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Around 50% of all human microRNAs reside within introns of coding genes and are usually

co-transcribed. Gene expression datasets, therefore, should contain a wealth of miRNA-

relevant latent information, exploitable for many basic and translational research aims.

The present study was undertaken to investigate this possibility. We developed an in silico

approach to identify intronic-miRNAs relevant to breast cancer, using public gene expres-

siondatasets. This led to the identificationof amiRNAsignature for aggressive breast cancer,

and to the characterization of novel roles of selected miRNAs in cancer-related biological

phenotypes. Unexpectedly, in a number of cases, expression regulation of the intronic-

miRNA was more relevant than the expression of their host gene. These results provide a

proof of principle for the validity of our intronic miRNAmining strategy, which we envision

can be applied not only to cancer research, but also to other biological and biomedical fields.
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Abbreviations
FFPE formalin-fixed paraffin-embedded

PCR polymerase chain reaction

FDR false discovery rate

qRT-PCR quantitative reverse transcriptase PCR

GEO gene expression omnibus

ER estrogen receptor

HER2 (ErbB2) human epidermal growth factor receptor 2

IHC immunohistochemistry
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1. Introduction Written informed consent for research use of biological sam-
MicroRNAs are small, non-coding RNA molecules (18e22 nu-

cleotides in length) that function as endogenous triggers of

the mRNA interference pathway and are involved in the regu-

lation of pleiotropic biological functions (Krol et al., 2010;

Yendamuri and Kratzke, 2011). Almost 50% of all human

miRNA genes are located within introns of host genes, with

which they usually share transcriptional regulation

(Baskerville and Bartel, 2005; Griffiths-Jones, 2007; He et al.,

2012; Monteys et al., 2010; Ozsolak et al., 2008; Rainer et al.,

2009; Rodriguez et al., 2004; Saini et al., 2007). In principle,

this property could be exploited to predict the expression of

intronic miRNAs (int-miRNAs) through the analysis of the

expression of their host genes (miRNA host genes, miR-HG).

Similar approaches have already been successfully employed

to identify miRNA target genes, to predict miRNA tissue

expression, and to characterize miRNA/miR-HG feedback

loops (Lutter et al., 2010; Radfar et al., 2011; Wang et al., 2009).

Themajor potential stemming from themode of regulation

of int-miRNAs is, however, untapped. In recent years, enor-

mous effort has been dedicated to the profiling of various

physiological and pathological conditions at the transcrip-

tomic (mRNA) level. While almost every field of biology and

biomedicine has been explored through this approach, cancer

biology is arguably the field in which the highest investment

has beenmade, with the dual objective of: i) obtaining a global

view of cancer processes by systems-based analysis (Basso

et al., 2005; Minn et al., 2005; Sweet-Cordero et al., 2005); ii)

identifying biomarkers for improved management of cancer

patients (Ivshina et al., 2006; Sorlie et al., 2001; Sotiriou et al.,

2003; van ’t Veer et al., 2002). As a result, thousands of human

tumors have been profiled and the datasets made publicly

available, frequently associated with high quality clinical in-

formation. In our view, these datasets are amenable tomining

“latent” information on int-miRNA expression.

There is growing interest inmiRNAs, both as potential can-

cer determinants and biomarkers (Calin and Croce, 2006).

From a general perspective, miRNA profiling might be advan-

tageous over mRNA profiling, since the complexity of miR-

Nome is at least 20-fold lower than that of a reference

transcriptome (if onemakes the somewhat rough comparison

of w1000 miRNAs vs. w 20,000 genes). This means that suffi-

cient statistical power can be reached with a much lower

number of analyzed samples. This is particular relevant to

studies, such as those involving human pathological samples,
in which genetic variability represents a relevant confounding

factor.

Thus, the explicit goal of this study was to exploit cancer

datasets, in particular, breast cancer datasets, to provide a

proof of principle that meta-analysis of miR-HG expression

profiles can accurately identify int-miRNAs that are relevant

to cancer, both in terms of their potential utility as biomarkers

and their role in breast cancer cell biology.
2. Material and methods

2.1. Patient selection criteria

ples was obtained from all patients. Patients underwent sur-

gery at the European Institute of Oncology between 1998 and

2010. Only tumor samples with a cellularity >70% were

included in the study.

2.2. Affymetrix microarray analysis

Retroviral infection of the MCF10A cell line with the SV40-

large T antigen was performed using a pBABE-neo retroviral

vector. After 48 h of infection, cells were collected and total

RNA extracted using the RNeasy Mini Kit (QIAGEN). RNA qual-

ity was controlled using the 2100 Bioanalyzer (Agilent). Total

RNA (5 mg) was then retrotranscribed into double stranded

cDNA using SuperScript� Double-Stranded cDNA Synthesis

Kit (Invitrogen).

In vitro anti-sense RNA transcription was performed

through an Eberwine’s modified in vitro transcription reaction

(MEGAscript, Ambion) using labeled rNTP (Enzo� BioArray�
HighYield� RNA Transcript Labeling Kit, ENZO Biolabs).

Briefly, we added 14.5 ml of rNTPs mix, 2 ml of T7 polymerase

and 2 ml of reaction buffer to 1.5 ml of purified cDNA, and incu-

bated the reactionmix at 37 �C for 6 h. Labeled cRNAwas then

fragmented (30-200 base fragments), checked by agarose gel,

and hybridized on Human Genome U133A 2.0 Arrays in dupli-

cate for each condition (i.e., MCF10A SV40-large T, and

MCF10A pBABE-empty).

