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Socially aware robot navigation

by Alessandro Antonucci

A growing number of applications involving autonomous mobile robots will require their navigation
across environments in which spaces are shared with humans. In those situations, the robot’s actions
are socially acceptable if they re�ect the behaviours that humans would generate in similar conditions.
Therefore, the robot must perceive people in the environment and correctly react based on their ac-
tions and relevance to its mission. In order to give a push forward to human-robot interaction, the
proposed research is focused on e�cient robot motion algorithms, covering all the tasks needed in
the whole process, such as obstacle detection, human motion tracking and prediction, socially aware
navigation, etc. The �nal framework presented in this thesis is a robust and e�cient solution enabling
the robot to correctly understand the human intentions and consequently perform safe, legible, and
socially compliant actions. The thesis retraces in its structure all the di�erent steps of the framework
through the presentation of the algorithms and models developed, and the experimental evaluations
carried out both with simulations and on real robotic platforms, showing the performance obtained
in real–time in complex scenarios, where the humans are present and play a prominent role in the
robot decisions. The proposed implementations are all based on insightful combinations of traditional
model-based techniques and machine learning algorithms, that are adequately fused to e�ectively solve
the human-aware navigation. The speci�c synergy of the two methodology gives us greater �exibility
and generalization than the navigation approaches proposed so far, while maintaining accuracy and
reliability which are not always displayed by learning methods.





v

A Francesca Romana.





vii

Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Human positioning and tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Human motion prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Multi-robot navigation in human-shared environments . . . . . . . . . . . . . . 7
1.2.4 Teach-by-showing navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature overview 9
2.1 Human motion prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Motion and interaction features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Socially aware robot navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Structured neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Human positioning and tracking 25
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Camera-based tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Stereo camera system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Sensing system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Tracking system results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 LIDAR-camera tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 LIDAR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Sensing system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Tracking system results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Radar-based tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 Algorithm and SoC overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.2 Con�guration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Tracking system results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.1 Calibration procedure and results in static conditions . . . . . . . . . . . . . . . 51
3.7.2 Results in dynamic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.3 Rejecting spurious measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



viii

4 Human motion prediction 63
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Structured neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Social Force Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Open environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.3 Structured environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Multi-goal prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.1 Selection of the goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Likelihood computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Training and experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.1 Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Validation on simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.3 Net2 performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.4 Net1 performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Robotic implementation and experimental results . . . . . . . . . . . . . . . . . . . . . 87
4.7.1 Robotic platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.2 Experiments with mobile robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Navigation in human-shared environments 91
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Framework architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Global path planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Local path planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

The local position-based path planner . . . . . . . . . . . . . . . . . . . . . . . 98
The local prediction-based path planner . . . . . . . . . . . . . . . . . . . . . . 100

5.3.3 Lloyd-based control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Navigation strategies comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Human motion prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Teach-by-showing navigation 115
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 People following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Background material on vision-based techniques . . . . . . . . . . . . . . . . . 118
6.2.3 Sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Tracking the human path-�nder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.1 Solution overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



ix

6.3.2 Vision-based detection and recognition . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.3 Local LIDAR-camera sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.4 Global human tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.1 Path reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.2 Robot control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 Vision module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.2 Experiments with the mobile robot . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Conclusions 139

Bibliography 147





1

Chapter 1

Introduction

1.1 Problem statement

We are living a time when robots are no longer con�ned to industrial environments but are used in
numerous applications, which require an unprecedented degree of autonomy. Modern robots have to
adapt to humans, to understand their needs, to help humans carry out their activities. It is easy to
imagine a near future in which the interaction between robots and humans will be so inbred that it
will be executed naturally as one of the many actions that we perform every day. Ideally, the level of
relation we aim for is perfectly illustrated by the rider-horse metaphor (Flemisch et al., 2003), in which
the human developed an “innate” ability to use the robot’s services, and the robot is able to grasp his/her
intention without any explicit request.

Let us now focus on the speci�c problem of the navigation of an autonomous mobile robot across
promiscuous areas, which are shared with human beings. Autonomous driving vehicles, �ying robots,
industrial robots, service robots are some use cases in which robots will interact with co-located hu-
mans (Cha et al., 2018). In industrial environments robots work side by side with the human operator.
Safety becomes the major requirement and great care must be taken in the synergy with the workers,
thus robots need to perceive the surroundings with as little uncertainty as possible and express their
actions appropriately. Luckily, human workers have a great knowledge of the spaces and the robot’s
functionality. However, quali�ed training is necessary to be capable to drive these machines. The
scenario in which service robots operate (some examples are depicted in Figure 1.1) is instead more
dynamic, less structured, and often contains unfamiliar entities (Cha et al., 2018). Consequently, social
conventions come into play. In cases like this, the actions of a robot are socially acceptable insofar as
they re�ect the behaviours that a human would generate in similar conditions.

The �rst cornerstone of a human-aware planner is a reliable predictive model of human motion.
People are capable of moving in an expressive manner to communicate their intentions. However, this
capacity depends on many factors. Sociological and cultural characteristics in�uence human reaction
according to some tacit rules, such as deviating to the left or to the right, avoiding elderly people
more carefully, etc. (Pettré et al., 2009). Behaviours also change according to psychological factors, for
example people motion vary if they are in a hurry or they are simply wandering. However, choosing the
right set of measurable and quanti�able physical parameters allows to obtain a prediction model that
can be used under certain reliability constraints. For instance, pedestrians’ walking direction provides
great information about their intention (Farina et al., 2017b; Fotios et al., 2015). A further step forward
over the human motion prediction is to consider that persons in a shared environment will cooperate,



2 Chapter 1. Introduction

Industrial Robots Service Robots Field Robots

https://www.youtube.com/watch?v=ir_Ku4rCOO8
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Fraunhofer IPA / Museum für Kommunikation Berlin
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Figure 1.1: Taxonomy for the autonomous mobile robots. Despite their high performance, dealing
with industrial and service robots complicate the picture since the operational space can be shared

with human beings.

and will help avoiding collisions and undesired behaviours. So in many situations the robot can make
smaller evasion manoeuvrers than if it had to otherwise. This makes the robot to move more e�ciently
and more directly towards the goal. It is also known that moving people usually react to the actions
of others, and cooperative strategies are used. Humans for example maintain spaces for themselves
comparable to those they imagine the others would prefer, and this concept is supported by the Theory
of Mind (Rios-Martinez et al., 2015; Wiltshire et al., 2017).

The second fundamental element for a robot planner is a precise and robust localization system with
which the robot can localise itself in the environment and detects the position of obstacles. In addition,
the robot needs to know the relative position of people nearby with whom it could interact. To this end,
distance and vision-based sensors, as well as appropriate tracking algorithms, are required to detect and
track humans. The major requirement of the tracking system is logically to run in real-time on board
the robotic vehicle.

Looking at the recent literature, we note how both these two features are developed and imple-
mented with machine learning techniques. This evolving trend is no coincidence, as Arti�cial intel-
ligence (AI) research has indeed increased signi�cantly in several research �elds. The number of AI
journal publications in 2020 is 5.4 times higher than it was in 2000, and only from 2019 to 2020 it grew
by 34.5 % (Zhang et al., 2021). The technical improvement of the sensor equipment and, above all, the
progressive increase in computing power have given a considerable boost to mobile robotics, giving
to intelligent vehicles the capability to move on their own with greater autonomy and e�ciency. The
consequent step was the introduction of machine learning, that became extensively used in several
operations of the robots: from the computer vision applications for human-robot interactions to inde-
pendent localization and mapping, as from human motion prediction to socially compliant navigation.
And also, numerous lines of research are being pursued on person identi�cation and classi�cation,
action recognition, and human behaviour understanding. The massive application of learning tech-
niques has certainly uplifted the performance of robots, yet it has also shown how many tasks cannot
be undertaken with the mere training of a neural network. Just as machine learning is showing the
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Figure 1.2: Key characteristics of di�erent methodologies that can be employed in a human-
aware motion planner. It is noticeable that relying on an individual method is not feasible, but the

reciprocal weakness can be compensated by combining the techniques.

�rst di�culties in computer science, also in the most speci�c applications, such as mobile robotics, it
is certainly a very powerful tool that must however be used with grain of salt. Arti�cial intelligence
mostly su�ers of brittleness (Alcorn et al., 2019), embedded biases (Bahari et al., 2022), bad uncertainty
quanti�cation (Abdar et al., 2021), and explainability (Xu et al., 2019). The latter problem is ranked as
the third risk that industries and researchers consider relevant (Zhang et al., 2021).

The philosophy that passes through the works presented in the thesis succeeds this last considera-
tion. The literature on mobile robotics contains innumerable contributions in which machine learning
is abundantly used (with remarkable results), still it is not so trivial to transfer these approaches di-
rectly on the robots for a real-time application. Indeed, we note that as the complexity of the human
behaviours to be modelled increases, the techniques become more and more sophisticated so that higher
computational capability is needed. However, in some cases a simpler model might be su�cient. To
give an example, neural networks are not really necessary to predict where a person who is walking
straight will be in the next few seconds (Schöller et al., 2020).

Instead, to obtain the maximum yield it is necessary to correctly discern the strengths of each
individual methodology, and moreover to understand how to compensate for their weaknesses with
the combined use of di�erent techniques. For instance, as depicted in Figure 1.2, motion predictors
based on model representations are the best estimators when the observed dynamic is coherent with
the model, but they are highly dependent on the choice of the parameters. Conversely, the machine
learning can be helpful to represent complex dynamics, however, the dependency on data is somehow
inevitable.

1.2 Research overview

The conducted research brought to the development of algorithms for di�erent tasks of mobile robotics,
devoted in particular for human perception and motion prediction, combining model-based and learning-
based techniques, moving towards reliable and computationally acceptable solutions. The main objec-
tive was to investigate all the elements of a human-aware motion planner for the robot, where each
element represent a di�erent layer of a “cognitive” framework to manage the robot social interactions
in shared spaces. The framework that we are depicting is closely inspired to the principle of proxemics
(see Section 2.2). The structure of the framework (represented in Figure 1.3) is reasonable from the
conceptual point of view, because it re�ects the various manifestations of human actions (for example,
instinctive or reasoned), moreover it tightly relates the di�erent amount of information and the corre-
sponding possible robot actions to a geometrical perspective, so that the behaviours of the robot can be
socially compliant depending on the relative distance it has with the person. Finally, this design allows
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Emergency reactions layer: apart from specific situations 
(collaborative task), the robot stops until the person moves away.

Reflexive reactions layer:
• Robot is relatively close to the human and it possesses a 

small amount of local information.
• Potential fields to generate a controlled reactive behaviour.
• Fast solution and “reflexive” deviations.

Deliberative reactions layer:
• Robot has more time and data – person’s position and speed.
• Planning algorithm with estimated human future trajectories.
• Humans are mostly non-cooperative entities.

Interactive reactions layer:
• Understanding in advance person’s intentions through

non-verbal clues and explicit interactions.
• Past 2D motion, skeleton pose, gaze, hand gestures, etc..
• Complex motion planning in dynamic environments.

Figure 1.3: Cognitive framework used as guideline for the socially aware robot planning.

to divide the complete problem of human-robot interaction into nested modules that can be developed
with a certain degree of independence. The innermost layer is mainly dedicated to collision avoidance
strategies, given the short distances between human and robot. In the intermediate layer we have a
passive interaction between human and robot, so we can use reactive methods to generate safe and
socially admissible paths. The last layer can access to more information about the intentions of the
person, and therefore we can actuate more complex operations in which robots and humans actively
interact or collaborate to ful�l their task.

The research carried out mainly concerned the last two layers of the framework, where the robot
has access to limited information on the human intentions (coming mostly from his/her past motion),
and its able to proactively perform the appropriate action. By looking at the works presented in this
thesis from a more technical side, they can be di�erentiated with respect to their scope in one of the
three main steps of the general mobile robotic framework (depicted in Figure 1.4), which are:

• Data acquisition, related to the sensing system of the robot, from the localization to the people
tracking, up to the person classi�cation.

• Human intention prediction, that is the estimation of person’s future actions and the recognition
of his/her intentions.

• Decision executing: this last task is aimed at the actions that can be performed by the robot itself,
which can interact with a person both passively (thus respecting the intentions of the latter but
without provoking reactions) and active (i.e. triggering a reaction from the person by sending
social signals about the actions taken).

This speci�c sequence of the tasks determined also how they will be proposed in the continuation of
this thesis (see Section 1.3). The di�erent topics are listed below.

1.2.1 Human positioning and tracking

The basis for giving an increased autonomy to robots that need to move in natural environments with
humans is to enable the capability of such machines to understand the positions and the motions of peo-
ple moving in their surroundings. The ideal sensor systems with which to equip a robot must provide
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Figure 1.4: Tasks �ow for a mobile robot. The process starts from the sensing and perception
phase, continues through the action classi�cation phase and reaches the decision executing phase.

for the most basic of requirements for the inner most layers of Figure 1.3 (i.e., performs the obstacles
avoidance) to the more sophisticated ones such as human action recognition and tracking. Such sys-
tems must evidently be robust to failures but – to prove to be suitable for industrial and commercial
applications – also have competitive computational speed and cost. Finally, given the high time vari-
ability of the environments in which they would work, we must ensure that most of the measurements
will be performed by the robots themselves, from their relative perspective, rather than by an external
infrastructure (as represented in Figure 1.5). Given these considerations, we investigates the e�ective-
ness of a people tracking system with di�erent sensors, namely, depth cameras, laser scanner, and
millimeter-wave radar. The gathered data was coupled with an estimation algorithm to continuously
track the human positions in the environment.

Experiments were conducted in indoor scenarios (our reference case study), to characterise and
evaluate the performance of such a system and establish its suitability for an application on an actual
service robot. The key outcome of the comparative evaluation is that a sensor system comprised of
monocular camera and 2D laser scanner is satisfactory to accommodate the requirements stated above.
The established instrument con�guration it was then used for the related researches presented in this
thesis. Moreover, we propose a mitigation strategy of the anomalies that usually a�ect the localization
accuracy and robustness, such as delayed and spurious detections. It is worth noting that also in this
step of the robotic framework (the lowest level of Figure 1.4), we adopted a solution that included
classic estimation algorithms with more recent machine learning methods. A further �nding is the
idea of using the Bayesian �ltering as a classi�er, in which each mode represent a di�erent motion
behaviour. This clue was also adopted in the human motion prediction, were di�erent target goals are
inferred using a Bayesian estimator.

1.2.2 Human motion prediction

Numerous research results have applied machine learning techniques to classify the trajectories trav-
elled by pedestrians and estimate their future position. The rationale comes from the complexity and
characteristics of the problem. Each person has his/her unique way of walking, so a predictive model
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• Long-term predictions.
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Figure 1.5: Di�erences between machine learning techniques applied for human motion predic-
tion and motion predictors applied for robot navigation. It is highlighted how the two method-

ologies are based on di�erent input data and produce speci�c outputs.

must adapt to all the possible behaviours, secondly there is a temporal correlation in the observable
data (such as the succession of displacements), meaning that learning the past information can actu-
ally give insights on the future. However, the direct implementation of the neural network solutions
on board the robot is not trivial. The robot control algorithms usually rely on ego-centric inputs and
have serviceable outputs that are di�erent from what traditional neural network approaches produce.
As sketched in Figure 1.5, machine learning techniques for motion prediction commonly rely on well
de�ned dataset, taken in speci�c scenarios with long-sided trajectories. The most common output data
are long predictions of future movements, and the most travelled zones of the environments, which
however are related to the speci�c dataset. If the robot can perceive the environment only from its
point of view, it has a limited knowledge on the surroundings (see the shaded are in Figure 1.5), and
its actions take place in much shorter time windows. It is also understandable that predictive meth-
ods based on speci�c dynamic models can obtain a future estimate when the choice of the model is
consistent with the use case, thus their performance is better than any trained network, but the ability
to adapt to new contexts is far less. Our idea is to take the best of the two approaches is a mixed so-
lution, where the neural network embeds in its structure a dynamical model with which to represent
the motion of the pedestrian, speci�cally the Social Force Model (SFM) by Helbing and Molnar, 1995.
This choice allows us to delegate to the learning phase the actually unknown characteristics of the
motion (that is, the model’s parameters), and to keep the neural network with a simple structure with a
drastically reduced number of learnable weights. The most important contribution is that the speci�c
network increases the “explainability” of the training, as the behaviour can be interpreted in physical
terms. As an additional result, we can obtain a good prediction accuracy even by using a small and
synthetically generated training set. Finally, our solution can work even in scenarios radically di�erent
from those used in the training, and the type of the input and output data is consistent with the sensors
used by the robot, thus we can guarantee the transfer learning on the real robotic platform.
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1.2.3 Multi-robot navigation in human-shared environments

Among all the di�erent interactions that occur between humans and robots while they both shared
spaces, the most prominent is certainly the mutual collision avoidance. Following the ideal structure of
the cognitive framework presented at the beginning of this section (Figure 1.3), we combined di�erent
approaches in a hierarchical framework consisting of global path planning, local path planning, and
reactive strategies, to obtain safe and socially aware multi-robot navigation. Speci�cally, we identi�ed
�ve classes of requirements, namely: robustness and safety in navigation, socially aware motion plan-
ning, multi-agent coordination, responsiveness to dynamic environments, and computation e�ciency.
While we will present an overview of the complete framework and the result obtained through several
tests and extensive experiments with a real robotic implementation, we will deepen the requirement
related to the socially aware motion planning, as it is relevant to the researches contained in this thesis.

1.2.4 Teach-by-showing navigation

The capacity to determine a safe path is one of the most fundamental keys to broad usage of mobile
robots in unstructured, human-populated, and possibly a-priori unknown environments. As a further
investigation on human-robot interaction, beyond the collision avoidance, we developed a complete
framework for human following and path reconstruction tasks. Indeed, existing methods for planning
safe paths can be divided into two broad categories. The �rst type entrusts complete control of the
robot to trained human users, who are expected to monitor the robot movements and determine their
trajectories. In the second type of planners robots have to learn how to plan their own path and move
independently. While some of these planners have shown interesting results, they can be unreliable,
especially when a robot is navigating in complex environments that also contain humans or obstacles.
These planners often require expensive hardware and sensors to produce excellent results.

One possible idea is to delegate the path planning routine to a human walking in front of the
robot. The human operator must concentrate only on the path to take, naturally marking with her/his
footsteps the trace to be followed. The algorithm does not require particularly expensive sensors or
highly advanced software components. In our framework, the robot recognizes the human leader (or
“path-�nder”) to then locate and track his/her movements. Then, a tailored sensor fusion algorithm
based on a laser scanner and a depth camera, mounted on the robot chassis, allows the robot to robustly
distinguish the path-�nder from other people in its surroundings. Finally, we interpolate the tracked
human positions with a continuous curvature pathway, ensuring path smoothness and safety in control,
since the robot can stop in time before colliding with static obstacles and other people.

1.3 Structure of the thesis

Following the description of Section 1.2, the conducted research touched all the three main steps of
the robotic paradigm. Since following this line of study, several scienti�c contributions have been
published. While creating the structure of the thesis we have organized each chapter to present the
results obtained in a particular task, starting from the perception side, followed by the prediction phase,
and concluding with the control of the robot. More precisely, the thesis is organised as follows:
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Reference It appears mainly in. . .

Antonucci and Fontanelli, 2018 -
Antonucci et al., 2019a Chapter 3
Antonucci et al., 2019c Chapter 3
Antonucci et al., 2019b Chapter 1
Antonucci et al., 2021a Chapter 4
Boldrer et al., 2022 Chapter 5
Antonucci et al., 2021b? Chapter 6
Shamsfakhr et al., 2022 -
?Submitted to IEEE T-RO

Table 1.1: Scienti�c contributions of the PhD.

• Chapter 3 is devoted to human detection and tracking algorithms. Di�erent approaches using
stereo and depth camera, laser scanner and radar technologies are presented and experimentally
evaluated. This comparative study for the robust and e�cient sensing setup is functional for the
integration of our proposed mobile robot applications.

• In Chapter 4, we present our strategy for the human motion prediction with a combination of
structured neural networks and model based inference. We will describe in detail the imple-
mented algorithms and show the resulting experiments on a robotic platform.

• In Chapter 5 we show the implementation of the motion prediction module in a path planning
solution for multi-robot navigation in dynamic environments shared with humans. The system
was developed in collaboration with Manuel Boldrer, a PhD student working in the same lab, and
implemented on multiple wheeled robots.

• Chapter 6 presents an e�cient solution for accomplishing the people-following navigation task
of a companion robot. The developed solution allows the robot to learn and follow the path
traveled by the human operator even in crowded conditions.

These chapters are preceded by a review the current state of the art in Chapter 2, where we will point
out approaches relevant for the tackled research. Finally, in Chapter 7 we will have a �nal discussion
on the presented works.

This thesis contains various contributions in the �eld of mobile robotics, regarding di�erent scopes
and applications. Table 1.1 reports the list of publications done, as well as the chapters in which they
are presented for those that are included in this work.
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Chapter 2

Literature overview

In this chapter we want to relate the methods presented in this thesis with the current state of the art.
We start with an overview on human motion prediction models in Section 2.1, then, in Section 2.3 we
will go deeper into socially aware robot navigation contributions relevant to our proposed methods.
Section 2.2 o�ers a discussion of the main characteristics that in�uence the interaction between mobile
robots and people, that are worth considering when designing both model-based and learning-based
algorithms. Finally, we will introduce the concept of the structured neural network and list the related
papers in Section 2.4. The literature on human detection and tracking techniques is reported in detail in
Section 3.1, while for the state of the art related to human following application we refer to Section 6.2.
Moreover, each chapter of the thesis presents in its introductory part an overview of the state of the
art, summarizing the contributions most inherent to the topic addressed.

2.1 Human motion prediction

A proper review of human motion models needs to start from crowd behavioural models, which is
outside the scope of this thesis. Excellent surveys on this topic (listed in Table 2.1) are: Kok et al., 2016;
Sakour and Hu, 2017; Haghani and Sarvi, 2018; Rudenko et al., 2019; Zitouni et al., 2019.

It is well established that, even if at an unconscious level, pedestrians are able to understand the
time at which a collision is probably going to happen by means of neural processes involving brain and
retina, and to modify their motion in order to avoid it (Basili et al., 2013; Cutting et al., 1995). Even
if people always tend to minimize the e�ort in reaching their goal, performing an avoidance is more
a compromise between safety and energy (Vassallo et al., 2017). Collision avoidance is a process that
successfully takes place in many ways, even though pedestrians can substantially adjust walking speed,
walking direction or both (Huber et al., 2014; Parisi et al., 2016). Furthermore, it has been observed that
pedestrians share e�ort in avoidance manoeuvrers, contributing asymmetrically and taking on di�erent
roles (Olivier et al., 2013; Pettré et al., 2009). In order to obtain realistic and compliant navigation plan-
ners, it is appropriate to determine which psychological, personal or environmental factors in�uence
the role assignment and the contribution that pedestrian put in collision prevention. Previous research
results (Pettré et al., 2009; Olivier et al., 2013) stated that pedestrians are able estimate the Time-To-
Collision (TTC) between them and the others from visual perception. Although there are still doubts
about which behavioural factors in�uence the TTC, numerous models use it to characterize the motion
adaptation (Moussaïd et al., 2011; Huber et al., 2014; Karamouzas et al., 2014). Moreover, in Huber et
al., 2014 path adjustments were observed in interactions at di�erent angles, whereas speed adjustments
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Reference Topic

Kok et al., 2016 Crowd behaviour Review of crowd behavior studies with the integration of the
physics and biological attributes of the human motion.

Sakour and Hu, 2017 Crowd behaviour Survey on crowd modeling and crowd simulation techniques.
Haghani and Sarvi, 2018 Crowd behaviour Collection human crowd behaviour models with a focus on

the three levels of decisions, namely strategic-level decision,
tactical-level decision, and operational-level decision.

Rudenko et al., 2019 Human motion prediction Survey of human trajectory prediction techniques, organized ac-
cording to the model of motion and the input contextual cues.

Zitouni et al., 2019 Crowd behaviour Review of socio-cognitive crowd behaviour models, from vi-
sion based data. The papers are divided in individualistic
behaviour, group behaviour, social interaction behaviour and
leader-follower behaviour.

Table 2.1: Summary of relevant surveys on human motion models.

were evident only in scenarios with crossing angles between 45° and 90°. The in�uence of the looking
behaviour on the crossing order was also evinced (Fotios et al., 2015; Croft and Panchuk, 2018; Olivier
et al., 2013). There is still no unanimous idea of how the vision is really used, however it was observed
that pedestrians use most of their vision without �xation on any object: essentially they look into space,
presumably scanning their surroundings (Kitazawa and Fujiyama, 2010). The majority of the surveyed
papers support the assumption of path adjustments as a preferred collision avoidance strategy in the
presence of su�cient space (Prédhumeau et al., 2019). As for the most signi�cant characteristic fea-
tures, it can been noticed that speed, distance and time are essential and intrinsically connected (Pettré
et al., 2009), while also orientation and gaze can play a decisive role (Belkada et al., 2021). In Olivier
et al., 2013 collision avoidance between two persons walking along crossing paths was investigated,
�nding that the avoidance was mutually performed with a role-dependent behaviour (who crosses �rst
and who gives way), and the walker giving way contributed more by adapting both the walking speed
and path. Moreover, no inversion in the role of each walker was observed. Knorr et al., 2016 found
experimentally that initial walking speed and heading was su�cient to correctly predict the crossing
order. The person crossing �rst actually started the path adjustment and served a “symbolic cue” to the
person giving way. They also observed that parameters such as gender, height and personality traits
did not in�uenced pedestrian behaviour.

In the following, we present the most relevant research results on human motion prediction coming
from surveys (Kok et al., 2016; Sakour and Hu, 2017; Haghani and Sarvi, 2018; Rudenko et al., 2019) and
conventional academic search engines.

Model based. Reactive models are based on explicit dynamical motion models that follow Newton’s
laws of motion. In the famous Social Force Model (SFM) by Helbing and Molnar, 1995, agents are ex-
posed to di�erent repulsive (from obstacles) and attractive (towards goal) forces depending on their
relative distances. The main advantages of this method are that its implementation is quite intuitive
and it should work faster than alternative approaches. However, this model does not prevent the col-
lisions between agents, thus numerous modi�cations have been proposed. In Pellegrini et al., 2009 all
the agents evaluate the expected point of closest approach between the others, and use this information
as the driving input for the steering manoeuvrers. Exploiting the IPS representation (see Section 2.2),
Prédhumeau et al., 2019 modi�ed the SFM with a dynamical personal space, depending on the crowd
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density. In their model, pedestrians perceive obstacles within a perception zone and a inner attention
zone (corresponding to the IPS). The model called CP-SFM by Zanlungo et al., 2011 explicitly considers
pedestrian collision avoidance by imposing the future repulsive forces that will occur at the collision
point. Model-based motion prediction approaches mostly rely on heuristic rules and hand-crafted ge-
ometric relations, thus they are computationally e�cient and able to describe complex interactions.
However, it is unclear whether humans follow these schemes. Similarly, Karamouzas et al., 2009, apply
the principle of least e�ort to model pedestrian interactions, according to which humans will try to avoid
unnecessary detours and follow energy-e�cient trajectories. In the model by Luo et al., 2018 agents
use a gap seeking strategy, i.e. they steer towards an empty space in the crowd in order to minimize
the collision avoidance e�ort, while the agents behind the gap seekers perform a follower strategy. In
a cognitive approach based on heuristic rules proposed by Moussaïd et al., 2011, pedestrians behaviour
is guided by visual information by assuming that they seek unobstructed walking direction, possibly
without deviating too much from the direct path to destination. Moreover, the desired walking speed is
in�uenced by the need to maintain a distance from the obstacle. Vision is also exploited by Park et al.,
2013, since their collision prediction model is based on the angle between the agent moving direction
and the gaze angle towards another agent.

Single dynamic models are not su�cient to describe complex scenarios with multiple people, which,
on the other hand, are addressed with multi-modal methods. Prior to the ascent of the machine learning,
the Interactive Multiple Model �lter (IMM) was a widely used technique for multiple motions tracking
and prediction (Mazor et al., 1998). Back in the early 2000s, Farmer et al., 2002 used an IMM �lter for
tracking the motion of the head and torso of a human car occupant. The algorithm fused a stationary, a
human stationary, and a pre-crash brake models, while the model transition probability was determined
a-priori from analysing videos of pre-crash braking events and then simulating these events with crash
dummy. Schneider and Gavrila, 2013 combined several basic motion models (constant velocity, constant
acceleration, and constant turn) in a IMM framework. The multiple model approach by Lee et al.,
2016 fuses the uniform and the turn motion models embedded in a unscented Kalman �ltering, but
they conducted all the experiments in simulation. An adaptive IMM with 8 di�erent constant velocity
models (one for each possible direction of movement) was implemented by Burlet et al., 2006, using the
information coming from a monocular camera. In Madrigal et al., 2014 the SFM is adapted according
to four motion models, namely: going straight, �nding one’s way, walking around, and standing still.
The transition from one model to another is managed by an IMM framework, weighted with Particle
Filter (PF) algorithm. Schulz and Stiefelhagen, 2015 combined sevealt motion models as in Schneider
and Gavrila, 2013, and controlled the model transitions with an intention recognition system based
on the human dynamics (position and velocity) and awareness (head orientation). Jiang et al., 2011;
Jiang and Huynh, 2017; Chen and Tang, 2018 employed the IMM to track multiple pedestrian from
monocular videos. Both these methods use the HOG human detector trained using pedestrians full
bodies from recorded datasets, so that they are not so suitable for detecting pedestrians from the point
of view of the robot (as discussed in Section 1.2.2). Conversely,Ogawa et al., 2011 propose ans approach
to detect pedestrians using in-vehicle Lidar mounted inside the vehicle cabin, but without the help of a
second type of sensor (such as a camera). In fact, they had to deduct the e�ect of the vehicle’s relative
motion from the measurements before carrying out the correction with the IMM. Hashimoto et al., 2010
equipped a robot with two laser scanners, to identify and cluster the points belonging to the legs and
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waist of people, respectively, and tracked their motion with an IMM estimator including a constant
velocity model, a sudden acceleration/deceleration model, and a stop model.

Learning based. Machine learning techniques have the advantages of improving over time, adapting
to di�erent environments, and making predictions with low online computational e�ort, because most
of it happens o�ine. However, performance depends on proper selections of the environment and
the observed features. Moreover, if an area becomes more crowded, the prediction reliability worsens
compared to model-based approaches.

A common approach to manage multiple future trajectories is to generate di�erent motion modes.
For this reason, many recent learning approaches implement multiple predictions to describe mixed
motion behaviours. In Gupta et al., 2018 a Generative Adversarial Network (GAN) based approach is
exploited with a novel social pooling framework to predict multiple trajectories while learning social
norms. A similar GAN based framework with a social attention mechanism is proposed by Sadeghian et
al., 2019. Both these approaches utilizes pedestrians past trajectories and scene context information, but
do not consider the agents destinations. Conversely, Mangalam et al., 2020 use Variational Autoencoder
(VAE) based network to infer a distribution of waypoints and obtain a multi-modal trajectory predic-
tion. Deo and Trivedi, 2020 reformulated maximum entropy IRL to jointly infer waypoints and agent
trajectories on a 2D grid de�ned over the scene. Following the success of Recurrent Neural Network
(RNN) models for sequence prediction tasks, Alahi et al., 2016 propose a Long-Short Term Memory
(LSTM) model which can learn human movement and predict their future trajectories, by assigning
one LSTM to each person in a scene. Since the simple use of one LSTM model per person does not
capture the interactions between pedestrians, neighbouring LSTMs are connected in the social pooling
layer to learn spatially proximal information between the agents. The model was extended by Kothari
et al., 2021a with an LSTM-based model with an interaction module sharing velocities of nearby agents.

The rationale behind the approaches these last two contributions is that human motion is driven
by their intent, more speci�cally by where a person will go or perform an action. The motion predic-
tion approaches can be roughly clustered around two main themes (Lasota et al., 2017). The �rst is to
estimate how humans move toward a target which is assumed to be known (the estimation, thus, is
on the characteristics of the motion). The second is to extrapolate the position of the goal by using
information on the environment, on the past trajectories and on possible clues readable from the body
language. Goal-conditioned methods are indeed regarded as inverse planning or prediction by plan-
ning, where the algorithm, usually a neural network, learns the �nal intent or goal of the agent before
predicting the full trajectory (Mangalam et al., 2020). Being closely related to the grounded psychologi-
cal methodologies, the inclusion of the pedestrian destination choice in the forecast of humans’ motion
has a positive in�uence on the prediction performance (Kielar and Borrmann, 2016), but nevertheless,
dynamic goal inference based on semantic of the environment is still an open issue (Rudenko et al.,
2019). Most of the existing research contributions rely on a prede�ned set of waypoints, estimated
from observed trajectory data. For example, goals can be placed retrieving the directions pedestrians
mostly head to (Foka and Trahanias, 2010), observing the preferred stop position, or partitioning the
environment with a Voronoi-based method (Kanda et al., 2009). Similarly, Ikeda et al., 2013 split the
long-term human trajectory into a sequence of sub-goals from the analysis of recorded data. On the
other hand, there has also been some research on real time goal-based motion prediction. In Wu et al.,
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2018 a heuristic method to automatically determine goal positions on a 2D semantic gridmap is pro-
posed. Cell transitions are predicted through discrete Markov chains. In Luber et al., 2010 the SFM was
extended with a virtual goal as the hypothetical position that a person would reach if s/he moved with
constant velocity. Kothari et al., 2021b modelled the probability distribution of the future human posi-
tions with a discrete grid of possible sub-goals, and mixed it an LSTM-based neural network Alahi et
al., 2016 to learn information from the past motion of the agents and their interactions. The technique
illustrated by Ikeda et al., 2013 is used in Karunarathne et al., 2018 to obtain the preferred sub-goal
within a shopping mall. Their algorithm estimates the candidate waypoint by weighing the sub-goals
visibility and reachability, and let a service robot to move side-by-side to a person. More recently the
Y-net model proposed by Mangalam et al., 2021 computes a distribution for the future trajectories, after
the semantic segmentation of the input image, jointly inferring both the �nal goals and intermediate
waypoints of agents in the scene. Their approach suggests the relevance of combining stochastic (that
is, the uncertainty due to randomness) and epistemic factors (e.g. the e�ect of the long term goals).

Rehder et al., 2018 proposed a recurrent Mixture Density Network (RMDN) to learn a mixture of
potential destinations, later used by a fully Convolutional Neural Networks (CNN) to predict the path
planning. The uncertainty is modelled with a mixture of Gaussian-von-Mises distributions. Senanayake
and Ramos, 2018 introduced probabilistic Directional Grid Maps (DGM) to �t a mixture of von-Mises
distributions of motion directions attributed to each grid cell of a discretised environment. Katyal et
al., 2020 built a static grid of waypoints and embedded this additional information in a GAN to infer
multiple human movement predictions.

2.2 Motion and interaction features

Most of the applications presented in this thesis rely on the prediction of the pedestrians’ future posi-
tions in a short time horizon. As in this thesis, most of the related works collected in this chapter are
based on machine learning techniques. As we believe that the outcome of the learning depends among
others on the correctly formulation of input used to feed the neural network, we begin our discussion
by illustrating which are the most signi�cant human motion features for the trajectory prediction task
(a summary of them is depicted in Figure 2.1). Current position and velocity of the target agent remain
the main attributes in prediction task (Rudenko et al., 2019). As pointed out by Schöller et al., 2020,
long motion histories do not provide a notable improvement by neural networks and environmental
priors potentially a�ect their generalization to unknown environments. Pedestrian’s orientation can
be a intentionality indicator towards a preferred destination (Ferrer et al., 2017), since human beings
walk ahead most of the time, so that the walking behaviour can be represented with nonholonomic
motion patterns (Farina et al., 2017b).

Social cues and non-verbal communication. Humans utilize a wide range of cues to express their
intentions. The most explicit include body motion, sounds, and direct verbal communication (Saunder-
son and Nejat, 2019). Less overt are proxemics, eye gaze, and subtle gestures (Vinciarelli et al., 2009;
Cha et al., 2018). The amount of information that can be obtained from non-verbal communication is
very high, since the latter represents more than 60 percent of the communication between two peo-
ple (Rios-Martinez et al., 2015). While referring also to mobile robots, a social cue (which is the actual
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Figure 2.1: Representation of the most signi�cant features to interpret and predict the human
motion in the 2D space: (a) position in Cartesian coordinates, (b) heading angle, (c) linear velocity,
(d) gaze direction. In the case of interaction between people, the signi�cant measurable geometric

characteristics are: (e) mutual distance, (f) time to collision, (g) relative bearing angle.

action) is a signi�cant source of information used to understand the social signal (how the action is in-
terpreted) (Fiore et al., 2013; Wiltshire et al., 2014). A human classi�ed based dataset was used by Best
et al., 2016 to cluster a small set of social cues and associate the most likely signal for each cluster. The
two elements that constitute non-verbal communication are the action response and the information
content (Cha et al., 2018). The �rst is the expectation that the observed human performs some action
in response to the signal. This action acts as a type of feedback to the robot. The latter is the quality
and type of information contained in a signal.

The use of social signals in human-robot interaction still su�ers from complexity and scale. Don-
drup et al., 2014 showed that some hesitation signals from the robot can be used as implicit feedback
for humans to help them to infer motion intention of the robot. Moreover, since we are talking about
non-humanoid robots, we have other non-verbal signaling modalities. Solutions can be to use direc-
tional lights or appropriate trajectory changes to communicate that an action has been taken. Other
more explicit methods would be information screens or voice directions. Gestures are a form of non-
verbal communication that include visible movements of the hands, arms, face, and other body parts to
express an idea or meaning (Knapp et al., 2013). Among the broad category of gestures that researches
has identi�ed, interesting for mobile robotics are those that fall into the metaphoric gestures, i.e. the ges-
tures that we use to depict concrete ideas or meanings, and the deictic gestures, employed for pointing
to objects or areas in the environment. For example, in Che et al., 2020 the robot communicate implic-
itly its intention through its motion (slowing down and stopping), and explicitly through a wearable
haptic interface worn by the human. In Watanabe et al., 2015, instead, the robot shows its navigational
intentions with a projector emitting light on a common global coordinate frame. In their experimental
evaluation, walking people found the intention communication intuitive and helpful for deciding what
action to take. The authors propose an approach to show the navigational intentions of the robot with
a projector emitting light on a common global coordinate frame. The information projected on the
environment signals the future motion intentions of the in-group to the out-group resulting in smooth
passing by interaction between the in-group and the out-group. In Narayanan et al., 2020 they trained
a group convolution-based deep network to estimate human emotional states (i.e., happy, sad, angry,
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Figure 2.2: Proxemics interpersonal zones (Hall, 1969).

neutral) from 3D skeleton poses. The predicted emotions are in the robot navigation system to de�ne
a dynamic comfort space for the human. In�uence of the environment is not considered. As there
has been little work in this area, more research is necessary to understand how other communication
modalities can achieve similar e�ects (Cha et al., 2018).

