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Affect Recognition in Hand-Object Interaction
Using Object-sensed Tactile and Kinematic Data

Radoslaw Niewiadomski, Cigdem Beyan and Alessandra Sciutti

Abstract—We investigate the recognition of the affective states
of a person performing an action with an object, by processing
the object-sensed data. We focus on sequences of basic actions
such as grasping and rotating, which are constituents of daily-life
interactions. iCube, a 5 cm cube, was used to collect tactile and
kinematics data that consist of tactile maps (without information
on the pressure applied to the surface), and rotations. We conduct
two studies: classification of i) emotions and ii) the vitality
forms. In both, the participants perform a semi-structured task
composed of basic actions. For emotion recognition, 237 trials
by 11 participants associated with anger, sadness, excitement,
and gratitude were used to train models using 10 hand-crafted
features. The classifier accuracy reaches up to 82.7%. Interest-
ingly, the same classifier when learned exclusively with the tactile
data performs on par with its counterpart modeled with all 10
features. For the second study, 1135 trials by 10 participants were
used to classify two vitality forms. The best-performing model
differentiated gentle actions from rude ones with an accuracy
of 84.85%. The results also confirm that people touch objects
differently when performing these basic actions with different
affective states and attitudes.

Index Terms—affective touch; emotion classification; hand-
object interaction; vitality forms; tactile data

I. INTRODUCTION

In our daily life, we often grasp, move or pass some small
objects, such as boxes or mugs with our hand(s). In our
research, we aim to recognize the internal states from the
data collected during such natural hand-object interactions
(HOI). Natural interactions in our scope refer to performing
basic actions such as grasping, rotating, and holding (as well
as combinations of them), which are elements of the daily
interactions with a variety of objects [1]. In this line, Wang et
al. [2] discuss non-symbolic touch as “no predefined meaning
or code is needed for affect conveyance using touch”. Such
non-symbolic touch may appear in human-human interactions
(HHI) (e.g., a child squeezes her/his mother’s hand when being
afraid on a roller coaster ride). That is more frequent when
manipulating some objects (e.g., one squeezes a mug or a
pen when being upset). It is important to distinguish non-
symbolic touch from the often conventional symbolic action
(i.e., social touch) performed explicitly to communicate some
affective states, and interpersonal attitudes such as handshake,
hug, finger-interlocking, or hand-lifting. When grasping or
rotating an object with one or two hands, the information about
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the human’s affective state might potentially be inferred from
multiple sensors placed on/inside of the object resulting in
object-sensed data, as well as from the sensors placed on the
human body resulting in agent-sensed data. In this paper, we
focus on object-sensed data only.

There are at least three important motivations behind this
work. First, using tactile data from sensors placed on the
object, and in particular, the tactile maps, with no information
about the pressure applied to the object, is a new and inno-
vative approach to the well-known problem of affective state
recognition. The benefits of using such types of data include
lower complexity, potentially lower costs, and faster data
processing. Moreover, this method could be relatively easily
integrated into the objects while bringing in new perspectives
to several applications in affective computing. Second, our
approach complements the research on affect recognition with
agent-based data, e.g., the works using wearable gloves to
collect the tactile data on affective hand-object interaction. In
detail, our object-sensed approach introduces several benefits
such that the user does not need to be endowed in any specific
hardware to start an interaction while when using the glove,
she is always aware of the carried sensing device. Wearing
it may be considered intrusive, and cumbersome, and as a
consequence, may have an impact on (affective) interaction.
On the other hand, when the object-sensed data approach is
applied, the users might interact more naturally even without
being aware of the process of tactile data collection. Ad-
ditionally, object-sensed approach can be easily extended to
social settings (i.e., two or more people interact with the same
object). Third, this research addresses the question of whether
or not people touch objects differently when performing basic
actions such as rotating or grasping with different affective
states.

