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Abstract

Scientists are continuously fascinated by the high degree of sophistication found

in natural materials, arising from evolutionary optimisation. In living organisms,

nature provides a wide variety of materials, architectures, systems and functions,

often based on weak constituents at the lower scales.

One of the most extensively studied natural materials is spider silk, renowned

for its outstanding mechanical properties, which include exceptional strength and

toughness. Owing to its wide range of properties, which vary depending on

factors such as the type of silk (up to seven) that each spider can produce, and

the species of spider, it can be considered a class of semi-crystalline polymeric

material. Indeed, spider silk cleverly combines, depending on the application

required, the great deformability of an amorphous phase with the sti�ness and

strength conferred by pseudo-crystals consisting of speci�c secondary structures

of some of the proteins constituting the material. Based on the countless studies

conducted on spider silk, it is now also clear that its remarkable performance are

the result of a sophisticated optimisation of the material's hierarchical structure.

Nevertheless, many of the multiscale mechanisms that give rise to the striking

macroscopic properties are still unclear. Many open problems are also related to

the relevant e�ects of environmental conditions and in particular on temperature

and humidity, strongly conditioning the mechanical performances.

In this thesis, aimed at unveiling some of these open problems, we introduce

a multiscale model for the thermo-hygro-mechanical response, starting with the

in�uence of water molecules modifying the microstructure, up to the e�ects at

the macroscopic scale, including softening, increase in elongation at break and

supercontraction, i.e. the shortening (up to half the initial length) of the spider

threads in wet environments.

Thereafter, we describe how the supercontraction e�ect can be adopted to

obtain humidity-driven actuators, and in particular, we determine the maximum

actuation force depending on the silk properties at the molecular scale and on the

constraining system representing other silk threads or the actuated device. The

spider silk actuation properties turned out to be extraordinary, making spider

silk potentially the best performing humidity-driven actuator known to date in

terms of work density (2.19 KJ/m3).

As observed in many natural materials, spider silks are characterized by a

strong variability in both chemical and structural organization, as for example



described in the recently published experimental database of properties at di�er-

ent scales of about a thousand di�erent spider silks, where evident correlations

among quantities are scarce. This large variability makes the theoretical under-

standing of the observed material behavior, in relation of the complex hierarchical

structure, particularly intriguing.

To address this novel amount of experimental data without losing sight of the-

oretical analytical modelling, we propose a new data modelling methodology to

obtain simple and interpretable relationships linking quantities at di�erent scales.

In particular, we employ a symbolic regression technique, known as 'Evolutionary

Polynomial Regression', which integrates regression capabilities with the Genetic

Programming paradigm, enabling the derivation of explicit analytical formulas,

�nally delivering a deeper comprehension of the analysed physical phenomenon.

Eventually, we provide insights to improve our multiscale theoretical model ac-

counting for the humidity e�ects on spider silks. This approach may represent

a proof of concept for modelling in �elds governed by multiscale, hierarchical

di�erential equations.

We believe that the analytical description of the macroscopic behaviour from

microscale properties is of great value both for the full understanding of biological

materials, as well as in the perspective of bioinspired materials and structures.
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Chapter 1

Introduction

1.1 Hierarchical biological and bioinspired mate-

rials

Scientists are impressed by the sophisticated and miniature structures found in

natural materials. Over the past 500 million years, proven materials have emerged

through natural selection processes. In all living organisms, be they basic or com-

plex, nature o�ers an array of materials, architectures, systems, and functions.

Typically, a precise hierarchical organization of these natural materials across

diverse length scales gives rise to their unique performance.

Multiscale, hierarchically patterned materials, such as lotus leaves, butter�y

wings and gecko adhesive pads, are abundant in nature, where microstructures

are usually used to enhance mechanical stability, while nanostructures provide

the main functionality, i.e. wettability, structural colour or dry adhesion [Bae

et al., 2014].

Nature is also a proli�c producer of composite materials. Examples of natural

composites include crustacean shells, mollusc shells, vertebrate bones and teeth,

and spider silk. These materials exhibit a high degree of sophistication, with their

various components assembled following a clearly de�ned pattern. The highly

elaborated performances characterizing biological materials result also from time-

dependent processes [Sanchez et al., 2005]. Even the ultra-soft membranes that

enclose cells also exhibit extraordinary properties that can be their structure

on multiple length scales. Studies of biological materials often reveal surpris-

ing re�nements that have been developed through slow evolutionary engineering.

These materials are hierarchically structured and display unique properties that

are in�uenced by the structure and the generative processes at all levels of the

biological structural hierarchy.
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Interestingly, nature operates within a limited range of materials. In biolog-

ical tissues, the components are primarily proteinaceous, while rigid composites

often consist of calcium carbonates, calcium phosphates, and silica [Council et al.,

1994]. On the other hand, regarding the use of synthetic hierarchical concepts,

the range of materials is potentially great. Additionally, many structural vari-

ables can be more easily altered in synthetic materials than in natural materials.

In the control of composition and fabrication processes, numerous variables can

be altered, although not always independently. These variables include atomic

structure, molecular structure, nanostructures, microstructures, and interfaces at

all levels, as well as the size, distribution, and morphology of constituents of cells

and other substructures. It is also possible to enhance performance through the

engineering of dislocation and other defect structures. The interest in these anal-

yses is not only related to the theoretical aspects, but also thinking of bioinspired

synthetic hierarchical structures, having great potential and continuously being

realized due to advancements in processing technology, which provide precise

control over all levels of structural arrangement.

Although natural materials possess exceptional combinations of properties,

they also have important limitations. For example, the constituent components

of material composites maintain these properties over a temperature range that

often is too narrow for most engineering designs. Another example is the mechan-

ical performance of the spider silk, the main focus of this thesis, which undergoes

signi�cant changes in properties when exposed to wet environmental conditions.

Thus, models about architecture, composite elements and adhesion in mechanical

collaboration are useful for learning from nature and applying to other material

components to produce analogous synthetic structures that overcome the perfor-

mance limitations of the inspiring natural counterpart [Chen and Pugno, 2013].

It is crucial to acknowledge the abundance of literature addressing microscopic

descriptions and various phenomenological models elucidating macroscopic bulk

properties. On the other hand, there has been insu�cient progress in theoretical,

multiscale investigations that systematically connect mechanical properties at

di�erent length scales. To achieve this goal, it is essential to �ll the gap by using

appropriate multiscale techniques to highlight insights at each hierarchical level

[Bechtle et al., 2010; Meyers et al., 2008].
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Figure 1.1: Hierarchical bio-inspired composite designs in space and time and signi�cant
contributions to mechanical functionality. Top left: representative hierarchical biologi-
cal structures from nature, showing schematics (top) and actual morphologies (bottom).
AFM images of the β-sheet secondary structure of silk �broin (a) and silk nano�brils
(b). SEM images of single-�lament silk �ber (c) hierarchical structure of the dactyl club
of the stomatopod (d), natural Cristaria plicata nacre (e). Scale bars: 50 nm (a); 0.5
µm (b); 5 µm (c); 20 µm (d); 1 µm (e). Bottom left: synthetic and hybrid composite
material morphologies. AFM image of PVA-coated core�shell clay nanoplatelets (f),
SEM images of the layered nanostructure of graphene oxide nanosheets combined with
silk �broin (g) and arti�cial hybrid nacre materials (h), AFM image of twisted amy-
loid �brillar bundles (i), SEM image of self-assembled helices from Cadmium telluride
nanoparticles (h), Optical microscopy image of a hierarchically organized polysaccha-
ride composite (k). AFM image of silica-deposited protein core�shell nano�laments (l),
SEM images of nanostructured arti�cial cellulose nano�brils with fractured areas shown
at higher magni�cation in the inset and regenerated silk�CNT �bres, shown at higher
magni�cation in the inset. Scale bars: 1 µm (f); 600 nm (g); 1 µm (h); 100 nm (i); 100
nm (j); 10 µm (k); 50 nm (l); 2 µm (m); 400 nm (inset of m); 20 µm (n); 2 µm (inset
of n). The hierarchical structures translate into global functions (middle) with a range
of timescales and characteristic interactions for each order of magnitude (right). Scale
bars (shape morphing panel): 5 mm (main); 2.5 mm (inset). Reproduced from [Nepal
et al., 2023].

1.1.1 Typical features

The presence of hierarchies results in a 'smart' response, involving structures at

di�erent scales. The behaviour of energy dissipation and fracture is regulated

by the properties and functions resulting from the speci�c arrangement of the

3



multiscale structure. This arrangement depends on both the function of the

tissue or cells and the surrounding environment [Roberts et al., 2002].

The hierarchy formation is mediated by the process of assimilation, which

determines how protein structures attach together and attain a speci�c confor-

mation. During this evolution, other phenomena driven by speci�c functions of

the components arise, such as growth, �ber assembly, or the generation of a net-

work, as seen in the cases of lamins and spider silks [Bini et al., 2004; Herrmann

and Aebi, 2004; Rammensee et al., 2008].

Knowledge of these arrangements is essential for deriving mathematical mod-

els to describe these materials and designing bioinspired materials.

For example, toughness is typically provided by controlled interfacial features

such as hydrogen bonds, friction, or chain assembly straightening and stretching.

Thus, knowledge of behaviour at the smallest scale, coupled with the ability to

control processes such as DNA recombination or amino acid chain assembly, are

the key ingredients for engineering structures at this level. The scale hierarchy

in time and length, along with the corresponding experimental techniques, are

illustrated in Figure...

Hierarchical materials and systems in biology are characterised by the recur-

rent use of molecular constituents, leading to diverse properties that can vary

signi�cantly even among seemingly similar elementary units. These properties

adapt to meet speci�c performance requirements; for instance, structural ele-

ments can be oriented to achieve distinct properties, displaying controlled and

often complex shapes. Recurring characteristics of the material include fatigue

resistance, resiliency, and self-repair capacity. Another noteworthy characteristic

is its sensitivity to, and critical dependence on, the presence of water, which will

be analysed in depth in this thesis.

In many biosystems, such a high level of structure-function integration is asso-

ciated with other aspects such as miniaturisation, which aims to accommodate a

maximum of elementary functions in a small volume, and hybridisation between

inorganic and organic components, which optimises complementary possibilities

[Sanchez et al., 2005].

The complexity and diversity of protein materials generate an enormous num-

ber of di�erent structures. Therefore, it is often necessary to categorise them by

introducing distinguishing features [Alon, 2007]. A crucial concept in this per-

spective is the distinction between di�use and peculiar properties. For example,

it is widely acknowledged that protein secondary structures or synthesis and

growth phenomena at lower scales exhibit di�use, often universal properties that

are present in almost all biological materials. These properties include primary,
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secondary, and higher-order structures, sacri�cial joints and weak links, and orga-

nization in hierarchical structures. In contrast, higher-order assembled textures

such as the titin protein or bone shells display specialized properties that are

highly dependent on their function. Thus, it is suggested that diversity increases

with scales, indicating that speci�c functions or specialized protein structures are

associated with structural diversity.

In the following, we delineate the key common features among many natural

materials, delving into the case of proteinaceous materials, starting from the

observation that the properties of complex multiscale structured materials are

largely controlled by weak interactions at the nano-scale, particularly hydrogen

bonds, acting as sacri�cial bonds.

Sacri�cial bonds

Sacri�cial bonds and hidden lengths in structural molecules and compounds were

found to signi�cantly enhance their properties. This is achieved by providing a

reversible, molecular-scale energy-dissipation mechanism. Sacri�cial bonds are

de�ned as bonds that rupture before strong bonds (often covalent bonds in the

backbone) fail under deformation. The hidden length refers to the portion of the

molecule that was prevented from stretching by the sacri�cial bond.

Due to the nanoscopic nature of this mechanism, single molecule force spec-

troscopy using an Atomic Force Microscope (AFM) has been a useful tool to

investigate this mechanism. Indeed, this instrument, which was initially devel-

oped to produce high-resolution images of surfaces, is capable of generating force-

extension curves for individual protein molecules.

The understanding of this sacri�cial bonding mechanism remained unclear

until two decades ago. In 1997, Rief et al. [Rief et al., 1997] conducted a study

on the mechanical properties of single titin chains using single-molecule force

spectroscopy by AFM. The force�extension curves exhibited a characteristic saw-

tooth pattern (see Figure 1.2), indicating the successive unraveling of individual

domains within a single titin molecule. While the study did not delve into the

mechanism of unraveling, it demonstrated that individual titin domains unravel

one at a time. This observation suggested that AFM o�ered a potential avenue for

elucidating sacri�cial bonding mechanisms in biological materials [Smith et al.,

1999].

In several biological cases, sacri�cial bonds have been found to be reversible,

providing a "self-healing" property to the material. When a biological material

is stretched or loaded, a large amount of energy is dissipated in the biopolymer

through the rupture of sacri�cial bonds and the release of hidden lengths, thereby

5



Figure 1.2: A force-extension curve resulting from the stretching of a single Ig8 titin
fragment. The curve exhibits a distinctive sawtooth pattern with seven peaks. This
pattern can be explained by the stepwise increase in the contour length of a polymer,
whose elastic properties are well described by the wormlike chain model (WLC) [Bus-
tamante et al., 1994; Marko and Siggia, 1995]. Reproduced from [Rief et al., 1997].

ensuring the high toughness of the biological material. These sacri�cial bonds,

such as ionic bonds, hydrogen bonds, and metal�ligand coordination bonds, are

generally weaker than covalent bonds, and reversible. They can disrupt prior to

covalent bonds and self-repair to maintain the integrity of the biological materials.

Examples of sacri�cial bonds are the Hydrogen bonds in Titin [Rief et al., 1997]

and spider silks [De Tommasi et al., 2010] and Van der Waals forces in Gecko

feets [Gao and Yao, 2004]

Recently, great progress in synthesis of polymeric materials containing of sac-

ri�cial bonds has been achieved [Zhou et al., 2017]. Scientists have fabricated

biomimetic materials using various inorganic and organic components. The con-

cept of sacri�cial bonds has recently been applied to other synthetic materials

like hydrogels and elastomers, resulting in impressive performance, particularly

in terms of toughness. By introducing a variable proportion of isotropically pre-

stretched chains that can break and dissipate energy before the material fails,

brittle un�lled elastomers were signi�cantly reinforced in sti�ness and toughness

using sacri�cial bonds [Ducrot et al., 2014].

From weak constituents to high performances

Nature has mastered the art of crafting robust and e�cient materials and struc-

tures from inherently weak constituents. This ingenious feat is made possible

through the implementation of hierarchical mechanisms, a strategy that spans

multiple length and time scales to impart strength, resilience, and adaptability.

This fascinating phenomenon is evident in various biological materials, showcas-

ing the triumph of hierarchical organization over the limitations of individual

components. Many biological materials start with constituents that, in isola-

tion, may be considered weak or exhibit limited mechanical properties. These

constituents can include proteins, polymers, minerals, and other elements with
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inherently modest strength. For instance, the beta sheets nano crystals give rise

to the exceptional resistance of spider silk in a counter-intuitive way compared

to the weak hydrogen bonds they consist of [Keten et al., 2010]. A further ex-

ample in this direction are the collagen �bers, found in connective tissues, which

are individually �exible and relatively weak, yet they play a pivotal role in the

formation of remarkably strong tissues and structures, such as bones. Thus, hi-

erarchical organization involves arranging constituents from the nanoscale to the

macroscale, creating a cascade of reinforcing interactions.

In the bioinspired perspective, a novel design paradigm exploiting simple com-

ponents and merging structure and materials in the design of hierarchical struc-

ture, resulting in enhanced mechanical properties, is emerging. As an example

case, Naraghi et al. [Naraghi et al., 2010] made innovative carbon nanotubes

bundles where the presence of hierarchy and abundance of relatively weak inter-

action (entropic elasticity of polymers and van der Waals interactions) resemble

the structure of many biological materials. They obtained enhanced ductility

without decreasing the strength, so coupling typically competing properties.

Protein structures

A comprehensive understanding of protein structure serves as a fundamental basis

for investigating the relationship between structure and function and for accu-

rately describing biological materials from a modelling perspective. These mate-

rials have a hierarchical constitution and are often complex, with a wide range

of functional applications. However, they share common features in their basic

structural organization, which are present in almost all protein materials.

At the most basic level, the 21 amino acids found in humans are arranged in

a sequential chain of precise length, measured in terms of the number of amino

acids. This chain is responsible for cell activities such as repair, survival, regen-

eration, and growth [Hughes and Dougan, 2016; Goriely, 2017]. This is known

as the primary structure, which is illustrated in Figure 1.3. The folding of a

polypeptide sequence is in�uenced by the position of the amino acids along the

chain and their interactions with the surrounding environment, as described by

Roberts et al. [Roberts et al., 2002]. This is a long-standing theoretical problem

that is currently being approached from various perspectives, including machine

learning [Butler et al., 2018], statistical mechanics [Bellino et al., 2019; Manca

et al., 2013; Makarov, 2009], and molecular dynamics [Marin-Gonzalez et al.,

2017; Karplus and McCammon, 2002; Hsu et al., 2020]. Regarding the deduc-

tion of protein folding stability, this issue is particularly signi�cant due to the

potential for protein mutations that can result in malfunctioning and pathology.
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Conversely, a mismatch in the protein sequence arrangement may cause vari-

ous issues. Hereditary metabolic disorders, caused by the degradation of speci�c

amino acids, are a well-known medical issue. Aliu et al. [Aliu et al., 2018] have

studied the e�ects of these disorders. One example is sickle cell anaemia, a blood

disorder characterized by an anomaly in the transport of red blood cells due to

the rigid, sickle-like shape of hemoglobin [Rees et al., 2010].

Figure 1.3: The structure of a protein is organized into four levels: primary, secondary,
tertiary, and quaternary. The primary structure is the linear sequence of amino acids
joined by peptide bonds. The secondary structure refers to local folded structures
within the chain, such as the α-helix, stabilized by hydrogen bonds. The tertiary
structure is the overall three-dimensional shape of a single polypeptide chain, resulting
from interactions between amino acid side chains. Proteins with multiple polypeptide
chains exhibit a quaternary structure, which involves the arrangement of these subunits
in a functional protein complex. Reproduced from [Nelson et al., 2008]

The secondary structure is formed when the polypeptide chain folds, combin-

ing the strong local covalent bonds between amino acids with weaker non-local

hydrogen bonds. Two of the most common secondary con�gurations adopted by

proteins in nature are the β-sheet and α-helix, as shown in Figure 1.3, respec-

tively. Depending on the direction of the amino acid planes, two conformational

β-sheet con�gurations can be achieved, anti-parallel or parallel strands. Further-

more, many types of helices can be found, depending on the pitch of the helix,

as predicted theoretically by Linus Pauling in 1951, for which he received the

Nobel Prize [Pauling et al., 1951]. Pauling assumed that the peptide bonds are

planar, that all the amino acid residues are equivalent with respect to the back-

bone conformation, and that the bonds among amide protein to an oxygen atom

of another residue are of the hydrogen type [Edison, 2001].

Tertiary structures are formed when secondary structures, which are typically

planar, fold into various geometric shapes in three dimensions. The arrangement
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of these structures not only determines their shape but also their function. The

three-dimensional shapes are primarily regulated by hydrophobic or hydrophilic

interactions, where non-polar solutes are linked to minimize their interaction with

water [Baldwin, 2013]. For example, tropoelastin, the most elastic protein in the

human body, has a speci�c conformational arrangement of primary, secondary,

and tertiary structures. This arrangement facilitates hydrophobic and hydrophilic

interactions through hydrogen bonds, allowing it to obtain a shape that can link

with other tropoelastin proteins and undergo biological processes [Baldock et al.,

2011; Yeo et al., 2016].

Lastly, quaternary structure refers to the coupling and interaction of multiple

protein chains and subunits into a tightly packed arrangement, each composed

of its own primary, secondary and tertiary structure. Non-covalent bonds, such

as Van der Waals forces and hydrogen bonds, typically regulate it. Sir John

Kendrew and Max Perutz �rst discovered it in the 1950s using X-ray di�raction

techniques. [Kendrew et al., 1958].

1.1.2 Examples of hierarchical biological materials

In this Section, we describe some examples of hierarchical biological materials,

chosen for their particular relevance in materials science, due to their structural

properties and interesting properties that make them similar to spider silk, the

main subject of this thesis. Bone has a very fascinating and complex hierarchical

structure that allows it to serve very di�erent functions: in facts bones protect

the various other organs of the body, produce red and white blood cells, store

minerals, provide structure and support for the body, and enable mobility.

On the other hand, hair and cellulose were chosen for some similarity with

the spider silk. Indeed, hair is, like silk, a protein material and contains some

secondary protein structures that are also very common in spider silk. Cellulose,

on the other hand, has the very interesting characteristic that it can contract

with moisture. We will therefore describe how this contraction takes place in the

case of cellulose, whereas, the contraction of spider silk, is the subject of a very

in-depth study within the Chapter 2.

Bone

Bone is a complex biological material that exhibits a diverse array of structures

across a range of length scales that work together to ful�ll mechanical, biolog-

ical and chemical functions. Its structures work together to provide structural

support, protection, storage for healing cells, and maintenance of mineral ion

9



Figure 1.4: The multiscale structure of natural bone. Reproduced from [Gao et al.,
2017].

homeostasis. and maintenance of mineral ion homeostasis. The hierarchical and

complex nature of bone architecture is pivotal in comprehending its �nal proper-

ties.

The fundamental constituent of bone material is the mineralized collagen �b-

ril, consisting of the �brous protein collagen, a component also present in skin,

tendon, and a variety of other soft tissues. The second component is the mineral

dahllite, also known as carbonated apatite. Finally, water forms the third major

component, creating with the other two components an ordered structure, the

mineralized collagen �bril. To delve into the ultimate properties of bone, under-

standing the properties of its component phases and their structural relationships

across hierarchical levels is crucial [Rho et al., 1998; Gao et al., 2017; Reznikov

et al., 2014].

In terms of hierarchical organization, the bone structure, as proposed by Gao

et al. [Gao et al., 2017], includes: (i) the macrostructure: cancellous and cor-

tical bone; (ii) the microstructure (from 10 to 500 mm): Haversian systems,

osteons, single trabeculae; (iii) the sub-microstructure (1�10 mm): lamellae; (iv)

the nanostructure (from a few hundred nanometers to 1 mm): �brillar colla-

gen and embedded mineral; and (v) the subnanostructure (below a few hundred

nanometers): molecular structure of constituent elements, such as mineral, colla-

gen, and non-collagenous organic proteins.

At the macrostructural level, two primary structures are identi�ed: cortical
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(compact) and cancellous (trabecular) bone [Weiner and Wagner, 1998; Elias

et al., 2013]. Cortical bone boasts a dense outer shell, while cancellous bone

features a porous, trabecular interior [Nguyen et al., 2012]. Microstructural dif-

ferences between them involve histological evaluation, highlighting cortical and

cancellous bone as either variations of a single material or distinct entities. Can-

cellous bone, being metabolically active, undergoes frequent remodeling, in�u-

encing its structural and material properties [McKittrick et al., 2010].

At the microstructural level, mineralized collagen �bers organize into lamellae

[Weiner and Wagner, 1998]. These lamellae form osteons or Haversian systems

in cortical bone, while cancellous bone comprises trabeculae with diverse cellular

structures. Mechanical properties vary between cortical and cancellous bone, pre-

senting challenges in expressing bone properties in single values due to regional

heterogeneity. The sub-microstructure involves lamellae, presenting challenges in

understanding collagen �ber arrangements [Weiner and Wagner, 1998]. Experi-

mental methods such as nanoindentation aid in measuring mechanical properties

at the sub-micron level, o�ering insights for theoretical models in bone mechanics.

Collagen �bers at the nanostructure level are surrounded and in�ltrated by

mineral [Robinson, 1952; Weiner and Price, 1986; Fratzl et al., 1992]. Speci�c

attachment sites of macromolecules onto the collagen framework are not precisely

known, but studies indicate periodic labeling along collagen molecules and �bers.

Crystal orientation within collagen �brils, along with nanocrystalline bone apatite

composition, is crucial.

Examining the subnanostructure reveals crystals and collagen �brils at the

tens of nanometers scale. Mature plate-shaped apatite crystals within collagen

�brils limit primary growth, exhibiting speci�c orientation. Type I collagen, the

primary organic component [Hodge, 1963] self-assembles into �brils with a spe-

ci�c periodicity. Non-collagenous organic proteins may regulate mineral deposits,

necessitating further studies for conclusive understanding.

The hierarchical organization of bone, spanning macro to subnanostructures,

contributes to its heterogeneity and anisotropy, ultimately shaping its mechan-

ical, biological, and chemical functions. The complex structure of bone and its

relationship to function has been studied for more than 320 years and is still far

from fully understood [Reznikov et al., 2014].

