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Abstract

Handling everyday tasks such as search, classification and integration
is becoming increasingly difficult and sometimes even impossible due to
the increasing streams of data available. To overcome such an information
overload we need more accurate information processing tools capable of
handling big amounts of data. In particular, handling metadata can give
us leverage over the data and enable structured processing of data, how-
ever, while some of this metadata is in a computer readable format, some
of it is manually created in ambiguous natural language. Thus, accessing
the semantics of natural language can increase the quality of information
processing. We propose a natural language metadata understanding archi-
tecture that enables applications such as semantic matching, classification
and search based on natural language metadata by providing a translation
into a formal language which outperforms the state of the art by 15%.

1 Introduction

Information overload is what every modern information worker complains about.
The volumes of information and demands, let us put aside expectations of the
information workers, grow faster than the tools evolve. But we do not want less
information, instead, we want better management tools, which will alleviate or
solve the problem of information overload. Yet there is an instrument, known
for thousand of years and extensively used in libraries to get a leverage over
massive amounts of books. Traditionally, we did not search books themselves,
we searched a library catalogue, full of data about books. Data about data or
metadata accompany every significant piece of information.

Increasing amounts of metadata are being generated automatically and most
of it is well processed by filter search. Problems begin when we enter the realm
of natural language (NL): we carefully compose titles for our papers, books and
blog posts; many of us are encouraged to write meaningful subject lines of emails
we send; we tag photos, posts and videos in social networks; we create folder
structures in email client or in personal file systems, carefully authoring our
own small classifications, kind of mini- or lightweight ontologies — we manually
generate all kinds of Natural Language Metadata (NLM).

Then we spend time sorting emails into those folders and wishing the files
we receive would sort themselves out in the appropriate places in our home
folder. We sift through a business catalogue, searching for relevant categories



and having received another catalogue, wish to have it aligned automatically
with a freshly filtered one. Many of these tasks have been solved and use algo-
rithms which operate on lightweight ontologies [16], such as the “get specific”
algorithm [17] for classification of documents in hierarchies or S-Match [15] and
minimal S-Match [13] for matching of ontologies. See Section 2 for details on
these applications. The core of many of these algorithms uses a formal lan-
guage (FL) that enables reasoning about the data being processed. However,
semantic applications face a well-known chicken and egg problem [18]: for these
applications to yield meaningful results, the data they work on, should be rep-
resented in a formal language or have semantic annotations to enable automatic
reasoning. And there is little of both applications and data.

Expecting the users to write in formal language is unrealistic and while
for automatically generated metadata the semantics is predetermined by the
coding standard, the semantics of metadata written in natural language remains
hidden. Uncovering the semantics of natural language metadata and translating
it into a formal language will enable such tools to reason about it and thus give us
the ability to leverage semantic services on our data. Modern natural language
processing (NLP) tools have evolved over the domain of newswire or similar
text. However, the language used in natural language metadata differs from the
one used in normal texts, such as news stories and books.

We briefly overview the problems one faces in the task of translating natural
language metadata into a formal language and present a solution for processing
natural language metadata. We present a modular pipeline architecture which
enables automatic semantics generation for natural language metadata. We use
this architecture to translate natural language labels, such as categories of web
or business directory into their formal counterpart. It can be used in a fully
automated manner as well as incorporating the user’s feedback. Although ini-
tially intended to process a subset of the language, namely natural language
metadata, the presented solution can also be applied to a generic text, trans-
lating essential parts of it into a formal language. Our solution can be used as
a preprocessing step for such applications as semantic classification, matching
and search. We provide a synthetic evaluation of the solution on two datasets,
representing a sample of natural language metadata.

The paper is structured as follows. In Section 2 we describe the model ap-
plications that motivated our research. Section 3 overviews the related work
and compares our work with it. Section 4 describes the datasets that represent
the domain of natural language metadata. Section 5 walks through an example
of translation to a formal language, highlighting the problems on the way. Sec-
tion 6 describes in details the proposed solution. Section 7 provides a synthetic
evaluation of our solution. Section 8 concludes the article.

2 DMotivation

Our study of natural language metadata is motivated by the applications which
use a formal counterpart of a natural language metadata. These applications can



benefit from an improved understanding of natural language metadata. Many
of them need the same steps of processing:

e recognizing atomic concepts in language metadata by mapping natural
language tokens into senses from a controlled vocabulary,

e disambiguating the senses drawn from the controlled vocabulary and
e building complex concepts out of the atomic ones.

We describe three representatives of these applications below before discussing
our NL translation technique that enables such semantic services in the following
sections.

Semantic Matching. Semantic matching could be seen as an operator that
takes two tree-like structures (such as classifications or schemas) and produces
correspondences between those tree nodes that correspond semantically to each
other. Semantic matching employs two key ideas: a) it computes semantic rela-
tions like equivalence and more general; and b) it computes them by analyzing
meaning (concepts) encoded in the labels of the input trees [15].

However, the formal representation of the concepts of each tree node label,
on which the algorithm operates to compute the correspondences, needs to be
created first. Most often the tree node labels are written in a natural language,
and, therefore, as a first step towards reasoning, the algorithm needs to trans-
late a natural language into its formal counterpart, in this case propositional
description logic.

Semantic Classification. Hierarchical classifications represent a natural
way of organizing knowledge. However, keeping them up to date requires putting
new information items (e.g. documents) into the appropriate places in the
hierarchy. This problem is addressed by the “get-specific” algorithm [17]. This
algorithm follows a knowledge-centric approach and first converts a natural
language classification into a formal classification, where the labels are expressed
in a concept language. A concept for a classified document is built from the
document’s keywords translated into concepts and joined with conjunctions.
Then the algorithm reasons over these concepts.

Here again, this semantic service requires a formal representation of the
concepts of each classification node to be effective and we thus need to translate
the natural language to such a formal representation.

Semantic Search. Search is a key application for information workers.
One of the proposals to improve search is to go from a syntactic search, which
operates on arbitrary sequences of characters and computes string similarity, to a
semantic search, which operates on concepts and computes semantic relatedness
[12]. However, the documents which are searched and the search terms are
written in a natural language, where concepts need to be identified first to
enable semantic search.