Data were normalized using the Robust Multi-array

Average (RMA) method. Information on human int-miRNAs,

associated host genes and mature miRNA sequences was

retrieved from miRBase v13.0. The Entrez IDs of the miRNA

host genes was extracted from the “org.Hs.eg.db” Bioconductor

annotation package. Probe sets mapping to miRNA host genes

were identified using the Bioconductor hgu133a2.db annota-

tion package. Differentially expressed probe sets were identi-

fied using the limma Bioconductor package. P-values were

adjusted using the BenjaminieHochberg correction.

2.3. Bioinformatics analysis of external Affymetrix
datasets

Breast cancer microarray datasets and associated clinical in-

formation were downloaded from the Gene Expression

Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/).

The accession numbers of the datasets used are GSE1456,

GSE2990, GSE7390, and GSE4922. All datasets were based on

http://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 4 7 3e4 8 7 475
the GeneChip� Human Genome U133A to avoid batch bias ef-

fects during the analysis.

We applied a quality control procedure on CEL files to iden-

tify flawed arrays using Relative Log Expression (RLE) values

and Normalized Unscaled Standard Error (NUSE) values

(Bolstad et al., 2004; Gentleman et al., 2004). For each array,

we computed the median value and the interquartile range

(IQR) of both the NUSE and RLE statistics. We then calculated

the IQRs across the arrays for each dataset. Arrays were

rejected if IQR values were >q3 þ 1.5IQRs or < q1 � 1.5IQRs,

where q1 and q3 are the first and third quartile, respectively.

This filtering resulted in the exclusion of 47 arrays in the

GSE4922 dataset, 9 arrays in the GSE1456 dataset, 9 arrays in

the GSE7390 dataset, and 5 arrays in the GSE2990 dataset. In

addition, in the GSE2990 dataset we considered only the

“Uppsala” cohort of patients because of the low signal inten-

sity distribution of several arrays of the “Oxford” cohort

compared to the “Uppsala” cohort, which determined a batch

bias effect (Figure S1). Data were normalized using the RMA

method.

Information relative to human int-miRNAs and associated

host genes was retrieved from miRBase (www.mirbase.org,

release 13.0). Probe sets were filtered for signal intensity using

the Bioconductor genefilter package. Only probe sets that had

a normalized signal greater than 150 (7.2 on the log2 scale) in

at least 10% of the samples were retained for further analysis.

Differentially expressed probe sets were identified using the

limma Bioconductor package. All P-values were adjusted us-

ing the BenjaminieHochberg correction.

Monte Carlo simulation was performed for each dataset in

the following manner: 1) all miRNA-associated probe sets

were excluded from the dataset; 2) we randomly selected n

probe sets, where n is the number of miRNA-associated probe

sets (n ¼ 422); 3) the number of probe sets significantly regu-

lated between G3 vs. G1 and/or ER þ vs. ER-tumors were anno-

tated; 4) we repeated steps ‘2’ and ‘3’ 999 times. An empirical

P-value was calculated as the fraction of simulations yielding

a larger list of significantly regulated probe sets than the list

obtained in the original analysis. Expression dataset Breast

subtype analysis was performed using the TCGA breast cancer

(October 2012 release, 599 patients) downloaded from the

TCGA web data portal (https://tcga-data.nci.nih.gov/tcga/

tcgaHome2.jsp). Data were gene centered on relative medians

and log2 transformed before clustering analysis.

Pathway analysiswas performed using the online available

webtool Ingenuity Pathway Analysis (IPA) (http://www.inge-

nuity.com/). Predicted and experimentally validated miRNA

target gene sets were obtained using miRWalk database

(Dweep et al., 2011). MicroRNA target prediction was per-

formed using four different methods: miRanda, miRDB, miR-

Walk and Targetscan. Genes predicted in 4 out of 4 methods

were retained for subsequent IPA analysis.

2.4. RNA isolation and RT-PCR

Total RNA was extracted from cell lines using the TRIZOL re-

agent (Invitrogen) or from FFPE archival breast tumor samples

(with a tumor cellularity >70%) using the RNAeasy FFPE kit

(QIAGEN). RNA was quantified by Nanodrop (Agilent

Technologies).
miRNA expression profiles of MCF10A cells were obtained

using the TaqMan� Low Density Array microRNA Signature

Panel (v1.0; Applied Biosystems) and reactions were carried

out on an Applied Biosystems 7900HT thermocycler using

the manufacturer’s recommended cycling conditions.

miRNA expression profiles of FFPE archival breast tumor

samples or of MDA-MB-231 and MDA-MB-361 cells were ob-

tained using miScript Primer Assays and the miScript SYBR

Green PCR Kit (Qiagen). Total RNA (400 ng) was reverse tran-

scribed using the miScript Reverse Transcriptase kit (Qiagen)

according to manufacturer’s instructions. Briefly, the two-

step protocol involves reverse transcription of miRNA to

cDNA using miRNA-specific primers followed by qRT-PCR. Re-

actions were run in duplicate using 5 ng of cDNA as template

in 20 ml final reaction volume. All probes were normalized to

U5A for FFPE archival breast tumor samples or to SNORD25

for breast cancer cell lines, as an internal control. Amplifica-

tion reactions were performed with LightCycler 480 (ROCHE)

using the manufacturer’s recommended cycling conditions.