Proxemics. The anthropologist Edward C. Hall �rst introduced the concepts of proxemics in order
to describe how humans use the interpersonal space and how they establish non-verbal communica-
tion channels tightly related to their interpersonal distance (Hall, 1969). Hall identi�ed four circular
zones (depicted in Figure 2.2) distinguished by the distance from the human body. Obviously, these
distances are not rigid and vary according to age, culture, type of relation-ship and context (Table 2.2).
Cultural di�erences play a crucial role in people behaviour (for instance, Hall’s metrics were valid
for US citizens), in fact some cultures avoid physical contact while others are more permissive. The

Zone Size Interaction

Intimate space 0− 45 cm Embracing, touching
Personal space 45− 120 cm Friends
Social space 1.2− 3.6 m Acquaintances and strangers
Public space > 3− 6 m Public speaking

Table 2.2: Proxemics interpersonal zones (Hall, 1969).

original proxemics model describes only the explicit interactions between standing people, however
its principle was adapted to depict how personal spaces are respected also in walking situation, and
essentially four di�erent shapes have been proposed, i.e., circular (Hall, 1969; Pradeep et al., 2016), egg-
shaped (Hayduk, 1981; Amaoka et al., 2009; Lam et al., 2010; Nishitani et al., 2015; Toyoshima et al.,
2018), ellipse-shaped (Helbing and Molnar, 1995; Ohki et al., 2010; Baig et al., 2014; Herrera et al., 2019)
or asymmetric shapes (Rios-Martinez et al., 2015). The common �nding is that people are more demand-
ing about respecting their frontal space, while they pay less attention to what they have behind, thus
personal space for walking pedestrian is widen on the front. Some related research results combined
this mathematical formulation with learning-based methods. In Herrera et al., 2019, the robot starts
with an elliptical social zone of no-collision of identi�ed dimensions. Then, by collecting points-cloud
depicting the presence of the human zone around the robot, the precise dimensions of the ellipse are
inferred and adapted in real-time. Patompak et al., 2019 proposed to learn the personal area parameters
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Figure 2.3: (a) IPS for a walking pedestrian according to Rios-Martinez et al., 2015. (b) IPS char-
acteristic dimensions as described by Kitazawa and Fujiyama, 2010.

using a reinforcement learning algorithm. In Chik et al., 2019 a fully connected neural network is used
to learn an adaptive proxemics costmap around humans, i.e. the human personal space boundaries
that a robot should not cross, depending on pedestrians’ relative linear position, angular position and
velocity (with the lateral distance as the target output).

In the literature, comfort requirements are mostly understood as the distance that a robot has to
keep from persons. Distance is not only useful for collision avoidance, but prevents the emotional
discomfort humans may feel when a robot approaches them closer than usual. In this, proxemics plays
a pivotal role in human social interactions for space negotiation Sebastian et al., 2017 and one of the
major factors that in�uence social behaviours Vinciarelli et al., 2009, therefore it seems very versatile
for human-robot interaction.

Information Process Space. Supporting the idea that personal space is dynamic (Herrera et al.,
2019) and situation-dependent, in Kitazawa and Fujiyama, 2010 the Information Process Space (IPS) was
introduced as the space within which all objects are considered as potential obstacles when a pedestrian
is planning future trajectories. Their experiments showed that the IPS would have a cone shape rather
than a semicircular one (see Figure 2.3). Furthermore, the subjects of their study paid no attention to the
area with an angle of more than 45° from the walking direction. The IPS has sometimes been mentioned
in literature (Park et al., 2013; Baig et al., 2014; Antonucci and Fontanelli, 2018; Prédhumeau et al.,
2019; Narayanan et al., 2020), and occasionally it is expressed with other terminology, as in Moussaïd
et al., 2011; Hu et al., 2013. Nevertheless, we consider it as an excellent way to model how humans
manage their personal space while walking. Rios-Martinez et al., 2015 highlighted that the IPS could be
strongly related to visual behaviour. However, pedestrian’s visual behaviour is in�uenced by culture
and age; moreover, head inclination can be misleading in inferring people intentions. We instead believe
that it is strongly environment-related, deformable according to the available space. Other researchers
considered a variable IPS. In Baig et al., 2014 the IPS is a circular sector that changes its aperture based
on speed variations, ranging from 180° in high density situations to 90° during normal walking. A
similar model is used in Park et al., 2013, where the sectional angle of the IPS is 90° when a pedestrian
moves at its maximum walking speed and increases as the pedestrian loses his/her speed. When s/he
stops, the angle of the IPS becomes 180°. In Hasan et al., 2019 the pedestrian’s intention are modelled
in a cone-shaped looking span, namely the Visual Field of Attention (VFOA). A summary of the cited
contributions is reported in Table 2.3.



2.3. Socially aware robot navigation 17

Reference Shape Dimensions

Kitazawa and Fujiyama, 2010 cone θ = 45°, d = 4.5 m
Moussaïd et al., 2011 semicircular θ = 45°− 75°, d = 8− 10 m
Park et al., 2013; Baig et al., 2014 semicircular θ = 45°− 90°
Antonucci and Fontanelli, 2018 cone θ = 45°, d = 2 m
Prédhumeau et al., 2019 semicircular θ = 110°, d = 7 m
Hasan et al., 2019 cone θ = 40°, d = 4 m

Table 2.3: IPS shape and dimension in surveyed contributions.

In the case of motion of a single agent, the IPS maintains its e�ectiveness but loses meaning due to
its de�nition. For consistency of terminology, we refer therefore to the Activity Space (AS), de�ned as
the social space linked to actions performed by agents Rios-Martinez et al., 2015, that is, in the matter
of walking pedestrians, the geometric space where a human being concentrate on and decide his/her
future movements. The spatial information of the AS has sometimes been used as input feature for the
learning-based motion predictors. In Antonini et al., 2006, agents plan their future positions within
cells belonging to a semicircular space of dynamic length. Each alternative cell is de�ned by a certain
speed and direction. In the paper by Pfei�er et al., 2018, an obstacle aware LSTM neural network takes
as input a 2D occupancy grid of the static obstacles and the information about nearby pedestrians using
a 1D vector in polar space. In Section 4.5.1, we use a similar space representation (namely, the AoII) to
determine the agent’s future actions.

2.3 Socially aware robot navigation

To allow robots to interact correctly with people, they will also need to show appropriate social be-
haviour (Sebastian et al., 2017). In the study by Mutlu and Forlizzi, 2008, people were displeased when
the robot did not respect social norms, as they would have expected. According to Rios-Martinez et al.,
2015, a socially aware robot navigation is the strategy exhibited by a robot which identi�es and fol-
lows social conventions (in terms of space management) in order to preserve a comfortable interaction
with humans. The general idea of proxemics can be used to make robots choose an appropriate social
distance for any interaction. For example, unless an explicit interaction is required, the robot should
try to avoid passing very closely and entering into the intimate or personal space. Navigation with
elderly generates problems, since the implicit signals deriving from the motion of the robot may be
not correctly interpreted, or in general they can have di�culties to avoid the collision (Tamura et al.,
2010). Pacchierotti et al., 2006 showed that even if there is no physical collision, to make a person
feel safer an approaching robot should deviate at a proper distance (not less than 0.4 m), while Sar-
dar et al., 2012 noticed that people show more compensatory behaviour when a robot invades their
personal space than a human. Also, they sustained that people may judge robot functional intentions
from the (social) behaviours the robot displays. The conclusion of Papenmeier et al., 2019 is that robots
should avoid phases of decreasing velocity, such as during jerky movements, and should keep their
orientation aligned with the motion direction in order to maximize human understanding of their in-
tentions. As noted in Section 2.3, humans tend to adapt their trajectory collaboratively. Vassallo et al.,
2017 investigated how humans modify their motion when in presence of robots. Their results shown
that human-robot collision avoidance had similarities with the human–human avoidance, in terms of
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Reference Topic

Kruse et al., 2013 Collection of human-aware robot navigation approaches. Authors propose a general clas-
si�cation scheme grouping by features (comfortable, natural and social constraints) and by
functionality (prediction, pose, path, behaviour and local planning).

Rios-Martinez et al., 2015 Comprehensive survey on proxemics theory and socially aware robot navigation.
Charalampous et al., 2017 Chronological trace of studies on robot navigation model, distinguishing the ones focused

on metric mapping, semantic mapping, or social mapping.
Cheng et al., 2018 Enhancement of Kruse et al., 2013, with the inclusion of recent trend for deep learning. Re-

lated works are divided into: reactive based, predictive based, model based and learning
based. The safety, comfort and energy cost evaluation metrics are highlighted.

Bonci et al., 2021 Survey on sensory equipment for human detection and action recognition in industrial en-
vironments.

Gao and Huang, 2021 Review of the evaluation protocols commonly used in socially aware robot navigation, high-
lighting pros and cons of di�erent evaluation methods and metrics.

Möller et al., 2021 Recent survey on socially aware robot navigation, with a focus on approaches that involve
the use of (depth) cameras.

Table 2.4: Summary of relevant surveys on socially aware robot navigation.

estimation of collision risk and anticipation. However, they also noticed that humans gave way to the
robot, even though this choice was not optimal. This conservative strategy could be due to the lack of
understanding of how the robot behaves or interacts with autonomous systems. Later, they found that
the avoidance was better accomplished when the robot actively contributed to the interaction (Vassallo
et al., 2018).

Di�erent surveys have proposed a wide range of solutions to classify the human-aware navigation
approaches. The research results considered for the literature review are listed in Table 2.4. In the
following, we will cite the most relevant contributions, grouping them by the applied methodology. A
comprehensive resume of the cited papers is reported in Table 2.5. As noted by Möller et al., 2021, as-
sessing the e�ectiveness of a socially aware robot navigation method, unlike for instance goal-oriented
robot navigation or trajectory prediction, is hard and possibly inaccurate, since the task performed by
the robot is more complex, and the positive or negative e�ects it has on the humans sharing the space
have to be taken into account (Saunderson and Nejat, 2019).

Model based. Predictive approaches are usually divided in model (or geometric) based and learning
based. The former are based on assumptions on how people behave in general, while the latter exploit
recorded data. In model-based approaches, the motion of people is generally represented with dynamic
equations, and the future positions humans will reach are inferred with probabilistic reasoning. A lot
of research results use simpli�ed motion models, such as assuming that a person will walk straight at
a constant speed (Ohki et al., 2010; Kruse et al., 2013), while recent approaches have started to regard
the human motion as proactive or cooperative with respect to the robot actions. Back in the nineties,
Tadokoro et al., 1995 predicted the human future motion using a stochastic process model. The prob-
abilities of (positional) state transitions were heuristically determined depending on the environment.
However, the robot’s e�ect on human motion was purposely ignored. In Tamura et al., 2010 the SFM
was used to predict the future trajectory for a pedestrian that can be aware of the robot (avoiding be-
haviour) or not aware (unavoiding behaviour). When the likelihood of the unavoiding behaviour is
higher than the avoiding one, the robot has to avoid the collision by itself. The likelihood was mea-
sured with respect to manually classi�ed patterns. Similarly, in Oli et al., 2013 each human being in the
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�eld of view of the robot is associated with an awareness �ag (based on on visual clues, i.e. the gaze
direction), which indicates whether s/he is aware or unaware of the presence of the robot. The paper
by Ratsamee et al., 2015 extends the SFM by including a repulsive force due to face pose. The idea is that
humans usually feel uncomfortable when they are observed, and look in the direction they will take
when avoiding another person. Velocity Obstacle (VO) is a planner introduced by Fiorini and Shiller,
1998 which generates avoidance manoeuvres by selecting a legitimate velocity for the robot outside the
collision cone, that is the space of velocities that would result in a collision with the moving obstacle.
Since the VO does not consider the case where humans will participate in the avoidance, in Berg et al.,
2008 the Reciprocal VO (RVO) was proposed. In Berg et al., 2011 the technique was further improved
with the Optimal Reciprocal Collision Avoidance (ORCA), where all the agents proactively avoid each
other, assuming that the same avoidance reasoning is respected. VO-based approaches are able to �nd
an analytical solution that prevents collisions, however they assume perfect knowledge of the agents’
future motion and generate rather homogeneous avoidance behaviours, thus results can be unrealistic.
In Ferrer et al., 2017 an Extended-SFM was used to bring the robot closer to the reference pedestrian
and make them walk side-by-side. The human future positions were predicted with a Naive Bayesian
classi�er. Then, in Ferrer and Sanfeliu, 2019 they introduced the Anticipative Kinodynamic Planning
(AKP) to solve a multi-objective cost function that integrates humans future trajectories with respect
to robot motion. Khambhaita and Alami, 2020 modelled the mutual avoidance by simultaneously opti-
mizing both human and robot trajectories, mapping a least squares optimization problem into a graph
representation. In Jin et al., 2020 the robot �rst assumes future cooperative behaviour from the hu-
man, then it switches between a reactive planner and a cooperative one depending on the con�dence
on the prior assumption. Human motion is predicted with the HSFM (Farina et al., 2017b) combined
with collision prediction estimation (from Zanlungo et al., 2011). The motion planner in Johnson and
Kuipers, 2018 uses a probabilistic model that incorporates social norms learned from observed data
(e.g. the person remains to the right of the corridor). In Satake et al., 2012 a dataset of recorded human
trajectories is used to build typical pedestrian patter in a shopping mall. A people approaching task is
performed taking into account the person’s awareness of the robot, obtained with geometrical relations
between human and robot relative motion directions. In Bera et al., 2017 the human future trajectories
are predicted by observing a set psychological cues mixed with proxemics theory. An Expectation Max-
imization process �nds the most plausible motion model of the pedestrian, and the robot �nds the less
intrusive path. However, the pedestrian is intended as non-cooperative. In Lam et al., 2010 a navigation
planner based on six di�erent personal spaces (circle/egg-shaped with soft/hard contours) depending
on passing priority rules is presented. First, the robot �nds out a suitable free walking area, then it
applies a potential-�eld approach to the corresponding personal area according to the rules (i.e. the
higher priority will produce a stronger repulsive potential �eld). Mead and Matarić, 2017 accomplished
the navigation of the robot with a reactive proxemics controller and a cost-based trajectory planner.
The controller simply moves the robot to its goal pose based on the relative angles between the robot,
the person, and the goal. The planner recognizes multimodal social signals (speech and gesture) pro-
duced by the human while the robot is moving to its goal. The human-aware path planner proposed
in Cosgun et al., 2016 is divided into a static and dynamic component. The dynamic planner simulates
the reaction of humans with the SFM and re-computes the path of the robot iteratively until the new
one does not intersect the pedestrians’ personal spaces. Two di�erent social cues are used for corridor
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navigation in Lu and Smart, 2013, i.e., changing the path that the robot takes, and making or not eye
contact with the human. However, their method assumes �xed human trajectories, thus does not take
into account how humans might react to the behaviours of the robot as it approaches them. Herrera
et al., 2016 modi�ed the SFM through a fuzzy logic approach that incorporate social rules (that is, 14 dif-
ferent interactions) depending on the relative positions, orientations, distances and velocities between
the robot and the human. Sebastian et al., 2017 used a Gaussian Mixture Model (GMM) to discriminate
between di�erent pedestrians behaviours and select the trajectory with highest social-appropriateness
score. Summarising, model-based approaches do not need any training process and better reproduce
humans behaviour, however they usually depend on a large number of parameters and su�er from
representation incompleteness. Pure reactive planners are easy to implement and guarantee reliable
collision avoidance. However, they are too short-sighted and lack of prediction ability.

Learning based. Since they are trained using real trajectories, learning-based methods better repro-
duce the human behaviour. But, conversely, the training phase needs a great amount of data and it
performs well only for the chosen scenario. In Satake et al., 2009 a Support Vector Machine (SVM) was
applied to classify 2 seconds of a pedestrian trajectory (using as features shape and velocity) into four
behaviour classes: fast-walking, idle-walking, wandering, and stopping. Kuderer et al., 2012 proposed
a Maximum Entropy learning method based on trajectory features such as time, acceleration, velocity,
collision avoidance, topological variants. Their model yields a probability distribution over the trajec-
tories of all agents involved in an interaction (humans and robots). The paper by Silva and Fraichard,
2017 is based on the observation that collision avoidance among humans is mutually solved. In case
of two walkers having intersecting trajectories, each agent is expected to contribute a certain amount
of collision avoidance e�ort, to solve the reciprocal avoidance task, which depends on factors like the
crossing angle, time to collision and speed. The concept of the sub-goals conditioned navigation (see
Section 2.1) in human motion models was also used as a navigation strategy for robots (Wang et al.,
2008; Ye and Webb, 2009; Hong and Park, 2011). Deep Reinforcement Learning frameworks with set
of social norms (Chen et al., 2017b) or collision avoidance policies Sathyamoorthy et al., 2020 are used
to solve collision avoidance scenarios between humans and robots. In Che et al., 2020 the robot learns
the best policy to avoid the human, then, it express its future intentions trough implicit and explicit
communication, while Heiden et al., 2020b applied a RL solution fused with the concept of the Em-
powerment. Deep RL is used by Chen et al., 2019 to jointly model robot-human and human-human
interactions, that subsequently are combined via a self-attention mechanism, to handle a variable num-
ber of pedestrian in the environment. The balanced trade-o� between model-based and learning-based
approaches is tackled by Graph Neural Networks Battaglia et al., 2018; Ei�ert and Sukkarieh, 2019. For
example, Manso et al., 2019 proposes a Graph Neural Network to model interactions (i.e., the edges of
the graph) between the robot, humans and the environment (the nodes). The input features are the
geometrical entities between the nodes. In contrast to IRL methods, Hamandi et al., 2019 adopted an
imitation learning strategy to mimic humans navigation by eliminating the need of any explicit model.
Similarly, in Gil and Sanfeliu, 2019 a SFM reward is embedded into an imitation learning approach.
Convolution Neural Networks (CNN) are employed by Narayanan et al., 2020 to classify four di�erent
walking styles (related to as many emotions) after the skeleton gait estimation from the video stream
taken by the robot. The navigation scheme combines this information with proxemic constraints to
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compute the socially aware path. The real-time application is burdened by time required to obtain the
3D skeletal tracking. A proxemic-costmap was developed in Chik et al., 2019 by learning a neural-
network model using real human state data. The fully connected neural network takes as input the
relative orientation, the relative velocity, and the relative distance between the agent and the robot,
and learns the reciprocal lateral distance that humans prefer to maintain during interaction.

2.4 Structured neural network

The achievements reached by neural networks in recent years are indisputable. In domains such as
image recognition, text analysis and generation, board games, etc. the networks used are very large
(billions of parameters), and the size of the training datasets range from two to ten times the number of
parameters. However, in the robotic �eld, it is often di�cult, expensive, and sometimes dangerous to
collect experimental data, as each device is di�erent and often has unique characteristics. Conducting
a thorough test campaign, thus, might be costly, time-consuming, or even impossible (Miller, 2019).
Moreover, large neural networks necessitate sophisticated hardware and long inference times, both
of which are unfeasible in mobile robots and other hardware domains. Another aspect to consider
is the behavioural interpretability and predictability of the network output. In the areas mentioned
above, if the network fails, it could lose a game or make a misinterpretation, but in robotics, an error
could cause the breakage of the device or even worse. It is therefore clear that deep learning, in its
current state, is clearly unsuitable for use in safety-critical contexts and scenarios without the essential
precautions (Bahari et al., 2022). In robotics, to reduce the risk, the scienti�c community collects data
through simulated environments, then transfers what has been learned in simulation to the real robot.
However, the transfer is not painless. Although some approaches resolve the problem of retrieving
the data, they do not guarantee predictability and stability. Moreover, such nets are not suitable for
portable low-power hardware.

Arti�cial intelligence (AI) transparency, also known as explainable arti�cial intelligence (XAI),
traces back outputs from AI algorithms to provide a way to understand what’s happening in “human
terms”. XAI has recently gotten a lot of attention, in part due to the rati�cation of the General Data
Protection Regulation law by the European Union, which guarantees the right to explanation for per-
sons a�ected by AI decisions (Diallo et al., 2021). Users and human operators, on the other hand, have
more faith in information systems that incorporate explainable AI.

Actually, the idea of including domain knowledge in neural networks is not new. Seminal works that
described the idea in its basics were already published thirty years ago by Feldman et al., 1988 and Seidl
and Lorenz, 1991. In Funahashi and Nakamura, 1993 we can �nd a theoretical background concerning
the ability of neural networks to model dynamical system, which proves that an autonomous dynamical
system can be approximated by a recurrent neural network to any degree of accuracy. In Chow and
Li, 2000 this conclusion is extended to non-autonomous systems, i.e. subjected to an input. In Raissi
et al., 2019 the concept of physics-informed neural networks is introduced, while Lu et al., 2018 showed
that many existing deep neural networks can be interpreted as di�erent numerical discretizations of
di�erential equation (ODE). In these networks, despite being trained to comply with physical laws, the
structure remains a fully connected neural network.
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Reference Network type Training dataset

Clark, 1994 Highly structured Synth
Evans et al., 2000 Med structured Real
Garcia et al., 2007 Highly structured Real
Kilic et al., 2011 Highly structured Synth
Andre et al., 2013 Highly structured Real + Synth
Broad et al., 2018 Med structured Synth
Greydanus et al., 2019 Med structured Synth
Qin et al., 2019 Med structured Synth
Da Lio et al., 2020 Highly structured Real
Heiden et al., 2020a Med structured Real
Günther et al., 2020 Med structure Synth
Roehrl et al., 2020 Med structured Real
Hochlehnert et al., 2021 Med structured Synth
Masi et al., 2021 Highly structured Synth

Table 2.6: Surveyed papers on structured neural network approaches.

Publications of structured neural networks can be found in di�erent engineering areas. Summa-
rized list is reported in Table 2.6. In Clark, 1994, Clark demonstrated that di�erent non linear mass-
spring-damper combinations (speci�cally, the Du�ng oscillator and the Van der Pol oscillator) can be
accurately modelled through simple feed forward neural network, where the learning task in used only
for the parameters �tting. Some works have proposed hybrid framework with neural network and
physical model. Broad et al., 2018 questioned about the possibility to learn the linearisation mapping
of model of the state model of a general time-varying dynamical system, but the network was still
a black box. Heiden et al., 2020a proposed a di�erentiable simulation engine for rigid-body dynam-
ics where both the residual of the analytical model and the parameters of a neural network can be
trained thought gradient-based optimization. Evans et al., 2000 used an hybrid Mixture Density Net-
work (MDN) to obtain Cartesian wind vector components from satellite scatterometer data, that is by
modelling conditional probability density functions. Their rationale was that a Gaussian mixture model
with enough many kernels and a neural network with enough hidden units can closely approximate a
desired conditional density. In Günther et al., 2020; Roehrl et al., 2020, they place side by side a standard
model and the learnable control, that is a black box neural network that compensates for all the aspects
that are di�cult to model. Hoverer, this mixture of techniques cannot exploit features like the con-
troller’s training through the model. Qin et al., 2019 investigate the use of the ResNet in a one-step and
multi-step method to approximate a dynamic system. The multi-step method exploits two approaches
the recurrent ResNet and the recursive ResNet the �rst used for uniform time step, and the second for
variable time step. The recurrent network are able estimate the dynamic up same seconds. Da Lio et al.,
2020 explored the di�erent performance between neural networks with and without pre-wired struc-
ture, recursive and non-recursive, for the longitudinal dynamics of a car with gears and two controls
(brake and engine). Pre-wired structures of both convolutive and recurrent networks showed better
interpretability of the training process, while the convolutive architecture was more accurate and ro-
bust. Hochlehnert et al., 2021 used structured networks for learning contact dynamics in data-limited
regimes, thus by embedding in the neural network the Euler–Lagrange equations for non-deformable
body impacts. The Lagrange approach on which is based their simulation results shown that the addi-
tion of an idealised touch feedback sensor positively a�ects the model’s accuracy. Similarly, Greydanus
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et al., 2019 constrained the neural network to learn Hamiltonian formulations, thus ensuring energy
conservation, but the structure of the networks was a fully connected, therefore black box. However,
we notice that, in both cases, the network’s properties are guaranteed by the training and not by the
network’s structure, which is instead considered in the approach presented in 4.4. In Kilic et al., 2011;
Masi et al., 2021 the authors split the system into components, and each component is modelled with a
fully connected neural network. An SNN and an Extended Kalman Filter (EKF) were compared by An-
dre et al., 2013 for the estimation of the internal parameters of a lithium-ion battery equivalent circuit
model. Both the algorithms shown similar results, however the SNN achieved more computational
speed and better memory usage during the o�ine inference of the battery state of health. Neverthe-
less, the EKF is an established technique easier to implement and with no need of a training phase.
Structured networks were used by Garcia et al., 2007 for decoupling saturation-induced saliencies of
the zero-sequence carrier-signal voltage of an AC machine. The performance were comparable with
existing model-based methods. These last two approaches are not �exible and they require a very high
level of knowledge of the physical system, comparable to that required for analytical modeling.
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Chapter 3

Human positioning and tracking

We have stated that service robots are becoming increasingly pervasive in environments where human
beings actually carry out daily duties. One of the main enablers of this revolutionary change is the
capability of these robotic systems to interpret the human scene, detecting positions and predicting
motions of the bystanders.

In this chapter, we will investigate the e�ectiveness of di�erent people tracking systems. First, we
investigate the use of a stereo camera pair using state-of-the-art image processing and classi�cation
algorithms. In order to increase the potential of this solution, we examine a di�erent alternative based
on a single monocular camera in combination with a laser scanner to reduce uncertainties, increase
robustness and reduce the computation time. Finally, we evaluate the tracking performance of a last-
generation millimeter-wave radar as a potentially cheaper and more robust alternative.

All the solutions proposed act as input to an estimation algorithm to continuously track the position
of human beings moving in the surroundings. Our experiments carried out in laboratory conditions
allowed us to characterise and evaluate the performance of the di�erent solutions and revealed their
level of suitability to the type of applications for actual service robots considered in this thesis. The
�nal comments are stated at the end of the chapter.

3.1 Overview

The key research question now is if the task of identifying and tracking people in the workspace of the
robot is an activity that can be executed with low cost hardware and low computational overhead. The
speci�c purpose of this chapter is to assess the performance of people trackers that, based on cameras,
laser scanners, or radar �xed on the robot chassis, estimate the presence of humans in the robot’s
surroundings.

The problem of detecting and tracking objects or human beings in a natural environment is not
novel and many di�erent solutions have been developed in the recent years for di�erent purposes, rang-
ing from healthcare applications (De Vito et al., 2014) to human beings counting (Vicente et al., 2009),
from applications in sports (Nam et al., 2014) to object tracking (Doyle et al., 2013). A largely incom-
plete list of such applications includes people counting, security monitoring, and trajectory planning or
optimization for service robots (Laoudias et al., 2018). Of particular relevance are systems that fuse in-
formation coming from di�erent sensing sources for people tracking in natural environments (Colombo
et al., 2014; Wang et al., 2012). The most commonly used in mobile robotics are namely image-based,
laser-based, and radad-based sensors (Figure 3.1).
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Figure 3.1: Sensors for mobile robotics: (a) laser-based, (b) camera-based, and (c) radar-based.

Image-based sensors (Figure 3.1-b), due to their �exibility and relatively high amount of data that
can provide, are becoming quite popular and e�ective in many measurement applications (Shirmo-
hammadi and Ferrero, 2014). Stereo or RGB-D cameras provide reliable depth information about the
environment. In addition, di�erent skeleton-based approaches for estimating the people’s pose and
motions from RGB images have been developed and are available as public domain software compo-
nents (Presti and La Cascia, 2016). However, the simple use of visual information su�ers form di�erent
limitations such as the sensitivity to lighting conditions, and the high computation times required to
obtain depth and/or pose information (Laganière et al., 2006).

Laser-based sensors (Figure 3.1-a), on the other hand, are more accurate on larger ranges than cam-
eras and are not a�ected by environmental nuisances, making them a perfect �t for indoor and outdoor
operations (Shinohara et al., 1992; Demeyere et al., 2007). Furthermore, laser scanners are known to
be less computation-hungry than vision-based approaches, and they also preserve people identity and
privacy, since the information is achieved as a point cloud. On the other hand, distinguishing the hu-
man �gure from a 2D slice of range data is a non-trivial task, which many authors have tackled seeking
to exploit the geometric properties of the points that correspond to humans (see Arras et al., 2007 as a
fundamental reference for this line of work).

A third alternative to monocular cameras and laser-based sensors is using a stereo or a RGB-D
camera. These sensors provide a 3D map of the environment, while the detection of the human body
can be performed on the same data provided by the cameras. A common problem between using 3D and
monocular cameras is that the system is liable to illumination changes and to the presence of artefacts,
which could endanger a correct recognition of the scene.

For this crucial robustness limitation, the camera system is usually paired with other types of sen-
sors, for example with a sonar rig (Vadakkepat and Jing, 2006) or a range �nder (Chavand et al., 1997).
Particularly interesting is the combination of a 2D laser scanner and a monocular camera. The former
can provide depth information, while the latter allows the system to detect and classify the di�erent
entities in the scene. The idea is not entirely new and in Table 3.1 we summarise the di�erent solutions
in the literature that fuse laser and camera data in order to track human targets. As shown in the table,
all the cited papers use separate detection techniques for the LIght Detection and Ranging (LIDAR) and
the camera, with the results fused in a post-processing phase.
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The last category of sensors falls in the class of Radio Frequency (RF) transceivers. Among the man-
ifold wireless technologies recently adopted, radars based on phased-array transceivers at 60 GHz are
gaining momentum. Since the solutions based on Received Signal Strength Intensity (RSSI) from refer-
ence nodes (e.g., Wi-Fi access points) su�er from major spurious �uctuations in both time and space, al-
ternative techniques based on low-level Time-of-Flight (ToF) measurements of Ultra-Wide Band (UWB)
or Chirp Spread Spectrum (CSS) signals have been proposed (Hur and Ahn, 2010; Rohrig and Telle, 2011;
Loyez et al., 2014; De Angelis et al., 2016). UWB systems have been used for vital sign sensing as well as
for near-�eld imaging applications since the early 2000s (Sheen et al., 2007). More recently UWB sys-
tems have been used to detect people trapped or behind walls (Loschonsky et al., 2009). This idea has led
to the implementation of various kinds of millimeter-wave communication schemes and transceivers
for indoor localization over the years (Ebelt et al., 2014). Moreover, millimeter-wave (mm-wave) RF
signals can be used to implement radars with a range of a few meters. Radars (Figure 3.1-c) have a
number of advantages compared with cameras, i.e.

• They are cheaper and need simpler signal processing algorithms;

• Target detection is more insensitive to obstructions;

• People’s identity and privacy are preserved, as it is di�cult to associate a cloud of points to a
speci�c individual;

• Radar signals are not a�ected by changing illumination conditions: they can operate indoor and
outdoor regardless of light variations or changeable weather conditions.

Even if the idea of implementing low-cost radars for people localization traces back to more than 10
years ago (Zhang et al., 2006), the solutions based on antenna arrays have evolved especially in the
last few years as a result of the research activities on massive multiple-input multiple-output (MIMO)
systems, particularly for 5G communications (Mendrzik et al., 2018; Lin et al., 2018). For instance,
in (Guerra et al., 2017) a channel model for personal radar applications based on mm-wave antenna
arrays is described and is used to scan the environment and reconstruct a map of it. Moreover, in (Guidi
et al., 2016) the in�uence of di�erent design parameters on mm-wave radar-based mapping performance
is analyzed. Over the last few years, mm-wave RF signals have been used to localize and track a moving
target in a variety of ways, e.g., by using Angle-of-Arrival measurements, by combining path loss with
Angle-of-Arrival data or through Angle Di�erences-of-Arrival algorithms (Kanhere and Rappaport,
2018; Olivier et al., 2016). Since mm-wave radars operate at frequencies higher than 10 GHz (Park et al.,
2014; Ng et al., 2017), arrays of small and closely spaced antennas can be easily implemented on the
platform itself at a reduced cost and with a small footprint. In this case, the position of the target can
be estimated from the Phase Di�erences of Arrival (PDoA) of the backscattered waveforms received
by di�erent antennas (Ebelt et al., 2014). This general approach has been also used to implement low-
cost commercial o�-the-shelf Systems-on-Chip (SoCs) embedding both RF circuitry and digital signal
processing algorithms for position estimation.

The solutions adopted for localization and tracking take a di�erent shape depending on the con-
sidered target type. When tracking a robot, it is possible to merge odometry and inertial sensors data
with the information derived from visual landmarks or Radio Frequency Identi�cation (RFID) tags with
given coordinates in the considered reference frame (Nazemzadeh et al., 2017). When instead the entity



3.1. Overview 29

Camera Radar LIDAR Ultrasonic

Sensor
fusion

Ambient light independent X X X X
All-weather operation X X X
Operating range mid-far near-far mid-far near near-far
Angular resolution high medium high low high
Cost high medium high low medium

Data classi�cation,
texture

motion
measurement 2D/3D mapping low-cost

ranging

Table 3.2: Comparison of sensor characteristics.

to be localized and tracked is a human, data fusion can still be a possibility using di�erent sensing tech-
nologies. In general, the purpose of data fusion algorithms is to improve tracking accuracy, robustness
and scalability, while reducing the cost and the complexity of the equipment. For instance, it is possible
to use wearable inertial platforms to estimate the user’s relative motion and RF transceivers (preferably
based on standard, widely available Wi-Fi or Bluetooth modules) to measure the distance from �xed
anchor nodes (Colombo et al., 2014). However, to increase the �exibility of robots, it would be preferred
to track targets who are not required to carry any kind of electronic device. Visual, laser, and radar
sensors share this characteristic. In conclusion, all the di�erent sensors reported have unique strengths
and ability to extract information from the surroundings, as listed in Table 3.2 borrowed from Gardill,
2019. The ultrasonic sensors share most of their features with the radar sensor, but with lower perfor-
mance, therefore we have not considered them in our evaluation preferring the latter. Cameras o�er
the best for human classi�cation and obstacle detection, while with radars and lidars it is possible to
obtain precise spatial measurements of the entities in the neighbours of the robot. However, depth
cameras and 3D lidars are the most expensive sensors, while radars are substantially cheaper. We can
notice that only the sensor fusion is able to encompass the largest number of scenarios.

We evaluated the tracking performance of three di�erent solutions. Since we are interested only on
the tracking performance of the algorithm, we assume that the robot is standing in a �xed position with
its sensors pointed toward the environment, and that it is localised in the environment within de�ned
thresholds (Nazemzadeh et al., 2017; Magnago et al., 2018). First, we will assess the performance of two
recently developed human tracking algorithms, namely YOLO, a fast and robust detector for objects in
natural images (Redmon et al., 2016a), and OpenPose, which can perform 2D real-time multi-person
pose estimation and segmentation, detecting the anatomical key-points for each of the detected human
being (Cao et al., 2017). YOLO is a general classi�cation framework, while OpenPose is specialised
for human targets. The two methods are evaluated both in isolation and then fused together using a
Kalman �lter, using a depth camera (Section 3.2 for the technical description and 3.3 for the performance
assessment and the experimental set-up). The second solution, presented in Section 3.4, employs YOLO
on a monocular camera and in combination with a LIDAR, which is a novelty with respect to the
solutions reported in Table 3.1. The advantages of this solution with respect to the use of 3D cameras
are manyfold:

1. The use of YOLO reduces the computation time and enables a faster sampling rate;
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2. The reduced computation time and the lower cost of the hardware components bring about a
general cost reduction with respect to the use of a 3D camera;

3. The use of separate systems for depth estimation and classi�cation improve the system robustness
when one of the systems fails (e.g., if the camera is temporarily “blinded” we can still use the
LIDAR sensor for some time assuming a certain degree of continuity in the scene).

The experimental evaluation is addressed in Section 3.5. A low-cost commercial mm-wave radar is
�nally analysed. Despite the promising usefulness for mobile robotics, the actual performance and the
limitations of these platforms are still quite unclear. The information reported in the data sheets is
usually partial or incomplete. In addition, a proper experimental characterization of these devices in
dynamic conditions is hard to do and results are inaccurate or poorly presented. Section 3.6 summarizes
the principle of operation of the radar-based platform and its main parameters of interest. The static
and dynamic performance of the system under test are reported in Section 3.7.

3.2 Camera-based tracking

First, we want to assess the performance of a people tracker when YOLO and OpenPose are used with
only visual information and for the service robotic application described in Section 3.1. The tracking
system comprises two main components, i.e. the sensing system and the estimation algorithm. Notice
that the main role of the estimation algorithm is to improve the performance of the sensing system and,
whenever possible, increase the robustness of the solution by making it resilient to occasional sensor
reading failures.

3.2.1 Stereo camera system

OpenPose (Cao et al., 2017) performs 2D realtime multi-person pose estimation from captured images
and extracts the anatomic description, in terms of body, hands, face, and feet, for each of the detected
person (Simon et al., 2017; Wei et al., 2016). Its architecture is made by a two-branch multi-stage
Convolutional Neural Network: the �rst branch iteratively predicts the con�dence map of body parts
locations in the image (Wei et al., 2016), while the second iteratively predicts the Part A�nity Fields
(PAFs), which is made of 2D vectors that connect body parts belonging to the same limb (Cao et al.,
2017): the concatenation of these two components allows the estimates of the 2D coordinates of the
body key-points (Figure 3.2-a).

YOLO is a fast and strong detector, in the form of a bounding box, for generic objects that can
be found in a stream of images (Redmon et al., 2016a). The detection is performed by splitting the
image into a cell grid and then by predicting the bounding boxes using cluster centroids references
and anchor boxes (Redmon and Farhadi, 2017). Each box predicts the object class that it may contain
using multi-labelled classi�cation (Redmon and Farhadi, 2018a). YOLO returns a set of bounding boxes
each containing 5 components, i.e. the (x, y) pixel coordinates of the centre of the box, its width and
height, and the con�dence, representing the similarity of height-width ratios between the predicted
box and the ground truth box. YOLO is faster than most of the other state-of-the-art models, however,
it becomes inaccurate with groups of objects or when the detected object has con�gurations di�erent
from the reference data. In addition, sometimes the boxes do not contain the object perfectly (see the
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(a) (b)

Figure 3.2: Examples of human detection in camera frame obtained with OpenPose (a) and YOLO
(b). We notice that YOLO can detect more objects (e.g. the pc monitor in the frame), but the de-
tection can be inaccurate (for instance, since the person has the arms raised, the spatial hindrance
is badly represented. OpenPose, instead, provides a better detection of the human joints, even if

some missdetections can occur, in fact in the example the detection of the legs is wrong.

Figure 3.3: Stereo camera model.

example in Figure 3.2-b). While OpenPose determines the 3D object position using a mono camera or
a stereo camera pair (see Figure 3.2-a), it demands more computing power than YOLO, which in turn
needs the tracked object depth to perform 3D reconstruction (Redmon and Farhadi, 2018a).

By denoting with 〈Cl〉 = {Xl, Yl, Zl} and 〈Cr〉 = {Xr, Yr, Zr} the frames of a pin-hole parallel
stereo camera system pair related to the right and left vision sensor, respectively (see Figure 3.3), the
depth map can be obtained by calculating the di�erence between the horizontal coordinates of the
pixels of an object image in the left and the right image (i.e., disparity), which is directly related to the
distance x alongXr andXl of the object from the image planes Mokrzycki, 1994 (see Figure 3.3). Since
�nding the corresponding pixels between the two cameras is a non-trivial task, several methods have
been developed in the literature, ranging from pixel-based matching costs (such us, squared di�erences
or truncated absolute di�erences), to area-based matching costs (e.g. SAD, SST, STAD). Beyond the
accuracy of the speci�c method adopted, the task requires a proper computing power, which scales
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with the image dimension. To overcome this limit and let the system to work in real-time when using
OpenPose, the key-points of the skeleton detected in both images are used as corresponding pairs,
which are then used as sparse disparity maps. In particular, we took the left camera as a reference, so
for each pair of points we measure the horizontal and vertical distances that the key-points of the right
image would have related to the ones in the left image. Pairs of coincident points are discarded. To
�nd the skeletons, the images are pre-�ltered with a 2D Gaussian smoothing kernel for computation
e�ciency. The struct returned by OpenPose contains a set of key-points according to the 18-point
model trained on the COCO dataset (Lin et al., 2014). The key-points are divided for each detected
person and come with the image coordinates, a unique identi�er and a con�dence score in the range
[0, 1]. On the basis of the stereo camera measure, the 3D coordinates (xli, y

l
i, z

l
i) of the i-th key-point in

〈Cl〉, whose coordinates in the left image plane are denoted as (ximl , yiml ), can be readily obtained as

xli =
bf

ximl − ximr
=
bf

di

yli =
ximl xli
f

zli =
yiml xli
f

(3.1)

where b is the distance between the centres of the two cameras (i.e. baseline, see Figure 3.3) and f
is their focal length in pixels, supposed to be identical for the Yl and Zl coordinates (Hamzah and
Ibrahim, 2016). Similarly, the equations for the right camera can be immediately obtained using (3.1).
The human being whose skeleton has been detected will have an estimated position that is the weighted
sum, where the weights are the OpenPose computed con�dence, of all the reconstructed skeleton key-
points 3D coordinates. As a consequence of the depicted algorithm, OpenPose reconstructs excellent
but fairly slow (e.g., in post-processing on a quad-core 2.7GHz i7 computer it takes in the average of
500 ms per frame) human positions.