Hair

Hair is a �lamentous appendage of the skin in vertebrates that serves to protect

the body mainly against cold and wet conditions. It is a proteinaceous material,

and much of the research in hair science is fundamental to protein science. Hair
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is renowned for its remarkable mechanical properties and very long degradation

time [Matsunaga et al., 2013]. Healthy human hair has a Young's modulus of

2.0-3.7 GPa and a failure stress and strain of approximately 117 MPa and 35%,

respectively [Chou et al., 2015].

The hierarchical structure of hair is shown in Figure 1.5. A typical hair �ber

has a diameter ranging from 50 to 100 µm and is covered by an outermost layer

known as the cuticle, composed of dead, overlapping cells forming a protective

layer around the hair. The inner part of the hair is called cortex and it is com-

posed of cortical cells that are approximately 100 µm long and 1-6 µm thick.

These cortical cells consist of macro�brils, which have a diameter of 0.1-0.4 µm

[Harland et al., 2014]. At the nanometer scale, macro�brils are composed of inter-

mediate �laments (IF) embedded in a high-sul�de content matrix. Each IF has a

diameter of approximately 7.5 nm and is formed by eight proto�laments. An in-

termediate �lament (IF) is composed of four right-handed α-helix chains, known

as proto�laments. Therefore, a total of thirty-two chains form an IF [Voet and

Voet, 2010]. The mechanical strength and durability of hair are determined by

one of the main keratin proteins: trichocyte keratin. This protein constitutes the

intermediate �laments and interacts with the matrix and crosslinks with disul�de

bonds [Matsunaga et al., 2013; Chou et al., 2015].

The intricate arrangement of the cortex and cuticle contributes to the unique

mechanical and physical properties of human hair, making it an intriguing exam-

ple of a hierarchical biological material.

Figure 1.5: Scheme of the hierarchical structure in human hair. Reproduced from [Yu
et al., 2017].

As is common in biological materials, the tensile properties are dependent on

various factors: high relative humidity or high temperature can decrease the

Young's modulus and increase the extensibility [Robbins and Robbins, 2012;

Rebenfeld et al., 1966]; Additionally, the hair's yield stress decreases as the strain

rate decreases, relative humidity increases, and temperature increases [Yu et al.,
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2017]. These environmental factors can lead to changes in the appearance and

texture of the hair, highlighting the sensitivity of hair to its surrounding condi-

tions.

Interestingly, the hair swells when exposed to humid environments [Stam

et al., 1952]. The secondary and tertiary structure of the IFs and the matrix

are thought to control the swelling behaviour of keratins [Robbins and Robbins,

2012]. Even if the maximum swelling occurs in the diametral dimension of the

hair and only a secondary swelling occurs in the longitudinal dimension that is

along the axis of the �bres, the longitudinal swelling is the mechanism fundamen-

tal for the hair hygrometer [Trowbridge, 1896; Whipple, 1921; Mehrabian and

Hashemian, 2003].

Understanding the hierarchical structure and structure-function relationships

in human hair is important not only for its biological signi�cance but also for its

relevance in various �elds, including materials science and mechanical actuation

besides cosmetic research.

Cellulose

Cellulose is a natural linear biopolymer, the most abundant natural polysaccha-

ride, with a complex hierarchical structure, which is essential to its mechanical

properties and functionality. Speci�cally, it is a high molecular weight polysac-

charide composed of repeating cellobiose units that form a linear chain in which

both intra-chain and inter-chain molecular hydrogen bonds that bind the chains

together [Di Donato et al., 2015], which in turn produce micro�brils, matrices,

and multilayered cell walls (Fig. 1.6).

The mechanical response of natural plants to humidity, such as pinecones

[Andres et al., 2014] and ice plants [Harrington et al., 2011], with a sophisticated

hydration-dependent unfolding of their seed capsules, has inspired researchers to

investigate the deformation of structures in response to humidity changes. The

humidity-induced response is due to the asymmetric swelling behavior of cellulose

with di�erent orientations in plant tissue at high humidity [Dawson et al., 1997].

Interestingly, a cellulose �bre in a humid environment typically swells, as do

hair and also hemp and wood, being predominantly composed of cellulose. On

the other hand, a rope composed of �bers (which swell) arranged in a helical

fashion, contracts, because the swelling is greater in the direction of the diameter

than of the length of the �bers (ratio estimated at 20:1) and this leads to an

increase in diameter and a reduction in the pitch of the helix, the length of the

�bers having to remain almost constant (compared to the increase in diameter)

[Ridge, 1953]. However, there is a possibility of �ber contraction with moisture.
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Figure 1.6: Cellulose �ber hierarchical composition starting from cellulose chains.
Adapted from [Ramawat and Ahuja, 2016].

This occurs when macromolecules are frozen in a non-equilibrium condition in

an elongated con�guration [Bowling et al., 2001]. In this way, as occurs in spider

silk and extensively addressed within this thesis, water molecules of hydration can

break the bonds that freeze macromolecules in elongated con�guration, allowing

them to return to the equilibrium condition by contracting from the elongated

frozen condition. Thus the cellulose �ber contracts due to the strong network of

hydrogen bonds among all chains [Krässig, 1993] returning to the conformational

equilibrium of individual chains [Le Moigne et al., 2010].

Contraction upon swelling occurs in both native and regenerated �bers due to

the extended conformational state of cellulose chains resulting from the spinning

process for regenerated cellulose �bers or the bio-deposition process for native

cellulose �bers. As anticipated, the contraction is caused by the change in the

mean conformation of cellulose chains from an extended state to a more condensed

state.

For regenerated �bers, the high-viscosity cellulose solution passes through a

spinneret where shear forces orient the cellulose chains in the spinning direc-

tion. Before being coagulated in a water bath, the resulting cellulose �bers are

stretched in an air gap. The cellulose chains are therefore frozen in an extended

conformation, out of equilibrium. This result in the well-known highly oriented

morphology of regenerated cellulose, with both the crystalline and non-crystalline

phases having cellulose chains that are strongly oriented in the direction of the

�ber [Lenz et al., 1993].

According to Bowling et al. [Bowling et al., 2001], cellulose chains in cotton

hairs or wood �bers are in an extended conformational state due to the bio-

deposition mechanism. The Cellulose Synthase Systems extrude cellulose chains

that condense into crystalline micro�brils before they can fully relax, thus main-
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taining the chains in an extended conformational state. During partial dissolution

or swelling, molecular mobility enables cellulose chains from the non-crystalline

phase (also known as the amorphous phase) to return to their equilibrium con-

formation, resulting in a signi�cantly reduced end-to-end distance. The value of

the equilibrium end-to-end distance depends on the swelling or dissolving agent.

Eventually, thanks to its humidity responsiveness resulting from its rich hy-

drophilic groups [Li et al., 2021], cellulose is an excellent material for developing

green humidity sensors. A common mechanism for producing moisture sensors

from cellulose is to employ the bending of two or more layers of cellulose with

di�erent orientations [Tian et al., 2018]. Cellulose can be used in various types

of sensors, including resistance, capacitance, colorimetry, shape deformation, and

capacitive micromachined ultrasonic transducer (CUMT) sensors [Li et al., 2021].

Spider silk

Finally, we present the case of the spider silk, where the amino acids aggregate

in particular proteins that in turn are assembled in structures that give rise to an

exceptional macroscopic behavior, which leads spider silk to be one of the most

resistant materials in nature and with resistances comparable to those of high

strength steels, as well as a toughness that is surpassed only by a few manmade

high-performance materials.

Its hierarchical structure will be described in detail in Section 2.1, yet here

we introduce such material, starting with a brief discussion about the animals

that produce it i. e. the spiders, to provide insight into the origin of its high

performance and variable properties, and ending with the various applications of

both natural and bio-inspired silk.

Spiders are arthropods characterized by eight limbs and spinnerets that enable

silk production. Found on every continent except Antarctica, they have demon-

strated remarkable adaptability to a wide range of land habitats. Spiders have

evolved to overcome various environmental challenges, including large �uctuations

in temperature and humidity. Their ability to thrive in diverse environments is

evidence of the incredible strategies and structures they have developed to navi-

gate and �ourish in di�erent ecological settings [Canals et al., 2015]. The number

of known spider species is estimated to be around 50,000 in 136 families recorded

by taxonomists [Catalog, 2024].

Spiders are renowned for their remarkable ability to produce silk, a protein

�ber with diverse functions. Spider silk is used to create webs for prey capture,

nests, and cocoons, and for various other purposes such as suspending themselves,

�oating, or gliding away from predators. The elaborate structure of spider silk
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contributes to its exceptional properties, making it one of the toughest materials

known [Blackledge, 2012]. Research on spider silk has attracted signi�cant atten-

tion due to its potential applications in various �elds, including the development

of high-performance materials and biocompatible hybrids [Kiseleva et al., 2020].

The hierarchical organization and unique properties of spider silk have sparked

interest in understanding its natural structuring and synthesis. This natural �ber

has also garnered attention for its potential in engineering novel polymeric mate-

rials inspired by nature, highlighting the signi�cance of unraveling the structure-

function relationship of spider silk proteins [Römer and Scheibel, 2008].

Given that each spider can produce between two and seven di�erent types of

silk, the number of distinct spider silks exceeds 100,000 [Vollrath, 1992; Gosline

et al., 1994]. These numbers demonstrate the remarkable biological variability of

these materials, resulting in signi�cant physical and chemical diversity.

Spider silk combines outstanding strength and extensibility, and a wide range

of mechanical properties can be achieved with only slight changes in chemical

structure [Vollrath and Porter, 2006]. For this reason, along with its intriguing

humidity-driven actuation properties, spider silk is one of the most extensively

researched natural materials. To give an idea, there are approximately 5000 new

results per year on Google Scholar in the last three years that mention spider

silk.

The complexity of spider silk requires the combined e�orts of several disci-

plines, including biology, mechanics, materials science, chemistry, biochemistry,

genetics and nanotechnology, to fully understand the unique properties of spider

silk and explore its many applications.

The mechanical properties of spider silk, along with other physical properties

such as thermal conductivity [Huang et al., 2012] and piezoelectricity [Karan

et al., 2018], make it a compelling candidate for a wide range of technological

applications. In addition to these properties, the biological characteristics of

spider silk, including its ability to support cell adhesion and proliferation, as well

as its resistance to bacterial proliferation, have positioned it as a top contender

among potential biological materials for biomedical technologies [Kundu et al.,

2014; Aigner et al., 2018; Holland et al., 2019]

In recent decades, scienti�c exploration has extended beyond the use of spider

silk �bers, with a focus on biomedical applications utilizing various forms of

spider silk. These applications typically originate from a spider silk solution,

which can be processed through chemical treatments to produce nanospheres or

nanoparticles. These nanostructures have demonstrated potential in drug delivery

[Lammel et al., 2011], as well as in the development of �lms [Hümmerich et al.,
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2006], hydrogels [Schacht and Scheibel, 2011], and foams [Schacht et al., 2016],

all of which hold promise for diverse biomedical technologies [Kluge et al., 2008].

1.2 Multiscale models and soft materials

In the following we provide an introduction to multiscale modelling, analysing the

advantages and disadvantages of di�erent methodologies and providing a classi-

�cation of the most common techniques. We also introduce the main concepts

regarding modelling of soft materials, being the foundation from which the �eld

of modelling of biological and hierarchical materials has been developing over the

last decades.

1.2.1 Importance of multiscale models for scienti�c and

biomimetic interests

The concept of multiscale modelling has been gaining ground in recent decades in

a variety of �elds, from complex systems such as aircraft to the �eld of materials,

where it is enabling major advances in the design of new materials and metama-

terials and in the full understanding of the behaviour of complex natural systems.

For example, the gecko adhesion, despite being studied for several years, has been

e�ectively described only within the framework of the multiscale modelling [Chen

and Pugno, 2013].

Multiscale theoretical models provide a framework to comprehend the intri-

cate relationships between the di�erent length scales within hierarchical materials.

Multiscale modelling aims to describe procedures that simulate continuum-scale

behaviour using information from computational models of �ner scales in the sys-

tem, rather than relying on empirical constitutive models. This approach allows

scientists to bridge the gap between the macroscopic properties of a material and

its underlying micro and nanostructures.

By integrating information from various scales, multiscale models enable the

prediction of material properties with improved accuracy [Jancar et al., 2010].

This is crucial for designing materials with tailored characteristics for speci�c

applications. The work by Jancar et al. [Jancar et al., 2010] exempli�es the

application of multiscale models in understanding of the fundamental physical

relationships between nanoscale structural variables and the macroscale proper-

ties of polymer nanocomposites.

Understanding the dynamic behavior of hierarchical materials requires consid-

eration of interactions across di�erent scales. Multiscale modeling, facilitates the
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exploration of dynamic phenomena, such as deformation and failure mechanisms,

providing insights that may not be apparent at individual scales [Weinan, 2011].

The importance of multiscale modelling is emerging also with recent studies

on biological materials, where complex relationships between structures and func-

tions make it possible to obtain extraordinary macroscopic compositions in the

face of microscopic components that in themselves have apparently common or

even weak properties, as described above.

How nature develops the mechanical strength of natural materials is often still

unknown, but an interesting insight pursued by scientists is that the form and

microstructure of natural materials are intimately linked by their common origin,

the growth of the organ [Elices, 2000]. Growth therefore means that form and

microstructure are generated as part of the same process [Fratzl and Weinkamer,

2007].

The path to arti�cially obtain inspired materials with such interesting prop-

erties is still long owing to the intrinsic di�erence in how nature and men produce

materials. In fact, while men design and construct a material according to some

previously determined speci�cations, in a static process, nature follows a dynamic

process in that biological structures are able to reshape to adapt to changes in

external conditions [Fratzl and Weinkamer, 2007]. For instance, it is enough to

think of a tree that can adapt its growth throughout its whole life in response to

environmental changes such as the wind direction [Gardiner et al., 2016].

A further intrinsic advantage of biological structure is to generally include

several materials. Indeed, it was elucidated that combining structural hierarchy

and mixing of various materials can result in superior resistance, which cannot

be achieved only by the hierarchy in a homogeneous phase [Bosia et al., 2012].

Several of these characteristics of natural materials have been e�ectively de-

scribed within the framework of multiscale modelling. References such as [Mielke,

2006] and [Banasiak and Miekisz, 2008] showcase the e�cacy of multiscale model-

ing in achieving a comprehensive understanding of materials behavior. The signif-

icance of developing multiscale theoretical models for understanding hierarchical

material is therefore of paramount importance, contributing both to scienti�c

inquiry and inspiring innovative biomimetic design principles.

1.2.2 Classi�cation of multiscale modelling methods

Multiscale modeling involves deriving equations, parameters, or simulation algo-

rithms to depict behavior at a speci�c length scale based on the physics at a �ner

scale. This �ner scale encompasses electrons, atoms, molecules, and their assem-
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blies, as well as mesoscale structures like phases or grains. The di�erent scales

may be de�ned with several terms, for example micro, atomistic or discrete scale

for the lowest scale and macro, coarse, continuum scale for the highest. Between

these two extreme scales may be de�ned several mesoscales.

A large number of such methods have been developed, taking a range of ap-

proaches to bridging across multiple length and time scales. Here we introduce

some key concepts of multiscale modelling and review a selection of methods from

several categories of models, including techniques developed in recent years that

integrate new �elds such as machine learning and materials design. In previous re-

views of multiscale approaches [Fish et al., 2021], two methods are distinguished,

the resolved-scale and the upscaling.

In the resolved-scale methods, �ne-scale and coarse-scale responses, that may

contain diverse physics, are computed simultaneously and the �ow of information

among scales is located at the interface. This method can be outlined as global-

local approach. In particular, separate physics models and discretization schemes

are typically used in di�erent spatial domains, so that multiple scales can be

simulated concurrently. This approach is particularly useful when the �ne scale

is important in small subregion of the problem.

A popular method in this direction is the Quasicontinuum (QC) method, �rst

conceptualized by Tadmor, Ortiz, and Phillips in 1996 [Tadmor et al., 1996].

Aimed at simulating an atomistic system without explicitly addressing each in-

dividual atom, QC establishes a framework in which certain degrees of freedom

are selectively eliminated, expediting force/energy calculations. This approach

is complemented by adaptive model re�nement to ensure the preservation of full

atomistic detail in speci�c regions where necessary, while employing continuum

assumptions to reduce computational demands elsewhere.

The upscaling is usually employed to manage hierarchies and it consists of �nd-

ing relationships that characterize the behavior at a speci�c length scale, based

on the physics at a smaller size, on condition that at a smaller scale, physics and

structure are more clearly understood. The upscaling methods may include ap-

proaches where the same physics is employed at di�erent scales, usually referred

as homogeneization methods, as well as approaches where di�erent physics are

employed at di�erent scales. In recent years, data-driven upscaling methods have

emerged, where the macro-scale response is inferred through machine learning or

automated model-order reduction. In these methods, the macroscale is typically

constructed from a large number of data simulations at lower scales using data

modelling approaches. In this case, a closed-form description of interscale de-

pendence is typically not required. This thesis addresses the issue of the use of
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data-driven techniques for the improvement of 'classical' physics-based models,

and outlines a new methodology for this purpose in section 4.

More in detail, indeed, although machine learning has been e�ectively used

to automate data processing and ensure high accuracy and repeatability of out-

comes, it ignores basic physical principles, which may result in incorrectly pre-

sented problems or non-physical solutions. On the other hand, multiscale model-

ing has proven to be a successful method for combining multiscale, multiphysics

data and revealing mechanisms that underpin the origin of function. Multiscale

modeling, on the other hand, typically falls short of e�ectively combining large

datasets from numerous sources and resolution levels. In the section 4, we explore

potential synergies between machine learning and multiscale modeling to produce

robust prediction models that take into account the underlying physics to handle

challenging problems within the framework of materials science.

1.3 Modelling of soft biological materials

In the �eld of solid mechanics, the theory of elasticity is generally used to refer to

the study of materials whose behaviour is described by Hooke's law, the simplest

constitutive equation, describing the linear stress-strain curve of materials that

undergo small deformations. It �ts well with ordinary 'hard' materials such as

metals or crystalline solids, where elasticity is given by binding forces that hold

atoms in equilibrium positions. Equilibrium is achieved by balancing the attrac-

tive and repulsive forces between the particles, minimising the internal energy of

the system [Euler, 2008].

Two major classes of materials behavior are excluded from such theory, namely,

inelastic and elastic subject to large deformations. The latter includes the case of

elastomers, which, according to the IUPAC de�nition, are polymers that display

rubber-like elasticity [Alemán et al., 2007], for which the theory of non-linear

elasticity is needed. Many biological soft materials, among which the spider silks,

exhibit rubber-like elasticity, and due to the fact they are composed of macro-

molecules, they are called biopolymers.

For such materials, the elastic force does not originate from binding energy,

but their behavior originates from an entropy-driven elasticity. Roughly speak-

ing, rubber consists of �exible macromolecules that are in continuous Brownian

motion at normal temperatures due to thermal agitation. The origin of rubber

elasticity is rooted in the fact that when we apply a force to a piece of rubber,

the long molecules in the network are stretched and if this force is released they

spring back to random shapes. In other words, the external work done during

20



deformation is required to force the polymer molecules from a more probable

into a less probable state. The restoring force arises from the tendency to return

to conformations with higher entropy. During this process, molecular bonds are

not stretched, and as a result, the internal energy of the molecules remains un-

changed. Since there are fewer ways to realise a stretched molecular conformation,

the polymer chain reduces entropy during mechanical stretching.

The interplay between the two described types of elasticity gives rise to the

complex behaviour of technologically and naturally relevant `soft' materials like

elastomers and biological matter.

It is noteworthy that nonlinear elasticity is generally required to model large

deformations of rubbery materials even in the elastic range. For even higher

stresses, materials exhibit plastic behavior, that is, they deform irreversibly. In

order to study rubber, it is important to be aware of both non-linear elasticity

theory and the inelastic behaviour of bodies. Plasticity theory is particularly

useful in distinguishing between plastic and elastic deformations, which rubber-

like materials often experience simultaneously.

Biological materials are often modelled based on the assumptions of incom-

pressibility, isotropy and hyperelasticity, as we will detail below. The hyperelastic

model is a special case of nonlinear elasticity that allows for certain assumptions

and simpli�cations that have been validated by a large body of experimental

evidence.

1.3.1 Rubber-like materials

Modelling of soft biological materials is rooted in fundamental work that has

been done over the last century to explain the behaviour of rubber and rubberlike

materials.

A classical de�nition of rubberlike material, given by Treolar [Treloar, 1975],

includes the presence of long-chain molecules, with freely rotating links, weak

secondary forces between the molecules, and an interlocking of the molecules at

a few places along their length to form a three-dimensional network.

In its virgin state, natural rubber is a highly viscous liquid. To give it a per-

manent shape, the raw material is crosslinked by adding a �ller, commonly black

carbon, to interlink molecular sequences or strands in the polymeric network.

Crosslinking makes the rubber stronger and more rigid, but still very elastic.
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Mechanical behaviour: key features

Experiments show that the elasticity, at least for small strains, is of the entropic

type and is regulated by unfolding and refolding e�ects in the macromolecules

[Treloar, 1975]. This is evidenced by the observation that the tension in stretched

rubber at a �xed length linearly increases with temperature [Meyer and Ferri,

1935].

At increasing stretch, two major e�ects must be taken into account. On one

hand, the behavior of the chains becomes non-Gaussian, meaning that the simple

approximation of a Gaussian distribution for the probability of the end-to-end

vector of a single chain is no longer valid. On the other hand, complex inelastic

phenomena are observed.

Furthermore, at the macroscale, the elastic modulus of crosslinked rubber

decreases as the material is stretched, and this e�ect increases with the maximum

stretch. This damage e�ect is commonly known as the Mullins e�ect [Mullins,

1948] and has been extensively analysed in the literature [Diani et al., 2009].

A mesoscopic interpretation of the softening behaviour observed in cross-

linked rubber-like materials was �rst proposed by Bueche in 1960 [Bueche, 1960].

According to Bueche's interpretation, the macroscopic softening results from the

alteration of the polymeric network at the mesoscale, including the breaking of

weak bonds between rubber molecules and �ller particles. Therefore, the elastic-

ity properties of a rubber specimen depend on the degree of previously attained

maximum strain.

Bueche's perspective implies that a rubber specimen under strain becomes

an anisotropic material, with the elastic modulus depending on the direction

of deformation, as chains oriented in di�erent directions undergo di�erent strain

histories. Also Mullins observed this phenomenon in his pioneering work [Mullins,

1948]. The breaking and reforming of bonds at the microscopic results in a

continuous variation of the natural (unstressed) con�guration of the network,

which is discussed in detail in [Rajagopal and Srinivasa, 2004] and [Rajagopal

and Wineman, 1992].

Complex models and theoretical discussions have been developed from such

experimental evidences. The presence of residual strains associated with damage

anisotropy, as shown in [Göktepe and Miehe, 2005; Diani et al., 2006], has been

demonstrated in numerical analyses of anisotropic damage models for rubber

materials.

Many biological soft materials exhibit similar behaviour, achieving their re-

markable mechanical properties through clever microscale organization, where the

material is often described as composed of hard pseudo-crystals and soft macro-
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molecular network [Gosline et al., 1984; Ji and Gao, 2004] In particular, for the

case of protein materials, of interest for this thesis, typical hard pseudo-crystals

are achieved through speci�c protein secondary structures such as α-helices and

β-sheets. These structures have two signi�cant e�ects: �rst, an initial sti�ening

of the material, similar to the e�ect of additives in rubber, and second, a hidden

length e�ect due to the phenomenon that as the material stretches, they may

unfold [Fantner et al., 2006; Puglisi et al., 2017].

To meet the increasing demand for models that associate the microscopic prop-

erties with the macroscopic behaviour of the material, the theoretical framework

of multiscale rubber elasticity has been pivotal, in increasingly deep collaboration

between classical and new aspects of continuum mechanics, taking into account

relevant non-linear and history-dependent e�ects [Puglisi and Saccomandi, 2016].

Main model classes

A �rst fundamental step was accomplished around 1930 [Guth and Mark, 1934;

Kuhn, 1934] when molecular models were introduced to model the mechanical

behaviour of natural rubber and its previously introduced properties. However,

these models failed to describe the complex non-linear e�ects and history depen-

dence of rubber-like materials, and to treat the large deformation regime in a

proper and general framework.

The Mooney paper in 1940 [Mooney, 1940] and subsequent work by Rivlin

[Rivlin, 1947], which introduced the possibility of describing non-linear elasticity

by introducing the strain energy function, marked a major development in the

�eld.

A further signi�cant advance was then made with the advent of non-Gaussian

molecular theory. These theories provide a valuable tool for gaining a deeper the-

oretical understanding of how low-scale properties impact macroscopic behavior.

On the other hand, such theories may not capture important e�ects or lead to

very expensive computations. A classical example is the absence in isotropic in-

compressible models of the dependence on the so-called C2 energy term, which we

will introduce in the following (see [Puglisi and Saccomandi, 2016] for a detailed

discussion on this topic). Therefore, a synergy between phenomenological and

statistical multi-scale models is needed. In this respect, there have been several

important advances in the description of macroscopic behaviour with complex

phenomena, such as rate and damage e�ects, residual stretching, growth and

remodelling, which are still under investigation.

