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A B S T R A C T   

Background: Ovarian cancer (OC) is one of the worrisome gynecological cancers worldwide. Given its consid-
erable mortality rate, it is necessary to investigate its oncogenesis. 
Methods: In this study, we used systems biology approaches to describe the key gene modules, hub genes, and 
regulatory drugs associated with serous OC as the novel biomarkers using weighted gene co-expression network 
analysis (WGCNA). 
Findings: Our findings have demonstrated that the blue module genes (r = 0.8, p-value = 1e-16) are involved in 
OC progression. Based on gene enrichment analysis, the genes in this module are frequently involved in bio-
logical processes such as the Cyclic adenosine monophosphate (cAMP) signaling pathway and the cellular 
response to transforming growth factor-beta stimulation. The co-expression network has been built using the 
correlated module’s top hub genes, which are ADORA1, ANO9, CD24P4, CLDN3, CLDN7, ELF3, KLHL14, PRSS8, 
RASAL1, RIPK4, SERINC2, and WNT7A. Finally, a drug-target network has been built to show the interaction of 
the FDA-approved drugs with hub genes. 
Conclusions: Our results have discovered that ADORA1, ANO9, SERINC2, and KLHL14 are hub genes associated 
with serous OC. These genes can be considered as novel candidate target genes for treating OC.   

1. Introduction 

OC is a common type of gynecological cancer and carries high 
morbidity and a generally poor prognosis [1]. Although patients with 
early-stage OC have a 5-year survival rate of 93%, the vast majority of 

patients (more than 80%) are not diagnosed until the tumor has pro-
gressed to stage III or IV [2]. Despite remarkable advances in under-
standing the biology of OC, there is a need to identify novel biomarkers 
for potential targeted therapy of OC patients. In this regard, 
RNA-sequencing-based studies have explored the role of specific 

* Corresponding author. 
** Correspondence to: Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy. 

E-mail addresses: h.safarpour@bums.ac.ir (H. Safarpour), n.silvestris@oncologico.bari.it (N. Silvestris).   
1 These authors contributed equally to this work  
2 Co-last authors 

Contents lists available at ScienceDirect 

Biomedicine & Pharmacotherapy 

journal homepage: www.elsevier.com/locate/biopha 

https://doi.org/10.1016/j.biopha.2021.112537 
Received 1 October 2021; Received in revised form 9 December 2021; Accepted 13 December 2021   

mailto:h.safarpour@bums.ac.ir
mailto:n.silvestris@oncologico.bari.it
www.sciencedirect.com/science/journal/07533322
https://www.elsevier.com/locate/biopha
https://doi.org/10.1016/j.biopha.2021.112537
https://doi.org/10.1016/j.biopha.2021.112537
https://doi.org/10.1016/j.biopha.2021.112537
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biopha.2021.112537&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Biomedicine & Pharmacotherapy 146 (2022) 112537

2

molecules and genes in the pathogenesis and recurrence of OC. How-
ever, these technologies generate massive amounts of data, necessitating 
the development of new methods to extract meaningful associations 
from these data [3–7]. 

As an unbiased systematic biological approach, WGCNA can be an 
effective option. WGCNA clarifies a transcriptome’s system-level func-
tionality, establishes gene associations, and recognizes strongly corre-
lated gene modules [8]. It can also be used to fill in gaps between 
individual genes and the connections between disease development [9]. 
WGCNA also helps with network-based gene screening approaches, 
which can be used to find and search for key biomarkers linked to 
clinical features in different cancers [10]. 

In the current study, we used the WGCNA to detect hub genes 
correlated with OC disease. Besides, we proposed FDA-approved drugs 
that can potentially suppress these genes. 

2. Methods 

2.1. Acquisition of high throughput sequencing data and pre‑processing 

The Gene Expression Omnibus (GEO) database (https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE143897) was used to obtain 
the gene expression of the GSE143897 dataset. According to the original 
publication of GSE143897, the basic clinicopathological features are 
listed in Table 1. 72 samples (11 benign and 61 serous OC tissues) were 
retained after pre-processing. The coefficient of variation (CV) of the 
expression data was then determined to generate a list of 4000 genes 
with the highest variations in their expression values for further 
analyses. 

2.2. Screening of differentially expressed genes 

The edger package was used to conduct differential expression 
analysis on 11 benign and 61 serous OC samples. Genes with FDR < 0.05 
and |LogFC| ≥ 4 were considered differentially expressed genes (DEGs). 

