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Abstract. We discuss the scaling of the effective action for the interact-
ing scalar quantum field theory on generic spacetimes with Lorentzian
signature and in a generic state (including vacuum and thermal states,
if they exist). This is done constructing a flow equation, which is very
close to the renown Wetterich equation, by means of techniques recently
developed in the realm of perturbative Algebraic Quantum Field the-
ory (pAQFT). The key ingredient that allows one to obtain an equation
which is meaningful on generic Lorentzian backgrounds is the use of a
local regulator, which keeps the theory covariant. As a proof of concept,
the developed methods are used to show that non-trivial fixed points arise
in quantum field theories in a thermal state and in the case of quantum
fields in the Bunch–Davies state on the de Sitter spacetime.
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1. Introduction

In this paper we extend functional renormalization methods to obtain flow
equations for the effective action à la Wetterich in curved Lorentzian back-
grounds and in generic states. Here we study the case of a real quantum scalar
field, but the main ideas and methods we use here are applicable to other
types of fields. To derive the flow equations, we work in the recently developed
framework of perturbative algebraic quantum field theory [10,31,38,39,41,59]
(pAQFT) in the functional approach [11]. However, using ideas similar to those
of [16] the obtained result is valid also in an exact sense.

Our method is based on the average effective action approach to the func-
tional renormalization group, which was developed in a broad range of appli-
cations from the seminal papers of Wetterich [66,73,75]. In Wilson’s modern
formulation of the renormalization group [76], short-distance fluctuations are
progressively integrated-out, obtaining a coarse-grained, low-energy descrip-
tion of a system from its microscopic degrees of freedom.

In the functional approach [5], the fundamental object is the generating
functional for the 1PI Feynman diagrams, regularised introducing a momen-
tum cut-off which suppresses long-range fluctuations. The average effective
action acts as a microscope with variable resolution, which permits to move
from the fine-grained, microscopic description to the rough, macroscopic view.
The equation governing the flow of the fluctuations from the microscopic to the
macroscopic scale is the Wetterich equation [74], developed from earlier ideas
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of Polchinski [57]. Within the functional approach, non-perturbative meth-
ods to approximate the Wetterich equation have been developed, opening the
possibility to study non-perturbative effects in highly correlated systems. The
Functional Renormalization Group (FRG) has found numerous applications
ranging from statistical physics to high-energy particle physics (QCD in par-
ticular), with the generalization of the Wetterich equation to include gauge
fields [61], and to approaches to quantum gravity based on the asymptotic
safety scenario [8,52,60].

Most results within the FRG approach have been derived in Euclidean
spaces. Investigations on Lorentzian signature FRG flows, based on analytic
continuation of Euclidean correlation functions, have been initiated in [29]. A
different approach, based on real-time Schwinger-Keldysh formalism and the
spectral representation of correlation functions in Minkowski spacetime, has
been developed in [4,42–45,54] and is currently under investigation. Finally,
a Lorentzian study of Asymptotic Safety in quantum gravity, based on a 3+1
decomposition of the metric, can be found in [51].

Nice reviews on the use of the functional renormalization group method
related to asymptotic safety can be found in [26,53,55,64,65]. Recent impor-
tant developments in the latter research area include [28], which postulates a
flow equation for the graviton spectral function in Lorentzian signature. Our
current work adds to this by providing a framework where this flow equation
can be derived from first principles and further generalized to curved space-
times with Lorentzian signature.

The Wetterich flow equation is usually derived in the following way: one
starts with considering I + J , where I is the action of the given theory and
J =

∫
jχ is the term describing the smearing of the field χ with an external

current j. Consider Z(j) = 〈exp(iI + iJ)〉, the generating functional for the
time-ordered correlation functions of the theory. The connected, time-ordered
correlation functions are obtained from W = −i log Z by means of functional
derivatives. Having a full control over Z or W would allow one to obtain the
precise form of the correlation functions of the theory and hence would provide
access to the interacting quantum theory.

Since the direct analysis of Z is usually impractical, it is slightly better to
study the associated effective action Γ̃. To obtain Γ̃, one starts by introducing
the field φ defined as the first functional derivative of W , and thus depending
on j. In the literature φ is called the classical field because it arises from an
expectation value. The relation between φ and j can be inverted, at least in per-
turbation theory, giving j = jφ. The effective action Γ̃(φ) = W (jφ)−∫ ddxjφφ
is then obtained from W by means of a Legendre transform. The effective
action Γ̃ encodes all the information on the quantum correlation functions,
as the original Z(j). Even though the effective action Γ̃ is local in the free
case, when one includes interactions it contains an infinite series of possibly
non-local terms, and as such can be computed only perturbatively, in some
cases as a sum of the 1PI Feynman diagrams. As such, one introduces a suit-
able regularization, taming the infrared (long-range) quantum fluctuations. In
order to do so, one artificially adds a contribution Qk, quadratic in the fields,
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to the action in the generating functional Z(j). The regulator Qk depends on
a scale parameter k and hence both the generating functional Zk or Wk and
the effective action Γ̃k depend on k. Their behaviour under changes of the
parameter k is governed by certain flow equations.

In particular, the Polchinski equation is an equation for the derivative
with respect to k of Wk, while the Wetterich equation involves the k-derivative
of Γk(φ) = Γ̃k(φ) − Qk(φ) and it takes the well known form

∂kΓk =
i

2
〈
(Γ(2)

k + Q
(2)
k )−1, ∂kQ

(2)
k

〉
2
,

where 〈·, ·〉2 is the standard pairing on M2 = M × M. Furthermore, (Γ(2)
k +

Q
(2)
k )−1 is just W

(2)
k . Hence, the non-uniqueness of the inverse of (Γ(2)

k +Q
(2)
k ),

present in the Lorentzian case, is not an issue when W is the starting point of
the construction, so that W

(2)
k is the distinguished inverse.

In order for this equation to be useful, the regulator Qk needs to have
certain properties [49,50]:

• it should vanish in the limit k → 0, so that the original theory is recovered
in that limit;

• it should suppress all the quantum fluctuations in the limit k → ∞, so
that in that limit one obtains a theory governed by a classical action;

• at finite k, it should behave as an effective mass term to control potential
infrared divergences;

• at finite k, it should vanish at high momentum to not alter drastically
the short distance behaviour of the correlation functions.

In the original approach and for Euclidean field theories, Qk is chosen
as a momentum cutoff. One of the most used sharp cut-offs assumes a sim-
ple expression in the Fourier transform of its second functional derivative, as
Q̂

(2)
k (p) = −(k2 − p2)θ(k2 − |p|2), where θ is the Heaviside step function. It

has been discussed in [48] that this regulator meets all the requirements listed
above, and furthermore permits to keep the technical difficulties in practical
computations under control. When such a regulator is used, the source term
at the right-hand side of the flow equation of the effective action Γ̃k has a peak
in a vicinity of |p|2 ∼ k2, while both high and low momentum modes are sup-
pressed. This gives rise to a flow in Wilsonian sense, for which at scale k only
the spectrum of the various propagators at momentum squared equal to k2

matters, thus providing an interpretation of the used regularization at scale k
as a coarse-graining procedure. Unfortunately, in position space, the regulator
Qk introduced above turns out to be non-local. For this reason, it is difficult
to extend similar techniques to field theories on generic curved backgrounds.
Similarly, if the state in which the theory is constructed is not a vacuum, it
is not clear if this choice of regulator completely regularises the theory. This
happens, for example, with the Wetterich equation in the case of thermal fields
[49,71]. Another problem of a non-local regulator is that the original analy-
sis is conducted assuming the vacuum state and for Euclidean quantum field
theories, and the näıve translation of Q̂

(2)
k (p) to spacetimes with Lorentzian
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signature would alter the principal symbol of the equation of motion governing
the evolution. This could potentially affect the results on the solvability of the
equation of motion of the theory even in the non-interacting case.

As discussed in [50], it is still possible to use a local, mass term regulator
Q

(2)
k ∼ ka at the price of introducing a different regularization procedure of

the ultraviolet regime. This last requirement is not an issue in approaches to
interacting field theories, which are automatically ultraviolet finite, like those
analysed in [11]. When a local regulator is used, the source term of the flow
equation for the effective action is not anymore peaked around momenta of
scale k and hence the interpretation of the flow equation one obtains gets
modified. The flow equations can then be interpreted as the flow of the theory
under variations in the mass parameter.

Furthermore, if Qk is local, the perturbatively constructed S-matrix (used
to build interacting fields needed to describe the generating functional Z(j))
is formally unitary. This implies in particular that, in the Lorentzian case, the
effective action obtained from that W (j) is real-valued. On the contrary, the
S-matrix constructed with non-local regulators is in general non-unitary (for
states which are not the Minkowski vacuum, see for example [72]) and thus
the corresponding effective action could in principle be complex-valued, with
an imaginary contribution due to the form of the non-local regulator, and not
to intrinsic properties of the investigated physical system. We refer to [19] for
a discussion on the issues arising in the connection between Euclidean and
Lorentzian approaches to the Wetterich equation.

Finally, a mass term regulator appears to be useful whenever one is inter-
ested in preserving the analytical structure of the propagator, without intro-
ducing cuts or poles. Such a propagator corresponds to the Callan-Symanzik
propagator with Zk = 1 defined in Eq. (5) in [28], where the FRG is applied
to the spectral function of the graviton propagator.

In this paper, we introduce a version of the effective action that can be
analysed on generic curved spacetimes and in generic quantum states. In or-
der to achieve this result, we employ methods of the perturbative Algebraic
Quantum Field Theory (see e.g. [10,31,41,59] for reviews and the references
therein). In particular, the formulation of interacting theories provided by
pAQFT does not make use of any representation provided by the reference
state, and in the renormalization procedure used to perturbatively construct
interacting fields only the position-space representation of the propagators is
needed, with no reference to their Fourier transform. Every element of the
theory is by construction ultraviolet regular; this is particularly useful for our
purposes, because there is no need to select a Qk which cuts the high momenta.
Following the ideas similar to those presented in [49] and to obtain flow equa-
tions which are tractable on generic spacetime, we choose the regulator to be
local in the field to keep covariance. Moreover, the local regulator Qk acts as
an artificial mass contribution to the field to tame infrared problems. Its form
is

Qk(χ) = −1
2

∫
ddxqk(x)χ2(x) ,
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where qk grows as k2 for bosonic fields (the only ones we consider here in order
to keep the discussion simple). Local regulators like the one analysed here have
been already used in the literature, in [28] as discussed above but also e.g. in
[49,50], to analyse states at finite temperature.

In this paper we show that an equation similar to the Wetterich equation
can be obtained for the effective action on generic spacetimes and for generic
background states. Furthermore, we show that in the case of the Minkowski
vacuum it gives results qualitatively analogous to the one obtained with non-
local regulators. However, the presence of a local Qk—whose second functional
derivative contains a Dirac delta function—leads to two main differences: (a)
the pairing on the right-hand side of the Wetterich equation effectively acts
only on M and not on M2; (b) the contribution of (Γ(2)

k +Q
(2)
k )−1(x, y) needs

to be evaluated at coinciding points. This second modification is not an issue
because the local fields present in Qk are normal-ordered, and so the coinciding
point limit we have to consider is finite without requiring extra regularizations.
Furthermore, a key difference from the Euclidean case is that the inverse (Γ(2)

k +
Q

(2)
k )−1 is not unique in Lorentzian spacetimes. The choice of the inverse we

make is (Γ(2)
k + Q

(2)
k )−1 = W

(2)
k and it depends on the choice of a reference

state, and introduces a state dependence in the flow equations.
Taking into account all this, we conclude that the modified Wetterich

equation takes the form

∂kΓk = lim
y→x

− i

2

∫
dx∂kqk(x)

[(
Γ(2)

k − qk

)−1

(x, y) − H̃F (x, y)
]

.

On the right-hand side H̃F (x, y) is a counter-term implicitly defined—cf.
Eq. (48)—and it is related to a Hadamard parametrix whose asymptotic be-
haviour in the limit x → y is universal, and can be obtained from just the
background geometry and the free (linearized) equation of motion of the the-
ory [10,15,38]. The subtraction described above appears to be very close to the
known point-splitting regularization usually employed to get expectation val-
ues of Wick powers in curved backgrounds. The use of a Hadamard parametrix
constructed with local properties of the metric only, and not the subtraction
of the two-point function of a state, is necessary to keep the theory covariant
[15,38]. As we shall see later, its presence is essential in the case of Minkowski
vacuum to get a flow of the effective action qualitatively similar to the one
obtained with non-local regulator.

We also discuss an approximation scheme which is used to get approxi-
mated solutions of the obtained flow equation. The developed method is then
applied in special cases. The first case is a quantum field theory on a Minkowski
spacetime in the vacuum, in which our results are similar to the one obtained
with non-local regulators. We then pass to discuss the case of fields in a ther-
mal state, getting results similar to those presented in [50]. Finally, to prove
that the method is directly applicable to the curved background, we analyse a
quantum field theory in the Bunch–Davies state on the de Sitter spacetime. We
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refer to [3] for an analysis, similar in spirit to the one presented in this paper,
focused on cosmological spacetimes and on the case of a non-local regulator.

The paper is organized as follows. In Sect. 2 we collect some known facts
about pAQFT methods used in the paper. Section 3 contains the analysis of the
effective action and its regularization. In Sect. 4 we present the derivation of the
flow equation. Section 5 contains the analysis of the approximation methods
used, and finally, in Sect. 6 we discuss some explicit examples of the flow
equations. Conclusions and outlook are presented in Sect. 7. We collect some
more technical results in the appendices.

2. Perturbative Algebraic Quantum Field Theory

2.1. Classical Field Theory

In this section, we give a brief overview of the functional approach used in
the perturbative construction of interacting quantum field theory, recently
developed in the context of Algebraic Quantum Field Theory (AQFT) [11].
This approach can be applied in full generality to gauge field theories, but, in
this paper we restrict our attention to scalar fields for simplicity. For a thor-
ough treatment and further references, see [10]. In what follows, we consider
a d-dimensional globally hyperbolic spacetime (M, g) [36] whose metric has
signature − + . . . +.

In this approach, classical observables are described by complex-valued
functionals F ∈ F over off-shell field configurations χ ∈ C∞(M,R) with
certain properties. In particular, to implement locality, we require that the
functionals have compact support, i.e.,

suppF := {x ∈ M | ∀ neighbourhoods U of x ∃ χ, ψ ∈ C∞(Mn,R),
suppψ ⊂ U : F (ψ + χ) �= F (ψ)}.

Furthermore, the functionals we are working with are smooth with respect
to functional derivatives, in the sense that for every n, the n-th functional
derivative obtained as

dn

dtn
F (χ + tψ)

∣
∣
∣
∣
t=0

= 〈F (n)(χ), ψ⊗n〉 χ, ψ ∈ C∞
c (M),

is a well defined, compactly supported, symmetric distribution. To keep the
presentation simple, we also require that elements of F have only finitely many
non-vanishing functional derivatives.

Finally, we restrict the set to the microcausal functionals, satisfying a
particular condition on their wavefront set:

Fμc :={F ∈ F | F is smooth, compactly supported, and

WF (F (n)) ∩ (V
n

+ ∪ V
n

−) = ∅} ,

where V +(−) denotes the closure of the subset of the cotangent space whose
elements have covectors in the future (past) light-cones. The vector space Fμc
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is equipped with a weak topology induced by the natural topologies of dis-
tributions. Actually, we say that Al ∈ Fμc converges to A ∈ Fμc for l → ∞
if for every n and for every field configuration χ ∈ C∞

c (M;R), A
(n)
l (χ) con-

verges to A(n)(χ) in D′(Mn). We refer to [59] for further details. Two im-
portant subsets of the space of microcausal functionals are the local func-
tionals Floc, whose n-th derivatives F (n) are only supported on the diagonal
Dn := {(x1, . . . , xn) ⊂ Mn | ∀i, j xi = xj}, satisfy WF(F (n)) ⊥ TDn and
are used to describe local interaction Lagrangians, and the regular functionals
Freg, satisfying WF(F (n)) = ∅ ∀n.