Previous works on social and affective touch in HHI (e.g.,
[3], [4]) and human-robot interactions (HRI) (e.g., [5], [6]) of-
ten considered conventional gestures performed upon explicit
request of the experimenter. Some studies addressed social
touch recognition. For example, in [7], [8] several actions
such as “grasping the arm suddenly” (grab) and “rubbing the
arm with the hands” (massage) were classified using the data
collected with a tactile grid placed on a mannequin forearm.
Instead, the works on non-symbolic gestures often used soft
objects such as balloons, and analyzed the data on the pressure
applied during the contact [9]–[11]. Others focused on multi-
touch screens when humans play video games [12] or tap
virtual keyboards [13]. There also exists an approach based
on measuring the directional photoreflectivity [14].

Unlike the aforementioned works, we focus on non-
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symbolic touch actions during the HOI, which can, but does
not have to, be performed in a social context, i.e., in the
presence of another person. This study is the continuation
of our prior research [15] which considered only emotion
recognition during HOI by presenting a preliminary model
with limited number of features. Instead in this paper, we
investigate whether the affective states, i.e., different emotions
and vitality forms, can be differentiated using hand-crafted
features extracted from tactile and kinematics data. Whilst
emotions are short-lasting responses to relevant events that
involve synchronized changes in multiple subsystems [16],
vitality forms reflect the performer’s attitudes and they may
modulate human nonverbal behavior in a continuous manner.
By considering different affective phenomena, we aim to
show that our approach is generalizable and can be applied
to various contexts and action combinations. At the same
time, we acknowledge that the way one interacts with an
object depends on certain properties of that object (e.g., its
dimension, shape, hardness) as well as the activity performed.
In this work, we control such factors by choosing one specific
semantically-neutral object, and by restricting the number of
activities. Keeping above mentioned factors fixed, we focus on
how our internal states influence the way we touch objects.

II. ICUBE DEVICE

iCube version 2.0 [17], [18] is a 5 cm wireless hard
cube weighing about 150 grams (see Figure 1) created at
Istituto Italiano di Tecnologia.1 It generates an asynchronous
combination of tactile (i.e., 2D tactile maps) and kinematics
(i.e., angle rotations in quaternions) data. The sampling rate is
around 10 samples per second for the tactile data. Each face
of the cube is covered by the 4 × 4 = 16 Capacitive Button
Controllers that are able to detect simultaneous touches. The
reader can refer to [17] for other technical details. The touch
pressure data is not collected by the device, and this choice
allows us to reduce the cost of the device, and increase the
amount of data that could be sent to the computer in real time.

The main advantage of using the iCube to collect affect-
related data is its semantically-neutral and simple shape. iCube
is similar, in terms of shape and weight, to several objects (e.g.,
small containers) that a person interacts with in daily life. We
believe that such similarities could allow our participants to
carry out natural interactions with the cube, by allowing to
exploit “users’ pre-existing understanding and interaction with
similar objects from their everyday world” [10].

III. FEATURES

We propose a total of 10 features. Seven of these are
extracted from the tactile data, two represent the kinematic
property, and the last one is related to the action dura-
tion. When designing features, we took inspiration from the
prior HHI and HRI studies. For instance, Wallbott [19] and
Castellano et al. [20] have shown that humans perform more
expansive and quick gestures when they feel high arousal
emotions such as anger, whilst they may tend to slow down

1A video of an interaction with iCube is included as a Supplementary
Material.

Fig. 1. iCube device. The real-time tactile data visualization can be seen in
the background.

the same gestures when feeling sad. Masson et al. [4] ob-
served a positive correlation between the rated arousal and
the motion energy during interpersonal socio-affective touch
actions. A study on HRI [5] shows that attachment emotions
(e.g., gratitude, sadness) are characterized by longer tactile
contact than the rejective ones (e.g., anger, disgust). In [21],
emotions are differentiated during the hand-forearm contact
using the total contact area, the touch duration, and the hand
velocity. Consequently, our features measure the task duration,
the amount of movement, the area of physical contact, and the
touch variability.