On the other hand, the YOLO library is needs only one image to detect objects in the scene, however
it needs depth information. By using a stereo camera pair with built-in 3D reconstruction algorithms
(precisely, the ZED camera in Figure 3.4 is used1), the 3D coordinates of these objects identi�ed in the
image is immediately available. More precisely, assuming to have a �xed camera and only one person in

Figure 3.4: ZED camera1.

the scene, we can start a stream of images from both cameras. YOLO, then, carries out a detection of the
persons/objects in the images, and returns a set of bounding boxes which contain the detected objects.
The 3D positions of the objects, given by the centre of their bounding boxes, are obtained by �nding
the points in the point cloud that are linked to a reference window of pixels nearby the bounding-box

1https://www.stereolabs.com/zed
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Figure 3.5: Human detected with OpenPose (blue and red points) and with YOLO (purple box).

centre. A graphical representation of the detected human body posture by OpenPose and YOLO are
reported in Figure 3.5. Whenever the information relies on a monocular camera, we assume they are
captured from the left camera only, i.e. expressed in 〈Cl〉.

3.2.2 Sensing system model

As described in Section 3.2.1, the sensing system relies on two di�erent algorithms: OpenPose and
YOLO, both using the ZED stereo camera images. From the perspective of the people tracking system,
we will assume that each of the two solutions provides the position of a person in 〈Cl〉, which has been
taken from reference. In particular, since the vertical position is not of interest while only the motion
on the Xl × Yl is of interest (see Figure 3.6), we will assume that both OpenPose and YOLO returns
such positions as the centroid of the detected human. In particular, for OpenPose we have for the j-th
detected person [

xlj
ylj

]
=

1

n


n∑
i=1

xli
n∑
i=1

yli

 , (3.2)

where the summands are the skeleton detected points as in (3.1). Similarly, for YOLO we have an
averaged function as in (3.2), where instead the points are given by the detected points in the box.

In both cases, we will assume that the measurements for the j–th person are given by

mop
j =

[
xlj
ylj

]
+ εop,

myo
j =

[
xlj
ylj

]
+ εyo,

(3.3)

where εop and εyo are the noises a�ecting the measurement process carried out by OpenPose and YOLO
respectively and characterised in Section 3.3.
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Figure 3.6: Camera reference system adopted in the stereo camera con�guration.

3.2.3 Estimation algorithm

The estimation algorithm is built taking into account the fact that the person that is moving, once
detected for the �rst time, follows an unimodal probability density function (pdf). In particular, to
limit the computational cost and to follow well established literature results, we assume that this pdf is
Gaussian. As a consequence, two Kalman �lters are considered, whose di�erence relies on the motion
model adopted. The �rst one is related to the well known constant velocity model (Ratsamee et al.,
2013), a simpli�ed version of the Social Force Model (SFM) (Helbing and Molnar, 1995). In such a case
the human being is modelled as a material point moving on plane with constant velocity. Therefore,
being s(k) = [x(k), y(k), vx(k), vy(k)]T the state at time k comprising the position and the velocity of
the human on the plane of motion, we have for the Kalman Filter (KF)

s(k + 1) =


1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1



x(k)

y(k)

vx(k)

vy(k)

+


δ2t
2 0

0
δ2t
2

δt 0

0 δt


[
νx(k)

νy(k)

]
=

= As(k) +Bν(k),

(3.4)

where ν(k) is the acceleration noise a�ecting the velocity variations that is supposed to be ν(k) ∼
N (0, N) (indeed no knowledge is available about the actual motion intention of the human, hence the
random walk choice), with N being its covariance matrix.

The second model instead assumes that humans are moving according to a smooth dynamic, an
idea based on direct observations (Arechavaleta et al., 2008). In this case, the motion model boils down
to a unicycle dynamic (Farina et al., 2017a). Hence, by denoting with q(k) = [x(k), y(k), θ(k), v(k)]T

the state of the system at time k (where θ(k) is the orientation of the human and v(k) its longitudinal
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velocity), we immediately have for the Extended Kalman Filter (EKF)

q(k + 1) =


x(k) + δtvk cos(θ(k))

y(k) + δtvk sin(θ(k))

θ(k)

v(k)

+


0 0

0 0

δt 0

0 δt


[
ηθ(k)

ηv(k)

]
=

= f(q(k)) +Bη(k),

(3.5)

where η(k) represents the acceleration noise a�ecting the velocity variations and the perturbations of
the system orientation θ(k), which are supposed to be de�ned as η(k) ∼ N (0, E), with E being its
covariance matrix.

In both cases, the initial state and the measurement update step are determined by the measure of
the human being given by (3.3). Similarly, the �lters estimation covariance matrices, Ps(k) and Pq(k)

respectively, are initialised based on the covariance of εop or εyo in (3.3) (depending on the sensing
system model adopted).

3.3 Tracking system results

For the experiments, we have adopted a C++ implementation of OpenPose based on Tensor�ow and
OpenCV2. Since our algorithm is executed in MATLAB, we have used the MATLAB API to call a Python
module to construct an OpenPose class, pass the image as a NumPy array and get a struct with the pose
positions whenever a person was detected in the image. Similarly, a C++ implementation of YOLO has
been adapted for the available ZED stereo camera3 adopted, which allows to execute the object detector
in real time while performing image acquisition with the ZED camera.

The videos were recorded with the ZED camera and a Jetson TX14. Since we needed time to run
YOLO and to save the frames as well, the acquisition rate was about 3 ÷ 4 fps. An OptiTrack Flex13
reference localization system5 equipped with 14 cameras Prime 13 (with a resolution of 1280 × 1024

pixels and a frame rate of 120 Hz) was used to capture ground truth data of the participant and the ZED
camera positions. The ZED camera was placed so that the image planes were orthogonal to the plane
of motion (see Figure 3.6), and its 3D position related to the reference system origin was calibrated
with ground truth data. We recorded several times di�erent types of trajectories, i.e. linear paths with
constant distance from the camera, diagonal and circular paths (see Figure 3.7). At �rst, the process
covariance matrices N and E used in Section 3.2.3 are obtained computing the errors between the
predicted state given by the Kalman �lter di�erent implementations and the ground truth. For the
measurement covariances associated to εop and εyo in Section 3.2.1, we evaluate the error of OpenPose
and YOLO on a large set of random paths. Figure 3.8 depicts the empirical Probability Mass Functions
error along the Xl and Yl for both the sensing systems adopted. Such results are used as covariance
matrices for the joint Gaussian distributions hypothesised.

2https://github.com/ildoonet/tf-pose-estimation
3https://github.com/stereolabs/zed-yolo
4https://developer.nvidia.com/embedded/jetson-tx1-developer-kit/
5https://optitrack.com
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Figure 3.7: Types of trajectories for the experimental evaluation: (a) linear, (b) diagonal, (c) cir-
cular, and (d) random walks.
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Figure 3.8: Error distribution along the Xl and Yl axes for (a) Openpose and (b) YOLO.

Table 3.3 shows the experimental covariance matrices elements of the �ltering error for the (x, y)

positions with respect to the ground truth with both the Kalman �lters designed. The term ρ represents
the correlation coe�cient between the two quantities. All the three di�erent types of trajectories were
tested. The best results are obtained using the EKF and the measurements given by YOLO or a mix of the
two tracking algorithms. These results re�ect the performance achievable with Openpose and YOLO.
Indeed, OpenPose turns to be quite e�ective in detecting the human being skeleton, i.e. it is robust with
respect to partial occlusions due to its well learned models (see the dashed line in Figure 3.10 for theXl

andYl coordinates). Nevertheless, when it is compared with the ground truth (dotted line in Figure 3.10),
the detection accuracy is quite low with several outliers. An explanation of this phenomenon can be
the di�erent position of the body points between the two images, which leads to an incorrect averaged
estimate. On the contrary, YOLO is not always capable of detecting the pose of the person, however
when it succeed, the accuracy is relevant and there is an absence of outliers (solid line in Figure 3.10).
The main reason behind this behaviour is the fact that YOLO uses the Xl estimated position given
directly by the ZED camera through triangulation, which leads to a more accurate estimate when the
person is detected.
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KF EKF

Linear
OpenPose σ2

x = 0.3138, σ2
y = 0.2853, ρ = −0.4668 σ2

x = 0.1548, σ2
y = 0.2126, ρ = −0.1800

Yolo σ2
x = 0.0244, σ2

y = 0.1862, ρ = 0.2893 σ2
x = 0.0256, σ2

y = 0.1545, ρ = −0.3036

Mix σ2
x = 0.0578, σ2

y = 0.2217, ρ = −0.1760 σ2
x = 0.0717, σ2

y = 0.1943, ρ = −0.1873

Diagonal
OpenPose σ2

x = 0.3740, σ2
y = 0.2586, ρ = −0.6719 σ2

x = 0.3105, σ2
y = 0.1934, ρ = −0.3903

Yolo σ2
x = 0.0957, σ2

y = 0.1683, ρ = −0.9170 σ2
x = 0.0897, σ2

y = 0.1400, ρ = −0.8209

Mix σ2
x = 0.1391, σ2

y = 0.2200, ρ = −0.7734 σ2
x = 0.1383, σ2

y = 0.1794, ρ = −0.6113

Circle
OpenPose σ2

x = 1.2866, σ2
y = 0.2709, ρ = −0.4702 σ2

x = 0.4832, σ2
y = 0.2320, ρ = −0.1911

Yolo σ2
x = 0.1630, σ2

y = 0.1529, ρ = −0.2075 σ2
x = 0.1126, σ2

y = 0.1167, ρ = −0.1607

Mix σ2
x = 1.1887, σ2

y = 0.2346, ρ = −0.5110 σ2
x = 0.6968, σ2

y = 0.2034, ρ = −0.1458

Table 3.3: Error covariance matrix data obtained for the KF and the EKF, using the di�erent
combination of measurements: OpenPose only, YOLO only and a combination thereof (denoted

with Mix).
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Figure 3.9: Filtering error when detection failures happen for YOLO (solid line) and when the
OpenPose returns quite noisy data (dashed line): the EKF estimates (dash-dotted line) are quite

close to the ground truth (dotted line).

As an example, Figure 3.11 shows the results of both the Kalman �lters along a circular path using
the di�erent combinations of the sensing algorithms. The graphs report the time evolution of the
distance d between the estimated point in the Xl × Yl and the corresponding ground truth point.
Notice that even though the results with the YOLO measurements (Figure 3.11-b) are better than those
obtained with the OpenPose (Figure 3.11-a), YOLO su�ers of intermittent detection of the human in the
image space. To this end, Figure 3.9 reports the EKF estimates behaviour when some YOLO detection
failures occur (it may be seen that the corresponding line is intermittent). Notice how the Kalman �lter
has the capability to build up a system that is more robust and more accurate by properly fusing the
sensing data: indeed irrespective of the intermittent YOLO measurements (solid line) and of the quite
noisy OpenPose measurements (dashed line), the EKF estimates (dash-dotted line) proves to close to
the ground truth data (dotted line). Similar results can be obtained also for the KF case. In Figure 3.12
we reported a comparison between all the possible combination of techniques for a random and quite
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Figure 3.10: YOLO (solid line), OpenPose (dashed line) and ground truth (dotted line) comparison
along the (a) x and (b) y coordinates when the person follows a circular path.

complex path (the ground truth is depicted with the blue lines). The tracking with OpenPose is quite
noisy with both the KF and the EKF (Figure 3.12-a,b), with an increase of estimation error especially in
the full scale areas of the sensor in the x and y directions. However, the detection in the image space is
very robust, so very few missdetections occurred throughout the experiment. On the other hand, YOLO
provides better measurements with less �uctuations with respect to the ground truth (Figure 3.12-
c,d), and the Extended Kalman Filter (Figure 3.12-d) gets smoother trajectories when compared to KF
(Figure 3.12-c). Unfortunately the number of failed detections is higher, as for example in the last part of
the experiment (after about 110 seconds), where the measurements are completely absent. Finally, the
combination of OpenPose and YOLO in the mixed approach Figure 3.12-e,f) allows to obtain precise
estimates with a reduced number of missdetections, since the second detector compensates for the
shortcomings of the �rst. However, in the mixed approach the computation time increases as we have
to run two models together at a time.
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Figure 3.11: Distance errors for the KF (dashed line) and the EKF (solid line) in the circular path
example using (a) only OpenPose, (b) only YOLO, (c) and both measurements.
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3.4 LIDAR-camera tracking

The second sensing system is based on the fusion of a LIDAR and a monocular camera (to save com-
putation time), with YOLO working as the image processing algorithm. The laser scanner (the RPLidar
A26 in Figure 3.13-a) employed has a view of 360◦ and maximum measuring distance up to 6 meters at
typically 10 frames per second. The sensor and the camera were rigidly mounted on the same base, with
parallel and aligned axes, previously calibrated using ground truth data. Hence, the mapping between
points from the camera reference system 〈Cl〉 to the laser reference system 〈L〉 is obtained through a
linear correspondence (see Figure 3.14).

3.4.1 LIDAR system

Each scan delivered by the laser scanner provide a sequence of n measurement points in the form of
P = {p1, . . . , pn}, represented in polar coordinates as pi = (ri, αi), i.e. a range and an angle expressed
in the system reference frame. Those points can be represented similarly in Cartesian coordinates,
i.e. pi = (xi, yi) = (ri cosαi, ri sinαi). Figure 3.15 reports an actual scan from the available LI-
DAR, whose Cartesian coordinates are expressed in 〈L〉. At the time tk scan, the measured points

(a) (b)

Figure 3.13: (a) RPLidar A2 laser scanner6 and (b) ELP camera7.

are �ltered and grouped into clusters based on the mutual Euclidean distances and on the richness,
i.e. on a minimum number of sensed points for each cluster (see Algorithm 3). We get then a set of
mk clustered objects, each identi�ed by the object centroid oj = (xj , yj). Given two sets of objects
Ok = {o1(tk), . . . , omk(tk)} andOk+1 = {o1(tk+1), . . . , omk+1

(tk+1)}, taken in two consecutive time
instants tk and tk+1 and possibly having mk 6= mk+1, we adopt a distance threshold to decide either
for correspondence, i.e. the same object is tracked along the scans, or to allocate a new object. Due
to the measurement noise of the LIDAR, we must also add a time threshold to introduce an inertia in
updating objects, and �lter possible spurious detections. Consequently, the tracking algorithm keeps
track of the objects whose centroids were updated for Ta time instants, while it removes those whose
centroid does not �nd correspondences for To scans (see Algorithm 1).

3.4.2 Sensing system model

Since the LIDAR is positioned parallel to the horizontal plane of the world reference system, the coordi-
nates of oj(tk) are comparable with the coordinates given by the bounding box of YOLO to retrieve the

6https://www.slamtec.com/en/Lidar/A2
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Figure 3.14: Schematic representation of the camera 〈Cl〉 and the LIDAR 〈L〉 reference systems.
The YOLO bounding box (purple box) identi�es a conical sector (red lines) in the LIDAR plane.

object depth. As detailed in Section 3.3, YOLO was found to be more robust and faster than OpenPose,
although the bounding boxes dimensions are noisy and inconsistent. The minimum and maximum x-
coordinates of the bounding box provided by YOLO in 〈Cl〉, mapped in 〈L〉, turn in a conical sector in
the XL × YL plane (see Figure 3.15).

With the hypothesis of uniquely associating a cone with an object, the nearest cluster within the
conical sector is labeled as a person and its position oj(tk) = (xj(tk), yj(tk)) is tracked. Subsequently,
if the object is appropriately updated over time, the tracking is based solely on the succeeding scans
of the LIDAR, as opposed to many related works reported in Table 3.1, which also use the person’s
position coming from the visual information. When the object associated with the person is released
from the tracking system due to failure in measurement detection or exit from the detection area, a new
fusion between the information from the LIDAR and the camera is carried out. This way, the computing
power is lowered down since no image processing is requested for tracking. Finally, we can assume
that the measurements for the j-th person, once associated to a LIDAR object, are given by

mlc
j = oj =

[
xlcj
ylcj

]
+ εlc, (3.6)

where εlc is the noise a�ecting the measurement process carried out by the LIDAR and characterised
in Section 3.5.

3.4.3 Estimation algorithm

As for the camera-based sensing system, for the LIDAR-camera system as well two Kalman �lters are
adopted, in order to mitigate the noises εlc in (3.6) and make the estimation algorithm more robust. The
�rst model adopted is the constant velocity model (3.4) adopted in Section 3.2.3, which is a�ected by
the noise ν(k) ∼ N (0, N).

The second �lter is instead a di�erent formulation of the unicycle model (3.5), where the angular and
linear velocities are both explicitly expressed as states. So, setting q(k) = [x(k), y(k), θ(k), v(k), ω(k)]T

as the state at time k (whereω(k) is the angular velocity), we have the following Extended Kalman Filter
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Figure 3.15: Laser scanned cloud points, with the object centroids (blue points) and the YOLO
bounding box (the red lines projected as described in Figure 3.14) mapped in the LIDAR reference

system 〈L〉.

(EKF) prediction model

q(k + 1) =


x(k) + δtvk cos(θ(k))

y(k) + δtvk sin(θ(k))

θ(k) + δtω(k)

v(k)

ω(k)

+


0 0

0 0

0 0

δt 0

0 δt


[
ηa(k)

ηω(k)

]
=

= f(q(k)) +Bη(k),

(3.7)

where η(k) is the acceleration noise a�ecting the linear and the angular velocities that is assumed to
be η(k) ∼ N (0, E), with E being its covariance matrix. For this EKF formulation, the measurement
functions are given in (3.6).

3.5 Tracking system results

The experimental set-up comprises an o�-the-shelf USB Camera Module7 (see Figure 3.13-b) for which
we adapted the C++ implementation of YOLO used in Section 3.5 along with OpenCV. Likewise, a C++
class was written to call the LIDAR API. To further speed up the data acquisition, the camera frames are
not saved, while only the LIDAR scans (as a vector of points) and YOLO detection structs are recovered.

The acquisition algorithm was executed on a Jetson TX28, with an acquisition rate of 10 Hz for
both the LIDAR and YOLO. Ground truth data were obtained using the 3D tracking Optitrack system
described in Section 3.3. The latter was placed so that the image were orthogonal to the plane of motion
(see Figure 3.6), and its 3D position related to the reference system origin was calibrated with ground

7ELP-USBFHD01M-BL36 from http://www.elpcctv.com/
8https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
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Algorithm 1 Clusters assignment algorithm
Input: Ok = {o1(tk), . . . ,omk(tk)}, O?k+1 = {o?1(tk+1), . . . ,o?mk+1

(tk+1)}, Hk = {hit1(tk), . . . , hitmk(tk)},
Tk = {track1(tk), . . . , trackmk(tk)}

1: // j = 1, cj ← Append(p1)
2: updatedj = False, ∀j = 1, . . . ,mk // Initialisation object update �ag
3: for i = 1 to mk+1 do
4: for j = 1 to mk do
5: if ||o?i (tk+1)− oj(tk)||2 < dmin then
6: oj(tk)← o?i (tk+1) // Update cluster position
7: updatedj ← True
8: else
9: mk ← mk + 1

10: oj(tk)← Append(o?i (tk+1)) // Allocate new cluster
11: hitj = Append(0)
12: trackj = Append(False)
13: end if
14: end for
15: end for
16: for j = 1 to mk do
17: if trackj == True then
18: if updatedj == False then
19: hitj ← hitj − 1
20: else
21: hitj ← 0
22: end if
23: if hitj ≤ To then
24: for i = j to mk − 1 do
25: oi(tk)← oi+1(tk) // Delete cluster
26: mk ← mk − 1
27: end for
28: end if
29: end if
30: if trackj == False then
31: if updatedj == True then
32: hitj ← hitj + 1
33: else
34: hitj ← 0
35: end if
36: if hitj ≥ Ta then
37: trackj == True // Start tracking cluster
38: hitj ← 0
39: end if
40: end if
41: end for
42: k ← k + 1
Output: Ok = {o1(tk), . . . ,omk(tk)}

truth data. For the sake of comparison, we recorded the same types of trajectories used in Section 3.5,
i.e. linear paths with constant distance from the camera, diagonal and circular paths. The process
covariance matrices N and E a�ecting respectively the KF model (3.4) and the EKF model (3.7) are
obtained computing the errors between the predicted state given by the �lters and the ground truth on
several testing trajectories. For the measurement covariances associated to εlc and a�ecting the LIDAR
measured quantities in (3.6), we evaluate the error of LIDAR-camera system on a large set of random
paths. Figure 3.16 depicts the empirical Probability Mass Functions error along the Xl and Yl (recall
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Figure 3.16: Error distribution along the Xl (top) and Yl (bottom) axes for the LIDAR-camera
system (histogram bars) and the relative Gaussian �t (red line).

KF EKF

Linear σ2
x = 0.0259, σ2

y = 0.0211, ρ = 0.4981 σ2
x = 0.0327, σ2

y = 0.0207, ρ = 0.3584

Diagonal σ2
x = 0.0174, σ2

y = 0.0414, ρ = −0.2013 σ2
x = 0.0192, σ2

y = 0.0448, ρ = −0.1711

Circle σ2
x = 0.0502, σ2

y = 0.0391, ρ = −0.2838 σ2
x = 0.0404, σ2

y = 0.0360, ρ = −0.1315

Table 3.4: Error covariance matrix data obtained for the KF and the EKF, using the LIDAR-camera
measurements.

Figure 3.6) for the new sensing system. If compared with the results in Figure 3.8, it appears that the
accuracy of the new system is greater than using OpenPose or YOLO. Notice that the error along Yl
has a slight bias, which is in the depth direction (see the reference 〈L〉 in Figure 3.15): the LIDAR tends
to underestimate the actual person position. Such results are used as covariance matrices for the joint
Gaussian distributions hypothesised.

Table 3.4 shows the new experimental covariance matrices elements of the �ltering error for the
(x, y) positions with respect to the ground truth with both the Kalman �lters designed. It is evident
how the �ltering error is generally lower than any possible combination presented in Table 3.3. These
results show how the LIDAR data, if properly processed and combined with the purely qualitative
information of YOLO, are more accurate than the purely image-based tracking systems and with a
reduced computation.

For what concerns the rate of missed measurements, this solution is de�nitely better than the so-
lutions in Section 3.3, as it is evident from Figure 3.17 when a circular trajectory is considered as an
example. In fact, notice how the number of missed data is de�nitely low, which allows us to state that
the LIDAR-camera system is even more robust than a purely camera-based solution. In this respect, the
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Figure 3.17: LIDAR-camera (solid line) and ground truth (dotted line) comparison along the (a)
Xl and (b) Yl axis when the person follows a circular path.

main tracking problems are the measurements at the boundaries of the detection area (clearly pointed
out in Figure 3.17 recalling that the Yl coordinates represent the depth) and the possible occlusions
between two nearby objects. Other than that, the tracking is smooth and constant in all the space
reachable by the sensor, and appears unrelated from the distance between the person from the sensing
system. In other words, even at the furthest distance, the object associated with the person as described
in Section 3.4.2 is made up of a su�cient number of measured points. From Figure 3.17 it can also be
seen how the object is quickly recovered as soon as it returns within the maximum distance visible
from the sensor.

Another important issue that comes out from Table 3.4 is that the two models behave slightly better
than the other when the hypothesis are met: the KF works better for constant velocity paths, while the
EKF for curved and smooth paths. As an example, Figure 3.18 shows the results of both the solutions
along the circular path of Figure 3.17. The graph report the time evolution of the distance error d
between the estimated points in theXl×Yl and the corresponding ground truth points. The peak errors
are due to the loss of the LIDAR tracking when the human being reaches the sensing range boundary
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(see Figure 3.17 and Figure 3.15). However, the EKF with the unicycle model (3.7) is able most of the
time to keep track of the curve, while the KF with the constant velocity model (3.4) predicts a linear
motion tangent to the curve (see the peaks in Figure 3.18). This behaviour is further emphasised in
Figure 3.19: the EKF (dashed line) is able to keep track of the nonlinear smooth behaviour of the actual
curved trajectory (dotted line).



48 Chapter 3. Human positioning and tracking

3.6 Radar-based tracking

The radar-based platform is based on an evaluation module comprising the TI IWR6843 So9 (see Fig-
ure 3.20), an array composed by three transmitting and four receiving antennas and other electronic
components to connect the SoC with other external systems. The evaluation module is placed in pig-
gyback on a custom motherboard designed by Tretec S.r.L., Trento. The motherboard is equipped with
an STM ARM Cortex-H7 microcontroller running at 256 MHz, 2 MB of �ash memory and 1 MB of
SRAM memory. The system is powered by a IEEE 802.3af Power over Ethernet class 1 interface that
can drain about 300 mA on average at 3.3 V. Along with the Ethernet link, I/O connectivity is provided
by 1 mini-USB port (for debug purposes), 2 RS-485 and 1 RS-232 ports and 3 independent I2C links. A
task scheduler and the lightweight TCP/IP stack (lwIP v.2.0.3) have been properly customized for the
�rmware provided. SoC con�guration and radar data streaming rely on a TCP/IP Ethernet connection.
The IP address can be assigned either statically or dynamically (if a DHCP server is available). Remote
system con�guration as well as data acquisition and monitoring is performed via a Graphic User In-
terface (GUI) implemented in Java. A brief description of the radar-based positioning algorithm and its
main con�guration parameters is reported in Table 3.5.

Figure 3.20: IWR6843 radar9.

3.6.1 Algorithm and SoC overview

The IWR6843 SoC relies on a Frequency Modulated Continuous Wave (FMCW) radar able to estimate
the distance, the angle and the velocity of a moving target. FMCW radars transmit repeated frames of
chirp signals using an antenna array and receive the backscattered ones with another one. The received
and transmitted waveforms are mixed to produce an intermediate frequency (IF) signal, whose initial
phase is given by the di�erence between the phases of the transmitted and received chirps. The distance
between the target obstacle and the transceiver is a nonlinear function of this IF signal. The velocity
measurements are obtained by transmitting equally spaced chirps and then by comparing the phases of
two re�ected ones estimated through the Fast Fourier Transform (FFT). A second FFT, called Doppler-
FFT, is performed in order to resolve ambiguity between two moving targets. Finally, the angle can be
estimated from the phase changes associated with the spectral magnitude peaks resulting from the FFT
or the Doppler-FFT.

9https://www.ti.com/product/IWR6843
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Parameter Short range con�guration

Field of view 120 ° horizontal, 30 ° vertical
Maximum range 6.3 m
Range resolution 5.5 cm
Maximum velocity 23.6 Km/h
System power consumption 2 Watt

Table 3.5: Nominal radar characteristics from http://www.ti.com/tool/TIDEP-01000.
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Figure 3.21: Radar tracking pipeline. In the represented example, two pedestrians are the radar’s
�eld of view (a). The re�ected points (b) are gathered in clusters (c) and then tracked individually

(d).

The IWR6843 SoC includes an ARM Cortex-R4F microcontroller (MCU) and a TI C674x Digital
Signal Processor (DSP) acting as a co-processor for critical signal processing tasks. The people tracking
algorithm (depicted in Figure 3.21) running on the ARM Cortex-R4F is called once per frame, gets the
measurement data in polar coordinates (range, angle, Doppler frequency shift), and returns the tracked
objects in a Cartesian space. Since any target has a �nite size and several chirps are transmitted and
received at the same time by the antenna array, usually the distance from a multitude of points is
measured at the same time. Such points may refer to the same or to di�erent objects. Therefore, the
points should be grouped accordingly. The algorithm relies on both an allocation and an association
step. The allocation step creates sets of points (to be assigned to distinct possible targets) that do not
belong to any already existing set. The allocation step is guided by some con�guration parameters, as
explained more in detail in Section 3.6.2. The association step instead refers to the process of updating
these sets, by keeping the previous points or adding the new ones that are closest to the corresponding
centroid. An on-board extended Kalman �lter (EKF) is used to track the position of the centroids
resulting from the allocation and association steps. The pipeline of the tracking algorithm is outlined
in Figure 3.22. At the beginning of the pipeline, the parts of the point cloud that fall outside the scene
limits are ignored by the association and allocation steps. All the points that are allocated to a given
target are �rst evaluated with the EKF predict step. Then, the association step assigns the measured
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Figure 3.22: Flow chart of the tracking algorithm.
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Figure 3.23: Radar parameters P1, P2, and P3 were considered for the experimental evaluation.

points closest to a given centroid to the corresponding set, evaluating the set with the highest score. All
the points that cannot be associated to any existing set are grouped into new sets, which are allocated
to new possible targets. Finally, in the update step, the EKF estimates the positions of the targets on
the basis of the set of associated and newly allocated points.

3.6.2 Con�guration parameters

The behaviour of the detection and tracking algorithm embedded in the TI IWR6843 SoC depends on a
variety of parameters. The most representative ones are listed in Figure 3.23. The scenery parameters,
expressed in meters, de�ne the limits of the detection area of the radar. Thus, all objects that lie outside
such limits are not gathered into sets. It should be noted that these values are independent of the actual
radar �eld of view, that could be smaller than the chosen area.

The state transition parameters determine the quickness with which each target in the allocation
step starts or stops being tracked. In particular, in every frame a “hit” or a “miss” event can be associated
to a given object, depending on whether a cluster of points is associated to a given object or not, and
the numbers of consecutive hits or misses de�nes the change of state for the object. The state transition
settings, used in the static and dynamic tests described in Section 3.7, are summarized below:

• A target is detected and starts being tracked as soon as the corresponding set of allocated points
is steadily formed. This holds in both static and dynamic testing conditions;

• A target stops being tracked when the corresponding set of points disappears or stops moving
for more than 50 or 500 algorithm iterations in dynamic or stationary conditions, respectively.
Moreover, a target stops being tracked as soon as it exits the expected detection area.

Observe that, in the case of tests in stationary conditions, the threshold value adopted to halt tracking is
10 times larger than in the dynamic case, in order to prolong radar tracking ability as much as possible.

The allocation parameters guide the formation of the sets of points to be assigned to one or multiple
targets. The most signi�cant parameters of this kind will be labeled here and in the following as P1 and
P2. The former one is an dimensionless threshold value used to discriminate possible spurious points
(typically due to background noise) from those that are associated to a moving target. In practice,
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with a higher value of P1 the number of sets tends to decrease. As a consequence, the probability
of missing actual targets increases. On the contrary, if P1 decreases, the probability of spurious (i.e.,
false) detections grows. Parameter P2 is instead a velocity threshold (expressed in m/s) representing
the minimum radial velocity associated with the centroid of the set allocated to the same target.

Finally, the so-called gating parameters establish how and to what extent some detected points
can be associated to one of the existing sets. The main parameter of this type (labeled as P3 in the
following) determines the maximum volume of a set. In practice, the points that are farther than P3

from the centroid of a given set are considered not to belong to the corresponding target.

3.7 Tracking system results

To test the performance of the radar-based platform, an experimental campaign was conducted in the
laboratories of the University of Trento. The radar-based platform was fastened to a rigid support
at about 2.30 m o� the �oor with a tilt angle of a few degrees (Figure 3.24). An OptiTrack Flex13

2.3 m

(a) (b) (c)

Figure 3.24: Experimental setup. The radar was placed on a rigid support (c), looking towards
the ground plane (a). The dashed area in (b) depicts the actual detection area of the radar.

reference localization system (see Section 3.3) was used �rst to calibrate the radar-based platform in
static conditions (namely, with a still target person) and then to measure the actual positions of one or
two people moving along di�erent paths. The trajectories estimated by the OptiTrack system can be
regarded as the “ground truth", since the position of the ad-hoc re�ective markers detected by OptiTrack
can be measured with±1 mm accuracy. In the following subsections, �rst a description of the platform
calibration procedure in static conditions and the related results are reported in Section 3.7.1. Then, in
Section 3.7.2, the system behaviour under dynamic conditions is analyzed.

3.7.1 Calibration procedure and results in static conditions

The nominal area over which the radar is supposed to detect a target is a sector of a circle with a radius
of 6 m and with aperture angle of about 118◦. However, some preliminary tests showed that the actual
detection area is instead quite irregular and smaller than expected. In particular, we found that:

• In the longitudinal direction, the detection range spans from 0.46 m±0.09 m to 5.55 m±0.12 m;

• In the transverse direction, the left and right detection ranges are 1.91 m± 0.05 m and 3.04 m±
0.36 m, respectively.
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Possible setup-related uncertainty contributions that need to be properly compensated (or at least
mitigated) for a better characterization of the platform are:

1. The angular and translational systematic o�sets between the reference frame associated with the
OptiTrack and the frame of the radar-based system;

2. The misalignment between the timestamps of the data collected by both positioning systems;

3. The intrinsic di�erence between the points of the body selected by either system to identify the
position of the target.

Given that the area monitored by the OptiTrack system is about 10 m× 7 m (i.e., quite larger than
the radar range), the position and the orientation of the TI IWR6843 SoC was measured in the OptiTrack
reference frame by placing three re�ective markers on it. Hence, a roto-translational transformation
was used to align the coordinates of the selected points in the reference frames of both positioning
systems.

The uncertainty contributions due to timestamp misalignment were minimized by using the same
PC to collect both OptiTrack and radar-based position data. Indeed, if the same PC clock is used for
data time-stamping there is no need to synchronize the positioning systems. Since both the OptiTrack
cameras and the radar-based platform stream their data to the PC through dedicated Ethernet cables
linked to the same Ethernet switch and with a similar length, the communication delays di�er by less
than 10 ms. Therefore, their impact on target positioning accuracy at common pedestrian speeds (i.e.,
lower than 3 m/s) is in the order of a few centimeters.

Finally, as far as the third uncertainty contribution is concerned, the (x, y) coordinates of the target
estimated by the OptiTrack and the values returned by the radar-based platform at the same time are
likely to refer to di�erent points of the body. This is due to the fact that to make the re�ective markers
detected by the OptiTrack visible from any position, they are placed on hats worn by users. Thus, the
location of a target for the OptiTrack coincides with the position of user’s head. On the contrary, the
position estimates returned by the radar-based system coincide with those of the centroid of the cloud
of points clustered by the algorithm running in the TI IWR684 SoC. Such a centroid is generally located
within the trunk, although some �uctuations may occur due to the changes in distance and relative
orientation between the user and the radar-based platform. In conclusion, a space-dependent geometric
o�set (in the order of some tens of cm) exist between the target positions measured by the OptiTrack
and by the radar system, respectively. These o�sets can be estimated and compensated through a
bivariate linear regression applied to the points collected when a target is still in 9 di�erent positions of
the room, as shown in Figure 3.25. The clusters of red points in Figure 3.25 represent indeed the planar
positions of the target measured by the radar-based platform in 1 minute for P1 = 375, P2 = 0 and
P3 = 5 (namely when the radar is maximally sensitive to target motion) after applying the calibration
procedure based on the bivariate linear regression described above. Observe that the post-calibration
residual o�sets between the mean values of the (x, y) coordinates measured in each position and the
corresponding ground-truth values (highlighted by blue circle markers) are negligible, which con�rms
that the calibration procedure is statistically correct. The average standard uncertainty along both axes
is about 5 cm with some �uctuations that depend on the relative orientation between target and radar,
as well as on the fact that a person must slightly swing to trigger radar detection.
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Figure 3.25: Planar coordinates measured by the radar-based platform (red dots) in 9 di�erent
positions after the calibration procedure is applied. The blue circle markers represent the actual

target’s position, i.e. measured by the OptiTrack system.
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Figure 3.26: (a) Example of an eight-shaped path. The solid and dotted lines refer to the tra-
jectories estimated by the radar and by the OptiTrack system, respectively. (b) Snapshot of the

experiment with the projection of the trajectory (yellow line).

3.7.2 Results in dynamic conditions

After platform calibration, multiple experiments have been conducted in dynamic conditions, i.e., with
one or two targets moving straight (both longitudinally and transversally with respect to detection
area of the radar), along eight-shaped paths or just randomly. For each type of trajectory, repeated
experiments have been performed for 26 di�erent triples of P1, P2 and P3 values. Such triples have
been selected with a trial-and-error approach and refer to the con�gurations for which the radar is
responsive and measurement results are qualitatively reasonable. Figure 3.26 displays an example of
an eight-shaped trajectory estimated by the radar (solid line) for P1 = 500, P2 = 0.5 and P3 = 10.

The same trajectory estimated by the OptiTrack system (dotted line) is also shown for the sake of
comparison. Observe that the average Euclidean positioning error in this case is about 14 cm. In
Figure 3.27 we report a more detailed view of the experiment for the x-axis and y-axis. We notice that
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Figure 3.27: Ground truth data (dotted line), and radar measurements (solid line) associates with
the x−axis (a) and y−axis (b) of the eight-shaped path of Figure 3.26.

the tracking of the radar (solid line) is very accurate, with slight deviations from the ground truth when
the target is nearby the edges of the sensor area.

The bar diagram in Figure 3.28 shows the 99th percentiles of the relative positioning uncertainty
γ = dr−d

d (where dr and d are the distances of the target measured by the radar and by the OptiTrack
system, respectively) as a function of the actual radial distance from the radar in three meaningful con-
�gurations. Observe that globally the relative uncertainty tends to decrease with distance. Therefore,
the absolute positioning uncertainty tends to be quite independent of d, which is consistent with the
qualitative result shown in Figure 3.26. However, by decreasing the value of P1 and P2 (which increases
the sensitivity of the system, thus generating possible spurious detections) relative accuracy tends to
improve.

Table 3.6 summarizes the results of the dynamic characterization of the radar-based platforms in
di�erent experiments. In particular, recalling that the expanded uncertainty is referred to as half of the
width of the interval that is expected to encompass a given fraction of the values that can reasonably be
attributed to a measurand (ISO/IEC Guide 98-3:2008, 2008), Table 3.6 reports the expanded uncertainties
Ux and Uy (with coverage factor 2.7) associated with the measurement of the planar coordinates of the
target when it moves over di�erent kinds of paths and for several triples of P1, P2 and P3 values. In
practice, with the chosen coverage factor, the planar coordinates of a target lie in the intervals given by
the (x, y) values measured by the radar-based platforms ±Ux and ±Uy , respectively, with 99% con�-
dence. Observe that in most con�gurations, the values of Ux and Uy range between 30 and 40 cm, with
a few exceptions. Such results con�rm that the radar-based localization is quite accurate. However,
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Figure 3.28: 99th percentiles of the relative positioning uncertainty as a function of the actual
distance from the radar for three di�erent con�gurations of parameters P1, P2 and P3.