For example, consider the linear fields and the Wick powers used to con-
struct the interaction Lagrangians,

Xf (χ) :=
∫

M
ddxf(x)χ(x), Xn

f (χ) :=
∫

M
ddxf(x)χ(x)n, f ∈ C∞

0 (M),

which are elements of Fμc for every n. Here and in the rest of the paper,
ddx denotes the volume form on M induced by g and the orientation of M.
Furthermore, we have that Xf is local and also regular while Xn

f with n > 1
is local but not regular. In the following, we will often use the integral kernels
of these local functionals with respect to f , and we denote them simply by
χn(x).

The space Fμc is linear, and equipping it with the pointwise product
F · G(χ) := F (χ)G(χ) and with the involution F ∗(χ) := F (χ), we obtain a
commutative ∗-algebra denoted by (Fμc, ·, ∗). The latter is the off-shell algebra
of classical observables of the classical field theory.

2.2. Deformation Quantization

In the case of quantum theories satisfying hyperbolic linear equations of mo-
tions, the quantum observables algebra is obtained from (Fμc, ·, ∗) by deform-
ing the pointwise product to a suitable non-commutative, associative product
which encodes the canonical commutation relations. Concretely, we consider a
free action for a scalar field

I0(χ) = −
∫

M
ddx

(
1
2
∇aχ∇aχ +

ξ

2
Rχ2 +

m2

2
χ2

)

f (1)

where m is the mass of the field and ξ its coupling to the scalar curvature R.
Furthermore, f ∈ C∞

c (M,R) is an infrared cutoff, which is a positive function
equal to one on the portion of spacetime over which we want to test our theory
and guarantees that I0 is an element of Fμc. This cutoff is eventually removed
by taking the adiabatic limit f → 1 in a suitable way [12].

From the above action, one derives the equations of motion P0χ = 0,
where P0 is the linear, hyperbolic differential operator

P0 = � − m2 − ξR.

Here, � is the d’Alembert operator associated with the metric g. On globally
hyperbolic spacetimes, such operator admits unique advanced and retarded
fundamental solutions (or propagators) ΔA,R which in turn define the causal
propagator (or commutator function) Δ = ΔR−ΔA. The commutator function
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is then used to deform the commutative pointwise product of elements of Freg,
obtaining the standard quantum product. Concretely, we define the quantum
product 	 on Freg as

F 	 G :=M ◦ eΥiΔ/2(F ⊗ G) ΥΔ :=
∫

M2
Δ(x, y)

δ

δχ(x)
⊗ δ

δχ(y)
dxdy

F,G ∈ Freg,

where M maps the tensor product to the pointwise product, M(F ⊗ G)(χ) =
F (χ)G(χ). More explicitly,

F 	 G = FG +
∞∑

n≥1

1
n!

〈

F (n),

(
i

2
Δ
)⊗n

G(n)

〉

. (2)

Such a product implements canonical commutation relations between linear
fields, in the sense that

[Xf ,Xh]� = Xf 	 Xf − Xf 	 Xf = i〈f,Δ h〉 f, h ∈ C∞
c (M)

and it is compatible with the involution ∗, (F 	 G)∗ = G∗ 	 F ∗. Therefore, the
off-shell algebra of regular observables is given by

Areg = (Freg, 	, ∗).

The free algebra Areg is in fact generated by the identity, together with all
possible linear fields {Xf | f ∈ C∞

c (M)}, actually, every element of Areg can
be obtained as the limit of a sequence of linear combinations of products of its
generators. The convergence of this sequence is taken with respect the topology
of Fμc we have briefly recalled above.

However, the algebra Areg is too small to define a quantum theory, since
the product written above cannot be directly extended to non-linear local
functionals, like those necessary to describe interaction Lagrangians, or even
the stress-energy tensor of a free theory, because they are too singular. In order
to obtain a well-defined product among generic local fields we have to further
deform the product. This is done by using in the construction of the 	-product
a suitable bidistribution Δ+ in place of iΔ/2, of the form

Δ+ := ΔS +
i

2
Δ (3)

where ΔS is a real and symmetric distribution, while Δ+ solves the linear
equation of motion P0 in the weak sense, and its wave front set satisfies the
microlocal spectrum condition [13,58]

WF(Δ+) = {(x, y; kx, ky) ∈ T ∗(M2) \ {0} | (x, kx) ∼ (y,−ky), kx � 0} (4)

where (x, kx) ∼ (y,−ky) holds if x and y are joined by a null geodesic γ,
g−1kx is tangent to γ at x and −ky is the parallel transport of kx along γ.
Furthermore, kx � 0 holds if g−1kx is future pointing. It is known that states
that are quasifree and have a two-point function ω2 satisfying this condition
exist. Furthermore, [58] has shown that these two-point functions have an
universal singular structure typical of Hadamard parametrices [46]. We shall
be more precise on that in the next section.
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Given Δ+, Fμc becomes a ∗-algebra with the quantum product 	Δ+ de-
fined by

F 	Δ+ G = M ◦ eΥΔ+ (F ⊗ G).

The canonical commutation relations between linear fields hold also with this
further deformed product. Moreover, the ∗-subalgebra (Freg, 	Δ+ , ∗) is isomor-
phic to Areg. The isomorphism α : Areg → (Freg, 	Δ+ , ∗) is realised by

αΔS
(F ) = eΥ̃ΔS F, Υ̃ΔS

=
1
2

∫

M2
ΔS(x, y)

δ2

δχ(x)δχ(y)
dxdy. (5)

We have thus obtained the extended algebra (Fμc, 	Δ+ , ∗), which contains also
local functionals.

The construction we have presented depends on the non-canonical choice
of ΔS (or equivalently, of Δ+) in (3). However, different choices of Δ+ produce
isomorphic extended algebras, the isomorphism being defined by

αΔ̃+−Δ+
: (Fμc, 	Δ+ , ∗) → (Fμc, 	Δ̃+

, ∗)

with α given in (5). Hence, the ∗-algebras obtained with different two-point
functions satisfying the properties stated above are equivalent realizations of
the same extended algebra of fields, which we denote by A. The algebra A is
thus seen as an abstract ∗-algebra and every (Fμc, 	Δ+ , ∗) is a concrete faithful
representation of A. Abstract elements of A are represented in (Fμc, 	Δ+ , ∗)
by means of αΔ+ . Hence, a particular choice of representation (Fμc, 	Δ+ , ∗) of
A can be understood as a choice of reference frame to be used to represent
observables. However, this choice cannot play any role in the construction of
physically relevant observables. In this respect, we observe that linear fields are
invariant under the action of the isomorphisms αΔ̃+−Δ+

Xf = Xf . However,
this is not the case for Xn

f n > 1: for example,

αΔ̃+−Δ+
X2

f = X2
f +

∫

M
ddx(Δ̃+ − Δ+)(x, x)f(x).

Hence X2
f in (Fμc, 	Δ+ , ∗) differs from X2

f in (Fμc, 	Δ̃+
, ∗), and furthermore

both of them cannot be covariant fields.
We shall take this observation into account later, when we discuss the

form of Wick-ordered polynomials. In particular, Wick powers : χn :H∈ A
normal ordered with respect to the Hadamard function H (see below), are the
elements of A constructed as α−HXn

f .

2.3. States

In order to extract physical predictions from the algebra of observables A, one
needs to map the space of functionals to actual numbers, associating to every
element of A its expectation value. This is achieved by introducing a state ω,
which is a positive, normalised, linear functional, initially given on Areg and
then extended to A.
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Thanks to linearity, a state ω is determined once its n-point functions
(correlation functions)

ωn(x1, . . . , xn) := ω(χ(x1) 	 . . . 	 χ(xn))

are given as distributions on compactly supported smooth functions.
The algebra of observables is constructed as functionals over off-shell field

configurations, as the linear equations of motion can be implemented at the
level of states. Hence, the positive normalised linear functionals on Areg we
want to work with need to be compatible with the equations of motions. This
is done requiring that

Ker(ω) ⊃ Freg · XP0f , f ∈ C∞
c (M)

namely requiring that the n-point functions ωn are weak solutions of the linear
equation of motion in any of their entries.

Among all possible states, we need to select a class of sufficiently regular
states, in order to extend them on A by continuity, hence completely charac-
terising the extended states by the same n-point functions. (Further details are
given in [59]). We can do this requiring that the state satisfies the microlocal
spectrum condition [67], i.e.: (i) the two-point function is such that (4) holds,
(ii) the one-point function is smooth, and (iii) the truncated n-point functions
with n > 2 are also smooth. It was proved in [58] that states which satisfy
the microlocal spectrum condition have a two-point function with an univer-
sal singular structure, known as Hadamard condition [46]. In particular, this
implies that, for y in a normal neighbourhood of x, the integral kernel of the
two-point function ω2 has the Hadamard form, namely

ω2(x, y) = lim
ε→0+

[
u(x, y)
σε(x, y)

+ v(x, y) log
(

σε(x, y)
μ2

)]

+ w(x, y)

= H(x, y) +
i

2
Δ(x, y) + w(x, y) (6)

where u, v, and w are smooth functions, σε(x, y) = σ(x, y) + iε(t(x) − t(y))
with t a generic time function, and σ is the Synge world function, which is
one half of the squared geodesic distance taken with sign. The function u is
the square root of the van-Vleck-Morette determinant [56], so it is a purely
geometric object; v is uniquely fixed by geometry, the coupling constants and
mass parameters of the theory, and can be expanded in a formal power series
of σ:

v(x, y) =
∑

n≥0

vn(x, y)σn(x, y),

such that only v0 is relevant in the coincidence limit without derivatives. Fi-
nally, w remains an arbitrary, smooth function, containing the residual freedom
in the choice of the state. The additional freedom in the constant μ is required
to have a dimensionless argument in the logarithm. Hence, in the coincidence
limit, the divergent part of the 2-point function is encoded in the Hadamard
function H(x, y) and in the causal propagator Δ, which are known a priori.
As examples, it is known that the Minkowski vacuum, or generic thermal
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states for the free theory in flat spacetime are Hadamard states, as well as the
Bunch–Davies states for linear fields on De Sitter spacetime.

Although the main results of this paper hold for an arbitrary state, we
will occasionally restrict our attention to states that are quasifree or Gaussian
for the free theory. Quasifree states are defined requiring that i) all odd n-point
functions vanish, and ii) even n-point functions can be computed from the two-
point function according to Wick’s rule [10]. Therefore, fixing the symmetric
part ΔS of the two-point function uniquely identifies a quasifree state. These
are the states whose GNS representations are of Fock type. Notice, however,
that states that are quasifree for the free theory are not quasifree for the
interacting theory. We finally observe that if we are interested in computing
expectation values in a state ω of A whose two-point function is Δ+, it is
particularly useful to select the represent A with (Fμc, 	Δ+ , ∗) where the 	-
product is constructed with Δ+. Then, the expectation value of F ∈ A in the
state ω, is simply the evaluation of G = αΔ+(F ) on the vanishing configuration,
namely ω(F ) = αΔ+(F )(0) = G(0).

2.4. Normal Ordering

Consider a representation (Fμc, 	Δ+ , ∗) of A. We observe that the deformed
	Δ+ -product on Fμc implements Wick theorem for the product of non-linear
observables. In fact, by construction

χ2(x) = lim
y→x

[
χ(x) 	Δ+ χ(y) − Δ+(x, y)

]
,

where χ(x) 	Δ+ χ(y) is the integral kernel of Xf 	Δ+ Xg seen as a distribution
on f ⊗ g, is always finite, and the same holds for higher polynomials. This
means that we can understand local functionals like Xn

f in (Fμc, 	Δ+ , ∗) as
Wick-ordered monomials of the fields, where the Wick ordering is with respect
to Δ+. Namely

:Xn
f :Δ+ :=

∫

M
:χn :Δ+ fddx ∈ A

where

:Xn
f :Δ+= α−Δ+(Xf ).

In this way : Xn
f :Δ+∈ A is represented in (Fμc, 	Δ+ , ∗) as αΔ+ : Xn

f :Δ+=
αΔ+α−Δ+Xf = Xf .

However, as also discussed above, such normal ordering is not covariant,
because Δ+ is globally defined, and also because of the non-canonical choice
of the symmetric part in Δ+. Actually, the quasifree state constructed with
Δ+ would represent a preferred reference state, in contradiction with the re-
quirements of the Equivalence Principle. One would like to perform normal
ordering with local quantities only; a possibility is to use the Hadamard func-
tion H given in (6) to extract the local singularity structure from Δ+, and
define a new normal ordering prescription accordingly:

:χ2 :H (x) = α−Hχ(x)2 = lim
y→x

[
χ(x)χ(y) − H(x, y)

]
(7)
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which is local and generally covariant. The drawback is that now one needs
to pay attention to the correction introduced in representing Wick-ordered
polynomials with respect to H, in the algebra constructed with the 	-product
defined by Δ+ = H + iΔ/2 + w. For example, in view of (7) we have that
:χ2 :H= α−Hχ2 ∈ A is represented in Fμc as

αΔ+ :χ2 :H (x) = χ2(x) + w(x, x)

and furthermore

αΔ+

(
:χ2 :H (x)	 :χ2 :H (y)

)
= αΔ+(:χ2 :H (x)) 	Δ+ αΔ+(:χ2 :H (y))

= (χ2(x) + w(x, x))(χ2(y) + w(y, y))
+4Δ+(x, y)χ(x)χ(y) + 2Δ+(x, y)2 (8)

and so its expectation value in the quasifree state ω whose two-point function
is Δ+ is

ω(:χ2 :H (x)	 :χ2 :H (y)) = w(x, x)w(y, y) + 2Δ2
+(x, y).

We finally observe that there is some freedom in the choice of H (as for example
the length scale μ in the logarithmic contribution in H); furthermore, we could
add a covariantly constructed smooth part to H without breaking general
covariance. This freedom has been classified in [38–40] and at the level of the
Wick square it reduces to the choice of two real “regularisation” constants c1

and c2

:χ2 :H=:χ2 :H̃ +c1m
2 + c2R.

In Eq. (8), we kept explicit both the normal ordering prescription and
the dependence on Δ+ in the 	-product, to clarify their relationship. In the
usual QFT notation, one would leave implicit the 	-product, writing explicitly
the normal-ordering prescription; in what follows, adopting the more usual
notation in the mathematical physics literature, we will keep the 	-products
explicit but, without referring to a particular representation, we drop the subfix
Δ+; at the same time, if not strictly necessary, we keep the covariant normal
ordering implicit.

2.5. Interacting Theories

We now discuss the perturbative construction of interacting fields. The action
we are working with contains terms which give rise to non-linear contributions
to the equation of motion. In particular, the action takes the form

I(χ) = I0 + λV = −
∫

ddx

(
1
2
∇aχ∇aχ +

ξ

2
Rχ2 +

m2

2
χ2 + λ

χn

n!

)

f, (9)

where, as before, f is a cutoff introduced to keep I(χ) ∈ Fμc. The cutoff f
is a smooth compactly supported function which is equal to 1 on the causal
completion of the region where we want to test our theory. The action I is
divided into two parts: I0, which coincides with (1) and gives rise to linear
equation of motion, and V , the interaction Lagrangian. With the methods
discussed above, we have now at disposal the free algebra A, and interacting
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observables are constructed as a formal power series in the coupling constant
λ with coefficients in the free algebra A.