A. Tactile data

Let aijkm = 1 if a cell on the intersection of i-th row and
j-th column of the k-th face (pad) of iCube is touched at the
moment (i.e., single readout of all tactile data) m of a data
segment; and aijkm = 0 if the same cell is not touched. Let
pkm be a k-th face, k = 1...6, at the moment m, m = 1...n,
where n corresponds to the total length (i.e., the number of
readouts) of a data segment.
Density. The touch density estimates how large the portion of
the surface of the cube is engaged in contact. We compute an
average number of touched cells in a data segment (aTD) as:

aTD =

4∑
i=1

4∑
j=1

6∑
k=1

n∑
m=1

aijkm

n
(1)

The higher the aTD is, the larger surface of the cube is
touched on average. We also compute the maximal value
(mTD) on the whole data segment.
Variability. The touch variability is used to estimate the
quantity of contact changes during the task. We compute the
number of changes in touched cells between two consecutive
readouts, and then we compute the average value for a data
segment. We introduce average touch variability (aTV ) as:

aTV =

4∑
i=1

4∑
j=1

6∑
k=1

n∑
m=2
|aijkm − aijkm−1|

n− 1
(2)

We also compute the maximal value (mTV ) of the touch
variability on the data segment.
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Allocation. We count how often the central and the peripheral
cells are activated as well as whether the touch concerns a
whole pad or it is localized in one (or more) pad quarters.
First, we check if the central cells of k-th pad at the moment
m are touched:

centkm =


1 if aijkm = 1 for any pair i, j :

{2, 2} , {2, 3} , {3, 2} , {3, 3} ,
0 otherwise

(3)

Next, we compute the average number of the central touches
(aCT ) as:

aCT =

6∑
k=1

n∑
m=1

centkm
n

(4)

Similarly, we compute sidekm by considering the following
indices pairs: {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {3, 1},
{2, 4}, {3, 4}, {4, 1}, {4, 2}, {4, 3}, {4, 4}. Finally, by analogy
to aCT case, we compute the average number of peripheral
touches (aPT ) using values of sidekm. We also measure the
touch dispersion on a pad pkm according to the following
procedure:
dispk,m ← 0
if a1,1,k,m = 1 or a1,2,k,m = 1 or a1,3,k,m = 1 or
a1,4,k,m = 1 then
dispk,m ← dispk,m + 0.25

end if
if a1,1,k,m = 1 or a1,2,k,m = 1 or a1,3,k,m = 1 or
a1,4,k,m = 1 then
dispk,m ← dispk,m + 0.25

end if
if a1,1,k,m = 1 or a1,2,k,m = 1 or a1,3,k,m = 1 or
a1,4,k,m = 1 then
dispk,m ← dispk,m + 0.25

end if
if a1,1,k,m = 1 or a1,2,k,m = 1 or a1,3,k,m = 1 or
a1,4,k,m = 1 then
dispk,m ← dispk,m + 0.25

end if
The values of dispkm are in the interval of [0, 1] when the

higher values mean that the touch is more spread over the pad.
Next, we compute the average dispersion (aDT ) as:

aDT =

6∑
k=1

n∑
m=1

dispkm
n

(5)

B. Kinematics data and Duration

Rotation. To estimate the movement quantity, we compute
the total number of rotations. More specifically, we compute
the instantaneous angular variation by measuring the angle
traversed over the time for each of the three unitary axes
orthogonal to the faces of the cube using the method described
in [18]. To quantify the total amount of rotation, we compute
the maximum value among three cumulative sums of the
rotations. Then, we compute the average (aTR), and the

maximum value (mTR) on the data of the mostly rotated axis
over the whole segment.

We also consider the total duration, referred to as TIME,
of a data segment in seconds.

IV. STUDY 1: EMOTION CLASSIFICATION

Data Collection. The task consists of taking the iCube placed
on the table, finding a marker that is attached to one of its pads,
and passing the cube to another person (so-called confederate)
in a way that he/she can see the marker. Performing this task
requires basic actions such as grasping, rotating, and handing
over the iCube. Our participants were asked to imagine to feel
a specific emotion when performing the task. These emotions
are anger, sadness, excitement, and gratitude. They are placed
in four different quadrants of the two-dimensional valence-
arousal model. The first three are mentioned in Russell’s paper
[22] such that the anger and the excitement are characterized
by high arousal, whilst the anger and the sadness are with
negative valence. The gratitude does not appear in [22], but it
was evaluated in later works. E.g., in [23] gratitude is positive,
but the sixth lowest arousal emotion out of 62 labels, receiving
a score of three on a nine-point scale. Thus, it is reasonable to
assume that this positive state is characterized by lower arousal
compared to excitement. A similar approach, i.e., four distinct
labels corresponding to four quadrants of the valence-arousal
model, was used in previous works, e.g., [12] to address touch-
based interaction.