Conf. Parameters
Ux [cm] Uy [cm] QS [%]

P1 P2 P3

1 250 0 10 28 29 6.9
2 500 0 10 34 35 0
3 800 0 10 30 25 0
4 250 0.5 10 32 26 24
5 500 0.5 10 26 31 0
6 800 0.5 10 33 30 0
7 250 0.25 10 35 32 8.1
8 500 0.25 10 34 24 0
9 800 0.25 10 34 35 0
10 250 0 2 40 30 9.2
11 500 0 2 33 32 0
12 800 0 2 31 33 0
13 250 0.5 2 34 34 0
14 500 0.5 2 34 35 0
15 800 0.5 2 33 40 0
16 250 0.25 2 40 27 20.6
17 500 0.25 2 36 38 9.4
18 800 0.25 2 38 39 0
19 250 0 0.5 17 20 86.2
20 500 0 0.5 31 28 54.2
21 800 0 0.5 29 32 26.3
22 500 0.5 0.5 40 39 87.9
23 800 0.5 0.5 42 36 51.3
24 250 0.25 0.5 22 28 76.7
25 500 0.25 0.5 52 44 52.5
26 800 0.25 0.5 41 39 35.3

Table 3.6: Results of the dynamic characterization for di�erent values of P1, P2 and P3. Ux and
Uy denote the expanded uncertainties (with coverage factor 2.7) associated with the measurement
of the planar coordinates of the target when it moves over di�erent paths. QS represents instead

the frequency of spurious target detections.



56 Chapter 3. Human positioning and tracking

the rightmost column of Table 3.6 shows that for some con�gurations, a quite high percentage QS of
spurious detections actually appears. In other words, while the probability of missing a target moving
within the chosen detection area is negligible, multiple targets can be detected even when just one per-
son is actually within the radar range. The reason of such a behavior is unclear at the moment, but it is
de�nitely due to the detection algorithm running in the IWR6843 SoC. In particular, the probability of
spurious detections greatly depends on P1 and P3 values (indeedQS suddenly increases when P1 or P3

become excessively low) and it is also a�ected by the kind of path. For instance, the aggregated results
obtained with di�erent parameters show that the probability of spurious detections is quite high in the
case of straight paths (more than 22%), while it is 10% or less when the target moves randomly. It is
worth emphasizing that sometimes the target was not detected and tracked immediately. The percent-
age of these events is particularly relevant (about 11 %) in the case of straight trajectories parallel to the
x−axis, maybe because of the thinner shape of the sets of points clustered by the algorithm described
in Section 3.6.1 when just a side of the target is observed. Notice that even if the radar-based platform
is generally quite accurate, the risk of spurious detections sometimes can be very relevant. However, if
P1 and P3 are set large enough, this risk becomes negligible.

3.7.3 Rejecting spurious measurements

From the analysis carried out in Section 3.7, it follows that for given particular values of the con�g-
uration parameters the radar occasionally provides spurious multiple target detections: besides the
trajectory of the actual target, the algorithm returns additional points that are not related to any real
object, but they are artifacts of the algorithm. Unfortunately, the system does not provide a direct access
to the raw points generated by the SoC (at least using the �rmware shipped with the device). For this
reason, in case of multiple detections, we have developed an algorithm to create a ranking of di�erent
possible sets of points to decide which one is the most likely to refer to an actual target. The proposed
algorithm is based on the combination of Kalman �ltering and likelihood analysis.

First of all, from the paths estimated by the OptiTrack system, three di�erent types of motion
were identi�ed: a) target standing still (H0); b) target moving with a constant forward velocity (H1); c)
target moving with accelerated motion (H2). For each one of these three kinds of motion, we developed
a Kalman Filter (KF) whose model and the related parameters were set accordingly. In particular, the
prediction step of each KF is given by

s−i,k+1 = Aisi,k,

Σ−i,k+1 = AiΣi,kA
T
i +BiQB

T
i ,

(3.8)

where i = 0, 1, 2 denotes the H0, H1 and H2 models, respectively, si,k is the state of the i–th model
at time step k and comprises the planar position, velocity and acceleration of the target within the
chosen reference frame, whereasAi is the system dynamic matrix of the i–th model. In particular, with
reference to Ai, both target velocity and acceleration are zero for i = 0; the velocity is assumed to be
constant and the acceleration is equal to zero for i = 1 and, �nally, the acceleration is constant for
i = 2. Moreover, Σi,k is the covariance matrix of the estimation error associated with the i–th model
at time step k, Q is the covariance matrix of the model uncertainties (assumed to be proportional to
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a perturbation in the acceleration space) and Bi is the uncertainties mapping matrix that enforce the
constraints for the i–th model. Finally, the superscript ·− stands for the “predicted quantity”.

In the update step of the KFs, the classic equations are used, i.e.

ei,k+1 = zk+1 − Cs−i,k+1,

Si,k+1 = CΣ−i,k+1C
T +R,

Ki,k+1 = Σ−i,k+1C
TS−1

i,k+1,

si,k+1 = s−i,k+1 −Ki,k+1ei,k+1,

Σi,k+1 = Σ−i,k+1 −Ki,k+1CΣ−i,k+1,

(3.9)

where zk+1 are the radar measurements collected at time k+ 1, R is the covariance matrix of the mea-
surement uncertainty contributions andC is the output matrix of the model (notice that for each model
we have the same matrix C , since only the position is measured). Moreover, ei,k+1 is the innovation
vector and Si,k+1 is its covariance.

To select one of the possible three hypothesized motion models, i.e. H0, H1 and H2, the Multiple
Model Approach (MMA) presented in Y. Bar-Shalom, 2001 is used. This approach provides a stochastic
criterion for model selection. For instance, the probability of choosing the H0 model at time k + 1, i.e.
µ0,k+1, is given by the Bayes’ theorem, i.e.,

µ0,k+1 =
Pr [zk+1|H0]µ0,k

Pr [zk+1]
, (3.10)

where Pr [zk+1|H0] is the likelihood of measuring zk+1 given the model H0, which can be expressed
as a Gaussian Probability Density Function (pdf) with mean Cs−0,k+1 and covariance matrix S0,k+1,
both reported in (3.9). Note that the estimates s0,k+1, s1,k+1 and s2,k+1 returned by the three �lters
are computed independently. While this is su�cient to converge to the correct probability when the
system does not change its dynamic over time, this cannot be ruled out in the problem at hand. To
account for potential mode changes, a �rst-order generalized pseudo-Bayesian estimator is adopted (Y.
Bar-Shalom, 2001). In this way, the estimates of each model are fused together in a single estimate
before the prediction step associated with each model starts over. More precisely, the fused estimate
and the corresponding covariance matrix are given by

sk+1 =
2∑
i=0

µi,k+1si,k+1,

Σk+1 =

2∑
i=0

µi,k+1

(
Σi,k+1+[sk+1−si,k+1][sk+1−si,k+1]T

)
.

(3.11)

Again, due to the peculiarity of the system considered, this approach has a bias towards model H0.
Indeed, since the sampling period of the radar measurements is quite short compared to the typical
time constants of human motion, the sampled data will be very close in space and, consequently, the
likelihood will be favorable to the model with the target standing still. To overcome this limitation, the
fusion is performed only after some consecutive measures (e.g., 5) are collected. With this �lter hack-
ing entirely due to typical human motion dynamic versus sampling time of the sensor, the presented
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Figure 3.29: Ground truth data (dash-dotted line), estimated trajectory (solid line) and radar mea-
surements (dashed line) associates with the x−axis (a) and y−axis (b). Observe the spurious read-

ings from about 2 s to 4 s.

approach is quite e�cient in classifying the human dynamic with respect to models H0, H1 and H2.
To reject the spurious measurements, two further assumptions are considered: i) whenever multiple
measurements are detected, the �rst-order generalized pseudo-Bayesian estimator is applied to the en-
semble of the measured trajectories; ii) based on experimental evidence, we de�ne as a spurious false
detection, any trajectory that converges to H0 while at least another one is classi�ed either as H1 or
H2. Using this simple heuristic criterion, most of spurious detections can be removed, as shown in
Figure 3.29. Indeed, the estimated trajectory (solid line) follows the ground truth data (dash-dotted
line) regardless of the spurious data between 2 s and 4 s. This behavior is due to the correct identi�ca-
tion of spurious multiple detections, as evident from the probabilities of each model related to the two
trajectories (the correct and the spurious one) shown in Figure 3.30.

Indeed, the top graph of Figure 3.30 displays the probability that the �rst radar trajectory is classi�ed
either as H1 or H2. Observe that such a probability is generally 1 except at the very beginning. On the
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Figure 3.30: Probabilities of the three models H0, H1 and H2 in the case of correct (top) and
spurious (bottom) target detection. This probabilities corresponds to the coordinates shown in

Figure 3.29.
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Figure 3.31: Ground truth data (solid lines) and radar measured trajectories (dashed lines) of two
human beings (identi�ed with thick or thin lines) moving randomly in the radar detection area.

contrary, when the spurious trajectory comes into play (just before 2 s), this is correctly classi�ed as
H0 and removed accordingly. As a further example, in Figure 3.33 we report the results of the estimator
in the case of two dynamic trajectories. We notice that the �lter correctly recognizes when the person
is standing still (the red points at the beginning and end of the trajectory), when he is travelling along
linear paths (orange points), and lastly when he is turning (blue points).

When two targets are tracked, the radar performance are similar to those shown in Table 3.6. Also,
the e�ectiveness of the algorithm developed to detect and to remove possible spurious targets is com-
parable to the single target case. For a qualitative analysis, Figure 3.31 reports an example with two
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Figure 3.32: Tracking results on the x−axis (a) and y−axis (b) with two people performing ran-
dom paths (see Figure 3.31). The ground truth data is depicted with the dotted lines, and the solid

lines are the radar measurements.
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Figure 3.33: Tracking results with an agent performing a vertical (a) and an eight-shaped (b) path.
The coloured dots represent the model with the highest probability for the corresponding sample,

speci�cally, H0 (red points), H1 (orange points), and H2 (blue points).

human beings moving randomly in the radar detection area. For both the tracked trajectories the aver-
age Euclidean error is about 20 cm, and, what is more, no miss detections occurred during the exper-
iment. This is an interesting result from the point of view of the robotic applications. As reported in
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Figure 3.32, the tracking algorithm is quite robust but still sensible to mutual occlusions between the
targets. When the two humans cross their path (from 30 to 36 seconds in Figure 3.32), the measurement
noise increases, even if the tracking remains correctly associated with the targets. While these results
are encouraging, further experiments with an increasing number of targets are needed to evaluate the
scalability of the proposed solution.

3.8 Comments

In this chapter we have presented the performance assessment analysis for people tracking system
based on:

1. a full camera-based solution using the stereo ZED camera and using two people pose detectors,
namely OpenPose and YOLO;

2. a LIDAR-camera combination using the YOLO detector;

3. a millimeter-wave radar with multi target clustering and tracking algorithm.

The �nal goal was to determine what are the characteristics of such solutions and if they are feasible for
the problem of autonomous navigation of robots in populated environments. To make the system robust
against occasional failures in the sensor readings and improve the quality of the detected persons, we
also presented two Kalman-based solutions, whose main di�erences are rooted in two di�erent human
motion models reported in the literature. Several experiments have been conducted in our laboratory,
which o�ers the possibility of having a quite e�ective ground truth for the actual human position.
Results showed that a speci�c combination of components can be regarded as suitable and e�ective for
the problem at hand.

In the �rst tracking system, we obtained the best results using the EKF and the measurements given
by YOLO or a mix of the YOLO and OpenPose. OpenPose turned to be quite e�ective in detecting the
human being skeleton, i.e. it is robust with respect to partial occlusions due to its well learned models.
However, when it was compared with the ground truth, the detection accuracy was quite low with
several outliers, which is due to the di�erent positions of the body points between the two images,
leading to an incorrect averaged estimate. On the contrary, YOLO was not always capable of detecting
the pose of the person, however, when it succeed, the accuracy was relevant and there was an absence
of outliers. The EKF and the KF both had the capability to build up a system that was more robust
and more accurate by properly fusing the sensing data: indeed irrespective of the intermittent YOLO
measurements and the quite noisy OpenPose measurements, the EKF estimates proved to be close to
the ground truth data. In summary, the winner of our comparison is YOLO, whose low computational
cost outweighs the supposed advantages of OpenPose.

The second tracking system was e�ective in demonstrating that very high levels of robustness and
performance can be achieved with low computation times by using YOLO on a monocular camera and
in combination with a LIDAR. Moreover, the new-designed model for the EKF solution was able to
follow the smooth trajectory usually followed by human beings. Finally, the LIDAR-camera solution
showed a reduced computational burden, which opens to implementation on cheap robotic hardware.

Finally, we tested a 60 GHz radar based on arrays of small and closely spaced antennas. The re-
cent technological evolution of wireless technologies has brought to the development of these low
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power systems to currently be among the most advanced solutions for accurate RF indoor localization
and tracking. The use of radars in the case of human localization and tracking has numerous and in-
disputable advantages, such as the relatively lightweight signal processing (e.g., compared to cameras),
the preservation of the privacy of tracked subjects and the supposedly good level of accuracy. However,
the literature on the tracking performance of these devices in dynamic conditions is largely unexplored,
and we sought to �ll this gap in our extensive experimental evaluation. The experimental results lead
to multi-faceted conclusions. The radar system generally ensured planar positioning uncertainty (with
99% con�dence level) in the order of 30-40 cm, which is acceptable for a large class of applications.
However, the tracking algorithm running in the SoC was quite sensitive to the values of several param-
eters that, in some conditions, led to anomalies such as multiple spurious detections of the same user.
A careful choice of the parameters can drastically reduce the frequency of these events. Moreover, it
was possible to further mitigate this problem by adopting a Multiple Model Approach supported by a
heuristic criterion. From this last �nding, we established important considerations on the multi-goal
hypothesis in another model contained in this thesis (as described in Chapter 4). In addition, the best
sensors combination comprising a (depth) camera and a laser scanner was employed as the sensing
system of the robotic platform used in the following works of the thesis (Chapters 4, 5, 6), that is the
sensors where mounted on the robot, and the Kalman �lter models where introduced in the object
tracking and in the motion of the platform.

Summarising, the main outcomes of this chapter are the following:

• A new tracking system based on the LIDAR-camera combination; faster and cheaper than a sens-
ing system that relies on stereo camera or radar sensors;

• A lightened and robust tracking algorithm;

• A re�ned �ltering model adapted to the behaviour of people’s trajectories;

• The empirical demonstration, as seen in the experiments in Section 3.7.3, that the Bayesian �l-
tering can be used as a (behavioural) classi�er.

This last consideration results directly from the experiments reported in Section 3.7.3, in which it
was seen that di�erent types of trajectory or motion of the tracked person could be identi�ed by a �lter
with a model consistent with the observed motion. This clue was then taken up in the model for the
trajectories prediction in Chapter 4, in which a Bayesian �lter estimates a certain number of di�erent
predictions, each corresponding to a probable behaviour and a target goal.

The next research steps we are foreseen are threefold: �rst, the systems (especially the radar-based)
will be tested with multiple targets, i.e. when occlusions may occur along with the tracking, to deter-
mine their scalability; second, the algorithms were tested in indoor laboratory environments, thus we
plan to repeat the same experimental evaluation in actual working environments, both indoor and
outdoor. Furthermore, since the tracking system on which the radar is based includes a background
subtraction phase, its installation on a moving reference system such as a robot is not immediately ap-
plicable, and, hence, future works will be focused on mounting the radar on a real platform to properly
investigate its suitability for robotics applications.
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Chapter 4

Human motion prediction

When a robot travels across a human populated area, the paths it takes have to be in accordance with
the motion of the bystanders. Thereby, the robot motion planner has to rely on an accurate prediction
of how the humans are going to move in a time horizon of a few seconds. The input usable for this
purpose can be of various kinds. In a foreseeable future, the robot could use the facial expression and
the pose of the di�erent parts of a person’s body as predictors of her motion intent. But, perceiving and
interpreting the body language is currently beyond the reach of the technology, at least for commonly
used low cost service robots.

The overarching goal is to obtain reliable predictions to be used in a human-aware motion planning
algorithm. Speci�cally, we want to predict where a person intends to go by simply looking at how s/he
moved in the immediate past and at the shape of the environment. Our approach to predict human mo-
tion presented in this chapter is based on a neural network of a peculiar kind. Contrary to conventional
deep neural networks, our network embeds in its structure the popular Social Force Model, a dynamic
equation describing the motion in physical terms. Since the network is based on Newtonian princi-
ples, its parameters can be learned by experimental data on the existing device. Moreover, a known
structure guarantees interpretability, performance, and a reduced number of parameters, permitting
e�ective training even with few experimental data.

Our solution was developed in simulation and evaluated with a full set of experiments proving
the validity of the approach on recorded data. We then transferred and implemented the algorithm
into a wheeled robot and carried out real-world experiments with the robotic platform. The results
are extensively reported in the continuation of the chapter. We will also describe in detail how we
embedded the dynamic mode into the structure of a neural network, and we will present the multi-goal
approach that completes our motion prediction framework.

4.1 Overview

The goal addressed in this chapter is to predict the motion of a human for several seconds ahead using
a short segment of past observations. The philosophy that underlies our approach is that learning is
a powerful tool, but, when applied to a complex task such as human motion prediction, it requires
massive amounts of training data and the risk of over�tting the models is very concrete. With these
considerations in mind, our approach restricts the application of learning to the sub-problems that are
very di�cult to tackle otherwise. In this class falls the estimation of the parameters of the SFM. Our idea
is to use a neural network structured so that its connections re�ect the dynamics of the SFM. In other
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words, we embed our prior knowledge into the neural network in the form of a model assuming that
the latter, by a correct choice of parameters, closely approximates the dynamics of human motion. This
way, the learning phase is concentrated on the aspects for which we actually lack any real knowledge:
the SFM parameters and the virtual forces acting in the SFM.

The selection of the goals of the human motion, which is a key input for the SFM, deserves a special
attention. As apparent from the survey reported in Section 2.4, this problem is way simpler than the
estimation of the SFM parameters and force, and established techniques exist that are easy to implement
and that can provide useful probabilistic information on the potential goals. In our work, we consider
the following scenarios. The trivial case is when the possible goals are given or annotated on the map
based on the analysis of the places of interest. On the opposite side of the spectrum, we consider a
situation in which no prior information on the environment is available. In this case, we infer the
position of the possible goals from the geometry of the activity space (Rios-Martinez et al., 2015), from
the motion of the humans, and from the con�guration of the static obstacles. Since for all of these
scenarios, we can have multiple potential goals, we use a multi-goal approach based on the generation
of di�erent hypotheses and on the evaluation of the likelihood of the trajectories associated with each
of them.

The advantages of the approach proposed in this chapter are manifold:

1. Wiring a model inside the neural network reduces the number of neurons by a signi�cant amount
(we estimate one or two orders of magnitude);

2. Using maximum likelihood evaluation of multiple hypotheses for the �nal goal of the target is a
natural complement of the idea: the complexity is much lower than a monolithic neural network
solution, the training is simpli�ed and the probabilities associated with each possible destination
can be used in what-if motion planning solutions;

3. As shown in our experiments, a relatively small number of synthetically generated samples is
su�cient to generate accurate predictions, even for scenarios that are quite di�erent from the
ones considered in the training set, thus the solution is very practical for robotic applications
that involve navigation across indoor unknown scenarios;

4. Because our neural network retains the model inside, its decisions can be explained in physical
terms, which simpli�es the interpretation of the results of the neural network and the explanation
of its possible errors.

In the following, we will describe the structured neural network theory (Section 4.3) and our devel-
oped model (Section 4.4) with the multi-goal approach (Section 4.5). Sections 4.6 and 4.7 will present
the experimental results.

4.2 Related work

Many physics-based models have been proposed to predict human motion in a social context. The
most famous is the Social Force Model (SFM) (Helbing and Molnar, 1995). In the SFM a person is
seen as a particle acted on by attractive forces (the goals) and repulsive forces (the obstacles). Since
it is simple to implement and yet highly e�ective in the representation of the individual motion of
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human beings, it has been adopted by a number of research works. One peculiar feature is that the
attractive and repulsive forces of the SFM can be generalised by geometric information only, while
the resulting motion e�ect is a linear combination of these elements. The model however has known
limitations. One of the most important is that modelling a person as a particle does not di�erentiate
between motion patterns that are “natural” and others that are possible but not frequently taken (e.g.,
sideways motions). These issues can be addressed by leveraging a relatively high sampling rate and/or
by integrating the preferential nonholonomic behaviour of the human motion into the model (Farina
et al., 2017b; Arechavaleta et al., 2008).

An important problem to tackle in order to use the SFM is how to estimate its many parameters
and in particular the intensity and the direction of the attractive and of the repulsive forces that an-
imate the motion. A �rst possibility is to make heuristic “rule-of-the-thumb” choices, but this option
is workable only in very speci�c conditions, e.g., the interaction between a robot and a human in free
space (Colombo et al., 2013; Bevilacqua et al., 2018b). Another issue is how to estimate the target of
walking pedestrians from the past motion (Rudenko et al., 2019). For example, in Luber et al., 2010,
a virtual goal is chosen as the position that a person would reach if s/he moved with constant veloc-
ity, while in Ikeda et al., 2013 a set of trajectory sub-goals are estimated from the recorded data in a
structured environment. Furthermore, Kretz et al., 2018 proposed a modi�ed formulation of the SFM
to calibrate the parameters with observable features from empirical data.

Neural Networks (NN) hold the promise to master the complexity of predicting the intention of
humans in a relatively simple way. Similarly to our work, Hasan et al., 2019 modelled an area of vi-
sual attention and social interaction for the pedestrian, jointed to the head orientation, and used to
strengthen the training of a Long Short Term Memory network (LSTM). A deep learning-based clas-
si�er is used in Ma et al., 2017 to learn behaviour patterns from visual cues is mixed with a game
theory model encoding the SFM to forecast the interaction between multiple pedestrians. A common
approach to manage multiple future trajectories has been to generate di�erent motion modes. For
this reason, newly learning approaches implement multiple predictions to describe mixed motion be-
haviours. In Gupta et al., 2018 a Generative Adversarial Network (GAN) based approach is exploited
with a novel social pooling framework to predict multiple trajectories while learning social norms. A
similar GAN based framework with a social attention mechanism is proposed by Sadeghian et al., 2019.
Both these approaches utilize pedestrians’ past trajectories and scene context information, but do not
consider the agents’ destinations. Conversely, a recent work by Mangalam et al., 2020 uses Variational
Autoencoder (VAE) based network to infer a distribution of waypoints and obtain a multi-modal tra-
jectory prediction, while Deo and Trivedi, 2020 reformulated maximum entropy IRL to jointly infer
waypoints and human trajectories on a 2D grid de�ned over the scene.

In principle, a deep neural network (DNN) trained with a su�cient number of samples could learn
the human motion patterns by discovering the underlying dynamic model on its own. However, the
number of layers and of neurons required to manage the complexity of human behaviours can be very
large and is anyway hard to predict. Equally di�cult is to understand the number of samples that are
needed to train a network of this complexity. Finally, the use of a DNN lacks a property of remarkable
importance for many applications, i.e., explainability (see Section 2.4). When an autonomous system
takes a decision it is important to understand why that speci�c choice has been made, to solve bugs
or attribute legal responsibilities (Pasquale, 2017). The total absence of a prior model in a DNN makes
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explainability hard or even impossible to achieve. Another known limitation shared by NN approaches
is their di�cult training. The available annotated data sets are not many, and the parameters over�tting
is an actual risk when data have strong similarities. As a result, as shown by Schöller et al., 2020, neural
models can easily be outperformed by a simple constant velocity model in the case of linear trajectories.

Past attempts to use machine learning techniques in combination with physical models have applied
gradient descend methods to learn the interaction forces (Wan et al., 2017), used linear regression and
NN to predict the direction of motion (Zhang and Jia, 2020), used an evolutionary algorithm to optimise
the SFM parameters from video segments (Johansson et al., 2007). Our approach is rather new and is
inspired to the simulation of vehicle dynamics by Da Lio et al., 2020.

The motion of a person is driven by her intent, i.e., by where she intends to go or perform an action.
Dynamic goal inference based on the semantics of the environment is still an open issue (Rudenko et
al., 2019). Most existing works rely on a prede�ned set of goals, estimated from observed trajectory
data. For example, goals can be deducted from the prevailing direction taken by the pedestrians, by
noting the preferred locations where they stop, or by partitioning the environment with a Voronoi-
based method (Kanda et al., 2009; Ikeda et al., 2013; Chik et al., 2019; Ferrer and Sanfeliu, 2019). On
the other hand, a few papers have sought to identify the goals from real-time motion predictions. For
instance, Wu et al., 2018 proposed a heuristic method to automatically determine goal positions on a
2D semantic grid map. Cell transitions are predicted through discrete Markov chains. In Karunarathne
et al., 2018, Voronoi partitions (Ikeda et al., 2013) were used in order to obtain a good guess of the
preferred sub-goal within a shopping mall. Their algorithm estimates the candidate goal by weighing
the visibility and reachability of the sub-goals, and by using a service robot that moves side-by-side
with the person. A recurrent Mixture Density Network (RMDN) was proposed by Rehder et al., 2018
to learn a mixture of potential destinations, which is fed into a Fully Convolutional Neural Network
(CNN) to predict the human trajectories. Senanayake and Ramos, 2018 applied probabilistic Directional
Grid Maps (DGM) in order to �t a mixture of von-Mises distributions of motion directions attributed
to each grid cell of a discretised environment.

4.3 Structured neural network

In Section 2.4 we discussed the potential applications of the use of structured neural networks and
analyzed various related works. In our case of interest, we are particularly interested in overcoming
the following de�ciencies:

• Interpretability. Network models are built as black boxes, with no dependence at all to the physical
entities they are demanded to be trained. Adopting a pre-de�ned structure in the network will
unlock a more understandable interpretation of its inference behaviour.

• Lack of data. Supervised learning is conditioned by the need to have a high number of labelled
data. An advantage would be to exploit a limited dataset or, if the physical model is known, to
synthetically generate data.

• Limited computational capabilities. The trade-o� between computational power and speed is al-
ways a deal in robotic applications. Although dimensionality reduction of neural networks for
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embedded systems is promisingly explored, rely on a lean network can simplify their implemen-
tation.

The key aspect of physical systems is to be casual, that is their present output is a function on
past and current inputs, i.e., y(t) depends only on x(τ), for τ ≤ t. The essence of such system is
their memory, or, in terms of state-space representation, their state variables. The standard form of a
discrete-time state space models is:

xk+1 = F (xk,uk)

yk = H (xk,uk) ,
(4.1)

were xk is the state of the system and uk is the set of applied inputs to the system at time k. If F
and H are known, the system (4.1) will constitute a white-box model; if those are unknown instead,
the system (4.1) is said to be a black-box model (Da Lio et al., 2020). Actually, we are looking for gray-
box representation using a neural network implementation. The state space representations can be
translated in a Recurrent Neural Network (RNN), de�ned by the equations

hi = σ (Whhhi−1 +Whxxi + bh)

yi = Wyhhi,
(4.2)

by letting xk be the network recurrent states. In addition, many physical systems can be approximated
or behave like linear systems. In this case, the F and H of (4.1) are linear and the state space model
takes the form

xk+1 = Axk +Buk

yk = Cxk +Duk,
(4.3)

hence the linear subsystems can be implemented as linear layers of the neural network, which turns
in a gray box since its weights can be interpreted. Let us introduce our approach with an explanatory
example, using one of the simplest of dynamic models, namely the linear oscillator.
Linear oscillator example. The linear oscillator is a 1 Degree Of Freedom (DOF) system, composed

m

c

k

F(tk)

x(tk)

Figure 4.1: Linear oscillator with mass, spring, and damper.

by a mass m connected to a spring and a damper, being where the displacement x(t) of the mass along
the single direction constrained is the independent variable (see Figure 4.1).

The second order Ordinary Di�erential Equations (ODE) governing its motion is

mẍ(t) + cẋ(t) + kx(t) = u(t), (4.4)
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Oscillator
parameters

m: 1 kg Simulation
parameters

x0: [0; 1] m
k: 3 N/m v0: [0; 0.5] m/s
c: 0.175 Ns/m |F |: [−3; 3] N

Table 4.1: Parameters for the linear oscillator simulation.

which can be discretized with the Euler method asx(tk+1) = x(tk) + δtẋ(tk)

ẋ(tk+1) = ẋ(tk) +
δt
m

(u(tk)− cẋ(tk)− kx(tk)) ,
(4.5)

where c is the damping coe�cient, k is the sti�ness coe�cient, and u(tk) = F (tk) is the input force to
the system used to drive the states.

The linear oscillator presents linear relations between the state variables and their derivatives, i.e.,
they are multiplied by the constant model parameters or by the constant integration time δt. The neural
network associated to the oscillator (represented in Figure 4.2) estimates the future position x(tk+1) by
taking as inputs the force F (tk) acting at time tk and a window of n most recent samples of the past x
positions ∆x(tk) =

[
xk−(n−1), . . . , xk

]
, and combining them as

x(tk+1) = wx∆x(tk) + wFF (tk), (4.6)

where wx ∈ Rn and wF ∈ R1 are the weight matrices. The number of learnable parameters for this
network is n+ 1.

m

c

k

F(tk)

x(tk)

+

!(#!) 1

n
% #!"#$% , … , %(#!) %(#!$%)

n

1

11

1

Figure 4.2: Neural network architecture for the linear oscillator system.

We created a set of synthetic data by running a number of simulations with an oscillator model
implementation in MATLAB by choosing the combination of physical parameters as reported in Ta-
ble 4.1. Speci�cally, we ran 100 simulations of 20 seconds with a sampling time of δt = 0.1 s. Each
realization has di�erent random initial conditions in terms of independent variables, i.e., initial posi-
tion x0 and initial velocity v0, and an input (randomly chosen between a step signal and a triangular
signal) constrained to start and �nish in within a random time limit shorter than the half of the total
simulation time. The neural network model was coded and implemented in Keras and trained with the
Adam optimiser with a learning rate of 0.005, batch size 128, and number of epochs 300. The training
procedure took about only 11 s on a 2.7 GHz Intel Core i7 processor. The 70% of the synthetic data for
each model was used as the training sets, while the remaining samples were used for validation. We
selected n = 20 samples as observable data.
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Figure 4.3: Position predictions (blue dashed lines) compared with the ground truth (orange lines)
with a structured neural network with single-shot inference (a) and open loop inference (b). The
same experiments is repeated in (c,d) after a �ne-tuning of the whole network with a recurrent
training. The step input is represented with the green lines, while the red lines depict the velocity.

We obtained a Root Mean Squared Error (RMSE) on the training set and on the validation set of
0.002872 m and 0.002695 m, respectively. Then, we tested the trained network on performing pre-
diction on a di�erent batch of data. The same simulator used for generating the training dataset was
employed for creating new ground truth with the same set of parameters and inputs chosen for the
dataset. In Figure 4.3-a we report the results of the linear position prediction on a generated example.
For each step, we used the network to infer the future position given the n past samples and the input.
After the �rst 2 s of observation, the prediction (blue dashed line) perfectly follows the ground truth
position (orange line), even in the case of forced response under a step input (green line) and in the case
of free response for the whole simulation time. We further compared the predicted positions and the
actual ones with an “open loop” inference: the �rsts n samples were collected and used to estimate the
position at the next step, then we iteratively repeated the procedure by shifting the samples window by
one step and predicting the subsequent positions without using the ground truth data but relying on
the network predictions only. From the results depicted in Figure 4.3-b we can notice that the estimates
of the neural networks have an underdamped response with increasing oscillations nearby the end of
the simulation. Nevertheless, the prediction error is below 10% until about 2 seconds of prediction.
We �ne-tuned the neural network with a second training in a recurrent fashion, keeping the same hy-
perparameters, that is, we incorporated the model into a recursive cell, and we trained the resulting
network on contiguous input and output windows of p = 50 steps. This way, while maintaining the
same number of neurons, we forced the neural network to learn the temporal relationships between
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Figure 4.4: Social Force Model representation. The i-th pedestrian is pushed towards the goal by
an attractive force foi , while its repulsed by the nearby pedestrian (fpij ) and from the static obstacle

(fwik), so that the total social force actin is fi.

input and output, and making it clear that the network has an internal state, which in�uences the out-
put. The training procedure took about 56 s, and we obtained RMSE of 0.002932 m and 0.002731 m on
the training set and on the validation set, respectively. Still, the single-shot prediction was excellently
comparable with the ground truth (Figure 4.3-c), while the open loop prediction did not present any
spurious oscillations, as can be seen in Figure 4.3-d.

4.4 Model

Human motion predictions are generated using an embedding of the SFM into a structured neural
network, i.e., a neural network organised such that the neurons process the input signals according
to (4.7). Two separate branches are designed to estimate the SFM forces in two di�erent scenarios.
In the case of the open environment scenario, the agent moves freely towards its goal, so it is subject
only to the force term in (4.8). In the second scenario, the pedestrian moves across a space cluttered
with obstacles and is a�ected by the repulsive force (4.9). We will henceforth refer to this scenario
as structured environment. Consequently, each network branch models e�ects of di�erent nature, i.e.
attractive or repulsive forces, which are summed up at the end to produce the resulting force.

4.4.1 Social Force Model

Firstly, we brie�y review necessary background material on the Social Force Model. In the SFM (Hel-
bing and Molnar, 1995), the i-th pedestrian is modelled as a particle with mass mi and radius ri (see
Figure 4.4). Its position is denoted as pi = [xi, yi]

T and is expressed in the frame 〈F 〉 = {Xf , Yf}.
The human moves towards his/her target at a certain desired walking speed with magnitude vdi and
following a second order dynamic. At the same time, the motion is perturbed by the environment, e.g.
�xed obstacles, walls, furniture, etc., and other agents in the environment. Omitting the subscript i for
readability, the total force f that acts on the i-th pedestrian is given by f = fo + f e, i.e.

mv̇ = fo +
∑
j(6=i)

fpj +
∑
k
fwk , (4.7)
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where v = ṗ. Moreover, the attractive force fo is de�ned as

fo =
m

τ

[
vd(t)ed(t)− v(t)

]
, (4.8)

where the characteristic time τ > 0 parameter determines the rate of change of the velocity vector,
while ed is the unit vector pointing towards the goal. The force exerted by the static obstacle k on the
i-th pedestrian is given by

fwk = Ae(r−dk)/Bnk + k1g (r − dk)nk − k2g (r − dk) (v · tk) tk, (4.9)

i.e. it is the sum of a repulsive component, a compression force and a sliding friction force. We denote
by dk = ||p − pk|| the distance between the pedestrian centre of mass and the coordinates of the
obstacle closest point, so that

nw = (p− pk)/dk and

tk = [−nk(2),nk(1)]T

are the distance unit vector and its tangential direction, respectively. The function g(x) = max{0, x}
models the fact that both the compression and the sliding friction forces exist only if the pedestrian
touches the obstacle (i.e., dk > r). A, B, k1 and k2 are the model parameters. Similarly, the force
exerted by pedestrian j-th on i-th pedestrian is

fpj = Ape
(2r−dj)/Bpnj + k1g (2r − dj)nj − k2g (2r − dj) ∆vjtj , (4.10)

where dj = ||p−pj || is the distance between the two pedestrians’ centres of mass, ∆vj = (v − vj)
T tj

is the tangential velocities di�erence, and nj , tj are the distance unit vector pointing from pedestrian j
to pedestrian i and its tangential direction, respectively. In the following we will neglect the interaction
forces fpj with the j-th pedestrian in (4.7) for the time being.

4.4.2 Open environment

While freely moving towards the desired goal, the pedestrian is only a�ected by the force fo in (4.8).
Hence, the �rst branch of the neural network (named Net1) is used to predict the two force components
fox , foy . The network inputs are the n more recent samples of the past p coordinates of the pedestrian
(from the current time t) obtained with a sampling period δt. In order to avoid spatial biases, the
coordinates are shifted with respect to the �rst sample of the window, so as to generate the input
vector ∆p(t) ∈ R2×n as in the following equation

∆p(t) = [p(t− (n− 1)δt),p(t− (n− 2)δt), . . . ,p(t)] +

− p(t− (n− 1)δt)1n,
(4.11)

where 1n is an n-dimensional column vector with all ones. The �rst part of Net1 consists of two hidden
layers with no biases and with only one fully connected output neuron that learns the instantaneous
velocity vx, vy on theXf andYf axis, respectively. These two layers are followed by a tanh(·) activation
function. Another neuron with no bias follows each layer in order to facilitate the convergence of the
estimates to their actual range. Moreover, the most recent relative motion measurement ∆np(t) =
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Figure 4.5: Schemes of the Net1 (a) and the Net2 (b). The numbers on the connections between
the layers represent their output size.

p(t) − p(t − 1) is used to estimate the components of the normalised unit vector ed pointing to the
goal. Finally, the vector of the desired velocity vd is derived from the velocity magnitudes V(t) ∈ Rn

estimated by the following

∆p′(t) =
[
∆2p, . . . ,∆np

]
−
[
∆1p, . . . ,∆n−1p

]
,

V(t) =
[
||∆1p′(t)||, . . . , ||∆n−1p′(t)||

]
.

(4.12)

All the estimates pass through a Lambda layer where they are combined and weighted according to
the m and τ parameters in (4.8). The Net1 output is then the estimate of fo =

[
fox , f

o
y

]T . The force
input (4.8) is translated in the form of a structured neural network by the following

fo =

mvd

τ︷ ︸︸ ︷
sig (V(t)Wv)wvs

ed(t)︷ ︸︸ ︷
∆np(t)

||∆np(t)||
−

v(t)m
τ︷ ︸︸ ︷

tanh (∆p(t)Wv)� wvs, (4.13)

where Wv ∈ R10×n−1, wvs ∈ R10, Wv ∈ R2×20, wvs ∈ R1×2, are the weight matrices and � is the
Hadamard product. The sig(·) sigmoid activation function is used to keep a positive sign for the vd

estimate, which then are rescaled by the weight matrix wvs. The number of learnable parameters for
Net1 (represented in Figure 4.5-a) is 123, where 100 of them are entirely devoted to the desired velocity
estimates.
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4.4.3 Structured environment

For the environment with obstacles, the second branch Net2 has two parallel sub-branches to predict
fo =

[
fox , f

o
y

]T (described above) and fwk =
[
fwx , f

w
y

]T (reported in (4.9)) components of the force,
respectively. While in the case of open environment the direction of the motion o�ers a good clue
on the goal of the pedestrian, this is not the case in presence of obstacles. In fact, a given direction
of motion can be chosen either because it leads to the goal or because it is a good way to avoid the
obstacles (Rudenko et al., 2020). For this reason, we directly provide ed as input to the sub-branch
that estimates the attractive force fo. Our strategy for choosing the goal position (and, hence, ed) is
described later in Section 4.5. In order to reduce the learning complexity, we neglected the compression
and the sliding friction forces, both in the SFM simulations and in the neural network, since they only
play a role during contacts (which should be avoided by design of the planned path). The second sub-
branch of the network then comprises a Lambda layer (followed by two single neuron layers with no
bias) that takes as inputs the distance dk and the components of the unit vector nk at time t. The inputs
are combined in an exponential form as in (4.9), where the only two learnable weights re�ect the A, B
parameters of the SFM. The formulation of the total force f in the structured neural network form, as
shown in Figure 4.5-b, is then given by

f = sig (V(t)Wv)wvse
d(t)− tanh (∆p(t)Wv)� wvs+

+
(
wAe

dk(t)/wBnk(t)
)
� wfs,

(4.14)

where again wA, wB ∈ R1, and wfs ∈ R1×2 are the new 4 learning weights.
Since the predictions are quanti�able values, both networks were trained using a mean squared

error loss on the predicted forces as in the following equation

Lf = MSE
(
fi, f̃i

)
=

1

N

N∑
i=0

(
fi − f̃i

)2
, (4.15)

where N is the total number of samples in the training set and f̃ is the ground truth future force of the
agent. Compared to other common metrics, the MSE is easy to interpret, although the squaring part of
the function magni�es the outliers.