Relative expression ratios of miRNAs were obtained using

the 2�ddCT method.
2.5. Cell lines and infection

The MDA-MB-231 and MDA-MB-361 breast cancer cell lines

were grown in Dulbecco’s Modified Eagle Medium supple-

mented with 10% fetal bovine serum, 2 mM L-glutamine,

100 U/ml penicillin, and 100 U/ml streptomycin at 37 �C in a

humidified incubator with 5% CO2. MaturemiRNAswere over-

expressed using GFP Lenti-miR� vectors obtained from Sys-

tems Biosciences (SBI, Mountain View, CA, USA). The pCDH-

CMV-MCS-EF1-copGFP was used as a control vector (SBI,

Mountain View, CA, USA). GFP positive cells were sorted

with a BD Influx� cell sorter (BD Bioscience, San Jose, CA,

USA). Host genes overexpression was achieved by Lip-

ofectamine� 2000 transfection (LifeTechnologies) of pCMV-

Sport6-MYO5C, pCMV-Sport6-EVL and pDEST26-IGF2 vectors

(derived from the original pENTR221-IGF2 vector) provided

by Life Science (Source BioScience, Nottingham, UK). Gene

expression was verified by qRT-PCR using QuantiTect Primer

Assay (Qiagen), or, for MYO5C, using custom primers: MYO5C

e Forward, GAATCTCTGCCTCCACTTCG; MYO5C e Reverse,

GATAGCTGAGAGCCGTGAGG. miR-HG expression was

normalized to GUSB expression as an internal control.
2.6. Cell proliferation and colony forming assays

For proliferation assays, MDA-MB-231 and MDA-MB-361 cells

were seeded in triplicate in 6-well plates (BD Falcon�
353046) at 4 � 104 and 25 � 104 cells/well, respectively. Bio-

Rad TC10 automated cell counterwas used to count cells every

24 h for 4 days. The first measurement was taken at 24 h for

MDA-MB-231 or at 72 h for MDA-MB-361 after seeding cells.

Colony forming assays were performed by seeding 5000

cells/type in 10-cm plates (BD Falcon� 353003) and then incu-

bating plates for 10 days. Colony formation was visualized by

staining for 5 min at RT with crystal violet (1% w/v in 35%

EtOH, Santa Cruz).

http://www.mirbase.org
https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://www.ingenuity.com/
http://www.ingenuity.com/
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
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2.7. Wound-healing assay

Time-lapse video microscopy was performed as described

previously (Palamidessi et al., 2008; White et al., 2007) with

slight modifications. Confluent monolayers of MDA-MB-231

or MDA-MB-361 cells in 12-well plates (BD Falcon� 353043)

were wounded with a plastic pipette tip to induce migration

into the wound. Cells were placed on the stage of an inverted

motorized microscope (Leica AF600) in a cage incubator (Oko-

lab) at 37 �C and 0% CO2 for time-lapse video microscopy.

Phase-contrast images were collected every 20 min over a

12-h period. Videos were generated using the ImageJ software

for image analysis. Cell trajectorieswere determined using the

MTrackJ plugin of ImageJ (Meijering et al., 2012). The distance

covered by each cell and the migration speed were extracted

from the track plots. Fifteen cells from 3 independent experi-

ments were analyzed for each condition, and data are

expressed in micrometers as mean � s.

2.8. Statistical analysis

The significance of the overlap between gene lists was based

on the hypergeometric distribution (Fury et al., 2006). The

extension to the case of more than two overlapping lists was

based on marginalization of joint probability and chain rule

of probability.

RT-PCR gene expression analysis and relative statistical

analyses were performed using JMP 10.0 64-bit edition (SAS

Institute Inc.). Statistical analyses were performed on log2

data using parametric tests (t-test, ANOVA). Cluster 3.0 for
Table 1 eOverlapping miR-HGs in the different ana
scale) in G3 vs. G1 and ERD vs. ER-analyses ( P <
Gene Expression Omnibus accession numbers of the
miR-HGs found regulated in the relative dataset. %,
miR-HGs mapped on the array (N [ 243). N overla
regulated in highlighted datasets (light/dark grey are

G3/G1

Dataset N
% 

(N/243)

GSE4922 110 45 53
P<0.000GSE1456 56 23

GSE2990 78 32
GSE7390 35 14

ER+/ER-

Dataset N
% 

(N/243)
N 

GSE4922 97 40 27
P<0.00GSE2990 29 12

GSE7390 43 18
Mac OS X (http://bonsai.hgc.jp/wmdehoon/software/clus-

ter/) and Java Treeview (http://jtreeview.sourceforge.net)

were used for the hierarchical clustering analysis. Uncen-

tered correlation and centroid clustering methods were

used on log2 median centered data. The multivariate model

to predict risk of having an aggressive tumor subtype was

built using diagonal linear discriminant analysis (DLDA)

with BRB ArrayTools (http://linus.nci.nih.gov/BRB-Array-

Tools.html). Briefly, the model assigned a risk index to every

patient and classified them as high- or low-risk of having an

aggressive tumor subtype based on linear combination of

gene expression values weighted by coefficients calculated

during training of the classifier. The critical cutoff value to

predict high-/low-risk was identified by the receiver oper-

ating characteristics curve analysis (ROC) using JMP 10.0

software, and it was set at �1.23. In the training set,

twenty-eight out of the 29 LuA tumors (w97%) were pre-

dicted as ‘low risk’, which is consistent with the reported

low metastatic behavior of LuA breast tumors (Voduc et al.,

2010). In contrast, 43 out of the 66 patients with the more

aggressive LuB tumor subtype (w65%) were predicted as

‘high risk’ (P < 0.0001). Overall, the test displayed an accu-

racy, sensitivity and specificity of w75%, w65% and w97%,

respectively, in the training set, and it was independent

from other risk factors such as nodal status, tumor size

(pT), and HER2 positivity (Table S1).

Multivariate nominal logistic regression of miRNA risk

class was performed using JMP 10.0 software. The Odds ratio

of miRNA high-risk class was adjusted for ErbB2 (HER2), nodal

status and tumor size (pT).
lyses. Overlapping miR-HGs (highlighted in grey
0.05, BenjaminieHochberg correction). Dataset,
Affymetrix datasets. N, total number of unique
percentage of miR-HGs regulated out of the total
pping, number of miR-HGs commonly found
as). P, significance of the overlaps.

