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On the Synthesis of Sub-arrayed Planar Array

Antennas for Tracking Radar Applications
Luca Manica, Paolo Rocca, and Andrea Massa,

Abstract

The synthesis of compromise sum and difference patterns of large planar arrays is addressed in this letter by means of a
suitable implementation of theContiguous Partition Method (CPM ). By exploiting some properties of the solution space, the
generation of compromise sum-difference patterns is recast as the searching of the optimal path in a graph that codes theadmissible
solution space. Some numerical experiments are provided inorder to assess the effectiveness of the proposed method.

Index Terms

Monopulse Antennas, Large Planar Arrays, Compromise Pattern Synthesis, Sum and Difference Beams.

I. I NTRODUCTION

Search-and-track systems based on monopulse principles require antennas able to simultaneously provide (on receive)sum

and difference patterns. In real world applications, such antennas are usually highly directive with narrow beams (beamwidth

Bw typically of the order of1o in each angular direction) and low sidelobe levels (SLLs). Moreover, the difference pattern is

required to have the slope at boresight as deep as possible toimprove the radar sensitivity. In order to fit these requirements,

solutions based on planar arrays of wide dimensions with large numbers of elements are usually adopted [1][2]. In this case,

complex circuitry is needed to generate three independent beams (i.e., a sum pattern and two orthogonal difference patterns)

with greater costs and an enhancement of the mutual electromagnetic interferences. In order to avoid such drawbacks, the

sub-arraying strategy has been proposed [3]-[9]. Althoughill-conditioning does not affect global optimization-based method,

the computational burden raises exponentially with the number of elements and it turns out to be a cumbersome penalty in the

synthesis of large two-dimensional (2D) arrays. As a consequence, the synthesis of planar arrays has been previously addressed

in a few works. More in detail, the synthesis of the three monopulse modes of stripline-fed slot arrays and the problem of

mutual coupling effects have been considered in [10] and [11], respectively. A method to improve in a particular azimuthal

sector the difference radiation pattern sidelobe level of amonopulse antenna of a corporate-fed array type is presented in [12].

Successively, an improved sub-arraying method has been investigated in [4]. The synthesis of planar arrays has been also

addressed by means of a Simulated Annealing (SA) algorithm even though for assigned (i.e., not involved in the optimization)

sub-array configurations. Unfortunately, only small structures often not adequate for practical applications have been considered.

Recently, a computationally effective strategy has been presented in [9], namely the contiguous partition method (CPM ),

which takes definite advantage from the knowledge of the reference or optimal difference excitations. As a positive consequence,

theCPM guarantees fast convergence to the solution also in facing high-dimensional problems (i.e., with a large number of

unknowns) as shown in [13] dealing with linear arrays. Moreover, such a method demonstrated its robustness as well as an

easy implementation. In order to evaluate the validity of the underlying idea and to further assess the flexibility of theCPM ,

the approach is applied here to the synthesis of large2D planar arrays with a large number (N > 1000) of radiating elements.

On the other hand, it should be pointed out that this work deals with an excitation matching problem (i.e., the definition of a

“best compromise” difference pattern close as much as possible to the reference one) and not theSLL control of the achieved

solution. As a matter of fact, theCPM , in its bare version, does not allow a direct control of such aparameter. The potentiality

of a modified version of theCPM in effectively dealing with theSLL control has been discussed in [14], where the reference

difference pattern is updated until the constraints on the compromise solution were satisfied.

The authors are with the Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 14, 38050 Trento - Italy
(e-mail: luca.manica, paolo.rocca@disi.unitn.it; andrea.massa@ing.unitn.it)
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Fig. 1. Sub-Arrayed Planar Array Synthesis (N = 7860, d = λ
2

, r = 20λ) - Relative power distribution of the reference (a) Taylor sum pattern
(SLL = −50 dB, n = 20) and of the (b) H − mode Bayliss difference pattern (SLL = −50 dB, n = 18) .

II. M ATHEMATICAL FORMULATION

Let us consider a planar array withN elements uniformly-spaced on an aperture (d being the inter-element distance along

the x andy axes) that generates the following array pattern:

AF (θ, φ) =

M
∑

m=−M

Pm
∑

p=−Pm

Impe
j 2π sin θ

λ
(cos φxm+sin φyp) (1)

Imp (m, p 6= 0) being an excitation coefficient andN =
∑M

m=−M Pm. Moreover,xm =
[

m− sgn(m)
2

]

× d, m = ±1, ...,±M

andyp =
[

p− sgn(p)
2

]

× d, p = ±1, ...,±Pm.