2.3. Co‑expression network construction 

Following pre-processing the GSE143897 read count data, the 
expression profile of 4000 genes was guided to create a gene co- 
expression network using the WGCNA package in R software. We used 
the soft threshold power of = 6 (scale-free R2 = 0.94) to create a network 
with a closely scale-free topology. Adjacency matrices were calculated 
and converted into the topological overlap matrix (TOM). The dynamic 
tree cut algorithm was applied to detect gene modules. The correlation 
coefficient between gene expression and module traits was defined as 
gene significance (GS). The module eigengene was considered as a 
summary profile for each module. The correlation coefficient between a 
module’s eigengene and traits was used to determine module 

significance. The correlation coefficient of the module eigengene and 
gene expression profile was used to determine module membership 
(MM). Genes with MM and GS values greater than 0.70 were considered 
the modules’ signature genes. 

2.4. GO enrichment analysis and KEGG pathway analysis 

In the next step, DEG and module genes were studied using Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway via Enrichr (https://maayanlab.cloud/Enrich 
r/) [11]. The p-value< 0.05 was defined as a meaningful enrichment 
analysis result. Potential functions were predicted using GO and KEGG 
pathway analyses. 

2.5. Validation of hub genes 

After hub-gene selection and DEG analyses, a Venn diagram was 
created using the free "Venny" v 2.1 software (https://bioinfogp.cnb.csic 
.es/tools/venny/) [12]. Then survival analyses were performed using 
the GEPIA online database (http://gepia.cancer-pku.cn) to investigate 
the impact of the hub genes on overall survival (OS) of OC patients [13]. 
Finally, the best hub-genes were chosen based on their highest degree of 
LogFC, prognostic value, and novelty. 

2.6. Identification of regulatory drugs 

Drug repositioning is for discovering potential therapeutic ap-
proaches based on existing drugs. To predict drugs for our hub-genes, we 
used the Drug-Gene Interaction Database (DGIDB) (http://www.dgidb. 
org/). The drugs in this database have been used in clinical trials or 
are currently being used in clinical trials [14]. Initially, approved and 
predicted drugs associated with hub-genes were obtained by entering 
the gene symbol into the DGIDB search section. The results from this 
search were then entered into Cytoscape and merged with the data from 
the Cytoscape Drug Bank tab, and a drug-gene network for the relevant 
hub-genes was constructed. 

3. Results 

3.1. DEGs screening 

The study’s workflow is demonstrated in Fig. 1. The edger package 
was used to compare the expression matrix data from 11 benign and 61 
serous OC samples. 1890 DEGs were obtained using FDR 0.05 and | 
LogFC| ≥ 4. The volcano plot of DEGs is shown in Fig. 2A. Then GO 
enrichment was performed on 1726 upregulated and 164 down-
regulated genes using the Enrichr (Fig. 2B). As shown in Fig. 2B, 1891 
genes have been significantly enriched in the microtubule cytoskeleton 
organization involved in mitosis (GO:1902850), mitotic spindle orga-
nization (GO:0007052), epidermis development (GO:0008544), limb 
development (GO:0060173), and etc. 

3.2. Gene co-expression network analysis results 

A total of 4000 genes were involved in WGCNA based on their dif-
ferences in expression values. We used the WGCNA picksoftthreshold 
function to measure the intensity of the Pearson correlation between 
each gene-pair in order to generate an adjacency matrix by raising the 
matrix to a soft threshold, ensure that the network structure samples 
clustered by the cutreestatic feature and all the samples in the analysis 
were reliable (Fig. 3A and B). By selecting a proper soft threshold power 
= 6 (Fig. 3C) according to the scale-free network, a total of 11 modules 
(Fig. 3D) were obtained. Then, the blue module (r = 0.8, p-value = 1e- 
16) was found to be closely correlated with clinical features and was 
chosen as a candidate main module (Table 2 and Fig. 4A). 

Also, blue module genes were involved in epithelial cell development 

Table 1 
GSE143897 datasets characteristics.  

Characteristics n 

Histologic subtype 
Serous  79 
Benign  12 
Ascites  32 
FIGO stage 
Stage 1  0 
Stage 2  2 
Stage 3  85 
Stage 4  24 
Unknown  12 
Treatment 
Platinum  18 
None  105 
Total  123  
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Fig. 1. : Pathway illustration. This study’s data preparation, retrieval, and review workflow. The analyses were carried out in two different ways. DEG analysis was 
used at first to identify the most differentiated expressed genes. WGCNA was used in parallel to find the genes with the highest values of ’the gene significance’ and 
’the module membership,’ which reflect the network’s weight of genes. Finally, hub genes were chosen from these two lists based on their similarity. This procedure 
ensures that each gene has the highest differential expression, as well as the highest contact with other genes and a disease state correlation. 
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(GO:0002064), cellular response to retinoic acid (GO:0071300), cAMP 
signaling pathway, ABC transporters, and tight junction (Fig. 4B). 

