ST

Department of T O TRENTO - taly

Information Engineering
Wbl b it

DISI - Via Sommarive 14 - 38123 Povo - Trento (ltaly)
http://www.disi.unitn.it

SAVE UP TO 99% OF YOUR TIME IN
MAPPING VALIDATION

Vincenzo Maltese, Fausto Giunchiglia,
Aliaksandr Autayeu

August 2010

Technical Report # DISI-10-046

Also: in proceedings of the 9th International Conference on
Ontologies, DataBases, and Applications of Semantics
(ODBASE 2010).

Save up to 99% of your timein mapping validation :
Vincenzo Maltese, Fausto Giunchiglia, Aliaksanditaiyeu

DISI - Universita di Trento, Trento, Italy
{fausto, maltese, autayeu}@disi.unitn.it

Abstract. Identifying semantic correspondences betweenrdiffievocabularies

has been recognized as a fundamental step towahilsveng interoperability.

Several manual and automatic techniques have bmmtty proposed. Fully
manual approaches are very precise, but extrenwailyc Conversely, auto-
matic approaches tend to fail when domain spebifickground knowledge is
needed. Consequently, they typically require a rahwalidation step. Yet,

when the number of computed correspondences is laegg, the validation

phase can be very expensive. In order to reduceribldems above, we pro-
pose to compute the minimal set of corresponderibaswe call the minimal

mapping, which are sufficient to compute all theeptones. We show that by
concentrating on such correspondences we can gate 20% of the manual
checks required for validation.

Keywords: Interoperability, minimal mappings, mapping validat

1 Introduction

Establishing semantic correspondences betweendtitf@ocabularies is a fundamen-
tal step towards achieving interoperability amongnt [12]. In the recent years, sev-
eral manual and semi-automatic approaches havepdreposed. For instance, we can
mention projects such as CARMENRenardus [15], Interconcept [12] and other
similar initiatives mainly focusing on LCSH [16, ,178] and DDC [19].

Manual approaches clearly produce better qualisylts, but hardly scale in case
of very large Knowledge Organization Systems, sachCSH and DDC. On the oth-
er hand, automatic procedures can be very effective tend to fail when domain
specific background knowledge is needed [3, 20jvaxtheless, semantic matching
techniques are nowadays considered a fundamemtztiqer in many applications and
many automatic tools are offered. A good survegsesented by [1].

Despite the progress on this topic, a lot of wdilk Isas to be done [13]. A recent
study [6] has underlined that current matchingdasfer poor support to users for the
process of creation, validation and maintenanddeftorrespondences. In fact, given
two schemas in input, most of the tools limit th&ipport to the suggestion of an ini-
tial set of correspondences, called mapping ornalignt, which is automatically
computed by the system. In addition, when a graghiterface is provided, it typi-
cally has scalability problems as the number ofesoahd correspondences grows [5].
It is rather difficult to visualize even a singlatology. Current visualization tools do

1 This paper is a variation of the paper [4] presért the non-archival 4th Ontology Matching
Workshop 2009.

2 http://www.bibliothek.uni-regensburg.de/projectsfoen12/index.html

not scale to more than 10,000 nodes, and only asfastems support more than 1,000
nodes [8]. The problem becomes even more challgngith matching, because it is
necessary to visualize two ontologies, called thece and target ontologies, and the
(potentially very big) set of semantic corresporcEnbetween them. The number of
potential correspondences grows quadratically indize of the ontologies, e.g. two
ontologies with 1& nodes may have up to 6orrespondences. As a consequence,
handling them turns out to be a very complex, shomt error prone task.

In this paper we present MinSMafcta semantic matching tool that takes two
lightweight ontologies [2], and computes the minimaapping between them. The
minimal mapping is that minimal subset of corregfemtes such that all the others
can be efficiently computed from them, and aredf@e said to be redundant. At the
best of our knowledge no other tools directly cotepminimal mappings. In [23, 24,
25] the authors use Distributed Description Lodid®L) [26] to represent and rea-
son about existing ontology mappings. They intr@dadew debugging heuristics to
remove correspondences which are redundant or @genigrconsistencies in a given
mapping [24]. However, the main problem of this magh is the complexity of DDL
reasoning [25]. Our experiments demonstrate a anotiat improvement both in run-
time and total number of discovered correspondemces. similar matching tools.
They also show that the number of correspondenmcései minimal mapping is typi-
cally a very small portion of the overall set ofraspondences between the two on-
tologies, up to 99% smaller [12]. Therefore, minimmappings have clear advantages
in visualization and user interaction. As we expladi this paper, this is particularly
important to reduce the effort in mapping validati@eing aware that the matching
process cannot be completely automated and leveramgi the properties of minimal
mappings, we propose the specification for a neal tiw interactively assist the user
in the process of mapping creation and validation.

The rest of the paper is organized as follows.€dctien 2 we analyze the weak-
nesses of the current tools which intend to suppagpping creation, validation and
maintenance. In section 3 we present the notianinfmal mapping. In section 4 we
present the MinSMatch algorithm. In section 5 wevjite a detailed description of
the user interaction issues in the mapping valitaphase. Evaluation results are
given in section 6. The last section concludesptiyger by drawing some conclusions
and outlining future directions.