For the data collection, two assignments were designed.
Each participant performed only one of them, chosen ran-
domly. In the first assignment (A1), short written stories were
used to provide emotional context to the participants. The task
is fixed, but the emotion and the imaginary object mentioned
in the story are different. In detail, in the case of gratitude,
iCube becomes a small box of chocolates to be offered as a gift
for a favor received. For the sadness scenario, the participants
grab and pass a broken beloved wooden figure. In the case
of anger, the cube becomes an empty packet passed to the
confederate while accusing him of stealing its content. For the
excitement scenario, the cube becomes an unexpected closed
parcel addressed to the participant, who when passing it to
the confederate asks to unbox it. The task is the same because
the participants always need to a) grasp the iCube, b) rotate it
to find the marker placed on one of the faces of the cube, c)
approach the confederate, and d) pass iCube to the confederate.
When defining the scenarios, we paid attention to introducing
the ”imaginary” objects (e.g., a small box of chocolates)
that would match the iCube dimensions. The scenarios were
written on different paper sheets, and their order of them was
randomized. The participants picked one scenario at a time. We
gave them some time to think about the story and to imagine
themselves being the protagonist. Each participant performed
5-6 trials, and there was a 5-10 seconds pause between trials.

For the second assignment (A2), the participants were
instructed to perform the same task portraying the four above-
mentioned emotions. Unlike A1, in A2, the instructions re-
garding what the imaginary object and the scenario could be,
were not given to the participants. In other words, in A2, the
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paper sheets contained only the emotion labels. Before the data
collection, the definitions of the four emotions, taken from
[24], [25], were given to the participants.

For both A1 and A2, the initial positions of the participants,
confederate, and the tables were kept always the same. When
a participant was facing the confederate, the iCube was placed
on a table which was on the left side of the participant, and
the paper sheets were placed on another table placed on the
participant’s right. The confederate’s position was fixed about
3-4 meters away from the participant’s initial position. The
iCube had a sticker on one of the pads, which symbolizes
the front of the imaginary object (e.g., the opening of a box).
The cube was placed in a way that participants cannot see
the marker at the beginning of a trial. Given the portrayed
emotion, the participants were asked to perform the task in
the most natural way for them. The task is semi-structured,
i.e., only a high-level description was given, but not the details
(e.g., how to rotate the cube to find a marker, how to approach
the confederate, whether or not to turn towards the cube,
etc). We also intentionally avoid imposing the participants to
perform an exact number of rotations, or to grab the cube in a
fixed manner. This choice was made because we believe that
the way the person performs the basic actions contains the
affective information. For example, a person might rotate the
object more or faster when she is angry compared to when she
is sad. Giving more precise instructions would, in our view,
impede our participants to behave naturally. Additionally, each
participant performs the task in a different personal manner,
which allows us to obtain interesting variability in the data.
This would not be possible if we gave the participants exact
and fixed instructions regarding the basic actions needed to
accomplish the task.

The following classification experiments were conducted
when the data of A1 and A2 were merged. By merging them
as a single dataset, we expect that the classifiers’ robustness
would be improved. The data collection was performed with
11 participants (8 female, 1 left-handed). This resulted in
237 trials; composed of 60 sad, 59 angry, 59 excited, and 59
grateful data. From each trial, we extracted one data segment.
A data segment in this study corresponds to the data captured
from the time a participant makes physical contact with the
iCube for the first time until she hands over the iCube. The
average segment length is 3.9 seconds (SD = 1.48s).