Once again we encounter the need to go from natural language to its formal
counterpart for the search terms and the document concepts. This is another
application which is appropriate for the techniques we propose.



3 Related Work

Many algorithms are based on reasoning in a formal language. However, users
are accustomed to a natural language and it is difficult for them to use a formal
one. A number of approaches has been proposed to bridge the gap between
formal and natural languages.

Controlled languages, such as Attempto [10], have been proposed as an in-
terface between natural language and first-order logic. This, as well as a number
of other proposals based on a controlled language approach [27, 26, 7], require
users to learn the rules and the semantics of a subset of English. Moreover,
users need to have some basic understanding of the first order logic to provide
a meaningful input. The difficulty of writing in a controlled language can be
illustrated by the existence of editors, such as ECOLE [25], aiding the user in
the editing of the controlled language.

As an interface for ontology authoring a number of controlled natural lan-
guages have been proposed in [7, 2, 5]. The approach of [2] uses a small static
grammar, dynamically extended with the elements of the ontology being edited
or queried. Constraining the user even more, the approach of [5] enforces a
one-to-one correspondence between the controlled language and the ontology
language. The authors in [7], following a practical experience, tailored their con-
trolled language to the specific constructs and the errors of their users. Some
of these and other controlled languages have been critiqued [21] due to their
domain and genre limitations.

For querying purposes, [28] proposes a natural language interface to the on-
tologies by translating natural language into SPARQL queries against a selected
ontology. This approach is limited by the extent of the ontology with which the
user interacts.

Another way to bridge the gap between formal and natural languages has
been proposed in [11], where the authors propose to manually annotate web
pages, rightfully admitting that their proposal introduces a “chicken and egg”
problem.

The approach of [19] of automatically translating hierarchical classifications
into OWL ontologies is more interesting. However, by considering the domain of
products and services on the examples of eCl@ss and UNSPSC, some simplifying
domain-specific assumptions are made, which hold in this domain, but which
do not hold in a general case.

Differently from the mentioned above approaches, our work does not im-
pose the requirement of having an ontology, the user is not required to learn a
syntax of a controlled language, and we do not restrict our consideration to a
specific domain. This article develops the theme of [29], improving it in several
ways, such as extending the analysis to a wider sample of metadata, using a
classification of named entities and introducing a lightweight parser.



Table 1: Dataset characteristics

Dataset | Labels | Sample Unique | Label length, tokens
labels, % | max avg
LCSH | 335704 44490 100.00 24 4.0
NALT 43038 13624 100.00 8 1.6
DMoz | 494043 27975 40.48 12 1.8
Yahoo | 829081 | 132350 16.70 18 2.0
eCl@ss 14431 3591 94.51 31 4.2
UNSPSC 19779 5154 100.00 19 3.5

4 Sets of Natural Language Metadata

Many types of metadata are available in the world and on the web. Some is
generated automatically, for example the information attached to photos by
cameras, and this metadata has a well defined, machine readable meaning. On
the contrary, some metadata contain natural language created manually, such
as article’s titles, keywords or business catalogue’s category names, and their
meaning is not formalized and one has to extract it to enable automatic pro-
cessing powered by reasoning over the meaning.

Natural language processing is a well established field and contains many
developed and mature techniques. However, many of these techniques suffer a
performance degradation when applied to a different domain [3].

To study the domain of natural language metadata, we have analysed the
following datasets: DMoz, eCl@ss, LCSH, NALT, Topia, Iconclass, UNSPSC,
Yahoo! Directory. These datasets belong to the domain of natural language
metadata and illustrate different uses of natural language metadata, for example
for classification and for indexing. They include web directory category names,
business catalogue category names, thesauri and subject headings. Table 1
summarizes some key characteristics of these datasets, and in the following we
provide a more detailed description.

DMoz or Open Directory Project! is a well known web directory, collectively
edited and maintained by a global community of volunteer editors. It is one the
largest web catalogues and it powers directory services for many sites?, including
popular search engines, such as Google.

eCl@ss? is an “international standard for the classification and description
of products and services”. One of the project’s goals is to improve the collabo-
ration between enterprises. It is edited by professional editors.

Iconclass? is “a classification system designed for art and iconography”. It
covers the art domain and is widely used by museums and art institutions to
classify items.

lhttp://dmoz.org

2114 sites according to DMoz
Shttp://www.eclass-online.com/
dhttp://www.iconclass.nl/



LCSH?® stands for “Library of Congress Subject Headings”. It is a the-
saurus of subject headings maintained by the U.S. Library of Congress for use
in bibliographic records. LCSH is edited and used by librarians and library
users for classification of library items to enable and facilitate uniform access
and retrieval in many of the world libraries.

NALTS stands for “National Agricultural Library Thesaurus”. NALT is a
hierarchical vocabulary of agricultural and biological terms used extensively to
aid indexing and retrieval of information within and outside of U.S. Department
of Agriculture.

Topia is a hierarchical thesauri which covers the art domain.

UNSPSC stands for “United Nations Standard Products and Services
Code”. It is a “globally used classification hierarchy for products and services
owned by the United Nations Development Programme (UNDP) and managed
by GS1 US”. Edited by professional editors and being a classification system, it
enables accurate classification of products and services for companies.

Yahoo! Directory® is a “catalog of sites created by Yahoo! editors who
visit and evaluate websites and then organize them into subject-based categories
and subcategories”.

5 Translating Metadata: An Example

Natural language metadata, being a subset of natural language, is ambiguous
and hard to reason about. These problems need to be addressed to enable
metadata use in semantic applications such as the ones described in Section 2.
One of the approaches to this problem, described in [16], is to translate the NL
metadata into a propositional Description Logic language LE to reason about
the set of items (e.g. documents) semantically described by the formula.

If we consider the example from [29]: “Bank and personal details of George
Bush”, we can identify several key steps of the translation process and highlight
some processing problems. We refer interested readers to [16] for a more detailed
theoretical account of lightweight ontologies and their translation.

We consider atomic concepts as the basic building blocks of the LE formu-
las. Any controlled vocabulary containing word senses can provide such atomic
concepts (for example, we use WordNet [8]). Atomic concepts can be roughly
divided into two large groups: common nouns and adjectives, and proper nouns,
also known as named entities.