The reference sum pattern and the difference ones (i.e., theE-mode and theH-mode) are generated by setting the array

excitationsI = {Imp; m = 1, ...,M ; p = 1, ..., Pm} to S =
{

smp = s(−m)p = sm(−n) = s(−m)(−p); m = 1, ...,M ;

p = 1, ..., Pm} and toD△ =
{

d△mp = d
△

(−m)p = −d△
m(−p) = −d△(−m)(−p); m = 1, ...,M ; p = 1, ..., Pm}, △ = E, H ,

respectively. The above assumed quadrantal symmetry or anti-symmetry allows one to consider onlyNr = N
4 excitations

during the synthesis process. However, since the implementation of three totally independent signal feeds is generally out

of the question, the optimal compromise technique is adopted. Such a method consists in first fixing the element excitations

affording the optimal sum pattern (i.e.,I = S) and then determining the best partition of theNr array elements inQ sub-

arrays (i.e., the aggregation vectorA△ =
{

a△mp; m = 1, ...,M ; p = 1, ..., Pm

}

, wherea△mp ∈ [1, Q]) and the sub-array weights

W△ =
{

w△
q ; q = 1, ..., Q

}

such that the difference patternsAF = AF
{

C△

}

, △ = E, H , generated by the compromise

excitationsC△ =
{

c△mp = smpδ
(

a△mp, q
)

w△
q ; m = 1, ...,M ; p = 1, ..., Pm}

1 approximate as closely as possible the reference

ones,AF = AF
{

D△

}

.

Towards this end and likewise the linear case [9], a suitablecustomization of theCPM technique is adopted for the two-

dimensional architecture, as well. In the following, the key-points of such an implementation will be detailed also pointing out

the main differences with respect to the case of linear arrays.

Starting from the observation [9] that the compromise solution is a contiguous partition (CP ) of the ordered listL =

{ln; n = 1, ..., Nr}, ln ≤ ln+1 (n = 1, ..., Nr − 1), l1 = minmp

{

γ△mp

}

, lNr
= maxmp

{

γ△mp

}

, γ△mp being thereference gain

defined asγ△mp =
d△

mp

smp
, the solution space (i.e., the whole set ofCPs) is coded into a suitable graph to minimize the storage

costs as well as to facilitate the sampling of the space of admissible solutions. As a matter of fact, the use of the tree-based

representation of the linear case would have required a non-negligible amount of computer memory and a redundant description

with some portions of the tree recursively-shared. The graph is composed byQ rows andNr columns. Theq-th row is related

to the q-th sub-array (q = 1, ..., Q), whereas then-th column (n = 1, ..., Nr) maps theln-th element ofL. A pathψ of the

graph codes a compromise solution and it is constituted by a set of Nr vertexes,{tn; n = 1, ..., Nr}, connected byNr − 1

links, {en; n = 1, ..., Nr − 1}.

1δ
“

a△
mp, q

”

= 1 if a△
mp = q andδ

“

a△
mp, q

”

= 0, otherwise.
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Fig. 2. Sub-Arrayed Planar Array Synthesis (N = 7860, d = λ
2

, r = 20λ) - Polar plots of the synthesizedSLR values in the rangeφ ∈ [0o, 89o] when
Q = 3, 5, 10, 15, 20 (Reference Bayliss pattern:SLL = −50 dB, n = 18).

The optimal compromise corresponds to the aggregationA
△

opt that minimizes the cost function

Ψ
(

A△

)

=
1

Nr

Q
∑

q=1

M
∑

m=1

Pm
∑

p=1

s2mp

∣

∣

∣

[

γ△mp − gmpq

(

A△

)]∣

∣

∣

2

, (2)

which quantifies the distance between the reference excitations and the compromise ones,g△mnq = gmnq

(

A△

)

being the

estimated gains given by

g△mpq =
P

M
m=1

PPm
p=1 s2

mpδ(a△

mp, q)γ△

mp
P

M
m=1

PPm
p=1 s2

mpδ(a
△
mp, q)

,

m = 1, ...,M ; p = 1, ..., Pm; q = 1, ..., Q.
(3)