Statistical Analysis. To examine the statistical differences
between the four classes, we performed a series of Kruskal-
Wallis tests with Emotion as the independent variable, each
feature as the dependent variable, and by considering each
data segment separately. A significant main effect of Emotion
(F (3, 228) = 3.665, p < 0.001) on the segment duration
(the variable TIME) was observed. Post-hoc comparisons
using the Dunn-Bonferroni test showed that the segments
with sad labels (mean = 4.83s) were significantly longer
than angry (p < 0.001), excited (p < 0.001), and grateful
segments (p < 0.005), whilst the grateful performances
(mean = 4.2s) were longer than angry (mean = 3.13s,
p < 0.001) and excited ones (mean = 3.56s, p < 0.01).
The significant results were also observed for the average

(aTD) and maximum (mTD) of touch density; the average
touch variability (aTV ); the average (aTR) and maximum
rotation (mTR); as well as aPT and aDT . On average,
a larger surface of the iCube was contacted for anger and
excitement compared to sadness. At the same time, less touch
variability was observed for sadness as compared to anger
and excitement. More rotations were performed for the two
high-arousal emotions: anger and excitement, as compared to
sadness and gratitude.

Classification. We explored the performance of (a) Support
Vector Machine (SVM) with Radial Basis Function (RBF)
kernel and (b) Localized Multiple Kernel Learning (LMKL)
[26]. SVM-RBF was chosen as it was widely used to classify
the emotions from the tactile [7], [11] and kinematics data
[27]–[29]. LMKL showed significantly better performance
for many applications involving human nonverbal behaviors
analysis (e.g., [30]–[32]).

For each experiment, we performed i) leave-one-trial-out
(LOTO) and ii) leave-one-subject-out (LOSO) cross-validation
(CV) techniques when 10-features (described in Sec. III) and
only 7 tactile features (aTD, mTD, aTV , mTV , aCT , aPT ,
aDT ) were used. LOTO can be described as: given a dataset
composed of N samples, N − 1 samples are used for training
(and validation) while the corresponding test split has only
one sample that does not overlap with the training data. Such
training-testing procedure is repeated for N times. On the
other hand, LOSO can be defined as: given a dataset composed
of N samples, the test split is composed of M samples
belonging to one subject, and the corresponding training split
is composed of N −M data belonging to the other subjects.
Such training-testing procedure is repeated as much as the
number of subjects. It is important to mention that we also
used validation data, which was picked randomly from the
training splits and its size was taken as the 10% of the training
data. Following the common practice, we used the validation
data to select the parameters of SVM-RBF and LMKL.

The kernel parameters of SVM-RBF namely, C (which is a
trade-off parameter between model simplicity and classifica-
tion error) and γ were taken as the consecutive odd powers of
two in the range of [−7, 15]. On the other hand, LMKL uses a
nonlinear kernel weights combination. It has two components,
called i) the gating model, which selects the optimum kernel
function locally, and ii) the kernel-based classifier (which is
SVM in this paper for a fair comparison). As the gating
model softmax function was used with linear kernels varying
from two to five. As kernel parameter C was taken as the
consecutive odd powers of two in the range [−11, 11].

The results are given in Table I. For all cases, all per-
formance metrics are highly above the random chance level
(around 25%). LMKL always performed much better than
SVM-RBF, which is consistent with the previous works that
use both methods [30]–[32]. As expected (due to having more
training data as well as not considering the interpersonal
differences) the results obtained with LOTO are higher than
the LOSO counterpart. Still, it is important to notice that
the LMKL results for LOSO are very remarkable (i.e., F-
score of 77.79% and 77.60% for 10 and 7 features, re-
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Fig. 2. Confusion matrix of LMKL and SVM-RBF for the classification of angry (ANG), sad, excited (EXC), and grateful (GRA) when 10 features are used
and LOTO and LOSO are applied.

TABLE I
EMOTION CLASSIFICATION RESULTS (%) OBTAINED BY APPLYING LOTO

(FIRST) / LOSO (SECOND). ALL METRICS ARE IN TERMS OF MACRO
AVERAGE. THE BEST RESULTS ARE SHOWN IN BOLD.

