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REGULAR ARTICLE

The interplay of computational complexity and memory load during
quantifier verification
Heming Strømholt Bremnes a, Jakub Szymanik b and Giosuè Baggio a

aLanguage Aquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and
Technology, Trondheim, Norway; bCenter for Mind/Brain Sciences, Department of Information Engineering and Computer Science, University
of Trento, Trento, Italy

ABSTRACT
Formal analysis of the minimal computational complexity of verification algorithms for natural
language quantifiers implies that different classes of quantifiers demand the engagement of
different cognitive resources for their verification. In particular, sentences containing
proportional quantifiers, e.g. “most”, provably require a memory component, whereas non-
proportional quantifiers, e.g. “all”, “three”, do not. In an ERP study, we tested whether previously
observed differences between these classes were modulated by memory load. Participants
performed a picture-sentence verification task while they had to remember a string of 2 or 4
digits to be compared to a second string at the end of a trial. Relative to non-proportional
quantifiers, proportional quantifiers elicited a sentence-internal sustained negativity.
Additionally, an interaction between Digit-Load and Quantifier-Class was observed at the
sentence-final word. Our results suggest that constraints on cognitive resources deployed
during human sentence processing and verification are of the same nature as formal constraints
on abstract machines.
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1. Introduction

Quantification is a fundamental aspect of human cogni-
tion. It lies at the heart of our linguistic, logical, and
mathematical abilities and as a consequence it has
been studied extensively at least since Aristotle. In
natural languages, quantitative relations are often
expressed using determiners, like “all”, “three”, and
“most”, that are unusually homogeneous across
languages (Bach et al., 1995; Keenan & Paperno, 2017;
Matthewson, 2001). Pioneering work (Barwise &
Cooper, 1981; Keenan & Stavi, 1986) has demonstrated
that natural language quantifiers constitute a small
subset of the quantitative relations expressible with
logical vocabulary. More recently, it has been shown
that certain characteristic formal properties of this
subset delineate learning biases for humans, non-
human primates, and machine learning algorithms
(Carcassi et al., 2021; Chemla et al., 2019; Hunter &
Lidz, 2013; Steinert-Threlkeld & Szymanik, 2019; van de
Pol et al., 2023). These findings suggest that studying
natural language quantifiers can inform cognitive

science about the human language capacity specifically
and human cognition more generally.

In Marrian cognitive (neuro)science (Marr, 1982),
information processing systems can be understood at
three levels of analysis: (i) a computational level, describ-
ing a computation in terms of a function mapping inputs
to outputs; (ii) an algorithmic level, detailing the step-
wise procedures and subprocedures required to
compute the function; and (iii) an implementational
level that specifies how this algorithm is implemented
in the biophysical medium of the brain. Algorithmic ana-
lyses are constrained both by the nature of the compu-
tation and by the limitations placed on the kinds of
processes the brain is able to carry out. Since the algo-
rithmic level is indispensable in mediating between
the computational and the implementational levels
(Baggio et al., 2016, 2015; Embick & Poeppel, 2015;
Lewis & Phillips, 2015), specifying the properties of the
algorithms that underlie cognitive computation is essen-
tial. It may therefore seem puzzling that algorithmic
aspects of on-line human semantic processing hitherto
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have not received sufficient attention (Baggio, 2018,
2020). One reason for this might be the fact that mean-
ings are notoriously hard to formalise and that such
formalizations are required to study algorithms.

Natural language quantifiers are an interesting excep-
tion to this rule, because their precise meaning contri-
butions can be formalised in generalized quantifier theory
as relations between the cardinalities of sets (Barwise &
Cooper, 1981; Peters & Westerståhl, 2006). This approach
has made quantifiers a linchpin in the development of
formal semantics (Partee, 2013) and has enabled the con-
struction of verification algorithms for quantifiers, to be
discussed in more detail in Section 1.1. Once these algor-
ithms are specified, it is mathematically provable that
quantifiers can be divided into different classes based
on the computational resources required to verify them.
When determining the computational properties of quan-
tifier verification, the difference between proportional
quantifiers–e.g. “most”, “less than half”–and other quan-
tifiers is that proportional quantifiers cannot be verified
by a simple finite-state automaton (FSA), but instead
require a push-down automaton (PDA) with its memory
component. In a previous study (Bremnes et al., 2022),
we showed that quantifier class modulates ERP responses
in a verification task: proportional quantifiers resulted in
ERP effects that were absent for non-proportional quan-
tifiers. Moreover, such effects were observed only in a ver-
ification task, and not in a task that required participants to
just read and understand quantified sentences. The goal
of the present study was to ascertain whether the
observed differences in evoked potentials are in fact
related to the usage of memory resources in the service
of verification, and to gather initial evidence for the
specific memory systems deployed.

1.1. Algorithms of quantifier verification

The idea to construct verification algorithms for natural
language quantifiers originated with van Benthem
(1986) and has led to many subsequent mathematical
results about the computational properties of such algor-
ithms (e.g. Kanazawa, 2013; Mostowski, 1998; Szymanik,
2016). The semantics for natural language quantifiers
given in generalised quantifier theory (Barwise & Cooper,
1981; Keenan & Stavi, 1986) as (conservative and exten-
sional) relations between cardinalities of sets allows deter-
miner meanings to be modeled as sets of strings of binary
recognised by abstract computational models called
automata. These are foundational tools from theoretical
computer science and formal language theory and can
be used to mathematically prove differences in the
minimal complexity of different computational problems
(Chomsky, 1956; Hopcroft & Ullman, 1979).

The strings of binary represent the objects being
quantified over as having or not having a predicated
property, for example a set of circles as having the prop-
erty of being red for a sentence like “All the circles are
red”. These algorithms run through all the elements in
the set and for each of them check if they have that
property. If, by the time a given algorithm has checked
all the objects, the number of objects with the property
conforms to the quantitative relation expressed by the
quantifier, the sentence is true. Otherwise it is false.

Let us informally illustrate this procedure for the
quantifiers “no”, “at least four”, and “more than half”,
as applied to red circles. For “no”, the minimal algorithm
scans all the circles, and if it does not find a red circle, the
sentence is true. In the case of “at least four”, the same
kind of algorithm scans all the circles and keeps track
of the red circles it sees until it has reached four. At
that point, all the subsequent circles are irrelevant,
because the sentence will be true regardless. Both
these kinds of quantifiers, so-called Aristotelian and
numerical quantifiers, respectively, can be computed
by the simplest kind of machine: finite state automata
(FSA). This is not the case for “more than half”, which is
a proportional quantifier. Such quantifiers are concerned
with the proportion of red to non-red circles. They pro-
vably require a memory component where an algorithm
can store information about red and non-red circles, and
therefore require the additional computational
resources of a pushdown automaton (PDA) for their ver-
ification. For “more than half”, the simplest algorithm
keeps track of both the red circles and the non-red
circles as it scans the set. Once it has scanned the final
circle, it checks if the red circles outnumber the non-
red circles, and if they do, the sentence is true. For
formal definitions and explanations of the automata,
see Szymanik (2016, chapter 4).

Importantly, this leads to two qualitatively different
kinds of verification algorithms. Any algorithm for pro-
portional quantifiers is of a different nature than the
minimal verification algorithms for both Aristotelian
and numerical quantifiers. It is therefore essential to dis-
tinguish between proportional and non-proportional
quantifiers, because of the different computational
resources required to verify them. In particular, only pro-
portional quantifiers are predicted to require the storing
and manipulation of objects in memory.

1.2. Previous studies

Numerous studies have examined quantifier verification
(e.g. Freunberger & Nieuwland, 2016; Kounios &
Holcomb, 1992; Nieuwland, 2016; Noveck & Posada,
2003; Urbach et al., 2015; Urbach & Kutas, 2010), and
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several have used a picture-sentence verification task to
study the processing of quantified sentences (Augurzky
et al., 2017, 2019; Augurzky, Hohaus, et al., 2020;
Augurzky, Schlotterbeck, et al., 2020; Hunt III et al.,
2013; Politzer-Ahles et al., 2013; Spychalska et al., 2019,
2016). These studies have predominantly focused on
effects of truth value and have shown that false sen-
tences exhibit larger N400-like responses than true sen-
tences. More interestingly for our current purpose, the
complexity of the verification–either as a result of the
picture or the sentence –manifests itself as an increased
positivity after the N400 time frame and as sustained
effects earlier in the sentence.

In previous experiments (Bremnes et al., 2022), we
demonstrated that differences in the verification pro-
cedure for proportional quantifiers, as described above,
give rise to specific ERP effects. In a picture-sentence ver-
ification task, participants saw red and yellow circles and
triangles and had to judge the truth value of quantified
sentences, e.g. “All the circles are red”. In addition to
the expected N400-like effects of truth value at the final
word and to a post-N400 positivity for proportional quan-
tifiers, we observed a sustained positivity in the P600
time-window on the completion of the subject noun
phrase (“Most of the circles”) for proportional quantifiers
compared to non-proportional. This pattern was also
observed in the only other study that has explored ERP
effects of quantifier class (De Santo et al., 2019).