Statistical mechanics provided a further framework for describing the entropic

character of network elasticity extending the above-described ones to encompass
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non-Gaussian networks, enthalpic and non-equilibrium e�ects, and alterations in

natural con�gurations. Thus, statistical mechanics led to a new class of multi-

scale models that derive how macroscopic constitutive laws depend on microscale

parameters.

These models address a limitation of typical phenomenological models, which

often lack a direct relation to the underlying molecular level. Indeed, the form

of such models, including energy function of the deformation invariant (often in

polynomial form), as we will see in detail in the following, make them useless for

a direct design of the material [Trentadue et al., 2021], and have often lead to

�tting numerical problems and experimental problems to �nd the corresponding

parameters [Destrade et al., 2017].

1.3.2 Basic equations and strain energy functions

In this section, we recall the basic equations and some essential aspects of nonlin-

ear elasticity, of interest in the following analytical treatment for the modelling of

rubber-like materials, in order to provide a rigorous and quantitative description

of some of the previous remarks.

We start by considering the deformation of a body Ω,Ω ∋ X 7→ x = x(X), its

gradient F = Grad(x) and the left Cauchy-Green deformation tensor B = FF T.

The principal invariants of B are

I1 = tr(B), I2 =

(
I21 − tr

(
B2
))

2
and I3 = detB. (1.1)

For a hyperelastic and isotropic material [Ogden, 1997], we may introduce a

strain-energy density function W = W (I1, I2, I3).

It should be noted that the typical moduli of linear elasticity, such as the

tensile modulus or the bulk modulus, can be derived in the limit of in�nitesimal

deformation. As the bulk compression modulus of rubber is quite high compared

to its tensile modulus, it is common to treat rubber as incompressible. As in

this case, only isochoric deformations are admissible, it results I3 = 1, and W =

W (I1, I2).

In this setting, the Cauchy stress tensor T is given by:

T = −pI + 2
∂W

∂I1
B − 2

∂W

∂I2
B−1, (1.2)

where p is the Lagrange multiplier taking into account the constraint of incom-
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pressibility. Moreover, the equilibrium equation in absence of body forces is

divT = 0, (1.3)

with div the divergence operator with respect to x. The fundamental problem in

this framework is to determine the functional form of the strain energy density

W . In the following, we provide an overview of the most signi�cant strain energy

functions.

Neo-Hookean

The neo-Hookean model introduce one of the simplest strain energy functions.

It involves a single parameter and provides a mathematically simple constitutive

model for the non-linear deformation behavior of isotropic rubber-like materials.

Its strain energy function is

W =
µ

2
(I1 − 3) (1.4)

where µ > 0 is the shear modulus for in�nitesimal deformations.

This model is satisfactory in describing the macroscopic mechanical behaviour

of rubber elasticity only for small and moderate shear deformations [Ogden, 1997].

Nevertheless, it was of fundamental importance in understanding many theoret-

ical aspects of nonlinear elasticity theory because of its analytical simplicity.

Mooney�Rivlin

Rivilin improved the �tting to data by introducing a dependence of the strain

energy function on both the �rst and second invariants. This resulted in a more

general model than the neo-Hookean model, known as the Mooney-Rivlin model.

The strain energy function is assumed to be linear in both the �rst and second in-

variants of the Cauchy-Green strain tensor. Mooney developed this model purely

from a phenomenological perspective [Mooney, 1940]. For an incompressible ma-

terial, the strain energy density function can be expressed as:

W = C1(I1 − 3) + C2(I2 − 3), (1.5)

with C1 and C2 two material constants to calibrate in order to �t experimental

data.

According to Mooney [Mooney, 1940], the form 1.5 is the most general for large

deformations of an incompressible hyperelastic, undeformed isotropic material.

The Mooney-Rivilin model has been extensively studied, despite not accu-

rately describing any rubber-like material within experimental error. It is com-
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monly used as the �rst example for general results of isotropic incompressible

materials, for which several analytical solutions have been found.

Generalized neo-Hookean models and Gent Model

Although Rivlin proposed introducing the dependence of W on the second in-

variant I2, there are several models of strain energy functions that depend on the

�rst invariant I1 only. It is worth noting that in molecular theory, I1 is related

to the mean squared end-to-end distance of the chains, but in general the chains

cannot have a completely arbitrary shape and length. Overcoming this restriction

requires the second invariant I2, which is instead related to the surface area of

the material. However, introducing this invariant may lead to complications in

the calculations, leading to the widespread use of strain energy functions which

depend only on the �rst invariant in a non-linear way. These functions are called

generalized neo-Hookean models and have the following general form:

W = W (I1) . (1.6)

To consider the �nite extensibility of the polymeric chains constituting the

elastomer network, some models of the form 1.6 introduce a distribution function

for the end-to-end distance of the polymeric chain that is not Gaussian. These

models are usually referred to as non-Gaussian models.

From a phenomenological perspective, these models can be divided in two

categories: power-law models and models with limiting chain extensibility.

An example of the �rst class, widely used in biomechanics, was proposed by

Fung [Fung, 1967] as follows

W =
µ

2b
exp [b (I1 − 3)− 1] (1.7)

where b > 0 is a dimensionless sti�ning costant, and µ > 0 is the shear modulus

for in�nitesimal deformations.

An example of the second class, proposed by Gent [Gent, 1996] and of par-

ticular relevance for the modelling approach adopted in this thesis, is based on

the concept of limiting chain extensibility. In this case, the strain energy density

function is structured in such a way that it exhibits a singularity when the �rst

invariant of the left Cauchy-Green deformation tensor reaches a limit value Im.

Such strain energy density function is given by

W = −
µJm

2
ln

(
1−

I1 − 3

Jm

)
(1.8)
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where µ is the shear modulus and Jm = Im − 3, with Im > 0 a limiting constant

value for I1, accounting for the limiting chain extensibility.

Notice that in the limit where Im → ∞, the Gent model reduces to the Neo-

Hookean model.

Roughly speaking, for the multiscale approach that we detail in Chapter 2,

a Gent-type constitutive law will be employed, with a history-dependent limit

threshold and a variable natural con�guration, based on the classical multiplica-

tive decomposition of the deformation gradient in a growth and in an elastic

component.

Note that the model 1.8 may not be suitable for accurately predicting the me-

chanical properties of rubber-like materials across the full range of deformations.

Instead, it is designed to re�ect material behaviour for large strains [Pucci and

Saccomandi, 2002].

Constitutive equations of the form 1.6 often lead to closed-form analytical

solutions for many interesting problems (see [Horgan and Saccomandi, 1999b;

Horgan and Saccomandi, 1999a; Horgan and Saccomandi, 2001c; Horgan and

Saccomandi, 2001a; Horgan and Saccomandi, 2001b; Horgan and Saccomandi,

2002]).Such solutions are useful for understanding the mechanical properties of

materials and as benchmarks for more complex numerical calculations.

Other models

For the sake of completeness, we also report on other successful models and ap-

proaches in the modelling of rubber-like materials. In 1951, Rivlin and Saunders

[Rivlin and Saunders, 1951] pointed out that neither the neo-Hookean nor the

Money-Rivlin models were adequate to precisely describe the experimental prop-

erties of typical rubber materials. They found that ∂W/∂I1 is independent of both

I1 and I2, and that ∂W/∂I2 is independent of I1 and decreases with increasing

I2. They thus derived the following form for the strain energy function:

W = C (I1 − 3) + f (I2 − 3) , (1.9)

where C is a constant while f is a function having a decreasing slope as I2

increases. In the work of Obata [Obata et al., 1970], it is found that neither

∂W/∂I1 nor ∂W/∂I2 can be considered constant, and therefore that each should

depend on both I1 and I2 [De Pascalis, 2010].

Moreover, a generalization of the Gent model (Eqn 1.8) is the so-called Gent-

Gent model proposed by Pucci and Saccomandi [Pucci and Saccomandi, 2002].

They improve the Gent model by introducing the I2 invariant so that the strain
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energy function becomes

W = −C1Jm ln

(
1− I1 − 3

Jm

)
+ C2 ln

(
I2
3

)
(1.10)

with C1 and C2 two constants. Pucci and Saccomandi proposed this model using

a purely phenomenological methodology, obtaining successful predictions for the

behaviour of rubber-like materials [Ogden et al., 2004].

Several authors have pointed out that Rivlin's principal invariants approach is

not very practical for �tting experimental data because of the possible propaga-

tion of experimental errors (see for example [Valanis and Landel, 1967]). There-

fore, it may be interesting to consider the possibility of expressing the strain

energy directly in terms of the principal stretches. For this reason, Valanis and

Landel [Valanis and Landel, 1967] postulated the strain energy function as a sum

of functions each depending on a single stretch:

W = w (λ1) + w (λ2) + w (λ3) , (1.11)

in which the function w(λ) is, by symmetry, the same for each of the extension

ratios, in the case of isotropic material.

Accordingly, Ogden [Ogden, 1972] proposed the following form in terms of

powers of the principal stretches λj, j = 1, 2, 3, as:

W =
N∑
p=1

µp

αp

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(1.12)

with µp and αp two material constants. Assuming incompressibility, we can

rewrite as

W (λ1, λ2) =
N∑
p=1

µp

αp

(
λ
αp

1 + λ
αp

2 + λ
−αp

1 λ
−αp

2 − 3
)

(1.13)

In general, the shear modulus is obtained from

2µ =
N∑
p=1

µpαp. (1.14)

The material behaviour of rubbers can be described very accurately by the Ogden

model with N = 3 and by calibrating the material parameters. Interestingly, for

speci�c values of material constants, the Ogden model reduces to either the Neo-

Hookean (α = 2) or the Mooney-Rivlin model (N = 2, α1 = 2, α2 = −2, with the

constraint condition λ1λ2λ3 = 1).
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Jones and Treloar [Jones and Treloar, 1975] and Ogden [Saccomandi and

Ogden, 2004] show the consistency of biaxial strain experiments with the Valanis-

Landel 1.11 and Ogden models.

A di�erent approach is the so-called Rivlin-Signorini method. First Mur-

naghan [Murnaghan, 1937] and then Rivlin [Rivlin, 1960] and Signorini [Sig-

norini, 1943] approximated the material response functions by polynomials in the

appropriate invariants. Thus constant coe�cients of the polynomial rather than

the functions characterise a given material. Applications of the Rivlin-Signorini

method can be found in [Martin and Carlson, 1977; Singh, 1967].

Eventually, a further two parameter limiting chain extensibility model with

a dependence on I2 has been proposed by Horgan and Saccomandi [Horgan and

Saccomandi, 2004] where

W = −µ

2
J ln

(
1

(J − 1)3
(
J3 − J2I1 + JI2 − 1

))
, (1.15)

or in terms of the principal stretches of the deformation

W = −µ

2
J ln


(
1− λ2

1

J

)(
1− λ2

2

J

)(
1− λ2

3

J

)
(
1− 1

J

)3
 . (1.16)

where µ is the shear modulus for in�nitesimal deformations and the parameter

J > 1 is a new limiting chain parameter for which

max
(
λ2
1, λ

2
2, λ

2
3

)
< J (1.17)

We note that such constraint is in terms of the principal stretches rather than

the �rst invariant as in 1.8. The model 1.16 is more complex in form but has

two advantages over the basic Gent model. First, as pointed out in [Horgan and

Saccomandi, 2002; Horgan and Saccomandi, 2006], the limiting chain condition

expressed in terms of the principal invariant is less physically accessible than

1.17. Furthermore, the lack of dependence on the second invariant in the basic

Gent model implies some physical limitations (see, e.g., [Horgan and Smayda,

2012; Puglisi and Saccomandi, 2016] for a discussion of the important role of the

second invariant).
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1.4 Objectives of the thesis

The main objective of this thesis, given the particular importance of the multi-

scale description of biological materials described above, is to describe in terms

of multiscale models some of the mechanisms that regulate the behaviour of bio-

logical materials, with a focus on spider silk, one of the most studied hierarchical

materials, also in relation to di�erent conditions of humidity and temperature.

The investigation begins by examining the primary proteins that constitute

the material. Subsequently, the structures that these proteins typically form and

their arrangement within the material at the macroscopic scale are explored. In

this case, the material is a thread of spider silk.

Once the structures associated with certain mechanical properties have been

identi�ed, this study aims to investigate how temperature and humidity a�ect

these structures. As is common with many natural materials, including spider

silk, the literature shows that temperature and humidity have a signi�cant impact

on their structure.

The mechanical behaviour of the material, i.e. the stress-strain behaviour, will

be investigated, as well as the e�ect of loading history, a key issue for biological

polymers, as well as for polymers in general and elastomers in particular, as

discussed above. The impact of temperature and humidity-induced structural

changes on the mechanical behaviour of the material will also be investigated.

As a second goal, we want to investigate the possibility of exploiting the

extraordinary property of spider silk to contract signi�cantly in a humid environ-

ment in order to construct humidity-driven actuators. A multiscale perspective

will be employed once again, starting from the interaction of water molecules

with the proteins that compose the material and leading to a description of the

macroscopic behaviour.

Therefore, the di�erent proteins will be described, especially concerning their

secondary structures, which are considered to be the most responsible for regu-

lating the behaviour of silk when it undergoes a transition from a dry to a wet

environment. To ensure the validity of the proposed model, it will be contin-

uously compared with experiments on the interaction of spider silk with a wet

environment available in the literature.

A multiscale description of the mechanisms leading to the macroscopic be-

haviour of the moisture-driven spider silk actuator will then allow exploring the

in�uence of the di�erent model parameters, all of which have a clear physical

interpretation, on the actuator properties. In other words, we want to investigate

how, by modifying the structure at the lower scales, for instance by engineering
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chains of amino acids of di�erent lengths or bonds between molecules of di�erent

strengths, we can vary the response of the actuator to meet di�erent requirements

that can be de�ned at the actuator design stage.

It is interesting to contextualize the actuation properties of the humidity-

induced contraction of spider silk with other actuators both humidity driven and

with other operating principles. In comparison to other actuators, the supercon-

traction of spider silk will exhibit surprising properties.

We will also explore the possibility of di�erent types of actuated devices,

including the simpler case of a linear spring and the more complex case of a

bistable spring to maximise the amount of obtained work.

In recent years, there have been signi�cant advancements in two areas, not

only in the �eld of materials. These areas include experimentation at increas-

ingly smaller scales and exponential growth in computing power. The production

of data has increased signi�cantly in terms of both quantity and quality. The

processing of such data appears to be seamless.

In fact, the processing of data made possible by newly available computing

power has signi�cant drawbacks and unresolved problems. The main issue is the

interpretability of the results obtained. The most widespread data modelling

technique, arti�cial neural networks, allows for great performance in processing

data and �nding possible correlations between them. However, the results are

di�cult to be interpreted due to the inherent nature, commonly referred to as

the black box, of the ANN approach, which will be discussed in more detail later.

In this context, our aim is to acknowledge the availability of vast amounts

of data and computing power, but to keep the scientist, who is able to produce

physically interpretable models, at the center of the knowledge production pro-

cess. In other words, our purpose is to develop a methodology that enables the

processing of the large amounts of data available in order to deliver results that

can be interpreted by the scientist who is the expert in the problem under inves-

tigation, i.e. in such a way that e�ective progress can be made in the theoretical

knowledge of the problem under investigation.

In order to describe the proposed methodology in a detailed and operational

way, the spider silk will again be used as an example of biological material. The

hierarchical nature of this material will be considered to illustrate the potential

advantages of using data modelling techniques that provide easily interpretable

results, including the fundamental advantage of incorporating knowledge gained

from modelling large amounts of data into models previously developed for the

multiscale physical description of the material of interest.

This approach aims to explore the potential of harnessing newly available
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computational power to advance our knowledge of not only the multiscale mech-

anisms that give rise to the extraordinary behaviour of spider silk, but also, more

generally, of phenomena governed by multiscale hierarchical di�erential equations

that can be treated in a similar way.
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Chapter 2

Spider Silks Mechanics: Predicting

Humidity and Temperature E�ects

This chapter is based on the paper published in the Journal of the Mechanics and

Physics of Solids (volume 164, 104857, 2022, DOI 10.1016/j.jmps.2022.104857)

[Fazio et al., 2022] and deals with the mechanics of spider silk in di�erent envi-

ronmental conditions and the contraction of the spider silk in wet environments.

Abstract

We deduce a microstructure inspired model for humidity and temperature ef-

fects on the mechanical response of spider silks, modeled as a composite material

with a hard crystalline and a soft amorphous region. Water molecules decrease

the percentage of crosslinks in the softer region inducing a variation of natural

length of the macromolecules. The resulting kinematic incompatibility between

the regions crucially in�uences the �nal mechanical response. We demonstrate

the predictivity of the model by quantitatively reproducing the experimentally

observed behavior.

2.1 Introduction

Due to their extraordinary properties, spider silks represent one of the most inten-

sively studied materials, also in the spirit of biomimetics [Zhao et al., 2014]. The

availability of more and more sophisticated experimental techniques let in the

last decades a deeper understanding �both from a chemical and structural point

of view� of the complex multiscale, hierarchical material structure at the base

of their notable mechanical behavior. Nevertheless, due to the complexity of its
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behavior, many important phenomena regulating its loading history dependence,

rate, temperature and humidity e�ects, remain unclear [Pérez-Rigueiro et al.,

2021], especially when multiscale e�ects are taken in consideration. In this pa-

per we propose a model for describing and predicting humidity and temperature

e�ects and with a special focus on a crucial phenomenon known as supercontrac-

tion e�ect. Firstly addressed in [Work, 1977], it consists in a shrinkage of the

�ber up to 50% of its initial length, when immersed in water or in high humid-

ity environment strongly modifying the mechanical performances. As we show,

the comprehension of such striking behavior let us deduce a predictive model for

the experimental thermohygromechanical behavior of spider silks, starting from

a description at the molecular scale.

At the molecular scale, spider silks are composed by an amorphous matrix

of oligopeptide chains and by pseudo-crystalline regions made up principally of

polyalanine β-sheets [Elices et al., 2011; Sponner et al., 2007] with dimensions

between 1 and 10 nm [Keten and Buehler, 2010], mostly oriented in the �ber

direction [Jenkins et al., 2013]. The cross section of the �ber is highly organized

in the radial direction [Li et al., 1994; Eisoldt et al., 2011; Sponner et al., 2007].

Moreover, the chemical and structural composition varies according with the

di�erent silks produced by the di�erent glands [Cranford et al., 2014] and of course

the di�erent species. Here, to �x the ideas, we focus on the most performant case

of dragline silk.

More in detail, the thread is covered by a skin, with a chemical and physical

protection function, that does not play a role in supercontraction and mechanical

response [Yazawa et al., 2019]. We thus neglect it in the model. Next, the core can

be schematically decomposed as in Fig. 2.1. The major constituent of the external

part [Li et al., 1994; Brown et al., 2011] are proteins (Major ampullate Spidroin 1,

MaSp1) organized into β-pleated sheets. We refer to this fraction as hard region.

The internal part, here referred as soft region, is instead mainly constituted by

proteins with a proline content preventing the formation of β-sheet structures

[Sponner et al., 2007] (Major ampullate Spidroin 2, MaSp2). This fraction has a

signi�cantly lower crystallinity and macromolecules with weaker crystal domains,

typically in the form of α-helix and β-turns [Sponner et al., 2007; Nova et al.,

2010]. The di�erent crystallinity is also due to the shear stress at the spinning

duct wall inducing the formation of harder crystal domains in form of β-sheets

mainly in the outer region [Giesa et al., 2016; Brown et al., 2011].

Based on the previous description and referred literature, we model the silk

�ber as a composite material with a hard external fraction of crystalline chains

and a soft internal fraction of amorphous chains. Moreover, by following the
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Figure 2.1: Cartoon of the silk �ber and its microstructure (a). The outer hard region
characterized by crystals of β-sheets is represented by black chains, the soft region
molecules are drafted in blue, whereas the embedding elastic matrix is grey. In (b) we
schematize the incremental e�ects of water molecules (added as RH increases) disrupting
crystal domains (green dots) and inducing entropic recoiling of chains.

classical approach for polymeric and biopolymeric materials [Flory and Erman,

1982], we suppose that the hard and soft fractions of macromolecules aligned

with the �ber axis are embedded in a tridimensional elastic matrix, describing

the complex macromolecular network with inner and intrachains connections.

Due to the di�erent crystalline composition, the humidity a�ects di�erently

the hard and soft fraction. Water hardly breaks the H-bonds of the compact β-

sheet domains in the hard fraction [Yazawa et al., 2019]. On the other hand, here,

we may observe a misalignment of the crystals with respect of the �ber direction

that increases as the relative humidity RH grows [Eles and Michal, 2004]. Since

the material sti�ness grows with the alignment of the crystals [Du et al., 2006],

water induces a progressive damage in this fraction that we introduce in our

model. On the contrary, water content strongly in�uences the crystal percentage

in the soft internal core [Du et al., 2006; Elices et al., 2005; Elices et al., 2011],

because α-helices and β-turns are much more easily broken by water molecules. In

particular, the experiments exhibit a non uniform variation of the silk properties

with a localized transition at a speci�c value of RH, hereon indicated as RHc,

known as supercontraction threshold [Fu et al., 2009]. Finally, an important e�ect

in the evolution of the natural chain length is induced from the stretch history (see

[Puglisi et al., 2017] and reference therein for a theoretical detailed discussion of

such phenomenon). Indeed, as the end-to-end distance of the molecules changes,

β-sheets undergo unravelling with a corresponding increase of the number of

available monomers, here considered in the hard fraction.
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2.2 Model

According with classical Statistical Mechanics results [Rubinstein and Colby,

2003], the expectation value of the end-to-end distance for ideal chains is

Ln =< r2 >1/2= b n1/2, (2.1)

where n is the number of Kuhn segments with length b. We refer to the end-to-

end distance as natural length for the reason that it is the length that the chain

naturally assumes when no force is applied. As we will detail later n depends on

humidity in the soft fraction, whereas it depends on the maximum attained stretch

in the hard fraction. As a result the natural length of these fractions, assumed

identical after spinning, vary depending on the external force and humidity �elds,

inducing a kinematic incompatibility as detailed in the following. We remark

that in the recent paper [Cohen et al., 2021], based on this observation, the

authors proposed a model with a material undergoing a hard→soft transition

reproducing a mutation from glassy to rubbery state induced by RH variations,

e�ciently describing the variations of sti�ness and supercontraction length in

correspondence of the supercontraction threshold.

2.2.1 Soft Region

To consider the disruption process of H-bonds induced by hydration [Du et al.,

2006], let us introduce the function m = m̂(RH) assigning the number of links

in the generic humidity state, with m(0) = mo and m(100) = mf (initial and

permanent number of H-bonds) [Vollrath and Porter, 2006]. To the knowledge

of the authors, no direct measurement of m̂ is available, so that we consider a

Gaussian probability density of rupture events

d(RH) =
m̂(RH)−mo

mf −mo

=

∫
RH

0

1√
2πs̄2

e−
(RH−RHc)

2

2s̄2 . (2.2)

Here d ∈ (0, 1) is a `damage' type parameter, measuring the percentage of broken

links and we assume that the Gaussian is centered in the critical value RHc (see

Fig. 2.2).

To obtain the corresponding variation of the natural length based on (2.1),

assume that ns
o is the (mean) number of chain free monomers when the silk

is spun. Here and in the following we indicate by the apexes s, h,m, and t

the soft, hard, matrix and homogenized (total) quantities. If we identify the

number of H-bonds with the number of domains in which the chain is divided
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Figure 2.2: (a) Damage parameter d representing the percentage of broken links as
a function of humidity. (b) In�uence of the relative humidity on the number of H-
bonds with respect to the initial number of H-bond. Here RHc = 80%, s̄ = 5.5 and
mf/mo = 0.4.

(see the scheme Fig. 2.1(b)), the mean number of free monomers in each domain

is ns = n̂s(RH) = ns
o/m̂(RH) corresponding to a natural length

Ls
n = m̂(RH)

√
ns
o/m̂(RH) bs =

√
ns
o m̂(RH) bs. (2.3)

We obtain in this way an analytic measure of the shrinkage chain e�ect induced

by humidity. Observe that instead the contour length is �xed: Ls
c = ns bs.

2.2.2 Hard Region

As anticipated, following [Du et al., 2006] we assume that the elastic modulus

of the crystalline region decreases with RH by considering a (phenomenological)

damage function in the macroscopic model deduced in section 2.2.3. On the

other hand, while β-sheet crystals are a�ected only in their orientation by hu-

midity, large strain can induce important unravelling e�ects as fully described in

[Puglisi et al., 2017] with conformational transitions inside the secondary struc-

ture [Cranford et al., 2014; Giesa et al., 2016], from a coiled con�guration [Yarger

et al., 2018] to an unfolded state [Cranford et al., 2014; Puglisi et al., 2017] (see

the scheme in Fig. 2.3). Thus the mean number nh of available free monomers

depends on the maximum attained value of the end-to-end distance so that we

assume the existence of a function n̂ such that nh = n̂h(Lh
max). Observe that

for simplicity we assume that the unfolding is irreversible with nh monotonically

increasing with Lmax. More general hypotheses could be introduced [De Tommasi

et al., 2010] and a discussion of this function will be given later.