Accuracy F-score Precision Recall
SVM-RBF 55.27 / 42.62 55.14 / 42.26 55.55 / 42.47 55.26 / 42.56
SVM-RBF
(tactile only)

45.15 / 37.98 45.40 / 37.99 46.05 / 38.36 45.15 / 37.94

LMKL 82.70 / 77.22 83.01 / 77.79 87.36 / 83.27 82.71 / 77.21
LMKL (tac-
tile only)

82.70 / 77.22 82.96 / 77.60 87.16 / 82.64 82.68 / 77.24

spectively), showing that LMKL is able to generalize well
across subjects. For SVM-RBF, the results obtained with 7
features are always highly above the chance level but they
are noticeably lower than the performances obtained with
10 features. Instead, LMKL’s performance with 7 features
is only slightly lower than the results with 10 features for
average macro F-score, precision, and recall. This shows that
LMKL is better than SVM-RBF to determine the kernel
weights, and as shown in [31], this fact can be used to
determine the best-performing features. Following [31], we
calculated the average absolute kernel weights per feature
obtained from LMKL. The important features should have
higher combination weights. According to this rule, overall
the best performing five features respectively are mTV, aPT,
aTV, aDT, aCT. The best performances of SVM-RBF with 10
features were obtained when LOTO was applied with C = 7,
γ = −5, and LOSO was applied with C = 5, γ = −5. Using
7 tactile features, the best performances of SVM-RBF were
obtained when LOTO was applied with C = 11, γ = −7,
and LOSO was applied with C = 9, γ = −7. The best
performance of LMKL with 10 features was obtained when
LOTO was applied with C = 5, the number of kernels 3,
and LOSO was applied with C = 1, the number of kernels
2. With 7 features, LMKL’s best performances were obtained
when LOTO was applied with C = 7 and 3 kernels, and LOSO
was applied with C = −11 and 5 kernels.

Figure 2 shows the confusion matrices of LMKL and SVM-
RBF for the classification of emotions when 10 features
are used and LOTO and LOSO are applied. As seen, for
LKML, overall the best performances were obtained for anger.
Sadness, the second negative emotion, was sometimes mis-
classified as anger or excitement. The worst recognition was
observed for gratitude, which was sometimes misclassified as
anger or excitement. For SVM, the best results were obtained
for the sadness. The sadness was sometimes misclassified as

gratitude (please notice that they have both low arousal). On
the other hand, anger was sometimes misclassified as excite-
ment, which is the second high-arousal emotion. On average,
the worst recognition results were obtained for excitement,
which was mainly misclassified as gratitude.

V. STUDY 2: VITALITY FORMS CLASSIFICATION

Humans may execute the same action in different ways
such as vigorously, gently, or rudely. Vitality forms [33];
“how an action is performed”, conveys important information
about the performer’s attitude. It reflects the internal states of
the performer, providing an appraisal of the affective quality
underlying the relation between him and the interaction
partner(s). In this second study, we investigate whether the
object-sensed tactile and kinematics data can be used to
classify the vitality forms.

Data Collection. We asked 10 participants to perform
a similar task presented in Study 1, i.e., taking the iCube
placed on the table, finding a marker that is attached to one
of its pads, and passing the iCube to the confederate in a
way that she/he can see the marker. While performing this
task, we asked participants to display two vitality forms
(i.e., attitudes towards the confederate). These two vitality
forms, namely rude and gentle, are the ones that were widely
studied in the past. For example, by analyzing fMRI data,
it was demonstrated that there exist different responses to
these two vitality forms when the stimuli are visual [34] (i.e.,
gestures) and tactile (i.e., social touch) [35], meaning that
these two vitality forms can be effectively transmitted through
the aforementioned modalities. Therefore, it is reasonable to
expect that object-sensed kinematic and tactile data can also
be used to distinguish them.

Before the data collection, the short videos of other single-
hand actions performed with two vitality forms, which were
pre-validated in the previous fMRI study, were shown to
the participants. During the presentation of these videos, we
intentionally avoided pronouncing the labels identifying the
vitality forms. The participants were asked to focus on the
attitudes of the individuals in the videos (aka internal states)
and not only to pay attention to the kinematic properties of
the demonstrated actions. This is because the participants’ task
was to reproduce the same attitudes while the actions can
be different from what they watched. Finally, the participants
performed the task in the presence of a confederate, expressing
the two attitudes observed previously.
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The positions of the participants and iCube were as follows.
When a participant was facing the confederate, the iCube was
placed on a table that was on the participant’s left side. The
participants were sitting in front of the confederate (referred
to as settings one and two) or they were standing about 3-4
meters away from the confederate’s initial position (referred
to as settings three and four). In all settings, there was a table
between the participant and the confederate. The iCube had a
sticker on one of the pads that participants could not see at the
beginning of a trial. The participants were asked to perform the
task in the most natural way given the vitality form they want
to transmit. We did not introduce any additional constraints
on how to perform constituent actions.