4.5 Multi-goal prediction

The branch Net2 described in the previous Section 4.4.3 takes as input the position of the goal. Our
strategy is a multi-goal inference consisting of two steps. The �rst step is to formulate several hy-
potheses on the goal and carry out a prediction based on Net2 for each. The second step is to perform a
likelihood analysis based on the Multiple Model Approach (MMA) presented in Bar-Shalom et al., 2004.
We apply both the �rst-order generalised pseudo-Bayesian (GPB1) estimator and the Interactive Multi-
ple Model (IMM) estimator to each predicted trajectory and select the one with the highest con�dence,
i.e., the most probable goal.
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Figure 4.6: Pedestrian’s AoII and the cells grouped according to (4.16). The cells are labelled with
0 if occupied by an obstacle, 1 otherwise. The coloured crosses represent the selected goals. The
AoII is estimated �rst removing the obstacles from the disk sector (shaded area), then it is split
into di�erent sub-sectors and for each of them we select a candidate either on a point of interest

(purple cross) or via geometric considerations.

4.5.1 Selection of the goals

As the person moves across the environment, s/he chooses the next goal within an area de�ned as Area
of Immediate Interest (AoII). Roughly speaking, the AoII is the region of the space that contains all the
entities that are likely to in�uence a human’s motion at the current time and in the near future. The
AoII contains the possible goals and is estimated in a di�erent ways depending on our prior knowledge
of the environment.

Under the observation that humans move preferably headways (Arechavaleta et al., 2008) and from
the related works on the personal space commented in Section 2.2, it is reasonable to expect that the
motion is attracted by an entity inside a disk sector with aperture lower than 180°. Our experiments
suggested that a good choice for the aperture is θ = 160°, which incidentally is an approximation of
the human �eld of view, including binocular and peripheral vision (Harrington, January, 1981). The
radius of the sector is related to the distance that can be travelled in the interval time corresponding to
the prediction horizon.

Considering that the possible goals cannot be within an obstacle, we can estimate the AoII by inter-
secting the disk sector with an occupancy grid derived from the map (see the shaded area in Figure 4.6).
In formal terms the grid map, composed ofN cells, is denoted as C = {c1, . . . , cN}, whose elements are
labelled with 0 if occupied by an obstacle, 1 otherwise (see Algorithm 2). The AoII at time t is denoted
by c(t) ⊆ C and is de�ned as:

c(t) = {∀c ∈ C : [Disk(t) ∩ c] 6= ∅ ∧ c = 1} , (4.16)
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where Disk(t) is the disk sector described above centred in the position of the human.
The AoII is segmented in K − 1 equally spaced radial cones with aperture ϑ, each of them repre-

senting a di�erent area of interest. With an odd number of cones, we have one cone associated with the
human’s decision to walk forward, while the others represent potential turns. Similarly to (4.16), we
de�ne the k-th (for k = 1, . . . ,K − 1) cone cells as ck(t) ⊂ c(t). For each ck(t) we select a goal gk(t)
according to the following logic. If a known point of interest falls within ck(t) we set gk(t) equal to the
point of interest, otherwise gk(t) is given the cell centroid maximising the Manhattan distance to the
pedestrian occupied cell (cp(t)) and minimising the angular displacement from the k-th cone bisecting
direction (ψk(t)), i.e.

gk(t) = arg

(
max
c∈ck(t)

||c− cp(t)|| min
c∈ck(t)

∠c cp(t)− ψk(t)
)
.

In cases where the the map of the environment is not available or is incomplete, the occupancy grid
could not reveal the position of some obstacles (i.e., we could have some cells labelled as 1, whereas
they should be labelled as 0). As a consequence, we could select some candidate goals in unrealistic or
impossible positions. This is not a critical problem because the estimation technique described below
will quickly deplete the likelihood of �ctitious goals. Still, the use of additional information enables
us to purge unrealistic candidates and, hence, leads to a better performance. For instance, the robot’s
sensors could reveal the presence of some of the obstacles despite their limited visibility of the scene
allowing us to correctly label as 0 at least some of the occupied cells.

To model the a-priori probability of selecting one of the goals we adopt the von-Mises distribution,
that is a Gaussian pdf with mean φ(t) (the pedestrian actual heading), variance σ2 and normalised in
[−π, π], denoted with

NVM (φ(t), 1/σ2) = exp(κ cos(ϑk − φ(t)))/(2πIo(κ)),

where κ is the concentration parameter, and Io(κ) is the modi�ed Bessel function. In practice, the
con�dence of the k-th goal belonging to the cone with aperture ϑk is given by

Pr
[
gk(t)|pt

]
=

∫
ϑk

NVM (ν;φ(t), 1/σ2)dν.

All the goals described above represent the human’s intention to continue walking, preferably forward.
To model the intentions to stop, or eventually make a “U turn”, we add one goal gK(t) placed in the
current pedestrian position pt. To set the con�dence of gK(t), we consider an heuristic value equal to
half the mink=1,...,K−1 Pr

[
gk(t)|pt

]
.

While the agent moves in the environment, the goal positions are updated in order to be compliant
with the current pedestrian location. Speci�cally, knowing the set of goals at t−1, we �rst compute the
AoII geometry at t obtaining a new set of goals, then we solve the proper association between gk(t−1)

and gk(t) via the Munkres assignment algorithm (Munkres, 1957).
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Algorithm 2 Goal selection algorithm
Input: CAD map, N , K , GridSize, p(t), φ(t)

1: C ← CreateGridMap (CAD map, N,GridSize) // Cell map {c1, . . . , cN}
2: Disk(t)← RotoTranslate (p(t), φ(t))
3: j = 1, c(t) = {∅}
4: for i = 1 to N do
5: if [Disk(t) ∩ ci] 6= ∅ and ci == 1 then
6: c(t)← Append(ci) // Add cell ci ⊂ C to the AoII set c(t)
7: j ← j + 1
8: end if
9: end for

10: for k = 1 to K − 1 do
11: ck(t) = {}
12: for i = 1 to j do
13: if ϑk < ∠ci(t) cp(t) < ϑk+1 then
14: ck(t)← Append(ci(t)) // Add ci(t) to the cells of k-th cone
15: end if
16: end for
17: if PointOfInterest ⊂ ck(t) then
18: gk(t)← PointOfInterest // Cell goal
19: else
20: gk(t)← arg

(
max
c∈ck(t)

||c− cp(t)||2 min
c∈ck(t)

∠c cp(t)− ψk(t)

)
// Cell goal

21: end if
22: end for
23: gK(t)← p(t) // Stop-goal
Output: gk(t), k = 1, . . . ,K

4.5.2 Likelihood computation

For each possible goal we compute a Net2 prediction and execute a Kalman Filter (KF) iteration. The
prediction step for the k-th goal is given by

s̄t+1
k = F(s̄tk, f),

Σt+1
k = AΣt

kA
T +BQBT ,

(4.17)

where s̄tk =
[
p̄tk, v̄

t
k

]T is the state at time t, F(·) represents the second-order dynamic model (4.7),
and A =

∂F(s̄tk,f)

∂s̄tk
is the linearised system dynamic matrix. Moreover, Σt

k is the covariance matrix of

the estimation error associated with the k–th goal state, B =
∂F(s̄tk,f)

∂f is the force linearised input
vector, having additive uncertainties with covariance matrix Q (that we assume to be proportional to
a perturbation in the acceleration space). In the update step, we use the observations pt+1 to evaluate
the innovation vector εt+1

k , its covariance St+1
k , and update the state covariance, i.e.

εt+1
k = pt+1 −H s̄t+1

k ,

St+1
k = HΣt+1

k HT +R,

Kt+1
k = Σ−i,k+1H

T (St+1
k )−1,

Σt+1
k = Σt+1

k −Kt+1
k HΣt+1

k ,

(4.18)
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where R is the covariance matrix of the measurement uncertainty and H = [I, 0]T is the output
matrix. The computation of the likelihood can be carried out through two di�erent approaches: GBP1
and IMM (Bar-Shalom et al., 2004). The former is easy to set up but has a good performance only when
the choice of the goal is relatively consistent in time (i.e, the human does not change her/his mind
on where to go). The latter caters for possible changes in the goal through an homogeneous Markov
Chain (MC). The higher level of generality of IMM requires some additional e�ort in the calibration of
the transition probabilities in the MC.

When using GPB1, the probability of gk(t+ 1), dubbed µt+1
k , can be estimated using the following

Bayesian rule:
µt+1
k = Λt+1

k µtk/Pr
[
pt+1

]
, (4.19)

where Λt+1
k = Pr

[
pt+1|gk(t+ 1)

]
is the likelihood of the observed position pt+1 for the goal gk(t+1),

which can be modelled as a bivariate Gaussian pdf with mean εt+1
k and covariance St+1

k . Unlike the
standard GPB1 approach, where the state estimates for each model (i.e. goal) are fused together, we let
each KF run independently, therefore the updated states are not needed.

In the more general case in which we use the IMM approach, we combine the goal probabili-
ties µt+1

k in (4.19) with the transition probabilities pkj of dynamically changing the goal, i.e. pkj =

Pr [gk(t+ 1)|gj(t)] . The goal switching is assumed to be a homogeneous Markov process, so that the
transition probabilities are known and time-invariant. Hence, in the IMM, (4.19) is substituted with the
mixing probabilities

µt+1
k =

Λt+1
k

K∑
k=1

Λt+1
k

K∑
j=1

pkjµ
t
j

K∑
j=1

pkjµ
t
j . (4.20)

The Markov chain transition probabilities are de�ned as a stochastic matrix. The persistence of each
mode is equal to a probability α, while the transition towards each other mode is an even distribution
of 1− α, i.e.

pkj = αI +
1− α
K − 1

(1− I), (4.21)

where 1 is a matrix with all ones and proper dimensions.
As the agent moves in the environment, we eventually repeat the Net2 predictions based on the new

measured human position, and the updated goals. This occurrence is triggered by one of the following
events: i) the average among all the innovations (i.e., the norm of εtk in (4.18)) is greater than an upper
limit εM ; ii) the Euclidean distance between the observation pt and one goal gk(t) is lower than δM
(i.e. the pedestrian is close to the k-th goal). When any of these conditions befalls and we reinitialise
gk(t) to g?k(t), its �rst con�dence µt,?k is obtained using µtk as a prior, i.e.

µt,?k ← λµtk + (1− λ)Pr
[
g?k(t)|pt

]
, (4.22)

where λ ∈ [0, 1] is a weighting parameter. The rationale is that the probabilities reached before the
reinitialisation can hold as a starting guess, thus we mix them with the a-priori Pr

[
g?k(t)|pt

]
.
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4.6 Training and experimental validation

In this section we show a number of experimental results reported on well known datasets and on
other data sets of our making. We �rst describe the training phase, which was totally conducted us-
ing synthetic data, and then we will discuss the performance of our predictor in di�erent operating
conditions.

4.6.1 Training details

Both Net1 and Net2 were implemented in Keras and trained with the Adam optimiser with a learning
rate of 0.005, batch size 128, and number of epochs 300 using a 2.7 GHz Intel Core i7 processor. We
created two synthetic sets of trajectories generated by the SFM in an open space (for Net1) and in a
structured environments (for Net2). For the structured case, the environment we assumed consisted of
two intersecting corridors (as in Figure 4.9-a). In the �rst set, we ran 800 simulations of 20 seconds
with a sampling time of δt = 0.1 s. The initial positions were randomly chosen within a range between
8 and 10 m from the �nal goal, and, for each simulation, a random set of parameters for the SFM model
in (4.8) were taken from the intervals [50, 90] kg for m, [0.5, 0.9] s for τ and [0.5, 3] m/s2 for vd. For
the second set, we ran 1200 simulations where the agent moves through the corridors intersection,
starting from one of the four possible waypoint areas (see Figure 4.9-a) and reaching another one. We
set the parameters in (4.9) to A = 1000, B = 0.08, according to Farina et al., 2017b. The window of
the motion observations was empirically set to n = 10 steps, which provides a good trade-o� between
learning speed and network prediction accuracy without over-�tting. This is consistent with the fact
that the networks mostly depend on the most recent data, and that a longer motion observation does
not signi�cantly improve the prediction accuracy (Schöller et al., 2020).

The 70% of each synthetic dataset was used as the training sets, while the remaining samples
were used for validation. Notice that, in order to avoid possible correlations between training and
validation, the samples randomisation was done after dividing the two sets. In Table 4.2 we report the
hyperparameters and the implementation characteristics of our proposed networks Net 1 and Net 2 and
other comparative models used in the experiments in Sections 4.6.3 and 4.6.4.

4.6.2 Validation on simulated data

After the training, we performed a �rst validation step on a di�erent batch of simulation data. The
di�erence between this batch and the one used for training lies in the geometric con�guration of the
simulated environment (which was no longer a simple intersection of two corridors).
SFM forces generation. For this evaluation, we �rst generated the entire trajectory. For each step,
the network was used to infer the force sample. In Figure 4.7 we report the results of the force predic-
tions of the Net2 network (similar results are obtained for Net1). Figure 4.7-a depicts the trajectories
generated by the SFM, while Figure 4.7-b the comparison between the real and the network predicted
force components fx = fox + fwx and fy = foy + fwy described in (4.8) and (4.9). Despite a slight un-
derestimation of the forces in the occurrence of the horizontal collisions with the walls (see the peaks
in Figure 4.7-b), the prediction remains consistent even if the con�guration of the obstacles was very
di�erent from the one used in training (see Figure 4.7-a). We can legitimately conclude that the per-
formance of Net2 has not been negatively a�ected by the environmental bias introduced during the
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Figure 4.7: Validation example. (a) SFM simulated trajectories and (b) Net2 forces predictions
(solid) compared with the SFM forces (dashed).

training phase. The structure of our NN and the abstract modelling of the environment guides the
learning process toward a correct understanding of the “physics” of the human motion rather than of
speci�c behaviours, and makes the learning results usable across a wide gamut of possible environ-
ments. This fact is further substantiated by the inspection of the learned weights. In our example, the
weights of the second branch wAwfs = 3.4 · 103 and wB = 0.0834 are pretty close to the A and B
parameters, respectively, used in the synthetic dataset. Likewise, if we combine the weights of the �rst
branch, as in (4.14), we obtain an estimated mass of 55.6 kg, which is correctly positive and of the same
order of magnitude of the chosen m. Since the NN internal weights correspond to physical quantities,
unexpected values (e.g., negative masses, exaggerated velocities) are used to reveal either the absence
of a real convergence or that the system has been over-�tted. This “interpretability” of the results is the
most important trait of the future generation of explainable AI systems (Barredo Arrieta et al., 2020).
Long term prediction. Given that the forces are correctly estimated, we fed those quantities into
the SFM (4.7) to generate long term motion predictions. To this end, we �rst collected one second of
measurements from a trajectory corresponding to a window of n = 10 samples. These measurements
were then used to estimate of the SFM force, and, hence, the position at the next step. The whole pro-
cedure was iteratively repeated shifting each time ahead by one sample the window. This way, after 10

prediction steps, the computation was made “in open loop”, relying solely on the SFM predictions. The
comparison between the predicted trajectory and the actual one is shown in Figure 4.8 for two di�er-
ent scenarios. In both scenario, the actual trajectories (solid lines) are well replicated by the predicted
human motions (dashed lines) even for a long horizon (7 or 9 seconds, respectively).
The case of uncertain goals. In the example described above, our objective was to validate the
NN based prediction of the human motion. For this reason, we assumed that the goal of the human
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Figure 4.8: Comparison of actual (solid) and predicted (dashed) trajectories using learned Net2
forces with n = 10 steps with a prediction horizon of (a) 7 and (b) 9 s in a structured environment.

target was known. Now, we move to the general case of unknown goal in order to validate the entire
approach.

Let us consider again the intersecting corridors scenario. Following the method described in Sec-
tion 4.5, we identify four goals, which correspond indeed to the areas chosen for the network training.
The pedestrian starts from one of the areas (from the uppermost one in the experiment in Figure 4.9-a),
and reaches one of the other three. Therefore, we generate three di�erent hypotheses for the trajectory
predictions with the Net2 network (one per area, respectively) choosing as goal the area centroids. As
shown in Fig 4.9-b, after about 2 s, the GBP1 classi�er is able to �nd the correct goal, while in the
following seconds the con�dence towards the simulated trajectory increases. The evaluation of Net2
with the multi-goal strategy is then further proved on real human trajectories collected in a structured
environment. In particular, we record the data in two di�erent portions of a hallway with multiple
exits in our department at the University of Trento. Data were collected using a LiDAR, which was
placed about 90 cm from the ground at the centre of the two scenes, in order to entirely see every side
of the corridors (see Figure 4.10-a). The sensed data were used to both extract the walls information
(that is, the static points between subsequent frames) and the pedestrian observations. Our acquisition
algorithm was used to extract points belonging to the person’s waist, and clustered them into a single
planar position. In the �rst recorded set, depicted in Figure 4.10-a, the person could go to three di�er-
ent goals, i.e. one directly to the left, one to the right and one right at the end of the hallway (see the
captured inlet image). In Figure 4.11-a we report the classi�cation result for the trajectory of the blue
goal with the GPB1 estimator. In this experiment, we manually give to the model the prior knowledge
of all the goal locations, i.e. the beginning of the corridors. As reported in Figure 4.11-b, the �rst goal
on the left of the person is discarded after about 4 s, while the con�dence of the two remaining goals
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Figure 4.9: (a) The agent moves from the uppermost area to the green exit on the right. The
coloured crosses represent all the possible goals of the scenario. (b) Probabilities of the three goals

estimated by the GPB1 method.

remains almost the same, until the correct goal is found after about 6 s, before the pedestrian oversteps
the next exit. Notice that the oscillating trajectory of the orange sample is due to the SFM dynamic
with respect to static obstacles.

4.6.3 Net2 performance evaluation

To experimentally validate the performance of the multi-goal strategy with the IMM estimator, we
used the second set of actually recorded trajectories in Figure 4.10-b, where the person could go towards
di�erent exits, located at di�erent walking directions. Wall shapes were restored by looking at the static
measures of the LiDAR, while here we use no prior information on the points of interest positions.
As customary in the literature from this kind of problems (Alahi et al., 2016; Rudenko et al., 2019;
Schöller et al., 2020), we compute the errors using the Mean Euclidean Distance (MDEK) and the Final
Displacement Error (FDEK) to determine the approach performance, i.e.

MDEK = min
i∈{1,...,K}

1

nf
Σ
t+nf+1
j=t+1

∥∥∥p̂j − pji

∥∥∥
2
,

FDEK = min
i∈{1,...,K}

∥∥∥p̂t+nf+1 − p
t+nf+1
i

∥∥∥
2
,

(4.23)

where nf is the number of sample of the predicted trajectory. In particular, due to the presence of
multiple forecasted future trajectories, we select the best predicted trajectory among theK samples. In
the literature, the observation window is usually set to 8 time-steps (that is, 3.2 s according to the data
acquisition frame rate of the datasets), while the predictions span the successive 4.8 s. In our model
(SFM-NN), we observe only for 1 s (n=10 steps) of the real-world trajectories and predict for 4.8 s for a
fair comparison. Our strategy was compared with other two orthogonal approaches. We implemented
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Figure 4.10: Experimental trajectories in a hallway. (a) First set of collected trajectories: bold
lines are the ones used for the multi-goal classi�er evaluation and a picture of the experimental

set-up. (b) Second set of collected trajectories.

the Constant Velocity model (CV) as proposed by Schöller et al., 2020, where the multimodality is in-
troduced by predicting K = 20 samples with a random noise on the walking direction, i.e. N (0, σ2

a),
with σa = 25°. Moreover, we trained di�erent Fully Connected neural networks with the same hyper
parameters of Net2 with the synthetic dataset. For each network we tested several structures in order
to �nd the best �tting. The FC1 is made of two hidden layers with 100 and 80 neurons, both followed
by ReLU activation functions. It takes as input all the past motions and has two output layers with 48

neurons each to return all the prediction steps. The FC2 receives as inputs also explicit scene informa-
tion (the same way as Net2 does), has two hidden layers with 50 and 30 neurons, and predicts for the
entire window. The FC3 is similar to the FC2, however as well as our proposed approach, it predicts
only the position at t + 1 and recursively uses the past predictions as input for the new inference. In
Table 4.3 we report the prediction errors for all the evaluated models. The proposed SFM-NN mas-
ters the additional complexity of the scene by using Net2, while the in�uence of the environment is
implicitly learned by the FC1 and explicitly encoded in the FC2 and FC3. Nonetheless, our approach
outperforms all the other approaches w.r.t. both MDE and FDE and even if we drew just K = 10 sam-
ples. Therefore, even if the information of the environment are considered, the classical NN approaches
are strongly scenario-dependent and poorly generalise when trained with synthetic datasets. Unlike
other multimodal approaches, the advantage of our model is to have the a-priori con�dence estimated
over the di�erent modes as depicted in Section 4.5. As shown in Table 4.2, the FCs obtained the fastest
execution times on the Keras implementation, in particular the FC1 and FC2 since both are designed
to infer the whole prediction window with a single execution. The peculiar structure of our networks
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Figure 4.11: (a) Trajectory predictions compared with the ground truth (black line). (b) Probabil-
ities of the trajectory predictions while the pedestrian moves towards the blue goal, as estimated

by the GPB1 method.

K MDEK FDEK MDE FDE

CV 20 0.47 1.28 CV-s 1.65 2.73
FC1 1 0.96 1.84 SFM-NN-s 0.74 1.49
FC2 1 0.96 1.97
FC3 1 0.65 1.43 SFM-NN cl 0.16 0.16

SFM-NN 10 0.38 0.68

Table 4.3: Comparison of prediction errors with our model (SFM-NN), Constant Velocity (CV)
model and Fully Connected (FCs) networks, on collected trajectories. The su�x “-s” depicts the

models with only the most con�dent estimate. The metrics are reported in meters.

makes them slightly slower in their Keras implementation, however, this is not a signi�cant disadvan-
tage as it is used for o�ine prediction. In the C++ implementation (introduced in Section 4.7.1), the
inference times are suitable for real-time robotic applications.

To increase the fairness, we also endowed the CV model with an IMM estimator to obtain a-priori
con�dence as well. For comparison, we select for both the algorithms the most probable trajectory, i.e.
the one with the highest con�dence, and named them CV-s and SFM-NN-s, respectively. This way, in
the prediction phase both models were reduced to single-modal approaches. The comparative results
reported in Table 4.3 further con�rm the e�ectiveness of our solution. For a visual representation of the
behaviour of the di�erent approaches in Table 4.3, we o�er in Figure 4.12 a qualitative representation of
the di�erent predicted trajectories. The CV model (Figure 4.12-a) reached a good average performance.
However, walls information and trajectory curvature changing are not obviously predictable based on
the motion history. The FC1 (Figure 4.12-b) properly predicts linear trajectories, while it was not able
to catch the turning behaviour nor the environmental e�ects. Instead, even if only the most probable
trajectory is predicted (i.e., SFM-NN-s), our model (Figure 4.12-c) correctly predicted all the walking
directions and well approximated the pedestrian behaviours.

Finally, in the last column of Table 4.3 we reported the performance of the IMM estimator in closed
loop, that is with the continuous update of the goal probabilities with respect to the observations, i.e.
we let the Net2 behave as a �lter when new observations come. These experimental results are of
paramount relevance for an application of the solution to real-time pedestrian motion estimation of
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Figure 4.12: Predicted trajectories with CV (a), FC1 (b) and SFM-NN-s (c). The ground truth is
depicted in black for the �ve sampled trajectories, while colour codes are adopted for the corre-

sponding predicted trajectories from the di�erent approaches.

service robots. Notice that in this case, the performance are de�nitely increased and the two metrics,
MDE and FDE, are obviously the same, i.e., we come up with just one prediction.

4.6.4 Net1 performance evaluation

To further substantiate the analysis, we experimentally validate the performance of the Net1 network
and make a comparison with other methods in the literature, we used two widely known human motion
datasets: the ETH (Pellegrini et al., 2009) dataset (with the scene Hotel and ETH ) and UCY (Lerner et al.,
2007) dataset (with sceneUCY, Zara1 and Zara2). These datasets comprise real world human trajectories
in open scenarios, where the in�uence of static obstacles is mostly negligible, thus the embedded SFM
model plays a major role. The performance were evaluated using the MDEK and the FDEK de�ned
in (4.23), where K=1 since we are considering for Net1 just one model. Unlike the leave-one-out
approach used in Alahi et al., 2016; Rudenko et al., 2019, we used the synthetically learned Net1 to
validate the prediction accuracy over real-world data, and we use the same observation and prediction
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Dataset Metric CV CA FF LSTM SFM SFM-NN

Hotel MDE 0.27 0.95 1.59 0.15 0.69 0.34
FDE 0.51 2.41 3.12 0.33 1.63 0.75

ETH MDE 0.58 1.35 0.67 0.60 0.89 0.61
FDE 1.15 3.29 1.32 1.31 2.12 1.48

UCY MDE 0.46 0.79 0.69 0.52 0.89 0.42
FDE 1.02 2.03 1.38 1.25 2.12 1.02

Zara1 MDE 0.34 0.59 0.39 0.43 0.61 0.31
FDE 0.76 1.50 0.81 0.93 1.43 0.78

Zara2 MDE 0.31 0.50 0.38 0.51 0.84 0.27
FDE 0.69 1.30 0.77 1.09 1.96 0.67

AVG MDE 0.39 0.84 0.74 0.44 0.79 0.39
FDE 0.83 2.11 1.48 0.98 1.85 0.94

Table 4.4: Prediction errors (average errors in AGV rows) with our model (SMF-NN) and other
state-of-the-art models on the real-world datasets. The metrics are reported in meters.

window as in Section 4.6.3, In Table 4.4 we show the prediction errors comparison with the Constant
Velocity (CV), the Constant Accelerated (CA) models and the Feed Forward (FF) neural network, all
implemented by Schöller et al., 2020. Moreover, we report the comparison with the LSTM network
(LSTM) by Alahi et al., 2016, and with the standard isolated SFM model (SFM) with its parameters
optimised with the leave-one-out approach on the real dataset. Among the methods that can be adopted
as a baseline, we therefore chose single-prediction models which, like the Net1, did not make use of
additional information, such as the goal target.

At a �rst look, our model still shows good prediction performance in each dataset, with an average
MDE of about 40 cm with the exception of the ETH scenario. The performance decrease in the case of
the �nal displacements measured by FDE: this result is mainly due to the strong non-linearity of the
real-world trajectories, which are not easily followed by Net1 in open loop. However, the results are
instead remarkable for the following reasons: 1. compared with the optimally trained SFM, the results
are radically better due to the presence of the NN that is able to add �exibility to the predictions coming
from the context; 2. notwithstanding the worsened training conditions of the proposed approach, the
reduced observation interval and the absence of obstacles (which are the main novelty of the proposed
approach, as aforementioned), our results provides similar performance than the other methods in the
literature; 3. the proposed method, despite having similar performance as state-of-the-art approaches
(e.g., the CV) in open spaces, has the potential to further model other e�ects, such as human to human
interactions, which will be the subject of future investigations.

These experimental results are, to the best of the Authors’ knowledge, the �rst actual evidence of a
reliable human motion prediction carried out in real-time by a moving service robot in a natural envi-
ronment that deals with random human beings in an unknown scenario. We want to remark here that
this is actually possible if the knowledge gained by the NN is abstracted by the wired model adopted.
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Figure 4.13: (a) Robot sensing system setup, consisting of LIDAR sensor10 (1) and RealSense
D43511 (2) for the detection and tracking, and RealSense T26512 (3) for the visual odometry. (b)

Computing boards on the robot: Jetson TX28 (4) and Intel® NUC (5).

4.7 Robotic implementation and experimental results

In this section we show a set of experiments conducted using a real robot. We �rst describe the plat-
form’s components and the software framework, and then we will discuss the performance of the pro-
posed solution.

4.7.1 Robotic platform

In order to create a suitable robotic platform for the experiments, we equipped a two-wheeled unicycle
robot with a sensing system composed of a 2D LIDAR and an RGB-D camera (see Figure 4.13). The
RGB-D sensor is used for human detection and tracking, while the LIDAR data are used to improve
the tracking performance, to localise the robot in the environment and to measure the distances to the
surrounding obstacles. The LIDAR (an RPLidar A310) has a view angle of 360◦, a maximum measuring
distance up to 40 meters, and is typically operated at 20 revolutions per second. The RGB-D camera
adopted is an Intel® RealSense™ D43511, working in an ideal range spanning from 0.5 to 3 m. In
addition, rotational encoders on each rear wheel and a visual inertial camera facing upwards (an Intel®
RealSense™ T26512) provides odometry data.

The solution proposed in Sections 4.4 and 4.5 was prototyped in C++ and is comprised of two
modules (see Figure 4.14): detection and tracking and motion prediction. The algorithm was executed on
a Jetson TX28 and on a Intel® NUC, both embedded on the robot.

The detection and tracking module is used to: 1. provide real-time information on the presence
of �xed obstacles and walls, 2. detect and track the human target. The human tracking algorithm is
derived from the solutions presented in Section 3.5, while the sensors fusion is described in detail in
Section 6.3.3. We �rst identify and track the person in the image space of the camera, and then we merge

10https://www.slamtec.com/en/Lidar/A3
11https://www.intelrealsense.com/depth-camera-d435/
12https://www.intelrealsense.com/tracking-camera-t265/
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Figure 4.14: Scheme of the robot framework. The detection and tracking module is described in
Section 6.3.3, while the motion prediction module includes the pipeline of Section 4.4.

the camera data and the LIDAR readings in order to identify the 2D position of the human target even
in presence of occlusions and/or of other moving entities. The origin of the �xed reference frame 〈F 〉
can be freely de�ned in the available map or w.r.t. the robot’s initial position. The subsequent positions
of the robot pr = [xr, yr, φr]

T are then retrieved with a standard localisation algorithm (Nazemzadeh
et al., 2017). The assumed sensing con�guration allows us to bring all the measurements taken by the
robot in its relative reference frame 〈R〉 back to the �xed frame 〈F 〉 by subtracting the relative robot
motion from the measures. The pedestrian’s 2D positions are retrieved by the robot with a sensor
fusion approach (see Section 6.3.3). As regards the detection of obstacles walls and �xed obstacles, we
use the sequence of measurements from the LIDAR and apply the following steps to reconstruct the
information of interest: 1. we group the points obtained from the LIDAR into clusters, 2. we �lter
out spurious points through the Ramer-Douglas–Peucker algorithm (Douglas and Peucker, 1973), 3.
we interpolate the remaining points and generate a 2D evaluation of walls and obstacles boundaries.
We observe that this information is key to the computation of the repulsive forces in the SFM-based
prediction.

The motion prediction module implements the whole set of algorithmic solutions described in Sec-
tion 4.4 to predict the motion of the human target: generation of the goal hypotheses, neural network
based implementation of the SFM and likelihood computation. After the network predictions, the future
human positions are obtained with the double integration of the SFM model (4.7), with a discretization
time δt, that is imposed by the sensor with the lowest sampling frequency and is comparable with the
sampling time used in simulation. The training of the neural network was performed o�ine and the
weights produced by the training were transferred into the C++ implementation. The network inputs
(human and wall positions) are the same described in Section 4.4.3, which are a commonplace in mo-
bile robotics applications. Hence, the embedding of the SFM formulation in the neural network design
allows us to seamlessly perform predictions both in real and simulated environments.

4.7.2 Experiments with mobile robot

The experimental evaluation of Net2 with the multi-goal strategy is carried out through actual ex-
periments in our department at the University of Trento. In particular, we let our robot moves and
encounters people in a portion of a hallway with multiple exits. In this setting, the robot navigates in
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the corridors while it detects, tracks, and predicts the motion of a nearby human. The robot has no
prior knowledge on the environment, nor the points of interest of the human.

Below we present qualitative results of the prediction module. All the robot collected measure-
ments, i.e. the robot path, the human trajectory and the obstacle data, are reported in the global ref-
erence frame. As shown in Figure 4.15, while the robot detects a person which is moving along the
corridor in the same robot direction, the initial goal guesses are quite equiprobable (recall that the
probability is measured by µtk in (4.20)), but already catch the trend of a forward motion (Figure 4.15-a
with reference to the right colour code describing probabilities), while, after some additional samples
of the human positions are collected, the con�dence of the goal ahead is increased (Figure 4.15-b) and
propagated on new goals after the update described in Section 4.5 in (4.22) (Figure 4.15-c). In the bot-
tom row of Figure 4.15, instead, we show how a bended human path is predicted, so that the initial
guess on the goal ahead (Figure 4.15-d) is correctly transferred to the goal on the side (Figure 4.15-e) in
light of the observed trajectory and the corresponding prediction of a lateral motion. Finally, the best
con�dence switches to the stop-goal as soon as the person decides to remain on the spot (Figure 4.15-f).
These experimental results are, to the best of our knowledge, the �rst actual evidence of a reliable hu-
man motion prediction carried out in real-time by a moving service robot in a natural environment that
deals with random human beings in an unknown scenario. We want to remark here that this is actually
possible if the knowledge gained by the neural network is abstracted by the wired model adopted.

4.8 Comments

In this chapter, we have shown a novel technique for predicting human motion embedding the environ-
mental contextual information. Our idea is to bridge the gap between model-based and learning-based
approaches in order to retain the advantages of both. Indeed, the proposed strategy is based on the
combination of a neural network with a famous physics inspired dynamic model, the SFM. In the com-
bination, each of the two approaches emphasises its own strengths and compensates for the weakness
of the other. Speci�cally, the SFM brings a structure to the neural network, reducing its complexity and
the number of samples needed for the training. Furthermore, neural network predictions become ex-
plainable and physically interpretable. On the other hand, the neural network expresses its full power
in terms of �exibility, and of its ability to learn the complex parameter set of the SFM, which would be
very di�cult to estimate in real-time by conventional means for the strong non linearities of the model.
Our simulations and experiments reveal the full potential of the marriage between the two worlds of
physics inspired models and neural networks.

Some important points remain open and can attract our e�orts in the near future. First, the neural
network designed can be improved by embedding di�erent models which are potentially more realistic
than the SFM, for example the the HSFM (Farina et al., 2017b) or the PHSFM (Antonucci and Fontanelli,
2018). Moreover, we want to test a new architecture end-to-end where the inputs are the observed
trajectories and the outputs are the predicted ones, so as not to depend on ground truth data and to
evaluate the network training on datasets of collected pedestrians data. Finally, we plan to extend the
input of the model to include interaction with other humans and to account for unspoken signs (e.g.,
pose, eye gaze, facial expression). We refer to the next chapter for an example of a motion planning
algorithm that is designed to make the best use of the proposed structured network.
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Figure 4.15: Di�erent snapshots of the experimental results when a moving person (with blue
solid trajectory) is tracked by a robot (red dashed trajectory). Both, a human showing a forward
motion (a-c) and a turning and stopping motion (d-f) are reported. The black dots are the LIDAR
data collected by the robot, while the coloured circles represent the predicted human goals at the

snapshot time, each with a con�dence µtk depicted with the colour mapping on the side.
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Chapter 5

Navigation in human-shared
environments

In our de�nition of human-shared environments, we include all those cases in which robots have to
navigate in partial or complete autonomy, �nding themselves in a certain proximity to people sharing
a common space with them, and coming across various kinds of obstacles. Possible contexts are both
industrial workspaces, such as warehouse hallways with racks, and general non-industrial applications
(co-bots, delivery robots, agricultural robots, etc.). Regardless of the type of application, usually the
planning algorithms of the robots focus on optimal goal-seeking and/or e�cient collision avoidance,
but they do not explicitly consider the social aspect of the interaction with humans.

Unless the speci�c application requires collaboration between humans and robots, the main require-
ment we want to obtain is that robots are of minimal disturbance to people. The collision avoidance, in
order to be e�ective and interpretable, must take place in an anticipatory and smooth way, so that it is
not misunderstood as “improvised” or not controlled by the robot, which could make people uncomfort-
able. Secondly, if the robot moves in a reactive and non-anticipatory manner, or is not cohesive with the
planned path, undesired phenomena such as the “freezing robot problem” (Trautman and Krause, 2010)
can occur, with increasingly pronounced e�ects as the number of people and robots present increases.
We want to address the problem of planning and controlling the navigation of a group of robots, avoid-
ing the people present, coordinating their movements, and minimizing stops while keeping safety as an
essential constraint. Speci�cally, our solution is structured in three di�erent nested layers of increasing
level of abstraction and information used, organized following the principle of the cognitive framework
inspired by the proxemics theory as mentioned in the introduction of this thesis. Given the particular
modularity of the framework, we will present its overall architecture and deepen the description of the
modules personally developed. Then, we will show the experimental results of our navigation strategy
implemented on three mobile robots with humans moving in the neighbourhoods.

5.1 Overview

The fundamental talent for mobile robots is their ability to navigate their way through (un)known
environments in complete autonomy. However, we envisage a scenario in which robots will be so
complementary to humans that future robotic applications will have to meet demands with a higher
level of expectations. Speci�cally, we can identify �ve classes of requirements (Figure 5.2).
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(a) (b)

Figure 5.1: The three mobile robots used for experimental campaign.

R2: Socially aware motion planning.

R1: Robustness and safety in navigation.

R3: Multi-agent coordination.

R5: Computation efficiency.
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Figure 5.2: Requirements for multi-robot navigation in human-shared environment and frame-
work layers (GPP, LPP, LB) where the requirements are satis�ed (full circle) or partially satis�ed

(dashed circle).

Robustness and safety in navigation (R1). An essential requirement for the navigation algorithm is to
ensure safety for the humans and the absence of damages to the robots and to other assets. Since we
cannot impose a desired velocity on people, collisions with the robot cannot be ruled out for arbitrary
velocities whatever is the algorithm adopted. Hence, by safe navigation we mean:

• collision will be avoided with static obstacles and other robots;

• no collision will be generated from the robot control choices when a human is encountered.

That is, we want to guarantee safe navigation as long as the humans do not induce on purpose a collision
by running into the robot, which is a reasonable condition in the considered scenarios.
Socially aware motion planning (R2). A robot traveling nearby humans can be perceived as an unfamil-
iar and intimidating presence. This feeling is exacerbated if the robot follows weird motion patterns
(e.g., sharp turns) or if the trajectory penetrates into the humans’ private space (Section 2.2). If the
robot follows instead smooth trajectories and anticipates the human, its presence could become more
acceptable. We will accomplish this task by exploiting the motion predictions of each human in the
scene following the results of Chapter 4.
Multi-agent coordination (R3). As the motion planning complexity increases according to the number of
robots involved, we aim for an appropriate coordination protocol that is scalable and computationally
e�cient.
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Dynamic environments (R4). For the evaluation reported in the experimental section, we will follow the
assumption that the robots plan their navigation using prior knowledge on the environment. This is
a reasonable condition since we can imagine tasks where for example CAD maps (for indoor applica-
tions) or street maps (for outdoor applications) are given. However, our foreseen planning framework
should e�ciently react to unexpected conditions as soon as they are detected by on-board sensors, and
guarantee the robot’s convergence to its goal.
Computation e�ciency (R5). A computational e�ciency real–time controller must be �anked with an
high speed frequent data collection from the environment. This requirement goes hand-in-hand with
the use of lean hardware motivated by cost and energy consumption considerations, and bene�ts from
the evaluations made in Chapter 3.