In order to determineA△

opt, a sequence of trial solutions
{

A
△

k ; k = 1, ..., kend

}

or, in an equivalent fashion, paths of

the graph{ψk; k = 1, ..., kend} is generated by exploring the graph structure,k being the iteration index. The initial path

ψ0 =
{(

t
(k)
n , e

(k)
m

)

; n = 1, ..., Nr; m = 1, ..., Nr − 1
}

is generated by settingarg
(

t
(0)
1

)

= 1 and arg
(

t
(0)
N

)

= Q and

randomly assigning the other vertexes to the sub-arrays such that arg
(

t
(0)
n−1

)

≤ arg
(

t
(0)
n

)

≤ arg
(

t
(0)
n+1

)

and there is an

uniform distribution of the array elements among the sub-arrays. Then, the trial pathψk is iteratively updated (ψk ← ψk+1,

A
△

k ← A
△

k+1) just modifying the memberships of theborder vertexes2 of ψk and the corresponding links, until a maximum

number of iterationsKmax (k > Kmax) or the following stationary condition holds true. The solution reached atk = kend

(i.e., the pathψk and the corresponding aggregationA△

k ) is assumed as optimal compromise and used to define the sub-array

weights as follows
w△

q = δ
(

a△mp, q
)

g△mpq

m = 1, ...,M ; p = 1, ..., Pm; q = 1, ..., Q.
(4)

III. N UMERICAL ASSESSMENT

This section is devoted to assess the reliability and efficiency of theCPM in synthesizing wide planar arrays composed

by large numbers of radiating elements. As an illustrative test case, let us consider a planar geometry with circular boundary

and radiusr = 20λ. TheN = 7860 radiating elements are displaced on a regular gridλ
2 -spaced along the two Cartesian

directions. Concerning the optimal patterns, the sum excitationsS have been fixed to those of the Taylor pattern [15] with

SLL = −50 dB andn = 20 [Fig. 1(a)]3, whereas the referenceH−mode DH has been chosen to afford a Bayliss pattern [15]

with SLL = −50 dB andn = 18 [Fig. 1(b)]. The beamwidths of the sum and difference patterns are equal toBS
w = 1.57o and

BDH

w = 1.26o, respectively. Because of the aperture geometry, the optimization has been limited to the differenceH −mode

since theE−mode excitations satisfy the following relationshipBE =
{

bEmp = −bHmp; m = 1, ...,M ; p = 1, ..., Pm

}

. Such a

2A vertex tn (n = 2, ..., N − 1) is calledborder vertex when it has at most one of its adjacent vertexes,tn−1 or tn+1, that belongs to a different row of
the graph.

3In the figures,u = sin θ cos φ andv = sin θ sinφ [15], whereθ ∈ [0, π/2] andφ ∈ [0, 2π].
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TABLE I

VALUES OF THE PATTERN INDEXES.

[dB] Q = 3 Q = 5 Q = 10 Q = 15 Q = 20 Ref. [15]

SLL [dB] −23.72 −32.19 −41.62 −43.79 −46.81 −50.00

Bw [deg] 1.251 1.233 1.229 1.228 1.224 1.224
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Fig. 3. Sub-Arrayed Planar Array Synthesis (N = 7860, d = λ
2

, r = 20λ) - Behavior of the cost functionΨ versus the iteration indexk.

condition allows one to synthesize a radar antenna with the same angular resolution in both the azimuthal (H) and elevation

(E) directions. On the other hand, it should be noticed that theCPM might be applied twice and independently for the

two difference modes to obtain different performances along each angular coordinate without a significant increasing of the

computational costs. As far as the sub-arraying strategy isconcerned, the number of sub-arrays of the compromise feed network

has been varied in the rangeQ = [3, 20]. Moreover, besides the−3 dB beamwidthBw, let us consider the sidelobe ratio (SLR)

as a quantitative index to evaluate the sidelobe features ofthe synthesized pattern in the whole aperture. It is defined as follows

SLR (φ) =
SLL (φ)

maxθ [AF (θ, φ)]
, 0 ≤ θ <

π

2
(5)

AF (θ, φ) being the array factor. Since the differenceH − mode vanishes atφ = 90o, the values of theSLR of the

synthesized patterns have been controlled in the rangeφ ∈ [0o, 89o]. Fig. 2 shows the plots of theSLRs to fully evaluate the

CPM behavior whenQ = 3, 5, 10, 15, 20. For completeness, the values of the maximum level of the secondary lobes on the

whole aperture and the−3 dB Bw are reported in Tab. I. As expected, theCPM guarantees to asymptotically approximate

the reference pattern when the number of sub-arrays gets closer and closer toNr. Such a property is further confirmed by the

behavior of the cost functionΨ (Fig. 3), which quantifies the fitting of the compromise excitations with the reference ones.