To introduce more variability to the data, all participants
performed the task in four different settings. In the first
two settings, while the participants were sitting in front of
the confederate, a) they were supposed to take the iCube,
and hand it to the confederate in a way that the marker is
oriented towards the confederate or b) to take the iCube,
and put it on the table in front of the confederate in a way
that the marker is oriented towards the confederate. In the
remaining two settings, the participants performed the task
while standing. In the third setting, participants hand the
cube to the confederate in the air (as in the first setting),
and, in the fourth, they put the iCube on the table (as in the
second setting). In particular, setting three corresponds to the
setup of Study 1. Additionally, three different positions of
the confederate were used during the data collection. First,
the confederate was sitting exactly in front of the participant;
second, she was placed at the right corner of the table, and,
third, she was placed at the left corner of the table. For each
setting and the confederate’s position, the task was repeated
at least five times. Due to technical issues, some trials of two
participants (in setting 2 and 4) were not captured correctly
and were discarded from the analysis. Consequently, the final
dataset contains 1135 trials by ten participants.

Classification. The same methodologies (SVM-RBF and
LMKL) and the cross-validation procedures described in Sec.
IV were also applied for the classification of the vitality
forms. The corresponding results are reported in Table II.
The performances of SVM-RBF and LMKL are both higher
than 83% for all metrics when 10 features are used. The
results decrease (around 5-7%) when only tactile features are
used. Similar to the results of Study 1, LOTO results are
higher than LOSO up to 4%, showing that there exist some
interpersonal differences. Nevertheless, these results are much
higher than the random chance level.

For all cases, LMKL performs better than SVM-RBF. Using
10 features, the best performances of SVM-RBF were obtained
when LOTO was applied with C = 1, γ = −3, and LOSO was
applied with C = −1, γ = −3. Using 7 tactile features, the
best performances of SVM-RBF were obtained when LOTO
was applied with C = 11, γ = −7, and LOSO was applied
with C = 5, γ = −7. The best performances of LMKL
with 10 features was obtained when LOTO was applied with
C = −11, the number of kernels= 3, and LOSO was applied
with C = −11, the number of kernels= 3. LMKL’s best

TABLE II
VITALITY FORMS CLASSIFICATION RESULTS (%) OBTAINED BY APPLYING

LOTO (FIRST) / LOSO (SECOND). ALL METRICS ARE IN TERMS OF
MACRO AVERAGE. THE BEST RESULTS ARE SHOWN IN BOLD.

Accuracy F-score Precision Recall
SVM-RBF 83.79 / 80.62 83.79 / 80.54 83.80 / 81.17 83.79 / 80.63
SVM-RBF
(tactile only)

75.60 / 73.74 75.60 / 73.74 75.61 / 73.75 75.60 / 73.74

LMKL 84.85 / 81.32 84.80 / 81.32 85.35 / 81.34 84.86 / 81.33
LMKL (tac-
tile only)

76.48 / 74.36 76.48 / 74.35 76.49 / 74.40 76.48 / 74.36

performances using 7 features, were obtained when LOTO was
applied with C = 11, the number of kernels= 3, and LOSO
was applied with C = 7, the number of kernels= 3. Overall,
the best performing five features among all are: aTD, aCT,
TIME, aTV and aDT. Four out of five are tactile features,
showing the importance of them with respect to remaining
features, while, as can be noticed from the quantitative results,
including kinematics features and the duration further improve
the results.

Figure 3 shows the corresponding confusion matrices of
LMKL and SVM-RBF for the classification of vitality forms
when 10 features are used and LOTO and LOSO are applied.
Except LMKL LOSO, in all cases, one can observe that
the class accuracy of gentle is slightly higher than the class
accuracy of rude.

