energy of Product Particles
	Relation between LAB and CM frame for the energy-differential cross-section


	Determination of Precision on the Cross-Section
	Dark Matter Candidates for AMS-02 and criticism of MOND theories
	Non-Particle Description of Dark Matter

	Monte Carlo Simulation of the AMBER-RICH Detector and RICH Ring Reconstruction Algorithm
	Introduction
	NaF Radiator RICH MC simulation
	RICH-NaF Ring Analysis
	Model to Fit Cherenkov Rings
	 Reconstruction from Fit Model


	Proximity Focussing Gas-RICH Detector
	AMBER-RICH
	Model to Fit the Cherenkov Rings
	Naive  Reconstruction from Fit Model 

	Work Towards an Exact  Reconstruction Algorithm
	The Mother equation
	Final incident ray equation and mirror intersection values
	Mirror Intersection Points Expression
	Normal at the point of Intersection
	Reflected Ray Formula