2 Limitations of current matching tools

Many automatic tools are currently available whidbntify the set of semantic corre-
spondences between two different schemas [1]. Hewes underlined in [13] there
are still several challenges to address. In thisice we focus on the problems for
which we provide a substantial improvement:

« Low performance. Identifying semantic correspondences is a contiouizl
expensive task. In fact, tools leveraging on seiognincluding MinSMatch,
typically require logical reasoning support than camount to exponential

3 A more detailed description of MinSMatch can berfd in [4]. MinSMatch is part of the se-
mantic matching open source suite availabletat//semanticmatching.org/

computation in the worst case [22]. It is thereffunedamental to develop tech-
nigues that limit as much as possible the callsg@al reasoners.

e Lack of background knowledge. Automatic tools tend to fail when domain
specific background knowledge is needed [3, 20pdEixnents show that re-
sults are very precise when syntactic techniques @ring comparison) are
used, while recall rapidly degrades when semaoticparison is needed.

Lack of support for validation. The problem of finding semantic correspon-
dences between two schemas cannot be completalsnated [12]. Thus, it is
fundamental to provide a tool which assists ther usahe task of creating,
validating and maintaining a mapping in time. Téli®uld be done taking into
account the interaction of the user with the currercomplete and transitory
set of established correspondences. Most of this tagrently available pro-
vide an initial set of automatically created cop@sdences. Unfortunately,
none of them, including those offering a graphicsgr interface, provide an ef-
fective support for validation and maintenance [6].

« Inadequate interaction. Current tools are cognitively demanding. Theydten
to show information which is irrelevant for the dgons to take. To reduce the
cognitive load, the tool should reduce the numbétemns that the user must at
each step internally (i.e. in memory) track andcpss, allowing the user to
concentrate on important parts of the task [6]sTd#in be achieved by focusing
on the relevant parts of the two schemas [7], nartied subset of objects
which have to be considered to take a decisionmpkes of objects which in-
fluence a decision are node labels, contextualrimétion (i.e. the path from
the root to the node) and domain knowledge.

« Scalability. Current tools hardly scale in the number of naatas links. Mini-
mizing the amount of information to visualize i®tonly viable way to solve
scalability problems. In fact, as described in [8), tool designed to visualize
ontologies scales up to 10,000 nodes. Many of thawe rendering problems
and object overlap (in terms of node labels ankklimetween the nodes).

3 Minimal mappings

Semantic matching techniques establish a set o&stiencorrespondences between
the nodes of two vocabularies (e.g. thesauri, iflea8ons, formal ontologies). This
set is called mapping or alignment. We suggestathaption of MinSMatch. It pro-
duces the minimal mapping between two tree-likeicstires that are beforehand
translated into lightweight ontologies.

3.1 Lightweight ontologies

There are different kinds of ontologies, accordinghe degree of formality and ex-
pressivity of the language used to describe thedj. [MinSMatch works on light-

weight ontologies [2]. They are tree-like formaltaogies in which nodes are con-
nected through subsumption in classification semartl1]. This means that the
extension of each concept is the set of documdrdstahe label of the node and the

arcs between nodes represent subset relationgngtance, the extension of the con-
cept “animal” is the set of documents about reatldvanimals. Note that this is the
semantics implicitly used in libraries. Many typgfscommonly used ontologies (such
as on-line catalogs, file systems, web directoded library classifications) can be
translated into lightweight ontologies. For instanfl2] describes how this can be
done for LCSH and NALT. Each node label is tramslainto a logic formula repre-
senting the meaning of the node taking into accdardontext, i.e. the path from the
root to the node. Each atomic concept appearingerformulas is taken from a con-
trolled vocabulary, such as WordNet. A formal diiiom of lightweight ontology can
be found in [4], while further information aboutethranslation procedure can be
found in [2]. Fig. 1 shows an example taken fror@][1t shows two classifications
that are translated into lightweight ontologieddwing the procedure described in
[2]. Natural language labels are shown in bold.HEB@rmula is reported under the
corresponding label. Each atomic concept (e.g.6jds represented by a string fol-
lowed by a number representing the sense takendrvordNet synset.

Natural resources

Q Natural resources
natural_resources#1

natural_resources#1

1
1
1
1
1
1
1
1
Management 1
1
management#1 M e !
natural_resources#1 : natural_resources#1
1
1
Water 1
1
1
1
1

water#6 M management#1 rn e

1
1
1
1
1
1
1
1
1
1
: e water#6 M treatment#2 N
1
1
1
1
1
1
natural_resources#1 !

1
1
1
1
1
1
:
Water treatment |
1
1
1
1
1
1
1
1
1
1

Fig. 1. Two lightweight ontologies

3.2 Minimal and redundant mappings

MinSMatch computes a set of semantic corresponderuzdled mapping elements,
between two lightweight ontologies.mapping element is defined as follows:

Definition 1 (Mapping element). Given two lightweight ontologies Oand Q, a
mapping element m between them is a triple ®5 R>, where:

a) n;[ON; is a node in called the source node;
b) n,[N is a node in § called the target node;
c¢) RO{., =, c, =} is the strongest semantic relation holding betweeand n.