The literature on memory and quantifier verification
has hitherto been disjoint, but the nature of the
present project necessitates their integration. It is there-
fore pertinent to discuss different ERP components that
have been associated with various kinds of memory, as
well as their functional interpretation, in order to make
more refined predictions about which components
could plausibly be modulated in a verification task.

Late positivities, such as the one found in Bremnes
et al. (2022), have often been described in the literature
on recollection memory, where they are labelled the late
positive component (LPC) or the parietal old/new effect
(e.g. see Hubbard et al., 2019; Ratcliff et al., 2016; Rugg
et al., 1998; Yang et al., 2019). This effect is observed
when participants are recalling contextual details of a
stimulus (Rugg & Curran, 2007) and recollection is task
relevant (Yang et al., 2019). Positive slow waves have
also been observed in paradigms that examined short-
term or working memory (for discussion see Baddeley,
2012, and references therein), such as serial recall tasks
(Kusak et al., 2000), delayed matched to sample
(DMTS) tasks (McEvoy et al., 1998; Ruchkin et al., 1992),
the Sternberg task (Pelosi et al., 1995, 1998, 1992), or
other digit span tasks (C. D. Lefebvre et al., 2005; Marc-
hand et al., 2006), and have been argued to index

retrieval of information from short-term memory
(García-Larrea & Cézanne-Bert, 1998).

However, sustained negative ERPs have also been
reported for increased memory load. The sustained
anterior negativity (SAN) has been reported in sentence
processing when working memory resources have to be
recruited for the recomputation of discourse models
(Baggio et al., 2008; Müller et al., 1997; Münte et al.,
1998) or as a result of referential ambiguity in the
model (van Berkum et al., 1999, 2003). Sustained nega-
tivities have also been shown to arise under increased
working memory load in sentence processing (Vos
et al., 2001) or other working memory tasks, for instance
during the retention interval of DMTS tasks (Ruchkin
et al., 2003) and in visual working memory tasks
(Axel & Müller, 1996; Rösler et al., 1997; Ruchkin et al.,
1990, 1992; Vogel & Machizawa, 2004). These effects
are similar in distribution to the left anterior negativity
(LAN), occasionally accompanied, in biphasic patterns,
by P600 effects in morphosyntactic violation paradigms
(Baggio, 2008). However, studies have reported both
short-lived and sustained left anterior negative ERPs. It
is not clear whether short-lived LAN effects index
working memory load in sentence processing (Fiebach
et al., 2001; King & Kutas, 1995; Kluender & Kutas,
1995; Vos et al., 2001). Sustained left-anterior nega-
tivities seem more likely candidates for ERP signatures
of working memory usage during sentence processing.

Interestingly, what presents itself as a posterior nega-
tive slow wave in adults is observed as an anterior posi-
tivity in children (Barriga-Paulino et al., 2014), a reminder
that the same underlying process may manifest itself in
different polarities depending on brain anatomy and the
orientation of dipole generators (for discussion, see
Luck, 2014). This can also be seen in the differing
polarities of slow waves over posterior and frontal
regions in certain working memory paradigms, such as
the n-back task (Bailey et al., 2016; McEvoy et al., 1998)
and DMTS (Ruchkin et al., 1990, 1992). Furthermore,
scores from working memory assessments have been
shown to be correlated with sustained effects (Adam
et al., 2020; Amico et al., 2015; Barriga-Paulino et al.,
2014; Fukuda et al., 2015; Harker & Connolly, 2007;
C. Lefebvre et al., 2013; Luria et al., 2016; Marchand
et al., 2006). However, while some studies have found
a larger ERP effect to be associated with higher perform-
ance, others have found the reverse pattern, i.e. worse
performance associated with a larger effect. In language
processing, larger sustained negativities have been
associated with lower reading span scores when divid-
ing participants into high and low span groups
(Fiebach et al., 2002; Vos et al., 2001). A reduction of
the P400 for 5 vs 1 digits in the Sternberg short-term
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memory task has also been shown to correlate with
better task performance (Pelosi et al., 1992). By contrast,
an increase in the LPC is associated with higher accuracy
in recognition memory paradigms (Harker & Connolly,
2007), increased SAN amplitudes have been associated
with greater auditory short-term memory capacity (C.
Lefebvre et al., 2013), and a more negative parietal
slow wave is associated with higher scores on working
memory tests in the visual working memory literature
(Barriga-Paulino et al., 2014; Luria et al., 2016). These
results demonstrate that such ERPs are modulated by
individual working memory capacity, but that the direc-
tion of the modulation might depend on the task or on
the specific memory systems involved.

1.3. The present study

The aims of the present study were to determine (1)
whether the ERP differences between proportional and
non-proportional quantifiers first reported in Bremnes
et al. (2022) are replicable, and (2) whether these differ-
ences are related to memory, as predicted by the auto-
mata theory. To that end, we conducted an EEG
experiment using the same picture-sentence verification
task as our previous study, augmented with a digit
matching task that allowed us to manipulate memory
load. Before each trial, participants saw a string of 2 or
4 digits that they had to remember while completing
the verification task. Once the verification task was com-
pleted, they saw another string of digits that either
matched the original string or differed by a single
digit, and had to decide whether the two strings were
the same or different. In addition, participants per-
formed a series of preliminary tasks that allowed us to
test whether the electrophysiological differences were
related to individual differences in working memory,
attention, and control capacities. Negative proportional
quantifiers have been associated with some of the
effects observed in our previous study. Here, we
decided to increase the number of trials for positive
and negative proportionals compared to Bremnes
et al. (2022), so that we would be able to rule out the
possibility that negative proportionals are driving the
effect. A more detailed description of the task is found
in Section 2.1 below.

Regarding memory load, two results would corrobo-
rate the theory. Firstly, memory load, introduced by
the digit span task, could increase processing differences
between the quantifier classes, resulting in larger ampli-
tude differences between proportional and non-pro-
portional quantifiers. In this case, memory load from
verification and digit matching may affect the pro-
portional quantifiers more because it strains working

memory capacity. Alternatively, memory load could
attenuate the differences between quantifier classes,
resulting in smaller differences between them. This
pattern could be explained by finite memory: memory
capacity may already be at ceiling with proportional
quantifiers, but not with non-proportional quantifiers.
In both scenarios, memory would affect the two quan-
tifier classes differently, so both outcomes would
support the conclusion that the verification differences
are related to memory.

However, there are two additional logically possible
outcomes worth considering. The memory load from
the verification task and from the digit matching task
could result in an additive effect, impacting proportional
and non-proportional quantifiers equally: the difference
between the two quantifier classes would then be
similar between memory loads. Although strictly compa-
tible with the theory, this result would be inconclusive
because, in that event, it is conceivable that the differ-
ence is related to factors other than memory. Finally, it
is possible that memory load does not affect brain
responses at all, namely that there is no difference
between the high and the low memory condition. This
is more problematic for the theory, since this would
imply that the differences are not related to memory
at all. The hypothesis is that if the difference is related
to memory, then we will observe a difference in the
evoked potential as a function of the memory manipu-
lation. If we do not observe a difference in the evoked
potential, then, by modus tollens, the difference is not
related to memory.

On the basis of previously observed behavioural
effects (Zajenkowski et al., 2011; Zajenkowski & Szyma-
nik, 2013; Zajenkowski et al., 2014), we expect individual
differences in the preliminary tasks to correlate with ERP
signals. However, the direction of this correlation is not
predicted, as working memory capacity and ERP effects
have displayed both positive and negative correlations
in the past (see above). The fact that some people are
faster or more accurate in these tasks need not impact
the verification process itself. This issue is particularly
important, considering the fact that the automata
theory does not predict the involvement of specific
memory systems or their associated effects. The relevant
automata theoretic notion of memory is abstract, and it
is an empirical question, partially considered here, which
human memory systems are involved. Relatedly, while
the complexity analyses presented here remain on the
computational level, a growing body of work attempts
to make explicit the verification algorithms for natural
language quantifiers (Hackl, 2009; Hunter et al., 2017;
Knowlton et al., 2021; Lidz et al., 2011; Pietroski et al.,
2009, 2011; Talmina et al., 2017; Tomaszewicz, 2011). In
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this literature, truth conditionally equivalent quantifiers
are shown to be verified differently on the basis of
whether they benefit from certain properties of the
visual stimulus, such as grouping effects, or not. From
this finding, one can infer that these quantifiers recruit
different non-linguistic systems–such as cardinality esti-
mation based on the approximate number system or
exact counting (see e.g. Dehaene, 2011; Odic & Starr,
2018), or one-to-one mapping (e.g. Feigenson, 2005)–
depending on what appears to be their canonical verifi-
cation procedure. However, rather than trying to detect
differences within quantifier classes, what we are trying
to demonstrate is that, irrespective of the specific algor-
ithms implemented by the brain, at the very least pro-
portional quantifier verification involves memory
resources of some kind, that verification of non-
proportional quantifiers does not.