The perturbative construction of interacting fields makes use of a new
operation, the time-ordered product T . We start defining the T -product in the
subset of regular functionals Freg in a manner similar to (2):

F ·T G = M ◦ eΥΔF (F ⊗ G)

that is,

F ·T G = FG +
∞∑

n≥1

1
n!

〈F (n),Δ⊗n
F G(n)〉 (10)

In the above equations, ΔF is a Feynman propagator associated with Δ+,

ΔF = Δ+ + iΔA = ΔS +
i

2
(ΔR + ΔA).

However, even if we are working with normal ordered quantities, the T -product
defined on Freg cannot be extended to Fμc. Actually, multiplying local func-
tionals with overlapping support one encounters divergences that cannot be
treated with methods of microlocal analysis. Nevertheless, at least among local
functions, it is possible to construct time ordered products. Therefore, we in-
troduce an axiomatic prescription for the T -product on local functionals, seen
as a symmetric and multilinear map from multilocal functionals F⊗n

loc to A,
satisfying a set of conditions [11,12,38–40]. In particular, assuming the causal
factorization property,

T (F1, ..., Fn, G1, ..., Gm) =T (F1, . . . , Fn) 	 T (G1, ..., Gm)

if J+( suppFi) ∩ J−( suppGj) = ∅
and the symmetry of T , one gets that T is determined for arguments with pair-
wise non-overlapping supports, as in (10). To extend T also to local functionals
with overlapping supports, one may use a recursive procedure on the number
of factors, following the method originally presented by Epstein-Glaser [27].
Actually, using locality of the factors, multilinearity and field independence
(discussed later), one reduces the problem of constructing the time-ordered
product with n elements as the problem of extending suitable distributions
tn ∈ C∞

c (Mn\Dn) defined outside the diagonal Dn to the whole Mn [12,38].
This can be done keeping fixed the Steinmann [70] scaling degree of the distri-
bution, up to an ambiguity which corresponds to the known renormalization
freedom.

The action of T on local functionals maps local functionals to covariant
normal ordered ones [38], so that T (F ) =: F :H ; (see Sect. 2.4 for the de-
scription of the normal ordering we are using) when not strictly necessary we
keep the latter operation implicit. Furthermore, the map T , which is originally
defined on multilocal functionals, can also be extended to pointwise products
of local fields [30]. For more details, see [11,12,31,38–40].
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Having a definition of time-ordering at disposal, one can construct the
S-matrix of a local interaction as

S(V ) := eiλTV
·T = TeiλV =

∑

n

inλn

n!
T (V . . . V︸ ︷︷ ︸

n times

).

The S-matrix is an element of A[[λ]] namely, a formal power series in the
coupling constant present in front of V with coefficients in A satisfying

1. Causality: S(A+B+C) = S(A+B)	S(B)−1 	S(B+C) if J+(suppA)∩
J−(C) = ∅;

2. S(0) = 1, S(1)(0) = 1;
3. Field independence: S(V )(1) = iS(V ) ·T λTV (1).

Using the S-matrix, we define the relative S-matrix as

SV (F ) = S(V )−1 	 S(V + F ) (11)

where the inverse is taken with respect to the 	-product. Furthermore, we
have that for every real local V , S(V ) is formally unitary, so S(V )−1 = S(V )∗.
Finally, interacting fields are represented in the free algebra by means of the
Bogoliubov map (also called quantum Møller map)

RV (F ) = − i

λ

d
dt

SV (tT−1F )
∣
∣
∣
∣
t=0

= S(V )−1 	 [S(V ) ·T F ]. (12)

We can interpret RV (χ) as the interacting field because RV (χ) satisfies weakly
the equation of motion, in the sense that

RV (P0χ) + RV (λTV (1)) = P0χ,

where TV (1) is just the first functional derivatives of the normal ordered local
potential. Hence, since the free equations of motion are encoded in a generic
state ω, we have

ω
(
RV (P0χ + λTV (1))

)
= 0.

In the following, when not strictly necessary, we shall not write explicitly
the formal parameter λ in the formulas and we shall denote the algebra of
formal power series simply as A[[V ]]. We also stress that a sequence in A[[V ]]
converges if the coefficients of the formal power series converge in the weak
topology of Fμc mentioned above. See [59] for further details.

Remark 2.1. The pAQFT formalism in the functional approach closely resem-
bles the usual pQFT formalism preferred in the physics literature. For example,
the time-ordered product in the vacuum state in the algebraic setting can be
regarded as the generalization of the (often ill-defined) path integral approach
in usual QFT, where n-point Green functions are computed from a path inte-
gral with Gaussian measure

〈Tχ(x1)...χ(xn)〉 =
∫

DχeiI0χ(x1)...χ(xn)

where 〈. . .〉 is the expectation value in the Minkowski vacuum state.
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At the same time, the interacting field RV (χ) defined by the Bogoliubov
formula is equivalent to the field in the interaction picture,

XI = RV (χ) = S(V )−1 	 [S(V ) ·T χ] = T (eiV )−1T (eiV χ)

where in the last equality we dropped the 	-product as it is common in the
physics literature. The main difference from the usual construction is that
this formalism does not make use of the vacuum representations of fields. At
the same time, local observables like the interaction Lagrangian are normal-
ordered in a covariant way. These two differences make the formalism directly
applicable to fields propagating on curved spacetimes, and more adequate to
analyse interacting quantum field theories in generic states.

There is, however, a price to pay. When dealing with e.g. the scattering
theory in QFT on flat spacetime, one usually takes expectation values in the
vacuum state on Minkowski; in this case, the Gell-Mann-Low formula permits
to simply factorise the 	-product present in the Bogoliubov map,

ω(S(V )−1 	 S(V ) ·T χ) = ω(S(V )−1)ω(S(V ) ·T χ)
= ω(S(V ))−1ω(S(V ) ·T χ), (13)

at least when the support of V tends to the entire Minkowski spacetime namely
when the adiabatic limit is taken and the cutoff f in V in (9) is removed.
Assuming without loss of generality that f is equal to 1 in the neighbourhood
of an origin of M, the adiabatic limit is taken replacing the cutoff with f(x/n)
and eventually considering the limit n → ∞ of the various expectation values
of interests. A discussion about the validity of (13) for the case of massive
field can be found in Section 6.2 of [23] making use of estimates given in the
appendix of [24]. In this case, we have that

ω(XI) =
ω(T (eiV χ))

ω(TeiV )
with analogous formulas for the n-point functions; in the perturbative expan-
sion of the right-hand side, only time-ordered products appear. However, for
more general states (e.g. thermal states) or on curved backgrounds, the Gell-
Mann-Low formula fails in general, and the 	-products play an important role
as new, oriented (as the product is non-commutative) internal lines in Feyn-
man diagrams. In this sense, the algebraic approach takes directly into account
all these effects.

3. Functional Renormalization

3.1. Generating Functionals

In this section, we introduce the generating functional Z(j) of the truncated
time-ordered products, and by doing so we generalize the results known on flat
Minkowski spacetime for quantum field theories constructed over the Minkowski
vacuum to curved spacetimes and to generic states.

Let’s start with the review of the standard definitions. On flat Minkowski
spacetime, the effective action is introduced as the Legendre transform of the
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generating functional of the connected interacting time-ordered products. The
latter is usually defined as follows: let j ∈ C∞

c (M) and let J(χ) := Xj(χ) =∫
jχ. Denoting by ω0 the vacuum state on Minkowski spacetime, the generating

functional for the interacting time-ordered products is defined by

Z(j) :=
ω0(S(V + J))

ω0(S(V ))
. (14)

It then follows that
δn

inδj(x1) · · · δj(xn)
log Z(j)

∣
∣
j=0

= (ωc
0 ◦ RV )(χ(x1) ·T · · ·T χ(xn)) , (15)

where ωc
0 denotes the connected part of ω0, defined by

ωc
0(χ(x1) 	 · · · 	 χ(xn)) :=

δn

inδf(x1) · · · δf(xn)
log ω0[exp�(iXf )]

∣
∣
∣
f=0

. (16)

Similarly the connected time-ordered functions of ω0 are defined by

ωc
0(χ(x1) ·T · · ·T χ(xn)) :=

δn

inδf(x1) · · · δf(xn)
log ω0[S(Xf )]

∣
∣
∣
f=0

. (17)

Notice that the previous equality uses the Gell-Mann-Low formula,

ω0(RV A) = ω0(S(V )−1 	 [S(V ) ·T A]) =
ω0(S(V ) ·T A)

ω0(S(V ))
.

As already discussed, this formula holds in the adiabatic limit, that is, in the
limit where the cutoff f in V given in (9) tends to 1 on the whole Minkowski
space. It reduces the complexity in the actual evaluation of ω0(RV χ) as it
requires to compute only time-ordered products. Unfortunately, as discussed
above, this formula is not valid for states different from the vacuum one or on
general curved backgrounds, and it also fails if one does not take the adiabatic
limit. For this reasons, the definition of Z(j) has to be modified. Our approach
is to provide a definition of Z(j) which fulfils the defining property (15) and
which reduces to formula (14) for the case of the vacuum state on Minkowski
spacetime. With this in mind, we define, for an arbitrary but fixed Hadamard
state ω on A,

Z(j) := ω(SV (J)) = ω[S(V )−1 	 S(V + J)] = ω[RV S(J)] , (18)

out of which Eq. (15) is verified by direct inspection. For ω = ω0 (Minkowski
vacuum) and in the adiabatic limit, the definitions given in (14) and in (18)
coincide because of Gell-Mann-Low formula.

A remarkable property of Z defined in (14) is that Eq. (15) still makes
sense for j �= 0; as a matter of fact

δn

inδj(x1) · · · δj(xn)
log Z(j) = (ωc

0 ◦ RV +J)(χ(x1) ·T · · · ·T χ(xn)) . (19)

This shows that j-functional derivatives of Z(j) are physically meaningful also
for j �= 0.
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Unfortunately, Z(j) defined in (18) does not satisfy the property (19), as
one can see, for example, from the following computation:

δ

iδj(x)
log Z(j) =

ω(S(V )−1 	 [S(V + J) ·T χ(x)])
ω(SV (J))

=
ω(SV (J) 	 RV +Jχ(x))

ω(SV (J))
=: ωJ (RV +Jχ(x)) , (20)

where ωJ : A[[V ]] → C[[V ]] is a well-defined linear functional which, however,
fails to be positive.

To justify our definition of Z, recall that on regular functionals, one can
introduce the interacting star product as

F 	V G
.= R−1

V (RV (F ) 	 RV (G)).

For a given state ω of the free theory, the interacting state is defined by ωV
.=

ω ◦ RV , so the correlator of n interacting fields in such state is given by:

ωV (χ(x1) 	V · · · 	V χ(xn)) = ω(RV (χ(x1)) 	 · · · 	 RV (χ(xn)).

The time-ordered version of 	V coincides with ·T (see e.g. [22]) so the time-
ordered correlator of n fields in the interacting theory (interacting Green func-
tion) is given by

ωV (χ(x1) ·T · · · ·T χ(xn)) = ω ◦ RV (χ(x1) ·T · · · ·T χ(xn)).

On the other hand,
δnZ

inδj(x1)...δj(xn)

∣
∣
∣
∣
j=0

= ω ◦ RV (χ(x1) ·T ... ·T χ(xn)) , (21)

so, for vanishing sources, the functional derivatives of (18) give exactly the
interacting expectation value of the time-ordered correlation functions.

In this sense, the defining property of Z as the generating functional
for the time-ordered correlation functions is satisfied also by our definition,
which generalises the usual approach to generic states and possibly curved
spacetimes. Moreover, as discussed in [22,47], if the support of F does not
intersect the past of the support of G, (F � G), the expectation value in the
interacting state of the time-ordered correlation functions, coincide with the
expectation value of the correlation function between interacting observables,
since,

F � G ⇒ RV (F ·T G) = RV (F ) 	 RV (G). (22)

Coming back to the property (19), we show in the lemma below that it cannot
be fulfilled if one departs from the Minkowski vacuum. Hence, it is actually
not a sensible condition to require for general states.

Lemma 3.1. If ω does not fulfil the Gell–Mann–Low formula given in (13),
there is no functional ζ(j) satisfying Eq. (19).

Proof. Let ζ(j) be any generating functional fulfilling (19) for all n ∈ N. For
n = 1 we have

− i log ζ(j)(1)(x) = ωc ◦ RV +J(χ(x)) (23)



Vol. 25 (2024) An Algebraic QFT Approach to the Wetterich Equation 2313

By direct inspection we have

A(x1, x2) :=
δ2

i2δj(x1)δj(x2)
log ζ(j)

=
1
2

δ

δj(x1)
ω(RV +Jχ(x2)) + x1 ↔ x2

=
1
2
[ω(RV +J [χ(x1) ·T χ(x2)])

− ω(RV +Jχ(x1) 	 RV +Jχ(x2))] + x1 ↔ x2

=
1
2

sign(t(x1) − t(x2))ω([RV +Jχ(x1), RV +Jχ(x2)]�) ,

where we used the symmetry of the left-hand side in x1, x2. By Eq. (19) for
n = 2 the right-hand side should be equal to

B(x1, x2) := ω(RV +J [χ(x1) ·T χ(x2)]) − ω(RV +Jχ(x1))ω(RV +Jχ(x2)) ,

which in general is not the case, actually at zeroth order in the perturbation
parameter, for quasifree states and for t(x1) > t(x2)

A(x1, x2) =
i

2
sign(t(x1) − t(x2))Δ(x1, x2)), B(x1, x2) = ΔF (x1, x2),

and ΔS , the symmetric part of the two-point function, is present in B but not
in A. �

Even though the interpretation given by Eq. (19) is not at our disposal,
we can still make sense of the non-positive “states” ωJ defined in Eq. (20).
As a matter of fact, ωJ is a positive state on an algebra A�[[V ]] which is
isomorphic to A[[V ]].

Proposition 3.2. Let U := SV (J)/ω(SV (J)) ∈ Fμc[[V ]]. Let A� be the ∗-
algebra obtained equipping Fμc[[V ]]

with the product � and the ∗-involution ∗�

A � B := A 	 U 	 B , A∗� := U∗ 	 A∗ 	 U∗ . (24)

Then, A� is a unital ∗-algebra and ωJ , defined as per Eq. (20), is a state
on A�. Moreover, the map ς : A → A� defined by ς(A) := U∗ 	 A is a ∗-
isomorphism, and ς∗ωJ = ω.

Proof. By direct inspection, � is associative with unit given by 1� := U∗ —
notice that U is unitary as V, J ∈ Floc. Moreover � and ∗� are compatible,
meaning that (A�B)∗� = B∗� �A∗� . Since ∗� is an involution, we have that
A� is a unital ∗-algebra.

Now, let ς : A → A� be defined by ς(A) := U∗ 	 A. Then ς is linear and
invertible, and it holds that

ς(A) � ς(B) = U∗ 	 A 	����U 	 U∗ 	 B = ς(A 	 B) .

It follows that ς is a ∗-isomorphism. Finally

ς∗ωJ(A) := ωJ(ς(A)) = ω(A) .

�
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Proposition 3.2 shows that the j-functional derivatives of the generating
functional Z(j), given in Eq. (18), are physically meaningful for j �= 0. As
a matter of fact, such derivatives coincide with the connected time-ordered
functions (17) for the state ωJ on A�. Notice that, as A�[[V ]] � A[[V ]], the
latter state can be interpreted as a state on A[[V ]] too.

3.2. Effective Action

Starting from the generating functional Z(j) defined in Eq. (18), we may
introduce the effective action Γ̃ using the standard definition. Let W (j) be
the functional defined by

Z(j) = eiW (j) . (25)

Notice that, on account of Eq. (15), we have

δW

δj(x)

∣
∣
∣
∣
j=0

=
1

Z(0)
ω(RV (χ(x)) .