First, we identify in the label potential atomic concepts. In our case, the
following atomic concepts can be identified in the label: n#1 (“bank”), a#2
(“personal”), n#3 (“detail”), n#4 (“George Bush”), where the concepts are as-
signed unique IDs mapped to unambiguous senses in our controlled vocabulary.

Shttp://www.loc.gov/cds/lcsh.html
Shttp://agclass.nal.usda.gov/
Thttp://www.unspsc.org/
8http://dir.yahoo.com/



Second, we build complex concepts out of the atomic concepts and logi-
cal connectives of L¢. We derive logical connectives out of syntactic relations
between words. For example, we translate prepositions like “of” into logical con-
junction between sets (M) and coordinating conjunctions like “and” and “or”
into logical disjunctions between sets of items (L).

Finally, we build the structure of the formula taking into account how the
words are coordinated in the label. In our example, we put a conjunction
between “detail” and “George Bush”.

As a result we have the L¢ formula, representing the concept, unambiguously
describing the set of documents about this concept. In our example, the final
formula is (n#1 U a#2) M n#3 M n#4.

The translation process contains several steps, where we can make mistakes
due to incorrect processing of natural language. For example, the word “per-
sonal”, if recognized by the POS tagger as a noun instead of an adjective,
might be mapped to the wrong sense in the controlled vocabulary. The tokens
“George” and “Bush” should be recognized as a single concept, namely a proper
noun, and pointed to the appropriate person, disambiguating between George
H. W. Bush and George W. Bush.

6 Metadata Processing Pipeline

Many of the problems arising during the translation of natural language meta-
data into formal language are well known NLP problems, therefore we follow a
NLP pipeline design shown in Figure 1.

We introduce some optional dialog boxes that allow the pipeline to be used
in two modes: fully automated and user-assisted. The latter is introduced as
a solution to sub-par performance of some difficult processing steps, such as
word sense disambiguation (see section 6.7). It allows the user to introduce
corrections into the decisions made by the pipeline.

We follow with the description of the pipeline modules. Each module ad-
dresses a specific problem, which we describe together with a proposed solution.

For the modules in the early stages of processing, such as tokenization, POS
tagging and Named Entity Recognition, the state of the art NLP solution is
to use a supervised learning algorithm. Due to their maturity, there is little
difference in the performance of the state of the art algorithms and we therefore
use the state of the art maximum entropy based probabilistic algorithm provided
by the OpenNLP? tools. However, as discussed in the following paragraphs, we
train this algorithm on the particular Natural Language found in our metadata
domain because the standard, full text models provided by the state of the art
are not well suited to the task.

9http://opennlp.sourceforge.net/
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6.1 Tokenization
6.1.1 Problems

Tokenization is the first step in almost any language processing. Although a
relatively simple task, in our domain of natural language metadata the stan-
dard tools encounter several difficulties. These difficulties arise from various
non-standard use of such punctuation elements as commas, round and square
brackets, slashes, dashes, dots, ellipsis and semicolons: , () [\ /: ... -. In
addition, in several datasets we have noticed a non-standard use of punctuation,
such as missing conventional space after a comma.

Consider the following example “Hand tools (maint.,service)” from eCl@ss.
This label uses a dot for an abbreviation and is followed immediately by a comma
with a missing conventional space afterward, all of which is within round brack-
ets. Such combinations are rare in normal texts and therefore the performance
of standard tools, trained on such texts, degrades.

6.1.2 Solution and Evaluation

We performed a 10-fold cross-validation on each of our annotated datasets with
the OpenNLP “standard” model, and also tested a combined model trained on
the merged datasets. Table 2 summarizes the results of the experiments.

We report the results using precision per label (PPL) measure for major
datasets. Namely, we count the percentage of correctly tokenized labels. In
columns we report the performance of different tokenizer models on a particular
dataset. In rows we report the performance of a model trained on a particular
dataset, on the other datasets. Figures on the diagonal and for the combined
model are obtained by a 10-fold cross validation.

The next to last row reports the performance of the OpenNLP standard
model. The last row is a combined model trained on the combination of the
datasets available. Although in many cases the performance improvement is
marginal, there are noticeable improvements in the cases of eCl@ss, Icon and
LCSH. One can also notice that the model trained only on this particularly
difficult datasets also outperforms the standard OpenNLP model.

The analysis of errors made by a tokenizer unveils that the main reason of
this performance improvement is that punctuation is used in some short labels
more intensively than in normal text. Therefore a retrained model grasps this
difference better than the standard one.

6.2 POS Tagging
6.2.1 Problems

Most of the state of the art POS tagging algorithms are based on supervised
learning approaches. To determine a part of speech for a particular word, a
tagger extracts a feature set out of it and a classifier estimates the probabilities
for all tags from a tag set to be the correct tag for this particular word. Most



Table 2: Tokenizer performance, Precision Per Label, %
Model | DMoz | eCl@ss | LCSH | NALT | UNSPSC | Yahoo
DMoz | 99.95 | 55.22 78.11 98.97 100.00 98.67

eCl@ss | 99.73 | 94.29 | 97.70 99.97 99.98 99.45
LCSH | 99.93 87.41 | 99.79 | 99.87 100.00 99.85
NALT | 98.82 69.17 | 85.55 | 100.00 100.00 98.48
UNSPSC | 97.09 | 47.98 | 43.63 98.80 100.00 96.76
Yahoo | 99.90 | 55.69 88.47 99.12 100.00 99.90
OpenNLP | 99.86 | 79.39 | 95.57 | 99.96 100.00 99.77
combined | 99.95 | 94.26 | 99.51 | 100.00 | 100.00 | 99.90

popular features include prefixes and suffixes (morphology) of the word and its
neighbours (context).

In the domain of natural language metadata the traditional POS taggers are
challenged by a shorter context. There are fewer neighbour tokens available, if
they are available at all, as in many cases the average label length is under 2
tokens.

In addition, the prefixes of words from normal texts differ from the ones gen-
erated for the words of metadata phrases, as often the capitalization convention
is different. For example, in thesauri the capitalization rule is often mixed be-
tween higher and lower levels of terms hierarchy. Compare, for example, the
top level label “Biological Sciences” to the bottom level label “freshwater fish”
taken from the NALT dataset. On the contrary, in web directories, the capital-
ization rule is stable across levels, but different from the normal text. Consider
a typical label taken from the Yahoo dataset: “Classical Chinese Art”, where
all the words are capitalized.