2. Methods

2.1. Design

The study used a 2× 2× 2 design with the factors
Quantifier Class (Proportional/Non-Proportional), Digit
Load (2/4), and Truth-Value (True/False). Each trial con-
sisted of two tasks: after reading the sentence, the par-
ticipant had to perform a sentence-picture verification
task; next, they had to recall a string of 2 or 4 digits pre-
sented at the start of the trial and decide whether it was
the same as or different from another string of digits
presented at the end of the trial. The set-up was com-
parable to that of our previous study (Bremnes et al.,
2022). Specifically, the picture was presented before
the sentence to avoid eye-movement disturbances of
the EEG signal. Furthermore, the same picture was pre-
sented before each trial in a block. Participants had the
opportunity to study this picture for as long as they
wanted at the beginning of each block. This was (i)
because remembering the picture is a prerequisite for
performing the task, and we wanted to make sure
that participants could memorise the picture, and (ii)
because we did not want memory encoding or recall
of the picture to interfere with the deployment of
memory resources relevant to verification or digit
recall. A potential worry is that all quantifier classes
require some form of memory in this set-up.
However, as noted above, the automata theory shows
that proportional quantifiers require additional
memory resources to maintain and compare two sets
of objects in memory, which is predicted to increase
memory load only for this class of quantifiers
(Bremnes et al., 2022). This set-up ensures a stable base-
line, where the differences detected are plausibly

related to the experimental manipulations, and not to
differences in encoding or recollection of the picture.

2.2. Participants

Fifty native speakers of Norwegian (28 female; mean age
22.98, sd = 2.93; age range 19–30), with normal or cor-
rected to normal vision and no psychiatric or neurologi-
cal disorders, were recruited from the local student
community. Two of these did not meet the inclusion cri-
teria of having an average of at least 80% artifact free
trials per condition, and were excluded from the final
data analysis. We then analysed data from 48 partici-
pants (26 female; mean age 22.95, sd = 2.9; age range
19–30). All participants gave their written informed
consent and were compensated with a voucher. The
study had been approved prior to commencement by
the Norwegian Centre for Research Data (NSD; project
nr. 455 334).

2.3. Materials and tasks

At the beginning of a session, participants were adminis-
tered three tests of executive function, memory, and
attention. All tests began with a series of practice trials
(10 for the Eriksen task, 5 for the Sternberg task, 4 for
the Brown-Peterson task) before the main experiment
began (details below).

The first task was a version of the classic Eriksen
flanker task (Eriksen & Eriksen, 1966), aimed at measur-
ing attention. Participants were shown rows of arrows
and had to determine in which direction the middle
arrow pointed. The rows could be either congruent (all
arrows pointed in the same direction) or incongruent
(different directions). Each participant saw 60 rows (30
congruent) with an equal number of correct right and
left responses.

In order to test working memory capacity, the second
task implemented a Sternberg scanning paradigm
(Sternberg, 1966), in which participants saw 4, 6, or 8
digits presented consecutively. They then saw a digit
in red and had to determine whether this digit was
also included in the preceding digit sequence. Each
sequence length was presented 16 times, with 8 trials
where the target number was presented and 8 trials
where it was absent.

The third task was a Brown-Peterson short-term
memory task (Brown, 1958; Peterson & Peterson, 1959),
targeted at working memory capacity in the presence
of distractors. Each trial consisted of a to-be-remem-
bered consonant trigram (e.g. “FCQ”) and a number
between 150 and 500, from which the participant had
to count backwards in threes out loud. The counting
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lasted 4, 6, or 12 s, and the participant was subsequently
prompted to recall the trigram or, as a control trial, the
latest number they counted. There were 8 trials for
each counting interval, or 24 trials in total, with 3 con-
trols for each interval length. We opted for 4, 6, and 12
as a short, medium, and long condition respectively,
which is comparable to intervals used previously
(Neath et al., 2019; Quinlan et al., 2015). These particular
intervals allowed us to keep the task manageable in
terms of total duration. It has been shown that accuracy
in this task decreases sharply from 1 to 9 s and flattens
out after that, so that there is only a small accuracy
difference between, e.g. 12 and 18 s (Rai & Harris, 2013).

As mentioned in Section 2.1 above, the main tasks
were to memorise a string of 2 or 4 digits, then
perform a picture-sentence verification task, and finally
judge whether another string of digits matched the
string seen at the beginning of each trial.

For the digit matching task, we opted for one high
and one low digit load condition. Previous studies (Szy-
manik & Zajenkowski, 2010, 2011) found that, with 4 and
6 digits, digit recall was poor at 6 digits. In contrast, per-
formance in the verification task increased, both in terms
of accuracy and RT, for 6 digits compared to 4,
suggesting that the task was too difficult with 6 digits.
We therefore used 2 digits as the low load condition
and 4 digits as the high load condition. First, we con-
structed random strings of 2 and 4 digits. For half of
these, we also created mismatch strings by replacing
one random digit in each string with another random
digit. For example, if the string was 4459, we would
replace the second digit with 8 to create 4859 or the
third digit with 2 to create 4429. The decision to make
digit string pairs minimally distinguishable by a single
digit was made because, with completely different
strings, participants could easily adopt a strategy
where they only memorised the first two digits and
still be correct in many cases. This would effectively
render the distinction between 2 and 4 digits useless.

For the verification task, we constructed 8 pictures
consisting of clustered red and yellow circles and tri-
angles in a 2× 2 grid. The grid location, number and
colour of these shapes were varied pseudorandomly.
The grid design with a 2× 2 potential shape by colour
alternation secured that participants could not know
the truth-value of the sentence before reading the
final word. The number of objects at each grid location
ranged from 2 to 5. For every picture in which the
shapes of one type (e.g. circles) were all in one colour,
the other was always in different colours. Each picture
was shown for all trials in one block, meaning that
there were 8 blocks in the experiment. See Supplemen-
tary material A, section I, for all pictures.

The sentences were simple subject-predicate copular
sentences, in which a certain colour was predicated of a
certain quantity of shapes (e.g. “Flest av sirklene er røde”,
Most of the circles are red). We wanted the syntax and the
semantics of the sentences to be as closely matched as
possible, aside from the quantifier manipulation. We
therefore decided to only use quantifiers in partitive
constructions, which is the most natural – and, for
some quantifiers, the only–way to express quantitative
relations between definite objects in Norwegian. This
also ensured that all shape nouns were definite plurals
and that adjectives agreed in number with these
shape nouns. We used 12 quantifiers, 3 of each type.
The non-proportional quantifiers were Aristotelian
(“samtlige av”: all of; “ingen av”: none of; “enkelte av”:
some of) and numerical quantifiers (“tre av”: three of ;
“fire av”: four of; “fem av”: five of). The proportional quan-
tifiers included three positive (“flesteparten av”: the
majority of; “flest av”: most of; “over halvparten av”:
more than half of) and three negative quantifiers (“min-
steparten av”: the minority of; “færrest av”: fewest of;
“under halvparten av”: less than half of). Combined
with two shape nouns and two colour adjectives, this
yields a total of 48 experimental items (Table 1). Note
that Norwegian and English differ with regards to the
definiteness of proportional quantifiers (Coppock,
2019). See Supplementary material A, section II, for all
experimental sentences with translations.

Each sentence was presented once for every truth-
value and digit load: each sentence was true twice,
once with 2 digits and once with 4 digits, and false
twice, once for each digit condition. Thus, there were
192 trials overall, with 96 true/false trials and 96 trials
with 2/4 digits. There were 48 trials in each cell in the
2× 2× 2 design. This number is standard in ERP

Table 1. The experimental sentences were constructed by
combining every element of one column with every element
of the other columns, resulting in 12× 2× 1× 2 = 48
different sentences. For the translations of the quantifier
column, see main text. All experimental sentences with
translations can be found in Supplementary material A, section II.
Quantifier Class Quantifier Shape Copula Color

Aristotelian
Samtlige av

sirklene
the
circles

røde
red

Ingen av

Enkelte av
Tre av

Numerical Fire av
Fem av er

arePositive
Proportional

Flesteparten av

trekantene
the
triangles

gule
yellow

Flest av
Over halvparten av

Negative
Proportional

Minsteparten av
Færrest av
Under halvparten av
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research, but this meant that there were only 12 trials
per quantifier type (e.g. Aristotelian) by digit load by
truth-value: it was then acknowledged that it would
not be possible to compare truth-value by digit load
EEG effects at the level of each individual quantifier type.