The effective action Γ̃ is the functional defined by

Γ̃(φ) = W (jφ) − Jφ(φ) , (26)

where jφ ∈ C∞
c (M) is the current defined by

δW

δj

∣
∣
∣
∣
j=jφ

= φ . (27)

Proposition 3.5 given below shows that Eq. (27) has a unique perturbative
solution, so that Eq. (26) really defines a functional.

3.3. Regularised Generating Functionals

A direct computation of the generating functional Z(j) and/or of the effective
action is usually not feasible. The main idea of the Wilsonian renormalization
group is to progressively take into account high-energy degrees of freedom.
This is usually done introducing an artificial scale k, such that the modes with
energy E < k are suppressed. As discussed in the introduction, one introduces
the scale k so that in the limit k → 0 one recovers the standard definition
for the partition function, thus taking into account quantum fluctuations at
all energies, while in the limit k → ∞ one obtains a theory governed by a
simple classical action. If this is the case, we can obtain information about the
full theory by analysing how the generating functional and the effective action
transform under rescaling of k.

The scale k is usually introduced adding a quadratic contribution in the
construction of Z. As discussed in the introduction, we use a local regulator

Qk = −1
2

∫
dx qk(x)χ(x)2,

and we study the behaviour of Γ and W under changes of the scale k.



Vol. 25 (2024) An Algebraic QFT Approach to the Wetterich Equation 2315

Remark 3.3. We stress that the equation of motion for the action I0k = I0+Qk

reads P0kχ = P0χ+Q
(1)
k = (P0 − qk)χ = (�−m2 − qk)χ = 0, so that qk really

plays the role of a mass term. Moreover, to avoid any confusion, we stress that,
in what follows, A will denote the ∗-algebra associated with the action I0.

In this paper we chose qk(x) = k2f(x), where f is a compactly supported
smooth function which is usually 1 on large region of the spacetime and which
plays the role of adiabatic cutoff. Eventually, this cutoff is removed considering
a suitable limit in which f tends to 1.

Under that limit Qk coincides with a mass contribution to the field,
and since usually massive fields show a better infrared behavior compared to
massless ones, Qk plays the role of an infrared regulator.

We then propose the following definition for the regularised generating
functional Zk:

Zk(j) := ω(S(V )−1 	 S(V + J + Qk)), (28)

which reduces to the Z(j) given in Eq. (18) in the limit k → 0, since Qk

vanishes. Here, ω is an arbitrary Hadamard state on A which is not necessarily
quasifree for the free theory.

This regularization is consistent with the usual IR regularization one can
find in the literature [5]. Actually, if the Gell-Mann-Low formula holds, we can
factor the definition of the relative partition function into

Zk(j) =
1

ω(S(V ))
ω(S(V + J + Qk))=:

Zk(j)
ω(S(V ))

(29)

which, apart from a normalization constant ω(S(V )), coincides with the usual
regularised path integral formulation. However, since the Gell-Mann-Low for-
mula is broken on a generic curved spacetime M or if the state ω is not the
Minkowski vacuum, we shall derive the generating functional for the connected
correlation functions and the effective action starting from Zk(j) instead of
Zk(j).

In analogy with the unregularised functionals, we define the regularised
generating functional for the connected correlation functions as

Wk(j) = −i log Zk(j). (30)

The classical field φ at fixed current j ∈ C∞
c (M) is then obtained as

δWk

δj(x)
=

1
Zk(j)

ω
(
RV (S(J + Qk) ·T χ(x))

)
= φ(x). (31)

As we show in Proposition 3.5, the relation between j and φ can be inverted
to get the current j = jφ which solves (31) as a function of φ, at least in the
sense of perturbation theory. Hence the Legendre transform can be applied to
W and it gives

Γ̃k(φ) = Wk(jφ) − Jφ(φ). (32)

where Jφ(χ) = Xjφ
(χ) =

∫
dxjφ(x)χ(x). Finally, we can translate Γ̃k to get

the average effective action,

Γk(φ) = Γ̃k(φ) − Qk(φ). (33)
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By definition of the Legendre transform, the derivative of Γ̃k gives the quantum
equations of motion

δΓ̃k

δφ
=

δ(Γk + Qk)
δφ

= −jφ . (34)

Hence, from (34) and (31), we have

δ(x, y) =
δjφ(x)
δjφ(y)

= − δ

δjφ(y)
δ

δφ(x)
(Γk + Qk)

= −
∫

dz
δφ(z)
δjφ(y)

δ

δφ(z)
δ

δφ(x)
(Γk + Qk)

= −
∫

dz(Γ(2)
k + Q

(2)
k )(x, z)

δ2Wk

δj(z)δj(y)
, (35)

showing that Γ(2)
k + Q

(2)
k = Γ(2)

k − qk is (minus) the inverse of the interacting
propagator.

By direct computation, we find that the second functional derivative of
Wk is

− i
δ2Wk(j)
δj(x)j(y)

=
1

Zk(j)
ω
(
S(V )−1 	 [S(V + J + Qk) ·T χ(x) ·T χ(y)]

)

− 1
Zk(j)2

ω
(
S(V )−1 	 [S(V + J + Qk) ·T χ(x)]

)

ω
(
S(V )−1 	 [S(V + J + Qk) ·T χ(y)]

)

=
1

Zk(j)
ω
(
S(V )−1 	 [S(V + J + Qk) ·T χ(x) ·T χ(y)]

)

−W
(1)
k (x)W (1)

k (y) (36)

In Sect. 5.1, using the principle of perturbative agreement, cf. “Appendix A”,
we will see that the second derivative of Wk is, in certain limits, the Feynman
propagator for the regularised theory.

We finally notice that, as in the k-independent case, for finite j as well as
finite k, the functional derivatives of Wk(j) are not the connected correlation
functions; only taking the limits j → 0 and k → 0 one recovers the meaning
of Wk as a generating functional of the truncated time-ordered correlation
functions.

Remark 3.4. One of the basic requirements for a well-defined S-matrix is that
it is unitary. It follows that Zk(j) is pure phase because it is the expectation
value of a product of unitary operators, thus Wk(j) := −i log Zk(j) must be
real. This in turn ensures the reality of the average effective action, implying
that quantum contributions to the action cannot give rise to complex couplings.

3.4. Properties of the Average Effective Action

3.4.1. Quantum Equations of Motion. Before applying our formalism to a par-
ticular example, we want to study some general properties of the average ef-
fective action Γk. First of all, we want to show that Γ̃k is well-defined, in the
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sense that the relation φ = φ(j) given by Eq. (31) is invertible into jφ = jφ(φ)
in the sense of perturbation theory —see [78] for a non-perturbative version
of this result on Euclidean space. We have the following proposition:

Proposition 3.5. Let ω be a state on A and let φ ∈ C∞(M) be such that
φ = iΔF j̃0, for some j̃0 ∈ C∞

c (M), while ΔF is the Feynman propagator
of the theory we are considering. Then, outside of the adiabatic limit, there
exists a unique jφ ∈ C∞

c (M)[[V ]] which solves Eq. (31). Furthermore, jφ can
be obtained solving

j = −P0φ − Q
(1)
k (φ) − 1

Zk(j)
ω
(
S(V )−1 	 [S(V + Qk + J) ·T TV (1)]

)
(37)

by induction on the perturbation order.

Proof. We recall that P0φ = I
(1)
0 (φ). By applying P0 on both sides of Eq. (31),

we obtain

P0φ =
1

Zk(j)
ω
(
S(V )−1 	 [S(V + J + Qk) ·T P0χ]

)
. (38)

In fact, since P0 is a partial differential operator, it acts only on the spacetime-
dependent quantities, i.e. χ. Now, we can turn the T -product into a 	-product,
because, if B is linear in the field configurations, it holds that

A ·T B = A 	 B + i

∫
A(1)(x)ΔA(x, y)B(1)(y)dxdy (39)

given the relation ΔF = Δ+ + iΔA and the definitions of the products. Ap-
plying the above relation in (38), and recalling that P0ΔA = δ, we obtain

P0φ(x) =
1

Zk(j)

(

ω
(
S(V )−1 	 S(V + J + Qk) 	 P0χ(x)

)

+ iω
(
S(V )−1 	 S(V + J + Qk)(1)(x)

)
)

.

The first term in parenthesis vanishes, because ω satisfies the free equation of
motion and thus ω(A 	 P0χ) = 0, while the derivative of S in the second term
can be computed explicitly, leading to

P0φ = − 1
Zk(j)

ω
(
S(V )−1 	 [S(V + Qk + J) ·T (TV (1) + Q

(1)
k + J (1))]

)
.

Since J is linear in the field χ, its first derivative gives the classical current
j(x). On the other hand, we have Q

(1)
k (χ)(x) = −qk(x)χ(x), and thus

1
Zk(j)

ω
(
S(V )−1 	 [S(V + Qk + J) ·T Q

(1)
k (χ)]

)

= −qk
1

Zk(j)
ω
(
S(V )−1 	 [S(V + Qk + J) ·T χ]

)

= −qkφ = Q
(1)
k (φ) .

This shows that Eq. (31) is equivalent to Eq. (37), which can be used to obtain
jφ from φ as a formal power series in V .
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Notice that the obtained solution is unique and lies in C∞
c (M)[[V ]]. In

fact, at zeroth order in perturbation series, the equation simply gives

jφ,0(x)= −P0φ(x) − Q
(1)
k (φ)(x) = −(P0 − qk)φ(x) , (40)

which is nothing but the free, regularised equations of motion. Furthermore,
jφ,0 ∈ C∞

c (M) because P0φ = −j̃0 ∈ C∞
c (M) by hypothesis, and outside the

adiabatic limit qk is smooth and of compact support. Proceeding by induction,
we see that if jφ is compactly supported up to order V n−1, then so is up to
order V n because, denoting by jφ,n the solution up to order V n,

jφ,n = jφ,0 − 1
Zk(jφ,n−1)

ω
(
S(V )−1 	 (S(V + Qk + Jφ,n−1) ·T TV (1))

)

and outside the adiabatic limit TV (1) is also of compact support. �

Remark 3.6. We observe that in the limit k → 0 the previous proposition
implies the well-posedness of the Legendre transform of W (j) to Γ̃(φ) also in
the unregularised case. Furthermore, Eq. (37) of Proposition 3.5 is nothing but
the quantum equation of motion (34). It can be used to obtain the form of the
effective action Γk. In particular, at linear order in V and in the limit k → 0,
using Lemma B.1, Eq. (37) reduces to

jφ = −P0φ − 1
ω(S(Jφ))

ω
(
S(Jφ) ·T TV (1)

)
mod O(V 2)

= −P0φ − TV (1)(iΔF jφ) mod O(V 2)

= −P0φ − TV (1)(φ) mod O(V 2) .

Recalling that
δΓ̃
δφ

= −jφ we have that, up to normal ordering, at leading order

the effective action coincides with the classical action I.

3.4.2. Classical Limit. From Eqs. (37) and (33), substituting the quantum
equations of motion (34), we get

Γ(1)
k (φ) = P0φ +

1
Zk(jφ)

ω
(
RV (S(Qk + Jφ) ·T TV (1))

)
. (41)

We would like to compute the limit k → ∞ from the above equation. In the
Euclidean case, this limit has been discussed in some detail in [63], where it
was shown that the average effective action and the bare action, in the k → ∞
limit, differ by the infinite mass limit of a one-loop determinant.

To study the limit in our formalism, it is convenient to apply the pertur-
bative agreement [22,40,77], which we recall in “Appendix A”, cf. Eqs. (78)
and (79) in particular. This way we may convert the non-commutative prod-
ucts 	 to k-dependent products 	k. In fact, at least when the state ω is assumed
to be quasifree for the free theory, we have the following

Lemma 3.7. Let ω be a quasifree state on A (associated to I0), and consider
	 and ·T constructed out of the two-point function Δ+ of ω. Let 	k and ·Tk

the star and time ordered products of Ak, which descends from the action
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I0 + Qk, and constructed out of Δ+,k = rQk
Δ+r

∗
Qk

with rQk
given in Eq. (74)

of “Appendix A” and r∗Qk
f := f − qkΔA,kf . It holds that for every A ∈ Floc

ω
(
RV (S(Qk + J) ·T A)

)
= S(V )−1 	 [S(V + Qk + J) ·T A]

∣
∣
∣
∣
χ=0

= Sk(γkV − γkQk)−1 	k [Sk(γkV + J) ·Tk
γkA]

∣
∣
∣
∣
χ=0

.

(42)

where Sk is the S-matrix constructed with ·Tk
and where the map γk is given

in (75).

Proof. Up to a constant factor, the left-hand side of (42) can be obtained
evaluating S(V )−1	S(V +Qk+J+μA) on the state ω and taking the derivative
with respect to μ in μ = 0. Hence we start rewriting S(V )−1 	S(V +Qk +J +
μA), inserting the identity 1 = S(V + Qk) 	 S(V + Qk)−1:

S(V )−1 	 S(V + Qk + J + μA) = S(V )−1 	 S(V + Qk)

	 S(V + Qk)−1 	 S(V + Qk + J + μA)

= RV (Qk) 	 SV +Qk
(J + μA) .

The first factor can be rewritten using Eq. (78) of “Appendix A” as

RV (Qk) = rQk
Rk,γk(V −Qk)(γkQk).

The second term can be rewritten using Eq. (79) of “Appendix A” as

SV +Qk
(J + μA) = rQk

[
Sk(γkV )−1 	k Sk(γkV + J + γkμA)

]
,

where we also used the identity γkJ = J because J is χ-linear. Since rQk
inter-

twines 	 to 	k and since rQk
B
∣
∣
χ=0

= B ◦ rQk

∣
∣
χ=0

= B
∣
∣
0

because rQk
(χ)
∣
∣
0

= 0,
Eq. (42) follows. �

Theorem 3.8. Let (M, g) be an ultrastatic spacetime with bounded curvature,
let ω be the ground state on A, and consider the limit where the support of
qk tends to M, namely where qk = k2. Then the average effective action Γk

coincides with the classical action up to a constant in the limit where qk = k2/2
and k → ∞, namely, it holds that

Γ(1)
k (φ) −→

k→∞
I(1)(φ)

in the sense of pointwise converges of functions at any order in the coupling
constant.

Proof. We start with the quantum equation of motion given in the form (41)

Γ(1)
k (φ) = P0φ +

1
Zk(j)

ω
(
RV (S(Qk + J) ·T TV (1))

)

Using Lemma 3.7, we may rewrite it as

Γ(1)
k (φ) = P0φ +

1
Zk(j)

ωk

(

Sk(γkV − γkQk)−1 	k [Sk(γkV + J) ·Tk
γkTV (1)]

)
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where ωk = ω ◦ rQk
.

When qk tends to k2, ωk tends to the ground state related to the equation
P0φ− k2φ = 0 (The proof for the case of Minkowski background can be found
in Lemma D.1 in [22] and it can be generalized to generic ultrastatic spacetime
with bounded scalar curvature. See also [20] for the case of equilibrium states.)

The spacetime M is ultrastatic, hence, it admits a natural notion of time,
by means of which, M = R × Σ. Furthermore,

P0 = ∂2
t − B − k2

where B is a self-adjoint operator on L2(Σ) whose spectrum is bounded from
below (by m2 − ξ‖R‖∞). Hence if k is sufficiently large, k is in the resolvent
set of B and thus for large k (B + k2)−1 is a bounded positive operator. We
furthermore observe that for any N � l > 0 and k2 > r, we can define by
spectral calculus (B + k2)−l and

‖(B + k2)−lψ‖2 ≤ 1
(k2 − r)l

‖ψ‖2, ψ ∈ L2(Σ),

where r is a positive constant which is such that (m2 − ξR) ≥ −r uniformly
on M.