Moreover, the POS tag distribution for the short phrases is completely dif-
ferent from the one of the normal text, as for example, verbs are almost absent:
on average, there are 3.5 verbs (VB) in a whole dataset, ranging from 0.0001%
to 0.15% of all the tokens of the dataset.

6.2.2 Solution and Evaluation

Similarly to the tokenizer, the POS tagging algorithms are mature and state of
the art algorithms have similar performance. Therefore we have chosen the state
of the art POS tagger from OpenNLP tools trained on the combined datasets.
It is based on Conditional Maximum Entropy Model [1, 22].

We performed experiments with the standard OpenNLP models, with a 10-
fold cross-validation on each of the datasets, and tested some combined models.
We report the results for the major datasets in a similar way to Table 2, using a
precision per token (PPT) measure in Table 3 and a precision per label (PPL)
measure in Table 4. Namely, we count the percentage of correctly tagged tokens
(PPT) and correctly tagged labels (PPL). The “OpenNLP” row reports the per-
formance of OpenNLP standard model. The “path-cv” row reports the 10-fold

10



Table 3: POS tagger performance, Precision Per Token, %
Model | DMoz | eCl@ss | LCSH | NALT | UNSPSC | Yahoo
DMoz | 95.15 | 14.30 | 45.28 | 75.46 58.57 92.00
eCl@ss | 56.67 | 97.69 | 63.48 | 34.08 89.49 71.05
LCSH | 86.39 | 77.81 | 96.89 | 84.24 85.35 91.17
NALT | 49.15 | 66.15 65.23 | 97.27 47.88 44.04
UNSPSC | 61.76 | 65.21 42.20 | 34.75 97.59 77.00
Yahoo | 92.69 | 36.83 | 57.23 | 76.84 54.86 98.15
OpenNLP | 64.48 | 66.28 | 72.76 | 58.12 74.94 61.67
all-except | 93.74 | 82.98 | 73.30 | 86.72 89.38 95.45
path-cv | 99.67 | 99.65 99.45 | 99.77 99.63 99.84
combined | 99.32 | 99.93 | 99.74 | 99.76 99.82 99.70

Table 4: POS tagger performance, Precision Per Label, %
Model | DMoz | eCl@ss | LCSH | NALT | UNSPSC | Yahoo
DMoz | 93.98 | 14.12 27.54 | 75.37 49.69 91.87

eCl@ss | 48.80 | 91.28 | 28.60 | 28.73 69.65 62.11
LCSH | 81.98 | 48.79 | 91.38 | 81.91 68.14 88.16
NALT | 46.97 | 23.61 28.82 | 96.42 13.21 34.05
UNSPSC | 57.07 | 45.08 22.76 | 31.03 92.39 75.46
Yahoo | 89.54 15.20 34.84 | 75.04 45.91 97.91
OpenNLP | 49.89 | 19.02 | 27.26 | 40.55 33.20 4744
all-except | 91.59 58.40 53.25 | 84.77 76.19 94.77
path-cv | 96.64 | 93.34 92.64 | 96.29 92.72 98.35
combined | 99.10 | 99.69 | 99.24 | 99.74 99.40 99.68

cross-validation precision figures for the case where the context was extended
to include labels in the preceding levels of the classification hierarchy. The last
row is a combined model trained on the combination of all datasets available.

The “all-except” row is of particular interest, because it reports the per-
formance of the model trained on all available datasets, except the one it will
be tested on. For example, the model to be tested on DMoz data will in-
clude all datasets as training data, except DMoz itself. We can already notice
a performance improvements compared to the standard OpenNLP model. The
performance improvements are in a 15-30% range, with the only exception being
LCSH case.

We believe that the differences in the POS tag distribution between normal
text and natural language metadata is the main reason of these improvements.
Short labels mostly describe (sets of) objects and they do it by using proper and,
often modified by adjectives, common nouns, more frequently than in normal
text, where verbs constitute a larger portion of words.

Looking at Table 4, we can notice that the data confirms the trend reported
by Table 3 with even more drastic performance improvements ranging in all

11
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Figure 2: Incremental Training for LCSH and DMoz

cases from 26% to almost 50%.

The “path-cv” rows show the importance of an extended context, where
we included labels from the preceding (higher) levels of the hierarchy, which
are sometimes available. Comparing the figures in bold with the figures in the
“path-cv” row, we can notice an increase in performance reaching 4.5% (PPT)
and 2.6% (PPL) with the averages of 2.5% (PPT) and 1.2% (PPL).

We performed incremental training to explore the stability of the models
obtained. For clarity, we report the first 50 000 tokens of two major datasets in
Figure 2, with a notice that the rest shows similar trend. Namely, the perfor-
mance tends to stabilize and reach a plateau. In few cases, like DMoz, it fluc-
tuates in the beginning before stabilizing. We found a count of tokens needed
for the model to reach a plateau to be larger than reported in [29].

We analyzed the errors made by the POS taggers by checking the confusion
matrix and some misclassified word examples. Misclassifications can be divided
into two major classes. In datasets rich in named entities, the most frequent
misclassifications are between nouns and proper nouns, such as NN (nouns)
misclassified as NNP (proper nouns) and vice versa. They range from 46%
to 55% of the errors. In other datasets the most frequent misclassifications
occur between nouns and adjectives, such as NN (nouns) misclassified as JJ
(adjectives) and vice versa. They range from 40% to 97% of the errors. This
leads us to the conclusion that named entities need a particular attention in
the form of a recognition module, which is necessary and can improve overall
processing performance (see Section 6.3).

POS tags provide some fundamental information about the language and
they are used extensively in many NLP tasks either as source information, or
as a feature. This is why we paid particular attention to the POS tagger per-
formance, as POS tag information shows that natural language metadata really
constitutes a separate domain of the language.

12



6.3 Named Entity Recognition
6.3.1 Problems

Named entities (NEs) pose several problems for the task of natural language
metadata understanding:

e we need to identify them;

e we need to classify them, because different classes of NEs require different
processing;

e we need to disambiguate them.