As mentioned, the 8 pictures determined the block
structure, and consequently there were 24 trials in each
block. Because the picture remained the same within a
block and there were more possible quantifier by truth-
value by digit load triplets than pictures (for each sen-
tence with a given quantifier, there are 16 possible
True/False combinations when considering Digit Load
and the combinationof nouns and adjectives), not all sen-
tences were shown after a particular picture and some
sentences had to be shown twice within the same
block, that is, both digit conditions in one block.
However, both truth-value and digit load were evenly
balanced both within each block (12 true/false, 12 2/4
digits) and overall. It was not possible to match the
number of 2 and 4 digit matches within a block (range
of 2/4 digit matches: 5–7) while simultaneously retaining
the balance overall. Note that this cannot possibly affect
the EEG, as participants have noway of knowingwhether
the upcoming digits will match or mismatch the mem-
orised string when the EEG is recorded, i.e. when they
read the sentence. To avoid conflicting interpretations,
quantifiers that give rise to scalar implicatures, i.e. the
inferred negation of a stronger meaning (see e.g. Horn,
1972; Levinson, 1983, 2000), were not shown in contexts
where both the semantic and pragmatic meanings are
available. First, “enkelte av” (some of), which gives rise
to a scalar implicature not all, was not shown in pictures
where the denotation of the shape noun was all in one
colour, e.g. “Some of the circles are red”, when there
were only red circles. For the same reason, we also
avoided proportional quantifiers in such contexts, e.g.
“more/less than half of the triangles are red”, when all
the triangles had the same colour. Second, numerical
quantifiers, that can have both an exactly and an at
least interpretation, were never shown after pictures
where the number of shapes in the predicated colour
exceeded the number denoted by the quantifier,
e.g.‘three of the circles are yellow’, when there were
four yellow circles. Finally, if one shape was all in one
colour and the sumof the shapes in the twogrid locations
matched the number denoted by a numerical quantifier,
e.g. if there were 2 + 3 = 5 yellow triangles, then sen-
tences containing that quantifier were not shown.

Trials were randomised within each block. To counter-
balance sentence types within a block, we also con-
structed 2 randomised orders of the blocks, that we
ran both forward and backward for a total of 4
different randomizations, so that participants would

encounter the sentence types at different stages of the
experiment.

2.4. Procedure

Each experimental session began with participants
signing their informed consent sheet. They were then
instructed about the three preliminary tests described
in Section 2.3, before they were seated in front of an
LCD computer screen in a dimly lit, sound attenuated,
and electrically shielded EEG booth. The same booth
was used for the three preliminary tests, administered
without EEG, and for the main experiment. Participants
then performed the three tests in order: Eriksen flanker
task, Sternberg scanning, and Brown-Peterson short-
term memory task. Each test began with an on-screen
reminder of the instructions, as well as practice trials.
After they had completed these tests, participants were
prepared for EEG recording, as described in Section 2.5
below. After the electrodes were mounted, participants
received instructions about the task: they were told
that they had to judge whether each sentence was true
of the preceding picture, using two predefined response
buttons, while at the same time remembering a string of
2 or 4 digits, and that after the truth-value judgement
they would have to assess whether another string of
digits matched the original string by using the same
response keys as in the verification task. They were told
to respond as soon as they knew the answer, but that
accuracy was more important than speed. The truth
values coded by the different response keys were coun-
terbalanced between blocks. Which key corresponded to
true or false was indicated by two squares with the words
“sant” (true) or “usant” ( false) on horizontally opposing
sides of the screen, whose left-right order mirrored the
relative keyboard position of the response keys. This
information was provided at the beginning of each
block and every time they had to respond. Finally, they
were instructed not to blink or move while they read
the sentences, and that if such activities were necessary,
they should only take place when looking at the picture
or when they saw a fixation cross.

Each block began with the following preamble: par-
ticipants were first informed about which buttons corre-
sponded to true and false; they were then presented
with the picture that would also be shown in every
trial in the block, advised to study this picture carefully,
and told to press either response button to begin with
the trials. There was no time limit on how long they
could study the picture. Each trial began with the pres-
entation of a string of 2 or 4 digits for 4 s, preceded
and followed by 500msec of blank screen and a 500
msec fixation cross. Next, the picture was presented for
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3 s, before another identically timed blank-screen
fixation-cross pair. The sentence was presented visually
in 4 chunks, where the first chunk contained the quan-
tifier (2–3 words) and each of the remaining three con-
tained only a single word (noun, copula, and adjective)
(see Table 1, where each column represents one chunk).
The reason the quantifier was presented in one chunk,
was to ensure that all trials were of the same length,
which is a prerequisite for comparing the different
stages of the verification processes. Each chunk was
shown for 400msec with a 400msec blank screen in
between. Following this sequence was another 500
msec blank screen and a 500msec fixation cross, before
the response key indicators reappeared on the screen
and participants could judge whether the sentence was
true or false. When participants responded, or if they
had not responded but 8 s had passed, another blank
screen and fixation cross pair preceded the response
screen for the digit task. This screen contained the
response key information, except the words for true
and false were replaced by “like” (same) and “ulike”
(different) together with the second string of numbers in
the center of the screen. When participants had
responded, or another 8 second time limit had expired,
another identical trial started immediately (See Figure 1
for an example trial). After all 24 trials in a block had
been completed, the experiment was paused and the par-
ticipants were free to choose the duration of the break.
The next block began when the participant pressed
either response button. Each experimental session
usually lasted between 2 and 2:30 h, including the pre-
liminary tests (20–25min), EEG setup (30–40min), and
the main experiment with breaks (1:10–1:30 h).

2.5. EEG-recording

EEG signals were recorded from 32 active scalp electro-
des (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7,

C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3,
Pz, P4, P8, PO9, O1, Oz, O2, and PO10), using the
actiCAP system by Brain Products GmbH. The implicit
reference was placed on the left mastoid, and all chan-
nels were re-referenced off-line to the average of
signals from the mastoids using TP10 on the right
mastoid. EEG data were sampled at 1000Hz using a
1000 Hz high cutoff filter and a 10 s time constant. Impe-
dance was kept below 1 kOhm across all channels
throughout the experiment.

2.6. Data analysis

Accuracy and reaction time data were collected for both
the sentence verification and the digit recollection tasks,
also in order to compare our results with those of pre-
vious behavioural studies. Accuracy was used to
ensure that participants were performing the task cor-
rectly. Note that reaction times here are not a valid
measure of the difficulty of the verification procedure,
as participants could not respond as soon as they
knew the answer, when the final word was presented,
but had to wait for the response buttons to appear on
screen 1400msec later. For digit matching, this was
not an issue, since participants could judge whether
the post-trial numbers matched the pre-trial numbers
immediately upon their presentation. Missed trials,
where participants took too long to respond, were
excluded from the analysis.

EEG data were analysed using FieldTrip (Oostenveld
et al., 2011). 1000msec epochs, with a 200 msec pre-
stimulus baseline, were extracted at the noun and at
the sentence-final adjective. Trials with voltage values
exceeding +150mV relative to baseline in one or more
electrodes were excluded. Trials contaminated by eye
movements were also excluded by thresholding the
z-transformed value of the preprocessed raw data from
Fp1 and Fp2 in the 1–15 Hz range. The remaining trials

Figure 1. Structure of a single trial.

8 H. S. BREMNES ET AL.



were subjected to a 30 Hz low-pass filter. ERPs were
computed by averaging over all trials in each condition
for individual participants, before sample-level ERPs
were computed by averaging across participants.

ERPs were analysed using non-parametric cluster-
based statistics (Maris & Oostenveld, 2007), using the
default alpha thresholds (.05) at both the sample and
cluster levels. To assess ERP differences between two con-
ditions, each sample (channel-time pair) was compared
by means of a t-test. Adjacent samples passing a test
were added to form a cluster, and their t-values were
summed (Tsum). To determine whether two conditions
were significantly different, p-values were estimated by
usingMonte Carlo simulations. For each cluster, all partici-
pant level channel-time pairs were collected into a single
set before randomly partitioning it into two subsets of
equal size. This procedure was repeated 1000 times. The
cluster-level p-value was the number of randompartitions
that had a larger test statistic than the observed data. The
output here is a (possibly empty) set of spatio-temporal
clusters in which two conditions differ: we report the
Tsum in each cluster, cluster size (S), and estimated p-
values for the highest ranked clusters.

To assess interaction effects between Quantifier Class
and Digit Load, we adopted two approaches. Firstly, we
generated ERPs of the differences by subtracting the
Non-Proportional ERP from the Proportional ERP for
each digit condition, i.e. 2 Digit Proportional −2 Digit
Non-Proportional and 4 Digit Proportional −4 Digit
Non-Proportional. Subsequently we assessed the signifi-
cance of the interaction by comparing the 2 Digit differ-
ence to the 4 Digit difference by means of the same non-
parametric cluster-based algorithm described above.1

This procedure was conducted both at the sentence-
final adjective and at the sentence-internal noun. Sec-
ondly, in order to test the association between the
pretest scores and the interactions, we extracted partici-
pant-level amplitudes for all channel-time pairs in the
relevant clusters and we used participant mean ampli-
tude as the dependent variable in a mixed-effect linear

regression with Quantifier Class, Digit Load, and their
interaction as independent variables. To determine
whether working memory, attention and executive func-
tion scores were related to the ERP data, z-transformed
overall accuracy (z = x−m

sd ) for the Sternberg and
Brown-Peterson tasks, and z-transformed median reac-
tion time difference between congruent and incongru-
ent trials in the Eriksen flanker task, as well as their
interaction with Quantifier Class and Digit Load, were
also included in the model. The models had random
intercepts by participant and were estimated using the
lmer function of the lme4 package (Bates et al., 2015)
in R, and p-values were computed using the lmerTest
package (Kuznetsova et al., 2017). We also computed
individual level Tsums in relevant clusters and we con-
structed models with these as the dependent variable,
instead of mean amplitude (Marchand et al., 2002, 2006).