N overlapping

1 47
P<0.0001 25

P<0.0001

overlapping

01 17
P<0.0001

http://bonsai.hgc.jp/~mdehoon/software/cluster/
http://bonsai.hgc.jp/~mdehoon/software/cluster/
http://bonsai.hgc.jp/~mdehoon/software/cluster/
http://jtreeview.sourceforge.net
http://linus.nci.nih.gov/BRB-ArrayTools.html
http://linus.nci.nih.gov/BRB-ArrayTools.html
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
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3. Results

3.1. An in silico approach to extract information on the
regulation of int-miRNAs from microarray gene expression
(mRNA) datasets

Several studies have indicated that there is a good correlation

between the expression of miR-HGs and their respective int-

miRNAs (Baskerville and Bartel, 2005; Wang et al., 2009;

Wang and Li, 2009). Therefore, the first step in our strategy

was the development of an in silico approach to predict int-

miRNA expression by means of microarray-based analysis of

miR-HG expression profiles. To this end, we used a control-

lable and syngeneic model system, the non-transformed

breast cell line MCF10A infected with the Simian virus 40

(SV40) large T antigen, which causes cell transformation and
Figure 1 eGlobal gene expression profiles of miR-HGs in breast cancer. A.

Affymetrix meta-analysis. For this simulation, we used 1000 lists of random

HGs, and which contained genes that, to date, have not been associated w

distribution of the random lists (1000 random lists of 422 probe sets) in th

probe sets (D.E., differentially expressed probe sets) found in the random lis

random lists. Red dashed lines indicate the position, within the distribution

P-values indicate the fraction of random lists having an equal or larger num

B. Results of the Monte Carlo simulation for the ERD vs. ER-breast can
alters the expression of numerous genes (Carbone et al.,

1997; De Luca et al., 1997; Girardi et al., 1962). We compared

the mRNA and miRNA expression profiles of these MCF10A-

SV40 cells to those of mock-infected MCF10A cells (see

Methods). miR-HGs were identified by mapping the genomic

position of 706 knownhumanmiRNAprecursors (pri-miRNAs)

to the genomic coordinates of the entire human genome. This

resulted in the identification of 317 pri-miRNAs located within

the introns of 269 uniquemiR-HGs (Table S2). Affymetrix gene

expression analysis revealed 43 miR-HGs differentially

expressed in MCF10A-SV40 vs. control cells (FDR<10%, Table

S3), which contain 51 pri-miRNAs in their introns, correspond-

ing to 84 mature int-miRNAs. We validated the analysis, by

directly measuring the expression of 47 of these miRNAs, in

the same samples, by qRT-PCR (using available TaqMan as-

says). Of the 47 int-miRNAs, 38 were detectable by qRT-PCR,

and of these 31 were congruently regulated with their miR-
Results of the Monte Carlo simulation for the G3 vs. G1 breast cancer

ly selected genes that were of the same size as the original list of miR-

ith any int-miRNA (“non-host genes”). Histograms represent the

e indicated GEO datasets. X-axes: number of significantly regulated

ts ( P < 0.05; BenjaminieHochberg correction). Y-axes: frequency of

s, of the miR-HG list (422 probe sets) identified through our analysis.

ber of significantly regulated probe sets compared to the miR-HG list.

cer Affymetrix analysis. Results are presented as in (A).

http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001


G
E
O
-3

P
G
E
O
-4

P
T
C
G
A

su
b
ty
p
e

P
(A

N
O
V
A
)

<
0
.0
0
1

0
.0
0
1

e

0
.0
0
2

<
0
.0
0
1

<
0
.0
0
1

0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

0
.0
0
1

0
.0
1
6

<
0
.0
0
1

<
0
.0
0
1

0
.0
0
3

<
0
.0
0
1

<
0
.0
0
1

0
.0
0
4

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

<
0
.0
0
1

x
G
E
O
d
a
ta
se

ts
a
re

sh
o
w
n
.T

h
e
si
g
n
ifi
ca

n
ce

b
y

e
t
(2
0
1
2
))
,i
n
w
h
ic
h
m
o
le
cu

la
r
su

b
ty
p
in
g
u
si
n
g

n
d
P
-v
a
lu
e
s
(P
)
a
re

re
p
o
rt
e
d
.
G
E
O
-1
,
G
S
E
4
9
2
2

M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 4 7 3e4 8 7478
HGs (Table S4). The positive correlation between the expres-

sion of miR-HGs and int-miRNAs was significant when

analyzed both qualitatively (congruent direction of regulation;

P ¼ 0.02, Figure S2A) and quantitatively (expression ratios;

P ¼ 0.0003, R ¼ 0.4, Figure S2B). In contrast, the 74 int-

miRNAs (for which TaqMan assays were available) within in-

trons of unregulatedmiR-HGs (FDR>10%), did not show signif-

icant co-regulation with their cognate miR-HGs (P ¼ 0.2 and

P ¼ 0.5; Figure S2C and D), possibly due to a different post-

transcriptional regulation of mRNA and miRNA cognate

transcripts.

In summary, these data indicate that our bioinformatics

approach can be used to infer int-miRNA regulation through

host gene expression profile analysis.
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3.2. In silico prediction of miR-HGs differentially
regulated in breast cancer

We next analyzed the expression of miR-HGs in breast cancer

through a meta-analysis of expression datasets of 666 pa-

tients, from four independent studies with clinical and path-

ological information, and raw data available through the GEO

database (Table S5). We mapped 243 unique miR-HGs (con-

taining 264 int-miRNAs) whose expression data were present

in the datasets (Table S6). Through the comparison of tumors

with different clinical and pathological parameters, we iden-

tified a significant number of differentially expressed miR-

HGs ( P < 0.05, BenjaminieHochberg correction; Table S7A

and B), especially in the comparisons between poorly differ-

entiated (G3) and well-differentiated (G1) tumors, or between

estrogen receptor positive (ERþ) and estrogen receptor nega-

tive (ER�) tumors. In the first instance (G3 vs. G1), 14e45% of

all miR-HGs (depending on the considered dataset, Table 1)

were differentially regulated; in the second case (ER þ vs.