Each of these requirements is di�cult to address in its own right, and the interweaving between
di�erent requirements introduces additional complexity. As no silver bullet method exists to cope with
the di�culties of the problem outlined above (see Section 5.2), the most obvious solution is to adopt a
combination of methods. Our solution is a hierarchical architecture (depicted in Figure 5.4), in which
each layer receives information and takes decisions that are propagated to the layers below.

The uppermost layer is a Global Path Planner (GPP), which works over the entire mission space
exploiting an abstract knowledge of the environment. Moving down in the hierarchy, we introduce
new decision layers, which use more detailed information on the environment but take decisions with
a narrower spatio-temporal horizon. In particular, the second layer exploits the on-board sensors to
detect the nearby objects and to identify and track each human in the sensing range. This information
is passed together with the planned path into the Local Path Planner (LPP), which accounts for the
presence of obstacles and embeds a prediction-based component to determine the future evolution of
the position of the humans. The lowermost layer consists of a distributed Lloyd-based controller (LB)
that intervenes on the planned path by reacting to the information provided by low-range sensors. This
layer also takes care of the multi-agent coordination exploiting the communication network.

Our proposed architecture allows each layer to have a certain degree of independence, meaning
that the properties enforced at one layer are not invalidated by the layers below, and the overall pro-
cess is not stalled by inconsistent decisions taken from di�erent levels. Remarkably, the interaction
between the global path planner, the local path planner and the Lloyd-based controller satis�es all the re-
quirements R1–R5, as schematized in Figure 5.2. Indeed, we are able to obtain: high levels of safety and
robustness thanks to the high frequency corrections implemented by LB (R1); socially aware trajecto-
ries thanks to the LPP, which accounts for the prediction of human motions (R2); successful multi-agent
coordination handled by LB (R3); an e�ective management of dynamic scenarios and progress towards
the �nal destination thanks to the integration of the global planning GPP and the local planning LPP
(R4); computational e�ciency since the intensive task of multi-agent coordination is moved from plan-
ning layer to the innermost level of the framework, and the LPP and LB perform at high frequency
(R5).

After a comparison with the related literature on robot navigation in human-shared environments
similar to our approach in Section 5.2, we will describe the complete framework in Section 5.3. Notice
that the GPP and the LB layers are not speci�c contributions of this thesis. Since they are part and
parcel of the framework architecture, we will brie�y report their functioning, while we will deepen the
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description of the local path planner. Then, Section 5.4 will presents the experimental results with real
multiple robots and people, followed by �nal considerations discussed in Section 5.5.

5.2 Related work

Despite the intensive research activity of the last few years, it is still missing a comprehensive navi-
gation system that satis�es all the requirements stated in Section 5.1. A more extensive review of the
related work on socially aware robot navigation is presented in Section 2.3. Here, we report the most
relevant contributions to our use case and comment on their relationship to our solution. In a recent
survey, Cheng et al., 2018 propose a taxonomy of the papers that populated the recent literature on
robot navigation in human-shared environments. They identify three families of methods, which are
useful to refer to also in this context: reactive methods, predictive planners, and learning-based methods.

Reactive methods Reactive methods show their potential in managing the presence of unexpected
static and dynamic obstacles. The most popular reactive methods are based on Velocity Obstacles
(VO) (Fiorini and Shiller, 1998; Alonso-Mora et al., 2013; Boldrer et al., 2020b), and force �elds (Olfati-
Saber, 2006; Boldrer et al., 2020c). Both are suitable for use in multi-agent navigations. Claes and Tuyls,
2018 propose a method based on the dynamic window approach (DWA) (Fox et al., 1997) and VO, which
appears as an e�ective solution to support the navigation even in the absence of external sensors (e.g.
tracking cameras, UHF-RFID tags).

Reactive methods based on VO or on force �elds share a good degree of computational e�ciency
(R5) and, in some cases, can be adapted to operate in a multi-agent framework (R3). Moreover, these
methods are designed to react quickly and to preserve safety also in a dynamic environment (R1).
However, generally speaking, reactive solutions are not necessarily e�ective in dealing with humans.
For instance, VO-based methods require a reliable estimate of the velocity of the obstacle. When this
condition is not satis�ed, it could lead to collisions (failing R1). Furthermore, the decision mechanism of
reactive methods is “short-sighted” giving rise to two possible problems: i. deadlocking con�gurations
may occur in an uncertain environment (failing R4), and ii. the generated paths may encroach into the
humans’ private space (failing R2).

Predictive planners To fruitfully take into account the presence of humans is essentially necessary
to rely on predictive methods, i.e., algorithms that exploit model-based predictions of the human mo-
tion. A number of di�erent methods have been surveyed and compared by Khambhaita and Alami, 2017.
Bevilacqua et al., 2018b propose a probabilistic reactive planner for the avoidance of a single pedestrian
that moves according to the Headed Social Force Model (HSFM) (Farina et al., 2017b), while Ziebart et
al., 2009 present a navigation strategy that maximises the robot e�ciency in reaching the goal and at the
same time minimises the robot-human hindrance relying on a reliable prediction model for the human
motion. Bajcsy et al., 2019 propose a safe navigation method for multi-drones in human-shared envi-
ronments. A maximum-entropy model was employed to predict the human motion, while a sequential
trajectory planning managed the collisions with other robots. Mavrogiannis et al., 2018; Mavrogiannis
et al., 2019 design a social momentum planning framework for socially aware multi-agent navigation,
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reporting good performance evidence in crowded situations. Similarly, Knepper and Rus, 2012 proposed
a model-predictive, sampling-based planner.

The application of predictive models allows to generate human-friendly trajectories. As long as
the prediction is supported by well-�tted models and precise measurements, the result is accurate and
the planned trajectory is safe (R1), smooth, and socially aware (R2). Since these methods use relatively
long planning horizons, typically deadlock situations are unlikely to happen (R4). However, predictive
planners are computationally intensive and cannot be executed with high frequencies (failing R5, as
depicted in Figure 5.2). This also depends on the fact that a minimum is required to collect enough
input data to make a prediction. As a result, if the measurements are a�ected by noise and the resulting
prediction is imprecise, the humans’ safety trajectories cannot be robustly guaranteed (R1). A �nal
point is that predictive planners usually do not take into explicit consideration the presence of other
robots. Some adaptations are possible, e.g., assigning �xed priorities to the agent to access shared areas
and assuming a massive exchange of information (Bajcsy et al., 2019), but they do not exploit the full
range of options in robot collaboration (R3).

Learning-based methods A comprehensive review of recent developments in machine learning
approaches for robot navigation is reported in Section 2.3. Some contributions have evident connec-
tion with the framework presented in this chapter. Back in 2012, Luber et al., 2012 used learning ap-
proaches to synthesise a socially aware navigation strategy. Fan et al., 2020 proposed a multi-robot
collision avoidance method with Deep Reinforcement Learning, showing the e�ectiveness of the al-
gorithm through simulations and experiments, while Han et al., 2020 present very promising results
from the experimental point of view. Other recent works used learning-based techniques for single
robot navigation in human-shared environments (Güldenring et al., 2020; Liu et al., 2020; Nishimura
and Yonetani, 2020; Kretzschmar et al., 2016; Kim and Pineau, 2016).

Some issues that hinder the application of learning-based methods to navigation: i. in order to ob-
tain a su�cient level of safety (R1) and social awareness (R2), it is possible to train the robots algorithm
by using a massive amount of examples derived from a speci�c operational scenario, which, however,
could easily drive the system to over�tting with the inability to generalise its behaviours to dynamic
environments (failing R4); ii. even if the system is well trained it is very hard to provide any type of
safety guarantees (failing R1) or to explain the failures; iii. the management of multi-agent scenarios
(R3) introduces an additional complexity: the robot needs to learn how to avoid obstacles and how to
move in a socially aware fashion, but also how to coordinate its behaviours with other agents. Finally,
the computational e�ort (R5) is acceptable for navigation purposes.

5.3 Framework architecture

We consider a numberN of autonomous agents. Albeit the results reported in this chapter are of general
validity, we will make explicit reference to the robots available in our laboratories, i.e., unicycle-like
vehicles with kinematic model ẋiẏi

θ̇i

 =

vi cos θi

vi sin θi

ωi

 , (5.1)
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Figure 5.3: Robot representation and adopted reference frame.

where pi(t) = [xi, yi]
T is the mid point of the robot rear axle at time t and θi is the yaw angle (see

Figure 5.3). The linear velocity vi and the angular velocity ωi are the control inputs.
Given the initial positionsS = {p1(0),p2(0), . . . ,pN (0)}, we want to drive each robot into its �nal

goal position E = {e1, e2, . . . , eN}. The trajectories are required to satisfy the following properties:

1. Safety (R1): let q be any point belonging to an obstacle or a human. Then if ‖q− pi(t)‖ =

δi, therefore the obstacle is at a minimum distance δi, we must ensure that the robot will not
approach it further, by trying to increase or at least maintain that distance, 〈pi − q, vi〉 ≤ 0.

2. Socially aware paths (R2): the compliance with social rules is multidimensional. Let ph(t) repre-
sent the position of a generic human. A �rst parameter is the minimum distance between robot
and humans, dmin

i,h = mint ‖pi(t)− ph(t)‖. The second parameter is the interaction time be-
tween them: let Ti,h be the set of times such that ∀t ∈ Ti,h, ‖pi(t)− ph(t)‖ ≤ δth where δth

is a threshold value. We de�ne as the interaction time ti,h, the sum of the Lebesgue measures
of all the intervals contained in Ti,h. Strictly speaking, we intend as a socially aware trajectory
the one that keeps larger values of dmin

i,h and smaller values of ti,h with respect to a non-socially
aware trajectory, i.e., the robots have to make pedestrians deviate as little as possible from their
desired path. In addition, the trajectory should be smooth and predictable: this can be measured
through the average robot trajectory curvature κ̄i, which will be detailed in Section 5.3.2. Our
de�nition of social awareness does not clearly cover all the aspects related to the social aware-
ness of the robot navigation. However, it can be regarded as a �rst step in the right direction as
it captures some essential features that make a trajectory socially aware: 1. following smooth
trajectories (which are more predictable by the humans with respect to sudden manoeuvres), 2.
staying clear from the humans intimate space (hence, the person is not intimidated by the robot
and feels safer), 3. reducing the interaction time (so as to evaluate the e�ectiveness of the human
motion predictions).

3. E�ciency and convergence (R4): the path length li and the mission time ti should be both as
small as possible.

4. Scalable multi-agent coordination (R3+R5): we aim at a coordination protocol between multiple
agents such that: i. the safety property (speci�ed in point 1)) is satis�ed; ii. the robots avoid
collisions among them; iii. e�ciency and convergence detailed in point 3) are signi�cantly better
than those that would be obtained by accounting for individual non-cooperating behaviours.
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Figure 5.4: Schematic representation of the framework for the i–th agent.

Moreover, the coordination protocol should be scalable in the number of robots and it should be
able to deal with high updating frequencies (i.e., the robots have to be able to compute updated
control inputs in a limited amount of time).

Our navigation strategy is based on the combination of three nested layers: 1. global path planner
(GPP), 2. local path planner (LPP), and 3. Lloyd-based approach (LB). Figure 5.4 depicts the overall
solution approach for the i-th agent. The GPP generates the global path Pg,i, given the CAD map of
the mission space, the starting robot position pi(0) and its goal position ei. The global path Pg,i is then
passed to the LPP which plans for the local path Pl,i(t), which is synthesised every Tp seconds and
requires as input the vehicle position, i.e., the output of the localisation module pi(t), and the humans
predicted paths Ph(t, t + nfδt) within nf time steps δt (which is dictated by the sampling time of
the available sensors). The localisation module takes as inputs the i–th sensor readings that are LIDAR
sensed points, the encoders measurements, and the IMU data. The human motion prediction block uses
the LIDAR sensed points (see Figure 5.4) and it fuses the i–th and all the j ∈ Ni agents LIDAR points,
where Ni indicates the set of neighbours of the i–th agent. Once Pl,i(t) is computed, it is passed to
the Lloyd-based controller along with the agent position pi(t), the neighbours positions pj(t), j ∈ Ni,
and the i-th LIDAR points. Every Tc seconds, the control inputs vi and ωi are computed. The ad hoc
network module depicted in Figure 5.4 implements neighbouring inter-agent communication to share
positions and environmental data.

As it is depicted in Figure 5.4, the portion of the environment used by each module decreases passing
through GPP, LPP and LB, hence the updating frequency (inversely proportional to the computational
burden) grows. Finally, since each robot is equipped with just a LIDAR sensor, the navigation task
becomes challenging since the sensor readings are noisy and obstructions may lead to unreliable de-
tections. To make this task more robust, we allow the robots to exchange information on the humans’
positions and velocities and fuse these information by using the well known DeGroot model (DeGroot,
1974), thus obtaining a consistent human motion prediction. This is important mainly for two reasons:
i. the plan generated by the robots that share the information of humans’ positions and velocities per-
mits the robots to reach consensus on the future human positions, hence to produce consistent, shared
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manoeuvres ii. it permits to share the human prediction also to the agents that do not directly perceive
the pedestrian presence.

5.3.1 Global path planner

The role of the global path planner (GPP) is to provide a feasible path towards the goal for each robot.
This component is executed at the beginning of the mission or upon request. The component relies
on a global map that should be available at the beginning of the mission (e.g., derived from the CAD
drawings). Our solution for the global path planning module is based on the Fast Marching Square
algorithm (FM2), which is an extension of the classical Fast Marching Method (FMM). Even if this
method is not a speci�c contribution of this thesis, we report below a few explanatory notes for the
sake of completeness. FMM is an e�cient numerical algorithm for solving Eikonal equation (Osher
and Sethian, 1988; Valero-Gomez et al., 2013), which describes how a wavefront propagates. By using
FMM we are able to determine a potential of “slowness” for the robot, i.e. a potential map that gives
the robot’s admissible velocity at each position. FM2 is an extension of FMM, introduced by Garrido
et al., 2009. The algorithm operates in two phases. During the �rst phase, FMM is applied, propagating
a di�erent wave from each of the obstacle cells. As a result of this phase, it is possible to generate a cost
map that accounts for the slowness for the robot generated by each obstacle through the wavefront.
During the second phase, FMM is applied once again propagating backwards a wave from the goal.
The propagation is a�ected by the cost map generated during the �rst phase. The result is the shortest
trajectory (in time) which links in a smooth way the start and the goal cells, avoiding obstacles.

Even though our solution is agnostic to the choice of the global planner, we found good reasons
for the choice of FM2. In the �rst place, the algorithm is computationally e�cient: even on large
binary cost maps (e.g., the size of a university department), the plan is produced in a few hundreds
of milliseconds. Secondly, it produces trajectories that are smoother with respect to other planning
algorithms based on discrete cost maps, and it allows us to penalise paths passing very close to an
obstacle, choosing alternative routes whenever possible; Finally, it ensures convergence to the global
minimum, identifying the unique solution that connect the start cell to the goal cell. In Figure 5.5 we
show an example of the output path Pg,i produced by the FM2 algorithm, for a single agent.

5.3.2 Local path planner

The local path planner is needed in order to account for obstacles (both static and dynamic) that are not
present in the map used by the GPP. The LPP consists of two interacting modules: the local position-
based path planner (LPos) and the local prediction-based path planner (LPred). In simple terms, the
LPos has the responsibility to avoid static obstacles identifying a su�ciently large safe corridor (the
“navigable corridor”), whilst the LPred uses predictive models for human motion in order to safely
avoid the humans in the scene.

The local position-based path planner

The GPP produces a global path consisting of a sequence of segments. Every Tp, the local position-based
path planner comes to play. It computes the local goal position, determined by selecting a point along
the global path Pg,i, which is at a look ahead distance Li from the current robot position pi(t). This
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Figure 5.5: Example of global path Pg,i planned by the FM2 algorithm. Black cells represent
obstacles, grey cells represent cells that have not been explored, while green cells having di�erent
shade show the times of arrival from the goal (orange star). The resulting path from the starting

position (orange circle) to the goal is shown in red.

module uses both the map information and the onboard sensor readings to identify a feasible corridor
connecting the robot’s current position to the next local goal. The corridor de�nes a portion of the
environment where it is possible to de�ne a collision-free path. Once a corridor is available, a safe path
should be synthesised.

The computation of the feasible corridor is performed in two steps. In the �rst step, “raw” path is
generated by employing FM2 (the same algorithm used to generate the global path, and described in
Section 5.3.1). In the second step, a number of way-lines are grown around the raw path. The way-lines
are generated by sampling waypoints along the raw path (more densely in close proximity to changes of
directions, to provide more granularity and more degrees of freedom during the following interpolation
phase), and casting rays from each of these waypoints, along both directions, perpendicular to the raw
path until the maximum corridor width has been reached, or an obstacle is hit (as an example, see the
thin blue lines in Figure 5.6).

Once the navigation corridor has been constructed, each way-line is sampled extracting a number
of discrete pointswp. For each point we select a �nite number of �xed orientationswo. The next step is
then to �nd a sequence of motion primitives, each one crossing a way-line with an assigned orientation,
such that continuity and inclination is preserved across each intersection and that the total �nal cost
is minimised. Let us identify with Xi the sequence of cells of the cost map crossed by the path Pl,i(t).
The cost function Hi adopted to determine the optimal trajectory is based on a convex combination
of the travel time (that depends on the length of the path and on the proximity to obstacles) and the
integral of the path curvature squared (to drive the search towards smooth paths and to avoid sharp
turns unless necessary), i.e.

Hi = λ
∑
χ∈Xi

1

αi(χ)
+ (1− λ)

∫ li

0
κi(s)

2ds (5.2)
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Figure 5.6: Example of local pathPl,i(t) by using smooth spline interpolation. The robot position
is indicated with orange circle. Black cells represent obstacles, as green points we have the output
coming from the global path planner Pg,i. The resulting path from the robot position (orange

circle) to the goal is shown in red, the way lines are depicted in blue.

where αi(χ) is the “slowness”, computed using the FMM, associated to the cell χwith size dx, λ ∈ [0, 1]

is a weighting parameter and κi is the path curvature de�ned as

κi(s) =
‖ẋp(s)ÿp(s)− ẏp(s)ẍp(s)‖

(ẋp(s)2 + ẏp(s)2)
3
2

where [xp(s), yp(s)]
T ∈ Pl,i(t), ∀s ∈ [0, li], and where s is the curvilinear abscissa of the path.

We selected clothoids as motion primitives to connect pairs of consecutive waypoints, as they
present several advantages (Bertolazzi and Frego, 2015), that are: the direct parametrisation with arc-
length; the linearity of the curvature that enhance the path smoothness; the simple analytical analysis
that allows us to manipulate these curves with quite e�cient libraries (Bertolazzi et al., 2018). The
search for the optimal solution comes from an Iterative Dynamic Programming approach. We took in-
spiration from the solution developed by Frego et al., 2020 to solve the Multipoint Markov-Dubins prob-
lem. The optimal solution can thus be determined using the Bellman’s “principle of optimality” testing
backward each point and each orientation. The algorithm has quadratic complexity in the product of
the number of sampled point wp and of sampled orientations wo for each way-line. The complexity
can be reduced by an iterative approach. At the �rst iteration, the algorithm is executed on a relatively
low number of sampled points. Once a �rst suboptimal solution is identi�ed, the next iteration extracts
additional samples in a neighbourhood of the intersection of the solution with the way-lines and the
algorithm is executed again to re�ne the solution. We can then execute a number σ of additional it-
erations, each time considering samples on an increasingly narrow search space around the current
solution. In Figure 5.6 we depict an example of the optimal path Pl,i(t) computed by the i–th agent
through LPos.

The local prediction-based path planner

As discussed above, the LPred module improves the path produced by the LPos by integrating the
predicted motion of each human for nf samples ahead using the past np measurements. The strategy
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Figure 5.7: Scheme of the proposed structured neural network used in the LPred. The drawn
blue squares represent the fully connected layers, with their activation function (if any) and their

output size.

to predict the human motion take inspiration from the structured neural network model presented in
Section 4.4.

Indeed, in our model the h-th human, with mass mh, moves towards his/her target at a certain
desired walking speed with magnitude νDh and following a second order dynamic. We identify his/her
measured position as ph(t) = [xh, yh]T . Hence, the human moves driven by an attractive force Fo =[
fox , f

o
y

]T de�ned as
Fo =

mh

τh

[
νDh (t)εεεDh (t)− fh(t)

]
, (5.3)

where the characteristic time τh > 0 parameter determines the rate of change of the velocity vector
and εεεDh is the unit vector pointing towards the goal, i.e., the desired heading. In compliance with
the interaction that takes place between the robot and the human expected for the requirement R2,
we make here customary assumption that the motion of the human is not perturbed by the walls or
static obstacles and by the robots. This assumption has been made to generalise the human motion
predictions, avoiding any environmental bias related to the training scenario. What is more, considering
the human trajectory agnostic to the robot presence is a conservative choice, as it predicts for the worst-
case condition of non-cooperative humans. As a result, the level of safety achieved by the solution is
higher ful�lment of the requirement R1. We observe that our layered scheme allows as to adopt a
simpli�ed human model, as obstacles and unforeseen pedestrian movements can be e�ciently handled
by the lower layers of our framework, as detailed in Section 5.4.

Following the model in Section 4.4, we use a structured neural network to predict the human mo-
tions, where the neurons are organised according to the structure of the SFM model in (5.3). Speci�cally,
the neural network predicts the force Fo, given the nP more recent measurements of the past human
positions from the current time t (see the scheme reported in Figure 5.7). We consider the vector of
the coordinates ∆ph(t) ∈ R2×nP shifted with respect to the �rst sample of the window (i.e., relative
displacements), so that

∆ph(t) =
[
ph(t− (nP − 1)δt),ph(t− (nP − 2)δt), · · · ,ph(t)

]
+

−ph(t− (nP − 1)δt)1TnP ,
(5.4)

where 1nP is a column vector with nP ones, to reduce spatial bias in the network training. The neural
network inputs are processed by two hidden layers with no biases and with only one fully connected
output neuron. The latter is devoted to learn the instantaneous velocity vh = ṗh = [vx, vy]

T and is
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followed by tanh(·) activation functions. Another neuron without bias follows each layer to recover
the normalisation of the estimates to their actual range. To estimate the components of the normalised
goal-directed unit vector εεεDh , we use the most recent relative motion measurement ∆nP ph(t), i.e., the
nP -th element of ∆ph(t) in (5.4). Finally, the vector of normalised velocities magnitudes Υ(t) ∈ RnP−1

derived as

Υ(t) =
[
‖∆1p′h(t)‖, . . . , ‖∆nP−1p′h(t)‖

]T
,

where

∆p′h(t) =
[
∆2ph(t), . . . ,∆nPph(t)

]T
+

−
[
0, . . . ,∆nP−1ph(t)

]T
,

is used to estimate the desired speed νDh , through two fully connected neurons with a sigmoid activation
function necessary to keep a positive sign for the νDh estimate. All the estimates are passed to a Lambda
layer where they are combined and weighted according to the mh and τh parameters in (5.3), thus
generating the �nal output that is the estimate of Fo.

The future human positions are then propagated for nf samples forward using a constant acceler-
ated motion inspired by the SFM, i.e.

xh(t) =

[
ph(t)

vh(t)

]
, ẋh(t) =

[
0 I

0 0

]
xh(t) +

[
0

I

]
Fo, (5.5)

thus generating the human predicted path Ph(t, t+ nfδt).
The future positions of the humans Ph(t, t+ nfδt) are then merged with the LPos path modifying

the cost function in (5.2) as follows

H̃i = λ
∑
χ∈Xi

1

α̃i(χ)
+ (1− λ)

∫ li

0
κi(s)

2ds, (5.6)

where the slowness map α̃i(χ) includes also the probability of collision with dynamic obstacles, which
is obtained by consideringPh(t, t+nfδt) and the future robot positions in the time interval [t, t+nfδt],
computed assuming the actual forward velocity vi along the planned pathPl,i(t). In Figure 5.8, we show
a scenario where the robot detects the human’s position, estimates its velocity and predicts its future
position. Accordingly, the robot computes the possible points where the collision may occur and plans
a feasible route, minimising the cost function (5.6).

5.3.3 Lloyd-based control

As aforementioned, the planning layers only cover requirements R2, R4 and satisfy R5, while a nominal
safety (partial cover of R1) is guaranteed in prediction. The full coverage of R1 (safety) and R3 (multi-
agent coordination) is delegated to the Llyod-based controller, that we will brie�y describe in the in the
following. The LB is the innermost layer of our framework, and its mostly based on the formulation
presented by Boldrer et al., 2020a for robot navigation.
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Figure 5.8: Example of local path Pl,i(t) planned by using the human motion prediction infor-
mation. Black cells represent obstacles, as green points we depict the output coming from the
global path planner Pg,i. The red dotted line would have been the local path planned without the
presence of the humans. The red solid line is the local pathPl,i(t) obtained by using the predictive
module i.e. Ph(t, t+ nfδt). The robot indeed estimate the human velocity (black arrow) and the

zone of collision (faded human), then it plan a safe path accordingly.

Let us de�ne the robots’ mission space Q ⊂ R2, and let us indicate q ∈ Q as a generic point
position. For the i-th robot, the associated Voronoi cell is de�ned as

Vi(p) = {q ∈ Q | ‖q− pi‖ ≤ ‖q− pj‖} , ∀j ∈ Ni, (5.7)

where p = [p1, . . . ,pN ]T is the vector of all the robots positions and Ni is the neighbour set of robot
i (i.e., the set of robots that can communicate with the i-th robot). Consider the coverage cost function

Jcov(p,V) =
N∑
i=1

∫
Vi
‖q− pi‖2 ϕ(q)dq, (5.8)

where ϕ : Q → R+ is a weighting function ∀q ∈ Q. The LB policy is to make agents follow the
gradient descent by imposing

ṗi = −kp (pi − CVi) , (5.9)

where kp > 0 is a tuning parameter and CVi =
∫
Vi qϕ(q)dq/

∫
Vi ϕ(q)dq is the centroid position

computed over the i-th Voronoi cell (Cortes et al., 2004). In the control law (5.9), each agent con-
verges asymptotically to its Voronoi centroid position. In our framework, (5.9) is adapted to multi-agent
navigation, taking into account both static and dynamic obstacles, which modify the geometry of the
Voronoi cell.

In the case of static obstacles, we modify the geometry of the Voronoi cell used for the computation
of the centroid. Consider the following Voronoi-Visible partition

Wi = {Vi ∩ Si} , (5.10)
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Figure 5.9: Voronoi cell geometry for robot navigation. The i-th robot with radius δi (gray circle)
has an Voronoi-Visible partitionWi (yellow area), which is a function of the obstaclesO (in�ated
by δi) and its maximum sensing range rs,i as in (5.10). The presence of the h-th dynamic obstacle

of radius δh (blue circle) modify the cell in W̃i (dashed area) according to (5.14).
.

where Si indicates the i–th agent’s Visibility set

Si =
{
q ∈ Q | pi − ζ (pi − q) /∈ Õi

}
∩ {q | ‖q− pi‖ ≤ rs,i} , (5.11)

∀ζ ∈ [0, 1], the set Õi ⊂ R2 is the in�ated obstacle space considered to account for the i–th agent’s
encumbrance, and rs,i ∈ [0, Rs,i) is a tuning parameter that can assume values between zero and the
maximum sensing range Rs,i (see Figure 5.9 for a graphical representation). Since the Voronoi-Visible
cell does not maintain a convex shape, in some pathological cases the centroid may not belong to the
cell itself. Hence, the centroid position has to be modi�ed as

CWi = arg min
q∈Wi

∥∥q− C̄Wi

∥∥ , (5.12)

where C̄Wi is the real, possibly unfeasible, centroid position. The Voronoi cell is modi�ed also in
presence of dynamic obstacles, i.e., humans and other robots. First, we assume that the encumbrances
of the i-th agent and the h-th human can be approximated with circles centred in pi and ph of radius
δi and δh respectively. Then we modify the partition as follows

Ṽi =

{
{q ∈ Q | ‖q− pi‖ ≤ ‖q− pl‖} , if ∆il ≤ ‖pi−pl‖2

{q ∈ Q | ‖q− pi‖ ≤ ‖q− p̃l‖} , otherwise ,
(5.13)

where l = {1, . . . , N} ∪ {h1, . . . , hNh} (i.e., the set of all the dynamic obstacles, robots and humans),
∆il = δi + δl and p̃l = pl + 2

(
∆il − ‖pi−pl‖2

)
pi−pl
‖pi−pl‖ . In Figure 5.9, we also depict an example of

Voronoi-Visible (5.10) partition modi�ed in order to manage for dynamic obstacles (5.13), i.e.

W̃i = {Ṽi ∩ Si}. (5.14)
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As discussed below, moving the robot towards the centroid of the cell as modi�ed by (5.14) and (5.12)
guarantees the avoidance of both static and dynamic obstacles.

The LB control is designed by discretising the planned path Pl,i(t) in a set of waypointsWP i =

{wp1
i ,wp2

i , ...,wpmi }. If wpki is the waypoint closest to the agent position pi, we integrate the infor-
mation coming from the LPP by selecting as “active” waypoint wpk+ιi

i , which lies in the intersection
between the planned path Pl,i and the robot’s Visibility set Si. The updated cost function for a generic
cell partition Fi (which can be either (5.7), (5.10), (5.13) or (5.14)) we want to minimise is:

J(p,F) =
n∑
i=1

∫
Fi
‖q− pi‖2 ϕi(Pl,i,pi,q)dq, (5.15)

where the weighting factor ϕi(Pl,i,pi,q) is a kernel function fully parameterised by the active way-
point:

ϕi (Pl,i,pi,q) = ηe

(
−
∥∥∥q−wp

k+ιi
i

∥∥∥/ρi) (5.16)

The spread factor ρi quanti�es how closely we aim for the goal. If ρi is small the centroid position
CFi tends to converge towards the active waypoint position wpk+ιi

i . On the other hand, a large value
for ρi means that the relevance of the waypoint reduces and the geometric feature of the cell becomes
prominent. The spread factor ρi is adjusted adaptively to explicitly consider the presence of obstacles,
other robots, and humans (Boldrer et al., 2020c).

Due to the nonholonomic constraints of the model (5.1), the velocity ṗi computed as in (5.9) cannot
be applied directly. However, this problem can be addressed by applying the control logic proposed
in Boldrer et al., 2020c. To this end, with reference to the generic cell partitionFi, we de�ne the desired
heading as

hDi =
CFi − pi
‖CFi − pi‖

,

while the angular velocity and the linear velocity are computed respectively as follow,

ωi = −κω
(
1−

〈
hDi , hi

〉)γ
sign

(
hDi,xhi,y − hDi,yhi,x

)
,

v̇i =

{
ka
(
vDi − vi

)
, if

〈
hDi , hi

〉
≥ cosψ ∧ βi ≥ βi,min

−kbvi, otherwise,

, (5.17)

where γ ∈ (0, 1
2), kω, ka, kb are positive tuning parameters, vDi is the desired forward velocity, hi =

[cos θi, sin θi]
T is the i–th robot heading, while ψ ∈ (−π/2, π/2) is a design parameter.

5.4 Experimental results

In this section, we report an experimental comparison between the performance of the proposed frame-
work sketched in Figure 5.4 with respect to the execution of subsets of functionalities, thus empirically
proving the superior performance of the approach. The di�erent performance will be compared both
quantitatively and qualitatively with reference to the requirements R1–R5. The experiments were con-
ducted using three mobile robotic platforms (see Figure 5.1) developed in our laboratories and equipped
with an RPLidar A26, IMU and encoders, as well as with a Z83 II Intel Atom computing platform. The
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(a) (b)

(c)

Figure 5.10: Three di�erent instants of time with the robot positions, past trajectories (solid lines),
planned paths (dashed lines) and the active waypointswpk+ιi (triangles). In (a) we show the global
planned pathPg,i (dashed lines), while in �gures (b) and (c) the local position-based planned paths
Pl,i(t) for each robot. In this case we tested the local position-based path planner. The approach
works well when has to avoid obstacles with low speed. On the other side the avoidance of other

robots results in non-e�cient trajectories.

robots in the experiments moved with a desired velocity of vDi = 50 cm/s and relied on a Monte-
carlo Localisation module with an uncertainty in position below 14 cm and in orientation below one
degree (Saarinen et al., 2013). For all the robots, we set the parameters as follows. The LB controller
parameters are, the robots’ radius δi = 0.35 m, rs,i = 1.5 m in (5.11), ι = 3 in (5.16), κω = 2, γ = 0.4,
kb = 8, ka = 5 and ψ = π

7 rad in (5.17). The parameters relative to the predictive path planner are
the number of past human position measurements nP = 10 used to predict nf = 30 future human
positions, mh = 100 kg in (5.3), δt = 100 ms in (5.4), the way-line sampled points wp = 7 and the
number of �xed orientations wo = 5, λ = 0.3 in (5.2), the map discretisation dx = 0.05 m and the path
planner look ahead distance Li = 3 m. Particular attention should be paid to the control parameters
that are related to the safety conditions. As we mentioned in Section 5.3.3, we are able to guarantee
the safety requirement if the velocity of the robot can be directly imposed. By considering our unicycle
like robots, we should set the safety critical parameters in order to have su�ciently quick reactions to
the variations of the centroid position. These parameters, together with the other control parameters,
are empirically de�ned based on the experimental evidences and returns the remarkable performance
metrics adopted in our evaluations, as reported in the rest of this section.

For the training of the neural network of the LPred, we follow the path we have described in Sec-
tion 4.6, where we have described in detail all the parameters relating to the training procedure.
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(a) (b)

(c)

Figure 5.11: Three di�erent instant of time where we depict the robot positions, the past trajec-
tories (solid lines), the global planned path (dashed lines) Pg,i, the Voronoi cells associated to the
robots W̃i, the active waypoints wpk+ιi (triangles) and the centroids positions CW̃i

(squares). In
this case we tested the Lloyd based approach. The robots are able to navigate together in an excel-
lent way, however in some cases the progress of them can be easily blocked, leading to deadlock.

5.4.1 Navigation strategies comparison

Local position-based path planner (LPos). We start by showing the performance of the system
when it relies only on the GPP and on the LPos, thus using only a planning mechanism to avoid un-
mapped static obstacles. The control inputs are computed by (5.17) and imposing the centroid position
to be consistently equal to the active waypoint wpk+ιi

i . This way, we use the same controller excluding
the e�ects of the Lloyd-based algorithm by forcing CFi = wpk+ιi

i . As shown in Figure 5.10, the robots
plan and follow a path treating the humans and the other robots as static obstacles, i.e., the planner uses
as input the position of all the obstacles and neglects their velocity. Since the LPos activation period
allowed by our computing platform is in the range Tp = 330−800 ms (failing R5), this solution cannot
manage dynamic obstacles with an acceptable level of safety (failing R1). Moreover, as clearly visible in
Figure 5.10, the robot behind (in yellow) continuously replans in order to avoid collisions with the robot
ahead: the absence of coordination between the agents (R3) generates unnatural manoeuvres (failing
R2 and R4).

Lloyd-based approach (LB). We now consider a scenario in which the path generated by the GPP
is directly executed by a Llyod-based controller (i.e., we are excluding a re�nement step by the LPos
layer), which is activated every Tc = 50 ms. In Figure 5.11, we show that multiple robots are managed
by the multi-agent behaviour implicit in the LB controller (R3). However, in contrast to what we have
seen for the application of LPos only, the use of a lightweight algorithm (R5) enables frequent updates,
making the trajectory safe (R1 and acceptable also in terms of multi-agent coordination R3). On the
other hand, as shown in Figure 5.11-c, because the short sight nature of the algorithm the progress can
be hindered by the presence of a non-collaborative human along the way. The absence of an adequate
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(a) (b)

(c) (d)

Figure 5.12: Four di�erent instant of time where we depict the robot positions, the associated
voronoi cells W̃i, the centroids positions CW̃i

(squares), the active waypoints wpk+ιi (triangles)
and the planned paths, in (a) the global planned pathsPg,i, while in (b),(c) and (d) the local position-
based planned paths Pl,i(t). We adopt the combination of the Lloyd-based and the position-based
planned paths, by bene�ting from the advantages and eliminating the disadvantages associated

with approaches taken individually.

re-planning that travels around the obstacle can even generate deadlock conditions (failing R2 and R4).

Combination of LPos and LB. The combination of LPos and LB can compensate for the de�ciencies
of the two methods in isolation presented previously and produce a reliable solution. In Figure 5.12 we
show how the robots avoid successfully a human being, with a correct management of the multi-robot
navigation. The LPos operates on a time horizon dictated by Tp and helps to avoid deadlock solutions,
while the LB controller short-term corrections every Tc ensure safety and robots coordination.

5.4.2 Human motion prediction

In the experiments proposed above in Section 5.4.1, we restricted to the case of almost static humans. If
the humans move at non-negligible speed, the application of LPos+LB can deliver a bad performance or
produce socially unacceptable paths (failing R2). This is illustrated in this section, where we compare
the use of LPos+LB and LPP+LB (where LPP comprises both LPos and LPred) in two common case
studies: the passing case (i.e., human moving on a collision course parallel to the robot and with opposite
orientation) and the crossing case (i.e., human crossing the trajectory of the robot). In Figure 5.13 we
show the results of the passing case.
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(a)

(b)

Figure 5.13: In (a) we show the combined approach without human motion prediction, in (b)
we pass the human motion prediction (blue asterisks) to the path planner. The planner use the
prediction to anticipate the manoeuvre (left hand side), it results in a motion that stays clearer
from the private space of the human being, and do not force him to slow down or deviate from his

initially desired path.

(a)

(b)

Figure 5.14: In (a) the crossing case where the robot do not use human predictions, in (b) the
same situation with human motion prediction (blue asterisks). It can be notice how in (b) the
robot understand earlier to pass behind the human being with respect to (a), this results in 1.
maintaining a greater distance from the human and 2. deviate less from the global path planner

(i.e. diminish the time to reach the goal).
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vh (m/s) Metric Prediction No Prediction

Passing

0.2
tg (s) 20.38 20.87

dmin
i,h (m) 0.5 0.52
tmax
i,h (s) 7.03 7.27

0.4
tg (s) 21.83 ×

dmin
i,h (m) 0.46 ×
tmax
i,h (s) 5.60 ×

Crossing

0.4
tg (s) 13.00 14.91

dmin
i,h (m) 0.88 0.45
tmax
i,h (s) 5.15 6.38

0.6
tg (s) 12.56 14.20

dmin
i,h (m) 1.06 0.74
tmax
i,h (s) 4.10 7.10

Table 5.1: Quantitative results with two sets of experiments, i.e. passing case and crossing case.
We report as metrics (i) the time tg to reach the target, (ii) the minimum distance dmin

i,h between the
robot and the human, (iii) the time interval tmax

i,h of the interactions (when distances are between
0 and 2 m).

Speci�cally, in Figure 5.13-a we show the result of the LPos+LB solution, whereas in Figure 5.13-b
we show the results of using human motion prediction (LPP+LB). The predicted human positions are
marked with blue asterisks in the picture. The dashed line denotes the planned path. As apparent from
Figure 5.13-a, the absence of prediction on the motion of the human defers the avoidance manoeuvre
forcing the human to slow down and stop until the robot passes by. On the contrary, the predictive
planner LPred anticipates the avoidance manoeuvre allowing the human to continue his walk undis-
turbed.