VI. CONCLUSIONS

We showed that it is possible to recognize emotions and
vitality forms during daily life non-symbolic HOI, by using
the object-sensed tactile and kinematics data, without the infor-
mation about pressure applied to the surface. By using the 10
hand-crafted features, for the classification of four emotions,
we obtained an accuracy of 82.7%, and for two vitality forms,
the accuracy is 84.85%. For emotion recognition, when only
7 seven tactile features are used, the aforementioned result
stays the same while the corresponding F-score is only slightly
worse (up to -0.19%). On the other hand, for vitality forms
recognition, using only seven tactile features resulted in 7%
lower performance, but when the best performing five features
were extracted, four of them are tactile descriptors. The
last results are particularly interesting. They show that even
when reducing the number of sensors (to a tactile grid only),
affect recognition is still possible. This makes this technology
more affordable and applicable to various contexts. To the
best of our knowledge, this is the first work that proposes
computational approaches to deal with affect-related data of
this type.

The main contributions of this paper are:
• We introduced a set of high-level easily interpretable

features for tactile data to differentiate affective states.
• We show the feasibility of using machine learning meth-

ods to recognize emotions and vitality forms from the
object-sensed tactile and kinematics data, even without
the pressure data.

• Our results confirm that people touch the same object
differently when performing basic actions such as rotating
or grasping with different affective states.
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Fig. 3. Confusion matrices of LMKL and SVM-RBF for the classification of gentle and rude when 10 features are used and LOTO and LOSO are applied.

It is important to notice that these results were obtained for
a semi-structured task enabling participants to interact in a
personal and natural manner (i.e., with their ”own style”)
without instructing them regarding how to perform the actions.
Despite eventual interpersonal differences, the results are
very promising. The second contribution highlights the role
of touch modality during the communication of the vitality
forms. We show, for the first time, that vitality forms can
be automatically recognized from the way a person touches
the surface of an object. This result complements the recent
work on transmitting vitality forms with touch modality in
human-human interactions [35]. Our approach can be used to
classify different affective phenomena, and can be applied in
daily-life tasks. Important to notice, that ecological validity
is preserved in Study 2, in which the participants voluntarily
perform actions communicating their attitudes.

Several future works are planned. Extending the dataset
could allow us to apply other techniques of machine learn-
ing, aiming at finding better performing classifiers. Including
additional data (e.g., linear acceleration), might potentially
improve the classification results, and will be tested in the
future. To evaluate the versatility of this approach, we will
collect the data using objects of different physical properties
(e.g., significantly smaller and lighter). We will also study
whether it is possible to classify emotions, which are similar
in terms of arousal and valence (e.g., anger, frustration and
anxiety) as well as other vitality forms. We also plan to collect
data for emotion classification in a more ecological setting.

Many existing systems and tools (including commercial
ones) benefit from automatic recognition of human affective
states. The other more futuristic applications are postulated
by affective computing researchers. The application areas
include well-being, personal development, and entertainment.
We believe that our findings can contribute to the creation of
new communication devices for people with reduced verbal
communication [9], general purpose affect sensors for self-
monitoring [10], [36], remote affective communication [37],
video-games with affective feedback, intervention programs
for neurodivergent persons who show reduced ability to per-
ceive and communicate attitudes [38]. This technology can
also be embedded in “smart” versions of several daily objects
to sense the users’ states, e.g., in the ”smart-home” context.
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[23] R. Hepach, D. Kliemann, S. Grüneisen, H. Heekeren, and I. Dziobek,
“Conceptualizing emotions along the dimensions of valence, arousal,
and communicative frequency – implications for social-cognitive tests
and training tools,” Frontiers in Psychology, vol. 2, p. 266, 2011.

[24] A. Ortony, G. Clore, and A. Collins, “The cognitive structure of
emotion,” vol. 18, 01 1988.

[25] D. A. Sauter, “The nonverbal communication of positive emotions: An
emotion family approach,” Emotion Review, vol. 9, no. 3, pp. 222–234,
2017, pMID: 28804510.

[26] M. Gönen and E. Alpaydin, “Localized multiple kernel learning,” in
Proceedings of the 25th International Conference on Machine Learning,
ser. ICML ’08. New York, NY, USA: Association for Computing
Machinery, 2008, pp. 352–359.
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