ER�) the differential expression of miR-HGs was 12e40%

(Table 1).

It has been reported that the differences in the transcrip-

tomic profiles of different types of breast cancer (i.e. G3 vs.

G1, or ER�vs. ERþ) are so vast that regulation of a set of genes

of interest might simply reflect large-scale transcriptional

changes (Ivshina et al., 2006; Sotiriou et al., 2003, 2006), and

even that a significant number of randomly chosen “signa-

tures” may have prognostic value (Venet et al., 2011). Thus,

to determine whether the large fraction of miR-HGs differen-

tially regulated in breast cancer was not the mere result of

large-scale transcriptional changes, we performed a Monte

Carlo simulation using 1000 random lists of non-host genes

(which represent more than 95% of the entire genome). In

G3 vs. G1 tumors, there was a significant enrichment of differ-

entially regulated miR-HGs, with respect to non-host genes

( P < 0.01 in all datasets; Figure 1A). A similar enrichment

was also observed, although to a lesser extent, when

ERþ tumors were compared with ER� (Figure 1B).

The above result argues that miR-HGs are preferentially

and selectively regulated among different types of breast can-

cers. While this concept will be further discussed later, it is of

note that there is a high degree of overlap between the G3/G1

and the ERþ/ER� lists of miR-HGs regulated with same trend,

in independent datasets (Table 1 and Tables S7C and D).

http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
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3.3. From miR-HGs to int-miRNAs: in silico predictions
of relevance to cancer

We next attempted to translate the information on miR-HGs

into the corresponding information concerning their hosted

int-miRNAs. Since this step was preparatory to the actual

validation and analysis of biological relevance in “real” tu-

mors, we concentrated on the miR-HGs differentially

expressed between G3 and G1 tumors, which displayed the

most consistent and significant regulation among datasets

(Figure 1). To eliminate candidates whose fluctuations might

be due to technical or biological variability, we applied a

stringent threshold and selected only those miR-HGs that

displayed a fold-change of at least 1.5 (positive or negative)

in at least 3 out of the 4 datasets. This yielded a list of 8

candidate miR-HGs, of which 2 were upregulated and 6

downregulated (Table 2).

The two upregulated miR-HGs were SMC4 and MCM7 that

are involved in DNA synthesis, mitosis and DNA repair

(Hagstrom and Meyer, 2003; Lei and Tye, 2001), and contain

two miRNA clusters in their introns: the miR-15bw16-2 and

the miR-25w106b cluster, respectively. Both miRNA families

have been described as being relevant to cancer (Bonci et al.,

2008; Poliseno et al., 2010). Conversely, the six downregulated

miR-HGs contain nine miRNAs whose relevance to cancer has

not been investigated in detail: miR-548f-2, miR-1245, miR-218/

218*, miR-342-3p/-5p, miR-483-3p/-5p and miR-1266 (Grady
Figure 2 e Ingenuity Pathway Analysis of predicted and experimentally vali

target genes. B. Bio-functions analysis of experimentally validated target ge

548f, miR-1245 and miR-1266. Y-axis, P-value (-log10; Fisher’s Exact test) o

(displayed on the X-axis) annotated in the Ingenuity Bio-functions database

are downregulated in G3 breast tumors. G3-UP, target genes of int-miRN

P-value (Fisher’s exact test) cutoff was set at 0.05 (Threshold).
et al., 2008; Song et al., 2012; Soon et al., 2009; Tie et al.,

2010; Veronese et al., 2010).

To gain initial insights into the potential relevance of these

int-miRNAs to breast cancer, we performed pathway analyses

of their predicted and validated target genes (see Methods).

We observed a statistically significant enrichment in cancer-

relevant genes among the predicted targets, which was

confirmed also among the experimentally validated target

genes (Figure 2A and B).
3.4. Validation of predicted breast cancer-regulated int-
miRNAs by qRT-PCR

To validate the results of the in silico analysis, we analyzed

the eleven identified int-miRNAs by qRT-PCR in a cohort of

36 FFPE archival G1 and G3 breast cancers (Table S8A).

miR548f-2 and miR-1245 were undetectable in all samples

and were thus excluded from further analyses. The hierar-

chical clustering analysis of the tumor samples, based on

the expression of the remaining nine int-miRNAs, displayed

a clear separation at the first tree branching between G3 and

G1 tumors (70% and 75% of G3 and G1 tumors, respectively,

clustering at the first branch; P ¼ 0.006, likelihood-ratio

test; Figure 3A). This result confirmed a distinct pattern of

expression of the int-miRNA signature in high-vs. low-

grade breast tumors, as predicted by the miR-HG expression

analysis. Individually, miR-342-3p/5p, miR-483-3p/5p and miR-
dated int-miRNA target genes. A. Bio-functions analysis of predicted

nes (see also Table S12). No validated targets were available for miR-

f the enrichment of int-miRNA targets in the biomolecular functions

. G3-DOWN, target genes of int-miRNAs located in host genes that

As located in host genes that are upregulated in G3 breast tumors.

http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001


Figure 3 e Validation of the int-miRNA signature in the 36-patient cohort of G1 and G3 breast tumors by qRT-PCR. A. Hierarchical clustering

of tumors based on the expression of selected int-miRNAs. miR-15b and miR-106b were used as representatives of their respective co-transcribed

miRNA clusters, while miR-548f-2 and miR-1245 were undetectable by qRT-PCR. Columns represent log2 ratios of expression of each miRNA

(median centered); rows represent tumor samples. Colored bars indicate the class of each patient. The color code, on the right, shows the

characteristics of each patient: red, grade 3 tumor (G3); grey, grade 1 tumors (G1); ER, estrogen receptor (black [ positive, white [ negative);