3. Results

3.1. Behavioral results

In the sentence verification task, accuracy was high in all
conditions, regardless of quantifier class or how many
digits needed to be stored in memory (Table 2). Reaction
times were markedly longer than in our previous exper-
iment, which did not involve a digit span task. As in our
previous study, however, standard deviations for reac-
tion time data were large. Recall that the response is
not produced immediately upon knowing the truth
value, but after 1400msec, when the response screen
is displayed. The main function of the behavioural data
was to ensure that participants were correctly perform-
ing the task, and the results confirm that they were.
The reader is referred to Supplementary material B,
section A, for inferential statistics.

Turning to the digit task, we also found very high
accuracy overall and for each digit condition (Table 3).
Response times were on average longer for 4 digits
than for 2 digits, and, contrary to response times for

Table 2. Descriptive statistics for the linguistic verification task by Quantifier Class, with means and standard deviations of accuracy
and reaction time overall and in the two Digit conditions.

Overall

Accuracy RT

M SD M SD

Proportional 0.926 0.263 1748.3 1297.5
Non-Proportional 0.910 0.287 1531.2 1055.9

2 digits 4 digits

Accuracy RT Accuracy RT

M SD M SD M SD M SD

Proportional 0.925 0.263 1724.8 1281.9 0.926 0.263 1772.9 1313.5
Non-Proportional 0.905 0.294 1554.8 1099.4 0.915 0.280 1509.1 1013.4
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the sentence verification task, there is reason to believe
that response times here are representative of the
underlying memory process, since there was no delay
between the task and the response.

Turning lastly to the results of the three preliminary
tests, means and standard deviations are found in
Table 4. Of particular note is that accuracy in the Stern-
berg task is very high and exhibits very little variance,
while accuracy in the Brown-Peterson task is quite low.

We found strong correlations of accuracy in the digit
matching task with the verification task and the Stern-
berg and Brown-Peterson tasks (Table 5). The correlation
is stronger for Proportional than for Non-Proportional
quantifiers. There is also a strong correlation between
accuracy in the verification task for Proportional and
Non-Proportional quantifiers. The Brown-Peterson
score is most strongly correlated with verification accu-
racy for Non-Proportional quantifiers.

3.2. ERP results

3.2.1. Sentence-final effects: adjective
We began by analysing the effects on the sentence-final
adjective, the earliest point in the sentence where its
truth value could be known. The waveforms (Figure 2)
display a similar pattern to that found in the previous
study: True and False sentences diverge after the N200,
with False trials displaying a continuous negative-going
deflection that overlaps temporally with the P300 wave
in True trials. The ERPs for True and False sentences
begin to reconverge around 450msec. This waveform
difference is also reflected in the statistics (Figure 2):
we see a broadly distributed negative effect of
False vs True (first-ranked negative cluster, NEG1:
Tsum = −16, 685.102, S = 3629, p = 0.001). The cluster
begins at around 250msec and ends at around 420
msec after the onset of the adjective, with the broadest
distribution and largest difference between 310 and
380msec, and the peak around 350msec. The effect is
largest on centro-parietal electrodes.

Next, we consider the effect of Digit Load. Visual
inspection of the ERPs reveals that 4 and 2 Digit trials
diverge around the P300 (Figure 3). From this point
onward, the 4 Digit trials are distinctly more positive
than the 2 Digit trials. This effect is confirmed by statisti-
cal analysis (Figure 3). We found a positive cluster (first-
ranked positive cluster, POS1: Tsum = 2356.829, S = 929,

Table 3. Descriptive statistics for the digit matching task by number of digits, with means and standard deviations of accuracy and
reaction time overall and in the two Quantifier Class conditions.

Overall

Accuracy RT

M SD M SD

2 Digits 0.915 0.279 1503.7 981.9
4 Digits 0.888 0.315 1730.5 1005.4

Proportional Non-Proportional

Accuracy RT Accuracy RT

M SD M SD M SD M SD

2 Digits 0.914 0.280 1488.6 971.1 0.916 0.277 1518.4 992.4
4 Digits 0.894 0.308 1703.7 955.1 0.882 0.323 1756.8 1014.7

Table 4. Descriptive statistics for the measures of executive
function. The measure for the Eriksen task is the difference in
median reaction time for congruent and incongruent trials in
msec. For the Sternberg and the Brown-Peterson, the measure
is overall accuracy.

M SD

Eriksen 62.250 32.356
Sternberg 0.866 0.072
Brown-Peterson 0.383 0.182

Table 5. Correlation matrix of behavioural and working memory measures, where
DAcc = Digit Accuracy, DRT = Digit RT, QPAcc = Proportional quantifier accuracy, QNPAcc = Non-Proportional quantifier
accuracy, BP = Brown-Peterson task.

DAcc DRT QPAcc QNPAcc Eriksen Sternberg BP

DAcc 1
DRT −0.162 1
QPAcc 0.691*** −0.354* 1
QNPAcc 0.443** −0.345* 0.561*** 1
Eriksen 0.006 0.115 −0.223 −0.263 1
Sternberg 0.397** −0.249 0.365* 0.361* −0.342* 1
BP 0.394** −0.097 0.290* 0.490*** −0.239 0.324* 1

Notes: Pearson correlation coefficients are reported with coded significance values: * = p<0.05, ** = p<0.01, *** = p<0.001. After Bonferroni correction
(p<0.007), only the correlation between DAcc and the other variables, between QPAcc and QNPAcc, and between QNPAcc and BP was significant.
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Figure 2. ERP effects of truth value (False–True) across quantifier classes (upper row), time locked to the onset of the sentence-final
adjective (0 msec). Raw effect waveforms (upper left) are displayed along with contour maps of sample-level statistics (upper middle)
and raster plots of cluster-level statistics (upper right). Clusters with an associated p-value below the specified threshold (a = 0.05)
are shown in blue shades; all other clusters (gray shades) were statistically not significant. ERP waveforms at midline electrodes
(bottom row), time locked to the onset of the sentence-final adjective (0 msec).

Figure 3. ERP effects of Digit Load (2 Digits–4 Digits) across quantifier classes (upper row), time locked to the onset of the sentence-
final adjective (0 msec). Raw effect waveforms (upper left) are displayed along with contour maps of sample-level statistics (upper
middle) and raster plots of cluster-level statistics (upper right). Clusters with an associated p-value below the specified threshold
(a = 0.05) are shown in yellow shades; all other clusters (gray shades) were statistically not significant. ERP waveforms at midline
electrodes (bottom row), time locked to the onset of the sentence-final adjective (0 msec).
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p = 0.049) with a central, but more posterior distribution
around 260–340msec.

The last main effect we consider is the effect of Quan-
tifier Class. This manipulation appears to have a similar
effect on the waveforms as the Truth Value manipu-
lation. Proportional Quantifiers diverge from Non-Pro-
portional after the N200, where the negative ERP shift
is greater for Proportional than Non-Proportional
(Figure 4). Statistical analyses reveal a broadly distribu-
ted negative cluster (first-ranked negative cluster,
NEG1: Tsum = −6943.639, S = 2260, p = 0.015) around
260 to 410msec after adjective onset, and a smaller
cluster (NEG2: Tsum = −1797.026, S = 719, p = 0.079)
from 500 to 570msec (Figure 4).

To sum up the main effects, there are clear effects of
Truth Value, Quantifier Class, and Digit Load. False trials
and Proportional quantifiers are both associated with a

more negative going deflection in the 250–400msec
range compared to their True and Non-Proportional
counterparts. By contrast, 4 Digits is associated with a
more positive going deflection than 2 Digits in approxi-
mately the same time window.