With this at disposal, we can now construct the operators Δ̃+,k(t) and
Δ̃k,F (t) used as integral kernels of ΔF,k and of Δ+,k by standard functional
calculus over the spectrum of B + k2, which is contained in R

+ for sufficiently
large k. Hence, for every t

Δ̃+,k(t) =
eit

√
B+k2

2
√

B + k2

and

Δ̃F,k(t) := θ(t)Δ+,k(t) + θ(−t)Δ̃+,k(−t)

and both are elements of B(L2(Σ,dx) and their operator norms are such that

‖Δ̃+,k(t)‖ ≤ 1
2
√

k2 − r
, ‖Δ̃F,k(t)‖ ≤ 1

2
√

k2 − r
. (43)

With these two operators at disposal we have that for every h, g ∈ C∞
0 (M).

(Δ+,kg)(tx,x) =
∫

R

dt′
(

Δ̃+,g(tx − t′)g(t′, ·)
)

(x)

and similarly for ΔF,k. With this observation and the estimates of Δ̃+,k and
Δ̃F,k at disposal valid uniformly in time, we can estimate the distributions
Δ⊗n

+,k and Δ⊗n
F,k on M2n.

Operating as in Lemma B.3 we can observe that for every h, g ∈ C∞
c (O)

and with f ∈ C∞
c (M) which is 1 on O and for every l ∈ N with C a suitable

constant

|〈h,Δ+,kg〉| ≤
∣
∣
∣
∣

〈

h,
P l

0

k2l
Δ+,kg

〉∣
∣
∣
∣

≤ 1
k2l

‖P l
0h‖2‖fΔ+,kg‖2 ≤ C

k2l
‖P l

0g‖2‖f‖2‖g‖2 (44)
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where now the ‖ ·‖2 norms act on L2(M,dx), and where we used the fact that
Δ+,k is a weak solution of P0 − k2 in the first inequality, Cauchy-Schwartz
inequality in the second step and the uniform estimates (43) in the third one.

We can now generalize this observation to estimate

|(F (n)Δ⊗n
+,kG(n))| ≤ Cl

k2l
(45)

for F ,G in which are obtained as tensor product of local functionals and valid
for large k and for every l ∈ N. Actually, we observe that as an operator on
L2(Σ) ⊗ L2(Σ)

1
i(

√
B1 + k2 +

√
B2 + k2)

∂tk
Δ+,k(tx − ty)Δ+,k(tx − tz)

= Δ+,k(tx − ty)Δ+,k(tx − tz).

Using this and other similar observations in estimates analogous to (44) we
get the desired (45). With this at disposal, we observe that the 	k-product
reduces to the point-wise product in the limit k → ∞ even if in one of the
factors Qk appears.

Using also Lemma B.1 we actually get that

lim
k→∞

ωk

(

Sk(γkV − γkQk)−1 	k [Sk(γkV + J) ·Tk
γkTV (1)]

)

Zk(j)

= lim
k→∞

ωk

(

Sk(γkVφ0) ·Tk
γkTV

(1)
φ0

)

ωk

(

Sk(γkVφ0)
)

where Fφ0(χ) = F (χ + φ0) and where φ0 = iΔF,kjφ. We observe now that
in the limit k → ∞, thanks to the estimate (43) the Tk-product among local
functionals reduces to a pointwise product. Furthermore, γkTV (1) = TkV (1)—
cf. Remark A.1 in “Appendix A”— and under the same limit TkV (1) tends to
V (1). Finally, using (37) we get that in the limit k → ∞, φ0 converges to φ,
hence, since V as a function of φ is smooth we obtain

lim
k→∞

ωk

(

Sk(γkVφ0) ·Tk
γkTV

(1)
φ0

)

ωk

(

Sk(γkVφ0)
) = V (1)(φ)

and hence

Γ(1)
k (φ) −−−−→

k→∞
P0φ + V (1)(φ) = I(1)(φ)

where I(φ) is the classical action and the limit holds in the sense of pointwise
convergence of functions. �

Although Theorem 3.8 is proved for the case of ultrastatic spacetime with
bounded curvature and for ground state, its thesis holds in a more general
setup. Indeed, the generalization to the case of states which satisfy a similar
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bound as those given in (43) is straightforward. Notice that equilibrium states
on flat spacetimes or Bunch Davies states in the case of de Sitter backgrounds
satisfy a similar estimate. This shows that the average effective action and
the classical action coincide, up to a constant, in the limit k → ∞; more pre-
cisely, the expansion at k → ∞ coincides with the semiclassical approximation
described in Remark 3.6.

3.5. Parity of V

Equation (41) is the starting point for a perturbative study of the average
effective action. In this section we want to analyse the quantum corrections to
the classical approximation of the effective action, and in particular we want
to see if the quantum corrections can violate the symmetries of the classical
action.

Since, in this paper, we will only study the O(1) scalar model, we study
the parity of the effective average action. In particular, if V is even, χ → −χ
is the only symmetry of the classical action.

Proposition 3.9. Let V be even with respect to χ → −χ, so that it contains an
even number of fields only. Then, if ω is quasifree, the average effective action
Γk is also even.

Proof. Since Qk is φ-even, to study the parity of Γk it suffices to study the
parity of Γ̃k. We analyse the φ-parity of Γ̃k through Eq. (32):

Γ̃k(φ) = Wk(jφ) − Jφ(φ)

= −i log Zk(jφ) − Jφ(φ) , Zk(jφ) = ω [RV (S(Qk + Jφ)] .

To this end we first analyse the χ-parity of the involved functionals. Since V is
χ-even and 	, ·T preserve χ-parity, it follows that RV F has the same χ-parity
of F .

Since Qk is χ-even and ω corresponds to evaluation at χ = 0, it follows
that the contribution

ω [RV (S(Qk + Jφ))] = ω [RV (S(Qk) ·T S(Jφ))] ,

contains only even powers of Jφ, so this contribution is jφ-even. It then follows
that Wk(jφ) = −i log Zk(jφ) is jφ-even.

We now prove that jφ is φ-odd. With the observations already made, this
will imply that Jφ(φ) is φ-even and so is Γ̃k, because of Eq. (32). From Eq. (37)
we have

jφ = −P0φ − Q
(1)
k (φ) − 1

Zk(jφ)
ω
[
RV

(
S(Qk + Jφ) ·T TV (1)

)]
.

It follows that jφ,0 (the 0-th order in V of jφ) is φ-odd. By induction, let
assume that the expansion jφ,n up to order V n is φ-odd. For the expansion
jφ,n+1 up to V n+1 we have

jφ,n+1 = − 1
Zk(jφ,n)

ω
[
RV

(
S(Qk + Jφ,n) ·T TV (1)

)]
,
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which is shown to be φ-odd. Indeed, Zk(jφ,n) is jφ,n-even and thus φ-even,
moreover,

ω
[
RV

(
S(Qk + Jφ,n) ·T TV (1)

)]
,

contains only odd powers of jφ,n, because only χ-even terms in S(Qk+Jφ,n+1)·T
TV (1) provide a non-vanishing contribution to the expectation value—notice
that TV (1) is χ-odd because so is V (1) and also because the map T preserves
the χ-parity. By the inductive assumption, we find that jφ,n+1 is φ-odd. �

Hence, we see that quantum contributions cannot violate the parity of
symmetry of the starting classical action, at least in this simple example. This
observation will justify the ansatz (64) in actual computations of the flow.

4. Flow Equations

In this section, we derive the flow equations for the generating functionals as
differential equations in the scale parameter k. We are interested in particular
in deriving the equations for Wk and Γk, and in seeing the connection with their
Euclidean counterparts given respectively by the Polchinski [57] and Wetterich
[74] equations.

The flow equation for Wk can be computed from its definition, since
the k-dependence comes through the term Qk(χ) = − 1

2

∫
dxqk(x)χ2(x) in the

definition of Zk:

∂kWk(j) = − 1
2

∫
dx∂kqk(x)

1
Zk(j)

ω(S(V )−1

	 [S(V + J + Qk) ·T Tχ2(x)]). (46)

We recall here that ω is an arbitrary (not necessarily quasifree) Hadamard
state on A. We shall see in a moment that this equation is a normal-ordered
generalization of the Polchinski equation to Lorentzian manifolds and generic
states.

From the flow equation for Wk, we can immediately write the flow equa-
tion for Γ̃k:

∂kΓ̃k =∂kWk(jφ) + 〈W (1)
k (jφ), ∂kjφ〉 − 〈φ, ∂kjφ〉 = ∂kWk(jφ)

thanks to (31). Subtracting ∂kQk(φ) to the left-hand side, we get the flow
equation for the average effective action Γk defined in (33):

∂kΓk(φ) = −1
2

∫
dx∂kqk(x)

[
1

Zk(jφ)
ω
(
RV (S(Jφ + Qk) ·T Tχ2(x))

)− φ2(x)
]

. (47)

This flow equation, valid for local Qk, is a version of the Wetterich equation
that is valid on globally hyperbolic Lorentzian manifolds and for generic states.
Actually, analyzing the Bogoliubov map, we can see that the right-hand side of
the above equation is closely related to the interacting Feynman propagator;
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the difference is the factor S(Jφ + Qk) in the expectation value. However, ap-
plying the perturbative agreement—cf. Eqs. (78) and (79) in “Appendix A”—,
we will see in the next section that, at least in the free case, the factor S(Qk)
can be absorbed in the regularised products, so that, taking the limit j = 0, in
which the correlation functions of physical interest are computed, we get the
interacting Feynman propagator for the regularised theory.

Equation (46) can be cast in the form of the Polchinski equation. Re-
membering that pointwise products are always implicitly normal-ordered with
respect to H, as was given in (6), we have

Tχ2(x) = lim
y→x

χ(x) 	 χ(y) −
(

H(x, y) +
i

2
Δ(x, y)

)

= lim
y→x

χ(x) ·T χ(y) −
(

H(x, y) +
i

2
ΔR(x, y) +

i

2
ΔA(x, y)

)

= lim
y→x

χ(x) ·T χ(y) − HF (x, y) ,

so that the right-hand side of (46) can be written using (36) as a normal-
ordered Polchinski equation:

∂kWk = −1
2

∫
dx∂kqk(x)

1
Zk(j)

ω

(

S(V )−1 	

[

S(V + J + Qk) ·T
[

lim
y→x

χ(x) ·T χ(y) − HF (x, y)
]])

= − lim
y→x

1
2

∫
dx∂kqk(x)

[
1

Zk(j)
ω(S(V )−1

	[S(V + J + Qk) ·T χ(x) ·T χ(y)]) − H̃F (x, y)
]

(48)

where H̃F is a counter-term implicitly defined by the last identity. Equation
(47) then becomes

∂kΓk = lim
y→x

i

2

∫
dx∂kqk(x)

[
δ2Wk(j)

δj(x)δj(y)
− iH̃F (x, y)

]

. (49)

Furthermore, by construction of H̃F , the object in square bracket is at least
a continuous function on a sufficiently small neighborhood of the diagonal in
M × M.

Therefore, using (35), we can write the flow equation for Γk in terms of
its second derivative, arriving at the Wetterich equation for a local regulator:

∂kΓk = − i

2

∫
dx∂kqk(x) :

[
Γ(2)

k − qk

]−1

:
H̃F

(x)

where : A :
H̃F

(x) = limy→x(A(x, y) + iH̃F (x, y)), similarly to the procedure
necessary to evaluate the expectation value of normal-ordered quadratic local
fields by point splitting. Notice that the definition of H̃F is rather implicit but
it can be computed when V is quadratic—cf. Sect. 5.1. Notwithstanding we
stress that our main focus is in Eq. (47), which should be regarded as the main
equation of interest.
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In [28], the use of a local regulator in the flow equation for the graviton
propagator implies the introduction of additional counterterms in the Wet-
terich equation, in order to regularize the UV divergences; in our discussion,
such a regularization is provided by the normal-ordering prescription. In this
regard, Eq. 6 in [28] shares many similarities with the flow Eq. (49) we derived.

Equations (47) and (46) then are the generalizations, for generic states
on Lorentzian manifolds, of the Wetterich and Polchinski equations, respec-
tively. They are interpreted in a different perspective, because a local Qk is not
simply an infrared cut-off but it can rather be interpreted as a perturbative
contribution to the mass of the theory. However, due to the finiteness of the
right-hand side of both equations, they give well-defined beta-functions for the
parameters.

4.1. Non-local Regulator Function

In the case of a non-local regulator Qk = − 1
2

∫
dxdyqk(x, y)χ(x) ·T χ(y), at

least formally, we may get Zk from (28). Proceeding in this way, we obtain
flow equations similar to those already known in the literature. Actually, the
derivative of Wk gives

∂kWk = ∂kWk(j) = −1
2

∫
dxdy∂kqk(x, y)

1
Zk(j)

ω(S(V )−1

	 [S(V + J + Qk) ·T χ(x) ·T χ(y)])

We can rewrite the above equation as the Polchinski equation,

∂kWk = − 1
2

∫
dxdy∂kqk(x, y)

[

− i
δ2Wk(j)
δj(x)j(y)

+ W
(1)
k (x)W (1)

k (y)
]

Analogously, the same derivation as before gives the flow equation for the
average effective action,

∂kΓk(φ) =
1
2

∫
dxdy∂kqk(x, y)

[
1

Zk(j)
ω
(
RV (S(J + Qk) ·T χ(x) ·T χ(y))

)− φ(x)φ(y)))
]

(50)

which can be cast in the form of the Wetterich equation:

∂kΓk = − i

2

∫
dxdy∂kqk(x, y)

(

Γ(2)
k − qk

)−1

.

The interpretation of the Polchinski and Wetterich equations with a non-
local regulator is the same as in the standard functional renormalization group
approach: in particular, Eq. (47) tells us how the effective average action flows
with the scale k of the IR cutoff Qk, in terms of the full propagator of the
theory. An example of the use of this non-local regulator in the case of cosmo-
logical spacetimes can be found in the recent work [3].
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As they are, Eq. (47) and its non-local analogue (50) look intractable,
and therefore, in order to solve the equation, we need to identify suitable
approximation schemes.

5. Approximations

In this section we describe a procedure which provides a useful approximation
of the effective action Γk which can be applied when the chosen reference state
ω for the free theory is quasifree. It simplifies the computation of the effective
action and leads to the notion of beta-function associated with the parameters
of the theory I.

5.1. Free Case

In the case V = 0, the flow equation for local regulator reduces to

∂kΓk = −1
2

∫
dx∂kqk(x)

[
1

Zk(j)
ω
(
S(J) ·T S(Qk) ·T Tχ(x)2

)− φ(x)2
]

.

Instead of analyzing this equation directly, we study the form of Γk in the next
proposition.

Proposition 5.1. Let V = 0, let ω be a quasifree state on A (associated with
I0). Then the effective action Γk coincides with I0 up to a constant. Moreover,
for Wk defined as in Eq. (30), we have

δ2Wk

δj2
= ΔF,k :=

∑

n≥0

(−i)n(ΔF qk)nΔF , (51)

where in this formula ΔF is the linear operator associated to the Feynman
propagator with the Schwartz kernel theorem and qk is a multiplicative opera-
tor. Furthermore, the series defining ΔF,k is perturbative in qk. In particular,
the integral kernel of the operator ΔF,k is the Feynman propagator associated
to I0k.