As for tokenization and POS tagging, NEs in natural language metadata
behave differently than the NEs in normal text. The first type of issue is the
non-standard joining of NEs, such as in the label “NS Wales Queensland” where
there is no separation of any kind between the two geographical NEs. The second
type of issue is that, in some datasets, the entities such as personal names and
locations are written in a “backward” rather than “forward” manner, as in the
label “van Ruisdael, Jacob”. The third type of issue is that, to make the label
shorter, NEs are sometimes joined together, as in the label “Green, Henry and
Charles”. Note that these examples are also ambiguous to human readers.

Table 5 reveals differences of “quantitative” nature. Namely, NEs are fre-
quently used in some kinds of natural language metadata while not so frequently
in others. One can note that in datasets with NEs they tend to span over a
large portion of labels: 18% to 37%. In one group of datasets (DMoz, NALT,
Yahoo) a whole label is frequently, but not always, a single named entity. Such
labels constitute from 90% to 95% of all labels with NEs. In another group of
datasets (LCSH and Iconclass), NEs are predominantly part of a label which
contains other tokens as well. In addition, in datasets where NEs are present
in sufficient quantities, they frequently, but not always, tend to span the whole
label. Also, the distribution of the entities across levels of the hierarchy is not
uniform, they tend to cluster in the middle levels of the hierarchy and below
some specific labels, such as letter bars like “A” and facet specifiers like “By
Country”.

The analysis of our extended samples of metadata allowed us to see that the
assumption made in [29] about labels being either named entity (NE) or not,
does not always hold. Even in the cases of DMoz, NALT and Yahoo the mixed
labels constitute from 4.11% to 9.62%, with an average of almost 7%, while
in LCSH and Iconclass cases mixed labels reach 98.01% and 97.67%, respec-
tively. For example, the LCSH dataset contains labels combining geographical
named entities with named events (or person names) or named entities with
disambiguation within a single label, such as illustrated by the label “Maat
(Egyptian deity)”.

13



Table 5: Named entities characteristics
% of labels with NEs of them, %

Dataset | \ps | NEs only | comt | LOC | ORG | PERS
DMoz | 36.29 34.80 10244 | 75.82 9.21 7.34
eCl@ss 0.39 0.00 14 | 0.00 | 0.00 | 100.00
LCSH | 37.55 0.75 24836 | 79.51 | 12.46 2.15
NALT 1.75 1.59 242 | 92.15 5.37 0.41
Topia 0.00 0.00 0| 0.00 | 0.00 0.00
Iconclass 4.30 0.10 43 | 93.02 0.00 6.98
UNSPSC 0.06 0.00 3| 0.00 | 33.33 | 66.67
Yahoo | 17.97 16.68 24668 | 67.54 | 15.56 8.27

6.3.2 Solution and Evaluation

Our solution is to adopt a Named Entity Recognizer algorithm, based on OpenNLP
NE algorithm and train it on our datasets to improve the understanding of the
NEs in the labels.

The state of the art Named Entity Recognition (NER) algorithms are mature
and the state of the art algorithms attain comparable performances. We have
chosen the NER algorithm from OpenNLP and we also report the performance
of the Stanford NER algorithm [9].

As our annotation and classification scheme we used the CONLL shared
task [24] classes of NEs. We identify three major named entity types LOCation,
ORGanization, PERSon and a fourth “catch-all” type MISCellaneous.

We performed a set of experiments, comparing the performance of the stan-
dard model supplied with a toolkit, with a custom model, trained and tested via
10-fold cross-validation on our annotated datasets. Table 6 reports the results
of the experiments for the datasets containing large quantities of NEs. The
“all-except” row has the same meaning as previously. The “std” row reports
the performance of the OpenNLP model, trained with a standard feature set,
without dictionaries. The standard feature set includes the following features:

e the token itself,
e the token lowercase flag,
e the flags indicating whether a token contains only 2 or 4 digits,

e the flags for presence of numbers, hyphens, backslashes, commas and pe-
riods in a token,

e the token capitalization pattern.

Additionally we performed a 10-fold cross-validation with a standard feature
set of OpenNLP NER on a combination of all our datasets, reaching an F-
Measure of 64.20%.

Although the figures represent a less uniform picture than in the previous
tasks, one can note that the performance of the standard models is quite low
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Table 6: NER performance, F-Measure, %
Model | DMoz | LCSH | NALT | Yahoo
OpenNLP 11.76 41.68 17.1 9.3
Stanford | 22.37 | 31.15 2.26 | 15.96
std | 32.19 | 60.35 0.57 | 34.76
all-except | 41.38 3.83 | 32.65 33.72

and the custom models outperform them. For comparison, one state of the art
approach for NER on normal text attains an F-Measure of 68.63% [6]. Only in
the case of the LCSH dataset, the performance is close to the state of the art
levels for the normal text. The large differences between the “std” and the “all-
except” results for the LCSH dataset are explained by the fact that in LCSH
NEs such as PERSON and LOCATION are frequently written in a “backward”
fashion, separated by commas as illustrated above.

We conclude that the chosen approach is promising, as even in the absence
of an important dictionary and context features we notice a performance im-
provement. This shows that some additional exploration is required to improve
the feature set. For natural language metadata we identify three broad groups
of features, depending on the available context:

e features available for a label only;
e features available for a label and the hierarchy of labels above it;

e features available when a complete dataset is available, such as tokens and
labels frequencies, as used in [29].

We intend to explore and compare these feature sets to complete the investiga-
tion.

The last experiment with a combination of datasets shows the potential ad-
vantages of introducing the dictionary feature. Some of our datasets share cov-
ered domains (for example, the Web in the case of DMoz and Yahoo) and their
set of named entities intersect. Thus, by combining the datasets the algorithm
is able to learn more from them.

6.4 Multiword Expressions Recognition
6.4.1 Problems

Differently from the state of the art approaches in natural language processing,
which are mostly probabilistic, translating natural language metadata into a
formal language involves a fair amount of knowledge based processing. One of
the main reasons is that atomic concepts, which are the basic building blocks
in the target formal language, are taken from a dictionary, controlled vocabu-
lary, or another knowledge base. These linguistic resources contain multiword
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expressions (multiwords), such as “a cappella singing” and “red tape”, reflect-
ing the fact that natural language already has complex concepts. Recognizing
multiwords allows exploiting their precise meaning assigned by a human expert.