The strength of a semantic relation is establishecbrding to the partial order
where disjointness precedes equivalence and moréeas specific are unordered and
follow equivalence. Under this ordering, MinSMatalvays computes the strongest
semantic relation holding between two nodes. Ini@aar, it computes theninimal
mapping, i.e. the minimal subset of mapping elements betwihe two ontologies
such that all the others can be efficiently comgudtem them, and are therefore said
to be redundant. The fundamental idea is that apmgpelementm’ is redundant

w.r.t. another mapping elemenmnt if the existence of’ can be asserted simply by
looking at the positions of its nodes w.r.t. thele® ofm in their respective ontolo-
gies. The four redundancy patterns in Fig. 2, ameefich semantic relation, cover all
possible cases. A proof is given in [4]. The blasthied elements are redundant w.r.t.
the solid blue ones. The red solid curves show a@emantic relation propagates.
For instance, in pattern (1), the element <CzBjs redundant w.r.t. <A, B:>. In
fact, the chain of subsumptions=CA = B = D holdg' and therefore by transitivity we
can conclude that € D. Notice that this still holds in case we subsitA = B with
A = B. Taking any two paths in the two ontologies, aimal subsumption mapping
element is an element with the highest node inpata whose formula is subsumed
by the formula of the lowest node in the other path

—— Minimal mapping element

\ Redundancy propagation

Fig. 2. Redundancy detection patterns

This can be codified in the following redundancydition:

Definition 2 (Redundant mapping element). Given two lightweight ontologies 10
and Q, a mapping M and a mapping elementid with m’ = <C, D, R’> between
them, we say that m’ is redundant in M iff one leé following holds:
(1) f R is =, dmOM with m = <A, B, R> and n¥ m’ such that RJ {c, =}, A
0 path(C) and O] path(B);
(2) If R"is =, 3mOM with m = <A, B, R> and n¥ m’ such that R0 {3, =}, C
0 path(A) and B path(D);
3) If R is 1, AmOM with m = <A, B, 1> and m# m’ such that ACJ path(C)
and BO path(D);
(4) If R"is =, conditions (1) and (2) must be satisfied.

Here path(n) is the path from the root to the noddote that we enforam# m’ to
exclude the trivial situation in which a mappingrakent is compared with itself. We
prove in [4] that it captures all and only the cae€logical redundancy (of a mapping
element w.r.t. another one). This definition allossstracting from logical inference
to computing the redundant elements just by lookihthe positions of the nodes in

4 This is because nodes in lightweight ontologiescamnected through subsumption relations.

the two trees. The notion of redundancy given alisviendamental to minimize the
amount of calls to the logical reasoners and tacedhe problem of lack of back-
ground knowledge. Given a mapping elemant <A, B, =>, by looking for instance

at pattern (2) in Fig. 2, we can observe thatiitdsnecessary to compute the semantic
relation holding between A and any descendant thérsub-tree of B since we know
in advance that it is. The minimal mapping is then defined as follows:

Definition 3 (Minimal mapping). Given two lightweight ontologies and Q, we
say that a mapping M between them is minimal iff:

a) AmOM such that m is redundant (minimality condition);
b) AM’ DM satisfying condition a) above (maximality condit).
A mapping element is minimal if it belongs to thenimal mapping.

Note that the conditions (a) and (b) ensure thatnimimal set is the set of maxi-
mum size with no redundant elements. We also ptoae for any two given light-
weight ontologies, the minimal mapping always ex&td it is unique [4].

Minimal mappings provide clear usability advantagésnsider the example in
Fig. 3 taken from [12]. It provides the minimal npépy (the solid arrows) and the
maximum number of mapping elements, that we calhthpping of maximum size,
between the two lightweight ontologies given in.Fig Note that only the two solid
ones are minimal, because all the others (the dashes) can be entailed from them.
For instance, Ao E follows from Az D for pattern (2). As we will show, the valida-
tion phase can be faster if we concentrate on tinémal mapping. The key intuition
is that, if the user accepts as correct an elembith is in the minimal set then all the
inferred ones will be automatically validated asrect.

Natural resources Q

@ Natural resources
natural_resources#1

natural_resources#1

Management

management#1 M
natural_resources#1

Water treatment

water#6 M treatment#2 N
natural_resources#1

Water

water#6 M management#1 N
natural_resources#1

— » Minimal mapping element - ------ » Redundant mapping element

Fig. 3. The minimal and redundant mapping between twoegight ontologies

4 TheMinSMatch algorithm

At the top level the algorithm is organized asdol$:

e Step 1, computing the minimal mapping modulo equivalence: compute the
set of disjointness and subsumption mapping elesneritich areminimal

modulo equivalenceBy this we mean that they are minimal modulo ayush
ing, whenever possible, two subsumption relatidnspposite direction into a
single equivalence mapping element;

e Step 2, computing the minimal mapping: collapse all the pairs of subsump-
tion elements (of opposite direction) between @mmes two nodes into a single
equivalence element. This will result in timénimal mapping

e Step 3, computing the mapping of maximum size: Compute the mapping of
maximum size (including minimal and redundant magpélements). During
this step the existence of a (redundant) elemesudrizputed as the result of the
propagation of the elements in the minimal mapping.

The first two steps are performed at matching timieile the third is activated on
user request. The following three subsections aealye three steps above in detail.

4.1 Step 1. Computing the minimal mapping modulo equivalence

The minimal mapping is computed by a functibreeM atch whose pseudo-code is
described in Fig. 4. M is the minimal set while aid T2 are the input lightweight
ontologies.TreeMatch is called on the root nodes of T1 and T2. It igc@lly de-
pendent on the node matching functiowedeDigoint (Fig. 5) and NodeSubsum-
edBy (Fig. 6)which take two nodes nl and n2 and return a pes#iswer in case of
disjointness or subsumption, or a negative ansfieiid not the case or they are not
able to establish it. Notice that these tfuactions hide the heaviest computational
costs; in particular their computation time is exgotial when the relation holds and,
exponential in the worst case, but possibly mudtefa when the relation does not
hold. The main motivation for this is that the nodatching problem should be trans-
lated into disjointness or subsumption problemrivppsitional DL.