Remark 5.2. Notice that the series in Eq. (51) should be considered in the
sense of perturbation theory with respect to qk. A rigorous construction of
ΔF,k can be obtained using the classical Møller map introduced in [22]. In
particular, consider

Δ̃F,k = Δ+,k + iΔA,k

where ΔA,k and Δ+,k are obtained by means of the functional which realizes
the classical Møller map rQk

χ = χ − ΔR,kqkχ, χ ∈ C∞(M) introduced in
Proposition 3.8 in [22] and recalled in (74) in the appendix. Actually by means
of Proposition 3.11 of [22] Δ+,k = rQk

Δ+r
∗
Qk

and Lemma 3.10 of [22] gives that
ΔA,k = ΔAr

∗
Qk

. Furthermore, using recursively the latter relation we obtain
that

ΔA,k =
N∑

j=0

ΔA(−qkΔA)j − ΔA(−qkΔA)NqkΔA,k.
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With this observation and using the support properties of the advanced and
retarded fundamental solutions it is possible to prove that order by order in
powers of qk, ΔF,k = Δ̃F,k. (See the derivation of (58) below in a similar
context for further details on this procedure.) As a matter of fact, the con-
vergence of the series can be addressed in specific scenario, e.g. Minkowski or
highly symmetric spacetimes.

Proof of Proposition 5.1. We shall prove Eq. (51), which, together with Eq. (35),
will lead to the proof of the statement about Γk. We recall that W

(1)
k (x) = φ(x)

and that

−i
δ2Wk(j)

δj(x)δj(y)
=

1
Zk(j)

ω(S(Qk + J) ·T χ(x) ·T χ(y)) − φ(x)φ(y)

where Zk = ω(S(Qk + J)). We study

1
Zk

ω(S(Qk + J) ·T χ(x) ·T χ(y)) = ΔF (x, y) +
1

Zk
ω(S(Qk + J) ·T χ(x)χ(y)) ,

To deal with the contribution ω(S(Qk +J) ·T χ(x)χ(y)), we consider the func-
tional

Q̃f (χ) :=
∫

dx [j(x)χ(x) − qk(x)χ(x)2] +
∫

dxdy f(x, y)χ(x)χ(y) ,

where f ∈ C∞
c (M2). With this definition we have

1
Zk

ω(S(Qk + J) ·T χ(x)χ(y)) =
δ

iδf(x, y)
log(S(Q̃f ))

∣
∣
∣
∣f=0
χ=0

because we are working in a representation of A where ω correspond to the
evaluation on χ = 0. Since S(Q̃f ) = T [exp(iQ̃f )] we can evaluate the log-
contribution using the linked-cluster theorem1:

S(Q̃f ) = T (eiQ̃f ) = exp
[
T c(eiQ̃f

⊗ )
]

. (52)

Here T c denotes the connected time-ordered product: shortly, T c(A ⊗ B) cor-
responds to summing over all contributions of A ·T B which comes from a

1 See e.g. section 4.3.1 in [47] for a derivation of the formula expressing the linked cluster
theorem.
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connected diagram—cf. Eq. (17). For example we have, upon renormalization,
T c(χ2(x) ⊗ χ2(y)) = 2χ(x)ΔF (x, y)χ(y) + Δ2

F (x, y). We thus obtain

1

Zk
ω(S(Q̃ + J) ·T χ(x)χ(y)) =

δ

iδf(x, y)
T c(e

iQ̃f

⊗ )

∣
∣
∣
∣f=0
χ=0

= T c
(
eiQk+iJ

⊗ ⊗ χ(x)χ(y)
) ∣
∣
χ=0

=
∑

n≥1

1

n!
T c
[
(iQk + iJ)⊗n ⊗ χ(x)χ(y)

]
|χ=0

=
∑

n≥1

1

n!
T c
[
(iQk)⊗n ⊗ χ(x)χ(y)

]
|χ=0+

+
∑

n≥0

1

n!
T c
[
iJ ⊗ iJ ⊗ (iQk)⊗n ⊗ χ(x)χ(y)

]
|χ=0 .

Using the definition of T c we have that the graph over which we are summing
in evaluating T c [(iQk)⊗n ⊗ χ(x)χ(y)] are all formed by n+2 vertices joined by
n + 1 edges. The external vertices correspond to χ(x) and χ(y) the n internal
vertices correspond to Qk. All these graphs are equal and differs only by the
possible n! permutations of the internal vertices. Hence

∑

n≥1

1
n!

T c
[
(iQk)⊗n ⊗ χ(x)χ(y)

] |χ=0 =
∑

n≥1

((−i)nΔF qk(ΔF qk)n−1ΔF δy)(x)

= ΔF,k(x, y) − ΔF (x, y) ,

where ΔF is considered as a linear operator acting on compactly supported
functions and δy is the Dirac delta function centered in y. Notice that ΔF,k is
a Feynman propagator associated to I0k. Indeed, recalling that P0k = P0 − qk

—cf. Remark 3.3 — we have

P0ΔF,k = P0

∑

n≥0

(−i)n(ΔF qk)nΔF

= i + qk

∑

n≥1

(−i)n−1(ΔF qk)n−1ΔF = i + qkΔF,k .

Furthermore, since J is linear in the field, Qk and χ(x)χ(y) are quadratic and
since T c contains only connected components, we have that the graph over
which we have to sum to evaluate T c [iJ ⊗ iJ ⊗ (iQk)⊗n ⊗ χ(x)χ(y)] |χ=0 are
the connected graphs formed by n + 3 vertices and n + 2 edges. The external
vertices correspond to J and J . n internal vertices correspond to Qk and the
remaining vertex to χ(x)χ(y). The latter is non local hence, this graph can
be seen as two-graphs, one joining J to χ(x) and the other joining J to χ(y).
Taking care of the possible internal vertices in this decomposition and on the
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possible positions of χχ in the original graph we have the following

∑

n≥0

1
n!

T c
[
iJ ⊗ iJ ⊗ (iQk)⊗n ⊗ χ(x)χ(y)

] |χ=0

=
∑

n≥0

1
n!

T c
[
iJ ⊗ (iQk)⊗n ⊗ χ(x)

] |χ=0

∑

l≥0

1
l!

T c
[
iJ ⊗ (iQk)⊗l ⊗ χ(y)

] |χ=0 = φ(x)φ(y)

where the last equality can be proven using again the linked cluster theorem
(52), observing that by definition

φ(x) =
1

Zk
ω(S(Qk + J) ·T χ(x)) =

δ

iδj(x)
T c(eiQk+iJ

⊗ )|χ=0

= T c(eiQk+iJ
⊗ ⊗ χ(x))|χ=0.

Summing up we have that

−i
δ2Wk(j)

δj(x)δj(y)
= ΔF,k(x, y) .

where the latter Feynman propagator is the Qk-massive one.
The latter equation, together with Eqs. (35) and (51) entails that Γ(2)

k (φ) =
I
(2)
0k (φ) for all φ. Moreover, since the action I0 is even and quadratic in the

field and Proposition 3.9 ensures that Γk is even, it follows that Γk = I0 up to
a constant. �

5.2. Local Potential Approximation

In the following, we illustrate how we apply the approximation scheme known
in the literature as local potential approximation (LPA) [25] to the Lorentzian
case, in order to find approximated solutions of the obtained flow equation for
the effective action.

We start analysing the right-hand side of (49). Firstly we observe that
W

(2)
k satisfies the following equation

(Γ(2)
k − qk)W (2)

k = −δ .

However, even if we knew Γk we would not simply obtain W
(2)
k from the

equation above for two reasons. The first difficulty lies in the fact that in
general Γk is not quadratic in φ and thus (Γ(2)

k − qk) cannot be easily inverted
to get W

(2)
k . Furthermore, even when Γ is quadratic, if Γ(2)

k contains a principal
symbol which is of hyperbolic type, as it would happen in our case, it is known
that there exists no unique inverse and thus it is not easy to pick up the inverse
corresponding to the expectation value in the state ω which appears in the
definition of W .
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With this in mind, let us start with the obtained flow equation in the
form given in (47):

∂kΓk(φ) = −1
2

∫
dx∂kqk(x)

[
1

Zk(jφ)
ω
(
RV (S(Jφ + Qk) ·T Tχ2(x))

)− φ2(x)
]

We stress that in the construction we have presented the state ω has been
selected a priori: it does not depend on k and we do not want to change it
in the approximation we are going to discuss. Furthermore, to be as close as
possible to the standard literature, the reference state ω for the free theory is
a quasifree Hadamard state.

The approximation scheme proceeds with an Ansatz for the effective av-
erage action in the form of a local potential approximation,

Γk(φ) = −
∫

ddx

(
1
2
∇aφ∇aφ+Uk(φ)

)

. (53)

As a first approximation, we do not consider a k-dependent wavefunction renor-
malization in front of the kinetic term. We will comment on its inclusion in
remark 5.3 at the end of this section.

With this Ansatz, the left-hand side of the flow equation is ∂kΓk =
− ∫ dx ∂kUk(φ). To approximate the right-hand side in a sensible way, we
proceed as follows. We expand Γk close to a solution φcl of (34) for a vanishing
j:

Γk(φ) = Γk(φcl) +
1
2
Γ(2)

k (φcl)(ϕ,ϕ) + O(ϕ3) = Γt
k(ϕ) + O(ϕ3)

where we introduced the fluctuation field ϕ := φ − φcl and we have denoted
the truncated effective action by Γt

k.
The local potential approximation proceeds by assuming that Γt

k is the
average effective action produced by an action It

0, in the very same way Γk is
the average effective action produced by I = I0 + V . By Proposition 5.1, the
action It

0 has to be quadratic, because so is Γt
k. Moreover, from Eq. (53) it

follows that the principal symbol of Γt
k is k-independent, so we must have

It
0 = −

∫
dx

(
1
2
∇aχ∇aχ+

1
2
U

(2)
k (φcl)χ2

)

,

where U
(2)
k (φcl) is equal to the contribution to the truncated Γt

k coming from
the potential Uk. We proceed by comparing the “truncated” action It

0 with the
full action I = I0 + V to find an approximation of the right-hand side of (47).
More precisely, we decompose the full action I = I0 + V in another free and
interacting part, namely I = It

0+V. We then rewrite the right-hand side of the
flow equation perturbing the system around It

0 and discarding the correction
due to V in the right-hand side of (47). We thus have

I = I0 + V = It
0 + V,

where It
0 := I0 + M and V := V − M , with

M := −
∫

dx(U (2)
k (φcl) − m2 − ξR)

χ2

2
.
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Notice in particular that M depends on the non-trivial field background φcl.
Furthermore, its role is that of shifting the quadratic non-kinetic parts, origi-
nally present in I0, to −U

(2)
k (φcl)χ2/2.

Truncating Γ to Γt corresponds thus to discarding the V contributions
at the right-hand side of the flow Eq. (47), keeping however the choice of the
state ω originally made. Stated differently, we are approximating the full, non-
linear action I with a quadratic one, It

0, which is the quadratic action whose
associated average effective action is Γt

k. The term M contains the residual
information about the interactions of the full Lagrangian. The action It

0 then
contains the usual kinetic term, plus a non-trivial, classical background, acting
as a φcl-dependent mass for the fluctuation field ϕ.

Within this truncation, we now study how the right-hand side of (47)
gets modified. In order to proceed, we make use of the principle of perturbative
agreement to analyse how the Bogoliubov map changes with this new splitting
(see “Appendix A” for a review). In fact, we want to use the Bogoliubov map
RV constructed around the new action It

0 and to consider only the zeroth order
contribution.

In particular, making use of Theorem 4.1 in [22], we have that—cf.
Eq. (78)—

RV = RV+M = rM ◦ RM
γV ◦ γ,

where rM is the classical Møller map, whose definition is recalled in the “Ap-
pendix A”—cf. Eq. (74)— and γ intertwines the time ordered product T con-
structed with ΔF with a suitably chosen time-ordered product TM for the free
theory It

0, actually γT = TM . In particular, the associated Feynman propaga-
tor ΔF,M is the one associated with the quasifree state ωM , whose two-point
function reads rMΔ+r

∗
M where rM is given in Eq. (74). Furthermore, RM

γV is
the Bogoliubov map (quantum Møller map) constructed over the free theory
It
0. Hence, since

RV+M (S(Jφ + Qk) ·T Tχ2) = rM

(
RM

γV(SM (γQk + γJφ) ·T γTχ2)
)

holds, discarding the contributions containing V at the right-hand of (47) gives
the flow equation in the relevant approximation. Up to an integration over the
space it is given by:

∂kUk(φ) =
∂kqk

2

(
ωM (SM (γQk + Jφ) ·TM

TMχ2)
ωM (SM (γQk + Jφ))

− φ2

)

,

where we used the fact that γTχ2 = TMχ2. The right-hand side of the previous
equation can be computed following the analysis presented in Proposition 5.1,
to obtain

∂kUk(φ) = lim
y→x

∂kqk

2

(
ωM (SM (γQk + Jφ) ·TM

χ(x) ·TM
χ(y))

ωM (SM (γQk + Jφ))

−HF,M,k(x, y) − φ(x)φ(y)
)

,
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where we used the fact that γχ = χ. Hence

∂kUk(φ) = lim
y→x

∂kqk

2
(x)(ΔF,M,k(y, x) − HF,M,k(y, x)), (54)

where ΔF,M,k is a Feynman propagator for the theory It
0 + Qk obtained from

the two-point function Δ+ of the state ω and where HF,M,k is the Hadamard
parametrix of the theory It

0 + Qk. More precisely, arguing as in the proof
Proposition 5.1, we have that

ΔF,M,k =
∑

n≥0

(−i)nΔF,M (qkΔF,M )n (55)

where ΔF,M = Δ+,M +iΔA,M is a Feynman propagator of the theory It
0, which

is obtained from ΔF = Δ+ + iΔA by means of the principle of perturbative
agreement. According to Lemma 3.1 and Proposition 3.11 in [22], see also
“Appendix A” and formula (74),

Δ+,M = rM ◦ Δ+ ◦ r∗M , (56)

where rM is such that,

rMχ = χ − ΔR,MM (1)(χ)

and ΔR,M is the unique retarded propagator of It
0.

We finally rewrite formula (55) in a simpler way. We start recalling that
ΔF,M = Δ+,M + iΔA,M , hence,

ΔF,M,k =
∑

n≥0

(−i)n(Δ+,M + iΔA,M )(qk(Δ+,M + iΔA,M ))n (57)

according to Lemma 3.10 in [22], we have that

ΔA,M,k = ΔA,M

∑

n≥0

(qkΔA,M )n = ΔA,M (1 + qkΔA,M,k) = ΔA,M r∗Qk
,

hence, rearranging the sum, we may rewrite (57) as

ΔF,M,k = iΔA,M,k + [1 + ΔA,M,kqk]Δ+,M r∗Qk

+
∑

n≥1

p(Δ+,M r∗Qk
)(−qkΔ+,M r∗Qk

)n

= iΔA,M,k + rQk
Δ+,M r∗Qk

− ΔM,kqkΔ+,M r∗Qk

+
∑

n≥1

p(Δ+,M r∗Qk
)(−qkΔ+,M r∗Qk

)n ,

where p = (1+ΔA,M,kqk) = (1+ΔR,M,kqk −ΔM,kqk) = rQk
−ΔM,kqk. Notice

that

−ΔM,kqkΔ+,M = ΔM,k((P0 + M (2) − qk) − (P0 + M (2)))Δ+,M = 0,

where in the last step we used the fact that ΔM,k is a weak solution of P0 +
M (2)−qk in both entries while Δ+,M is a weak solution of P0+M (2). Similarly
we have also that for every n ≥ 2, (Δ+,M r∗Qk

)(qkΔ+,M r∗Qk
)n−1 = 0 because



Vol. 25 (2024) An Algebraic QFT Approach to the Wetterich Equation 2333

Δ+,M r∗Qk
(P0 + M (2) − qk) = 0. Finally since rM+Qk

(f) = rQk
(rM (f)) we have

that

ΔF,M,k = iΔAr
∗
M+Qk

+ rM+Qk
Δ+r

∗
M+Qk

. (58)

Combining all these observations, we conclude that the right-hand side
of (54) is nothing but the expectation value of ∂kQk in a quasifree state ωM,k

whose two-point function is

Δ+,M,k = rM+Qk
Δ+r

∗
M+Qk

, (59)

hence

∂kUk(ρ) = −ωM,k[∂k(Qk)], (60)

where Qk is a properly normal ordered Wick square. Actually, for qk = k2f in
the region where the cutoff function f is 1, it can be evaluated as

+∂kUk(ρ) = lim
y→x

k(ΔS,M,k(y, x) − HM,k(y, x)),

where ΔS,M,k is the symmetric part of the two-point function Δ+,M,k and
HM,k is the Hadamard function related to the theory whose action is It

0+Qk =
I0 + M + Qk.