3.3. Validation of hub genes 

The correlation between the features (MM and GS) of the blue 
module has been investigated to detect the hub genes of this module that 
are highly associated with OC recurrence (Fig. 5A). They were ADORA1, 
ANO9, CD24P4, EPHA1, CLDN3, CLDN7, ELF3, KLHL14, PRSS8, 
RASAL1, RIPK4, SERINC2, and WNT7A (Fig. 5B). Next, the hub genes 
were validated via the authentication process. Our results have indi-
cated that the overexpression of ADORA1 and ANO9 has been associated 
with poor OS of OC patients (p-value=0.0071, and p-value =0.0089, 
respectively) (Fig. Sl). Also, the mRNA expression levels of ADORA1 and 
ANO9 have been significantly higher in OC tissues compared to benign 
ovarian samples (both p-values<0.05) (Fig. S2). This has been consistent 
with our DEG analysis on the GSE143897 dataset. 

3.4. Drug-target network construction 

We looked for drugs that are not currently approved for treating 
serous OC. Fig. 6 represents the module’s proposed targets. The presence 
of a target in the desired module means that these drugs may have an 
effect on OC and should be further investigated. 

4. Discussion 

Systems biology approaches, such as WGCNA, have been widely used 
in recent years to identify possible and novel biomarkers in cancers such 
as breast, rectal, esophageal, and ovarian cancers [15,16]. Chen et al. 
have identified COL6A3, CRISPLD2, FBN1, and SERPINF1 as novel bio-
markers for determining the survival of OC patients [3]. Our analysis on 
the GSE143897 dataset has identified an associated module (blue 
module) associated with OC development, which led to the construction 
of a co-expression network based on ADORA1, ANO9, CD24P4, EPHA1, 
CLDN3, CLDN7, ELF3, KLHL14, PRSS8, RASAL1, RIPK4, SERINC2, and 
WNT7A hub genes. The expression of all hub genes has been higher in 
serous OC tissues compared to benign samples. According to the 
enrichment analyses, these 13 hub genes are involved in the microtubule 
cytoskeleton organization epithelial cell development. Besides, the 
increased expression levels of ADORA1 and ANO9 have been associated 
with the inferior prognosis of OC patients. 

Adenosine receptor A1 (ADORA1) is a G-protein coupled receptor 1 
(GPCR1) [17]. ADORA1 is involved in the cAMP signaling pathway and 
can reduce intracellular levels of cyclic adenosine monophosphate by 
interacting with adenylyl cyclase through the inhibitory G-protein 
subunit (Gi) [18,19]. ADORA1 can stimulate the phosphatidylinositol 
3-kinase (PI3K)/AKT pathway [20]. In OC, the stimulated 
PI3K/AKT/mTOR pathway has been associated with aggressive pheno-
type [21]. Also, increased PI3K activity in some cells are accompanied 

Fig. 2. : The volcano plot between benign and serous samples; A. The volcano plot for DEGs. B. DEGs enrichment analysis.  
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by mutated PTEN and activated PKB and PDK1, which can stimulate 
PKC, ribosomal S6 kinase, SGK, Rho kinase, and PAK1. This is associated 
with increased invasion and metastasis [22]. Our results have shown 
that adenosine, tecadenoson, oxtriphylline, aminophylline, dyphylline, 
theophylline, caffeine, enprofylline, pentoxifylline, gabapentin, defib-
rotide, and theobromine can affect OC disease status via regulating 
ADORA1. Theobromine belongs to the methylxanthines family and is 
mainly found in cocoa and chocolate [23]. This phytochemical com-
pound can enhance the chemosensitivity of colon cancer cells, induce 
apoptosis, and prevent DNA synthesis and proliferation of colon cancer 

cells [24,25]. In glioblastoma cells, theobromine can stimulate 
pro-apoptotic pathways and inhibit ERK and the Akt/mTOR pathway 
[26]. In lung cancer, theobromine has been shown to suppress angio-
genesis [27]. Also, theobromine in therapeutical concentrations can 
substantially inhibit VEGF expression and suppress angiogenesis in OC 
[28]. 