10 node: struct of {cnode: wff; children: node[];}

20 T1,T2: tree of (node);

30 relationin {&, =, = 1},

40 elenent: struct of {source: node; target: node; rel: relation;};
50 M list of (elenent);

60 bool ean direction;

70 function TreeMatch(tree T1, tree T2)
80 {TreeDi sjoint(root(T1),root(T2));

90 direction : = true;
100 TreeSubsunedBy(root(T1), root(T2));
110 direction := fal se;

120 TreeSubsunedBy(root (T2), root (T1));
130 TreeEquiv();
H

Fig. 4. Pseudo-code for the tree matching function

The goal, therefore, is to compute the minimal niagppy minimizing the calls to
the node matching functions and, in particular miging the calls where the relation
will turn out to hold. We achieve this purpose gpgessing both trees top down. To
maximize the performance of the systéimgeMatch has therefore been built as the

sequence of three function calls: the first callTt@eDigoint (line 80) computes the
minimal set of disjointness mapping elements, wtiile second and the third call to
TreeSubsumedBYy compute the minimal set of subsumption mappingelgs in the
two directions modulo equivalence (lines 90-120htibe that in the second call,
TreeSubsumedBYy is called with the input ontologies with swappetes. These three
calls correspond to Step 1 above. Line 130 in gseugdo code of reeMatch imple-
ments Step 2 and it will be described in the nekssction.

TreeDigoint (Fig. 5) is a recursive function which finds aijdintness minimal
elements between the two sub-trees rooted in nInanéollowing the definition of
redundancy, it basically searches for the firsjoitisness element along any pair of
paths in the two input trees. Exploiting the nestxlrsion ofNodeTreeDig oint in-
side TreeDigjoint, for any node nl in T1 (traversed top down, depst) Node-
TreeDigoint visits all of T2, again top down, depth firdtodeTreeDigoint (called
at line 30, starting at line 60) keeps fixed tharse node nl and iterates on the whole
target sub-tree below n2 till, for each path, tighlst disjointness element, if any, is
found. Any such disjoint element is added only ihimal (lines 90-120). The condi-
tion at line 80 is necessary and sufficient foruredancy. The idea here is to exploit
the fact that any two nodes below two nodes inwblvea disjointness mapping ele-
ment are part of a redundant element and, theretforgtop the recursion thus saving
a lot of time expensive callsm calls withn andm the number of the nodes in the
two trees). Notice that this check needs to beoperéd on the full pathNodeDis-
joint checks whether the formula obtained by the conijan®f the formulas associ-
ated to the nodes n1 and n2 is unsatisfiable (I13s170).

10 function TreeDi sjoint(node nl, node n2)

20 {cl: node;

30 NodeTr eeDi sj oi nt (n1, n2);

40 foreach cl1 in GetChildren(nl) do TreeDi sjoint(cl,n2);
50 };

60 function NodeTreeDi sjoi nt (node nl, node n2)
70 {n, c2: node;

80 foreach n in Path(Parent(nl)) do if (<n,n2, 1> 0 M then return;

90 i f (NodeDisjoint(nl, n2)) then
100 { AddMappi ngEl enent (<nl, n2, 1>);
110 return;

120

b
130 foreach c2 in GetChildren(n2) do NodeTreeD sjoint(nl,c2);
140 };

150 function bool ean NodeD sj oi nt(node nl, node n2)

160 {if (Unsatisfiabl e(nmkConjunction(nl.cnode, n2.cnode))) then
return true;

170 else return false; };

Fig. 5. Pseudo-code for thereeDig oint function

TreeSubsumedBYy (Fig. 6) recursively finds all minimal mapping elements wher

the strongest relation between the nodes (sr dually, = in the second call; in the
following we will concentrate only on the first fal

10 function bool ean TreeSubsunedBy(node nl, node n2)
20 {c1,c2: node; LastNodeFound: bool ean;

30 if (<nl,n2, 1> 0 M then return fal se;

40 i f (!NodeSubsunedBy(nl, n2)) then

50 foreach cl in GetChildren(nl) do TreeSubsunedBy(cl, n2);
60 el se

70 {Last NodeFound : = fal se;

80 foreach c2 in GetChildren(n2) do

90 if (TreeSubsunedBy(nl,c2)) then Last NodeFound := true;
100 if (!LastNodeFound) then AddSubsunptionMappi ngEl enent (nl, n2);
120 return true;

140 ;

150 return false;

160 };

170 function bool ean NodeSubsunedBy(node nl, node n2)

180 {if (Unsatisfiabl e(nkConjunction(nl.cnode, negate(n2.cnode)))) then
return true;

190 else return false; };

200 function AddSubsunpti onMappi ngEl enent (node nl, node n2)
210 {if (direction) then AddMappi ngEl enent (<nl, n2, =>);
220 el se AddMappi ngEl enent (<n2, n1, =2>); };

Fig. 6. Pseudo-code for thereeSubsumedBYy function

Notice thatTreeSubsumedBYy assumes that the minimal disjointness elements are
already computed; thus, at line 30 it checks whretthee mapping element between the
nodes nl and n2 is already in the minimal sehiff is the case it stops the recursion.
This allows computing the stronger disjointnesstieh rather than subsumption
when both hold (namely with an inconsistent no@yen n2, lines 40-50 implement
a depth first recursion in the first tree till absumption is found. The test for sub-
sumption is performed biodeSubsumedBy that checks whether the formula ob-
tained by the conjunction of the formulas assodidatethe node nl and the negation
of the formula for n2 is unsatisfiable (lines 17@0) Lines 60-140 implement what
happens after the first subsumption is found. Tag iklea is that, after finding the
first subsumption, TreeSubsumedBy keeps recursing down the second tree till it
finds the last subsumption. When this happens,résalting mapping element is
added to the minimal mapping (line 100). Noticet thath NodeDig oint andNode-
SubsumedBY call the functiorUnsatisfiable which embeds a call to a SAT solver.