The regularization which is provided by the point splitting procedure
discussed here is compatible with the principles discussed in [38], see also [41].
Furthermore, many explicit computations of similar contributions are already
present in the literature on flat and curved spacetimes (e.g. in de Sitter [18]).

Remark 5.3. We can slightly adapt the discussion above in order to include
a wavefunction renormalization. In this case, we start with an Ansatz for the
average effective action in the form

Γk(φ) = −
∫

ddx
(zk

2
∇aφ∇aφ + Uk(φ)

)

while we also modify the regulator into

Qk(φ) = −zk

2

∫
ddxqk(x)φ2(x).

This approximation scheme is known as LPA’. First, we rescale the fields as
φ → z

−1/2
k φ, to obtain

Γk(φ) = −
∫

ddx

(
1
2
∇aφ∇aφ + Uk

(
φ√
zk

))

.

We can now argue as before, expanding the average effective action around a
solution φcl of the quantum equations of motion for vanishing j, and keeping
terms at most quadratic in the fluctuation field:

Γk(φ) = Γk(φcl) −
∫

ddx

(
1
2
∇aϕ∇aϕ +

1
2
U

(2)
k

(
φcl√
zk

)

ϕ2

)

+ O(ϕ3)

:= Γt
k(ϕ) + O(ϕ3)

where U
(2)
k denotes the derivative with respect to the argument φ/

√
zk.
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The truncated average effective action Γt
k must come from a truncated

action of the form

It
0 = −

∫
dx

(
1
2
∇aχ∇aχ + U (2)

(
φcl√
zk

)
χ2

2

)

Comparing the truncated action with the full action I = I0 + V we see that
I = It

0 + V = I0 + M + V, where now V = V − M and M is

M =
∫

dx

(

m2 + ξR − U
(2)
k

(
φcl√
zk

))
χ2

2
.

Scaling back to the original classical fields φcl → √
zkφcl we obtain

M =
∫

dx

(

m2 + ξR − U
(2)
k (φcl)

zk

)
χ2

2
.

The approximation of the r.h.s now proceeds as before, arriving at (54).
The difference now is in the mass term M , which includes an additional
k−dependence in the wavefunction renormalization.

For example, in the simple case of the Minkowski vacuum as the reference
state ω, with qk = k2, taking the adiabatic limit and choosing a constant clas-
sical field φcl, the r.h.s. of the Wetterich equation in Fourier domain becomes

∂kΓk =
1

2(2π)d

∫
ddp

zk∂k(zkk2)

zk(p2 + k2 + m2
k) + U

(2)
k (φcl)

.

Remark 5.4. In the computation described above we have transformed the
Wick square Tχ2 in TM,kχ2 with a two-step procedure: (a) we moved Tχ2

in TMχ2 by invoking the principle of perturbative agreement; (b) we changed
TMχ2 into TM,kχ2 roughly by computing ω(S(Qk) ·TM

TMχ2)/ω(S(Qk)).
Although the net result is the same (i.e. we are changing the mass of the

theory), the procedures (a) and (b) are slightly different. This difference is par-
ticularly relevant once considering the ambiguities in the choice of Tχ2, TMχ2

and TM,kχ2. Indeed, since point (a) respects the principle of local covariance
[15], it follows that the ambiguities which define Tχ2 and TMχ2 have to be the
same. This is not the case when discussing the ambiguities of TM,kχ2, since
there is no reason why (b) should respect the principle of local covariance,
because theories with different ks are in principle not deformable one into the
other. Thus, we are a priori free to make different choices for the ambiguities
defining Tχ2 and TM,kχ2. This possibility will turn out to be quite useful when
discussing actual computation, cf. Sect. 6.1.1.

Taking successive functional derivatives with respect to φ on both sides
of (54) gives the beta-functions for the evolution equations of the running
coupling constants, defined as the coefficients of the Taylor series of Uk(φ)
close to φ = 0 (which correspond to a local minimum of Uk(φ)):

Uk(φ) = U0,k + m2
k

φ2

2
+ λk

φ4

4!
+ O(φ6). (61)

In the previous discussion, we always tacitly assumed that the starting point
for the flow was the classical action I0. Clearly, one may start the flow at a
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different scale Λ, where Λ → ∞ corresponds to the classical action I0. Such
identification lets one interpret the beta-functions as the evolution equations
for the couplings.

The beta-functions are then defined as the evolution equations for the
dimensionless parameters m̃2

k and λ̃k with respect to the renormalization time
t = log k/Λ, where Λ is the scale at which the renormalization starts. In powers
of k, the dimensions of the couplings are [m2

β,k] = 2 and [λk] = 4 − d. Then
we have

k∂km̃2
k,β = k−1∂km2

k,β − 2m̃2
k,β (62)

k∂kλ̃k = kd−3∂kλk + (d − 4)λ̃k . (63)

6. Applications

6.1. Local Regulator and the High-temperature Fixed Point in λφ4

As an application of the theoretical machinery presented in this paper, we ap-
ply our modified Wetterich equation to λφ4 model at finite inverse temperature
β. The Lagrangian density for λφ4 at finite temperature is given by

L = −1
2
∇aχ∇aχ − λ

4!
χ4.

We apply the renormalization scheme of section 5.2. We therefore linearize
the theory as a free theory for the perturbation ϕ with a mass term m2 + λρ
where ρ = φ2/2. Following (61), our Ansatz for Uk(φ) is

Uk(φ) = U0,k,β + m2
k,βρ +

1
6
λk,βρ2 ρ =

φ2

2
. (64)

The couplings m2
β,k and λβ,k can depend on the temperature as well as k, since,

for example, there will be contributions coming from the one-loop renormal-
ization of the thermal mass.

The right-hand side of the modified Wetterich equation in the LPA (54)
can be computed as follows. We choose as reference state an equilibrium state
with respect to Minkowski time evolution at inverse temperature β, which is
also quasifree for the free theory. This is a KMS state for the free theory λ = 0
whose two-point function is invariant under translations, and has the form (see
e.g. [22])

Δβ
+(x0,x; y0,y) =

∫
dd−1p

(2π)d−1
eip·(x−y) 1

2w

(
e−iw(x0−y0)

1 − e−βw
+

eiw(x0−y0)

eβw − 1

)

(65)

where w = |p|. We follow the procedure discussed above to get the correspond-
ing

Δβ
+,M,k = rQk+MΔβ

+r
∗
Qk+M .

Following [22], see also [9,20,21], and taking the adiabatic limit we have that
the two-point function of the state in which we compute the expectation value
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of the Wick square is

Δβ
+,M,k(x0,x; y0,y) =

∫
dd−1p

(2π)d−1
eip·(x−y)

1
2wM,k

(
e−iwM,k(x0−y0)

1 − e−βw
+

eiwM,k(x0−y0)

eβw − 1

)

(66)

where wM,k =
√

w2 + m2
k,β + λk,βρ + qk. Notice that the w-factors associated

with the modes have changed, while this is not the case for the Bose factors.

The above two-point function differs from that of [50], since in our con-
struction the Bose factors are k-independent. The reason is that, in the deriva-
tion of the Wetterich equation we have presented in the previous sections, we
fixed the state once and for all in the original, unregularised theory.

One could ask what happens if, instead, one chooses different states at
different k’s. In the example of thermal states a possibility in this direction
would be to consider β which depends on k.

However, this introduces a new scale dependence through the choice of
states at various k in addition to the scale dependence one introduces in the
observables. As a consequence, the flow Eq. (54) would receive an additional
contribution from the derivative of the explicit dependence of the state on k
and the obtained equation will not be of the simple form given in (49). With
this in mind, we conclude that the flow Eq. (54) takes the form

∂kUk(φ) = lim
y→x

(Δ∞
S,M,k(y, x) − H(y, x))

∂kqk(x)
2

+ lim
y→x

(Δβ
S,M,k(y, x) − Δ∞

S,M,k(y, x))
∂kqk(x)

2
. (67)

The first contribution is the one which would remain in the limit β → ∞,
namely when ω is chosen to be the vacuum state, while the second is the
correction due to the temperature.

The flow equations for mk,β and λk,β are obtained from the above, taking
on both sides of the equation functional derivatives up to order two with
respect to ρ and equating them for ρ = 0. Hence, to get the beta-functions for
both λ and m we analyse these two contributions separately. We have that (in
the adiabatic limit and in the four dimensional case)

A := lim
y→x

(Δβ
S,M,k(y, x) − Δ∞

S,M,k(y, x)(y, x))
∂kqk(x)

2

=
1

(2π)3

∫
d3p

1
wM,k

(
1

eβw − 1

)
∂kqk(x)

2

(68)
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while, by employing the result recalled in “Appendix C”,

B := lim
y→x

(Δ∞
S,M,k(y, x) − H(y, x))

∂kqk(x)
2

=
1

8π2
(k2 + m2

k,β + λk,βρ) log

(
k2 + m2

k,β + λk,βρ

μ2

)
∂kqk(x)

2

(69)

the regulator qk is now chosen to be equal to qk = k2—the corresponding
adiabatic limit has been tacitly taken.

6.1.1. Vacuum Case. In the limit of vanishing temperature β → ∞ we have
that the contributions due to (68) vanish, and in the four dimensional case we
are left with

k∂kU0,k =
1

8π2
k2(k2 + m2

k) log
(

k2 + m2
k

μ2

)

k∂km2
k =

1
8π2

k2

(

1 + log
(

k2 + m2
k

μ2

))

λk

k∂kλk =
3

8π2

k2

k2 + m2
k

λ2
k .

In terms of the dimensionless couplings, Ũ0,k = U0,k/k4 m̃k = mk/k and
λ̃k = λk the beta-functions then are

k∂kŨ0,k = −4Ũ0,k +
1

8π2
(1 + m̃2

k)
[

log
(
1 + m̃2

k

)
+ log

(
k2

μ2

)]

k∂km̃2
k = −2m̃2

k +
1

8π2

[

1 + log(1 + m̃2
k) + log(

k2

μ2
)
]

λ̃k

k∂kλ̃k =
3

8π2

λ̃2
k

1 + m̃2
k

.

In the above equation, the arbitrary mass parameter μ represents a residual
freedom in the ultraviolet renormalization scheme we have adopted. Hence,
the price to pay to have a local regularization term, is an additional freedom
in the beta-functions due to the ultraviolet renormalization scale μ. However,
the additional freedom may be safely removed setting

μ = k. This is equivalent to tune the renormalization ambiguities of
TM,kχ2 which, we recall, are not forced to be the same as the ones present in
Tχ2—cf. Remark 5.4. Notice that this choice would not change the form of the
Wetterich equation as it is made after deriving in k. We finally observe that
setting μ = k we can still identify a fixed point for λ̃k = 0 and for m̃k = 0, in
agreement with what one obtains using non local regulators, showing that the
only fixed point in four dimensions is the non-interacting one.
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6.1.2. High Temperature Limit. We now take the high temperature limit β →
0. We shall later approximate

1
eβw − 1

≈ 1
βw

in some part of the computation.

Hence

A =
k3

2π2

∫ ∞

0

dp
p2

√
p2 +

(mk,β

k

)2 + λk,β

k2 ρ + 1

1
eβkp − 1

.

Expanding A up to order 2 in powers of ρ we get

A � k3

4π2

∫ ∞

0

dp2

⎡

⎢
⎣

1
(
p2 +

(mk,β

k

)2 + 1
) 1

2
− 1

2k2

λk,βρ
(
p2 +

(mk,β

k

)2 + 1
) 3

2

+
3

8k4

(λk,βρ)2
(
p2 +

(mk,β

k

)2 + 1
) 5

2

⎤

⎥
⎦

p

eβkp − 1
.

The contribution to the beta-functions due to A diverges as 1/β in the limit
β → 0 while B stays bounded —cf. Eq. (68)-(69). Thus A dominates over B,
and we can drop the latter term when computing the flow equations for the
coupling parameters in the high-temperature regime. We then find

k∂kŨ0,k,β = −Ũ0,k,β +
ζ(3)
2π2

k∂km̃2
k,β = −2(m̃k,β)2 − 1

2π2

λ̃k,β
(
1 + m̃2

k,β

) 1
2

k∂kλ̃k,β = −λ̃k,β +
3

8π2

(λ̃k,β)2
(
1 + m̃2

k,β

) 3
2

,

where ζ is the Riemann zeta function, and we introduced the dimensionless,
rescaled constants Ũ0,k,β = U0,k,ββ2/k, m̃k,β = mk,β/k and λ̃k,β = λk,β/(βk).
In d = 4, one finds a non-trivial fixed point for Ũ∗ = ζ(3)/2π2, m̃2

∗ = −2/5,
λ̃∗ = (8/3)π2(1 + m̃2

∗)
3/2. The minus sign in the mass fixed point indicates

that the symmetry χ → −χ is spontaneously broken in the chosen state.
To make it clearer, following [71], we can now repeat the above analysis,

in which the effective potential takes the simple form

Uk =
λk,β

2
(ρ − ρ0,k,β)2 ρ =

φ2

2
.

which coincides with the effective potential written in Eq. (64) up to a constant.
The new parameter ρ0,k,β = φ2

0,k,β/2 is the minimum of the potential, located

at U
(1)
k (φ0,k,β) = 0. The new parameters are then linked to the old coupling

constants, in particular m2
k,β = −λk,βρ0,k,β , while λk,β is scaled by a factor

3. The flow equation for these parameters can be obtained from those written
above.
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6.1.3. de Sitter Space. As a final application we show that the same methods
apply in the context of curved spacetimes; in particular we study (the lineariza-
tion of) λχ4 in de Sitter space, defined as the four dimensional hyperboloid
embedded in five dimensional flat space via the equation

XaXbηab = H−2

where H > 0 is the Hubble constant and η is the five-dimensional Minkowskian
metric. We consider the linear theory to be in the Bunch Davies state [17],
which is the unique quasifree maximally symmetric state on the de Sitter
spacetime. Following [1,7], the symmetric part of its two-point function is

ΔBD,+
S (x, y) =

H2

16π

(
1
4 − ν2

)

cos(πν) 2F1

(
3
2

+ ν,
3
2

− ν; 2;
1 + Z(x, y)

2

)

where 2F1 is the hypergeometric function, Z(x, y) = H2Xa(x)Xb(y)ηab is
related to the geodesic distance d(x, y) = H cos(Z(x, y)) between x and y,
and

ν =

√
9
4

− 12ξ +
m2

H2
, (70)

where m is the mass of the quantum field and ξ its coupling to the scalar
curvature.

We proceed with the following Ansatz

Uk(φ) = m2
kρ +

1
6
λkρ2, ρ =

φ2

2

Notice that, for the sake of simplicity, ξ does not depend on k.
To apply the approximation scheme introduced above, we need first of

all to apply the maps which realise the classical transformation

rM+Qk
ΔBD

S r∗M+Qk
.