As a result, for the hard fraction the natural and contour lengths are assigned

Lh
n =

√
n̂h(Lmax) b

h, Lh
c = n̂h(Lmax) b

h. (2.4)
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Figure 2.3: Cartoon of a chain of the hard region undergoing a folded → unfolded
transition when subjected to a force.

2.2.3 From single chain to macro laws

Both in the amorphous and crystalline region we adopt a Worm Like Chain

(WLC) energy density (per unit chain contour length Lc) in the form proposed

in [De Tommasi et al., 2013] φe = φe(L,Lc) = κ L2

Lc−L
where κ = kBT

4lp
, T is the

temperature, kB the Boltzmann constant and lp the persistence length measuring

the �exibility of the chain (see e.g. [Rubinstein and Colby, 2003] for details). This

energy respects the limit extensibility condition, limL→Lc φe(L,Lc) = +∞, and

allows for explicit calculations. Moreover, following [Trentadue et al., 2021], we

extend this function to consider that, as described above, the end-to-end distance

L can be decomposed in a variable (zero force) natural length measured by (2.1)

and the remaining length measuring the elastic elongation Le = L − Ln. Thus

we assume an energy and a force-elongation law for a single chain

φe = κ L2
e

Lc−L

f = ∂φe

∂L
= κ

[(
Lc−Ln

Lc−L

)2
− 1

]
,

(2.5)

with the force decreasing to zero as the length attains its (history dependent)

natural length (L = Ln or Le = 0).

Notice that the total energy considering all the chains of the network can be

determined as Φ = NvφeLc = NaNlφeLc = Naφe where for the sake of simplicity

we consider NlLc = 1, with Nv, Na, Nl the number of chains per unit volume,

area, length respectively.

We remark that the proposed model can be inscribed in the theory of Thermo-

dynamics with internal variables [Coleman and Gurtin, 1967] in the simple case

when there is a single external variable L and a single internal variable Lmax. In

our simple setting of isothermal processes, to verify the thermodynamic consis-

tency of the model we consider the Clausius-Duhem inequality, requiring the posi-

tivity of the dissipation rate Γ = fL̇−φ̇e(L,Lmax) ≥ 0. Since at given RH the only

material fraction involved in the dissipation is the hard one, undergoing unfolding

e�ects and variations of the natural length regulated by Lmax according with (2.4),

the internal energy dissipation rate reduces to Q′(Lmax) = −∂Lmaxφe(L,Lmax).
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Thus, in view of (2.5), we obtain Γ = Q′(Lmax)L̇max ≥ 0 that is satis�ed under

our assumption that n̂h is increasing.

Eventually, to obtain the macroscopic behavior of the thread we consider,

following [Grubb and Ji, 1999], the classical a�nity hypothesis [Rubinstein and

Colby, 2003] that identi�es the macroscopic stretches with the macromolecular

ones. We then �rst evaluate the following stretch measures of the di�erent frac-

tions
λi = L

Li
o

total stretch,

λi
e =

Li
e

Li
o

elastic stretch,

λi
n = Li

n

Li
o

permanent stretch,

λi
c =

Li
c

Li
o

contour stretch,

i = h, s,m, t, (2.6)

with Li
o = bi

√
ni
0 denoting the initial natural length of the chain. in particu-

lar, the permanent stretch measures the variation of the natural length, having

the same role of plastic streth in classical non linear plasticity theories (see [De

Tommasi et al., 2015] for a detailed theoretical discussion).

For the soft region, it can be deduced using Eqns. (2.3) and (2.6),

λs
n =

Ls
n

Ls
o

=

√
ns
o m̂(RH) bs

√
ns
o mo bs

=

√
m̂(RH)

mo

. (2.7)

If we consider a Gaussian distribution for the breaking rate of the bonds as in

Eqn. (2.2) we get the following evolution of the permanent stretch as RH varies

λs
n =

√
1 + d(RH)

(
mf

mo

− 1

)
. (2.8)

A typical variation of the damage function and number of domains under our

Gaussian probability choice is represented in Fig. 2.2, whereas the variation of

the permanent stretch of the soft fraction is reported in Fig. 2.4. We remark

that the parameters needed to compute the variation of the permanent stretch

as a function of humidity are mf/mo, together with RHc and s̄ assigning the

Gaussian distribution function. On the other hand, the corresponding expression

for the contour length is Ls
c = mns

o

m
bs = ns

ob
s, so that the contour stretch of the

amorphous part is constant

λs
c =

Ls
c

Ls
o

=
ns
o bs

√
ns
o mo bs

=

√
ns
o

mo

. (2.9)
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Figure 2.4: Dependence of the permanent stretch of the soft region λs
n from the rela-

tive humidity, in blue (assumed parameters s̄ = 5.5 and mf/mo = 0.4). Observe the
abrupt decrease around the supercontraction threshold RHc = 80%. For comparison,
the unstressed stretch of the overall �ber λt

o is represented in pink (assumed parameters
Es = 1.35 MPa, µ = 2.5 MPa, λs

c = 2.62).

Under an additive assumption and given the number of chains per unitary

reference area N s
a , the (Piola, engineering) stress using Eqns. (2.5)2 and (2.6) is

given by

σs = Es

(λs
c − λ̂s

n(RH)

λs
c − λs

)2

− 1

 , (2.10)

where the permanent and contour stretches are given by Eqns. (2.8) and (2.9),

whereas Es = N s
aκ

s is the elastic modulus of the soft fraction.

For the hard region, the contour and permanent stretches are calculated by us-

ing Eqns. (2.4) and (2.6). Let nh
o be the initial number of available free monomers,

the initial natural length Lh
o =

√
nh
o b

h can be used to calculate the contour stretch

as

λh
c =

Lh
c

Lh
o

=
nhbh√
nh
o b

h
=

nh√
nh
o

=
n̂h(λmax)√

nh
o

(2.11)

and the permanent stretch as

λh
n =

Lh
n

Lh
o

=

√
nh bh√
nh
o b

h
=

√
nh

nh
o

=

√
n̂h(λmax)

nh
o

. (2.12)

Since the e�ective stretch-induced unfolding depends on the unknown size and

strength crystals distribution, following [Trentadue et al., 2021] we assume a

simple power law

λh
c = c1(λ

h
max)

c2 . (2.13)

On the other hand, since by Eqn. (2.4) the permanent and contour stretches

are related by λh
n =

(
λh
c/λ

h
co

) 1
2 , where λh

co ≡ c1 is the initial contour stretch, by
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Eqn. (2.13) the permanent stretch is given by

λh
n = (λh

max)
c2
2 . (2.14)

It is important to stress that thanks to previously described microstructure based

analysis of the permanent and contour stretches, they are analytically related, so

that in this fraction the permanent stretches are directly related to damage, both

measured by the unknown function n̂h, here assumed depending on the two only

parameters c1 and c2.

If then, as anticipated, we consider a damage taking care of the described

humidity induced crystal misalignment, the stress-stretch relation for the hard

part by using Eqns. (2.5) and (2.6) is

σh = Êh(RH)

( λ̂h
c (λ

h
max)− λ̂h

n(λ
h
max)

λ̂h
c (λ

h
max)− λh

)2

− 1

 (2.15)

with

Êh(RH) = (1− α RH)Eh
o , (2.16)

where Eh
o = Nh

a κ
h is the modulus in the dry condition and α measures the

humidity induced damage rate.

This macroscopic constitutive damage assumption is based on the experimen-

tal observation, recalled above, of a crystal misalignment induced by humidity.

Indeed, the Wide-Angle X-ray Scattering (WAXS) measurements reported in

Fig. 2.5(a) and reproduced from [Yazawa et al., 2020], indicate a linear depen-

dence of the Full Width at Half Maximum (the statistical measure of the orienta-

tion of crystalline β-sheets adopted in [Yazawa et al., 2020]) from RH, indicating

a lower orientation of the nano crystals at higher RH values. Such misalignment

a�ects the elastic modulus described in [Du et al., 2006]. The resulting modulus

variation assumed in (2.16) is represented in Fig. 2.5(b).

Eventually, by following [Flory and Erman, 1982], we consider a matrix em-

bedding hard and soft fractions describing the complex macromolecular network

composing the spider thread, with inner and intrachains connections. The total

free energy is then calculated as the sum of the energy of ideally isolated hard and

soft chains described above and elongated along the �ber direction plus an energy

term taking care of chains interactions. Under a simple Neo-Hookean assumption

(corresponding at the molecular scale to harmonic network chains [Rubinstein

and Colby, 2003]) for incompressible material, the matrix stress for a uniaxial

41



Figure 2.5: (a) WAXS measurements of dragline silk �bers at di�erent RHs are used to
calculate the orientation of crystalline β-sheets with respect to the �ber axis [Yazawa
et al., 2020] with the result that FWHM linearly increases with RH. This proves a
reduced orientation of the nano crystals under higher values of RH as schematized by
the cartoons. (b) Corresponding damage function in (2.16): the reduction of the elastic
modulus of the hard part is associated to the lack of orientation of the crystal as the
humidity increases. Here we assume α = 0.007.

Figure 2.6: Outer and inner regions have di�erent natural lengths (a) leading to a
prestretch of the internal amorphous part (b).

extension is

σm = µ

(
λh − 1

(λh)2

)
, (2.17)

with µ the material shear modulus. Observe that we assume that the matrix

natural length coincides with the hard fraction initial one, so that λm = λh.

We are now in the position of deducing, based on all the microstructure based

assumptions and the a�nity hypothesis, the macroscopic behavior of the spider

thread. Our deduction is based on the main assumption that the spun initial

length of the fractions are the same: nhbh = nsbs (kinematic compatibility).

After exposition to humidity the soft region chains reduce their natural length

(see Fig. 2.6). The kinematic compatibility then imposes that the di�erent

regions undergo the same stretch λt
o that corresponds to zero overall initial stress.

On the other hand, when the �ber is subjected to a force F > 0, it undergoes
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Figure 2.7: Scheme of the evolution of the con�gurations of the di�erent composing
phases and of the whole �ber: (a) dry natural con�guration, (b) humid condition with-
out external forces where selfstresses (reported in (c)) are induced by kinematic com-
patibility, (d) non zero external force con�gurations.

a stretch λt, starting from the new natural con�guration λt
o. As a �nal result,

the stretches for the soft region (that varies its permanent stretch according to

humidity), hard region and matrix starting from the spun initial length (see the

scheme in Fig. 2.7) are given by λs = λh = λm = λtλt
o, where λt represents the

experimentally measured stretch.

The overall stress-stretch relation is

σt(λt) = Θ(λh
n − λtλt

o)(1− α RH)Eh
o

[(
λh
c − λh

n

λh
c − λtλt

o

)2

− 1

]

+Es

[(
λs
c − λs

n

λs
c − λtλt

o

)2

− 1

]
+ µ

(
λtλt

o −
1

(λtλt
o)

2

)
(2.18)

where Θ is the step function considering that the hard fraction chains are not

able to sustain any compressive force (σh = 0 if λh < λh
n). Observe that from this

equation at λt = 1 and σt = 0 we determine λt
o.

In Fig. 2.8 we describe the behavior of the model here proposed, representing

the stress-stretch curves for di�erent humidity conditions (RH = 0%, 70%, 85%,

90%, 100%). In the dry condition (RH = 0%) the natural length of the hard

and soft fraction coincide (λh
n = λs

n) and the hard fraction participates to the

mechanical response from the beginning. Consequently the force is carried mainly

by the much sti�er hard fraction for all the elongation set. The behavior is

similar for RH < RHc where a lower sti�ness is due to the hard domain disorder

inducing a damage according with Fig. 2.5 and Eqn. 12 (see the curve RH =

70%). Once RH > RHc, the role played by the amorphous fraction becomes much
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Figure 2.8: Theoretical stress-stretch curves at di�erent humidity conditions (contin-
uous lines correspond to loading and dashed to unloading curves). Three points of the
curve RH = 85% are marked to illustrate di�erent regimes schematically illustrated on
the right: P1 hard phase is unloaded, P2 hard phase in its natural con�guration, P3 hard
phase in traction. Here Eh

o = 2.16 GPa, Es = 18 MPa, µ = 0.14 MPa, c1 = 1.33, c2 =
0.75, α = 0.0099, mf/mo = 0.3, s̄ = 6.5, λs

c = 1.65,RHc = 80%, λlim = 1.34.

more relevant because its natural length λs
n undergoes a signi�cant decrease (see

Fig. 2.4). This leads to a consequent substantial decrease of the initial (zero force)

length of the total �ber λt
o. Thus, as long as the �brils of the hard region do not

reach again their natural length, the mechanical response is given only by the

amorphous phase and the matrix (see e.g. point P1 in Fig. 2.8). Then, as soon as

the hard region starts to be stretched (point P2) the force starts again to be mainly

sustained by the sti�er crystalline phase (see e.g. point P3). In this way we give

a theoretical interpretation, in full agreement with the experiments (see Fig 2.9

and Fig. 2.9), of the `localized' material hardening observed in spider threads

. The behavior is similar also for higher values of the humidity (RH = 90%),

with di�erent values of λt distinguishing the two regimes. At extreme humidity

conditions (last curve at RH = 100%) the mechanical behavior may be given by

the only amorphous phase and matrix if the ultimate stretch of the �ber is lower

than the transition threshold.

Even though in this paper we are focussed on humidity e�ects on monotonic

stress-stretch curves, in Fig. 2.8 we also show through dashed lines the system

behavior when subjected to unloading. This �gure let us show that, based on

the microstructure interpretation, the proposed model is able to describe not only

the fundamental macroscopic damage e�ect, but also the experimentally observed

presence of residual stretches [Veho� et al., 2007]. Interestingly, permanent de-

formations are not deduced as usually independently from damage, e.g. through

the introduction of new variables, whereas both damage and residual stretches

descend from the unfolding of the hard domains.
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A comment about a second important aspect of the variable mechanical be-

havior is now in order: temperature e�ects. Indeed, when the temperature at

�xed RH is increased, the silk undergoes an e�ect of link scissions as described

for humidity [Plaza et al., 2006]. Moreover, also temperature growth is accompa-

nied by �ber contraction [Gli²ovi¢ and Salditt, 2007] and again the experiments

show the existence of a critical value where such e�ects of link scission and length

variation are strongly localized. In analogy with polymer mechanics this value is

indicated as glass transition temperature Tg. In particular, in [Fu et al., 2009] the

authors obtained an experimental linear relation between Tg and RH. Of course

such a relation would ask a theoretical description that by itself appears to be

very interesting, but it is out of the aims of this paper. Instead, to show that our

model can reproduce also the experimental temperature e�ects, we phenomeno-

logically assume a Gaussian dependence of the number of links from temperature

in Eqn. (2.2) (where RH is substituted by T ) and then we modify correspondingly

the constitutive equation Eqn. (2.18). Accordingly RHc is substituted by Tg. The

e�cacy of these assumptions are well supported by the experimental comparison

considered in the following section.

The �nal aspect of the model regards the humidity and temperature depen-

dence of the limit stretch: to this hand we need a fracture criterion. Based on

the considerations in [Yazawa et al., 2020] we here assume that the fracture is

regulated by the hard fraction and in particular that the fracture condition is

λh = λlim, where λlim is a given constitutive parameter. As we show in the

following section, this criterion is successful with the exception of the fully dry

condition where the breakage is known to be induced by localized damage defects

[Yazawa et al., 2020].

2.3 Experimental validation

In this �nal section we verify the e�ectiveness of the proposed model in predicting

the mechanical behavior of spider silks by quantitatively comparing the main

experimental e�ects induced by humidity and temperature variations on di�erent

silks with the theoretical behavior.

Consider �rst the tensile response under variable RH for a highly stretchable

silk (Argiope trifasciata �bers, reproduced by [Elices et al., 2005]). As shown in

Fig. 2.9 this silk exhibits a remarkable dependence of the mechanical response

on humidity. We may observe two di�erent regimes in accordance with the silk

experimental response: for RH<RHc the behavior is almost linear and this is due
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Figure 2.9: Theoretical (continuous lines) vs experimental (dots, reproduced from
[Elices et al., 2005]) stress-stretch curves for Argiope trifasciata spider �bers at di�erent
RH and T = 20 ◦C. Here Eh

o = 2.2 GPa, Es = 13.5 MPa, µ = 0.14 MPa, c1 = 1.3, c2 =
0.87, α = 0.0094, s̄ = 8.5, mf/mo = 0.12, λs

c = 1.62, λlim = 1.34, RHc = 85%.

in our model to the dominance of the hard fraction; for RH>RHc we have two

regimes. Initially the silk is highly stretchable, with high deformations at very

low forces. In this regime the numerical simulations show that the hard region

is shorter than its natural length, so it does not contribute to the �ber sti�ness.

When this length is attained, the �ber exhibits a sudden hardening. In Fig. 2.9 it

is possible also to verify the e�cacy of the introduced fracture criterion. Indeed,

we calibrated the hard fraction limit stretch to reproduce the experimental limit

at RH = 70% and then we predicted the RH = 90% and 100% cases with errors of

only 0.17% and 1.49%, respectively. As anticipated the prediction is less accurate

for very low humidities. Observe the possibility of predicting damage, hardening

localization and fracture strain at very di�erent values of the humidity with �xed

parameters.

To further test the e�ciency of the model, we show the possibility of predicting

the in�uence of humidity and temperature on other important material parame-

ters, such as elastic modulus, supercontraction stretch of unrestrained �bers and

limit stretches (Fig. 2.10). It is important to remark, regarding the predictivity

properties of the model, that in this prediction of the experiments we �xed the

material parameters and changed only RHc at di�erent temperatures using the

experimental values in [Plaza et al., 2006]. In Fig. 2.10 we also reproduce the

limit stretch for the available testing temperature (55 ◦C).

Furthermore, we consider the e�ects induced by variable temperature at �xed

RH in [Plaza et al., 2006]. We evaluated Tg at given RH = 50% using the relation

reported in the same paper. The results exhibited in Fig. 2.11 show again an

accurate reproduction of the experiments. We remark that a comparison of the

values of E at RH = 50% and di�erent temperatures lead to di�erent values of

the elastic moduli estimated by Fig. 2.10 and Fig. 2.11, thus showing that the
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Figure 2.10: Theoretical (continuous lines) vs experimental (dots) curves for the ini-
tial elastic modulus (a), initial (zero force) stretch (b), limit stretch (c) and assumed
Gaussian distribution of broken links (d) as a function of RH for Argiope trifasciata

�bers [Plaza et al., 2006]. Here Eh
o = 4.05 GPa, Es = 39.6 MPa, µ = 0.2 MPa,

c1 = 1.4, c2 = 0.75, α = 0.0065, s̄ = 0.6, mf/mo = 0.23, λs
c = 2.05, λlim = 1.26, and

RHc = 80, 66, 50% for T = 20, 55, 90 ◦C, respectively.

data refers to di�erent silks so that di�erent parameters have been used in the

two �gures.

In addition to the Argiope trifasciata spider �bers (Fig. 2.9), we consider

tensile tests performed on a Nephila clavata spider �ber under various RHs

(0%, 75%, 97%) reproduced from [Yazawa et al., 2020]. In Fig. 2.12 we report

the comparison between the experimental results and the theoretical model. De-

spite this silk shows a remarkably di�erent response to the humidity variations,

the proposed model is once again signi�cantly successful in quantitatively pre-

dicting the observed experimental behavior. In Fig. 2.12 we also test the above

described rupture hypothesis for the Nephila clavata �bers by using the value

corresponding to the experimental break at RH = 75% to predict the breaking

strain at RH = 97% with an error of 0.22%. This remarkable small error con�rms

the plausibility of the proposed rupture criterion. Observe anyway that this hy-

pothesis in this silk cannot be applied to the fully dry case where the breakage is

typically induced by localized defects [Yazawa et al., 2020].

As a last comparison with experimental results, in Fig. 2.13 we show the pos-

sibility of predicting with remarkable accuracy the complex mechanical response

of a dragline silk in dry condition (reproduced from [Gosline et al., 1999]). No-
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Figure 2.11: Theoretical (continuous lines) vs experimental (dots) stress-stretch curves
for Argiope trifasciata spider �bers at di�erent temperature at �xed RH = 50% (repro-
duced from [Plaza et al., 2006]). Here Tg = 84 ◦C, Eh

o = 3.83 GPa, Es = 32.7 MPa,
µ = 2 MPa, c1 = 1.36, c2 = 1.25, α = 0.00995, s̄ = 4.5, mf/mo = 0.345, λs

c =
1.49, λlim = 1.27.

Figure 2.12: Theoretical (continuous lines) vs experimental (dots) stress-stretch curves
for Nephila clavata �bers at di�erent humidity and T = 25 ◦C (reproduced from the
experiments at strain rate of 3.3×10−3 s−1 in [Yazawa et al., 2020]). Here Eh

o = 5.6GPa,
Es = 1.47 GPa, µ = 1.1 MPa, c1 = 1.35, c2 = 1.46, α = 0.009, mf/mo = 0.878, s̄ =
3, λs

c = 4.6, λlim = 1.25, RHc = 80%.

tice that here, the thread is produced by a third species of spider, the Araneus

diadematus.

2.4 Discussion

A comment is in order. As anticipated previously, in the recent paper [Cohen

et al., 2021] the authors proposed a di�erent model well reproducing with 8 pa-

rameters the experiments in Fig.2.10a),b). Our model, being based on a more

detailed description of the microstructure, considering the two di�erent fractions

and stretch induced unfolding e�ects, ends up with 10 parameters. On the other
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Figure 2.13: Theoretical (continuous lines) vs experimental (dots) stress-stretch curves
for Araneus diadematus spider �bers (reproduced from [Gosline et al., 1999]). Here
Eh

o = 6.75 GPa, Es = 13.6 MPa, µ = 1 MPa, c1 = 1.005, c2 = 1.979, α = 0, mf/mo =
0.13, s̄ = 4.5, λs

c = 1.25, RHc = 84%.

hand, the proposed model is able to reproduce the whole stress-strain curves as

function of both temperature and humidity, with unloading, increasing damage,

fracture and residual stretches. It's important to observe that the most di�use

models e�ciently describing damage and residual stretches in soft polymeric ma-

terials (without any temperature and humidity e�ects) adopt 7-8 parameters (see

[De Tommasi et al., 2019] and references therein).

2.5 Conclusions

The described ability of the proposed model of predicting the experimental behav-

ior of di�erent mechanical properties make us con�dent that it well reproduces the

humidity and temperature e�ects at the molecular scales. This is supported even

more by predicting the behavior of di�erent silks and environmental conditions.

We strongly believe that this is a consequence of our microstructure deduction

of the material response function. The physical meaning of all the adopted (mi-

croscopic) parameters opens up the possibility of applying the proposed model

not only to other protein materials with similar structures [Puglisi et al., 2017],

but also in the design of bioinspired materials employing chosen speci�c proteins

[Greco et al., 2021; Liu et al., 2019].
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Chapter 3

�Water to the ropes�: a predictive

model for the supercontraction

stress of spider silks

This chapter is based on the paper published in Extreme Mechanics Letters (vol-

ume 61, 102010, 2023, 10.1016/j.eml.2023.102010) [Fazio et al., 2023] and deals

with the forces developed by the spider silk when restrained and exposed to wet

environments. The possibility of using such system as a humidity driven actuator

is also discussed.

Abstract

When humidi�ed at di�erent moisture conditions, restrained spider silk �bers

can exhibit a very high supercontraction phenomenon. The hydration water

molecules induce a Hydrogen-bonds disruption process that, due to entropic ef-

fects, decreases the natural -zero force- end-to-end chains length. By considering

a bundle of macromolecules, we describe supercontraction as a possible actuation

system and determine the maximum actuation force depending on the silk prop-

erties at the molecular scale and on the constraining system representing other

silk threads or the actuated device. The comparison with experimental results

of Argiope trifasciata silk �bers show the e�ectiveness of the proposed model in

quantitatively predicting the experimental actuation properties. The considered

historical case study of obelisk rescue in Saint Peter's Square (Rome) through

ropes hydration is discussed evidencing the optimal performances of this natural

material adopted as moisture powered actuator: we obtain a work density of 2.19

kJ/m3 making spider silk the most performant hydration driven active material.
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Moreover we obtain a power density of the order of 730 W/kg about three times

the most performant carbon nanotube actuators making such material very com-

petitive as compared with all types of actuator. The analytic description of the

macroscopic actuation parameters from microscale properties shows the possibil-

ity of adopting our approach also in the �eld of bioinspired arti�cial silks design,

possibly considering also important non-linear e�ects in the actuated system.