To fully understandi'reeSubsumedBY, the reader should check what happens in
the four situations in Fig. 7. In case (a) thetfiteration of the TreeSubsumedBy
finds a subsumption between A and C. Since C hashildren, it skips lines 80-90
and directly adds the mapping element <A G, to the minimal set (line 100). In
case (b), since there is a child D of C the albariiterates on the pair A-D (lines 80-
90) finding a subsumption between them. Since theeeno other nodes under D, it
adds the mapping element <A, B% to the minimal set and returns true. Therefore
LastNodeFound is set to true (line 90) and the rimgpelement between the pair A-C
is recognized as redundant. Case (c) is similae difference is thalreeSubsum-
edBy will return false when checking the pair A-D (liB8), thanks to previous com-

putation of minimal disjointness mapping elememisd therefore the mapping ele-
ment <A, C,=> is recognized as minimal. In case (d) the albarifterates after the
second subsumption mapping element is identifigfitst checks the pair A-C and it-
erates on A-D concluding that subsumption doeshotd between them (line 40).
Therefore, it recursively calls TreeSubsumedBYy leefwB and D. In fact, since <A,
C, => will be recognized as minimal, it is not worthecking <B, C,=> for pattern
(1). As a consequence <B, B> is recognized as minimal together with <A,G.

Fig. 7. Examples of applications of tHe eeSubsumedBy

Five observations. The first is that, even if, @allerTreeMatch implements three
loops instead of one, the wasted (linear) timeigdly counterbalanced by the expo-
nential time saved by avoiding a lot of uselestsdalthe SAT solver. The second is
that, when the input trees T1 and T2 are two noflesgM atch behaves as a node
matching function which returns the semantic retatholding between the input
nodes. The third is that the call ToeeDig oint before the two calls tdreeSubsum-
edBy allows us to implement the partial order on relasi defined in the previous
section. In particular it allows returning only &jdintness mapping element when
both disjointness and subsumption hold (see D&imi2 of mapping). The fourth is
that, in the body offreeDigoint, the fact that the two sub-trees where disjoirgnes
holds are skipped is what allows not only impleriventhe partial order (see the pre-
vious observation) but also saving a lot of usetedis to the node matching functions
(line 2). The fifth and last observation is tha¢ iimplementation oTreeMatch cru-
cially depends on the fact that the minimal elem@fthe two directions of subsump-
tion and disjointness can be computed independémibylulo inconsistencies).

4.2 Step 2: Computing the minimal mapping

The output of Step 1 is the set of all disjointnesd subsumption mapping elements
which are minimal modulo equivalence. The finalpstewards computing the mini-
mal mapping is that of collapsing any two subsuoiptielations, in the two direc-
tions, holding between the same two nodes intonglesiequivalence relation. The
tricky part here is that equivalence is in the miai set only if both subsumptions are
in the minimal set. We have three possible situatio

1. None of the two subsumptions is minimal (in thesgethat it has not been
computed as minimal in Step 1): nothing changesraither subsumption
nor equivalence is memorized as minimal;

2. Only one of the two subsumptions is minimal white bther is not minimal

(again according to Step 1): this case is solveld®ping only the subsump-
tion mapping as minimal. Of course, during Stepe®(below) the necessary

computations will have to be done in order to shiowhe user the existence
of an equivalence relation between the two nodes;

3. Both subsumptions are minimal (from Step 1): is ttdse the two subsump-

tions can be deleted and substituted with a sieglévalence element.

Notice that Step 3 can be computed very easilynie finear with the number of
mapping elements output of Step 1: it is sufficiemtheck for all the subsumption
elements of opposite direction between the samenwdes and to substitute them
with an equivalence element. This is performeduncfionTreeEquiv in Fig. 4.

4.3

Step 3: Computing the mapping of maximum size

For brevity we concentrate on the following problegiven two lightweight ontolo-
gies T1 and T2 and the of minimal mapping M comphte mapping element be-
tween two nodes nlin T1 and n2 in T2 or the fhat ho element can be computed
given the current available background knowledgeudo-code is given in Fig. 8.

10
20

30
40
50
60
70
80

90
100
110

120
130

140
150
160
170

180
190
200

210
220
230
240

250
260
270

functi on mappi ng Conput eMappi ngEl enent (node nl, node n2)
{isLG isMs bool ean;

if ((<nl,n2, 1> € M || IsRedundant(<nl,n2, 1L>)) then return <nl, n2, L>;
if (<nl,n2,=> € M then return <ni, n2, =>;

if ((<nl,n2,> € M || IsRedundant(<nl,n2,=>)) then isLG := true;

if ((<nl1,n2,2> € M || IsRedundant(<nl,n2, 2>)) then isMG := true;

if (isLG & isM5) then return <nl, n2, =>;
if (isLG then return <nl, n2, =>;

if (isM3 then return <nl, n2, =>;
return NULL;
}s

function bool ean | sRedundant (mappi ng <nl, n2, R>)
{switch (R

{case =: if (VerifyConditionl(nl,n2)) then return true; break;

case =2: if (VerifyCondition2(nl,n2)) then return true; break;
case L: if (VerifyCondition3(nl,n2)) then return true; break;
case =: if (VerifyConditionl(nl, n2) &&