These plots point out the robustness and effectiveness of the proposed method in matching the reference pattern. As a matter of

fact, ever since the initial iteration (k = 0) when an uniform partitioning of the ordered listL is chosen, the solution appears to

be closer and closer to the reference one just increasing thenumber of sub-arrays (Fig. 3,k = 0). Moreover, for a given value

of Q, theCPM better approximates the Bayliss pattern iteratively (k ≥ 1) changing the sub-array memberships of the border

elements. Fig. 4(a) and Fig. 4(b) give the plots of theu-cuts atφ = 0o and the pictorial representations of theSLL behavior,

respectively, of the compromise solutions synthesized by the CPM as well as those of the optimal patterns. Moreover, the

relative power distributions obtained at the convergence iteration (k = kend) whenQ = 3 andQ = 10 are shown in Fig. 5

. In order to allow the reproduction of those patterns, to be also used as benchmarks in future comparisons, Fig. 6 and Tab.

II give a pictorial representation of the sub-array configurations and the values of the sub-array gains, respectively.Finally,

since a key feature of the proposed technique is the faster convergence, let us focus on theCPM computational efficiency

by analyzing the values of the indexes reported in Tab. III . More in detail,kend is the number of cost function evaluations

to reach the final solution,T is the correspondingCPU -time. Moreover,U andU (ess) indicate the dimension of the solution

space of the stochastic optimization-based approaches andof theCPM , respectively. Due to the non-negligible reduction of
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Fig. 4. Sub-Arrayed Planar Array Synthesis (N = 7860, d = λ
2

, r = 20λ) - (a) Azimuthal (φ = 0o) plot of the relative power and (b) behavior of the
SLL versus the azimuth angle for the Bayliss pattern (SLLref = −50 dB, n = 18), the synthesized ones withQ = 3, 10, 20 sub-arrays, and the Taylor
pattern (SLL = −50 dB, n = 20).
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Fig. 5. Sub-Arrayed Planar Array Synthesis (N = 7860, d = λ
2

, r = 20λ) - Relative power distribution of the differenceH − mode pattern when (a)
Q = 3 and (b) Q = 5.
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Fig. 6. Sub-Arrayed Planar Array Synthesis (N = 7860, d = λ
2

, r = 20λ) - Sub-array configuration of the differenceH −mode pattern when (a) Q = 3
and (b) Q = 5.
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TABLE II

SUB-ARRAY GAINS FOR THE SOLUTION WITHQ = 3 AND Q = 10.

Q w1 , ..., wq ; q = 1, ..., Q

3 0.288, 0.870, 1.484

10 0.041, 0.135, 0.258, 0.421, 0.528, 0.795, 1.009, 1.230, 1.462, 1.711

TABLE III

VALUES OF THE COMPUTATIONAL INDEXES.

kend T [sec] Uess U

Q = 3 579 11.56 1.92 × 106 O

“

10937
”

Q = 5 1804 33.54 6.18 × 1011 O

“

101373
”

Q = 10 1084 20.96 1.17 × 1024 O

“

101965
”

Q = 15 2795 24.19 1.35 × 1035 O

“

102311
”

Q = 20 3207 48.57 2.79 × 1045 O

“

102556
”

the dimension of the solution space as well as the efficiency of the graph-based searching procedure, theCPU -time to obtain

the final solution is less than one minute on a3.4GHz PC with 2GB of RAM , whatever the experiment (Tab. III).

IV. CONCLUSIONS

In this letter, the design of large planar arrays generatingcompromise sum-difference patterns has been carried by means of

theCPM , which exploits the knowledge of the independently optimumsum and difference excitations. Starting from a graph-

based representation of the space of admissible solutions,the synthesis of compromise difference modes has been obtained

through a path searching procedure that allows a considerable reduction of the problem complexity as well as a significant

saving in terms of storage resources andCPU -time.
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