3.1 Introduction

Spider silks have been increasingly the focus in very wide research and techno-

logical �elds due to their extreme mechanical properties [Gosline et al., 1986]

such as extraordinary strength and toughness, self-healing, and environmental

adaptability. Such properties are often unattained by arti�cial materials (see

[Pérez-Rigueiro et al., 2021] and references therein). This outstanding material

response, resulting by a complex hierarchical structure organization, attracted the

attention in the important �eld of biomimetics [Zhao et al., 2014; Greco et al.,

2021; Arndt et al., 2022]. The deduction of the �ber material response, starting

from silk structure at the molecular scale, represents a demanding theoretical

problem, not completely clear, especially regarding the adaptability to di�erent

environmental (humidity and temperature) and loading conditions.

Here, by extending the recent results in [Fazio et al., 2022], we focus on the

important role of hydration on the actuation material properties of spider silks.

Indeed, a striking e�ect observed in spider silks is the so called supercontraction

e�ect, addressed, to the knowledge of the author, for the �rst time in 1977 [Work,

1977], that occurs when a spider silk thread is exposed to humidity. Depending on

the silk composition, the experiments show the existence of a Relative Humidity

(RH) threshold beyond which the �ber contracts up to a half of its initial (dry)

length. The experimentally observed contraction depends on several factors, in-

cluding spider species [Boutry and Blackledge, 2010], type of silk (among the

up seven di�erent ones that some spiders can produce [Vollrath, 1992; Gosline

et al., 1994]), environmental conditions [Plaza et al., 2006] and hydration rate

[Agnarsson et al., 2009a].

Interestingly, thinking both to the humidity e�ects on spider webs and to the

possibility of adopting such behavior as a natural actuation device, constrained

humidi�ed silks generates a stress that can be measured trough a load cell [Guinea

et al., 2003; Ene et al., 2011]. In the case of fully locked end-points (�xed end-to-

end length) the higher magnitude of the stress is attained, typically of the order

of tens of MPa as experimentally measured by [Agnarsson et al., 2009a; Guinea
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et al., 2003; Blackledge et al., 2009]. Clarifying and predicting the mechanisms

that originate this phenomenon, both in natural and arti�cial silks, is considered

of great interest also in the perspective of adopting this behavior at the base

of mechanical actuation [Dong et al., 2021] or humidity sensing devices [Zhang

et al., 2022]. This aspect is the focus of the following analysis.

Two types of experiments are typically performed to describe the supercon-

traction e�ect. In the �rst type, the dry silk sample is free to shorten and the

length variation under increasing humidity is measured. In the second case the

�ber is �xed at its dry length and no contractions is allowed and the force applied

to �x the length at increasing humidity is measured. The maximum attained

value of the stress is then measured, supercontraction stress [Bell et al., 2002;

Savage et al., 2004] and it represents the previously recalled actuation force. In-

termediate boundary conditions (see [Florio and Puglisi, 2019] for a theoretical

discussion of the in�uence of di�erent boundary conditions on the material re-

sponse of constrained systems) represent real phenomena with the silk constrained

by deformable devices such as other silks �bers in the web or external attaching

systems.

At the molecular scale, the supercontraction e�ect is due to hydration-induced

hydrogen bonds breaking. More in detail, at the molecular scale spider silk is

composed by an amorphous matrix of oligopeptide chains and pseudo-crystalline

regions, made up principally of polyalanine β-sheets [Elices et al., 2011; Spon-

ner et al., 2007] with dimensions between 1 and 10 nm [Keten and Buehler,

2010] oriented in the direction of the �ber [Jenkins et al., 2013]. The chains are

highly hydrogen bonded, with a medium-low density of H-bonds in the amorphous

part whereas the nanocrystallites are characterized by a high density of H-bonds

[Yarger et al., 2018]. Supercontraction is the result of the entropic recoiling of the

macromolecules when the hydration water molecules break the H-bonds naturally

present in the virgin silk, that previously �xed the macromolecules in a natural

elongated conformation induced during the spinning of the �ber [Du et al., 2006;

Elices et al., 2005; Elices et al., 2011].

In the following, we propose an approach to determine the supercontraction

stress arising when a dry silk �ber is humidi�ed with monotonically increasing RH

and the length is �xed. Speci�cally, we reframe the multiscale approach for the

humidity and thermomechanical response of spider silks e�ects recently proposed

in [Fazio et al., 2022], where the silk thread is modeled as a composite material

made by hard crystalline fraction and a soft amorphous fraction embedded in an

elastic tridimensional matrix reproducing the network e�ect [Flory and Erman,

1982]. Regarding the hydration phenomenon, it is important to remark that,
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due to their di�erent conformations and chemical composition, hard crystalline

domains are hydrophobic whereas the soft amorphous fractions are hydrophilic.

This results in two di�erent responses to the hydration for the two di�erent frac-

tions. Indeed, the water molecules cannot penetrate the hydrophobic crystalline

domains and the only humidity e�ect in this fraction is an increased misalignment

of the crystallites with respect to the �ber axis.

On the other hand, the hydration water molecules decrease the percentage of

crosslinks in the softer region, inducing a modi�cation of the natural (zero-force)

length of the chains composing this region. We then assume that during hydration

the natural lengths of the hard region and the matrix do not vary, so that the

supercontraction stress is a direct e�ect of the variation of the H-bonds percentage

and resulting variation of the natural length of the silk molecules belonging to the

soft region (as detailed in [Fazio et al., 2022]). As a consequence, in the speci�c

experiment of �xed total length we may deduce that the mechanical response is

due to the only con�gurational changes of the soft fraction (see the scheme in

Fig. 3.1(a)). Instead, as anticipated above, when restrained to its natural (zero

force) length, if humidi�ed the �ber cannot contract and supercontraction forces

develop (see Fig. 3.1(b)).

In this work we provide a model to predict the supercontraction stress when

the environmental humidity is monotonically increased. Further, we enhance

the previous model in [Fazio et al., 2022] of the amorphous chain by reducing the

number of �t parameters based on classical results of reaction kinetic theory. The

e�ectiveness of the modi�cations of the model is demonstrated by quantitatively

predicting the experimental supercontraction stress for restrained spider Argiope

trifasciata silk �bers.

We then show the e�ciency of the actuation properties of spider silks �bers

under external variable humidity conditions by considering a historical example

when in 1586 Pope Sisto V asked for the erection of the 350 tons and 25 meters

high obelisk in Saint Peter's Square (Rome, Italy). In that case the abrupt fall

of the obelisk during erection was avoided by their activation shortening through

hydration of the ropes adopted for the erection. To explicitly describe through a

virtual example the incredible actuation properties of this material we design a

virtual system based on the actuation of spider silks to attain the same results of

the ropes.

We then study the fundamental e�ect of the elasticity of the actuated device,

typically neglected in previous studies, and show how actuation properties such as

the actuation work and power depend not only on the spider silks, but also on the

sti�ness of the interacting actuated device. We then consider the optimization
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problem for a linear actuated systems to determine the values of the relative

(actuation and actuated) sti�ness leading to the maximum actuation work. As

a result, we are able to explicitly determine the actuation properties of silks and

we show that a work density of 2.19 kJ/m3 can be attained so that spider silk, to

the knowledge of the authors, can be considered the most performant hydration

driven active material. Moreover we determine a power density of 730 W/kg

that is about three times the most performant carbon nanotube actuators. We

then deduce that also in a comparison with general actuation systems spider

silks result as very competitive actuators. Eventually, as a simple prototypical

ampli�ed actuation device, we also show the possibility of strongly increasing the

actuation by considering multistable responses of the actuated system.

We believe that our study can open up the understanding and the application

of spider silks and arti�cial silks as actuation devices. Based on our analytic

results we are also con�dent that the proposed model will be important in the

design of very e�cient actuation materials and devices.

Figure 3.1: Cartoon of the supercontraction e�ect. Water molecules reduces the num-
ber of H bonds and, due to entropic e�ects, the chain is subjected to a reduction of
its natural end-to-end length. In (a) we show the case of humidi�cation for an uncon-
strained chain and the resulting contraction: e.g. two Kuhn segments of total length 2b
coalesce in a segment of length

√
2b. In (b) we show the case of (perfectly) constrained

molecule and the resulting force applied to the constraint of particular interest in this
paper where actuation properties are considered.

3.2 Model

Here for the spider thread we adopt the theoretical model recently proposed in

[Fazio et al., 2022] where the authors describe the spider thread as composed

by a multiphase material. Thus the stress is additively decomposed as the sum

of the the soft fraction contribution σsoft, depending on RH, the hard fraction

contribution σhard, active only for lengths larger than the natural one (see [Fazio

et al., 2022] for details), and the elastic matrix contribution, representing an
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external network, here modeled as Neo-Hookean with modulus µ. The total

constitutive response of the silk is then

σ(λ) = σsoft(λ) + σhard(λ) + µ

(
λeq −

1

λ2
eq

)
. (3.1)

Notice that in this paper, the hard region chains are slack (they do not sustain any

compressive load), so that here we may neglect their contribution. The extension

to the contemporary application of external humidity and mechanical loading can

be obtained by simply considering the contribution σhard ̸= 0.

On the other hand here we consider the case of �xed length and determine

the resulting stress

σact = σ(1) ≡ σsoft(1).

Let us then consider the only soft fraction. The silk thread (hygro-thermo-

mechanical) behavior results as an average response of the (parallel) silks molecules

spider silk [Plaza et al., 2006]. Speci�cally, we suppose that the soft fraction is

composed of identical molecules composed by a number n of Kuhn segments each

of length b. The expectation value of the unloaded end-to-end length of an ideal

chain can then be evaluated by using a classical result of the Statistical Mechanics

[Rubinstein and Colby, 2003] as

Ln =< r2 >1/2= n1/2 b, (3.2)

whereas its contour length is Lc = n b.

We indicate by mb and m the numbers of broken and unbroken H-bonds,

respectively, with

mb +m = mo, (3.3)

where mo is the initial (dry) number of bonds. We then describe the disruption

process induced by the hydration water molecules nw [Du et al., 2006] based on

the classical Michaelis-Menten kinetics adopted to describe the enzymatic reaction

as regulated by the concentration of a substrate. The considered reaction (see

Fig. 3.2) is

m+ nw

k+

⇌
k−

mb.

so that the rate of bonds breaking is

dmb

dt
= k+nw(RH)m− k−mb. (3.4)

When the equilibrium of the transition is attained, we get mb

nw(RH)m
= 1

kd
with

55



kd =
k−

k+
. By substituting in Eqn. (3.3) we obtain the Michaelis-Menten equation

[Johnson and Goody, 2011]

m(RH)

mo

=
1

1 +
nw(RH)

kd

. (3.5)

Figure 3.2: Scheme of the hydration reaction. An example of a chain composed by
m0 = 8 (blue) Kuhn segments of length b in the initial dry condition is schematized in
(a). In the example of wet environment shown in (b) we suppose to have nw = 7 water
molecules and mb = 4 water molecules that bound and break links, so that only m = 4
links are kept in the wet condition (c).

To take into account the experimental observation of the existence of a super-

contraction threshold RHc, such that as the relative humidity grows the spider silk

�ber sharply contracts with increasing humidity as the threshold is approached

from above RH [Fu et al., 2009], we consider the simple law

nw(RH) =

0 if RH < RHc,

kp(RH− RHc) if RH ≥ RHc.
(3.6)

Thus we get the �nal relation

m(RH)

mo

=

1 if RH < RHc,

1
1+k(RH−RHc)

if RH ≥ RHc,
(3.7)

with

k =
kp k

+

k− (3.8)

representing the main parameter regulating the hydration induced debonding

e�ect of H-bonds. The resulting trend is schematized in Fig. 3.3.
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Figure 3.3: In�uence of the humidity on the relative (as compared with the initial, dry
condition) number of H-bonds. Assumed parameters RHc = 70%, k = 2.22.

Following [Fazio et al., 2022], to obtain the variation of the natural length of

the `representative' chain with the humidity, we assign the initial (mean) number

of chain monomers no when the silk is spun (virgin) and we identify the number of

links m with the number of domains in which the chain is divided (see the scheme

in Fig. 3.2). In the generic humidity state, the (mean) number of monomers in

each domain is therefore n(RH) = no/m(RH). Based on Eqn. (3.2) we determine

the natural length of the whole chain:

Ln(RH) = m
√
no/m(RH) b =

√
m(RH) no b. (3.9)

Following [De Tommasi et al., 2013], we adopt a Worm Like Chain (WLC)

type energy density per unit chain contour length Lc, φe = φe(L,Lc) = κ L2

Lc−L

where κ = kBT
4lp

, T is the temperature, kB the Boltzmann constant, and lp

the persistence length. This energy respects the limit extensibility condition,

limL→Lc φe(L,Lc) = +∞, and allows for explicit calculations. Moreover, as de-

scribed above, we consider that the end-to-end distance L can be decomposed

into a variable (zero-force) natural length measured by (3.2) and the remaining

elastic component Le = L − Ln, as �rstly proposed in [Trentadue et al., 2021].

Thus we assume an energy and a force-elongation law for a single chain

φe = κ L2
e

Lc−L
= κ (L−Ln)2

Lc−L
,

f = ∂φe

∂L
= κ

[(
Lc−Ln

Lc−L

)2
− 1

]
,

(3.10)

with the force decreasing to zero as the length attains its natural length (L = Ln

or Le = 0).

In order to deduce the macroscopic behavior of the thread, we consider the

classical a�nity hypothesis [Rubinstein and Colby, 2003] that identi�es the macro-

scopic stretches with the macromolecular ones. We can then introduce the fol-
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lowing stretch measures

λ = L
Lo

total stretch, λe =
Le

Lo
elastic stretch,

λn = Ln

Lo
permanent stretch, λc =

Lc

Lo
contour stretch,

(3.11)

with Lo = b
√
no denoting the initial natural length.

The natural stretch for the soft region can be deduced using Eqns. (3.9) and

(3.11):

λn(RH) =
Ln(RH)

Lo

=

√
no m(RH) b
√
no mo b

=

√
m(RH)

mo

(3.12)

with m(RH)/mo given by Eqn. (3.7) so that the variation of the natural length

with humidity explicitly depends from physically based parameters. On the other

hand, the corresponding expression for the contour length is Lc = mno

m
b = nob,

so that the contour stretch of the amorphous part is

λc =
Lc

Lo

=
no b

√
no mo b

=

√
no

mo

. (3.13)

Under an additive assumption, the engineering stress (Piola Kirchho�, force

divided by initial cross-sectional area) is determined using Eqns. (3.10)2 and (3.11)

σsoft = E

(λc − λ̂n(RH)

λc − λ

)2

− 1

 , (3.14)

where the permanent stretch depends by RH and it is given by Eqn. (3.12) and

Eqn. (3.7) whereas the contour stretch is constant (see Eqn. (3.13)). Here E =

Naκ is the elastic modulus of the soft fraction with Na the number of chains per

unitary reference area. Indeed the total energy considering all the chains of the

network can be determined as Φ = NvφeLc = NaNlφeLc = Naφe where for the

sake of simplicity we consider NlLc = 1, with Nv, Na, Nl the number of chains

per unit volume, area, and length respectively.

Observe that the supercontraction stress σact = σsoft(1) depends on three only

material parameters all having a clear microstructure interpretation. In Fig. 3.4

we represent the possibility of designing the material response by changing the

material parameters, namely the module of the soft fraction E, the contour stretch

of the chains of the soft fraction λc and the constant k regulating on the H-

Bonds disruption kinetics. The in�uence of possible deformable constraints are

considered in the following. In the simulations reported in Fig. 3.4 typical values

of spider silks have been used for material parameters, as it will be evident from
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Figure 3.4: In�uence of the material parameters on the macroscopic stress-stretch plot.
(a) Elastic modulus soft region E = 9, 10, 11 MPa, λc = 1.5, k = 0.45, (b) Contour
stretch soft region λc = 1.35, 1.5, 1.65, E = 10 MPa, k = 0.45, (c) constant depending
on the H-bonds disruption kinetics k = 1.1, 2.2, 3.3, λc = 1.5, E = 10 MPa. RHc = 70%.

the experimental validation in the following section. For the elastic modulus and

the contour stretch, variations of ±10% were considered, while for the constant k

the arbitrary variation of ±50% was considered to obtain an appreciable variation

in the stress-stretch plot.

3.3 Experimental validation

To test the e�ectiveness of the proposed model in quantitatively describing the

experimental behavior, we consider in Fig. 3.5 a test on spider dragline silk (Ar-

giope trifasciata) reproduced from [Guinea et al., 2003], in an experiment when

the �ber is clamped at maximum length with zero force and exposed to mono-

tonically increasing humidity content while measuring the force. In the �gure the

value of the engineering stress is reported.

Figure 3.5: Stress-humidity curve for an Argiope trifasciata spider: dots are the experi-
ments reproduced from [Guinea et al., 2003], whereas the continuous line represents the
theoretical prediction with parameters E = 10.3 MPa, λc = 1.5, k = 2.22,RHc = 70%.
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As expected for restrained �bers tested in controlled environment with mono-

tonically increasing RH a sudden development of supercontraction stress occurs

only once the RH overcomes the threshold of RHc
∼= 70% with mainly no stress

variation below this critical threshold. A steep increasing of stress is observed in

the narrow range between RH∼ 70% and RH∼ 75%. For higher RHs the stress

keeps growing, but with a much lower slope until RH=100% when the maximum

actuation stress is attained.

Notice that the optimal �t parameters are fully compatible with the ones em-

ployed in [Fazio et al., 2022] to reproduce the stress-stretch behavior of �bers

of the same spider species (Argiope trifasciata) where they were deduced based

on their micromechanical interpretation. Indeed here we assume E = 10.3

MPa, λc = 1.5 for the elastic modulus and the contour stretch, respectively, in

place of E = 13.5 MPa, λc = 1.62 employed in [Fazio et al., 2022] for the soft

region. Likewise, the assumed supercontraction threshold RHc = 70% match the

one experimentally found during the experimental test of the �ber [Guinea et al.,

2003]. These di�erences are then justi�ed by the observation that the experiment

refers to a di�erent tested silk of the same spider species, given that, even within

the same specie, a variability in the silk behavior can be observed [Madsen et al.,

1999]. The only �arbitrary �tting" parameter is therefore the constant k regulat-

ing the decreasing of the number of H-bonds when the humidity overcomes the

critical threshold. To the knowledge of the authors, no experimental values are

available so that we assume k ∼= 2 as a best �t parameter. The model turns out

to be accurate in quantitatively reproducing the experimental behavior, based on

the obtained �nal relation (3.14).

3.4 Elastic interaction

We previously introduced two special cases of boundary conditions, namely the

case of a restrained thread with �xed end-to-end distance studied in the previous

section, and the case of unrestrained supercontraction discussed in detail in [Fazio

et al., 2022]. In this section we explore the actuation properties of the spider silk

thread during supercontraction in the more realistic case when elastic interactions

at the boundary are considered, as schematized in Fig. 3.6. This scheme mimics

for example the case of spider webs where the di�erent threads, i.e. the radii

and the capture spiral, respond (and thus contract) in di�erent ways to changes

in humidity environment. In particular, the capture spiral is composed of elastic

�agelliform silk that is coated by hygroscopic glue droplets. The glue droplets

contain water that maintains �agelliform silk in a continuously supercontracted
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state [Guinea et al., 2010] so that no further contraction occurs in wet external

environment. On the other hand, the Major Ampullate (MA) silk forming the

radii contracts when the threads are immersed in wet environment. In the sim-

pli�ed scheme for studying the elastic interaction among the threads, the MA

silk is represented by the radius silk thread that when contracts may elongate

the spring (capture spiral thread). In the following, for simplicity, we consider

the capture spiral thread elasticity by constraining the radial thread with a linear

spring.

Figure 3.6: (a) scheme of a spider web and the radius silk thread-spring interaction.
The spider web is composed by radii (grey) and capture spiral (blue). Due to di�er-
ent composition, the radii may undergo contraction in humid conditions, whereas the
capture spiral threads do not contract. (b) simple scheme of the elastic interaction be-
tween the radius silk contracting and elongating spiral silks modeled as elastic springs.
(c) Stress-strain behaviors of the silks at di�erent humidity and di�erent sti�nesses of
the springs represented in the same diagram using the compatibility condition (3.16).
Di�erent equilibrium con�guration corresponding to humidity saturation and di�erent
actuated device sti�ness are represented by black dots. Assumed parameters: E = 10
MPa, λc = 1.5, k = 2.22,RHc = 70%,RH = 100%, µ = 1 MPa, Espring = 30, 300, 1000
MPa

Since we are interested to work and power density, hereon we can assume unit

reference area and length for both the actuated device and spider thread. We

have then to respect the simple equilibrium condition (suppose for simplicity of

notation that the two devices have unitary area)

σspring = σsilk. (3.15)

On the other hand the compatibility condition of the strain, imposing that the

shortening of the silk thread from the dry condition, measured by 1−λsilk, equals

the elongation of the actuated device λspring − 1, gives

λspring − 1 = 1− λsilk (3.16)
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with

σspring = Espring(1− λsilk). (3.17)

Then the equilibrium stretch λeq is uniquely de�ned using Eqn. (3.15) by

solving

E

(λc − λ̂n(RH)

λc − λeq

)2

− 1

+ µ

(
λeq −

1

λ2
eq

)
= Espring(1− λeq). (3.18)

By increasing humidity, as supercontraction occurs, the equilibrium stretch λeq

grows as shown in Fig. 3.6 (c). In the �gure, using Eq. (3.16), we represent in the

same diagram the stress of the actuated device versus its elongation (λspring − 1)

and the stress of the silk thread as a function of the silk elongation (1 − λsilk),

so that the equilibrium con�gurations correspond to the intersections of the two

stress-strain curves. The corresponding actuation work is represented by shaded

areas. The dependence of the stretch and non-dimensional stress σ̄ := σact
σact,max

on

the sti�ness ratio ξ =
Espring

E
is represented in Fig. 3.7. Notice that for high values

of ξ the stretch reaches the saturation value corresponding to the restrained su-

percontraction (λ = 1) and the silk approaches the restrained condition actuation

stress (σact = σact,max). On the other hand, the supercontraction stress is zero for

low values of ξ (corresponding to unrestrained silk thread), where the contraction

stretch attains its minimum value λeq = λsc known as supercontraction stretch.

Figure 3.7: Actuation dependence on spring modulus. Assumed parameters: E = 10
MPa, λc = 1.5, k = 2.22,RHc = 70%,RH = 100%, µ = 1 MPa

3.5 Water to the ropes!

In 1586 Pope Sisto V, wanting to embellish Saint Peter's Square (Rome, Italy),

ordered that the large obelisk -that is still admired there- be erected. The work,
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which was entrusted to the architect Domenico Fontana, presented serious di�-

culties. The obelisk weighed 350 tons and was 25 meters high, so that Fontana

had to do calculations and engage sca�olding, winches, pulleys, hemp ropes, 800

men, and 140 horses. The obelisk was almost in place when people saw the

ropes overheat dangerously, with the risk that they caught �re. The monolith

would have fallen to the ground. Then in the silence there was a scream: �Daghe

l'aiga ae corde!� (expression of the Ligurian language meaning �Water to the

ropes"). The advice was immediately followed with excellent results. To thwart

the danger had been Captain Benedetto Bresca, Ligurian sailor of Sanremo, who

knew well that the hemp ropes are heated by the clutch of the winches and also

shorten when they are wet. Thus the water-induced contraction of hemp ropes

was employed to erect the obelisk thus using it as a humidity driven actuator.

Figure 3.8: Scheme of the equilibrium recovery for the obelisk, considering a weight
of 3.5 MN applied in the center of mass in a con�guration of 10◦ from the equilibrium
vertical con�guration, obtained based on supercontraction spider silk actuation. Con-
sidering the parameters obtained for the Argiope trifasciata silk �ber (Fig. 3.5), we
calculated the diameter of the spider silk thread needed that is only 10 cm.

Here, to exemplify through a `real' example the strong actuation properties

of spider silks when subjected to humidity, we consider the possibility of erecting

the obelisk by employing the supercontraction properties of the spider silk. More

explicitly, we determine the diameter of the silk thread needed to rotate the

obelisk in the vertical direction, starting from a misalignment angle of 10◦ and

assuming that the distance of the constraint is equal to the height (25 m) of the

obelisk (see Fig. 3.8). For simplicity we consider the center of gravity at the half
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of the height where the 350 tons weight is applied.

First observe that according with the description of previous section, also in

this case the length of the thread is not �xed, because it decreases as the obelisk

rotates. In particular, by simple geometric argument it is easy to determine that

to recover the vertical con�guration the thread should undergo a contraction λeq =

0.92. Based on the previously considered physical parameters (see Fig. 3.7(a))

such a contraction corresponds to consider an elastic spring with a sti�ness ratio

ξ = 60. We may then determine (see Fig. 3.7(b)) the related actuation stress

σact = 47 MPa. The diameter of the spider silk thread is then calculated by a

simple rotational equilibrium equation (see Fig. 3.8(b)) and it results of about

10 cm.