In addition, we examined the contrast between Pro-
portional and Non-proportional quantifiers for 4 Digit
trials and 2 Digit trials separately, on the assumption
that working memory load would interact with
memory usage for quantifier verification. We found
that the negativity for Proportional quantifiers is driven
by the effect in the 4 Digit condition (Figure 4): there
were large and almost adjacent negative clusters
between approximately 160 msec and the end of the
epoch (NEG1: Tsum = −12, 537.21, S = 4294, p = 0.002;
NEG2: Tsum = −10, 599.67, S = 3960, p = 0.004), which
were not found in the 2 Digit condition (no significant

Figure 4. ERP effects of Quantifier Class (Proportional–Non-Proportional) across Digit Loads (upper row), and for 2 Digits (middle row)
and 4 Digits (bottom row), time locked to the onset of the sentence-final adjective (0 msec). Raw effect waveforms (left column) are
displayed along with contour maps of sample-level statistics (middle column) and raster plots of cluster-level statistics (right column).
Clusters with an associated p-value below the specified threshold (a = 0.05) are shown in blue shades; all other clusters (gray shades)
were statistically not significant.
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clusters). We also compared positive and negative Pro-
portional Quantifiers to make sure that the effects of
proportionality were not caused exclusively by the nega-
tive quantifiers: we found no significant differences
overall, nor for any Digit Load or Truth Value
comparison.

The results from the sentence final adjective suggest
two conclusions. Firstly, there are clear effects of Truth
Value, comparable to those found in our previous
study, suggesting that at the time of adjective onset,
participants know whether the sentence is True or
False. Secondly, ERP effects are modulated by Quantifier
Class and Digit Load. Indeed, most of the differences are
found in the Truth Value effect time window (i.e. 250–
400msec), which is compatible with an effect of Quan-
tifier Class and Digit Load on verification. However,
these results cannot be attributed to modulations of a
single ERP component, as the differences that reach sig-
nificance in the different comparisons originate at
different points in the epoch.

3.2.2. Sentence internal effects: noun
Because a truth value has been computed at the sen-
tence final adjective, as evidenced by the truth value
effects we observe, a verification procedure is plausibly
completed by this point. Consequently, we expect the
effects of memory storage on the verification algorithm
to occur earlier in the sentence, i.e. at the noun, as was
the case in our previous study. Because the truth value
could not be known at this point in the sentence, we
did not distinguish between true and false trials in the
analysis.

We first examined the overall effect of Quantifier
Class, comparing Proportional to Non-Proportional
quantifiers irrespective of Digit Load. Upon visual inspec-
tion, ERP differences seem to occur early in the epoch,
particularly over left-hemispheric electrodes, possibly
already around the N100–P200 components. Nouns fol-
lowing non-proportional quantifiers appear to be associ-
ated with a larger P200, but neither Quantifier Class
shows distinctive P200, P300 or N400 effects. Rather,
the difference between the classes sustains throughout
the epoch, with nouns after Proportional Quantifiers
being more negative than after Non-Proportional quan-
tifiers, particularly on temporal and centro-parietal elec-
trodes of the left hemisphere (Figure 5).

Assessing these differences statistically, we found a
broadly distributed, predominantly left-hemispheric,
sustained negative effect (first-ranked negative cluster,
NEG1: Tsum = −5610.515, S = 1975, p = 0.017) that lasts
from approximately 260 to 500msec. There were no
effects of Digit Load, and no statistically significant
differences between 2 and 4 Digits within each

quantifier class. Like for the sentence-final effects, we
compared the different quantifier types within a class.
None of the quantifier types (Aristotelian vs Numerical,
Positive vs Negative Proportional) were significantly
different overall or for either digit condition (2 or 4).

In summary, Quantifier Class is what is driving the
sentence-internal effect. In particular, Proportional
Quantifiers are associated with consistently more nega-
tive waveforms, particularly in the left hemisphere.
There are some differences in the comparison between
Quantifier Classes depending on Digit Load: The effect
of Quantifier Class is larger for 4 Digits than for 2
(NEG1: Tsum = −2383.680, S = 884, p = 0.046), and the
effect for 2 Digits does not reach significance (NEG1:
Tsum = −1703.766, S = 697, p = 0.071). The reason that
the 4 Digit case is statistically weaker than the overall
effect–in terms of Tsum, size, and p-value–despite being
larger than the 2 Digit case, is presumably reduced stat-
istical power resulting from only having half as many
trials as in the overall comparison.

3.2.3. Interaction effects
In order to ascertain whether the differences we found
for the different Digit Loads and Truth Values were
true interaction effects, we constructed difference
waves for Proportional and Non-Proportional at each
digit condition, and compared the 2 Digit difference to
the 4 Digit difference. At the noun, the cluster algorithm
did not reveal a significant interaction (no significant
positive or negative clusters), indicating that the differ-
ence at the noun is primarily modulated by Quantifier
Class. By contrast, the same comparison at the adjective
revealed one significant and one borderline significant
positive cluster (POS1: Tsum = 6528.903, S = 2667, p =
0.013; POS2: Tsum = 1627.001, S = 643, p = 0.081). Both
clusters are centrally distributed, and the largest
cluster lasts from 450 ms after adjective onset to the
end of the epoch, and the smaller is found between
160 and 230ms. This means that there is a significantly
larger negative difference between Proportional and
Non-Proportional quantifiers in the higher Digit Load
condition after the effect of Truth Value (see Figure 4).

3.2.4. Linear models of interactions between ERPs
and individual WM scores
To explore the potential relationship between the ERPs
and their interactions with the pretest scores, we com-
puted the individual mean cluster amplitude and Tsum
for each participant and constructed general linear
models to assess significance.

At the noun, the linear model using mean amplitude
in the first-ranked negative cluster did not reveal any sig-
nificant effect (see Table 6). In particular, the interaction
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between Digit Load and Quantifier Class is not signifi-
cant, and there were no significant main effects of WM
measures on the ERPs nor any significant interactions
between WM measures and the two experimental
manipulations. The latter results were replicated for
the Tsum analysis, where working memory scores had
no significant impact on the difference between Pro-
portional and Non-Proportional Quantifiers in either of
the significant clusters (i.e. overall and 4 Digits). See
Table 7 for the overall cluster, and Supplementary
material B, section B.1, for the 4 Digit case.

At the sentence final adjective, the linear mixed-
effects model of mean cluster amplitude in the first-
ranked negative cluster for quantifier class and truth
value revealed only significant main effects for Digit
Load and Truth Value, and no significant interaction

Figure 5. ERP effects of Quantifier Class (Proportional–Non-Proportional) across Digit Loads (upper row), and for 4 Digits (middle row),
time locked to the onset of the sentence-internal noun (0 msec). Raw effect waveforms (left column) are displayed along with contour
maps of sample-level statistics (middle column) and raster plots of cluster-level statistics (right column). Clusters with an associated
p-value below the specified threshold (a = 0.05) are shown in blue shades; all other clusters (gray shades) were statistically not
significant. ERP waveforms at selected left-hemispheric electrodes (bottom row), time locked to the onset of the sentence-internal
noun (0 msec).

Table 6. Linear mixed-effects model of mean amplitude in the
first-ranked negative cluster at the noun for Proportional vs
Non-Proportional Quantifiers.
Condition β SE df t p

Intercept −1.455 0.683 166.641 −2.129 0.035
Proportional −0.711 0.791 135.000 −0.899 0.370
4 Digits 0.039 0.177 135.000 0.220 0.826
Eriksen 0.846 0.620 127.371 1.363 0.175
Sternberg −0.024 0.637 127.371 −0.380 0.705
Brown-Peterson 1.094 0.616 127.371 1.777 0.078
Quantifier Class × Digit Load −0.079 0.250 135.000 −0.315 0.754
Quantifier Class × Eriksen −0.099 0.272 135.000 −0.364 0.716
Quantifier Class × Sternberg 0.129 0.279 135.000 0.461 0.646
Quantifier Class × Brown-
Peterson

−0.029 0.270 135.000 −0.108 0.914

Digit Load × Eriksen −0.096 0.136 135.000 −0.706 0.481
Digit Load × Sternberg −0.033 0.139 135.000 −0.237 0.813
Digit Load × Brown-
Peterson

−0.131 0.135 135.000 −0.970 0.334
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effects (see Table 8). In the regression on individual level
Tsum, only the intercept was significant, indicating that
most of the variation is due to random individual differ-
ences. We report the result for the overall cluster in Table
9 and refer the reader to Supplementary material B,
section B.2, for the same analysis of significant clusters
by Digit Load and Truth Value.

4. Discussion

Overall, we found that memory load affects processing
of Proportional and Non-Proportional Quantifiers differ-
ently. Both classes of quantifiers exhibit a negative effect
in the N200–N400 time-window for False vs True com-
pletions of the sentence, indicating that neural pro-
cesses are sensitive to the truth value of the sentence
shortly after presentation of the final word. Moreover,
after the Truth Value effect, there is a larger negative
difference between Proportional and Non-Proportional
for 4 Digits than for 2. At the sentence-internal noun,
we found a sustained negative effect of Proportional
relative to Non-Proportional quantifiers, but no statisti-
cally reliable interaction was found with Digit Load.