In recognizing multiwords we face several problems [4], such as reduced syn-
tactic and semantic transparency, recognizing fixed and non-modifiable expres-
sions versus semi-fixed expressions, as well as other expression types [23]. In the
context of our task the severity of some of these problems is somewhat alleviated
by the fact that we are backed by a linguistic resource. This splits the problems
into two categories.

First, identifying the potential multiwords which are not present in the cur-
rent vocabulary. Solving this problem allows us to enrich our linguistic knowl-
edge by offering the user an option to check and add potential multiwords into
the controlled vocabulary if we are in the interactive processing mode, or mark-
ing such cases for later processing in unattended processing mode. Given the
difficulty of the problem, we leave this task for future work.

Second, recognizing existing multiwords present in the used vocabulary. This
might include:

e disentangling them in case several of them are present simultaneously in
the phrase,

e taking into account “obstacles” such as conjunctions and plurals,

e as well as taking into account multiwords spread over more than one level
of hierarchy.

For example, the phrase “a cappella and gospel singing” contains two multi-
words: “a cappella singing” and “gospel singing”.

6.4.2 Solution

We use simple heuristics that recognize multiwords in the phrase taking into
account several of the most common problems such as:

e non contiguous multiword instances,

coordinating conjunctions,

plurals,
e possible multiplication of tokens.

For example, we recognize both multiwords from WordNet present in the phrase
“a cappella and gospel singing”. Namely, we recognize “a cappella singing” and
“gospel singing” despite the first being split by “and” and requiring “singing”
token multiplication from the second.

First, we analyze consecutive label tokens for the presence in the multiword
list taken from WordNet, compiling a list of candidates. In our example, we
mark all tokens except “and” as potential candidates for two multiwords. We
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make two lists of token indexes: {1,2,5} and {4,5}, where each number refers to
the respective token of the label, such as 1 for “a”, 2 for “cappella” and so on.
When we check the token to be an expression candidate token, we test for it to
be a derived form and check its lemmatized root form, for example, removing
plural if necessary.

Second, we test for a simple case of consecutive tokens forming an expression
and mark the candidates. In our example this would mark the second candidate
{4,5} “gospel singing” as a recognized expression.

Third, for non-adjacent candidates like {1,2,5} we check what separates the
tokens. We allow only “and” and “or” conjunctions to separate the tokens of a
potential candidate. Our first candidate satisfies this condition.

Fourth, we check that a candidate’s non-adjacent tokens follow a basic noun
phrase pattern of {adjectives...nouns}. In our example that allows us to mark
{1,2,5} “a cappella singing” as a recognized expression.

Fifth, we check that in the case of coordinated tokens the label after recog-
nition preserves coordination. For example, in the case of the label “gospels
and singing” we would recognize {1,3} as a potential candidate. However, rec-
ognizing “gospel singing” here would lead to a break of coordination and to an
ungrammatical label: “gospel_singing and”.

Last, we conclude the recognition in the label by multiplying the tokens if
necessary. Our example transforms into “a_cappella_singing and gospel_singing”,
where we use underscores to show recognized multiword expression.

In addition, we repeat these heuristics when including tokens from the label
from higher (upper) levels of the hierarchy. For example, in the case of a hi-
erarchy “Music/Gospels/Singing” we would check “music singing” and “gospel
singing” to be a candidate multiwords. Conversely from a single label case, we
do not change the label. We only enrich the list of senses of the tokens of the
label in question with the senses of a multiword. In this example we would add
the sense(s) of the “gospel singing” multiword to the “signing” token.

Empirically we see that less flexible idiomatic expressions, such as “red tape”,
are rarely used in metadata, especially in the hierarchical cases. Therefore it is
often the case that the recognized multiword relates closely to the original token
(as with “gospel singing” and “singing”). Thus, such heuristics, by meaningfully
enriching the sense sets, allow the target algorithms to better exploit (often
scarce) background knowledge.

The evaluation of this heuristic in combination to the required tasks de-
scribed above is discussed in Section 7.

6.5 Lightweight Parsing
6.5.1 Problems

In some of the analysed datasets the average label length is about 2 tokens,
while in others the average label is more than 4 tokens long. This might raise
the question whether there is a need to parse such short labels? However, we
should not underestimate the nature of our domain. Being a natural language
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metadata, our labels often represent a condensed view of information. For
example, a single category name represents many instances of business services
in the case of eCl@ss or of the web sites in the cases of DMoz and Yahoo. A
single mistake in the interpretation of such information-dense label might lead
to a frequent misclassification and drastic performance degradation of the target
application.

Therefore, we need to apply a parser to a label to get a more precise view
of a label structure.

The average maximum label length across our dataset is 18 tokens. Viewed
as a sentence, it is not a particularly long or complex one. This leads us to a
hypothesis, that perhaps, a full-blown parser might not be necessary in our case
and a simple rule-based approach might be sufficient.

The information gathered on the previous steps of processing needs to be
“woven” together to create, depending on the target application, complex con-
cepts, or a structure of a logical formula. The most important element in this
process is the syntactic structure of the label and the semantics of its pieces.

For example, knowing that the tokens in round brackets disambiguate the
preceding tokens — as in the LCSH dataset — allows an application building a
formula out of a label to exclude the tokens in round brackets from the formula
and instead use the concepts they represent for disambiguating the concept
expressed by preceding tokens.

Similarly, knowing in which case a comma separates a modifier of a preced-
ing token as opposed to separating phrases allows the pipeline to construct an
accurate formula.

In other cases, knowing that a label being processed represents a facet or
a letter-bar, as labels such as “By Country” and “A-Z” often do, allows the
pipeline to make a conclusion about this label and the labels in the hierarchy
below this one and, perhaps, treat such labels in a special way.

6.5.2 Solution

We introduce a lightweight parser which makes the proposed solution more uni-
versal through the possibility of implementing different semantic actions and
using the pipeline for purposes different from a translation into formal lan-
guage. For example, the parser makes it possible to control the input language
or automatically enrich the controlled vocabulary with unrecognized concepts,
marking them for later refinement by an expert.