3.6 Actuation properties

To exemplify the incredible actuation properties of the considered spider silk, we

may evaluate the work density of previous example as Wd = 1
2
σact(1 − λsilk) =

1814 kJ
m3 . The work density dependence on the boundary conditions is described in

Fig. 3.9, where it is represented as a function of the sti�ness ratio, supercontrac-

tion stretch, and stress. The maximum attainable work density Wd = 2846 kJ
m3 ,

considering a spider silk density of ρ = 1.3 g/cm3 [Stau�er et al., 1994], corre-

sponds to a work capacity of Wc = 2.19 kJ/kg. To the knowledge of the authors,

this value is higher than the maximum ever recorded for a moisture powered ac-

tuator, namely the hybrid poly(diallyldimethylammonium chloride) Carbon nan-

otube yarns (PDDA/CNT) actuator providing a work capacity up to Wc = 2.17

kJ/kg [Kim et al., 2016]. These values are well above (over 50 times) the mean

work capacity of human muscle of Wc = 0.039 kJ/kg [Madden et al., 2004].

Eventually, by considering a realistic contraction time of t = 3 s [Agnarsson

et al., 2009b] we obtain an actuation power density

P =
Wd

ρ t
= 730

W
kg

. (3.19)

Also this value is of absolute relevance compared with human muscle (P =

50÷280 W/kg) and Carbon Nanotube actuators (P = 10÷270 W/kg) [Madden

et al., 2004].

Further, we represent the operating points in the stress-stretch plot as in-

tersections among the stress-stretch curve of the silk threads and some possible

curves of the actuated device, in order to point out some interesting considera-

tions on the actuation properties of the spider silk. In particular, in Fig. 3.6(c)
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Figure 3.9: Work density generated by spider dragline silk as a function of the sti�ness
ratio (a), supercontraction stretch (b) and stress (c). Assumed parameters: E = 10
MPa, λc = 1.5, k = 2.22,RHc = 70%,RH = 100%, µ = 1 MPa

we show the case of linear actuated device, for di�erent RH and for di�erent

spring sti�ness. In the case of the highest RH (blue curve), we indicate the di�er-

ent operating points (as black circles) and the corresponding work (as red areas

below the spring curves). Note that the maximum area is obtained at an `inter-

mediate' value of the spring modulus, whereas for the highest and lowest spring

modulus, the work decreases and it is null with spring modulus ideally going to

zero and in�nity, corresponding to the special cases of unrestrained and full re-

strained supercontraction, respectively, typically considered in the experiments.

These observations are consistent with those on the work density in Fig. 3.9(a)

and remark the crucial role of actuated device sti�ness in de�ning the optimal

actuation properties of the system.

3.6.1 Bi-stable actuated device

Eventually we show the possibility of obtaining an even signi�cantly higher work

by considering non linear e�ects. Harnessing bistability and multistability in var-

ious structures and soft materials, indeed, has recently sparked increased interest

in high-performance soft actuators and soft robots [Chi et al., 2022]. In particular

we investigate the interesting case of bistable actuated devices with a region of

material instability where the energy is concave and in particular we consider the

simple case of a cubic stress-strain relation σspring(λ) with a negatively sloped

strain domain (see Fig. 3.10(b)). Thus if we write the non-convex energy of the

nonlinear actuated device (see Fig. 3.10(a))

Φspring(λspring) =

∫ λspring

1

σspring(λ) dλ (3.20)

65



and the silk energy density

Φsilk(λsilk) =

∫ λsilk

1

σsilk(λ) dλ (3.21)

with total energy (assume for simplicity of notation unitary length)

Φtot(λsilk) = Φspring(λspring)+Φsilk(λsilk) = Φspring(λspring)+Φsilk(2−λspring), (3.22)

the stationarity equation
dΦtot(λ)

dλ
= 0 (3.23)

delivers again the equilibrium condition (3.15). This equation (see Fig. 3.10(d))

has one single solution for low values of RH belonging to the right stable equi-

librium branch. When RH is increased the system has two distinct equilibrium

solutions. For example in the �gure for RH = 75% we denote the solutions by b

(�rst stable branch) and B (second stable branch) with

Φtot(B)− Φtot(b) =

∫ λB

λb

Φ′
tot(λ) dλ

=

∫ λB

λb

(σspring(λspring)− σsilk(2− λspring)) dλspring

. (3.24)

We are then lead to the analogue of the Maxwell construction for bistable

devices (see e.g. [Puglisi and Truskinovsky, 2000]) and the system has a strain

discontinuity when the area between the actuated and activation stress-strain

systems equals zero. In Fig. 3.10(d) we optimized such condition by choosing

the material response of the non-linear spring in such a way that the Maxwell

condition is attained exactly in correspondence with the fully wet condition

RH = 100% (see the shaded green area in Fig. 3.10(d) and the corresponding

energy in Fig. 3.10(c)). Thus if we suppose to increase the humidity starting

from the dry condition (point o in the �gure) the system has one single equilib-

rium con�guration up to RH ∼ 70% (see point a in the �gure). For larger values

of RH two distinct solutions are possible (the intersections with the negatively

sloped part of the sigmoidal curve are unstable equilibrium solutions [Puglisi and

Truskinovsky, 2000]), but only when the equal area condition is attained the so-

lution in the larger strain stable equilibrium branch represents the lowest energy.

The system then follows the path o− c−C when it `jumps' to the second branch

and the Maxwell condition is attained. As a result the system exhibits a large

increase of actuation work (shaded purple area in the �gure) that for the same
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spider silk properties considered above leads to a work density Wd = 10900 kJ
m3 ,

approximately four time larger than the maximum work density calculated for

the simplest case of the actuated device composed by the linear spring. The

work density obtained by the moisture powered spider silk is higher with respect

to many others actuators, included Liquid Crystalline Polymers (Wd = 56 kJ
m3 ),

Conductive Polymers (Wd = 100 kJ
m3 ) and Ferroelectric Polymers (Wd = 1000 kJ

m3 )

[Madden et al., 2004]."

3.7 Conclusions

We addressed the issue of quantifying the supercontraction stress arising when a

restrained spider silk �ber is hydrated at di�erent humidity conditions and the

corresponding actuation properties. By extending the recent approach that we

proposed in [Fazio et al., 2022], we deduced a microstructure inspired model tak-

ing into account of the H-bond disruption process induced by external humidity

in the hydrophilic macromolecular chains composing the spider silk. The num-

Figure 3.10: Non-convex energy-strain a) and non-monotonic nonlinear relation b) of
the actuated device. Dots represents stable equilibrium solutions for di�erent values
of RH in the Φtot − λsilk space c) and stress-strain space d). Stress-strain behaviors
of the silks at di�erent humidity and di�erent sti�nesses of the springs represented in
the same diagram using the compatibility condition (3.16). Assumed values: nonlinear
spring σspring(λspring) = 6.5× 109(λspring(4.653 + (λspring − 3.755)λspring)− 1.898); silk,
λc = 1.5, k = 2.22,RHc = 70%,RH = 0, 71, 75, 100%, µ = 1 MPa.
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ber of H-bonds determines then the natural (zero-force) length of a chain that

can be quanti�ed by means of classical statistical mechanics results. In partic-

ular, the force-elongation relationship is obtained by considering a WLC type

energy with a humidity-dependent natural con�guration. We then deduce the

macroscopic behavior based on the classical a�nity hypothesis identifying the

macroscopic stretches with the macromolecular ones. The model has been tested

against experiments of restrained silk �bers exposed to increasing moisture con-

tent while measuring the �ber stress. By considering material parameters of the

thread coherent with previously determined ones [Fazio et al., 2022], we obtain

that the theoretical prediction well reproduces the experimental behavior. We

then exploit the important in�uence of boundary conditions in determining the

maximum supercontraction stress and stretch, neglected by previous literature.

We then apply the proposed model, by considering known experimental values

of the material parameters, to predict the supercontraction stress arising in spider

threads at di�erent humidities and boundary conditions reproducing e�ective real

biological devices [Greco et al., 2021]. In particular we stress the fundamental role

of the sti�ness of the constraint device, representing the other spider threads in

the web or the possible device considered in the actuation process. This would be

clearly of interests in the �eld of the mechanical actuation by using the humidity

as driving load [Dong et al., 2021].

Moreover we determine, based on the introduced elastic interaction hypoth-

esis, the important power and work densities parameters, showing the superior

properties of humidity based actuators constituted by spider silks as compared

with the most performing arti�cial materials. Eventually we show the possibil-

ity of obtaining even higher work by considering multistable responses of the

actuated system.
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Chapter 4

Physically based machine learning

for hierarchical materials

This chapter is based on the paper published in Cell Reports Physical Science

(volume 5, 101790, 2024, 10.1016/j.xcrp.2024.101790) [Fazio et al., 2024] and

deals with the possibility of employing data driven techniques to improve the

comprehensions of multiscale phenomena and their modelling.

Abstract

We present a novel approach for hierarchical phenomena, which relies on a data

modeling technique. Our methodology let us deduce analytical relationships, pre-

serves the physical reliability and allows the integration of multiscale theoretical

methods.

In multiscale phenomena, complex structure-function relationships emerge

across di�erent scales, making predictive modeling challenging. The recent sci-

enti�c literature is exploring the possibility of leveraging machine learning, with

predominant focus on Neural Networks, excelling in data �tting but often lacking

insight into essential physical information. We propose the adoption of a sym-

bolic data modelling technique, the �Evolutionary Polynomial Regression�, that

integrates regression capabilities with the Genetic Programming paradigm, en-

abling the derivation of explicit analytical formulas, �nally delivering a deeper

comprehension of the analyzed physical phenomenon. To demonstrate the key

advantages of our multiscale numerical approach, we consider the spider silk case.

Based on a recent multiscale experimental dataset, we deduce the dependence of

the macroscopic behavior from lower scales parameters, also o�ering insights for

improving a recent theoretical model by some of the authors. Our approach
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may represent a proof of concept for modelling in �elds governed by multiscale,

hierarchical di�erential equations.

4.1 Introduction

Multiscale models play a crucial role in di�erent �elds of theoretical and applied

science, especially due to the increasing possibility of experimental analyses and

technologies working down to the micro and nano scales such as Atomic Force

Microscopy (AFM), optical tweezers, magnetic tweezers [Bustamante et al., 2000],

etc. As a matter of fact, in di�erent �elds a huge experimental literature delivering

big data libraries on hierarchical systems, starting from the nano and micro scales,

up to the macro scale, is now available. These experimental observations represent

a potential new fundamental tool for a theoretical advancing in several �elds.

Such advance requires the deduction of new numerical/theoretical tools delivering

correct physical interpretation of impact in engineering [Chen and Pugno, 2013],

medicine [Ashley, 2016], physiology [Zhang et al., 2012], biology [McLennan et al.,

2012] and physics [Ji et al., 2022].

Within this context, there is a growing debate concerning the need for ef-

fective methodologies capable of facilitating the interaction between theoretical

insights and empirical data. In this perspective, machine learning approaches, in

a broad sense, appear to be the most promising tools. However, it is important to

point out that machine learning per se, does not inherently possess the capability

to automatically incorporate scienti�c knowledge, which is crucial for avoiding

unphysical results. Indeed, in the digital age, the possibility of new instruments

such as unprecedented power of calculation and machine learning techniques, has

opened up exciting possibilities for analyzing the vast amount of experimental

data now accessible. However, such analysis, can lead to a corresponding in-

crease in the theoretical understanding and modelling of the resulting physical

system, only if adequate numerical instruments of data modelling are available.

On the other hand, as in every transition, the digital transition brings signi�cant

risks and drawbacks if not deeply analyzed in its possible e�ects. Thus, machine

learning can lead to a scienti�c knowledge growth or obscuration, rationalization

or unclearness, access to deeper theoretical models or reliance on purely data

mining approaches.

Among data-driven techniques, many of which have been developed in recent

years, Arti�cial Neural Networks (ANN) is the most adopted to model complex,

non-linear processes including multiscale hierarchical phenomena [Alber et al.,

2019]. However, by design, this method inherently leads to black-box represen-
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tations of the studied system, often resulting in limited or no interpretability. In

Section 4.2, we provide a brief review of this method, highlighting its advantages

and disadvantages, along with a selection of examples showcasing its applications

to multiscale problems.

In this work, we trace a rational way in the direction of deducing di�erent tools

for the modelling of multiscale phenomena based on machine learning techniques,

with the potential to signi�cantly advance scienti�c knowledge. Our approach is

distinctive in that it relies on the establishment of fundamental analytical approx-

imation relations, crucial to achieve a fully e�ective and fruitful synergy between

data and theoretical modeling. Thus, we recognize that the multiscale character

typically corresponds to a hierarchical organization, involving a natural selection

of dependent and independent variables. We adopt a Genetic Algorithm-based

approach, which deduces analytical relations through a Pareto front type opti-

mization, i.e. the Evolutionary Polynomial Regression (EPR) method. A com-

prehensive description on the history, concepts and motivation is provided in the

following dedicated section.

To analyze the e�ciency of the proposed approach in treating complex multi-

scale hierarchical phenomena, we here consider the �eld of constitutive modelling

of complex material behaviors. Speci�cally, we focus on the paradigmatic exam-

ple of spider silk, one of the most studied and complex natural materials due to

its extreme mechanical properties, particularly its strength and toughness. We

rely our analysis on the availability on recent experimental observations on a

large number of silks from di�erent spider species from all over the world, where

several material properties at di�erent involved scales have been cataloged for

the �st time in a comprehensive database [Arakawa et al., 2022]. In this re-

spect, it is worth noting that previous data modeling results are founded only

on statistical properties of available data (statistical results based on correlation

analysis) [Arakawa et al., 2022], and this allows for a very partial attainment of

the potential impact of such experimental results.

This work aims to be general within the framework of a multiscale description

of physical phenomena and the deduction of larger scales properties from the

structures at lower scales. Indeed in the formulation of the speci�c case study

here analyzed, we have considered three scales starting from the micro (protein)

scale, to the macro scale passing through the meso scale. We explicitly impose in

our approach that these three scales interact with each other in a hierarchical way.

In particular, we consider the three possibilities of deduction of the meso from

the micro properties, a successive macro from meso and eventually an interesting

direct micro to macro deduction.
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Our results show the e�ectiveness of the proposed method to deduce new

physical knowledge on the studied phenomenon. In particular, regarding the

considered example of spider silk, among other results, we deduce a functional

relation between the thermal degradation temperature and the parameters de-

scribing the micro scale proteins structure, a very simple relationship between the

diameter of the silk thread and the meso scale properties, and �nally, a straight-

forward and e�ective relationship that describes how to deduce the macro scale

supercontraction property as a direct function of micro scale parameters. Addi-

tionally, we identify a meso scale variable that do not depend on the considered

micro variables, suggesting the importance of other micro variables in shaping the

mesoscale structure of silk material. Thus, even the hierarchical structure of the

involved variables results from the proposed approach, suggesting di�erent micro-

meso, meso-macro, and micro-macro relationships depending on the considered

variables together with the determination of the e�ective dependent-independent

variables.

We show that the proposed methodology also allows to enhance existing phys-

ical approaches by increasing the understanding of the underlying physical pro-

cesses. In this respect, we have also identi�ed possible directions for further

investigating some relationships that have already been theorized. To this end,

we interpret the obtained results in relation with a recent physically-based model

introduced by the authors [Fazio et al., 2022; Fazio et al., 2023].

We argue that this is a �rst step toward a more e�ective adoption of the new

availability of data and data modelling techniques that can be of fundamental

help in several �elds of multiscale phenomena as compared with the di�use ANN

physically based approaches.

4.2 Arti�cial Neural Networks and multiscale phe-

nomena

Among data-driven techniques, many of which have been developed in recent

years, Arti�cial Neural Networks (ANN) is the most adopted to model complex,

non-linear processes including multiscale hierarchical phenomena. Loosely speak-

ing, ANN uses models consisting of multiple processing elements (neurons) con-

nected by links of variable weights (parameters) to deduce typically �black-box"

representations of the analyzed systems. Learning in ANN involves adjusting the

parameters (weights) of interconnections in a highly parametrized system.

In a few words, the main widely recognized disadvantages of ANN model construc-
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tion are the curse of dimensionality, over�tting issues and parameter estimation

[Haykin, 1999; Giustolisi and Laucelli, 2005]. The well-known curse of dimension-

ality refers to the exponential increase in the need of parameters when the model

input space grows. This means that the number of connections exponentially

raises and in a such widened space the training set of input becomes more sparse

or the amount of data needed to preserve a constant level of accuracy increases

exponentially. On the other hand, in such a way, ANN acquires greater �exibility

in mapping events with complex structure. However, this leads often to over�t-

ting problems, that is ANN tends to �t training data too precisely due to the large

number of parameters resulting in the propensity to generate poor predictions for

events not close to the training data set. A further disadvantage of using ANN is

the di�culty of incorporating knowledge derived from known physical laws into

the learning process due to the inherent complexity of its framework.

Despite these drawbacks, several signi�cant results in this �eld have been re-

ported. We may recall that Gu et al. [Gu et al., 2018] have employed �nite

elements analysis together with convolutional Neural Network algorithms to pre-

dict and optimize the toughness of hierarchical composite systems and validated

their results through additive manufacturing and testing. Good predictive per-

formances were obtained also by Neural Network methods in linking the elastic

properties of composite materials to their meso scale structure, in particular, the

three-dimensional microstructure to its e�ective (homogenized) properties [Cecen

et al., 2018]. Recently, in [Linka and Kuhl, 2023] the authors adopted ANN to

choose, among an a priori speci�ed class of speci�c constitutive models depending

on the right Cauchy Green deformation tensor invariants, the model that best

reproduces stress-strain behaviors under di�erent classes of deformation. While

the approach is interesting, it is highly oriented by the speci�c knowledge of the

problem and restricted to the special case when the class of constitutive laws is

already known: i.e., the stress dependence on the deformation invariants. With

the aim of reducing the computational burden associated with the numerical so-

lution of describing active force in the cardiac muscle tissue, ANN were employed

to build a reduced order model starting from high �delity mathematical models

[Regazzoni et al., 2020]. The implications are thus fundamental and let us obtain

relevant information for problems that have long been theoretically unresolved,

such as the recalled long-lasting problem of predicting the protein structures from

amino acid sequences [Baek et al., 2021]. On the other hand, the main drawback

in the perspective of extending the knowledge for the theoretical modelling of

such phenomena is that ANN leads to �black-box" approaches. There is then a

strong limitation on the `operational' advantages due to the lack of interpretabil-
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ity of the arti�cial intelligence results. Some very recent works address this issue

[Murdoch et al., 2019; Du et al., 2019], but this is still an open problem [Doshi-

Velez and Kim, 2017; Molnar, 2020] due to the intrinsic nature of the approach,

summarized above.

4.3 Symbolic Machine-Learning using EPR: His-

tory, Concepts and Motivation

Digital transition is de�ned as the review of processes, using products based on

digital products, technologies (hardware) and strategies (software), to increase

e�ciency. The simpler, more accessible, and representative collection and eval-

uation of data relating to processes is the knowledge base to provide useful in-

formation for e�ciency. The process to be made e�cient is here the scienti�c

knowledge.

The technological event, then, does not explain and is not alone the digital

transition. In fact, at the basis of today's digitalization there are always humans

who developed the theories, paradigms and concepts that generated the strategies,

methods, and algorithms. The latter have not only allowed the development

of digital technologies together with supporting the evolution of electronics, but

strategies of the digital transition are also the basis to make e�cient the processes

themselves.

The scienti�c studies that have generated the possibility of today's digital

transition, impacting de�nitively on the development of both digital strategies,

pertain to the �elds of mathematical logic and mathematics. They have developed

throughout the last few centuries.

We report some fundamental stages, which, in the past have given rise to

the scienti�c and conditions of the digital transition and the speci�c symbolic

machine-learning strategy here used, named Evolutionary Polynomial Regression

[Giustolisi and Savic, 2006].

Alan Turing already in the thirties of the '900 introduces the concepts of

algorithms and calculating machines that will later lead to the development of

computers. In fact, he is considered the father of information technology and of

the concept of machine learning which has nowadays entered everyday life with

the idea of arti�cial intelligence. It is useful to clarify, without dwelling excessively

on the subject, that machine learning or data-modelling or data-driven are more

appropriate terms than the generic one of arti�cial intelligence. The latter is, in

our opinion, an abused `slogan', rooted often in motivations distant from scienti�c
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reality, which should not be used for at least two reasons:

� it is misleading with respect to the possibility of digital machines to make

all the processes more e�cient using an unsupervised strategy, i.e., with-

out the intervention of the human reasoning. This is especially true when

digitalization is used to support and make more e�cient the progress of the

scienti�c knowledge.

� It is not yet known what human intelligence is, both at the mechanistic

and biological level of brain functioning; therefore, it is impossible to build

machines that simulate something that is unknown in the intrinsic mech-

anisms that, in addition, generate human consciousness, for example, a

concept itself that is di�cult to understand.

The idea of arti�cial intelligence was born with McCulloch and Pitts in 1943

[McCulloch and Pitts, 1943] when they published a work showing a simple system

of arti�cial neurons able to perform basic logical functions. At least in theory,

this system could learn in the same way that humans learn by using experience

through the trial and error that strengthens or weakens the connections between

neurons. Arti�cial neural networks are machine learning techniques based on this

idea from McCulloch and Pitts. They brought to the today well-known arti�cial

neural networks that were already programmed in the �rst personal computers

when Rumelhart, Hinton and Williams developed the Error Back-Propagation

method [Rumelhart et al., 1986], in 1986, to train them or rather to calibrate

the weights of the �synapses� that connect the neurons simulating, in a �very

simpli�ed way�, the functioning of the human brain. Note that arti�cial neural

networks can be seen today as a category machine learning strategies which are

based on the original paradigm with developments of the mathematical structure

and learning strategies.

As said, we propose the symbolic machine-learning strategy, in particular

EPR, searching for models using a multi-objective strategy based on evolutionary

optimization by genetic algorithms. Thus, as a summary for the reader, we report

a brief history of the origin of evolutionary optimization to better understand the

motivations of adopting EPR together with a Multi-Objective Genetic Algorithm

(EPR-MOGA) [Giustolisi and Savic, 2009].

The idea of evolutionary optimization was born in the last century and is

nowadays a relevant component of process e�ciency strategies, that in our context

can be identi�ed with the scienti�c knowledge. In 1973, Ingo Rechenberg was the

pioneer of evolutionary calculation and arti�cial evolution, [Rechenberg, 1971],

whose theories were taken up again in 1975 by John Holland who develops the
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theory of genetic algorithms reported in the book Adaptation in Natural and

Arti�cial Systems [Holland, 1992]. In 1989, David Goldberg, a student of John

Holland and hydraulic engineer, wrote a book [Goldberg, 1989] which became the

milestone for the use of genetic algorithms.

The tools allowing for the optimization with evolutionary calculation strate-

gies such as genetic algorithms are essential to attain system e�ciency. Indeed,

they allow cost-bene�t (e�ciency) problems to be solved by considering more

than a single objective, contrary to most of the classical techniques. Moreover,

these strategies allow for the adoption of the so-called Pareto front of optimal

or e�cient solutions [Pareto, 1906] from the cost-bene�t point of view or more

solutions with di�erent trade-o�s based on the objective functions. These may

become a decision support for the e�ciency of any process, that in the case of

this paper regards scienti�c knowledge.

In this respect, we remark that EPR-MOGA uses genetic algorithm to search

for symbolic models of data because the strategy is to search for the best trade-o�

models complexity vs data �tting. We point out that Symbolic modelling of data

is a speci�c strategy internal to the paradigm of genetic programming.

In 1992, John Koza developed the paradigm of genetic programming, show-

ing [Koza, 1992] the possibility of creating machines that program themselves to

solve problems postulated by humans. Genetic programming integrates machine

learning, in a wider sense with respect to the original studies, with evolutionary

optimization in an original way. Much of what is proposed today as arti�cial

intelligence refers to the paradigm of genetic programming. Symbolic modelling is

a speci�c application of Koza's paradigm to obtain models by means of the inte-

gration of machine learning and genetic algorithms in form of symbolic formulas

that can be evaluated as such by the expert. This is a paradigm alternative to

that of arti�cial neural networks (see Section 4.2), which are general mathemat-

ical structures characterized by the �universal� ability of interpolating data, but,

for this reason, not suitable for the interpretation of the results with respect to

the physical knowledge of the expert and the required cause-e�ect relation.

Roughly speaking, the key idea of EPR-MOGA is that the domain of formulae

interpolating data is very wide also because of the unavoidable data errors. In

other words, we can argue that many formulas might exist of di�erent structures

which interpolate the same data with a similar accuracy. However, a clear scien-

ti�c interpretation is crucially favoured by simple polynomial structures because

the parameters can be simply evaluated being a problem of linear optimization,

i.e., a single set of constants exist given a standard error function oppose to

arti�cial network whose training depends on the initial �guess� of the weights
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(parameters).