The crossing case is depicted in Figure 5.14. Also in this case, Figure 5.14-a shows the result of
the application of LPos+LB while Figure 5.14-b shows the application of human motion prediction
(LPP+LB). As evident form the �gure, the use of the human prediction allows the robot to start the
avoidance manoeuvre (passing behind the person) much earlier, using the free space and minimising
the deviation from the global path. On the contrary, when using LPos+LB the robot tries to pass in
front of the human until it is forced to slow down and deviate for safety reasons when it comes in the
close proximity of the human. In both the cases of Figure 5.14, the manoeuvre of the robot is safer
(it stays clear of the human) and delivers better performance. This is best shown taking a look at
some quantitative performance indices: the time to reach the goal position tg , the minimum distance
achieved between the robot and the human being position dmin

i,h and the maximum time interval of
interaction tmax

i,h (when the human-robot distance is between 0 and 2 m). For the sake of repeatability,
for this comparison we simulated the motion of the human using a robot moving at constant speed.
We replicated the experiment both for the passing and for the crossing case multiple times at di�erent
velocities vh of the dynamic obstacle, keeping a constant desired velocity vD for the robot. The results
are reported in Table 5.1. Notice that for the passing case with no prediction, i.e., LPos + LB, the collision
was not avoided for the case of vh = 0.4 m/s, hence no results can be shown. The predictive algorithm
works better in all the cases. By increasing the velocity of the dynamic obstacle vh, the bene�ts are
even more evident.
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Figure 5.15: Box plots for the chosen metrics computed on data collected from an experiment
with two robots and one pedestrian, repeated 10 times by using LB+LPos and LB+LPP.

In the previously presented results, we demonstrated the superiority of the LB+LPP algorithm com-
pared to LB, LPos or LB+LPos. To provide a metric of the robustness and the repeatability, Figure 5.15
reports some statistics of the results obtained from 20 separate experiments expressed in terms of the
described metrics. In particular, we made repeated experiments comprising two agents and one human
being that goes straight ahead in a passing by condition. The human behaves “nicely”: s/he does not
induce a collision on purpose and, if the risk materialises, s/he just stops.

Since using the LPos or LB in isolation may lead to collisions and/or unnatural behaviours (LPos)
or to deadlock conditions (LB) (as shown in Section 5.4.1), we report only the experimental data ob-
tained by using LB+LPos and LB+LPP. Figure 5.15 clearly shows the repeatability and the robustness
of LB+LPP, which leads the robots to stay clear from the pedestrian private space (dmin

i,h ) and to reach
the goal position in a �nite time (tg), maintaining consistent values for path curvature (κ), path length
(l) and interaction time with the pedestrian (tmax

i,h ). Instead, the LB+LPos has consistently worse per-
formance since it does not predict the human intentions. Thus, it does not anticipate the avoidance
manoeuvre and, as a consequence, the human has to temporarily stop and let the robot pass by (the
reader is referred to the multimedia material for further evidence). This fact is captured by the time
of interaction tmax

i,h and also by the time to reach the goal tg , which perform signi�cantly better in the
LB+LPP case. Moreover, as showed in the experiments of Table 5.1, in the case of LB+LPos, if the pedes-
trian maintains constant speed a collision would occur. By using LB+LPP, instead, the robots avoids
the human without forcing her/him to change the forward velocity.

In Figure 5.16 we show a more complex experiment with 3 agents and multiple humans in an hall-
way. The robots in this case share the estimated humans positions with the neighbours, making robots
aware of the presence of pedestrians even if they have the view obstructed.

In Figure 5.17 we show the time evolution of the distance between the centroid position CW̃i
and

the active waypoint wpk+ιi
i for the agent in front, i.e. Ag. 2, and the agent in the middle position, i.e.

Ag. 3. This value quanti�es the “action” of the Lloyd-based approach at each time instant. As evident
from the �gure, Ag. 3 has larger values of ‖CW̃i

− wpk+ιi
i ‖ because of the presence of Ag. 2 in front,

while the latter presents peaks of that value in the interval of time when it interacts with humans.
We report also the minimum distance dij = ‖pi − pj‖ between the agents during the experiment:
dmin,12 = 1.18 m, dmin,13 = 0.93 m, dmin,23 = 1.33 m, which clearly show that the safety constraints
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(a) (b)

/c) (d)

Figure 5.16: Four snapshots representing di�erent instants of time of an experiment with three
robots. The corresponding times instant are ta = 0 s, tb = 21.5 s, tc = 34.5 s, td = 49 s. In (d) we
depict the past trajectories (solid lines), theWi cell for each robot, the centroid position CWi

, the
active waypoint position wpk+ιi , the planned paths by using LPP (dashed lines) and the human

motion predictions (lines with asterisks).

∆ij = 0.7 m, is abundantly respected. Finally, in Figure 5.18 we report the average updating frequency
for the LPP as a function of the number of humans in the robot range. Since the local path planner
have a space of interest less than 10 m, which is much larger with respect to the area of attention in
humans in shared spaces (as discussed in Sections 4.5.1 and 2.2), the number of perceived pedestrians
is usually quite limited. In Figure 5.18 we consider a maximum of 8 pedestrians. As expected, the LPP
updating frequency decreases with the number of humans perceived, remaining, however, in the target
frequency interval 1.25− 3.0 Hz speci�ed in Figure 5.4 for an e�ective real–time implementation.

5.5 Comments

In this chapter, we have presented a novel solution for multi-agent navigation in human-shared en-
vironments. Our idea derived from the cognitive framework introduced in Section 1.2, and then its
implementation has been realized by nesting layers of di�erent tasks, namely a global path planner, a
predictive path planner, and a reactive approach, which were combined to obtain a safe and socially
aware multi-agent navigation. We tested our approach on real robotic platforms in challenging natu-
ral environments and situations, where the proposed layered scheme outperformed di�erent possible
approaches. Each layer is based on di�erent types and qualities of information, and focuses on a time
horizon with a speci�c frequency update chosen according to the appropriate action that the robot
should perform. With the speci�c modularity of the levels, which are organized according to a ver-
tical architecture, we give a certain degree of independence to each task, which can superimpose its
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Figure 5.17: Quantitative results for the experiments depicted in Figure 5.16. In blue the distances
between the active waypoint wpa2 and the centroid position CW̃2
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Figure 5.18: Updating frequency (on average) of the path planner LPP fp = 1/Tp as a function
of the number of pedestrians perceived in the 10 meters range.

e�ects in the resulting robot action however without hindering (or being hampered by) another layer.
In addition, the organization of our solution allows us to plan new developments on each level without
changing the framework architecture.

A crucial aspect that must be guaranteed in any navigation algorithm for shared spaces is safety,
i.e. robots must navigate without colliding with static and dynamic obstacles. Our approach to safety
is based on redundant solutions. The �rst level of safety is guaranteed by the LPred planner, which
accounts both for the static obstacles and for the predicted motion of the humans. The second level
is enforced by the LB controller which accommodates for possible prediction errors, the presence of
other agents, and for obstacles not detected at planning time.

Indeed, as a future work direction, we are seeking to integrate more sensor (e.g., a visual-based
tracker for humans, as in Section 3.2) in order to improve the accuracy of the prediction and hence
increases the robustness of the generation of local plans. In the same direction goes an improvement of
the human prediction model, where the integration of more sophisticated models for human motion,
such as the HFSM (Farina et al., 2017b) into the structured neural network, or the multi-goal approach
presented in Section 4.5, could further improve the quality of the prediction. Finally, an interesting
research avenue is the computationally e�cient integration of multi-agent behaviours within the LPP.
In order to preserve safety, and ful�ll all the requirements chosen for the socially aware navigation, the
multi-agent coordination is delegated solely to the LB layer. Improved performance could be obtained
by bringing the information coming from neighbors to the local path planner level.
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Chapter 6

Teach-by-showing navigation

One of the most important barriers towards a widespread use of mobile robots in unstructured and
human populated work environments is the ability to plan a safe path. Existing approaches to plan
safe paths can be roughly divided in two broad categories. In the �rst type, the robot’s control is fully
entrusted to trained human users, who are responsible for monitoring robot movements and deter-
mining their trajectories. The second type of planners is the one that train robots to plan their own
pathways and move independently. With novel solutions we can achieve promising results, as shown in
the previous chapter. But still, navigating in complex environments presents several problems mainly
due to localization procedures and the interpretation of more complicated social norms than simple
proxemics. However, we can reverse the paradigm. Our idea is to delegate the navigation activity to
a human operator that walks in front of the robot marking with her/his footsteps the path to be fol-
lowed. Thus, the person must concentrate only on the path to take, while the robot for its part is able
to memorize the path travelled and reuse it in future missions.

This approach greatly simpli�es the path planning task, thus it does not require particularly ex-
pensive sensors or highly advanced software components. Nevertheless, its implementation requires
a high degree of robustness in locating the speci�c person to be followed (the path-�nder), since the
high accuracy of the distance of the entities around the robot ensures its safety, as the robot can stop
in time before colliding with static obstacles and other people. We propose a three phases approach to
ful�l this goal: 1. identi�cation and tracking of the person in the image space; 2. sensor fusion between
camera data and laser sensors; 3. point interpolation with continuous curvature paths. The approach,
described in detail in what follows, was extensively validated with experimental results on our mobile
robot.

6.1 Overview

When an autonomous mobile robot of remarkable size and mass navigates the treacherous waters of un-
structured and human-populated environments, safety concerns and regulation constraints take centre
stage and become a barrier for the adoption of this technology. To mitigate this problem, we advocate
a mixed approach. When the mobile robot travels across a known safe or segregated area, it can move
in full autonomy, whilst whenever it enters a shared or dangerous area where, in case, environmental
reliable information lacks (e.g., absence of an a-priori map or in a highly dynamic environment), the
responsibility of the most critical decisions (i.e., motion planning) is shifted to a human operator.
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Figure 6.1: Di�erent snapshots representing a series of time instants where the robot follows the
human operator across an environment with various static obstacles.

Our reference scenario can be described as follows. The mobile robot starts its mission with a person
standing in front. The robot looks at the person with its visual devices, extracts a number of important
features and elects her/him as a path-�nder. Then starts the second phase: the person walks to the
destination, with the robot tracking and following her/him moving along the path marked by her/his
footsteps (see Figure 6.1). After the path-�nder reaches the destination, the path is memorised and can
be used for future missions. Observe that this is not a standard leader-follower application in which
the robot is allowed to sway sideways as far as it keeps a speci�ed distance from its leader (Lam et al.,
2010). In our case, the human is a path-�nder and the robot follows exactly her/his virtual footprints.
The advantages are manyfold. From the robot’s perspective, the human acts as an external module for
the motion planning task, simplifying the complexity of the software components and of the sensing
systems, while enabling the motion in a-priori unknown environments. From the perspective of the
operator, s/he is in condition to drive a complex and heavy robot without any skill other than being able
to walk. The robot operates semi-autonomously, i.e. it does not interfere with the path�nder choices
nor does it modify the path. However, it is allowed to stop when an obstacle materialises below a safety
distance.

Therefore, our system is required to comply with two requirements:
Q1: The robot shall follow the path-�nder even if s/he falls outside of the visual cone of the camera:
the path has to be reconstructed and exactly followed even after sharp turns. This marks a remarkable
departure from standard visual servoing approaches, which require the human to constantly remain
within the robot’s �eld of view.
Q2: The robot shall not collide with humans and obstacles. Although the path-�nder is assumed to
follow a safe path, the robot has to react to the unpredicted changes typical of a dynamic environment.

Our processing and execution pipeline has three phases:

1. Identi�cation of the path-�nder within the front camera image frames;

2. Fusion of the visual information with the one coming from other sensors;

3. Reconstruction of a smooth and feasible path from the time series of the path-�nder’s positions
to be followed by a controlled motion along the path.

The �rst phase is troublesome because the path-�nder position is extracted from a noisy source, in
which an ambiguous classi�cation of the di�erent subjects is quite frequent. Our solution is to split the
�rst phase into three sub-phases. The �rst one detects the objects of interest within the image using a
state-of-the art Convolutional Neural Networks (CNN) detector. The second sub-phase recognises the
path-�nder between the objects detected in the image. The feature identi�cation is kick-started during
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Figure 6.2: Flow diagram of our framework. The system starts with the initialisation procedure,
collecting visual features of the path-�nder. Then, in the path-�nder following phase, the recogni-
tion module retrieves the new path-�nder’s position (see Section 6.3.2). The sensor fusion module
fuses the camera tracking with the data from the LIDAR sensor, and redirects back the information
to the recognition module (see Section 6.3.3). Finally, the set of the path-�nder’s positions over
time are forwarded to the path reconstruction module (see Section 6.4.1) and the control module

(see Section 6.4.2).

the starting phase and is continuously re�ned during the system operation. The recognition properly
said is performed by a K-Nearest Neighbour (KNN) classi�er. The third sub-phase consists of a tracking
module, which ensures continuity in the estimated positions of the target across di�erent frames. In the
second phase, the image information is fused with the measurements of a LIDAR sensor to reconstruct
the correct location of the target and its headway distance from the robot. The speci�c sensors setup is
a direct consequence of the considerations reported in Section 3.5. The third phase processes the time
series of the estimated position of the path-�nder, re�ning the path and guiding the navigation. This
step uses clothoid curves to interpolate the points, which produces a path with continuous curvature
and easy to follow for a robot. Finally, the control module follows the estimated path and enforces the
necessary safety policies.

The idea outlined above can be seen as an original and modern application of the teach-by-showing
approach to mobile robots moving in a complex scenario. This is classi�ed in the recent literature (Islam
et al., 2019) as a very relevant and largely open problem and is the key methodological contribution
made in this chapter. As a result, planning in environments that are a-priori unknown to the robot
becomes feasible, which is a remarkable novelty for the �eld. Other two contributions have a more
technical nature and descend from the complexity of our safety and reliability requirements. The �rst
of them is the combination of tracking �lter and neural network to estimate and follow the path-�nder’s
position, which allows us to follow the path-�nder even when s/he falls outside of the camera’s visual
cone. The second one is the idea to feedback the fused estimate into the recognition module and to
exploit a trained neural network using its last layer to classify the person’s feature set. This solution
signi�cantly improves the system’s ability to distinguish between persons with similar features and
resolve misclassi�cations due to illumination changes and partial occlusions (see Figure 6.2).

The chapter is organised as follows. In Section 6.2, we summarise the most important existing
results that we used as a reference for this work. In Section 6.3, we present our general architecture
and provide details on the perception components, while in Section 6.4, we show our solution for path
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reconstruction and the control strategy for following the path. The experiments supporting the validity
of the approach are described in Section 6.5. Finally, we give our comments in Section 6.6.

6.2 Related work

People following is a complex activity requiring a combination of perception, planning, control, and
interaction strategies. Following a speci�c person rather than any person adds more to the complex-
ity of the problem and is largely classi�ed as an open problem (Honig et al., 2018). The main issue is
that in a complex scenario many people can look similar if they do not wear speci�c markers. Most
of the methods developed in the last decade and surveyed by Islam et al., 2019, claim a good perfor-
mance in detection and tracking of humans, while less of one half apply online learning or perform
person re-identi�cation, and even fewer do both. Target re-identi�cation and recovery were handled
�rst with probabilistic models (e.g. Kalman �lters), features-based techniques, and more recently with
appearance-based deep networks, but these methods were not investigated further. Human-following
applications require instead the combination of sophisticated learning approaches, model-based �lter-
ing and path interpolation.

6.2.1 People following

The combination of detection, tracking, and recognition was proposed by Jiang et al., 2018 using
Speeded Up Robust Features (SURF). Chen et al., 2017a employed an adaptive boosting (AdaBoost)
together with a stereo camera to real-time track a person, where the depth information is used to re-
inforce the classi�er. Their approach can deal with appearance changes, people with similar clothes,
and complete occlusions, but follows a classic visual-servoing approach: the robot control module is
programmed to keep the target always within the camera frame, which is a remarkable di�erence with
respect to our approach. Similarly, Wang et al., 2018 combined a monocular camera with an ultrasonic
sensor to fuse range information with Kernelised Correlation Filters (KCF) based visual tracking. Their
system has been tested in the case of visual interferences such as occlusions and illumination changes,
however, due to the nature of the sensors employed, the human must remain in the camera view, and
there is no speci�c strategy if the human’s appearance changes. An implementation of RGB-D cam-
era, laser scanner, and EKF is used Nikdel et al., 2018 for their following-ahead mobile platform. Their
framework likewise assumes that the human will often be outside the camera view, so the laser data
and a nonholonomic human motion model are used to recover missing image data. Nevertheless, the
presence of multiple humans undermines the tracking performance, which is instead one of the positive
features of our solutions.

6.2.2 Background material on vision-based techniques

Object detection. Object detection is in our framework the �rst element of the processing pipeline.
For this component, we sought a good compromise between classi�cation accuracy and achievable
frame rate. The available methods range from object detection and segmentation methods (Liu et al.,
2016; Redmon et al., 2016b; Girshick et al., 2014), to speci�c solutions for human pose detection such
as OpenPose (Cao et al., 2019). YOLO (Redmon et al., 2016b) is a very e�ective solution based on a
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single CNN; its main known disadvantage materialises when two classes have similar probabilities or
the shape of the element is not perfect and the algorithm could produce di�erent bounding boxes for the
same object (see also Section 3.1). Alternative solutions such as SSD (Liu et al., 2016) apply correction
techniques to overcome the limitation of the approach (Neubeck and Van Gool, 2006). SSD is also
based on a single CNN to produce bounding boxes, but internally performs Non-Maximum Suppression
(NMS) to remove unnecessary detection. Moreover, while the architecture of YOLO is designed as a
compact block, SSD is instead modular, divided into convolution layers of di�erent scales combined at
the end.
People recognition. People recognition in computer vision is di�cult in its own right. An additional
level of complexity for robotics applications is introduced by the fact that the camera used for image
acquisition is mobile. Traditional o�ine algorithms like Support Vector Machines (SVM) (Hearst et al.,
1998) are known to react quickly to classi�cation queries, but are not a good �t for our scenario, because
we lack a prior knowledge on who is going to be the path-�nder and we need to be robust against
possible changes in her/his appearance. Methods based on key feature point matching (Pun et al., 2015)
are known to be robust and are widely used to �nd small patterns in complex images, but in our tests the
PRID450 (Person Re-IDenti�cation) dataset (Roth et al., 2014) showed a high number of errors for low-
res images and for deformable shapes such as humans clothes (see Section 6.5.1). Our �nal solution
was based on the use of a K-Nearest Neighbours (KNN) classi�er, which is an e�cient training-free
classi�cation method albeit it requires the knowledge of representative points for the classi�cation. For
this information we used the last layer of a CNN, which gets trained with the di�erent views of the path-
�nder. The idea of using a CNN classi�er to extract the feature set was presented by Ristani and Tomasi,
2018, who proposed a solution to match detections from multiple cameras. The classi�ers evaluated for
comparison in this work are the Deep Neural Networks (DNNs) based GoogLeNet (Szegedy et al., 2015)
and ResNet (He et al., 2016). ResNet architecture is made of convolution blocks stacked one after the
other, with an additional identity connection that preserves the input image through several layers of
the network. GoogLeNet introduced the so-called inception module, which parallelises three di�erent
convolution �lters and a max-pooling �lter.
Person tracking. For person tracking, we could select from a large variety of approaches for the
tracking of general objects (the fact that our object of interest is a person does not make a big di�er-
ence in this case). Speci�cally, we considered: the Multiple Instance Learning (MIL) tracker (Babenko
et al., 2010), the Kernelised Correlation Filters (KCF) tracker (Henriques et al., 2012), the Median Flow
tracker (Kalal et al., 2010), the Channel and Spatial Reliability Tracker (CSRT) (Lukezic et al., 2017),
the Minimum Output Sum of Squared Error (MOSSE) tracker (Bolme et al., 2010), the Generic Object
Tracking Using Regression Networks (GOTURN) tracker (Held et al., 2016), and the Tracking-Learning-
Detection (TLD) (Kalal et al., 2011). The MIL tracker (Babenko et al., 2010) is trained online during the
execution of the tracking by generating negative samples from bounding boxes that do not overlap the
correct one and by creating multiple instances around the correct sample for classi�cation improve-
ment. The KCF tracker (Henriques et al., 2012) is an extension of the MIL tracker which relies on Fast
Fourier Transformations to increase accuracy and speed, but its weakness stands in full occlusions.
The Median Flow tracker (Kalal et al., 2010) is a reliable method that locates the subject according to
its trajectory, thus using an estimation of its motion model, however, despite its being robust, it suf-
fers with high deformable subjects such as animals or humans. The CSRT (Lukezic et al., 2017) uses
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Figure 6.3: Overall scheme of the algorithm.

a high number of cross correlation �lters in order to reach a very high accuracy, compensated by a
low frame-per-second (FPS) rate. The authors of the MOSSE tracker (Bolme et al., 2010), based on the
MOSSE correlation �lter, state robustness against variations in lighting, scale and non-rigid deforma-
tions, moreover, in our experiments it showed extremely fast computations, i.e. high FPS rate (see
Section 6.5.1). The GOTURN tracker (Held et al., 2016) is based on an o�ine trained CNN, hence can
perform at a very high FPS rate. However, since it takes one frame at a time and always compares it
to the previous one, this algorithm su�ers total occlusions. Di�erently from all the other methods, the
TLD (Kalal et al., 2011) is able to overcome long-time total occlusion and to o�er a long-term tracking,
which is paid by a low FPS rate and a huge quantity of false-positive predictions.

6.2.3 Sensor fusion

Our application requires 3D reconstruction of the human pose. The combination of stereo and RGB-
D sensors with skeleton-based approaches proves very useful for this purpose and it is signi�cantly
simpli�ed by the availability of public domain software components, as seen in Section 3.2. However,
the simple use of visual information has known limitations, such as the sensitivity to lighting conditions
and the high computation times. Laser-based sensors, on the other hand, are relatively reliable on a long
range and are less computation hungry than vision based approaches. However, recognising a speci�c
person from a slice of a 2D point cloud is hopeless (recall Section 3.4). For this reason, moving in a
direction frequently taken in robotics (Zhen et al., 2019; Wolcott and Eustice, 2014; Nguyen et al., 2021),
and following the results of the experiments in Section 3.5, we apply a combination of cameras and
LIDARs. The use of separate systems for depth estimation and classi�cation improves the robustness
of the tracking system when one of the sensors fails: if the human falls outside the camera’s �eld of
view, we keep using the LIDAR sensor for tracking, whose reliability changes according to the adopted
human motion model.
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6.3 Tracking the human path-�nder

Before going into the details of the algorithm we use to track the human, we succinctly describe the
available sensing system and the model of the platform. The reference model for the robot (in Figure 6.4-
a) is the unicycle, whose kinematics can be described in discrete–time by the following Zero-Order-Hold
model:

s(tk+1) =

xr(tk) + cos(ϕr(tk))(tk+1 − tk)vr(tk)
yr(tk) + sin(ϕr(tk))(tk+1 − tk)vr(tk)

ϕr(tk) + (tk+1 − tk)ωr(tk)f

 (6.1)

where s(tk) = [xr(tk), yr(tk), ϕr(tk)]
T is the state of the robot, the Cartesian coordinates (xr(tk), yr(tk))

refer to the mid-point of the rear wheels axle in theXw×Yw plane expressed in the 〈W 〉 = {Xw, Yw, Zw}
world reference frame, ϕr(tk) the longitudinal direction of the vehicle with respect to the Xw axis,
vr(tk) and ωr(tk) the longitudinal and angular velocities, respectively, and tk the reference time in-
stant, which is usually chosen as an integer multiple of a �xed sampling time. Importantly, the proposed
framework would be applicable to di�erent robot dynamics; however, as explained next, the unicycle
structure is particularly convenient for the class of applications we address.

Without loss of generality, we assume here that the choice of the sampling time δt = tk+1 − tk
is imposed by the sensor with the lowest sampling frequency. The assumed sensing con�guration is
based on the presence of rotation encoders on each of the rear wheels or any other sensing system
able to provide ego-motion informations. For the perception of the surroundings, the sensing system
comprises a LIDAR and an RGB-D camera, as the con�guration described in Section 4.7.1 following
the experimental results of Section 3.5. The LIDAR10 data are used to both track humans around the
vehicle and to localise the vehicle inside the environment. The RGB-D camera11 is primarily used for
the human detection and tracking, indeed whose produced data are used in the vision-based detection
and recognition system described in Section 6.3.2.

The LIDAR and the camera are rigidly mounted on the top of the robot chassis (see Figure 6.4-a) and
return the measurements at time tk in the LIDAR 〈Lk〉 and camera 〈Ck〉 reference frames, respectively,
which are bot rigidly linked to the robot (i.e., they operate with a local coordinates reference system).
The transformation matrix LTC between the two frames is estimated during an initial calibration phase.

6.3.1 Solution overview

The proposed scheme is sketched in Figure 6.3. A �rst group of processing activities operates in the local
frame, where it seeks to detect and track the path-�nder. Such activities are based on two distinct and
converging �ows of information. The �rst �ow (Vision-based detection and recognition) comes from
the RGB-D camera and allows us to identify and track the path-�nder position within the image space.
The second comes from the LIDAR sensor and looks for the same information from a di�erent source
with three di�erent purposes. The �rst purpose is to increase the robustness of the vision based tracking
by injecting the LIDAR data into the recognition activity. The second is to improve the accuracy of the
estimation by fusing depth and visual information. The third is to allow the system to track the path-
�nder even when s/he falls out of the RGB-D sensor visual cone. A second group of processing activities
takes place in the global reference frame. The main objective is to transform the time sequence of the
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Figure 6.4: (a) Robot sensing system setup, consisting of LIDAR sensor10 (1), RealSense D43511 (2)
for the path-�nder detection and tracking, and RealSense T26512 (3) for the visual odometry. (b)
Representation of 2D data measured by the robot (red), with the raw laser scanned cloud points
(thin grey dots) and their corresponding object centroids (thick blue points) along with the IDs
(number in the �gure), expressed in the LIDAR reference system 〈Lk〉 at time tk . The human

position (green shape with ID 0) can be retrieved with the sensor fusion.

path-�nder’s positions into a set of smooth geometric motion primitives in order to have them followed
by the robot.

6.3.2 Vision-based detection and recognition

The vision based algorithm takes the lion share in our tracking solution, but, as we mentioned above
and as explained in Section 6.3.3, the tracking performance and robustness is signi�cantly improved by
the integration of the LIDAR data. In the next paragraphs we will �rst describe the di�erent components
and then discuss how they interoperate in an integrated pipeline.
Human detection. The �rst activity of the detection and recognition algorithm is to localiseD people
inside an image frame. To this end, we have chosen the latest version of YOLO available, YOLOv3 (Red-
mon and Farhadi, 2018b), and a lighter implementation of SDD, namely MobileNet (Howard et al.,
2017) (designed to execute on low power devices). The detection module identi�es the objects in view
through the smallest bounding box that contains the required element. In the starting phase, the person
associated with the largest bounding box is recognised as the path-�nder.
Path-�nder recognition. This module is used to understand which of the humans found in the frame
corresponds to the path-�nder, thus also enabling a coherent connection between the detector (based
on a KNN classi�er) and the tracker. The KNN classi�er uses the vector points generated by two DNN
image classi�ers: ResNet50 (He et al., 2016), which produces a representation point in 2048 dimensions,
and GoogLeNet (Szegedy et al., 2015), which produces a representation point in 1024 dimensions. If
the path-�nder is contained in the list of the D people detected, the information is passed to the image
tracker, otherwise the procedure loops back to the detection phase. As previously mentioned, this
phase also exploits the data coming from the sensor fusion phase in order to improve the tracking
performance. This important feature is described in detail below. If the estimation error of the global
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(a) (b)

Figure 6.5: (a) Initialisation phase: the detected path-�nder is depicted with a blue rectangle. (b)
Human following phase: the path-�nder is correctly recognised (green rectangle), while another

person is a negative sample (red rectangle).

human tracking (introduced in Section 6.3.4) exceeds the desired path-�nder tracking uncertainty due
to repetitive sensor or detection failures, the system reaches a faulty condition, the robot stops and the
process restarts from scratch.
Path-�nder tracking. This module is periodically executed to track the path-�nder location. The
path�nder is sought with a number of frames chosen as a �xed parameter m in order to avoid the
problems associated with long-term sequences. We implemented for the tracker the method that best
�tted our requirements, i.e. KCF, CSRT and MOSSE, and we �nally adopted the KCF in our experiments,
since it o�ers a good compromise between robustness and speed. We emphasise that if a single detection
fails or the path-�nder is not found, the tracker cannot be started.
The vision pipeline as a whole. The system operates in two phases: initialisation and human follow-
ing. The initialisation phase is needed because our vision processing pipeline leverages a learning-based
classi�cation of the human path�nder, which in turn requires the knowledge of her/his features. Dur-
ing this phase, which lasts for ∆t seconds, the robot collects a series of bounding boxes used to create
the set of positive representative points into the N -dimensional space of the KNN. Simultaneously,
a negative sample is randomly picked up from a database and it is also given to the KNN to balance
the number of positive and negative samples. The negative samples come from our customised ver-
sion of the Market1501 dataset (Zheng et al., 2015). An example of the initialisation phase is shown in
Figure 6.5-a.

When the system switches to the human following phase, it carries out a �rst detection step. Then, it
uses a KNN classi�er in order to distinguish between positive detections and negative ones. In order to
make the classi�cation robust, the system uses the information from the path-�nder position estimated
at the previous time step (see Section 6.3.3). If the Euclidean distance between the last estimated position
and the 3D position measured by the camera is lower than a threshold df, the detected position is
considered as valid and the new set of visual features is added to the positive dataset. Detections without
the described distance correspondence can be added to the negative dataset. This simple feedback
mechanism signi�cantly improves the system reliability and its resilience to wrong classi�cations or
changes in the path-�nder’s appearance. Finally, the path-�nder tracking module is executed, and the
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Algorithm 3 Laser scanner points clustering algorithm
Input: pi = (xi, yi), i = 1, . . . , N // Get measurement points

1: j = 1, cj ← Append(p1) // Initialisation �rst object
2: for i = 2 to N do
3: if ||pi − pi−1||2 < dc then
4: cj ← Append(pi) // Add pi to the set cj
5: else
6: if dim(cj) > mc then
7: oj =

∑dim(cj)
k=1 cj(k)/dim(cj) // Object centroid

8: end if
9: j ← j + 1, cj ← Append(pi) // Start new object

10: end if
11: end for
Output: O = {o1(tk), . . . ,oj(tk)}

resulting information is passed to the fusion module. After the successive m frames, the detection and
recognition stages are re-executed.

This processing work�ow and the di�erent feedback cycles it is based on delivers a highly perfor-
mant image processing and an improved robot localisation accuracy, as shown by the experimental
data in Section 6.5.

6.3.3 Local LIDAR-camera sensor fusion

The information coming from the vision-based algorithm are combined with the LIDAR in the local
reference frame 〈Lk〉 in order to make the procedure more robust, as aforementioned. Moreover, the
path-�nder can be tracked for some time also when s/he evades the vision cone of the RGB-D camera
just relying on the LIDAR information.
LIDAR clustering. The sensor reading delivered by the laser scanner at time tk provides a sequence
of Nk measurement points in the form of Pk = {p1, . . . ,pNk}, represented in polar coordinates as
pi = (ri, αi), i.e. the range ri and the angle αi expressed in the planar LIDAR reference frame 〈Lk〉 (see
Figure 6.4-b for an example of an actual scan). At time tk, the measured points are �ltered and grouped
intoMk clusters based on the mutual Euclidean distances and on the richness, i.e. on a minimum num-
ber of sensed points for each cluster, each identi�ed by the object centroid oj(tk) = [xj(tk), yj(tk), 0]T ,
j = 1, . . . ,Mk (see the ID numbers in Figure 6.4-b and the Algorithm 3). Given two sets of objects
Ok = {o1(tk), . . . ,oMk

(tk)} and Ok+1, taken in two consecutive time instants tk and tk+1 and pos-
sibly having Mk 6= Mk+1, we adopt the Munkres assignment algorithm (Munkres, 1957), which gives
us more robust matches than obtainable from the Algorithm 1, to decide either if the two objects are
actually the same or if a new object has been detected. To this end, since between tk and tk+1 the robot
moves for δt seconds according to the model (6.1), we can update its position s(tk+1) in 〈Lk+1〉 either
by using ego-motion data or, if available, the global localisation module. After the motion, Ok previ-
ously expressed in 〈Lk〉, is projected in new local frame 〈Lk+1〉. The presence of LIDAR measurement
noise imposes the use of a forgetting factor, hence the algorithm removes the object whose centroid
does not �nd correspondences for Tfd time instants. This way we can disambiguate the di�erent entities
in the robot’s surroundings, increase robustness to partial occlusions and exploit indeed a prior-based
tracking (since each cluster has its own unique ID, as depicted in Figure 6.4-b).
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Algorithm 4 Sensor fusion algorithm
Input: O(tk−1) in 〈Lk−1〉, O′(tk) in 〈Lk〉, ci(tk), s(tk)

1: O(tk−1) in 〈Lk〉 ← RotoTranslate (O(tk−1), s(tk))
2: O(tk)← Munkres (O(tk−1),O′(tk))
3: if State == Init then
4: dj = ||oj(tk)− ci(tk)||2, ∀j = 1, . . . ,Mk

5: j∗ = arg min(d)
6: if dj∗ < dp then
7: pmo∗

j
← pmo∗

j
+ 1 // Number of matches

8: end if
9: if ∃ oj ∈ O | pmoj > mp then

10: oj ← o?j
11: ok ← oob

j , ∀k 6= j
12: State← Track
13: end if
14: end if
15: if State == Track then
16: d = ||o?j (tk)− ci(tk)||2
17: if d > dp then
18: fmo∗

j
← fmo∗

j
+ 1 // Number of mismatches

19: end if
20: if fmo?j

> mr then
21: oj ← oun

j , ∀j = 1, . . . ,Mk

22: State← Init
23: end if
24: end if
Output: (x(tk), y(tk)) in 〈Lk〉

Camera 3Dposition. The tracking module described in Section 6.3.2 returns a bounding box [x, y, w, h]

in the image frame, containing the (x, y) pixel coordinates of the top-left corner of the box, its width
w and height h, which is then converted in the 〈C〉 = {Xc, Yc, Zc} pin-hole camera reference system.
Notice that the depth information along the Zc axis is retrieved via the RealSense™API. As a conse-
quence, the centroid of the i-th bounding box ci(tk) = [xc(tk), yc(tk), zc(tk)]

T can be expressed in the
camera reference system 〈Ck〉 at time tk.
Sensor fusion. Given the set of objects Ok and the centroid(s) of the bounding box(es) ci(tk), taken
at the same time instant tk, we adopt a spatio-temporal correspondence algorithm with the two sets
of measurements to decide if the tracked object is the same or a new one has entered into the scene.
Our algorithm is implemented as a �nite state machine, comprising the Init and Track states (see Algo-
rithm 4). The rationale is the following: in the Init state, we look for a correct match between the j-th
clustered object oj(tk) and the i-th bounding box centroid ci(tk), which occurs when their Euclidean
distance in the local LIDAR frame 〈Lk〉 is below a threshold dp (this is obtained in 〈L0〉 at the end
of the initialisation phase, where the path-�nder stands in front of the robot for the initial bootstrap).
When the correct match is found with the same j-th object oj for mp time instants, the j-th object is
“promoted” as path-finder o?j (tk), while all the other objects are labelled as obstacle, whereupon the
state changes to Track. Notice that this procedure reduces at the same time the computation times and
the probability of mismatch, while making the algorithm robust to sensor failures (either the bounding
box or the LIDAR cluster are su�cient for recognition). In the Track state, at time tk+1, the match
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is evaluated for the o?i (tk+1) only, as all the possible new objects in Ok+1, by default labelled as un-
known, become obstacle objects. When a mismatch between the o?j (tk+1) and ci(tk+1) occurs formr

time instants, the track is rejected, i.e. all objects become unknown again, and the algorithm switches
back to the Init state. Possible mismatch events happen if the Euclidean distance in 〈Lk+1〉 is higher
than dp or the object o?j (tk+1) itself is removed during the clustering association. Finally, the Cartesian
coordinates of the path-�nder (x(tk+1), y(tk+1)) in the local frame 〈Lk+1〉 are propagated back to the
people recognition module (see Section 6.3.2) to strengthen the human tracking, since such information
form a prior for the next path-�nder detection.

6.3.4 Global human tracking

Since the human is used as a path-�nder for future executions of the path, her/his position should be
estimated in the global reference frame 〈W 〉. To this end, we �rst need to estimate the robot position
s(tk) in 〈W 〉. This is accomplished fusing together the encoder readings, the visual odometry and
the LIDAR points pi(tk) with an a-priori map of the environment (if available) or solving a SLAM
problem. The s(tk) robot position and the path-�nder local measurements in 〈Lk〉 are used to obtain
the Cartesian coordinates (x(tk), y(tk)) of the path-�nder in 〈W 〉.

To track the human in 〈W 〉, an estimation algorithm is needed, whose main role is to further im-
prove the accuracy of the reconstructed path and to further increase the robustness to occasional sensor
failures. In order to limit the computational cost, we make the assumption that the path-�nder moves
with a velocity following a Gaussian probability density function. This random walk hypothesis is
quite standard in the literature and derives from the lack of knowledge about the actual human mo-
tion intentions. What is more, following the observation that humans actually move with a smooth
dynamic (Arechavaleta et al., 2008), the motion model can be approximated by a unicycle dynamic (Fa-
rina et al., 2017b). Hence, we explicitly express the angular and linear velocities as states, and by
denoting with h̄(tk) = [x(tk), y(tk), θ(tk), v(tk), ω(tk)]

T the state at time tk (where v(tk) and ω(tk)

are the forward and angular velocities, respectively), we have the following model

h̄(tk+1) =


x(tk) + δtv(tk) cos(θ(tk))

y(tk) + δtv(tk) sin(θ(tk))

θ(tk) + δtω(tk)

v(tk)

ω(tk)

+


0 0

0 0

0 0

δt 0

0 δt


[
ηa(tk)

ηω(tk)

]
=

= f(h̄(tk)) +Bη(tk),

(6.2)

where η(tk) is the acceleration noise a�ecting the linear and the angular velocities that is assumed to
be η(tk) ∼ N (0, E), with E being its covariance matrix, and white (as customary).

6.4 Navigation

The aims of the navigation module are twofold: reconstructing the path followed by the path-�nder in
a form that can be followed by the robot, controlling the motion in order for the robot to follow the
path with a good accuracy (small deviations are inevitable but they should be kept in check).
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Figure 6.6: Example of path �tting and reconstruction. The red stars represent the input data.
The green squares are the �tted waypoints, sampled at a uniform distance along the path. The

blue solid line is the reconstructed, smoothed path, to be followed by the robot.

6.4.1 Path reconstruction

As shown in the scheme in Figure 6.3, the path reconstruction module continuously receives new in-
formation on the current position of the path-�nder from the perception module. This way, it creates
a dataset composed of a time series of 2D path-�nder positions, which are updated in real–time. The
module executes a local path �tting of the estimated path-�nder trajectory. An example execution of
the process is shown in Figure 6.6. The path is reconstructed using the following steps.

1. Once a new path-�nder position is received, it is compared with the previous one, and, if the
Euclidean distance is greater than a small threshold value, it is recorded into the dataset. This
action is necessary to handle the scenario where the path-�nder stops for a long time, in order
to avoid an unnecessary growth of the dataset.

2. When the new position quali�es for its inclusion into the dataset, the x and y components of the
data points are �tted using a classical smoothing algorithm, i.e. the LOESS (Locally Estimated
Scatterplot Smoothing) (Cleveland, 1979).