The results of our work with the POS tagger enabled us to perform an ac-
curate analysis of the natural language metadata language structure. Using
the best model available for a particular dataset, we processed the full dataset,
tokenizing the labels and tagging the tokens with POS tags. For each label we
derived a POS tag pattern. For example the label “Coconucos Range (Colom-
bia)” is tokenized into a set of tokens with the following POS tags:

NNP NNP NNP
Coconucos Range ( Colombia )
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Table 7: Metadata language structure characteristics

Dataset | POS tag patterns | 90% coverage | Grammar coverage, %
LCSH 13342 1007 99.45
NALT 275 10 99.05
DMoz 975 9 99.81
Yahoo 2021 15 99.46
eCl@ss 1496 360 92.70
UNSPSC 1356 182 90.42

A POS tag pattern corresponding to this label is “NNP NNP (NNP)”. We
grouped the labels by their POS tag patterns and analysed the reuse of such
POS patterns.

Table 7 summarizes some metadata language structure characteristics. One
can note that the number of POS tag patterns needed to achieve 90% coverage
of a dataset’s labels is often small enough for manual analysis. The number
of patterns in LCSH case is almost 3 times larger than the largest of all the
other datasets. However, under a close inspection we found out that due to a
particular comma use in LCSH, a much smaller set of patterns, similar to those
of other datasets, occurs in these labels. When the patterns from this smaller
set are joined sequentially with commas, they form the mentioned above larger
set of patterns.

We developed a set of lightweight grammars for each of our datasets, starting
from a base noun phrase grammar and modifying it to include the peculiarities
of the noun phrases as they are used in the natural language metadata, such
as combinations of noun phrases, use of commas and round brackets for disam-
biguation. The grammars we constructed can be divided into two categories:
the simpler ones with nine and ten rules (DMoz, eCl@ss and UNSPSC) and
a bit more complex ones with fifteen and seventeen rules (Yahoo, NALT and
LCSH). Fig. 3 shows an example of such a more complex grammar which covers
the LCSH dataset, while Fig. 4 shows an example of a smaller grammar which
covers the UNSPSC dataset.

We use Backus-Nair form (BNF) for representing the grammar rules. Our
example grammar starts with a top production rule Heading, which encodes
the fact that LCSH headings are built of chunks of noun phrases, which we
call ForwardPhrase. In turn, a ForwardPhrase may contains two phrases
DisPhrase with disambiguation elements as in the example above.

Disambiguation elements may be a proper or a common noun phrase, sur-
rounded by round brackets: (ProperDis) and (NounDis). NounDis is usually
a period of time or a type of object, like in “Rumplemayer, Fenton (Fictitious
character)”, while ProperDis is usually a sequence of geographical named enti-
ties, for example “Whitemarsh Hall (Philadelphia, Pa.)”.

The core of the grammar is a Phrase rule, corresponding to the variations
of noun phrases encountered in this dataset. It follows a normal noun phrase
sequence of: a determiner followed by adjectives, then by nouns. Alternatively,
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1 Heading := FwdPhrase {"," FwdPhrase}

2 FwdPhrase := DisPhrase {Conn} DisPhrase

3 DisPhrase := Phrase {"("ProperDis | NounDis")"}

4 Phrase := [DT] Adjectives [Nouns] | [Proper] Nouns | Foreigns
5 Adjectives := Adjective {[CC] Adjective}

6 Nouns := Noun {Noun}

7 Conn := ConjunctionConn | PrepositionConn

8 Noun := NN [POS] | NNS [POS] | Period

9 Adjective := JJ | JJR

e
o

ConjunctionConn := CC

PrepositionConn := IN | TO

Proper := NNP {NNP}

NounDis := CD | Phrase [":" Proper]

ProperDis := ProperSeq ":" Phrase | ProperSeq CC ProperSeq
Period := [TO] CD

ProperSeq := Proper ["," Proper]

Foreigns := FW {FW}

e e e el
~N O O WN -

Figure 3: LCSH BNF grammar

it could be a noun(s) modified by a proper noun, or a sequence of foreign
words. All the datasets’ grammars share the nine base rules which start from the
Phrase rule and encode the basic noun phrase grammar, with minor variations.
Consider in Fig. 4 the grammar which covers the UNSPSC dataset and compare
the rules 2-10 of this grammar with the rules 4-12 of the grammar in Fig. 3.
One can note that these rules are almost identical.

To each rule we can attach some semantic actions. A semantic action can
produce an atomic concept, a complex concept, a piece of a logical formula or
its connective. These actions can also be used to treat specially a disambigua-
tion element, a letter-bar label like “A-Z” or a facet-indicating label like “By

1 Label := Phrase {Conn (Phrase | PP$ Label)}

2 Phrase := Adjectives [Nouns] | Nouns

3 Adjectives := Adjective {Adjective}

4 Nouns := Noun {Noun}

5 Conn := ConjunctionConn | PrepositionConn

6 Noun := NN [POS] | NNS [POS] | DT RB JJ | Proper
7 Adjective := JJ | JJR | CD | VBG

8 ConjunctionConn := CC | ,

9 PrepositionConn := IN | TO

-
o

Proper := NNP {NNP}

Figure 4: UNSPSC BNF grammar
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Country”.

In the column “Grammar coverage” of the Table 7 we show how many labels
of the dataset are covered by our grammar. While the coverage is high, it does
not reach 100%, as this is not possible with the flexibility of natural language.
This opens two possibilities for the pipeline to process a small percentage of
labels which are not covered by the grammar:

e In a more controlled setting it might behave like a controlled language and
refuse to accept a label that does not conform to the grammar, asking the
user to edit it.

e Alternatively, such labels could be processed by a simpler heuristic, put
into a log file for a later editing and conversion, or even discarded.

6.6 Adding Robustness

Despite the fact that we target the domain of the natural language metadata
with its special characteristics, some of our example applications, such as seman-
tic search, need to process generic texts to extract concepts. A simple addition
to our approach allows reusing it for such cases.

We employ the fact that our grammars are based on a noun phrase grammar
and that a target application needs only complex concepts extracted out of a
document. Therefore it is possible to apply our solution to a generic text, if it
will be given some preprocessing.