Comparing these results with other reports in the lit-
erature, the sentence-final effects are consistent with
those found in our previous experiment (Bremnes
et al., 2022). The effect of Truth Value is earlier than a tra-
ditional N400 (Augurzky et al., 2017; Knoeferle et al.,
2011; Vissers et al., 2008). Early onset N400-like effects
have been observed in contexts where semantic expect-
ancy is very high (Van Petten et al., 1999), such as in the
context of a picture (Vissers et al., 2008), but such early
negativities have also been argued to reflect a mismatch
between an active representation of the picture and the
representation of the incoming sentence, manifesting as
an N2b (D’Arcy et al., 2000; Wassenaar & Hagoort, 2007).
Which of these interpretations turn out to be correct is
inconsequential to our main argument, as both of
them entail the completion of a verification procedure.

The truth value effect can be followed by a positivity for
more complex stimuli or tasks (Augurzky et al., 2017, 2019;
Augurzky, Hohaus, et al., 2020; Augurzky, Schlotterbeck,
et al., 2020), and we find indications of that in contrasts
involving Proportional quantifiers. However, when truth
value is factored out, the interaction analysis reveals that,
at the sentence-final adjective, there is a negative differ-
ence between Proportional and Non-proportional quan-
tifiers for 4 Digits which is not found for their 2 Digit
counterparts. Such negative shifts have previously been
associatedwith recomputation of discoursemodels or revi-
sion of a discourse-level inference (Baggio et al., 2010,
2008; Pijnacker et al., 2011; Politzer-Ahles et al., 2013).

The sentence-internal effects described here are
different from those we found in the previous study

Table 8. Linear mixed-effects model of mean amplitude in the first-ranked negative cluster at the adjective for Proportional vs Non-
Proportional Quantifiers.
Condition β SE df t p

Intercept 0.133 0.717 220.587 0.186 0.852
Proportional 0.443 0.815 316.000 0.543 0.587
Digit Load 0.450 0.173 316.000 2.589 0.010
True 2.026 0.348 316.000 5.829 , 0.0001
Eriksen 0.992 0.779 220.587 1.274 0.204
Sternberg 0.290 0.799 220.587 0.363 0.717
Brown-Peterson 0.276 0.773 220.587 0.357 0.722
Quantifier Class × Digit Load −0.382 0.246 316.000 −1.555 0.121
Quantifier Class × Truth Value −0.528 0.491 316.000 −1.075 0.283
Quantifier Class × Eriksen −1.394 0.886 316.000 −1.574 0.117
Quantifier Class × Sternberg −0.212 0.909 316.000 −0.234 0.815
Quantifier Class × Brown-Peterson −0.970 0.880 316.000 −1.103 0.271
Digit Load × Eriksen −0.096 0.189 316.000 −0.510 0.611
Digit Load × Sternberg 0.029 0.194 316.000 0.150 0.881
Digit Load × Brown-Peterson 0.056 0.188 316.000 0.299 0.765
Truth Value × Eriksen −0.675 0.377 316.000 −1.790 0.074
Truth Value × Sternberg −0.248 0.388 316.000 −0.641 0.522
Truth Value × Brown-Peterson −0.026 0.375 316.000 −0.069 0.945
Quantifier Class × Digit Load × Eriksen 0.369 0.267 316.000 1.381 0.168
Quantifier Class × Digit Load × Sternberg 0.045 0.274 316.000 0.165 0.869
Quantifier Class × Digit Load × Brown-Peterson 0.208 0.265 316.000 0.785 0.433
Quantifier Class × Truth Value × Eriksen 0.084 0.534 316.000 0.158 0.875
Quantifier Class × Truth Value × Sternberg −0.070 0.548 316.000 −0.128 0.898
Quantifier Class × Truth Value × Brown-Peterson 0.253 0.530 316.000 0.477 0.634

Table 7. Linear model of individual Tsum in the first-ranked
negative cluster at the noun for Proportional vs Non-
Proportional Quantifiers Overall.
Condition β SE t p

Intercept −17.028 4.382 −3.886 , 0.001
Eriksen −7.360 4.762 −1.545 0.129
Sternberg 1.746 4.888 0.357 0.723
Brown-Peterson −6.119 4.730 −1.294 0.203
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(Bremnes et al., 2022) and from those observed in earlier
research on quantifier verification (Augurzky, Hohaus,
et al., 2020; De Santo et al., 2019; Politzer-Ahles et al.,
2013). These studies found positivities for proportional
quantifiers, for negative polarity expressions, and for
semantic violations, while here we observed a negativity
in the 250–500msec time-window at the noun. Politzer-
Ahles et al. (2013) did find a sustained negativity for
pragmatic violations on quantifiers, but their effect was
different both in terms of latency (500–1000msec
post-stimulus) and distribution (posterior) than our
own negativity. The effect of Proportional quantifiers is
more akin to the SANs observed for recomputation
and ambiguity in discourse models (Baggio et al., 2008;
Müller et al., 1997; Münte et al., 1998; van Berkum
et al., 1999, 2003) or the LANs observed for long-distance
dependencies (Fiebach et al., 2001; King & Kutas, 1995;
Kluender & Kutas, 1995; Vos et al., 2001). Of particular
note is the fact that such negativities have been
reported to be modulated by working memory load
(Vos et al., 2001).

Since our behavioural results are partially in line with
earlier work (Szymanik & Zajenkowski, 2011; Zajen-
kowski & Szymanik, 2013; Zajenkowski et al., 2014), in
that task performance is correlated with working
memory scores, one might expect performance on the
measures of executive function to correlate with the
ERPs (Fiebach et al., 2002; Vos et al., 2001). However,
no significant correlation was found. It is worth noting
that the behavioural correlations are statistically
weaker than those observed previously, and the
Eriksen task did not correlate at all, contrary to pre-
viously reported effects (Zajenkowski & Szymanik,
2013; Zajenkowski et al., 2014).

4.1. Embedding the automata theory in the
psychology of verification

In our previous study, we argued that an effect of truth
value on ERPs indicates that participants have implicitly
already determined whether the sentence is true or false
(Bremnes et al., 2022). The interaction with memory we
observed here is predominantly after the truth value
effect. Since these later effects are modulated by

memory load, they are also potential candidates for
neural instantiations of the abstract automata memory,
thereby seemingly casting doubt on our original
interpretation of the time-course of the verification
process.

One possibility is therefore that participants wait until
the proposition is completed and only subsequently
initiate the verification procedure. On this view, the ver-
ification process starts when there is some evidence for
either truth or falsity, and ends as soon as one of them is
chosen. This view of verification contrasts with the auto-
mata view, where the entire computation of a semantic
automaton is the verification process: i.e. the processing
of all the objects denoted by the noun phrase, for each
object deciding whether it is has a property or not, and
making a decision once all the objects in the domain
have been classified. Nevertheless, it has been argued
that while quantifiers are interpreted incrementally,
their semantic representations are underspecified in
such a way as to allow the final interpretation to occur
significantly later, in particular in contexts where task
demands are high, like in our case (Urbach et al., 2015;
Urbach & Kutas, 2010; see also Arcara et al., 2019).
Another conceivable alternative, that is more compati-
ble with the automata view, is therefore that the pro-
cedure initiated at the noun is some kind of counting
or estimation algorithm that returns numerosities, and
that the actual verification happens only after adjective
onset, where the participants are comparing the esti-
mated numerosities of, e.g. all circles and all red
circles. This would be an alternative explanation of the
differences between quantifier classes at the adjective:
instead of being downstream consequences of verifica-
tion, they are direct verification effects. Note that this
does not change the complexity claims we set out to
test: unbounded counting, which would be required
by any quantifier without a specified numerical value,
is not doable with an FSA (Hopcroft & Ullman, 1979).

However, this account leaves the effect of truth value
unexplained, since the verification procedure is only
instantiated at the adjective and seemingly subsumes
the truth value effect, at least in the 4 digit case. One
could argue that there is an inherent cost to processing
false, as opposed to true, sentences (Chang, 1986;
Clark & Chase, 1972, 1974; Just & Carpenter, 1971), but
that presupposes knowing the truth value. Since
knowing the truth value entails having verified the sen-
tence, a more plausible explanation is that a verification
processes has already been completed at the adjective,
i.e. the participants predict the sentence to be a true
description of the picture. The interpretation we have
previously adopted provides an explanation of sen-
tence-final effects in terms of violation of predictions.

Table 9. Linear model of individual Tsum in the first-ranked
negative cluster at the adjective for Proportional vs Non-
Proportional Quantifiers Overall.
Condition β SE t p

Intercept −25.088 5.319 −4.717 , 0.0001
Eriksen −5.724 5.780 −0.990 0.327
Sternberg −4.130 5.932 −1.172 0.490
Brown-Peterson −6.728 5.741 −1.172 0.248
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But if participants are not building a model in which the
sentence is expected to come out true of the picture,
one should, in the absence of an alternative account of
the differences, expect symmetry between true and
false sentences, since the only difference between
them is their truth and falsity relative to the model.
The burden is therefore on an alternative account to
explain the observed asymmetry.