VerifyCondition2(nl,n2)) then return true;
b
return false;

b

function bool ean VerifyConditionl(node nl, node n2)
{cl, c2: node;
foreach cl1 in Path(nl) do
foreach c2 in SubTree(n2) do

if ((<cl,c2,2> €M || (<cl,c2,=> €M) then return true;
return false;

b

Fig. 8. Pseudo-code to compute a mapping element

ComputeM appingElement is structurally very similar to the NodeMatch ftioa
described in [27], modulo the key difference thatoalls to SAT are neede@om-
puteM appingElement always returns the strongest mapping element.tdstefor re-
dundancy performed bisRedundant reflects the definition of redundancy provided
in Section 3 above. For lack of space, we provielew only the code which does the
check for the first pattern; the others are analsgd@iven for example a mapping
element <nl, n2z>, condition 1 is verified by checking whether in thlere is an
element <cl1, c2=> or <cl, c2=> with c1 ancestor of n1 and c2 descendant of n2.
Notice thatComputeM appingElement calls | sRedundant at most three times and,
therefore, its computation time is linear with thenber of mapping elements in M.

5 Mapping validation

Validating means taking a decision about the céness of the correspondences sug-
gested by the system [6]. We say that the pseitively validates correspondence,
or simply accepts it, if he accepts it as corredtile we say that the useegatively
validatesa correspondence, or simply rejects it, if he doesaccept it as correct.
Both rejected and accepted correspondences hdeertarked to record the decision.
We use MinSMatch to compute the initial minimal rpegy. Focusing on the ele-
ments in this set minimizes the work load of therut fact, they represent the mini-
mum amount of information which has to be validaedt consequently results in the
validation of the rest of the (redundant) elements.

5.1 Validation sequence

The system has to suggest step by step the ordmrdspondences to be validated.
In particular, this order must follow the partialder over the mapping elements de-
fined in [4]. As also described in [12], the intait is that if an elememhis judged as
correct during validation, all mapping elementsiit by m are consequently cor-
rect. Conversely, ifnis judged as incorrect we need to include in tihamal set the
maximal elements from the set of mapping elemeantsseld bym, that we call the
sub-minimal elementsf m, and ask the user to validate them.

For instance, for the mapping in Fig. 3, in theeca#, D, => is rejected, we need
to validate the maximal elements in the set {<A=&, <B, D,c>, <C, D,c>} of
elements derived by. They are <A, Ez> and <B, D,=>. The element <C, D;>
needs to be validated only in the case when <Bg®,is further rejected. Sub-
minimal elements can be efficiently computed (sext section).

Note that, for a better understanding of the c@wadences, it is important to
show to the user the strongest semantic relatiddingbetween the nodes, even if it
is not in the minimal set. For example, showingiegjence where only a direction of
the subsumption is minimal.

5.2 User interaction during validation

The validation process is illustrated in Fig. 9.eTininimal mapping M between the
two lightweight ontologies T1 and T2 is computedtbg TreeMatch (line 10) de-

scribed in the previous section and validated keyftimctionValidate (line 20). At the
end of the process, M will contain only the mappétgments accepted by the user.
The Validate function is given at lines 30-90. The validatiagess is carried out in
a top-down fashion (lines 40-50). This is to evedum sequence the elements that
share as much contextual information as possitiés ih turn reduces the cognitive
load requested to the user to take individual dewtss The presence of an element
between two nodes nl and n2 in M is tested byuhetionGetElement (line 60). In
positive case the function returns it, otherwiseUNUs returned. Each element is
then validated using the functidralidateElement (line 70), whose pseudo-code is
given in Fig. 10. The process ends when all theeadd the two trees have been proc-
essed. A possible optimization consists in stoppiregprocess when all the elements
in M have been processed.

10 M:= TreeMatch(Tl, T2);
20 Validate(M;

30 function void Validate(list of (elenent) M
40 { foreach nl in T1 do

50 foreach n2 in T2 do {

60 m:= CGetEl enent(M nl, n2);

70 if (m!= NULL) ValidateE enment(n;
80 }

90 };

Fig. 9. The validation process of the minimal mapping M

10 function void ValidateEl enent (el enent m
20 { S list of (elenent);

30 if Isvalid(n) AddElenent(m M;

40 el se {

50 RenoveEl enent(m M;

60 S := Get Subm nimal s(Mm;

70 foreach min Sdo { if (!lIsRedundant(m) ValidateEl enent(m; }
80 }

90 };

Fig. 10. The validation process of a single element m

The validation of a single element is embedded in th¥alidateElement func-
tion. The correctness of is established through a call to the functiewWalid (line
30), that takes care of the communication withuker. The user can accept or reject
m. If mis acceptedn is added to the set M using the functteddElement (line 30).
Note that this is necessary when tfalidateElement is called on a sub-minimal
element at line 70. Otherwise,nf is rejected, it is removed from M using the func-
tion RemoveElement (line 50) and its sub-minimal elements, computgdhe func-
tion GetSubminimals (line 60), are recursively validated (line 70).eTpseudo-code
for the GetSubminimals function is in Fig. 11. It applies the rules faropagation
suggested in [4] to identify the elements thatdwllan element in the partial order.