HER2, ErbB2 receptor (black [ positive, white [ negative). B. Differences in int-miRNA expression between G3 and G1 tumors. G3 vs. G1

(Fold): fold-change difference in expression; P-value calculated by Student’s t-test; Host: Affymetrix host gene expression change in G3 vs. G1

tumors (D: downregulated, U: upregulated). C. Expression ratios (Log2) of int-miRNAs in breast tumor subtypes defined by ER/PgR, HER2 and

Ki67 status. The tumor subtypes, shown on the x-axes, were identified as follows: basal [ ERL, PgR- and HER2-; HER2 [ ERL, PgR- and

HER2D; LuB [ ERD and/or PgRD, Ki67 ‡ 14%; LuA [ ERD and/or PgRD, Ki67 < 14%. P-values were calculated using the Student’s t-

test. Asterisks, statistically significant P-values.
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1266 were strongly downregulated in G3 breast tumors

( P < 0.05; Figure 3B). miR-218/218* were also downregulated,

but not significantly ( P > 0.05; Figure 3B). Similarly, the regu-

lation of miR-15b and miR-106b (used as representatives of

the miR-15bw16-2 and the miR-25w106b naturally

co-transcribed clusters) was not significant ( P > 0.05;

Figure 3B).

Since the expression of the miR-HGs was also differen-

tially regulated in different breast cancer molecular subtypes

(Table 2, Figure S3), we compared the expression levels of

the significantly regulated int-miRNAs in the breast tumor

subtypes in the 36-patient cohort. The different molecular

subtypes e luminal A (LuA), Luminal B (LuB), basal, and

HER2 e were identified using ER, progesterone receptor
(PgR), HER2 and Ki67 immunohistochemistry markers

(Blows et al., 2010; Cheang et al., 2009; Nielsen et al., 2004).

Overall, the int-miRNAs showed significant downregulation

in the most aggressive molecular subtypes (LuB, basal, and

HER2) with respect to the less aggressive LuA subtype

(Figure 3C). Similar results were obtained using an external

dataset (Enerly et al., 2011) with matched miR-HG and int-

miRNA expression profile (Figure S4). Importantly, we also

observed a general downregulation of these int-miRNAs,

and of their relative miR-HGs, in breast tumors when

compared to normal breast epithelium (Figure S5). This latter

finding suggests that the loss of expression of the analyzed

int-miRNAs/miR-HGs might be directly involved in the

transformation process.

http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
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3.5. Detection of aggressive G2 breast cancers using the
int-miRNA signature

The sum of the previous results suggested an association be-

tween the downregulation of four int-miRNAs e miR-342-3p,

miR-483-3p,miR-483-5p andmiR-1266e and features of aggres-

siveness in breast cancer.We directly tested this possibility by

taking advantage of a category of breast tumors with amoder-

ate degree of differentiation (G2 tumors). The reason for doing

so was dual. On the one hand, G2 tumors were not considered

in our previous analyses, thus circumventing the risk of over-

fitting the data because of the selection of candidate int-

miRNAs. On the other, G2 tumors represent a heterogeneous

category, composed of tumors with varying degrees of aggres-

siveness (Gnant et al., 2011; Ivshina et al., 2006; Rakha et al.,

2010; Sotiriou et al., 2006).

An independent cohort of 95 G2 tumors was profiled for

miR-483-3p/5p, miR-342-3p and miR-1266 expression
Figure 4 e Molecularly “aggressive” G2 breast cancers are identified by an i

qRT-PCR for the expression of miR-342-3p, miR-483 and miR-1266. Res

patients), were subjected to hierarchical clustering analysis. Columns repre

represent tumor samples. The color code, on the right, indicates tumor grade

(black [ positive); HER2, (black [ positive). B. Contingency analysis of t

likelihood-ratio test. C. Expression analysis of int-miRNAs in G2-luminal A

t-test. D. Performance of the int-miRNA signature composed of miR-483-

(Testing Set) of 90 G2 breast tumors. Y-axes: risk scores of the model. X-ax

patients in the high-vs. low-risk category, determined by nominal logistic re

t-test. Asterisks, statistically significant P-values.
(Table S8B). Hierarchical clustering analysis of int-miRNA

expression profiles of this cohort, alone or together with those

of the previously described 36-tumor G1/G3 cohort, revealed

two main clusters, characterized by opposite regulation of

the four int-miRNAs (Figure 4A). The cohort of G2 breast can-

cer patients was almost equally distributed between the two

clusters. Interestingly, luminal A (less aggressive) and luminal

B (more aggressive) G2 cancers co-segregated significantly

with G1 and G3 tumors, respectively (Figure 4A), as also

confirmed by contingency analysis ( P < 0.0001; Figure 4B).

Three of the four int-miRNAs, miR-483-3p, miR-483-5p and

miR-1266, were significantly downregulated in G2-LuB vs. G2-

LuA tumors ( P< 0.0001; Figure 4C), suggesting that theymight

identify more aggressive subtypes (i.e. Luminal B) even in G2

tumors. To investigate this possibility, we built a multivariate

model based on these three miRNAs using the 95-patient

cohort as the training set (see Materials and Methods). The

modelwas then validated in an additional independent cohort
nt-miRNA signature. A. The cohort of 95 G2 tumors was analyzed by

ults, alone or together with those obtained in G3:G1 cohort (36

sent log2 ratios of expression of int-miRNAs (median centered); rows

/subtype: G3, red; G1, grey; G2-LuB, light blue; G2-LuA, white; ER,

umor distribution in Clusters 1 and 2. Color codes as in (A). P-value,

(G2-LuA) and G2-luminal B (G2-LuB) tumors. P-values, Student’s

3p, miR-483-5p and miR-1266 in the additional independent cohort

es: breast tumor subtypes. Dashed line: decision cutoff used to classify

gression and ROC analysis. P-values were calculated by the Student’s

http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001
http://dx.doi.org/10.1016/j.molonc.2014.10.001