In summary, EPR is a two-stage strategy: (i) a polynomial structure is se-

lected and (ii) the constants are calculated. Each monomial, is composed of one

constant and the product of independent variables. If we assign to each of those

independent variables an exponent or they are argument of logarithm or expo-

nential functions we obtain a very wide family of possible, non-linear, formulae

models with the same characteristics of being linear in parameters. Thus, EPR

models coding is through exponents and functions for independent variables and

the maximum number of monomials (parameters). They are prior assumptions

of the expert human which are the only candidate for model building.

The model building is based on the evolution of polynomial structures, which

are solutions of a genetic algorithm; each solution is assigned as a set of exponents

(where the null exponent reduces the number of independent variables and of

monomials) that determines the model structure and parameters.

Thus, as explicitly described in the following, a genetic algorithm determines

evolving analytical solutions with the single objective of best �tting to data,

possibly with constraints such as the statistical relevance of a monomial. Then the

algorithm searches for the optimal values of the constant polynomial parameters,

based on a sequence of linear optimizations.

The further development of EPR [Giustolisi and Savic, 2009] was to use the

MOGA strategy. In this way the optimization searches for the best trade-o�

of models complexity versus �tting to data. The complexity is measured with

two functions to be minimized, the number of monomials and the number of

independent variables used. In this way, a Pareto set of symbolic models is

obtained with two competing terms: the model parsimony and the �tting to

data.

This is a very e�ective innovation with respect to standard machine-learning,

in addition useful in scienti�c knowledge support. In fact, the expert human

assumes the exponents, functions, and independent variables and the strategy

returns a front of models which is a decision support for the expert at the end of

the model search. The symbolic structure of the Pareto front of models, together

with possible recursive functional terms and independent involved variables, al-

lows for the selection of the adopted analytical model by the expert in a more

robust way with respect to a pure statistical assessment.

In a few words, EPR-MOGA returns the model formulas with the best trade-

o�s of complexity (parsimony) versus �tting to data. The expert chooses the

best model looking at the whole Pareto front and its symbolic structure, also

considering the increase of complexity versus the e�ective improvement in terms
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of �tting to data. In the following section, we give, for the help of the reader,

a brief introduction to the mathematical treatment of numerical optimization

problems based on EPR algorithms. We refer to other works [Giustolisi and

Savic, 2006; Giustolisi and Savic, 2009] for a detailed description of the method.

4.4 EPR algorithm

In the simple setting considered in this paper EPR generates explicit mathemat-

ical expressions to �t a set of data points starting from the symbolic equation

Y = a0 +
m∑
j=1

ajX
ESj1

1 X
ESj2

2 ... X
ESjk

k (4.1)

where Y is the considered output dependent variable, X is the vector of input

variables and ao is a bias term. Thus, we assume that Y can be expressed as

a polynomial functions composed of m terms, here represented by products of

powers of the Xi generated by the algorithm. In the more general case, other

simple functions can be considered instead of powers [Giustolisi and Savic, 2009].

Observe that, as previously anticipated, each of them terms is linearly dependent

on the unknown parameters aj. The power exponents ESji are selected from a

predetermined set of values.

Synthetically, EPR is performed in two steps: a) structure identi�cation and

b) parameter estimation. The �rst stage entails simultaneously determining the

best `arrangement' of the independent variables and the related exponents. A

multi-objective genetic algorithm termed OPTIMOGA, which stands for OPTI-

mized Multi-Objective Genetic Algorithm, is used to �nalize this optimization.

This algorithm is based on the MOGA strategy, introduced in the previous sec-

tion and extensively described elsewhere [Giustolisi et al., 2004; Giustolisi and

Savic, 2009]. We refer the readers to those papers for more detailed information.

We remark that, since the user de�nes a priori the set of candidate exponents,

the possible negligible input variables are obtained by including zero among them.

This represents a fundamental option for the important aspect, recalled in the

introduction, of determining the e�ective independent variables. The values of

the parameters aj are determined in a second stage using the linear Least Squares

(LS) approach, which minimizes the Sum of Squared Errors (SSE). In addition to

the usual LS search, the LS is typically performed by searching for only positive

values (constraints aj > 0). This choice can be removed by the EPR algorithm

and it can be a fortiori justi�ed in our physical model of spider silks by referring to
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NO
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Figure 4.1: Flow-chart of EPR working phases

only positive values of the input and output variables. However, this choice helps

in avoiding over�tting, by excluding sequences of terms with negative/positive

aj values that may result from the modelling of the data noise [Giustolisi et al.,

2007].

Moreover, the uncertainty of the coe�cients (aj) is evaluated during the search

and the distribution of estimated pseudo-polynomial coe�cients is used to elim-

inate those parameters whose value is not su�ciently larger than zero [Giustolisi

and Savic, 2004; Giustolisi and Savic, 2006]. Indeed, it may be argued that a

low coe�cient value with respect to the variance of estimates relates to terms

that describe noise rather than the underlying function of the phenomenon being

studied.

The algorithm is depicted in the �owchart shown in Figure 4.1. As a starting

point, the candidate independent variables, the general polynomial structure, the

functions composing the monomials, the candidate exponents, and the maximum

number of terms are assigned, possibly based on the initial knowledge of the phys-

ical phenomenon. The exponents can re�ect the types of relationships between

the inputs and output. For example, if the vector of candidate exponents is cho-

sen to be ES = [−1,−0.5, 0, 0.5, 1], if the maximum number of terms is m = 4
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and if the candidate independent input variables are k = 3, the polynomial re-

gression problem is to �nd a matrix of exponent ES4×3. In a �rst stage, an initial

population of matrix of exponents is generated. An example of such a matrix is

ES4×3 =


1 0.5 0

0 0 1

0 −0.5 1

−1 0 0.5

 (4.2)

so that the Equation (4.1) is:

Y = ao + a1X1X
0.5
2 + a2X3 + a3X

−0.5
2 X3 + a4X

−1
1 X0.5

3 (4.3)

The adjustable parameters aj are then computed by minimizing the SSE as a

cost function. It follows the evaluation of the �tness function: if the termina-

tion criterion is satis�ed, the output results are shown, otherwise a new matrix

of exponents is generated through Genetic Algorithm (GA) including crossover,

mutation and ranking selection [Giustolisi and Savic, 2006]. Then, again, the

adjustable parameters are calculated and the �tness function evaluated until the

termination criterion is satis�ed.

The equally performing models are those composing the Pareto dominance

front [Pareto, 1896; Giustolisi and Savic, 2009] and since EPR returns the whole

set of formulae of the Pareto front, the �nal choice of the model among di�erent

possible relations can be based on physical considerations [Giustolisi, 2004]. In

this respect, we observe that genetic algorithms generates formulae/models for

f , coded in tree structures of variable size, performing a global search of the

expression for f as symbolic relationships among X, while the parameters aj

play a role only in the optimization process. On the other hand, ANN goal is to

map f , without focusing on the level of knowledge of the functional relationships

among X. This is why we argue that EPR represents a better tool for data-driven

knowledge discovery.

4.5 Case study: spider silk

Spider silk is one of the most studied natural materials due to its extreme me-

chanical properties, particularly its strength and toughness, which overcome many

high-performance man-made materials. Furthermore, spider silks are regarded as

a fundamental material for a new class of high-performance �bers in the context

of biomimetics [Greco et al., 2021; Arndt et al., 2022]. The availability of increas-
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ingly sophisticated experimental techniques has allowed for a deeper understand-

ing � both chemically and structurally � of the complex multiscale, hierarchical

material underlying their notable mechanical behavior. Despite this, many rele-

vant phenomena governing their loading history dependence, rate, temperature,

and humidity e�ects remain unknown [Pérez-Rigueiro et al., 2021].

At the molecular level, spider silks are made up of an amorphous matrix of

oligopeptide chains and pseudo-crystalline regions composed primarily of polyala-

nine β-sheets [Elices et al., 2011; Sponner et al., 2007] with dimensions ranging

from 1 to 10 nm [Keten and Buehler, 2010], mostly oriented in the �ber direction

[Jenkins et al., 2013]. The radial cross section of the �ber is highly organized [Li

et al., 1994; Eisoldt et al., 2011; Sponner et al., 2007]. Furthermore, the chemical

and structural composition varies according to the di�erent silks produced by the

di�erent glands and, of course, the di�erent species. Here, we focus on the most

performing and extensively studied type of silk known as dragline.

Many biological examples of evolutionary material optimization represent the

possibility of obtaining unreached material performances at the macro scale,

based on a clever, hierarchical organization of weak composing materials at the

lower scales [Keten et al., 2010]. A further enrichment in biological structure is to

possibly include di�erent composing materials [Bosia et al., 2012]. The analytical

description of how the macroscopic performances result from these complex low

scale material organizations is far from being reached and represents a coveted

benchmark not only for their theoretical interest, but also in the crucial �eld of

bioinspired material design [Arndt et al., 2022; Liu et al., 2016].

4.5.1 Micro scale

Spider dragline silk �bers (also known as Major Ampullate silk) are constituted by

structural proteins called Spidroins, which are divided into two major subtypes,

MaSp1 and MaSp2. The overall sequence architectures of the two subtypes are

similar, with a highly repetitive core region �anked by small N-terminal and C-

terminal domains (NTD and CTD, respectively). The repetitive regions, which

account for 90% of the primary structure, are composed of alternating runs of

polyalanine and multiple glycine-rich motifs arrayed in tandem. Moreover, very

recent studies, prompted primarily by advances in proteomics and sequencing

technologies, paint a more complex picture of dragline silk composition than a

simple MaSp1/MaSp2 dichotomy [Arakawa et al., 2022]. Despite this complexity,

here we only consider the protein MaSp1 and MaSp2 which are widely recognized

as the two main composing the spider silk. From the secondary structure point
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of view, the MaSp1 is mainly organized into pseudo-crystalline polyalanine β-

pleated sheets [Li et al., 1994; Brown et al., 2011]. On the other hand, the

MaSp2 is mainly constituted by proteins with a proline content preventing the

formation of β-sheet crystals [Sponner et al., 2007], resulting in a structure with

signi�cantly lower crystallinity and macromolecules with weaker crystal domains,

typically in the form of α-helix and β-turns [Sponner et al., 2007; Nova et al.,

2010].

We remark that, as recognized in polymer mechanics [Flory and Erman, 1982]

and described also for the spider silk case in [Fazio et al., 2022], the number of

monomers of the macromolecule (i.e., protein for the silk case) is fundamental for

the mechanical behavior of the material. Based on the fact that (i) the mechanical

behavior of the spider silk material is to be ascribed to the repetitive region

features more than the terminal region of the protein [Hayashi et al., 1999], and

(ii) the pseudo-crystalline β-sheets, mainly present in the MaSp1, are recognized

to be the most impactful feature in determining the exceptional strength of the

spider silk [Yarger et al., 2018], here we consider the following three quantities

describing the protein scale of the silk material.

� Length of the repetitive region of the protein MaSp1 in terms of number of

amino acids

� Length of the repetitive region of the protein MaSp2 in terms of number of

amino acids

� Length of the polyalanine β-sheet in the protein MaSp1 in terms of number

of alanine amino acid

4.5.2 Meso scale

At the meso scale we consider the proteins' secondary structure, how macro-

molecules are arranged in the �ber and properties regarding the chemical and

structural stability of the polymer. In particular, we analyze the following mate-

rial properties:

� Birefringence. It re�ects the degree of molecular orientation of silk protein

chains. The birefringence of the dragline silk �ber was calculated from the

retardation value and silk �ber diameter [Arakawa et al., 2022].

� Degree of crystallinity. It was calculated based on wide-angle x-ray scatter-

ing (WAXS) analysis [Arakawa et al., 2022]. In particular, it was obtained
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Figure 4.2: Scheme of the hierarchical structure of spider silks and of the considered
variables at the di�erent scales in the data modelling analysis.

as the ratio of the total area of the separated crystalline scattering com-

ponents to that of the crystalline and amorphous scattering components as

resulting from the 1D pro�le obtained by the two-dimensional (2D) di�rac-

tion.

� Degradation temperature. This quantity gives a measure of the chemical

and structural stability of the silk. In [Arakawa et al., 2022] the thermal

degradation temperature has been de�ned as the temperature that yielded

1% weight loss in the silk samples. Indeed, heating leads to changes of the

molecular weight that in turn decreases the mass due to the production of

gaseous byproducts of the chemical reactions.

4.5.3 Macro scale

Spider silk is a very interesting material from the point of view of its mechanical

performance at the macroscopic scale. In particular, here we focus on the material

sti�ness and strength. The Young's modulus, of the order of tens of GPa, is above

man-made polymers and at the top among other natural materials. The strength

is even more interesting, being comparable with high strength steels (order of
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magnitude of 1 GPa) and with the most performing man-made composites like

the carbon and kevlar reinforced composites [Ashby and Johnson, 2013]. The

reason for these outstanding properties with respect to standard materials, is not

yet clear, with a relevant role also of the extremely small diameter of dragline

spider silk [Porter et al., 2013]. For this reason, we also consider the diameter

in the properties at the macro scale. Finally, we address the very signi�cant

role of hydration in the material behavior of spider silks. Indeed, a striking

e�ect observed in spider silks is the so called supercontraction, addressed, to the

knowledge of the author, for the �rst time in 1977 [Work, 1977], that occurs when

a spider silk thread is exposed to humidity. Depending on the silk composition,

the experiments show the existence of a Relative Humidity (RH) threshold beyond

which the �ber contracts up to half of its initial (dry) length. This also results

in the possibility of exploiting the supercontraction in the actuation �eld [Fazio

et al., 2023]. The experimentally observed contraction depends on several factors,

including spider species [Boutry and Blackledge, 2010], type of silk (among the

up seven di�erent ones that some spiders can produce [Vollrath, 1992; Gosline

et al., 1994]), environmental conditions [Plaza et al., 2006] and hydration rate

[Agnarsson et al., 2009a]. The quantities we consider at the macro scale are

therefore the following:

� Young's modulus, obtained from the stress-strain curves determined through

tensile tests of single dragline silk �bers conducted at 25◦C and RH≈ 50%

[Arakawa et al., 2022].

� Tensile strength, calculated as the breaking force determined by tensile

test divided by the undeformed cross-sectional areas of the �ber samples

determined by SEM observations [Arakawa et al., 2022].

� Diameter, determined by SEM observations [Arakawa et al., 2022].

� Maximum supercontraction, calculated as (L0 − Lf )/L0, where L0 is the

length in dry condition and Lf in fully wet conditions (RH=100%) [Arakawa

et al., 2022].

4.6 Modelling strategy

For all the EPR run the maximum number of terms has been set to 3 and the cho-

sen set of candidate exponents has been [−1,−0.5, 0, 0.5, 1] to keep the expression

as simple as possible thus letting their physical interpretability. Moreover, the ex-
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pressions were optimized with a bias term ao since this element may compensate

for the possible lack of relevant inputs in the model.

The choice of the maximum number of terms is justi�ed by comparing the

expressions provided in the appendix and their corresponding performances in

Figure 4.4. Indeed, we achieve nearly maximal performance with just one or two

terms, and adding a third term to the expression does not result in a signi�cant

improvement in �tting performance. In any case, this represents an optimiza-

tion parameter that can be easily varied. Moreover, the choice of the candidate

exponents can be considered as the simplest choice to consider the important

possibility of determining the non relevance of a candidate input (0), of a lin-

ear direct or inverse dependence (1 and -1) and just a simple non linear direct or

inverse dependence (0.5 and -0.5). Other more rich choices, depending on the con-

sidered problem, could be considered. As a matter of fact, the proposed model,

di�erently from the widely used ANN approaches, requires a systematic connec-

tion between the scientist and the machine learning results. All these choices are

therefore guided by the speci�c physical problem at hand. Thus, they are part of

the modeling and of the the scientist's physically guided data preprocessing.

In this regard, we also remark that we considered the possibility of more

complex elementary functions, and veri�ed the optimality of our choice of power

functions. It's worth noting that such comparisons are computationally inexpen-

sive compared to similar possibilities in ANN, which is another notable advantage

of the approach here proposed.

Once again, we refer the readers interested to the numerical performances of

EPR to e.g. [Giustolisi and Savic, 2006; Giustolisi and Savic, 2009] and References

therein. Here we aim to focus on the applicability of such already tested numerical

e�cient approach to hierarchical problems in material science, a �eld of wide

interest in the recent literature on physically based data modelling techniques.

As anticipated above, to exemplify the proposed approach, we focus on the

challenging case of spider silks. In particular, we refer to the recent experimental

campaign proposed in [Arakawa et al., 2022], where the authors analyzed the

properties, at di�erent scales, of approximately 1000 di�erent silks. From our

perspective, this presents a signi�cant opportunity for scientists interested in un-

raveling the 'secrets' behind the remarkable mechanical properties of this material

in relation to its hierarchical structure.

In the original paper, the authors already proposed a statistical correlation

analysis, based on the classical study of the Pearson correlation coe�cient. Here

we show how, our new data modeling approach, combined with our theoretical

understanding of the model, especially as presented in [Fazio et al., 2022; Fazio
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et al., 2023], allows us to gain deeper physical insights in the considered experi-

mental data.

Among the material properties analyzed in the paper, we chose the ones re-

ported in Table 4.1 with the corresponding adopted symbols1 (the type of font

distinguishes the scales). The role of these variables in the material hierarchical

structure and response of spider silk is schematized in the Figure 4.2.

Micro scale a Length of the repetitive region of MaSp1
b Length of the repetitive region of MaSp2
c Length of the polyalanine β-sheet in the MaSp1

Meso scale A Crystallinity
B Birefringence
C Thermal degradation temperature (1% loss)

Macro scale A Young's modulus
B Tensile strength
C Diameter
D Supercontraction

Table 4.1: Material properties considered for the data modelling case study divided by
scales.

As a main parameter of accuracy, we report for the di�erent numerical results

the Coe�cient of Determination2 R2. The physical valence of the expressions

found is discussed, by following [Arakawa et al., 2022], also through the compar-

ison with the correlation matrix represented in Fig. 4.3 obtained by calculating

the Pearson correlation coe�cient3 between the di�erent considered variables for

the analyzed silks. Observe that, from the database [Arakawa et al., 2022] we

considered only the data where the searched output and the considered input

are reported simultaneously. Thus, since there are some experimental properties

missing for some silks of the database, the number of silks composing the training

1Each quantity is considered with the unit of measurement reported in the original database,
namely GPa for Young's modulus and limit stress, µm for the diameter, ◦C for the thermal
degradation temperature. All the micro scale properties are expressed in terms of number
of amino acids, whereas the supercontraction and the crystallinity are two nondimensionional
quantities ranging in (0,1). As a result, the parameters aj (see Eqn. (4.1)) estimated by means
the minimization of the SSE, can be dimensional quantities.

2Here we consider the classical de�nition R2 = 1−
∑N

i=1
(xnum

i −xexp
i )2

(xexp
i −x̄exp)2

, where the xnum
i are

the output variables of the numerical test and xexp
i are the corresponding experimental values,

with i = 1, ...N , where N is the number of experimental observations considered as dependent
variables. Observe that EPR also considers other, not explicitly reported here, indicators of
performance, e.g. the sum of squared errors (SSE). As a result R2 does not necessarily increase
as the complexity of the expressions grows.

3It is a measure of linear correlation between two sets of data {xi, i = 1, ..., n} and {yi, i =
1, ..., n} with n the number of data, de�ned as ρ =

∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2
√∑n

i=1(yi−ȳ)2
, where x̄ =

1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the mean values.
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Figure 4.3: Experimental Pearson correlations among the material properties at the
three scales considering all the silk reported in [Arakawa et al., 2022].

set is di�erent for each considered output. In so doing, for each target output,

we consider the maximum possible available information, in terms of number of

silks.

The EPR technique has returned a series of polynomial expressions for each

dependent variable. In Fig. 4.4(d,e,f) we report the variation of the accuracy

of the analytical expressions in reproducing the experimental data. Thus, in a

Pareto front approach, the model let us choose the best formulae considering

parsimony (simple expression) and accuracy. Observe that, the analysis of the

whole expression set, reported in the Appendix A, allows for a rational choice of

the most suitable material relations (reported in Table 4.2) that can be selected

considering not only parsimony and performance, but also analyzing the physical

interpretation of the experimental matrix correlations in Fig. 4.3.

4.7 Results and Discussion

In this section, we consider di�erent possible data analysis. Speci�cally, we ex-

amine three potential deduction scenarios: deriving meso from micro properties,

then macro from meso properties, and eventually a direct deduction from micro

to macro. On one hand, this facilitates the identi�cation of relationships between

variables and the potential analytical forms of these relationships. On the other

hand, it highlights the signi�cant role of scales in the considered model and the

analysis of the best-performing multiscale functional relationships.

In particular, we point out that, based on the possibility of analyzing the

functional relations at di�erent scales with immediate control over functionality
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and accuracy, we do not assume in advance that a sequential micro-meso-macro

variable dependence is the most reasonable as typical of multiscale approaches.

We instead suppose, that also a direct micro-macro variables relations can be

observed.

In what follows, we show that this is actually the case and we �nd a direct

e�ective relation between a micro and a macro variable. Moreover, we obtain that

one of the meso variables does not depend from the considered micro variables,

thus suggesting the possibility that other micro variables could be important for

the meso scale structure of the silk material. These results exhibit the e�ciency of

the model in selecting the correct functional dependence, the possibility of missing

dependence among measured variables and the role of the complex interactions

among the di�erent involved scales.

4.7.1 Meso from micro

Firstly, the meso scale properties have been calculated using all the micro scale

quantities as independent variables (see Fig. 4.4(a)) according to Eq. (4.1). The

results of the accuracy are reported in Fig. 4.4(d) and the resulting functional

dependencies are reported in Table 4.2.

As a common property of the considered numerical tests (see in particular the

variables A and C in Fig. 4.4(d)), we may typically distinguish two regimes of the

performance curves. In the �rst regime, the performance increases rapidly with

the number of expressions and thus with the model's complexity. In the second

regime, the performance curves stabilize in a saturation band. This indicates an

easy way of selecting an optimal model complexity and to avoid over�tting due

to possible noise of the considered data.

Regarding the selected functional dependence, �rst, we observe that the crys-

tallinity A decreases with b, in accordance with the general correlation matrix

(Fig. 4.3). The presence of the bias term is coherent with the value of R2 = 11%,

since, as recalled before, the bias may compensate for the lack of relevant inputs

in the model.

The birefringence B shows a very low accuracy R2 < 5%, coherent with the

experimental results that show a very low Pearson correlation between B and

a, b, c (see Fig. 4.3). We remark that, in this case, the EPR method avoided data

over�tting that could have resulted in more performing, but physically misleading

expressions deduced by other numerical approaches. We therefore conclude, in

this case, that the considered meso scale quantity, the birefringence B, cannot

be predicted starting from the considered micro scale properties and we consider
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Figure 4.4: Prediction of material properties using two scales at a time: (a,d) meso
from micro experimental properties, (b,e) macro from meso experimental properties,
(c,f) macro from micro experimental properties. (a,b,c) Scheme of the strategy to
obtain each quantity: solid (Dashed) box indicates experimental (obtained from EPR)
quantities. (d,e,f) EPR Model performance in terms of R2 plotted against the number
of the found model.

instead the B as an independent variable to compute the macro scale quantities

in the following.

On the other hand, in the case of the Thermal Degradation Temperature C,

the EPR found expressions with higher R2. In this case, the selected expression

provides a quantitative estimate of the target quantity with a trend increasing

with a and c, in accordance with the experimental correlation matrix in Fig. 4.3.

Scale Expression R2(%) # model

Meso from micro A = 3.55621
b + 0.10262 11 2

C = 3186.7046 1
a + 0.86787ac0.5 + 45.2672 23.54 4

Macro from meso A = 0.091301B0.5

A + 29.2668A 9.01 4

B = 0.013837B0.5

A + 0.014276AC 12.81 5

C = 0.81928A0.5C
B 22.37 4

Macro from Micro D = +0.061926 b
c + 0.0047393 43.35 3

Table 4.2: Prediction across two scales: selected explicit expressions
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4.7.2 Macro-meso

As a second data modelling analysis, we consider the possible functional depen-

dence of the macro properties from the meso scale quantities, now considered as

independent variables (see Fig. 4.4(b). The results of the accuracy are reported

in Fig. 4.4(e) and the resulting functional dependencies are reported in Table 4.2.

Regarding the Young's modulus A, the chosen expression correctly reports

the monotonic growth with crystallinity A, as can be immediately deduced by

comparing the derivative of the expression for A > 0 with the experimental

correlation matrix.

Regarding the limit stress B, the selected expression correctly reports the

highest experimental correlation, namely the positive one with the Birefringence

B.

The expression chosen for the diameter C has the highest accuracy among the

macro-meso case (R2 = 22.37%) with a very simple expression composed of only

a single term that includes all three variables at the meso scale. The correlation

is positive for A and C and negative for B in accordance with the experiments.