However, instead of directly performing that computation, we observe that in
the adiabatic limit the obtained states share the same symmetry properties
as those of the original two-point function, because the classical Møller map
preserves the spacetime symmetry. The only maximally symmetric state in de
Sitter is the Bunch Davies state and the original state is maximally symmetric;
hence, the new state needs to be a Bunch Davies state too with a mass m2 =
m2

k + λkρ + k2.
For massive theories, with a general, non-minimal coupling ξ, the renor-

malized expectation value (via the Hadamard procedure) of the Wick square
χ2 in this state is given by [6]

ω(χ2(x)) = − 1
16π

{

− 2H2

3
+
[

(m2
k + k2 + λkρ) +

(

ξ − 1
6

)

12H2

]

[

ψ

(
3
2

+ ν

)

+ ψ

(
3
2

− ν

)

+ log
(

12H2

μ2

)]}

(71)
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where ψ is the digamma function, defined as the logarithmic derivative of the
Euler gamma function, ν is as in (70) with mass square equal to m2+k2+λkρ,
and μ is again an arbitrary mass parameter.

Starting from this expression for ω(χ2), the evolution equations become

k∂km2
k =

k2λk

16π2

{

log
12H2

μ2
+ ψ

(
3
2

− ν

)

+ ψ

(
3
2

+ ν

)

+
1
2ν

[
m2

k

H2
+

k2

H2
+ 12

(

ξ − 1
6

)]

[ψ′
(

3
2

− ν

)

− ψ′
(

3
2

+ ν

)

]
)}

k∂kλk = − 3k2λ2
k

16π2H2ν

{

ψ′
(

3
2

− ν

)

− ψ′
(

3
2

+ ν

)

+
k2 + m2 + 12H2

(
ξ − 1

6

)

4H2ν2

[

ψ′
(

3
2

− ν

)

− ψ′
(

3
2

+ ν

)

+ν

(

ψ′′
(

3
2

− ν

)

+ ψ′′
(

3
2

+ ν

))]}

We can now define new, dimensionless couplings

m̃2
k =

m2
k

H2
λ̃k =

k2

H2
λk

Notice that, as in the thermal case, the appearance of a dimensionful param-
eter (H in this case) allows for a different scaling behaviour of the coupling
constants.

In terms of the rescaled couplings the beta-functions become

k∂km̃2
k = − λ̃k

16π2

{

log
12H2

μ2
+ ψ

(
3
2

− ν

)

+ ψ

(
3
2

+ ν

)

+
1
2ν

[
k2

H2
+ m̃2

k + 12
(

ξ − 1
6

)]

[ψ′
(

3
2

− ν

)

− ψ′
(

3
2

+ ν

)

]
)}

k∂kλ̃k = 2λ̃k − 3λ̃2
k

16π2ν

{

ψ′
(

3
2

− ν

)

− ψ′
(

3
2

+ ν

)

+
1

4ν2

(
k2

H2
+ m̃2

k + 12
(

ξ − 1
6

))[

ψ′
(

3
2

− ν

)

− ψ′
(

3
2

+ ν

)

+ ν

(

ψ′′
(

3
2

− ν

)

+ ψ′′
(

3
2

+ ν

))]}

.

By choosing μ2 = 12H2, we can remove all the dependence on the additional
parameter μ. This is possible in de Sitter since we have a new mass scale H−2

which enters the flow equations as an “external parameter”, and does not
depend on the scale, similar to the inverse temperature β in the flow equation
for thermal theories we considered in the last section. Comparing with the
Minkowski equations, we see that the first term in the beta-function for λ̃k,
corresponds to an effective dimension of 2 in the flow equation for λ̃k.

In the limit k2/H2 → 0, corresponding to an inflationary regime in de
Sitter, the RG flow equations acquire a non-trivial fixed point (m̃2

∗, λ̃∗).
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Due to its complexity, we do not report here the full expression for general
ξ. Choosing the conformal coupling ξ = 1/6, the non-trivial fixed point is given
by the simple expression

m̃2
k � 0.164588 λ̃k � 179.237. (72)

7. Conclusions and Outlook

In this paper, we employed the formalism of pAQFT to generalise the methods
of the FRG to globally hyperbolic spacetimes and for generic states of a scalar
field. We then showed, with the examples of the Minkowski vacuum, thermal
states, and the Bunch–Davies vacuum in de Sitter, how to perform practical
computations out of our formalism, that can be compared with the known
results in the literature.

From here, several interesting directions of research open. On the concep-
tual side, we notice how the entire construction is based on the definition of the
generating functional Zk(j) as the expectation value of a suitably regularised
relative S-matrix. It would be interesting, then, to make the connection with
the C∗−algebraic approach to interacting QFT first developed in [16], where
primary objects are axiomatically defined relative S-matrices. Such a method
would go beyond the perturbative construction, permitting an exact reformu-
lation of the FRG equations.

The pAQFT approach already encompasses gauge theories [37] and per-
turbative quantum gravity [14] via the BV formalism [30,32]. The generaliza-
tion of our formalism to gauge theories seems in reach, and it would provide
a clear conceptual framework and a rigorous construction to e.g. the thermal
effects in non-abelian gauge theories, playing an important role in the phases
of QCD (see section 5 in [25] and references therein, with first developments
in [33,61,62]).

On the other hand, the generalization to quantum gravity would provide
mathematical tools to rigorously explore the UV properties of Lorentzian quan-
tum gravity, making contact with the rich literature of the asymptotic safety
community [26,60]. In particular, the pAQFT formulation of quantum gravity
is naturally developed in Lorentzian spacetimes, and it would be interesting
to compare it with the results obtained in Asymptotically Safe Lorentzian
Quantum Gravity [28,51]. pAQFT could in principle address long-standing
questions in the asymptotic safety program [8,19]: first of all, pAQFT could
provide a natural Lorentzian framework, without the need of a Wick rotation
to Euclidean signature; secondly, there are already developments on the use of
relational observables [2,14] which could be compared with cosmological obser-
vations. In particular, the role of the state in the flow equations, as emphasised
in our reformulation of the Wetterich Eq. (49), could provide a new perspective
on the objection raised by Donoghue [19], as the different possible runnings
of the Newton’s constant depending on the scattering process considered in
effective field theory.
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Finally, from a more practical point of view, our formalism provides a
natural language to discuss in a systematic way the flow equations in generic
states, as thermal states, or on curved spacetimes, where a natural notion
of a vacuum is in general not at our disposal. It would be interesting, for
example, to apply the formalism in cosmological situations, as in de Sitter
space, and compare the results with the existing literature [34,35,68,69], or on
black hole spacetimes, where self-interaction effects could provide instabilities
of the theory.

Acknowledgements

We are grateful to Rudi Banerjee, Astrid Eichhorn and Max Niedermaier for
interesting comments on this manuscript and also for pointing out to us some
relevant references in the asymptotic safety literature. We thank both referees
far useful comments and suggestions on an earlier version of this paper. K.R.
found the discussions with Astrid Eichhorn, Benjamin Knorr, Alessia Platania
and Frank Saueressig very helpful and inspiring. The work of E.D. is sup-
ported by a PhD scholarship of the University of Genoa. E.D., N.D. and N.P.
are grateful for the support of the National Group of Mathematical Physics
(GNFM-INdAM).

Funding Open access funding provided by Università degli Studi di Genova
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Let I be the action I := I0 + V where I0 and V are as in (9). Moreover,
let Qk the quadratic potential depending on a parameter k

Qk(χ) = −1
2

∫
ddxqk(x)χ2(x), (73)

where qk = k2f ∈ C∞
c (M) and f ∈ C∞

c (M) is the usual cutoff which can be
eventually removed by performing a limit f → 1 in a suitable sense. In what
follows we consider

Ik := I + Qk = I0 + (V + Qk) = I0k + V = I0 + Vk ,

and we denote with 	, ·T , A, S, R (resp. 	k, ·Tk
, Ak, Sk, Rk) the star prod-

uct, time-ordered product, algebra of observables, S-matrix and Møller map
associated with I0 (resp. I0k), respectively.

Considering the (abstract, unreachable) interacting algebra AIk
, we have

two maps which defines a perturbative representation of AIk
in either A[[Vk]]

or Ak[[V ]] —depending on whether Qk is considered as part of I0 or of V .
These are the quantum Møller maps (12) RVk

and Rk,V . which permit to
represent the generators of the interacting algebra, i.e the local interacting
fields, to A[[Vk]] or in Ak[[V ]]. Notice that the Møller maps RVk

(resp. Rk,V )
are constructed with the time ordered exponential of TVk (resp. TkV ) in order
to make the above representation fully local and covariant. Notably, the two
representations are related as follows. First there exists a (classical Møller)
isomorphism rQk

: Ak → A defined by

rQk
: Ak → A , (rQk

F )(χ) = F (rQk
χ) , rQk

χ := χ − ΔR,kqkχ (74)

where ΔR,k is the retarded operator associated to I0k. Notice in particular
that rQk

intertwines between I0k and I0 namely I
(1)
0k rQk

= I
(1)
0 . (Notice that

the existence of ΔR,k is ensured by the fact that Qk is local and does not
contains second derivatives.) As a matter of fact not only A � Ak, but also
the time-ordered products can be related. In particular, using Υ̃ given in (5)

γk : Floc → Floc , γkF := eΥ̃ΔF,k−ΔF F , (75)

is such that

γk(F ·T G) = γk(F ) ·Tk
γk(G) . (76)

Remark A.1. The map γk can also be used to define a Wick-ordering map for
Ak [22,40]. In particular, given the Wick ordering map T : Floc → Floc for the
algebra A, we consider γk ◦ T . At this stage one may prove, cf. [40], that the
renormalization ambiguities of the Wick ordering map T can be chosen so that
Tk = γk ◦ T : Floc → Floc is a Wick ordering map for Ak.

It is not difficult to show that, in a perturbative sense,

γk = r−1
Qk

◦ RQk
, (77)

where RQk
: Ak → A[[Qk]] is the (perturbative) representation of Ak in A[[Qk]].

The latter relation can be promoted to the interacting setting —i.e. V �=
0. In particular the following holds, cf. [22]:
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Lemma A.2. It holds that

RVk
= rQk

◦ Rk,γkV ◦ γk , (78)

and similarly

SVk
(F ) = rQk

Sk,γkV (γkF ) . (79)

Furthermore, γkV and V differs only by a different choice of renormalization
constants.

Proof. To prove Eqs. (78) and (79) we proceed by direct inspection

rQk
Sk,γkV (γkF ) = rQk

[
Sk(γkV )−1 	k Sk(γk(F + V ))

]

= [rQk
Sk(γkV )]−1

	 rQk
◦ γkS(F + V )

= [rQk
Sk(γkV )]−1

	 RQk
S(F + V )

= [rQk
Sk(γkV )]−1

	 S(Qk)−1 	 S(F + Vk) .

Moreover

rQk
Sk(V ) = rQk

γkS(V ) = RQk
S(V ) = S(Qk)−1 	 S(Vk) ,

so that overall we have

rQk
Sk,γkV (γkF ) = [rQk

Sk(γkV )]−1
	 S(Qk)−1 	 S(F + Vk) .

=
[
S(Qk)−1 	 S(Vk)

]−1
	 S(Qk)−1 	 S(F + Vk) = SVk

(F ) .

This proves Eq. (79). Concerning Eq. (78) this follows by Eq. (79) as

RVk
F =

d
idμ

SVk
(μF )

∣
∣
∣
∣
μ=0

(79)
=

d
idμ

rQk
Sk,γkV (μγkF )

∣
∣
∣
∣
μ=0

= rQk
Rk,γkV γkF .

�

B. Technical Lemmata

We collect in this appendix some technical lemmata used in the main text.
The first is used to evaluate the effect of the product of the time ordered
exponential of local currents with a local field.

Lemma B.1. For all F ∈ A we have

[S(J) ·T F ](χ) = e−ΔF (j,j)/2eiJ(χ)F (χ + iΔF j) . (80)

Proof. By direct inspection we have

S(J) = eiJ
·T = T (eiJ

⊗ ) =
∑

n≥0

1
n!2n

Δ⊗n
F (ij)⊗2neiJ = e−ΔF (j,j)/2eiJ .

Moreover for all F ∈ A we have

(eiJ ·T F )(χ) =
∑

n≥0

1
n!

Δ⊗n
F (ij)⊗neiJ(χ)F (n)(χ) = eiJ(χ)F (χ + iΔF j) .

Combining these results leads to Eq. (80). �
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Remark B.2. In the particular case of j = −L(1)
0 φ Eq. (80) simplifies to

[S(J) ·T F ](χ) = e−L0(φ)eiJ(χ)F (χ+φ) ,

where we used that ΔF L(1)
0 = iδ.

In the next we analyse the vanishing of the various propagators of a
theory whose action is I0 + Qk in the limit k → ∞.

Lemma B.3. Let qk(x) = k2f(x) where the cutoff function f ∈ C∞
c (M) is

positive and it is equal to 1 in D(O) ⊂ M. Let h, g ∈ C∞
c (O), it holds that

lim
k→∞

(h,ΔF,kg) = 0, lim
k→∞

(h,Δ+,kg) = 0

where ΔF,k is any Feynman propagator of the theory whose action is I0 + Qk

and Δ+,k the two-point function of the corresponding state.

Proof. We start analyzing the first limit. It holds that ΔF,k is proportional to
a fundamental solution of the equation obtained from the differential operator
P0 − qk, namely (P0 − qk)ΔF,kg = ig. Hence

−(h, fΔF,kg) =
1
k2

[i(h, g) − (h, P0ΔF,kg)] .

Since f is 1 on the support of h we have that fh = h hence using Cauchy-
Schwartz inequality we get

|(h, fΔF,kg)|
(‖g‖ + ‖fΔF,kg‖)

≤ 1
k2

(‖h‖ + ‖P0h‖)

where the norm ‖ · ‖ is that of L2(O,dx) and where we use the fact that P0 is
formally self-adjoint on L2(O,dx). The latter inequality implies that for every
h ∈ C∞

c (O)

(h, fΔF,kg)
(‖g‖ + ‖fΔF,kg‖)

vanishes in the limit k → ∞ and thus
fΔF,kg

‖g‖ + ‖fΔF,kg‖
tends to the 0 of L2(O,dx) under that limit because C∞

c (O) are dense. This
implies that

lim
k→∞

‖fΔF,kg‖ = 0.

We thus have that

|(h,ΔF,kg)| ≤ ‖h‖‖fΔF,kg‖
and the right-hand side vanishes for k → +∞. Hence the first limit we wanted
to prove holds. We can use the same strategy to prove the that also the limit
of (h,Δ+,kg) vanishes for large k with the observation that Δ+,k is a weak
solution of P0 − qk. �
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C. Hadamard Expansion of the Minkowski Vacuum Two-point
Function and the Wick Square

For a massive theory in even-dimensional Minkowski space, the Hadamard
distribution is known to depend on an additional arbitrary parameter μ, and
it is given by [11]

Hμ
m(x, y) = ΔS,k(x, y) +

(−1)d/2

2(2π)d/2
Md/2−1 log

(
μ2

M2

)

σ
2−d
4 Id/2−1

(√
M2σ

)

where ΔS,k(x, y) is the symmetric contribution of the vacuum two-point func-
tion, Iν(x) is the modified Bessel function of the first kind and σ = gab(x −
y)a(x − y)b is the squared geodesic distance. The mass term for the linearized
theory is M2 = k2 + m2

k + λkρ. In the coincidence limit, σ → 0 and

Id/2−1(x) � Md/2−1σ
d−2
4

2d/2−1Γ(d/2)
.

Therefore, the σ dependence drops and we obtain

ω

[
χ2(x)

2

]

=
(−1)d/2

Γ(d/2)(4π)d/2

(

k2 + m2
k + λkρ

)d/2−1

log
(

k2 + m2
k + λkρ

μ2

)

.

(81)

We notice that the Hadamard distribution explicitly depend on the scale k,
which was not the case for the state. The reason is that, under a change in the
mass parameter, the massive Minkowski vacuum is mapped into the massive
Minkowski vacuum with the rescaled mass; in particular, this implies that the
singularity structure of the 2-point function is modified by the mass rescaling.
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