Figure 5 e Effects of overexpression of miR-1266, miR-342-3p/5p and miR-483-3p/5p and of relative host genes in breast cancer cell lines. Cells

were infected with lentiviral vectors expressing precursors of miR-342, miR-483 and miR-1266, or transfected with vectors expressing full-length

EVL, IGF2 and MYO5C miR-HGs. A. qRT-PCR analysis of int-miRNA expression in MDA-MB-231 cells. miRNA levels are reported as the

Log2 normalized ratio of expression (-ddCT) relative to wild-type (non-infected) cells. pCDH, the empty vector pCDH-CMV-MCS-EF1-GFP

was used as control. B. Cell proliferation assay with MDA-MB-231 cells. Data represent the mean ± s from three independent experiments

(n [ 3). P-value, two-way ANOVA test relative to control cells (i.e., WT or pCDH). The asterisk indicates statistical significance. C. Colony

forming assay with MDA-MB-231 cells. Images (top) represent colonies formed ten days after seeding. The bar graph (bottom) displays the

mean ± s from two independent experiments (n [ 2). *, statistically significant P-value (P < 0.05) relative to control cells (WT or pCDH). D.

Cell proliferation assay with MDA-MB-361 cells. Data represent the mean ± s from three independent experiments. No significant differences

M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 4 7 3e4 8 7482
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of 90 patients with G2 node-negative breast cancer, in which

all subtypes were represented (Table S9). In this cohort, the

model correctly identified all 5 basal/HER2 tumors and 60 of

75 LuB tumors (80%) as ‘high risk’, and 7 of 10 LuA tumors

(70%) as ‘low-risk’ (Figure 4D). Thus, the risk model detected

aggressive tumor subtypes with an accuracy, sensitivity and

specificity of 80%, 81% and 70%, respectively.

In conclusion, we have provided a proof of principle that

the detection of int-miRNAs, through data mining of miR-

HGs in published cancer expression datasets, represents a

viable strategy for the identification in silico of miRNAs of po-

tential cancer relevance.

3.6. Increased expression of miR-342 and miR-1266, but
not of their host genes, impairs breast cancer cell
proliferation and migration

We investigated whether the regulated expression of the loci

corresponding to miR-342-3p/5p, miR-483-3p/5p and miR-1266

has an impact on the biology of breast cancer cells. Hierarchi-

cal clustering of the miR-342, miR-483 and miR-1266 miR-HG

expression profiles (i.e. EVL, IGF2 and MYO5C, respectively)

in a panel of 51 breast cancer cell lines, for which expression

data are publicly available [Table S10 (Neve et al., 2006)],

revealed two main clusters, enriched in cell lines of the basal

(Cluster 1, 20 out of 22, P < 0.0001) or luminal (Cluster 2, 23 out

of 29, P < 0.0001) subtypes (Figures S6A and B). We selected as

a model system, the MDA-MB-231 cell line that displayed the

lowest median expression levels of the IGF2, EVL2 and

MYO5C miR-HGs (Figure S6C). As a control, we selected the

MDA-MB-361 cell line, which displayed an opposite, and

quantitatively comparable, regulation of the same miR-HGs

(Figure S6C). By qRT-PCR analysis, we confirmed that the

expression of miR-342-3p/5p, miR-483-3p/5p and miR-1266

was indeed congruent with the expression of their host genes

in both of the selected cell lines (Figure S6D).

We selected two relevant cancer phenotypes, proliferation

and migration, to test the impact of restoration of high levels

of expression of miR-342, miR-483 and miR-1266 in MDA-MB-

231 cells, using MDA-MB-361 as a specificity control. We also

tested the effects of overexpression of the corresponding

miR-HGs (IGF2, EVL2 and MYO5C). The lentiviral-mediated

expression of miR-342 and miR-1266 (Figure 5A), caused a sig-

nificant reduction in the proliferation rate and colony forming

ability of MDA-MB-231, but not MDA-MB-361, cells

(Figure 5BeE). Similarly, miR-1266 expression significantly

impaired cell migration of MDA-MB-231, but not MDA-MB-

361, cells (Figure 6AeC). Conversely, overexpression of the

miR-HGs did not affect proliferation or migration of MDA-

MB-231 cells (Figure 5FeG, and Figure 6D). Finally, since nega-

tive self-regulation of miR-HGs has been reported in the liter-

ature (Bosia et al., 2012), we analyzed the expression of miR-
were found by two-way ANOVA test relative to control cells ( P> 0.5; WT

MB-361 cells. miRNA levels are reported as the Log2 normalized ratio of ex

empty vector pCDH-CMV-MCS-EF1-GFP was used as control. F. Cell p

miR-HGs. Data represent the mean ± s from three independent experimen

test ( P > 0.5) relative to control cells (transfected with a pDEST26 empty

231 cells. EVL, IGF2 or MYO5C host gene expression is reported as the Lo

vector transfected) cells. Empty, the empty vector pDEST26 was used as a
HGs upon overexpression of their cognate int-miRNAs: no sig-

nificant changes were observed (Figure S7).
4. Discussion

Here, we describe an approach to exploit an intrinsic charac-

teristic of miRNAs, i.e. that w50% of their genes reside within

introns of protein-coding genes and share their regulation (He

et al., 2012; Monteys et al., 2010; Ozsolak et al., 2008; Rodriguez

et al., 2004). We reasoned that the wealth of publicly available

microarray (mRNA) expression datasets might contain

“encrypted” miRNA-related information that could be

exploited for the discovery of biologically relevant miRNAs

simply through meta-analysis.