Two observations are needed. The first is thatbansimimal element can be re-
dundant w.r.t. more than one element in M. In themsges we postpone their valida-
tion to the validation of the elements for whicleyrare redundant. For instance, <A,

E, > is redundant w.r.t. both <A, ;> and <C, Ez> in Fig. 3. Therefore, the vali-
dation of <A, E.=> is postponed to the validation of <C,%5. In other words, if <C,
E, => is positively validated, then it will be supeidius asking the user to validate
<A, E, =>. We use the functiohsRedundant described in [4] (line 70) for this. This
also avoids validating the same element more tmee.oThe second is that, in order
to keep the strongest relation between two notiesallowing rules are enforced:

(a) if we add to M two subsumptions of opposite direxsi for the same pair of
nodes, we collapse them into equivalence;

(b) if we add an equivalence between two nodes, ittRutess any subsumption
previously inserted between the same nodes, hsitiginored if we already
have in M a disjointness between these nodes;

(c) if we add a disjointness between two nodes, it thulbss any other relation
previously inserted in M between the same nodes.

10 function list of (elenment) Get Subni nimal s(el enent <nl, n2, R>)
20 { S list of (elenent);

30 if (RZZE” ::E){

40 c2 := GetParent(n2);

50 if (c2 !'= NULL) AddEl erment(S, <nl,c2,c>);

60 el se foreach cl in GetChildren(nl) do AddEl enent (S, <cl,n2,c=>);
70 }

80 if (R==2|| == =) {

90 cl := GetParent(nl);

100 if (cl != NULL) AddElerent(S, <cl,n2,32>);

110 el se foreach c2 in GetChildren(n2) do AddEl enent (S, <nl,c2, =2>);
120 }

130 if (R== 1) {

140 foreach c2 in GetChildren(n2) do AddEl enent (S, <nl,c2, 1L>);
150 foreach cl in GetChildren(nl) do AddEl enent (S, <cl,n2, 1>);
160 }

170 return S;

180 };

Fig. 11. The function for the identification of the sub-miral elements

6 Evaluation

We have tested MinSMatch on datasets commonly tsevaluate matching tools
[21]. Their short description is in [4, 21]. Taldlesummarizes their characteristics.

Dat aset pair Node count Max dept h Aver age
branchi ng factor

1 Cor nel | / Washi ngt on 34/ 39 3/3 5.50/4.75

2 Topi a/ l con 542/ 999 2/9 8.19/3. 66

3 Sour ce/ Tar get 2857/ 6628 11/ 15 2.04/1.94

4 Ecl ass/ Unspsc 3358/ 5293 4/ 4 3.18/9. 09

Table 1. Complexity of the datasets

Table 2 shows the percentage of reduction in thebeu of elements contained in
the minimal mapping w.r.t. the mapping of maximuizes The reduction is calcu-

lated as (1-m/t), where m is the number of elemantse minimal set and t is the to-
tal number of elements in the mapping of maximure.sWe have a significant re-
duction, in the range 68-96%.

M nSMat ch
Mappi ng of maxi mum M ni mal mappi ng, Reduction, %
size, elenments (t) elenents (mM
1 223 36 83. 86
2 5491 243 95. 57
3 282648 30956 89. 05
4 39818 12754 67.97

Table 2. Mapping sizes and percentage of reduction on atandatasets

As described in [12], we have also conducted exrpeamts with NALT and LCSH.
As reported in Table 3, these experiments showtti@treduction in the number of
correspondences can reach 99%. In other wordsmééns that by concentrating on
minimal mappings we can save up to 99% of the machecks required for mapping

validation.
I d | Sour ce |Branch
A NALT Cheni stry and Physics
B NALT Nat ural Resources, Earth and Environnental Sciences
C LCSH Cheni cal El enents
D LCSH Chenical s
E LCSH Management
F LCSH Nat ural resources
Branches Mappi ng of maxi mum M ni mal nmappi ng, Reduction, %

size, elenents (t) elenents (M

Avs. C 17716 7541 57, 43
Avs. D 139121 994 99, 29
Avs. E 9579 1254 86, 91
Bvs. F 27191 1232 95, 47

Table 3. Mapping sizes and percentage of reduction on NALd lBCSH

Finally, we have compared MinSMatch w.r.t. theestat the art matcher S-Match
[22]. Table 4 shows the reduction in computationetiand calls to the logical reason-
ers. As it can be noticed, the reductions are aulist.

Run Tinme, ns Calls to | ogical reasoners (SAT)
| S-Match | M nSvat ch Reduct i on, S-Mat ch M nSwat ch | Reducti on,
% %
1 472 397 15. 88 3978 2273 42.86
2 141040 67125 52.40 1624374 616371 62. 05
3 3593058 1847252 48. 58 56808588 19246095 66. 12
4 6440952 2642064 58. 98 53321682 17961866 66. 31

Table 4. Run time and SAT problems

7 Conclusions and futurework

We have discussed limitations of existing matchiogls. We have observed that,
once the initial mapping has been computed by ystem, current tools provide poor
support (or no support at all) for its validationdamaintenance in time. In addition,

current visualization tools are cognitively demangglihardly scale with the increasing

number of nodes and the resulting visualizatioesrather messy. We have proposed
the use of MinSMatch for the computation of the im&l mapping and showed that,

by concentrating on the correspondences in themmainget, the amount of manual

checks necessary for validation can be reduceduwa orders of magnitude. We

have also showed that by minimizing the number afscto logical reasoners, the

MinSMatch algorithm is significantly faster w.rdtate of the art semantic matching
tools and reduces the problem of lack of backgrduravledge.

Yet, maintaining a mapping in time is an extremmdynplex and still largely unex-
plored task. Even a trivial change of a node |labal have an enormous impact on the
correspondences starting or terminating in thisenawd all the nodes in their respec-
tive subtrees. In future we plan to further expltdrese problems and develop a user
interface which follows the specifications providadhis paper.