To make generic texts “digestable” by our pipeline we add a chunker to
the processing pipeline. A chunker is a standard natural language processing
component, which identifies the high level syntactic structure of a sentence.
For example, given a sentence “Green apples are juicier than red apples.” it
identifies the following components: “green apples”, “are juicier than”, “red
apples”, where the first and the last are actually, noun phrase chunks. This
component, accompanied by the models trained for a generic texts, breaks the
sentences of a document into chunks, selects only noun phrase chunks and passes
them for further processing by our pipeline.

This allows employing the same processing algorithms which produce a for-
malism that a target application requires, be it complex concepts or proposi-
tional description logics formulas both for natural language metadata and for
generic texts.

6.7 Word Sense Disambiguation

Word Sense Disambiguation is a standard problem in natural language process-
ing. As SENSEVAL competition shows, this problem is noted for particularly
difficult to beat simple baseline approaches. For example, a 4% improvement
over a baseline is considered good [20]. We take the set of heuristics presented
in [29], which reach comparable to the state of the art performance of 66.51%
precision and adopt them to our framework.
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Table 8: Evaluation results summary
Dataset ‘ Labels ‘ Accuracy, % ‘ Previously, % ‘ Improvement, %
source 2854 83.43 67.73 +15.70
target 6628 81.05 65.89 +15.16

7 Evaluation

We have evaluated the proposed solution for natural language metadata anno-
tation using a synthetic approach. We have taken the large dataset [14] used
for evaluation of semantic matching, which is a technique used to identify se-
mantically related information by establishing a set of correspondences, usually
between two tree-like structures which are often denoted as “source” and “tar-
get”. This dataset is a composition of three web directories: Google, Yahoo!
and Looksmart. The “source” part of it contains 2 854 labels, while the “target”
part contains 6 628 labels. While containing parts of the Yahoo! directory and
being from the same domain of natural language metadata, this dataset does
not intersect with the ones we have used in our experiments and for training.
Therefore it is appropriate to use it for evaluation purposes as it represents
unseen data.

We have manually annotated this dataset with tokens, POS tags, named
entity information, assigned correct senses from WordNet and, finally, created
correct logical formulas for every label. Thus we created a golden standard,
which enables us to evaluate our solution.

Table 8 summarizes the evaluation results. The column “Accuracy” contains
the percentage of labels, for which the pipeline created correct formulas while
the column “Previously” contains the accuracy of a previously used solution [15].
As it can be seen we have obtained a substantial improvement of approximately
15% over the previous results.

An analysis of mistakes showed that 19.87% (source) and 26.01% (target)
of labels contained incorrectly recognized atomic concepts. For example, in the
label “Diesel, Vin” two concepts “Diesel” and “Vin” were recognized, instead
of a single one: “Vin_Diesel”. Vice versa, in the label “Review Hubs”, instead
of two concepts “Review” and “Hubs”, only one wrong concept “Review_Hubs”
was recognized. The cause of these mistakes is the POS tagger error. Namely, as
already noticed in the Section 6.2, the most frequent misclassification between
proper and common nouns. For these cases further analysis of the erroneous
formula does not make sense, because the atomic concepts are the basic building
blocks of the formula, which should be recognized properly for the formula to
be correct. For the rest, that is for the labels with correctly recognized atomic
concepts, we found out that in 49.54% (source) and 52.28% (target) of cases the
formula structure (that is, logical connectors or “bracketing”) was recognized
incorrectly. For example, in the label “Best & Worst Sites” the “&” sign is used
as a conjunction, but was not recognized and this resulted in a wrong formula
structure. The remaining half of the mistakes are word sense disambiguation
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mistakes of different kinds. In some cases, 40.26% (source) and 41.11% (tar-
get) the algorithm pruned too much senses, leaving out the correct ones. For
example, in the label “Cult Movies” the disambiguation algorithm pruned all
senses of the concept “Cult” due to the POS tagger mistake. Similarly, in the
label “Marching” the algorithm pruned correct senses due to the POS tagger
mistake, which led to treating the word as a different part of speech. In the
remaining 10.20% (source) and 6.61% (target) of cases the algorithm kept some
extra senses that should have been pruned. In this category noticeable are the
examples with named entities, represented by common words. For example,
in the label “Matrix Series” the concept “Matrix” refers to the movie. The
“movie” sense of the word “matrix” is not present in the vocabulary, which,
instead, contains many other senses of the word “matrix”. It is interesting to
note that the movie itself was recognized correctly in the label “Matrix, The”
located one level below this one, as “The_Matrix”, although due to the lack of a
sense in the vocabulary, the label remained senseless. Another similar example
is provided by the label “Queen”, which refers to the famous music band.

8 Discussion

In this article we presented a flexible solution for understanding natural language
metadata. Our solution can be customized and it can power various target
applications which operate on natural language metadata, such as semantic
matching, hierarchical classification and search.

We believe that the following problems should be addressed in our future
work:

1. First and foremost, an evaluation which shows the impact of our solution
on the performance of the target applications needs to be performed. Al-
though many target applications currently use some kind of a heuristic
or ad-hoc approaches to understand natural language metadata we would
like to explore the impact of a systematic approach on different target
applications, as well as the most important factors, influencing the final
performance of the target application from the point of view of under-
standing natural language metadata.

2. Second, we would like to explore and address different issues in various
modules of the proposed solution.

To begin with, while the performance of current state of the art language
processing algorithms is similar, it is similar with regard to a normal text.
Therefore, a thorough testing of other state of the art language process-
ing algorithms is needed to confirm our hypothesis that this behaviour
continues in the domain of natural language metadata.

In addition, our target applications heavily use various sources of back-
ground knowledge, such as WordNet, to form a concept space and a base
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for reasoning. We think that our solution will benefit from a more ex-
tensive use of the target application background knowledge along the pro-
cessing pipeline and possibilities of tighter integration of knowledge-centric
language processing methods are worth exploration.

Moreover, in different modules of our approach we see a number of is-
sues worth exploring, such as using semantic parsers to disambiguate the
formula structure, generalizing and unifying the grammars we developed,
applying minimally supervised word sense disambiguation algorithms and
exploring the possibility of enriching the linguistic background knowledge
in the interactive usage scenario.

Third, we see using a non-sequential decision making architecture as an
interesting alternative to a classic pipeline architecture.
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