For this last case, in Table 4.3, we report the complete Pareto front of for-

mulas obtained as the output of the EPR method, along with the corresponding

accuracy (R2) for each expression. It is worth noting that the trend of accuracy

concerning the model's complexity is illustrated in Figure 4.4(e). By compar-

ing the set of expressions with the accuracy of the 8 models found by EPR, we

observe a rapid increase in accuracy (R2 = 0 → R2 ≈ 12.5) when the inverse

dependence on variable B is introduced in the model 2. A further signi�cant

increase in accuracy (R2 ≈ 12.5 → R2 ≈ 18) is achieved by considering the de-

pendency on A0.5 in the model 3. The last substantial accuracy improvement

(R2 ≈ 18 → R2 ≈ 22.5) is obtained by including the linear dependence on

variable C in the model 5. This expression is considered the most suitable for

describing the relationship between the diameter and the meso scale variables. It

combines relatively high accuracy with a simple and interpretable structure. The

models from 6 to 8, while more complex, do not signi�cantly enhance predictive

accuracy (R2 ≈ 22.5 → R2 ≈ 23.5). This implies that the additional terms in

these expressions, compared to the previous one, describe noise in the data rather

than playing a real physical role in the considered phenomenon.

Finally, we note that the dependence on 1/B is maintained from the model

2 to the model 4, indicating the robustness of this relationship. It is considered

reliable as it was preserved even when EPR attempted to reduce expression com-

plexity. On the other hand, the analysis of the complete Pareto front permits

the identi�cation of terms that appear in only one model (see the models 5 to
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# model Expression R2(%)

1 C = 2 0

2 C = 81.9474 1
B

12.53

3 C = 177.4203A0.5

B
+ 0.051737 17.73

4 C = 0.81928A0.5C
B

22.37

5 C = 0.00021001C + 0.80165A0.5C
B

22.49

6 C = 0.0037544 C
B0.5 + 0.76892A0.5C

B
23.79

7 C = 0.011782C
B
+ 0.0025068 C

B0.5 + 0.76003A0.5C
B

23.77

8 C = 0.028813C
B
+ 0.69464A0.5C

B
+ 0.010027A0.5C

B0.5 23.50

Table 4.3: Pareto front of models for predicting the Diameter (C) from the meso scale
variables

8); such terms are likely to be weakly related to the physical phenomenon, but

rather speci�c to the error present in the data. Similar considerations apply when

examining the complete Pareto fronts for each considered output variable, as re-

ported in Appendix A. The Pareto front has been extensively discussed in this

case, which is particularly suitable for explanatory purposes due to the shape of

the Pareto front (Figure 4.4(e)), combining a rapid increase for the initial models

and a clear performance saturation band for the more complex models.

We remark that the �nal choice of the appropriate equation requires an evalu-

ation of the resulting physical consequences. This may necessitate further experi-

mental and theoretical investigations, as is common in the analysis of any scienti�c

open problem. In our opinion, it is only a continuous e�cient interaction between

data modelling, with analytical formulas, and scienti�c interpretation of them,

that can ensure the desired advancement of the understanding of the physical

phenomena.

Eventually, we consider the selected expression for the supercontraction D. In
this case, we are not able to produce a good estimate of the target output from

the meso variables (R2 < 8%).

4.7.3 Macro-micro

As anticipated, we now consider the possibility of direct dependence between

macro and micro variables. Thus, the macro properties have been calculated

also using all the micro scale quantities as independent variables (see Fig. 4.4(c)).

The results of the accuracy are reported in Fig. 4.4(f) and the resulting functional
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dependencies are reported in Table 4.2.

In this case, regarding the Young's modulus (A), the limit stress (B) and

the diameter (C), the values of R2 are generally low. On the other hand, the

supercontraction D is predicted with a relatively high accuracy (R2 > 40%), and

the selected expression (R2 = 43.35%) provides a reasonably precise quantitative

estimate of the supercontraction, higher than the ones deduced from the meso

variables. This suggests the intriguing possibility of a direct in�uence of micro

variables on the macroscopic supercontraction variable representing still a debated

e�ect of spider silks behavior [Fazio et al., 2022; Cohen et al., 2021]. Moreover,

we remark the simplicity of the obtained analytical expression including the two

most relevant experimental correlations between the supercontraction and the

micro scale properties, i.e. the positive one with b and the negative one with c.

This result demands by itself a theoretical investigation, which will be the focus

of our future studies.

In summary, we observe that by employing this direct macro-micro deduction,

from one side we obtain a relatively precise estimation of the supercontraction

property that was missing from the macro-meso analysis, but from a modelling

point of view, we deduce the possibility of modelling the supercontrction as a

macro variable with a direct functional dependence from the micro ones. More-

over, the low accuracy in predicting the other macro variables (A, B, C) directly
from the micro ones, enlighten the importance of the meso scale structures in

generally determining the macro properties of the material, as expected from

the classical hierarchical dependence. For the particular case of the spider silk,

this re�ects established results in literature pointing out the dependence of the

silk thread macroscopic behavior from the secondary structures of the proteins

[Yazawa et al., 2020; Hayashi et al., 1999], here described by the meso scale

variables.

4.7.4 Discussion on the accuracy of the EPR formulae for

the spider silk case

A general comment is in order on the accuracy of the relationship found by EPR.

The coe�cient of determination of expressions found by the EPR method is gen-

erally low if compared with other frameworks where EPR was applied [Berardi

et al., 2008; Creaco et al., 2016; Balf et al., 2018], but this was expected for the

study case of spider silks, as in biological materials a high intrinsic variability for

experimental observations is known [Cook et al., 2014]. Also, for this particular

material, a meaningful variability of the mechanical property of silks taken from
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the same individual under similar conditions is well recognized (see e.g. [Madsen

et al., 1999]). Further, the characteristics of the spider silks have high sensitivity

to a large number of parameters, among which starvation, reeling speed [Madsen

et al., 1999] other than the more expected spider species [Boutry and Blackledge,

2010], type of silk (among the up seven di�erent ones that some spiders can pro-

duce [Vollrath, 1992; Gosline et al., 1994]), environmental conditions [Plaza et al.,

2006] and hydration conditions [Agnarsson et al., 2009a]. In a very recent work

[Greco et al., 2022], the variability of spider silk properties has been directly com-

pared to that of carbon �bers, and signi�cantly higher variability in spider silk in

all properties considered has been reported. For these reasons, even if the R2 of

the expressions found by means EPR is generally not as high as other frameworks,

the performance of the data modeling strategies are considered satisfactory. Fur-

thermore, we believe that the results we have described strongly demonstrate the

feasibility of our proposed approach when compared to the more commonly used

approaches, typically based on ANNs. This approach allows us to deduce both

analytical results and important physical properties related to the problem at

hand, thereby establishing a new way of investigation in the considered �eld.

4.8 Theoretical vs experimental correlations

While the objective of this paper is general and mainly related to the exhibited

possibilities of obtaining information on the considered physical properties, in

this section, we show operatively this possibility by comparing experimental and

theoretical results.

Going to the considered case of spider silks, we are now in the position of

deducing the theoretical meso and macro response based on the only micro prop-

erties to compare with the experimental meso and macro response. Speci�cally,

we have one set of data for which all properties are experimentally known, and

on the other hand, we construct a set of theoretical data based solely on the ex-

perimentally determined properties at the micro scale. The properties at higher

scales (i.e., meso and macro) of the theoretical dataset are then calculated us-

ing the explicit relationships selected in Table 2. The purpose is to demonstrate

the applicability of EPR-derived relationships to predict macro scale properties

based on micro-scale knowledge. We have chosen to utilize pairwise correlations

between variables as a means of comparison between experimental data and the

relationships learned through Evolutionary Polynomial Regression (EPR).

Coherently with the hierarchical assumption of our model, we �rst deduce the

meso scale variables by the Micro ones and then, based on previous analytical
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Figure 4.5: Pearson correlations among the material properties at the three scales.
(a) Experimental correlations obtained considering a subset of silks for which all the
analyzed properties are reported simultaneously (b) Correlations among the material
properties obtained from the data modelling EPR approach (macro and meso) starting
from the known micro experimental properties.

results, we deduce the macro variables. Accordingly with previously described

numerical data analysis, also the meso variable B (birefringence) is considered

here as an independent variable. On the other hand, in the special case of the

supercontraction D, we assume that it directly depends on micro variables. Notice

that all these relevant physical information has been deduced by previous data

modelling.

Regarding the experimental data, we consider a subset of the silks analyzed

by [Arakawa et al., 2022] and in particular only those for which all the 10 consid-

ered properties (see Table 4.1) are known simultaneously (the so obtained subset

consists of 35 silks). As a possible comparison between the theoretical and exper-

imental data sets, we consider the Pearson correlation coe�cients for each pair of

properties. The comparisons of the correlations tables for theoretical and experi-

mental results are reported in Fig. 4.5. They show a satisfactory correspondence

almost extensible to all the data and a satisfying result in terms of the values of

the correlation coe�cients. To get a global comparison we also adopt a positive

de�nite relative error

er =
|ea|
em

(4.4)

where ea = ρt − ρe is the absolute error, ρt and ρe are the theoretical and exper-

imental Pearson coe�cients, respectively. Here em is the mean error that since

ρm and ρe range in the interval (−1, 1), we assume as em = 1. The average value

of the relative error by considering all the possible pairs of the correlation ma-

trix er = 0.33, with 0 < er < 2, indicates that the functional dependence found
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by the EPR method reproduces in a reasonably accurate way the experimental

correlations among the properties of spider silks.

Eventually, as evidenced in [Linka and Kuhl, 2023], an important extension

of the proposed approach would be to consider a Bayesian framework for the

uncertainty quanti�cation in order to compute each output in terms of statistical

distribution with a mean and a con�dence interval by also taking into account

the input data variability.

4.8.1 Towards integrating data driven knowledge and phys-

ical modelling

The possibility of advancing, based on the proposed approach, the understanding

of the underlying physical relationships, can be exhibited by considering possible

progresses in existing theoretical settings. To this end, we here explicitly refer to

the recent works previously proposed by some of the authors [Fazio et al., 2022;

Fazio et al., 2023], where the dependence of supercontraction on the MaSp2 pro-

tein has been addressed. In that context, the MaSp2 protein was treated using

the classical approach of multiscale analysis of soft macromolecular materials,

based on classical statistical mechanics approach to quantify the expected length

of the protein's macromolecules. On the other hand, based on the EPR method,

an explicit relationship between the length of the repetitive unit of the MaSp2

protein and supercontraction can be inferred. As an extension of this work, this

relationship will be employed to enhance the microstructure-based model consid-

ered in the previous works [Fazio et al., 2022; Fazio et al., 2023]. Presumably,

from the EPR �ndings, it will be possible to establish a quantitative relation-

ship between micro scale variables describing the primary structure of the MaSp2

protein and supercontraction. In other words, owing to the interpretable relation-

ships obtained through EPR, it is feasible to extend the prediction of macroscopic

supercontraction behavior towards the precise primary structure of the involved

proteins. Indeed, in the previously proposed theoretical multiscale approach,

this prediction was based on more general properties of macromolecules behavior

without specifying the detailed primary structure properties obtained in previous

analysis. This example is just one illustration of our approach, but it serves as a

representative instance of how our work intends to improve the theoretical under-

standing in material science. With each of the relationships considered in Table

2, and more broadly, as we explore the Pareto front of expressions, additional

relationships discovered among variables are subjects of ongoing study by the au-

thors. These investigations aim to contribute signi�cantly to the expansion of our
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knowledge concerning the multiscale mechanisms responsible for the remarkable

characteristics of spider silk. This extension is the subject of the forthcoming

research of the authors.

4.9 Conclusions

We showed the possibility of adopting, based on a Genetic Programming ap-

proach, data modelling techniques, innovative in thew �eld of material science,

particularly suitable for the deduction of analytical models for multiscale prob-

lems. Our approach is based on the Evolutionary Polynomial Regression (EPR)

method which, as we showed, lets us deduce models that are both accurate and

simple, able to describe the dependence of macro scale variables from the ones at

lower scales, in their hierarchical order itself deduced by a careful analysis of the

data. The best performing models are those located on the Pareto dominance

front, which takes into account both accuracy and parsimony and are returned by

the EPR algorithm. The �nal choice of the model can be then based on physical

considerations.

To explicitly show the possibility of acquiring physical insight in a complex

multiscale problem, and to evidence the key advantages of our multiscale ap-

proach compared to classical, non-physically based techniques, we referred to the

materials science �eld and in particular to the complex case of spider silk: a

biological material with exceptional properties hugely analyzed also in the spirit

of bioinspiration. The choice of this speci�c case is due to the observation that

such remarkable properties are strictly based on an evolutionary hierarchical op-

timization and the macroscopic spider silk behavior is the result of noteworthy

mesostructures emerging from the aggregation of amino acids at the molecular

scale. For this intriguing and very complex material many phenomena underlying

the multiscale structure and the complex energetic exchanges among the scales

ensuring their notable properties are still strongly unclear. We then used this

paradigmatic example to show how the presented data modelling approach can

be useful in several directions: determine dependent and independent variables,

indicate their hierarchical organization, deduce explicit relations among di�erent

groups of variables. In this direction we also want to remark that a possible

important role can be attained by a following dimensional analysis (e.g. Buck-

ingham theorem) that should be related to the possible absence of variables at

the di�erent scales. This is another important aspect that is beyond the scope of

this paper and will be the subject of our future investigation.

Furthermore, we showed that the proposed approach let us overcome the
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over�tting problem typically observed in the analysis of big data within the ANN

framework di�usely adopted in this �eld. Based on this, new physical knowl-

edge is acquired, that can be used as a starting point for determining new an-

alytical models, suggesting new experiments, and applying more focused data

modelling analysis. We also strive to enrich existing physical approaches by en-

hancing our comprehension of the underlying physical processes. In this context,

we investigate the potential for enhancing some authors' previously introduced

physically-based theoretical analyses, leveraging the insights obtained from our

current approach.

In this sense, we assert that Machine Learning or Arti�cial Intelligence can

have a signi�cant impact on scienti�c knowledge only if the data modelling ap-

proaches are in continuous synergy with the scienti�c interpretation of the results.

We argue thus that a new mixed genetic programming - theoretical approach can

be a new fruitful approach in material science, but also in �elds as diverse as

biology and medicine.
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Chapter 5

Conclusions and future perspectives

Throughout this thesis, we explored multiscale models and physically based data-

driven techniques for hierarchical materials, with a speci�c emphasis on biological

and bioinspired materials and in particular spider silks. Here we summarise

the key steps and achievements. In Chapter 1 we outlined the motivation and

context of the subject of this thesis. We then introduced hierarchical biological

and bioinspired materials, looking in detail at some typical characteristics in

biomaterials of engineering interest. In particular, we described the crucial role

of sacri�cial bonds and analyzed some material structural properties letting to

achieve high performance from weak constituents in some of the most studied

natural materials. Furthermore, we explored protein structures and properties,

as in the following part of the thesis, we will focus on a protein material with

extraordinary properties, namely spider silk.

Before focusing on the latter, we also reviewed other hierarchical biological

materials of great scienti�c interest, such as bone, hair and cellulose. We then

presented the case of spider silk, to give a preliminary idea of what spider silk is,

how it is produced and why, and the reasons why there is great scienti�c interest

in this material. We then also introduced the complexity of the material, also

given the variability of spider silks that exist in the world, which has nevertheless

led to the design of bioinspired materials with diverse properties and therefore

diverse applications, a brief list of which we have reported.

Afterward, we introduced the importance of multiscale modelling for natural

soft materials. We then reported on the fundamental steps of the scienti�c com-

munity in modelling the class of rubber-like materials, to which many biological

soft materials, including spider silk, belong. Before getting into the heart of our

modelling proposal, we set the objectives of the thesis.

The �rst signi�cant result is the model proposed in Chapter 2 where we de-

duced a microstructure inspired model for humidity and temperature e�ects on
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the mechanical response of spider silks, modeled as a composite material with a

hard crystalline and a soft amorphous region.

We have considered that when humidi�ed at di�erent moisture conditions, un-

restrained spider silk �bers can exhibit a very high supercontraction phenomenon

due to hydration water molecules inducing a Hydrogen-bonds disruption process.

We then modelled the water molecule's e�ect in decreasing the percentage of

crosslinks in the softer region and therefore inducing a variation of the natural

length of the macromolecules due to entropic e�ects. The resulting kinematic

incompatibility between the hard and soft regions crucially in�uences the �nal

mechanical response, giving rise to the experimentally observed behaviour.

The described ability of the proposed model to predict the experimental re-

sults in terms of di�erent mechanical properties make us con�dent that it well

reproduces the humidity and temperature e�ects at the molecular scales. This

is supported even more by predicting the behavior of di�erent silks and envi-

ronmental conditions. We strongly believe that this is a consequence of our

microstructure deduction of the material response function.

The physical meaning of all the adopted microscopic parameters opens up the

possibility of applying the proposed model not only to other protein materials

with similar structures but also in the design of bioinspired materials employing

chosen speci�c proteins.

Afterward, in Chapter 3, we have addressed the case of restrained spider silk

�bers humidi�ed at di�erent moisture conditions. They can generate signi�cant

so-called supercontraction forces. By considering a bundle of macromolecules, we

described supercontraction as a possible actuation system and determined the

maximum actuation force depending on the silk properties at the molecular scale

and on the constraining system representing other silk threads or the actuated

device.

Again, the comparison with experimental results, in particular of Argiope

trifasciata silk �bers, showed the e�ectiveness of the proposed model in quanti-

tatively predicting the experimental actuation properties.

We considered the historical case study of obelisk rescue in Saint Peter's

Square (Rome) through ropes hydration is discussed evidencing the optimal per-

formances of this natural material adopted as humidity-powered actuator.

For such actuator, we obtained a work density of 2.19 kJ/m3 making spider

silk the most performant hydration-driven active material and a power density of

the order of 730 W/kg, about three times the most performant carbon nanotube

actuators making such material very competitive as compared with all types of

actuator.
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Also in this case, the analytic description of the macroscopic actuation param-

eters from microscale properties shows the possibility of adopting our approach

also in the �eld of bioinspired arti�cial silks design, possibly considering also

important non-linear e�ects in the actuated system.

Eventually, in Chapter 4, we have outlined a methodology for extracting infor-

mation from a large amount of data, which may possibly be employed to enhance

the models previously presented. We propose this approach based on the fact that

today there is a huge experimental literature providing large data libraries on hi-

erarchical systems, starting from the nano- and microscale up to the macroscale.

The recent scienti�c literature is exploring the possibility of leveraging machine

learning, with a predominant focus on neural networks, excelling in data �tting,

but often lacking insight into essential physical information.

We showed the possibility of adopting, based on a Genetic Programming ap-

proach, data modelling techniques, innovative in thew �eld of material science,

particularly suitable for the deduction of analytical models for multiscale prob-

lems. Our approach is based on the EPR method which, as we showed, lets us

deduce models that are both accurate and simple, able to describe the depen-

dence of macro scale variables from the ones at lower scales, in their hierarchical

order itself deduced by a careful analysis of the data. The best-performing models

are those located on the Pareto dominance front, which takes into account both

accuracy and parsimony and is returned by the EPR algorithm. The �nal choice

of the model can be then based on physical considerations.

To explicitly show the possibility of acquiring physical insight in a complex

multiscale problem, and to evidence the key advantages of our multiscale approach

compared to classical, non-physically based techniques, we referred to the case of

spider silk, where its remarkable properties are strictly based on an evolutionary

hierarchical optimization and the macroscopic spider silk behavior is the result of

noteworthy mesostructures emerging from the aggregation of amino acids at the

molecular scale.

By employing this paradigmatic example, we showed how the presented data

modelling approach can be useful in several directions: determine dependent

and independent variables, indicate their hierarchical organization, and deduce

explicit relations among di�erent groups of variables. In this direction, we also

want to remark that a possible important role can be attained by a following

dimensional analysis (e.g. Buckingham theorem) that should be related to the

possible absence of variables at the di�erent scales. This is another important

aspect that is beyond the scope of this thesis and may be the subject of future

investigation.
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Furthermore, we showed that the proposed approach let us overcome the

over�tting problem typically observed in the analysis of big data within the ANN

framework di�usely adopted in this �eld.

Based on this, new physical knowledge is acquired, that can be used as a start-

ing point for determining new analytical models, suggesting new experiments, and

applying more focused data modelling analysis. We also strive to enrich existing

physical approaches by enhancing our comprehension of the underlying physical

processes. In this context, we investigate the potential for enhancing the pre-

viously introduced physically-based theoretical analyses, leveraging the insights

obtained from the data modelling approach.

In this sense, we assert that Machine Learning or Arti�cial Intelligence can

have a signi�cant impact on scienti�c knowledge only if the data modelling ap-

proaches are in continuous synergy with the scienti�c interpretation of the results.

We argue thus that a new mixed genetic programming-theoretical approach can

be a fruitful approach in material science, but also in �elds as diverse as biology

and medicine.
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Appendix A

EPR Expressions

A.1 Cristallinity from micro properties
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A.2 Birefringence from micro properties

B = 45.0698 (S2.1)
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A.3 Thermal degradation temperature from mi-

cro properties
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A.4 Young's Modulus from meso properties

A = 9.4674 (S4.1)
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A.5 Limit Stress from meso properties
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A.6 Diameter from meso properties

C = 2 (S6.1)
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A.7 Supercontraction from meso properties
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A.8 Young's Modulus from micro properties
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A.9 Limit Stress from micro properties
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A.10 Diameter from micro properties
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A.11 Supercontraction from micro properties
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Scientists are continuously fascinated by the high degree of sophistication 
found in natural materials, arising from evolutionary optimisation. One of the 
most studied is the spider silk, a semi-crystalline polymer renowned for its 
outstanding mechanical properties, which are the result of an ingenious 
hierarchical structure. Nevertheless, many of the multiscale mechanisms that 
give rise to the macroscopic properties are still unclear, especially in relation 
to temperature and humidity, which strongly condition the mechanical 
performance. In this thesis, aimed at unveiling some of these open problems, 
we introduce a multiscale model for the thermo-hygro-mechanical response, 
starting from describing the microstructure, up to the effects at the 
macroscopic scale, including softening and supercontraction in response to 
hydration. Thereafter, we describe how spider silks can be adopted to obtain 
humidity-driven actuators. We determine the maximum actuation force 
depending on the silk properties at the molecular scale, and on the 
constraining system representing other silk threads or the actuated device. 
To address a novel database of recently published multiscale experimental 
data of about a thousand different spider silks, we propose a data modelling 
methodology based on symbolic regression techniques to obtain simple and 
interpretable relationships linking quantities at different scales. This approach 
may provide a proof of concept for modelling in fields governed by multiscale, 
hierarchical differential equations. We believe that the analytical description 
of the macroscopic behaviour from microscale properties is of great value 
both for a full understanding of biological materials and for the perspective of 
designing bioinspired materials and structures.  


	Introduction
	Hierarchical biological and bioinspired materials
	Typical features
	Sacrificial bonds
	From weak constituents to high performances
	Protein structures

	Examples of hierarchical biological materials
	Bone
	Hair
	Cellulose
	Spider silk


	Multiscale models and soft materials
	Importance of multiscale models for scientific and biomimetic interests
	Classification of multiscale modelling methods

	Modelling of soft biological materials
	Rubber-like materials
	Mechanical behaviour: key features
	Main model classes

	Basic equations and strain energy functions
	Neo-Hookean
	Mooney–Rivlin
	Generalized neo-Hookean models and Gent Model
	Other models


	Objectives of the thesis

	Spider Silks Mechanics: Predicting Humidity and Temperature Effects
	Introduction
	Model
	Soft Region
	Hard Region
	From single chain to macro laws

	Experimental validation
	Discussion
	Conclusions

	``Water to the ropes'': a predictive model for the supercontraction stress of spider silks
	Introduction
	Model
	Experimental validation
	Elastic interaction
	Water to the ropes!
	Actuation properties
	Bi-stable actuated device

	Conclusions

	Physically based machine learning for hierarchical materials
	Introduction
	Artificial Neural Networks and multiscale phenomena
	Symbolic Machine-Learning using EPR: History, Concepts and Motivation
	EPR algorithm
	Case study: spider silk
	Micro scale
	Meso scale
	Macro scale

	Modelling strategy
	Results and Discussion
	Meso from micro
	Macro-meso
	Macro-micro
	Discussion on the accuracy of the EPR formulae for the spider silk case

	Theoretical vs experimental correlations
	Towards integrating data driven knowledge and physical modelling

	Conclusions

	Conclusions and future perspectives
	Bibliography
	EPR Expressions
	Cristallinity from micro properties
	Birefringence from micro properties
	Thermal degradation temperature from micro properties
	Young's Modulus from meso properties
	Limit Stress from meso properties
	Diameter from meso properties
	Supercontraction from meso properties
	Young's Modulus from micro properties
	Limit Stress from micro properties
	Diameter from micro properties
	Supercontraction from micro properties