In designing a proof-of-principle validation, we concen-

trated on breast cancer for which several high-quality, inde-

pendent, transcriptome datasets are publicly available. We

did so with multiple intents: i) to verify whether we could

identify differentially expressed int-miRNAs simply by

extracting the latent information in published gene expres-

sion (mRNA) datasets, ii) to verify whether int-miRNA signa-

tures can be identified that would allow patient

stratification, iii) to identify int-miRNAs whose involvement

in biological processes, most notably cancer, was not previ-

ously known, iv) to investigate whether, at least in some

cases, the dysregulations emerging from gene expression

profiling might be more informative if viewed from the point

of view of the hosted int-miRNA, rather than of the hosting

gene.

Our efforts were successful on all accounts. Firstly, we

were able to identify several miR-HGs, and their correspond-

ing int-miRNAs, that are differentially expressed in various

breast cancer subtypes. Importantly, several of the int-

miRNAs that we identified have recently been found to be

regulated in high-throughput miRNA expression profilings of

independent cohorts of breast cancer patients [Table S11;

(Aure et al., 2013; Blenkiron et al., 2007; Dvinge et al., 2013;

Volinia et al., 2012)]. These data further support the effective-

ness of our in silico approach to predict cancer-regulated int-

miRNAs.

Secondly, we were able to identify an int-miRNA cancer

signature e composed of miR-342, miR-483 and miR-1266 e

that successfully stratified G2 cancers according to their mo-

lecular subtype, and therefore, according to their aggressive-

ness. We are not claiming a direct, even prospective, clinical

utility of the identified signature or of the related risk model.

Clearly, further studies are needed in this direction, aimed

at, for example, comparing our int-miRNA cancer signature

with existing stratification tools, such asmolecular subtyping.

However, our data demonstrate that the int-miRNA-related

information “hidden” in transcriptomic profiles can be
or pCDH). E. qRT-PCR analysis of int-miRNA expression in MDA-

pression (-ddCT) relative to wild-type (non-infected) cells. pCDH, the

roliferation assay in MDA-MB-231 cells overexpressing the indicated

ts (n [ 3). No significant differences were found by two-way ANOVA

vector). G. qRT-PCR analysis of miR-HG expression in MDA-MB-

g2 normalized ratio of expression (-ddCT) relative to control (empty

control.
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Figure 6 e Effects of overexpression of miR-1266, miR-342-3p/5p and miR-483-3p/5p on the migration of breast cancer cell lines. A. Monolayers

of infected or wild-type (WT) MDA-MB-231 cells were scratch-wounded, as shown in the images on the left, and monitored by time-lapse video

microscopy. Representative images were taken from movies at 0, 6 and 12 h. Colored lines show tracks of 5 representative cells. White Bar, 30 mm.

B. Quantitation of the experiment shown in (A). Mean distance covered (left) and velocity (right) are shown. Data represent the mean ± s from 15

individually tracked cells from 3 independent experiments. P-values were calculated using Welch’s t-test analysis. ***, P < 0.0001 relative to

control cells (Wt or pCDH). C. Quantitation of migration of MDA-MB-361 cells overexpressing miR-1266, miR-342-3p/5p and miR-483-3p/5p,

relative to control cells (Wt or pCDH). Mean distance covered (left) and velocity (right) are shown. Data represent the mean ± s from 15

individually tracked cells from 3 independent experiments. P-values were calculated using Welch’s t-test analysis and were not significant

(P > 0.5). D. Quantitation of migration of MDA-MB-231 cells overexpressing EVL, IGF and MYO5C, relative to control cells (pDEST). Mean

distance covered (left) and velocity (right) are shown. Data represent the mean ± s from 15 individually tracked cells from 3 independent

experiments. P-values were calculated using Welch’s t-test analysis and were not significant (P > 0.5).
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successfully extracted in silico and used to identify miRNAs of

potential clinical utility.

From a biological viewpoint, our approach led to the iden-

tification of two miRNAs, miR-342 and miR-1266, that are

involved in cancer-related phenotypes. The fact that overex-

pression of these miRNAs inhibited cancer-relevant pheno-

types specifically in cells that display low expression of

these miRNAs, but not in cells that express normal levels, ar-

gues that the downmodulation ofmiR-342 andmiR-1266might

have a causal role in determining the aggressiveness of some

breast cancers. This latter notion is supported by our findings

that miR-342 and miR-1266 are differentially expressed be-

tween different breast cancer subtypes, and also underex-

pressed in some tumor tissues with respect to the normal

breast epithelium. Of note, while there is some evidence in

the literature indicating an involvement of miR-342 in cancer

(Dvinge et al., 2013; Veronese et al., 2010), there have been

no reports, prior to this study, of a role of miR-1266 in cancer

(Ichihara et al., 2012).
Lastly, in the case of the loci encoding miR-342/EVL and

miR1266/MYO5C, we report the intriguing observation that

restoration of the expression of the int-miRNA, but not that

of the host gene, inhibits cancer-relevant phenotypes. Thus,

adding the “int-miRNA perspective” to the analysis and vali-

dation of gene expression studies is likely to increase the like-

lihood of identifying significant biological mechanisms

involved in cancer.
5. Conclusions

In summary, we have developed an approach for the identifi-

cation of biologically relevant int-miRNAs that has the poten-

tial to accelerate miRNA research by bypassing the lengthy

and costly phase of initial screenings, and substituting them

with meta-analysis of miR-HGs in publicly available expres-

sion datasets. The approach apparently performs well both

in the holistic-oriented field of signature identification, which
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finds primary application in projects of clinical interest, and in

the more traditional field of “gene hunting” to guide high-

resolution studies. While we have applied the methodology

to the breast cancer setting to obtain a proof of principle of

its utility, we envision applications in several fields of biology

andmedicine for which high quality gene expression datasets

are available.
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