Anoctamin 9 (ANO9), also known as transmembrane protein 16J 
(TMEM16J), can produce calcium-activated chloride channels 
throughout the cell membrane [17]. ANO9/TMEM16J has been 
expressed in human colorectal, lung, and breast cancers in an in-silico 
screening of p53-associated genes [29]. Notably, it has been shown 
that ANO9 can substantially stimulate EGFR-mediated cell proliferation 
compared to other ANOs. The ligand binding stimulated EGF receptor 
homo and heterodimerization with ERBB family members, related to cell 
growth and survival and amplified angiogenesis and tumor metastasis 
[30]. On the other hand, EGFR can activate the MAPK/extracellular 
signal-regulated (MAPK/ERK) pathway and the PI3K/AKT/mTOR 
pathway. These pathways can stimulate cell proliferation, survival, and 
migration [29,31,32]. The PI3K/AKT/mTOR pathway is activated in 
almost 70% of OCs [33]. Collectively, ADORA1 and ANO9 can lead to 
OC development via activating the PI3K/AKT/mTOR and MAPK/ERK 
pathways. 

Serine incorporator 2 (SERINC2) is a member of the SERINC family 
that integrates serine into cell membrane lipids. Zeng et al. have shown 
that SERINC2 knockdown can inhibit the proliferation, migration, and 

Fig. 3. : Identifying outliers using sample clustering; A. Data pre-processing and WGCNA Module clustering; B. Selection of the soft-thresholding powers. C. 
WGCNA’s cluster dendrogram and module assignment. The branches belong to the gene groups that are strongly interconnected. The modules are represented by the 
colors in the horizontal bar. 

Table 2 
Module colors characteristics.  

Module Colors Genes Correlation p-value 

Black  99  -0.081 0.5 
Blue  1120  0.8 1e-16 
Brown  611  0.69 3e-11 
Green  189  0.24 0.04 
Gray  43  0.045 0.7 
Magenta  73  0.37 0.001 
Pink  89  0.13 0.3 
Purple  63  0.29 0.02 
Red  100  0.75 3e-14 
Turquoise  1421  -0.91 2e-27 
Yellow  192  0.47 4e-05  
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invasion of H1650 and A549 cells. Besides, their results have indicated 
that SERINC2 mRNA expression level is substantially upregulated in 
lung adenocarcinoma tissues compared to normal tissues [34]. Also, 
bioinformatics results have demonstrated that increased expression of 
SERINC2 can be associated with an unfavorable prognosis of patients 
with low-grade gliomas. Qi et al. have reported that SERINC2 expression 
level is substantially upregulated in glioblastoma tissues compared to 
low-grade gliomas and normal brain tissues [35]. 

Kelch-like protein 14 (KLHL14) is a member of the Kelch gene family 
that interacts with TorsinA. Chen et al. have demonstrated that KLHL14 
is highly expressed in OC tissues, and its overexpression is associated 
with the inferior prognosis of OC patients. They have reported that 
KLHL14 knockdown can decrease proliferation, arrest the cell cycle, 
stimulate apoptosis, inhibit migration, and reduce the invasion of OC 
cells [36]. Thus, KLHL14 can be a promising target for treating OC. 

Erythropoietin-producing hepatocellular A1 (EPHA1) is a member of 
the EPH superfamily, and its overexpression has been observed in some 
tumors. Cui et al. have shown that EPHA1 knockdown can arrest the cell 
cycle at G0/G1 phase, decrease proliferation, inhibit migration, and 
reduce the invasion of OC cells. It has been shown that EPHA1 can 
regulate several signaling pathways, including matrix 
metalloproteinase-2 (MMP2), ERK2, and c-MYC [37]. 

Herath et al. showed that ephrin gene expression correlates with 
shortened survival of advanced ovarian cancer. The expression of eph 
and ephrin was measured using quantitative real-time RT-PCR. The 
Spearman’s rho statistic was used to determine gene expression corre-
lation. Log-rank analysis was used to determine survival, and Kaplan- 
Meier survival curves were used to visualize the results. EPHA1 over-
expression of more than 10-fold and EPHA2 overexpression of less than 
10-fold were found in partially overlapping subsets of tumors. EPHA1 

overexpression was positively associated with the high affinity ligand 
ephrin A1. EPHA2 and ephrin A1 followed a similar pattern. Both ephrin 
A1 and ephrin A5 expression were found to be associated with poor 
survival. Surprisingly, no link was found between survival and other 
clinical factors or Eph expression. These findings suggest that higher 
levels of ephrin A1 and A5 in the presence of elevated Eph A1 and A2 
expression result in a more aggressive tumor phenotype. Eph/ephrin 
signaling roles in cell de-adhesion and movement can explain the 
observed connection between ephrin expression and poor prognosis 
(40). 