Acknowledgments. The research leading to these results has receiweding from
the European Community's Seventh Framework ProgeutiR7/2007-2013) under
grant agreement n231126 LivingKnowledge: LivingKnowledge — Facts,iriams
and Bias in Time

References

1. P. Shvaiko, J. Euzenat, 2007. Ontology Matchingirger-Verlag New York, Inc. Secau-
cus, NJ, USA.

2. F. Giunchiglia, M. Marchese, |. Zaihrayeu, 2006.céging Classifications into Light-
weight Ontologies. Journal of Data Semantics 8 5Fp81.

3. F. Giunchiglia, P. Shvaiko, M. Yatskevich, 2006s&dvering missing background knowl-
edge in ontology matching. In Proc. of ECAI 2006, $82—-386.

4. F. Giunchiglia, V. Maltese, A. Autayeu, 2008. Cortipg minimal mappingsAt the 4th
Ontology Matching Workshop at the ISWC 2009.

5. G. G. Robertson, M. P. Czerwinski, J. E. Churct@005. Visualization of mappings be-
tween schemas. Proc. of SIGCHI Conference on Huraators in Computing Systems.

6. S. Falconer, M. Storey, 2007. A cognitive suppoairfework for ontology mapping. In
Proc. of ISWC/ASWC, 2007.

7. A. Halevy, 2005. Why your data won't mix. ACM Quels8): pp. 50-58.

8. A. Katifory, C. Halatsis, G. Lepouras, C. Vassilgkt. Giannopoulou, 2007. Ontology vi-
sualization methods - a survey. ACM Comput. Su8y.43 10.

9. S. R. Ranganathan, 1965. The Colon Classificatiors. Artandi, editor, Vol IV of the
Rutgers Series on Systems for the Intellectual Qzgéion of Information. New Bruns-
wick, NJ: Graduate School of Library Science, Rrgdéniversity.

10. F. Giunchiglia and I. Zaihrayeu, 2008. Lightweighttologies. In S. LNCS, editor, Ency-
clopedia of Database Systems, 2008.

11. F. Giunchiglia, B. Dutta, V. Maltese, 2009. Faceligtitweight ontologies. In “Concep-
tual Modeling: Foundations and Applications”, A.i8mla, V. Chaudhri, P. Giorgini, Eric
Yu (Eds.) LNCS 5600 Springer (2009).

12. F. Giunchiglia, D. Soergel, V. Maltese, A. Bertac2609. Mapping large-scale Knowl-
edge Organization Systems.

13. P. Shvaiko, J. Euzenat, 2008. Ten Challenges fdol@gy Matching. In Proc. of the 7th
Int. Conference on Ontologies, Databases, and égqabns of Semantics (ODBASE).

14. P. Shvaiko, F. Giunchiglia, P. P. da Silva, D. Lc®uinness, 2005. Web Explanations for
Semantic Heterogeneity Discovery. In Proc. of ESWKCS 3532, pp. 303-317.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

T. Koch, H. Neuroth, M. Day, 2003. Renardus: Crosswsing European subject gate-
ways via a common classification system (DDC). .[a. IMcllwaine (Ed.), Subject re-
trieval in a networked environment. Proc. of theAFsatellite meeting, pp. 25-33.

D. Vizine-Goetz, C. Hickey, A. Houghton, R. Thomps@004. Vocabulary Mapping for
Terminology Services”. Journal of Digital Informari 4(4)(2004), Article No. 272.

C. Whitehead, 1990. Mapping LCSH into Thesauri: AW Model. In Beyond the Book:
Extending MARC for Subject Access, pp. 81.

E. O'Neill, L. Chan, 2003. FAST (Faceted Applicatfor Subject Technology): A Simpli-
fied LCSH-based Vocabulary. World Library and Infation Congress: 69th IFLA Gen-
eral Conference and Council, 1-9 August, Berlin.

D. Nicholson, A. Dawson, A. Shiri, 2006. HILT: Alpi terminology mapping service
with a DDC spine. Cataloging & Classification Qusly, 42 (3/4). pp. 187-200.

B. Lauser, G. Johannsen, C. Caracciolo, J. KeiéerR. van Hage, P. Mayr, 2008. Com-
paring human and automatic thesaurus mapping agpesain the agricultural domain.
Proc. Int'l Conf. on Dublin Core and Metadata Applions.

P. Avesani, F. Giunchiglia and M. Yatskevich, 2085Large Scale Taxonomy Mapping
Evaluation. In Proc. of International Semantic VWBnference (ISWC 2005), pp. 67-81.
F. Giunchiglia, M. Yatskevich, P. Shvaiko, 2007 natic Matching: algorithms and im-
plementation. Journal on Data Semantics, IX, 2007.

H. Stuckenschmidt, L. Serafini, H. Wache, 2006.$aing about Ontology Mappings. In
Proc. of the ECAI-06 Workshop on Contextual Repnest®on and Reasoning.

C. Meilicke, H. Stuckenschmidt, A. Tamilin, 200&1groving automatically created map-
pings using logical reasoning. In Proc. of the Ihéérnational Workshop on Ontology
Matching OM-2006, CEUR Workshop Proceedings Vob.22

C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2008ed&soning support for mapping revi-
sion. Journal of Logic and Computation, 2008.

A. Borgida, L. Serafini. Distributed Description ¢ios: Assimilating Information from
Peer Sources. Journal on Data Semantics pp. 153-184

F. Giunchiglia, M. Yatskevich, P. Shvaiko, 2007 natic Matching: algorithms and im-
plementation. Journal on Data Semantics, IX, 2007.