3. The �tted data points are then connected by a polyline, and a number of waypoints are sampled
at a uniform curvilinear distance (corresponding to the green squares of Figure 6.6).

4. The waypoints are connected by a G2 clothoid spline (corresponding to the solid blue line of Fig-
ure 6.6), using the algorithms and techniques discussed in Bertolazzi and Frego, 2018b; Bertolazzi
and Frego, 2018a, and for which an e�cient C++ implementation is available (Bertolazzi et al.,
2018).

The choice of the clothoid comes from the observation that humans tend to follow the unicycle-like
dynamics (Farina et al., 2017b) given in (6.2), which naturally generates clothoid curves. What is more,
due to the continuity of the curves and of their curvature, clothoids have been proved to be e�ective to
mimic a human path by a robotic agent (Bevilacqua et al., 2018a).
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6.4.2 Robot control

When a path is reconstructed, following the steps described above, the controller module takes the re-
sponsibility to execute a safe navigation of the robot following as closely as possible the prescribed path.
For this work, we employed the path following algorithm described in Andreetto et al., 2017, which is
velocity-independent and avoids the singularities presented by other common algorithms when the
vehicle has to stop and the velocity is set to zero. The velocity of the robot is chosen by our controller
based both on the distance from the end of the path (corresponding to the path-�nder position), with
the aim of following the path-�nder at a constant (curvilinear) distance, on the current path curvature
(the vehicle is slowed down when traveling a sharp curve), and on the past robot velocities (to limit
the maximum allowed accelerations). Furthermore, the control module implements a safety policy
whereby, when an obstacle is encountered along the path, the robot �rst slows down and then stops
if the path remains occluded (notice that, since the path-�nder have already travelled that area, the
obstacle is necessarily dynamic, e.g. a human being, hence it is expected to pass by in a short time).

6.5 Experimental results

In this section, we �rst present our experimental evaluation to decide the most e�ective combination of
solutions for vision-based detection and recognition. Then, we will report and discuss the performance
of our system as a whole using a real robotic platform.

6.5.1 Vision module

We have organised the analysis of the vision module along three directions of prominent relevance for
the application at hand: detection, recognition and tracking.
Detection. The comparison among the di�erent possibilities aims to rate the computational e�ciency
(measured in FPS) and the algorithm precision (measured as mean Average Precision - mAP) from the
data reported in the previously cited (Liu et al., 2016; Redmon et al., 2016b; He et al., 2017; Redmon
and Farhadi, 2018b; Cao et al., 2019), and shown in Table 6.1. By observing the data, it appears that
the single-stage algorithms (SSD and YOLO) are much faster with respect to the two-stage methods (R-
CNN): they execute around 5 to 10 times faster than R-CNN. Instead, the precision of the three detectors
is almost the same. Also from our experimental evaluation, SSD and YOLO perform better than R-CNN
and OpenPose both in computational e�ciency and algorithm precision. To visually show an example,
we have applied all these algorithms on the same picture. From the results presented in Figure 6.7
follows that all the solutions recognise the �ve people in the foreground, but with a di�erent level of
performance. Mask R-CNN is the most accurate algorithm in our example, and is able to recognise
four people with a precision of 99% and the last one with 92%. YOLO detects even a sixth person in
the background that none of the others have recognised. SSD has troubles with the player on the left,
detected with a con�dence percentage of only 32%. Our �nal choice fell on SSD, since it implements
the CNN with a relatively small number of parameters: this ensures low execution time at the price of
a slight detection inaccuracy (which is however compensated by the LIDAR data fusion, as discussed
in Section 6.3).
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YOLO R-CNN
v1 v2 SSD R-CNN Fast Faster Mask OpenPose

FPS 45 67 46 0.05 0.5 7 7 10
mAP 66 76 74 53 70 73 - -

Table 6.1: Comparison of mAP and FPS for the object detector algorithms (Liu et al., 2016; Redmon
et al., 2016b; He et al., 2017; Redmon and Farhadi, 2018b; Cao et al., 2019). In bold the mAP of the
three state of the art detectors. The data are based on the Pascal VOC 2007 dataset (Everingham

et al., 2007)

(a) (b)

(c) (d)

Figure 6.7: An example of application of YOLO (a), SSD (b), Mask R-CNN (c) and OpenPose (d)
applied on the same image.

Recognition. The �rst tests for the recognition module considered the feature point matching on
the PRID450 (Person Re-IDenti�cation) dataset (Roth et al., 2014), that contains thousands of cropped
images of people walking outdoors. The dataset is constructed with multiple shots of the same person
in di�erent moments and perspectives. The results reported in Figure 6.8 show the main problems of
this techniques with human shapes. Humans present a highly deformable-body, with a surface (clothes)
that continuously changes its aspect. However, the key points matching is designed for a pattern that
is repeated often and clearly, as a consequence, the matching performance is not reliable at all. For
example, even with the same subject with almost the same position (bottom-left couple of images in
Figure 6.8), the key points matching fails with most of the points. The exception is the bottom-right
image that has a perfect matching, but the two pictures examined are exactly the same.

Instead, the proposed recognition module based on KNN has been also tested on the Market1501
dataset (Zheng et al., 2015) in conjunction with either ResNet50 or GoogLeNet. Similarly to the PRID450
dataset, the Market1501 contains sets of images of hundreds of people captured from di�erent perspec-
tives and in di�erent moments. As an example, we selected two small datasets with 11 and 2 people
respectively, with and 9 images per person, then we “trained” the KNN (i.e., we stored the data) with the
representative points extracted from the images, and retrieved the most similar people. In Figure 6.9, we
report an example of the queries computed on the KNN classi�er for the two chosen detectors. In the
test elaborated with the �rst dataset, the classi�er produced approximatively 50% of correct responses
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Figure 6.8: Some example of matching samples with the key points matching on the PRID450
dataset. There are multiple failures: people who present no key points, objects such as bags that
have plenty of features, matches that connect completely di�erent parts of the body, like shoulders

with legs.

(a) (b)

Figure 6.9: KNN applied to images elaborated with 11 real people and ResNet50 (a) and with
2 real people and GoogLeNet (b), with 9 images of each person. The query (images with the
blue contour) is used to extract from the database the most similar pre-analysed images. The
green contour depicts the correct extracted person, whereas the red contour highlights wrongly

extracted persons.

for each person (Figure 6.9-a). Instead, with 2 real human beings and 9 images per person, the KNN
obtained only one false positive over 14 pictures. This result shows that the proposed KNN solution
is appropriate for the application at hand (we are interested in only 2 classes, i.e., the path-�nder and
the other people). Similar results were obtained with ResNet50 and GoogLeNet, and we selected the
second to work with the KNN since it achieved moderately faster computation times.
Tracking. For the image tracker, our aim is usually to process long real-time sequence with occasional
total occlusions and changes of shape. Instead, since the complete camera pipeline is solved with a
combination of detection, recognition, and tracking, the internal tracking task is simpler, and deals
with changes of shape and partial occlusions. The requirement is to solve the task, and to deal with
changes of shape and partial occlusions. The methods presented in Section 6.2.2 were evaluated in
terms of execution time (for real-time implementation) and tracking performance:

• MIL tracker is not a valid choice because it runs at few FPS and the newer version, namely the
KCF, outperforms both its speed and accuracy.

• KCF tracker is the new version of MIL and it is one of the fastest and most reliable methods.
However, it su�ers the rapid change of appearance and, less relevant for our scenario, it does not
manage total occlusions.
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MIL KCF MedFlow CSRT MOSSE GOTURN TLD

FPS 9 38 40 15 56 20 10

Table 6.2: Overview of the frame-per-second (FPS) rate of the image tracking algorithms. The
performance was measured on an Nvidia Jetson TX28 GPU.

(a) (b)

Figure 6.10: Experimental trajectories in a hallway. The path-�nder and a pedestrian walk in the
same corridor with (a) partially occluding trajectories (EXP-01) and (b) missing and recovering of
the path-�nder with the camera tracking (EXP-02). Solid blue lines depict the trajectories followed
by the robot, while the red stars mark the measured path-�nder positions. The green and red
circles correspond to the positions of the path-�nder and the other pedestrian, respectively, when

the inlet camera snapshots are grabbed.

• MedFlow tracker works well only on rigid objects, hence it is not suitable human interaction
applications.

• CSRT is one of the most reliable methods, and manage short-term total occlusions, despite the
low FPS rate.

• MOSSE is focused on pure speed (i.e., very high FPS rate applications), but it is not very robust.

• GOTURN shows a good trade-o� between reliability and speed.

• TLD is able to solve long total occlusions but easily fails on simpler scenarios by returning a lot
of false positives, hence it does not �t our purpose.

Based on our results (shown in Table 6.2), the best trade-o� choices from the application at hand were
obtained with the KCF, CSRT, MOSSE, GOTURN trackers, and based on empirical evidence, we selected
CSRT as the most suitable solution for our purposes.
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Figure 6.11: An example of the actual path-�nder path (red line) and robot trajectory (blue line)
for the maze-like environment of EXP-03.

6.5.2 Experiments with the mobile robot

The algorithms presented in Section 6.3 and Section 6.4 were executed on a Jetson TX28 (4-bit Nvidia
Denver and Arm Cortex-A57 CPUs; 8GB LPPDR4; 256-core Nvidia® Pascal GPU) for the acquisition
of the RGB-D data and the classi�cation, while the LIDAR scans, the sensing data fusion, and the
navigation control were executed on a Intel NUC13 computing platform (Intel® Core™ i7-7567U with 2
cores, 16GB DDR4), both on board of the wheeled robot entirely assembled at the University of Trento
(see Figure 6.4-a). All the reported experiments were carried out in our department at the University
of Trento.
Reliability and robustness. In a �rst set of experiments, we aimed at testing the performance and
robustness of the path-�nder tracking algorithm. To this end, we recorded the real–time execution data
in two di�erent areas of an hallway with multiple exits and in di�erent conditions. In Figure 6.10-a,
the robot follows the path-�nder while another pedestrian is walking nearby (EXP-01). The algorithm
successfully rejected the disturbing e�ect of the second pedestrian and it correctly followed the path-
�nder. Similar results (EXP-02) were obtained for crossing trajectories or when the path-�nder exits
from the camera �eld of view for the right turn. Even in those cases, the other pedestrian is not wrongly
classi�ed as the path-�nder, who is instead correctly tracked back after the turn (see Figure 6.10-b).
Accuracy. For a qualitative analysis of the tracking and navigation performance, we present in Fig-
ure 6.11 the comparison between the robot trajectory (blue line) with the actual position of the path-
�nder (red line). Both trajectories were captured with a network of eight OptiTrack cameras for ground
truth reference in a maze-like environment (EXP-03). Notice the path-�nder starting position standing
in front of the robot during the bootstrap phase. The swinging path-�nder trajectory is dictated by the
OptiTrack tracked markers placed on the head of the human to avoid occlusions, hence oscillating with
the footsteps. From this picture it is evident that, in sharp turns, the robot looses the image tracking

13https://ark.intel.com/content/www/us/en/ark/products/95065/intel-nuc-kit-nuc7i7bnh.html
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(b)

(d)

(c)

(e)

(a)

Figure 6.12: (a) Trajectory travelled by the robot in EXP-04 (blue line) and the measured path-
�nder path (red line), with an additional person acting as dynamic obstacle (black dashed line). The
coloured squares represent the positions of robot, path-�nder, and intruder when the snapshots
(b,c) where grabbed, while the coloured triangles correspond to the snapshots (d,e). The pictures

(c) and (e) show the robot’s perspective.

of the path-�nder, but it is nonetheless able to exactly follow the path by means of the fusion with the
LIDAR data. Finally, we would like to point out that the error in the trajectory followed by the robot
with respect to the human footsteps is in the range of ±25 cm, i.e. the typical encumbrance of the
human body.
Robustness and accuracy for extreme manoeuvres hindered by an intruder. In Figure 6.12-a
we report the experimental results in an hallway test (EXP-04), where another human (i.e., a dynamic
obstacle) moves in the scene. The path-�nder was instructed to follow a winding path, which is a
challenging scenario since the human necessarily and continuously exits from the �eld of view of the
camera along the sharp turns. An additional element of complexity was given by the intruder (black
dashed line) repeated interference with the robot operations. As visible in the plot, the path travelled
by the robot (blue line) remained consistently aligned with the measured path-�nder positions (red
line). This experiments also shows the e�ectiveness of the LIDAR clustering and association algorithm
presented in Section 6.3.3, which tracks the intruder and then rejects it for the evident inconsistencies
with the visual data. Indeed, from Figure 6.12-c we notice that the path-�nder is essentially outside
the �eld of view of the camera, but the path to be followed is correctly tracked. The same proof of
robustness can be seen in the snapshots of Figure 6.12-d,e where the camera is occluded by the intruder
but the track is not lost.
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Figure 6.13: (a) Tracking experiments with the path-�nder (red line) and other persons in a
crowded environment. In EXP-05 (a) multiple intruders (black dashed lines) are predominantly
acting as bystanders, while in EXP-06 (b) they follow random paths (coloured dashed lines). The

green line depicts the �tted path which will be followed by the robot.
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(a) (b) (c)

Figure 6.14: An example of the safety braking (EXP-07). The robot and a human walk towards
each other (a), and reach a minimum distance (b) where the robot stops as not to collide with the

person (c).
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Figure 6.15: (a) Tracking experiment with the path-�nder (red line) and an intruder (black dashed
line) with highly similar visual features for EXP-08, expressed in 〈L〉. (b) Screenshot of a positive
match of the path-�nder (top) and a wrong classi�cation of the intruder (bottom), which is recov-

ered by the sensor fusion.

Crowded conditions. In a crowded scenario, the robot follows its path-�nder along a winding path,
meeting several other people in the same hallway. In the �rst case (EXP-05), the intruders made limited
movements (quasi static condition), while the robot navigates between them. As reported in Figure 6.13-
a the resulting robot trajectory is consistent with that of the path-�nder.

In a more challenging case (EXP-06), also the intruders performed random trajectories, repeatedly
obstructing the robot and occluding the path-�nder but without compromising the correct robot path
following (see Figure 6.13-b). Also in these two presented experiments, we note that our algorithm
can track, together with the path-�nder, all the nearby intruders. Our solution, thus, lends itself to a
possible extension in which multiple path-�nders are present.
Discerning the similarity between the path-�nder and the intruder. Moreover, we tested the
system safety (EXP-07, depicted in Figure 6.14) and the tracking performance of our system with two
people sharing highly similar visual features, and reported the results expressed in the robot local
reference frame 〈L〉 (EXP-08 of Figure 6.15-a). The screenshots of the camera tracking (Figure 6.15-b)
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Figure 6.16: Trajectory travelled by the robot in (blue lines) and the measured path-�nder path
(red lines), in the global localisation frame 〈W 〉 (solid lines) and in the relative localisation frame

(dashed line). The known map is represented by the black line.

show moments in which the path-�nder is correctly identi�ed and the second person is classi�ed as
negative (top snapshot) and moments in which the intruder is misclassi�ed as the path-�nder (bottom).
Nonetheless, even in presence of misclassi�cation the sensor fusion with the LIDAR comes to rescue
and the tracker correctly follows the path-�nder (see the trajectories in Figure 6.15-a). The sequence in
Figure 6.14 shows the path-�nder in the worst condition of walking directly towards the robot. As we
can see, the safety distance is correctly evaluated using the measurements obtained from the LIDAR,
therefore the robot is able to stop before hitting any static or dynamic obstacle.
Navigation without the map. Finally, we tested the behaviour of the system in an a-priori unknown
environment, thus renouncing to the availability of a global localisation system. Hence, in EXP-09,
the path-�nder and the robot positions are not expressed in the global frame 〈W 〉 but in an arbitrary
reference frame 〈O〉. Figure 6.16 reports the navigation task performed using only the odometry, along
with the actual global localisation for comparison purposes and to overlay the odometry information
on the environment map. The obtained trajectories (blue dashed line) show that odometry localisation
trivially drifts; nonetheless, the actual path travelled by the robot (depicted with the blue solid line)
accurately follows the path shown by the human (solid red line). This remarkable result shows how
planning in an unknown environment can be e�ectively executed by the robot with the path-�nder.
Moreover, as can be observed in the left side of Figure 6.16, the navigation in the relative frame 〈O〉
turns to be more robust than in 〈W 〉, which is useless when the robot is outside the a-priori known
map (unless a SLAM solution is adopted).
Quantitative evaluation. In order to give quantitative evidence of the satisfaction of requirements
Q1 and Q2 introduced in Section 6.1, we de�ned two metrics. Requirement Q1 was measured by the
percentage ratio r1% between the camera frames where the path-�nder is visible in the �eld of view
of the camera over the total number of frames. We also report the ratio r2% between the number
of frames where the path-�nder is correctly tracked over the number of frame where s/he is visible,
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Experiment In-frame ratio r% (Q1) Curvilinear distance s (Q2)

visible/total r1% correct/visible r2% avg s min s max s

EXP-01 67.6% 83.7% 3.970 2.632 5.150
EXP-02 78.2% 92.6% 3.328 2.015 4.486

EXP-03 - - 1.913 1.249 2.348
EXP-04 10.9% 68.6% 3.209 1.302 4.914

EXP-05 39.8% 79.9% 2.071 0.722 3.188
EXP-06 - - 2.466 0.860 4.271

EXP-07 - - 1.005 0.568 1.642
EXP-08 57.5% 86.0%, (62.8%)* - - -

* r2% = correct/tracking

Table 6.3: Summary of the two metrics for requirements Q1 and Q2 among the experiments
reported in Section 6.5.2.

as an additional validating metric of the reliability of the vision module. The safety constraint Q2
was evaluated by means of the curvilinear distance s between the path-�nder and the robot along the
clothoid curve. From the values of r1% reported in Table 6.3 we can immediately notice that, as a major
di�erence with respect to other visual servoing works presented in the literature, in our experiments
the path-�nder was not always detected by the camera. For instance, in EXP-01 and EXP-02, which
took place in a long corridor, about 30% of the camera frames had no path-�nder in sight, and yet
the average recognition accuracy r2% was fairly good. In EXP-04, the ratio r1% drops to 10% due
to the tortuous path taken by the path-�nder. Despite this, the tracking was performed correctly (see
Figure 6.12), and the recognition accuracy remained very good. In EXP-08, due to similarity between
the two persons in the scene, a higher number of wrong detections occurred. For that reason, we also
reported the ratio between the number of correct matches and the total number of detections. As could
be expected, the ratio was lower than the one reported with the other experiments; however, we recall
that with the feedback strategy of our pipeline the recognition module can overcome wrong matches
of the path-�nder (see Figure 6.15-a).

The results reported in Table 6.3 show that also the Q2 requirement is satis�ed in all the di�erent
scenario evaluated. In EXP-01 and EXP-02 the minimum distances are appropriately about 2 meters, and
the path-�nder is correctly followed even with distances above 5 m. The average curvilinear distance
is maintained between 1 and 3 m, which ensures safety in addition to being widely recognised as the
preferred spatial distance for social interactions (Rios-Martinez et al., 2015; Antonucci et al., 2019b), as
also reviewed in Section 2.2. More dangerous values can be found for the EXP-07, since the experiment
was speci�cally designed to trigger the robot emergency stop; nevertheless, the minimum distance
reached is above 50 cm. The very high values reached by the maximum s distance in EXP-04, EXP-
05 and EXP-06, i.e., experiments with tortuous trajectories, are due to the obstruction of the intruder
persons on the robot path.

6.6 Comments

In this chapter, we have presented an approach for guiding a robot across a complex and congested
environment. A human operator takes the role of a path-�nder and the robot follows, moving in a close
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neighbourhood of the path physically marked by the human with her/his footsteps. This application
requires a combination of state-of-the-art techniques for robust perception and path reconstruction.
The experimental results show the high level of reliability and robustness reached by the proposed
solution.

We envisage several interesting future developments. As regards the vision module, we can think of
an improved version that can track multiple path-�nders together or a single path-�nder that suddenly
changes its visual features during the follower task. Another interesting issue is the use of wearable
haptic bracelets (Che et al., 2020) and the implementation of a protocol that the robot can use to notify
to its path-�nder the occurrence of exceptional conditions (e.g., when the path is too close to an obsta-
cle and the robot cannot follow it within appropriate safety margins). Another important direction is
a theoretical study of how the interaction between model-based approaches and neural networks can
produce results with a guaranteed accuracy for people tracking, followed by a practical implementa-
tion. In this case, machine learning would not only be employed to classify the path-�nder, but also
to perform action recognition or skeleton motion prediction. Finally, it is worth investigating how
the path information can be shared among multiple vehicles for transfer learning, even without any
a-priori map knowledge.
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Chapter 7

Conclusions

We are developing a new generation of robots that can move freely, take autonomous decisions, and
interact directly with humans to execute tasks and deliver services. The expectations raised by this
development are very high. People imagine a near future in which robots and humans will share public
spaces, talk to each other, exchange objects and, to some extent, create emotional links. Is this a realistic
perspective? In order to be up to the task, robots are required to be e�cient for the tasks they are
assigned (why else should we use a robot?) and they must preserve safety.

Indeed, although the problem at hand can be immensely complex, we dispose of software (in terms
of new algorithms) and hardware (thus, computational power) that were technically unworkable until
a couple of decades ago. Sensors for robotic platforms and autonomous cars have become cheaper
and more reliable, allowing robots to perceive and measure the surrounding environment with great
performance, obtaining detailed information. On the other hand, Arti�cial Intelligence has reached an
incredible degree of understanding context, classifying the di�erent entities, and interpreting human
actions. Transferring this capability into the robotic domain is not as easy as it appears at �rst glance.
Indeed, we have seen incredible progress in AI, but not such rapid progress for robotics. So, even
if they should go hand in hand, many robotics applications are not designed to embed AI (and vice-
versa). Some of the key reasons of this di�erence are the reliability issues of the level of success of the
two �elds. So, as the expected tasks that robots have to perform are expressed in the physical world,
the bar of safety and reliability requirements has to be set very high (think for example to the vocal
reaction to the relatively small number of accidents caused by autonomous cars in the past years).

However, in order to move between humans, safety is not enough: a robot has to be smooth in
its reactions, it has to respect the personal space of the humans as much as possible, and it has to be
predictable. Humans have sophisticated means to move in a socially acceptable way. Their social intelli-
gence allows them to predict the intent of their peers by decoding a complex non-spoken language made
of gestures, facial expressions, gaze, etc. Again, by putting together di�erent novel methods a robot will
be able to properly fuse all this huge amount of input data to produce the appropriate response, but this
computing such an impressive size of information can be time-consuming, and, partially, unneeded for
the considered use case, together with the fact that it is not unambiguously established what is the most
suitable way to combine these data. Starting from these considerations we then decided on the focus of
this thesis: the design of a modular framework for the autonomous navigation of mobile robots. Each
level of the framework is well de�ned and con�ned to its area of competence, chosen based of the type
and priority of the task to be performed, the characteristics of the information to be used, and the reac-
tion time and space granted to the robot(s). The leading point of the framework is that the actions of the
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robot proactively consider the presence and intentions of people who are in the robot’s surroundings,
both with an active and passive interaction. Besides, the structure of the framework itself has a shape
inspired by characteristics linked to relational conventions, such as proxemics. The second purpose of
our proposed algorithm was to explore how to adequately combine model-based and learning-based
approaches to obtain an e�cient trade-o� between the reliability of the system and the computational
time of the modules, which are two crucial elements for an e�ective human-aware planner.

In Chapter 3, the main goal is to characterise the sensing and measurement system to be used on
board the mobile platform and synthesise an estimation algorithm to f detect the human beings and
their trajectories in the vicinity of the robot. Di�erent types of sensors and fusion techniques were
considered. In particular, we adopted a sensing system composed of a radar, a stereo camera, and a
combination of camera and laser scanner. Together with the study of the characteristics and perfor-
mance of the sensors, we have developed several people tracking algorithms and tested their e�ective-
ness with an extensive experimental campaign. The operation and above all the type of information
obtained from radar and LIDAR are easily understood. The types of sensors to which they belong allow
having precise data on the position and distance of the objects and entities that are around the robot.
The developed algorithms, therefore, served to �lter and cluster appropriately the points measured by
the sensors and apprehend their motion, using multi-model Bayesian estimation methods. Given the
high abstraction of the inputs at disposal, we preferred a model-based approach to a learning method,
using estimation �lters combined with geometric and dynamic considerations on how to interpret the
movement of a person. Indeed, despite the complex functioning of bipedal walking, a person’s trajec-
tory can be reduced to a set of the triad that make up his pose in 2D space, namely the (x, y) position
and its θ orientation. From our experimental evaluation, it emerged that laser scanners are formidable
for detection and ranging at high-frequency applications, but that in any case, they need to be used in
combination with other sensors to complete the characteristics of the measured data (e.g., a group of
re�ex points actually belong to a person). Millimeter radar seemed also a promising tool for robotics ap-
plications. The low sensitivity to environmental conditions and obstructions is one of some interesting
features of this type of sensor. However, the development and support of these devices at the moment
are not that extensive. Future research directions may certainly include radars to analyze and correct
their weak spots, which are mainly the high measurement noise and the fact that they are primarily
intended for static operations. Cameras allow collecting much more information about the environ-
ment, the obstacles, and the human beings. In this case, automatic learning is an obligatory choice in
order to process the number of insights contained in the image. In the literature several methods are
present and fall under two broad categories: object detectors and pose estimators. The former identi-
�es the human shape (or objects in general) by bounding a box around them, while the latter detects
the skeleton joints and connects them resulting in pose estimates. From the experimental results, we
have observed that pose estimators are computationally more expensive than object detectors and their
output requires additional processing, even if the complete pose can tell more about the intentions of
the persons, although the action or activity recognition is out of the studies reported in this thesis.

In conclusion, we have developed a fast and robust tracking system for the detection and positioning
in the planar space of the persons that are in the robot’s neighbourhood. The sensing system with
the best performance is based on the 2D LIDAR and camera combination, where the �rst sensor is
devoted mostly to the accurate positioning of the entities and the second is used for the recognition and
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classi�cation of the persons. This con�guration, which was then employed in the other works presented
in this thesis, represents a suitable compromise between the accuracy of the measurements, the need for
computing power, and the cost of sensors. The addition of a depth camera or the adoption of a 3D LIDAR
allows gaining more contextual information such as the pose or the action the person is carrying out, or
the obstacles and objects present, while greater safety can be ensured with the redundancy of sensors.
Still, we can demonstrate that this simple sensing system is su�cient to carry out numerous applications
for mobile robots, namely autonomous navigation, obstacles avoidance, and people following. As a side
note, we can observe how the visual sensor coupled to the laser scanner gives the robot a perception
space quite similar to that of humans. This space is large enough to encompass the action space where
human-robot interactions take place. The tracking algorithm is robust to sensors’ missdetections and
targets temporary occlusions, and its �ltering model, inspired to the nonholonomic nature of human
walking, is correctly adapted to the behaviour of people’s trajectories.

Some open issues are eligible for the next researches. The conducted experiments involved mostly
one single moving agent in the sensing range of the sensors, thus the performance of the measure-
ment and the tracking systems were evaluated and designed, respectively, to perceive one person at a
time. This design choice was not a limitation for the approaches presented in this thesis, for example
in the motion prediction of Chapter 4 we consider the motion of one pedestrian, while the framework
presented in Chapter 5 can take into account multiple agents. Nevertheless, it will be interesting to
expand the system capability to track multiple targets, as in this case the number of mutual occlusions
will be higher. Notice that the tracking module described in Chapter 6 is already a preliminary working
version of multi-agent tracking. Furthermore, the tracking system could be enhanced to work in out-
door scenarios. Outdoor conditions certainly represent a more dynamic and stimulating environment
in which robots �nd themselves immersed in less structured scenarios with multiple movable entities
(pedestrians, bicycles, cars, etc.). In future research, new �ltering techniques will be studied to model
the di�erent dynamics of each agent, and further experiments will evaluate the characteristics of the
sensors in the case of outdoor navigation.

Summarising, the main outcomes of this chapter are the following:

• A new tracking system based on the LIDAR-camera combination; faster and cheaper than a sens-
ing system that relies on stereo camera or radar sensors;

• A lightened and robust tracking algorithm;
• A re�ned �ltering model adapted to the behaviour of people’s trajectories;
• The empirical demonstration that the Bayesian �ltering can be used as a (behavioural) classi�er.

The speci�c take of Chapter 4 is to use accurate predictions of human motions for robot plan syn-
thesis in order to be inherently safe and compliant with unwritten social rules. Speci�cally, our pro-
posed predictor relies on a structured neural network to infer the human future motion. The neurons
of the network are organised according to the equations of the Social Force Model, which is a rather
famous physics inspired dynamic model for representing agents motion in two-dimensional space. By
embedding the prior knowledge of the dynamical model into the neural network, we expect a close ap-
proximation of the dynamics of human motion by the correct choice of parameters. Unlike traditional
neural network approaches, we abstract the prediction of people’s motion from the reference scenario,
which requires speci�c datasets and may incur into over�tting, restricting the learning to the dynamic
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feature only. Indeed, the adoption of the Social Force Model has allowed us to include in the prediction
also the e�ect of the surrounding static obstacles, which can be described in a general and abstract
form, that modi�es the resulting motion of the agents. In this way, our model can nicely model the
navigation in indoor scenarios, and static obstacles can have di�erent conformation between training
data and testing environment, as they share the same representation.

The experimental results have shown that, despite the low number of learnable weights, the devel-
oped network correctly predicted the human trajectories, with performance comparable and sometimes
better than other state of the art model. As an element of innovation compared to other works, we ob-
tain far better results when we also consider the e�ects of the surrounding environment. Moreover, the
complete framework, composed of a neural network and waypoint generation model, performs well
both in simulation and in the implementation on the real mobile robot, since we had taken into account
this �nal application since the choice of the algorithm’s architecture. The lean structure of the network
allows us to run the algorithm very quickly on the robot computing board.

As a further consideration, the model presented is an interesting use case of an explainable deep
neural network, in which its internal parameters take on a speci�c meaning, being derived from a
known mathematical model, and therefore it is easier to understand the behaviour of the trained net-
work itself. In addition, a network with a structured architecture allows also to add custom constraints
in internal points of the net or on its weights, in order to help convergence to the desired value and
perform training in less time (or with less data).

The algorithm presented is the �rst example of this new type of neural network in the robotics �eld,
and therefore it is open to several future developments. A �rst step will be the addition of multiple
agents that interact with each other in the prediction, in order to align and compare our approach with
the multi-agent predictors present in the literature. Secondly, other dynamic models, potentially better
than SFM, could be incorporated into the network’s structure. Finally, it would be interesting to increase
the learning capabilities of the network by providing additional input data such as the orientation or
pose of the person, or better contextual information about the goal or task pursued by humans.

Summarising, the advantages of the proposed approach are manifold:

• The number of neurons is signi�cantly decreased (by one or two orders of magnitude) by wiring
a model inside the neural network;

• The use of maximum likelihood evaluation of multiple target’s endpoint deriving a less complex
neural network than a monolithic solution;

• The possibility of creating synthetic datasets using known models, to create realistic data while
reducing the waste of time;

• Because the neural network retains the model inside, its decisions can be explained in physical
terms, which simpli�es the interpretation of its inferences and the explanation of its possible
errors.

Chapter 5 presents a hierarchical framework for multi-agent navigation in human-shared environ-
ments. The di�erent levels of the framework include global path planning, local path planning, and
reactive control. Each level relies on input information of increasing complexity and operates at di�er-
ent spaces of interest and updating frequencies. In this way, the tasks embedded in the framework are
independent in their speci�c area of expertise, and their e�ects can be superimposed in the resulting
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robot action without stalling another task. We identi�ed �ve requirements that must be satis�ed when
dealing with robot navigation with the compresence of humans, explained as follows. Safety guaran-
tees are the �rst and most essential requirement. We have to ensure collision avoidance with obstacles,
other robots, and human beings. This condition must be ensured even in the face of inaccurate robot
localisation or estimations on the external entities. Beyond safety, we have to obtain socially aware
motion planning. Indeed, the robot has to stay clear enough from the human private space, it has to
follow smooth trajectories, and it should anticipate the human motion intentions. The presence of the
robot will not intimidate the humans as long as the robot follows trajectories that are easily predictable
by the pedestrian. When multiple robots are considered, a distributed coordination strategy between
them is required. What is more, regardless of prior knowledge of the mission space, the navigation
algorithm should quickly react to unmapped obstacles that are detected by on-board sensors. The last
requirement concerns computation e�ciency. This is important for two reasons: �rst, the robot must
be able to compute control inputs at a high frequency in order to respond quickly to unexpected events,
second, we can a�ord lean hardware with reduced costs and low energy consumption. In the state of
the art literature, we cannot �nd a comprehensive solution that satis�es all the requirements men-
tioned above. Classic reactive methods (such as Force Field or Velocity Obstacle) are by construction
computationally e�cient and typically they can manage the multi-agent control. As the name suggests,
these methods are designed to promptly react to the presence of obstacles, thus they can assure safety.
However, if the estimation of the obstacles’ position and velocity is not accurate, collisions cannot be
ruled out. Moreover, being based on short-sighted decisions, a pure reactive approach can easily violate
the socially aware requirement and led to deadlocking conditions in congested scenarios. Predictive
methods synthesise a safe path taking into account local information and also a reliable human motion
prediction. This means that, as long as the prediction �ts the actual human trajectory and an appro-
priate cost function is selected, those methods can plan paths that are safe and socially aware. On the
other hand, the computational power demand is higher and, again, safety cannot be ensured if the hu-
man motion prediction is inaccurate. Finally, learning-based methods can obtain a good level of safety
and socially awareness. However, these techniques are unable of generalising social behaviour in dif-
ferent or dynamic environments. In addition, the computational requirements are usually acceptable
for real-time navigation aims.

Thanks to the interaction between the three layers that compose our framework we actually can
achieve all the requirements we have set. The global path is computed only upon request, typically
at the beginning of the mission, by using the complete map of the environment. The global path is
passed to the second layer, which generates the local path incorporating the human motion predictions.
Thus, this layer produces a medium planning horizon, by using local information in a range of 5–
10 m and it is called with a frequency of 1.25–2 Hz. Finally, the local path is passed to the reactive
controller that computes the velocity control of the robot. This last layer has a reduced space of interest
of 3 m, and it generates updated control inputs every 50 ms. Roughly speaking, the controller builds
a safe region around the robot and it checks if the local path is safe: if not, it computes a safety-
preserving deviation. These conditions can occur mainly if there is another robot on the planned path
(as the local path does not consider the presence of other robots), or when the environment is highly
dynamic, hence the updating frequency may be not fast enough. We tested the proposed framework
on real robotic platforms fully developed at the University of Trento and we proved through extensive
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experiments the e�ectiveness of our approach. In particular, we have shown that our solution avoids
collisions with humans but also deadlock between robots, and the coordination between the robots
is e�cient. The combination of local path planning with the human prediction allowed to perform
avoidance manoeuvres with anticipatory behaviour, leaving the person undisturbed, and minimising
the total deviation from the global (optimal) path. The experimental results validated the e�ectiveness
of our approach and demonstrated that the speci�c modular structure of the framework and models of
each individual layer are a promising solution to perform multi-robot navigation.

In the near future, we plan to integrate more sensors to obtain more accurate human motion pre-
dictions and hence improve the local path plan. The shown experiments were carried out by equipping
the robots with the same sensing system already described in this thesis, therefore the agents relied
on very simple input data. As mentioned also for the application of Chapter 4, di�erent sensors will
help to increase the overall performance of our approach. We underline that these possible changes
would not be invasive for the rest of the framework, given its modular architecture. An assumption
present that can be overcome is the actual non-cooperation between robots at the level of the local plan
layer. Thus, further modi�cations can be done to integrate in the local path planner a distributed and
computationally e�cient (not sequential) multi-agent management system.

Summarising, with the proposed hierarchical architecture we have obtained:

• The ful�lment of �ve classes of requirements, including safe and socially-aware motion planning,
multi-agent coordination, and computation e�ciency;

• A modular framework in which each succeeding layer use a more detailed information on the
environment but take decisions with a narrower spatio-temporal scope;

• Furthermore, the properties enforced at one layer are not invalidated by the layers below, so the
navigation is not stalled by inconsistent decisions taken at di�erent levels.

In Chapter 6 we describe an application for human autonomous following in which the robot can
simultaneously follow the person and memorise the path travelled for future operations. Typically,
visual servoing algorithms require that the human must always be inside the camera �eld of view. In
our solution, instead, the person can perform sharp turns and complex paths at will, and the robot can
correctly track her/him as long as at least one of its sensors keeps providing valid measures, even in the
occurrence of temporary occlusions. Once the human operator has shown her/his visual features to the
robot in the initialization phase, the latter can carry out the follower task even in the presence of other
strangers in the way, who are avoided. In the event of an imminent collision with static (i.e., walls) or
dynamic (the persons) obstacles, the robot stops to ensure safety and can later resume following the
path if the space becomes clear again. Thus, in our approach, the human takes the role of path-�nder,
and the only required expertise is to simply walk and mark the path with her/his footsteps. The robot,
for its part, must carry out a precise tracking of its path-�nder, and follow him/her with a rapid response
and socially-compliant trajectories, however, the generation of the optimal global path is enormously
simpli�ed because the responsibility is shifted to the person, who instead better knows how to navigate
in complex or dynamic scenarios where many people are present. The robot’s sensing system is an
evolved version of the con�guration presented in Chapter 3 and is composed of a 2D laser scanner and
a depth camera. The application presents a combination of machine learning techniques and model-
based approaches. Indeed, in the vision-based detection and recognition part of the framework, we
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use state-of-the-art neural networks to recognize and memorize the visual features of the human to be
elected as leader. In the subsequent sensor fusion between the two sensors, on the other hand, we use a
model-based solution to steadily track the positions of the path-�nder. The tracked position are �ltered
assuming the same motion model developed in Chapter 3, and the robot’s trajectory is generated using
clothoid curves to obtain a smooth path by mimicking a human-like behaviour.

We tested the proposed framework on a real robotic platform and we proved through extensive ex-
periments the e�ectiveness of our approach. We have shown that our algorithm successfully recognise
and track the path-�nder, and the travelled paths are consistent with those of the person. The disturb-
ing e�ects of the intruders are rejected, and the path-�nder can be found again in case the tracking is
lost. In our experimental tests, we evaluated the approach also in the case of multiple people present in
the scene, and we shown that the robot can maintain safety and avoid collisions. We can conclude that
the experiments demonstrated the high level of reliability and robustness reached by the our solution.

Summarising, the proposed method:

• Represents a modern application of the teach-by-showing approach where the robot works in-
tuitively with the human operator;

• Employs a robust combination of tracking �lter and neural network to estimate and follow the
path-�nder’s position, even when s/he falls outside of the camera’s visual cone;

• Can comply with safety and reliability requirements thanks to the system’s ability to distinguish
between persons with similar features and resolve misclassi�cations due to illumination changes
and partial occlusions.

Di�erent points remain open and are reserved for future work. A �rst important direction is a
theoretical study of how the interaction between model-based approaches and neural networks can
produce results with a guaranteed accuracy for people tracking. That is, the idea is to embed the
prediction model presented in Chapter 4 in the framework to increase the reactivity of the robot (since
it will consider the social norms behind the human decisions), and to strengthen the tracking in case
of temporary occlusions or missdetections. Another interesting issue is the use of wearable haptic
bracelets and the implementation of a protocol that the robot can use to notify its path-�nder the
occurrence of exceptional conditions (e.g., when the path is too close to an obstacle and the robot
cannot follow it within appropriate safety margins). Finally, it is worth investigating how the path
information can be shared among multiple vehicles for transfer learning even without any a-priori
map knowledge.
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