It should be noted that there were limitations that did not allow us to 
perform further experiments. Also, the number of samples was relatively 
low. Therefore, further studies are needed to investigate the role of the 
proposed biomarkers in OC development. 

5. Conclusion 

Using the WGCNA approach, we have identified OC-associated gene 
modules and hub genes in OC. Using GO-term and KEGG-pathway 
enrichment studies, we have demonstrated that these module genes 
are enriched in the microtubule cytoskeleton organization involved in 
mitosis, cell cycle, epithelial cell development, cAMP signaling pathway, 
ABC transporters. Furthermore, the GEPIA database and WGCNA have 
been used to verify the expression levels of ANO9 and ADORA1. These 
results suggest that ADORA1 and ANO9 upregulation may play a key 
role in developing ovarian cancer, suggesting that they could be used to 
diagnose OC patients in the early stages. However, investigating the 
function of their particular non-coding RNAs and studying the protein 
expression are recommended. Targeting these genes may also be seen as 
a therapeutic strategy for OC. 

Fig. 4. : Module-Trait association analysis; Module-trait relationship. Each row corresponds to a module Eigen gene, and the column corresponds to OC status. The 
numbers in each cell represent the corresponding correlation and p-value. B. Blue module’s enrichment analysis. 
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Fig. 5. : Hub-genes detection; A. OC status was substantially associated with the blue module features of GS and MM (benign vs. serous samples). GS plotted the y- 
axis and MM plotted the x-axis, and each point represents an individual gene within each module; B. A Venn diagram was used to determine the similarities between 
DEGs and hub-genes lists; C. Gene MANIA was used to build a co-expression network using thirteen genes that were identical in both lists. 
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[24] F. Carla Cadoná, A. Kolinski Machado, V. Farina Azzolin, F. Barbisan, E. Bortoluzzi 
Dornelles, W. Glanzner, P.D. Bayard Gonçalves, C. Elias Assmann, E. Esteves 
Ribeiro, I. Beatrice Mânica da Cruz, Guaraná a caffeine-rich food increases 
oxaliplatin sensitivity of colorectal HT-29 cells by apoptosis pathway modulation, 
Anti-Cancer Agents Med. Chem. 16 (8) (2016) 1055–1065. 

[25] Lee HJ, Lee KW, Kang KS, Kim DY, Park HH, Lee MJ, Kim HS, Kwon IB: 
Theobromine with an anti-carcinogenic activity. In.: Google Patents; 2004. 

[26] N. Sugimoto, S. Miwa, Y. Hitomi, H. Nakamura, H. Tsuchiya, A. Yachie, 
Theobromine, the primary methylxanthine found in Theobroma cacao, prevents 

Fig. 6. : Blue module hub-gene drug-target network. For each gene, FDA-approved drugs were downloaded from the DGIDB database.  

S. Nomiri et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.biopha.2021.112537
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref1
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref1
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref1
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref2
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref2
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref2
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref3
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref3
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref3
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref4
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref4
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref4
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref5
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref5
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref6
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref6
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref7
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref7
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref8
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref8
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref9
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref9
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref9
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref10
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref10
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref10
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref11
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref11
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref11
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref12
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref12
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref12
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref12
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref13
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref13
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref13
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref14
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref14
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref14
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref15
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref15
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref15
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref16
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref16
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref16
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref17
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref17
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref17
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref17
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref18
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref18
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref18
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref19
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref19
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref19
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref19
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref20
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref20
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref21
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref21
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref22
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref22
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref22
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref22
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref23
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref23
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref23
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref24
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref24
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref24
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref24
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref24
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref25
http://refhub.elsevier.com/S0753-3322(21)01324-X/sbref25


Biomedicine & Pharmacotherapy 146 (2022) 112537

9

malignant glioblastoma proliferation by negatively regulating phosphodiesterase- 
4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin 
kinase, and nuclear factor-kappa B, Nutr. Cancer 66 (3) (2014) 419–423. 
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