Bearing that in mind, we still maintain that the pro-
cedure that best explains our results, and that is most
compatible with other findings, is one in which partici-
pants build a model verifying the sentence on-line
(Baggio, 2018; Clark, 1976; Clark & Chase, 1972, 1974;
Johnson-Laird, 1983; Just, 1974; Just & Carpenter, 1971;
van Lambalgen & Hamm, 2005; Zwaan & Radvansky,
1998), or proceed on the basis of the expectation that
the picture provides a model for the sentence, i.e. that
the sentence is true of the picture. One possibility here
is that the brain entertains two models–one model of
the picture, and one of the sentence–that it expects
will conform to one another. The sentence model is
being updated with each incoming word, and previous
studies have shown that the picture model constrains
the sentence model and gives very high semantic
expectancy for the upcoming words (Augurzky et al.,
2017; Knoeferle et al., 2014; Kuperberg, 2016; Zwaan,
2015; for evidence of the converse relation, see Coco
et al., 2017). The incompatibility of the final word with
this model of the sentence–i.e. the sentence matching
the picture–is what is causing the N400-like activity
observed for the False vs True comparison. This is true
irrespective of whether this negativity is a true N400 or
whether it reflects perceptual mismatch (Knoeferle
et al., 2011; Vissers et al., 2008), as both alternatives pre-
suppose the construction of a model for the sentence.

It is therefore possible that these sentence-final
effects reflect computation of the sentence model and/
or decision-making processes (Augurzky et al., 2017;
Knoeferle et al., 2014). The differences between Quan-
tifier Classes at this point–i.e. the interaction between
Quantifier Class and Digit Load–do suggest that the
entire process of verification, from determining
the truth value to making a judgement, is affected by
the complexity of the computational problem. This
interpretation also explains the interaction effect at the
adjective, since the negative shift has been associated
with ambiguity in, revision of and difficulty of inte-
gration into discourse models (Baggio et al., 2010,
2008; Pijnacker et al., 2011; van Berkum et al., 1999,
2003). The same is true of the modulation of the truth
value effects by Quantifier Class–compared to Non-Pro-
portional, Proportional Quantifiers have a smaller
N400, followed by a positivity for the False vs True

comparison–as these effects are comparable to the
effects of other kinds of complexity (Augurzky et al.,
2017; Augurzky, Hohaus, et al., 2020; Politzer-Ahles
et al., 2013; see also Nieuwland, 2016; Urbach & Kutas,
2010). However, the automata theory does not predict
these differences, but only differences in determining
the truth value. Importantly, in order to build a sentence
model that is true of the sentence, one needs to know
what completion of the sentence would make it true,
which involves verifying the sentence. We therefore
expect that the differences in the verification procedure
predicted by the automata theory should occur prior to
the effect of Truth Value. If participants are building a
model of the sentence as the sentence unfolds, and
this model is completed by the final word, as evidenced
by the sentence-final Truth Value effect, then the differ-
ence between Quantifier Classes observed at the noun is
plausibly an effect of differences in the verification pro-
cedure, understood as per the automata theory.

The fact that these differences did not significantly
interact with Digit Load is problematic for the automata
view. One interpretation is that memory load builds
incrementally as sentence processing commences, and
that it is only when the additional resources for
making a decision are recruited that the interaction
effect of memory load is visible in the evoked potential.
This is in line with the prediction from Section 1.3 that if
there are larger differences in the 4 Digit condition, then
this could be explained by proportional quantifiers
straining participants’ cognitive capacity. Such an
interpretation is supported by previous findings where
effects that have a similar spatiotemporal distribution
to our interaction effect have been related to the
increased effort of integrating more complex infor-
mation into the wider context (Baggio et al., 2010,
2008; Pijnacker et al., 2011), which in this case is the
picture. Alternatively, it is not uncommon for sustained
effects to increase over time (see, e.g. Hagoort, 2003,
and references therein), so that a difference originating
at the sentence-internal noun might only reach signifi-
cance at the sentence-final adjective, which is the next
position of measurement.

Needless to say, there are at present no sentence pro-
cessing models that neatly explain all the effects we
observe. At this point, it is important to distinguish the
effects predicted by the automata theory from those
that fall outside its purview. The theory predicts there
to be a qualitative difference between proportional
and non-proportional quantifiers, which is confirmed
by our ERP results. Specifically, the difference should
be related to memory, and we therefore hypothesised
that manipulating memory load should lead to an inter-
action between Digit Load and Quantifier class. This
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hypothesis was also corroborated. The other effects are
not within the predictive scope of the automata
theory, and any interpretation of these effects can con-
sequently only be inferred from the previous literature.
In particular, the time-course of verification, the direc-
tion of the interactions and the precise memory
systems underlying them are not predicted by the
theory, and interpretation thus remains speculative.

4.2. The implementation of the memory
component

The fact that the sentence internal effect is different than
the one observed previously warrants an explanation. As
mentioned, the polarity of the effect is dependent on the
orientation of the dipole generator, but the effect in the
present study is different in both distribution and
latency as well. This suggests that different memory
components are involved depending on the task. For
example, in the absence of the digit matching task,
systems of recollection memory might suffice to
perform the task, thus yielding an LPC-like effect
(Rugg & Curran, 2007). By contrast, in the presence of
the digit matching task, additional systems of working
memory and executive function are recruited, resulting
in ERP signatures traditionally associated with working
memory in sentence processing, such as the SAN
(Baggio et al., 2008; Müller et al., 1997; Münte et al.,
1998; van Berkum et al., 1999, 2003) or sustained LAN
(Fiebach et al., 2001, 2002; Vos et al., 2001). This could
also explain the differences between Quantifier Classes
by Digit Load, since the different nature of the kinds of
verification algorithms (requiring or not requiring
memory) potentially alters the task of verifying the sen-
tence substantially enough to cause different memory
systems to be recruited. On the basis of the results pre-
sented here, it is not possible to decide which memory
systems (recollection memory, working memory) are
engaged by verification of the different Quantifier
Classes. Speculating, one possibility is that the negative
effect of working memory effectively cancels the posi-
tive effect of recollection memory, i.e. that the negativity
obscures a later positivity. Another possibility is that
given a certain task complexity, the entire task is per-
formed using a different memory system.

The data do not allow us to reverse infer which
memory components are involved, but only give us
new hypotheses to test. An important caveat for inter-
preting the present results is that while we observe an
effect of Quantifier Class, the effect is different from
the effects that have been observed previously.
Whether this is the result of different memory systems
being recruited, and if so, what causes different

cognitive resources to be deployed in different tasks,
remains an open question. Subsequent experiments
should therefore be designed to answer these unre-
solved issues. There are also some marginal length
differences between quantifiers (2 out of 6 proportional
quantifiers were 3 rather than 2 words), which may have
impacted processing at the noun following the quan-
tifier. However, as mentioned in the methods section,
we were not able to look at ERPs at the level of individual
quantifiers. A negative finding is that we could not cor-
relate the ERPs to the working memory or executive
function measures, as predicted by the theory. Future
studies should further probe these correlations, possibly
with other measures of working memory capacity, such
as reading or digit span. The low variation, at least for
some of the working memory tasks, does suggest that
either (1) the tests are not valid because they are
either too easy or too hard, so that the variation in the
sample cannot be detected, or (2) the sample is too
homogeneous. It might be that case that the population
our sample comes from–i.e. university students–might
not have enough spread in working memory capacity,
and future research should aim at including a more
diverse sample to explore whether the amplitude differ-
ences increase proportionally to the spread in the
population.

5. Conclusion

We have shown that the algorithmic complexity of a
minimal verification algorithm is associated with
different electrophysiological patterns, thus providing
a strong argument that the psychology and neuro-
science of language and reasoning ought to be informed
by results from theoretical computer science. One major
limitation of the previous study (Bremnes et al., 2022)
was that the relation to memory could not be demon-
strated experimentally and had to be inferred from the
theory. The findings presented herein, however,
suggest that the formal constraints on abstract
machines are not only also applicable to but are of the
same nature as the constraints on algorithms of
human sentence processing.

It has been suggested that computational complexity
analyses constitute an intermediate level between the
computational and the algorithmic level (Isaac et al.,
2014). These analyses should be able to assess
whether posited computational problems are plausibly
computable by the brain (van Rooij, 2008; van Rooij
et al., 2019). Our results, here and in Bremnes et al.
(2022), demonstrate that the minimal complexity of an
algorithm delineates a lower bound on the algorithms
used by the brain, regardless of their precise
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implementation. If, as our results indicate, the nature of
the computational resources, e.g. a memory require-
ment, can be inferred from the formal theory, the
space of possible algorithms used by the brain is con-
siderably narrower. By observing that humans are con-
strained by computational resources derivable from
formal theory and observable in the evoked potential,
the Marrian perspective permits us to ignore computa-
tionally implausible hypotheses that would otherwise
have to be tested. Consequently, the integration of
formal and experimental results enables well-founded,
plausible hypotheses that can likely reveal deep proper-
ties of the human capacity for language and cognition
more generally (Bird, 2021; van Rooij & Baggio, 2020,
2021).
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