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Abstract
The BDI model proved to be effective for develop-
ing applications requiring high-levels of autonomy
and to deal with the complexity and unpredictabil-
ity of real-world scenarios. The model, how-
ever, has significant limitations in reacting and han-
dling contingencies within the given real-time con-
straints. Without an explicit representation of time,
existing real-time BDI implementations overlook
the temporal implications during the agent’s deci-
sion process that may result in delays or unrespon-
siveness of the system when it gets overloaded. In
this paper, we redefine the BDI agent control loop
inspired by well established algorithms for real-
time systems to ensure a proper reaction of agents
and their effective application in typical real-time
domains. Our model proposes an effective real-
time management of goals, plans, and actions with
respect to time constraints and resources availabil-
ity. We propose an implementation of the model for
a resource-collection video-game and we validate
the approach against a set of significant scenarios.

1 Introduction
Today’s applications require more and more systems capable
of taking decisions autonomously in dynamic, complex and
unpredictable environments. In addition, decisions have to be
taken in timely fashion so to avoid that when the system starts
to execute, the plan or the action is no longer necessary or ap-
propriate in that specific situation. In other words, decisions
have to be taken in real-time and this is particularly true for
critical systems where a delay in a decision can compromise
the life of humans. While run-time performances mainly de-
pends on hardware, response time are obtained by adequate
real-time software architectures, that are often used in crit-
ical applications to control physical systems, such as in the
context of aviation or automotive systems.

To guarantee deadlines, real-time architectures estimate a
computation cost and consequently allocate an appropriate
computational capacity. This approach is not adopted in the

∗The extended version of this paper and all the code are available
at https://rti-bdi.github.io/ijcai2022/.

state-of-art multi-agent architectures, including BDI, where
real-time principles are not used and there is no way for an
agent to reason about how to meet its deadlines. Moreover,
agents’ architectures are thought to operate in extremely dy-
namic contexts in which it is often impossible to forecast all
possible events and then making hard to estimate the actual
computation cost. For example, consider a video-game in
which agent-driven Non-Player Characters (NPCs) play with
real players who can have completely unexpected behaviours.
NPCs have to find solutions and take decisions with a reaction
time ideally as quick as humans.

Although BDI architectures can take decisions au-
tonomously in complex situations, they don’t perform well
in real-time interactions with humans and therefore they have
strong limitations in many critical real-world scenarios. The
main motivation of this is that, although frameworks such as
Jade [Bellifemine et al., 1999], Jack [Busetta et al., 1999],
and others [Pokahr et al., 2005; Huber, 1999] allow for a tem-
poral scheduling of agent’s tasks (e.g., asking to perform an
action periodically or at a given time), they do not use any
explicit representation of time in the decision-making pro-
cesses. This causes agents to overlook the temporal implica-
tions, causing delays when an overload occurs. In [Alzetta et
al., 2020], the authors proposed a BDI-based architecture that
overcomes such limitations by integrating real-time mecha-
nisms into the reasoning cycle of a BDI agent. However,
while this can guarantee the respect of time constraints at the
task level (i.e., every task completes its execution within its
relative deadline), the goals of the agents are not bounded to
a deadline, and so the agent cannot take decisions based on
temporal restrictions of goals. AgentSpeak(RT) [Vikhorev et
al., 2011] allows programmers to specify deadlines and pri-
orities for tasks. [Calvaresi et al., 2021] proposes a formal
model for RT-MAS. Both works do not address the schedul-
ing of tasks/actions on a real-time environment.

In this paper, we make the following contributions. First,
we propose a real-time (RT) BDI framework inspired by tra-
ditional and well established algorithms for real-time systems
to ensure predictability of execution. We consider as primi-
tive citizens fully integrated in a traditional BDI model con-
cepts like computational capacity, deadline, scheduling con-
straints, durative actions, and periodic tasks. This allows an
agent to be aware of time constraints while deliberating and
not only during the execution. As far as our knowledge is
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concerned, this is the first framework that encompass all these
concepts. Second, we demonstrate the practical applicability
of the proposed framework through an implementation, in-
stantiation and validation within a resource-collection video
game based on Unity, built on top of an already exiting simu-
lator (Kronosim). This synthetic scenario is paradigmatic of
several real-life applications. This, as far as we know, is the
first practical implementation showing that all these concepts
could be deployed in practical scenarios.

The paper is structured as follows. Section 2 presents the
baseline. Section 3 presents our three layers Real-time BDI
architecture. Section 4 describes the simulator we build to
run real-time BDI agents. In Section 5, we discuss some sce-
narios we used for the validation. Finally, Section 6 discusses
related work, and then we conclude the paper in Section 7.

2 Baseline
This section summarizes our research baseline.

Kronosim1 is a C++ based simulation tool that combines
hard real-time concepts (e.g. responsiveness within dead-
line and resource computation constraints) with a classic BDI
agent model to enable simulating and testing dynamic sce-
narios involving Real-Time BDI (RT-BDI) agents. An RT-
BDI agent is able to make autonomous decisions, even in dy-
namic environments, and ensure time compliance. In Kro-
nosim the RT-BDI agents have a maximum computational
power U [Alzetta et al., 2020], and leverage Earliest Dead-
line First (EDF) and Constant Bandwidth Server (CBS) [But-
tazzo, 2011] mechanisms to ensure time compliance during
the execution process. The resulting algorithm allows to
schedule and fairly execute, a set of ”aperiodic” and ”pe-
riodic in an interval” tasks (the former are are executed only
once, the latter are repeated multiple times at predefined inter-
vals of time). Kronosim allows for the simulation of a single
RT-BDI agent, where the intentions are stored in a knowledge
base that associates each intention with the set of desires it
satisfies (thus it does not provide for the deliberation of new
intentions to handle not yet specified desires).

Temporal planning with PDDL 2.1 [Fox and Long, 2003]
is a framework for i) modeling the behavior of agents consid-
ering that actions might not be instantaneous and last some
known amount of time, ii) dynamically generate time-trig-
gered plans (i.e., sequences of actions where each action is
associated with the time instant at which the action shall be
scheduled, and the respective duration) for achieving a goal.
Time-triggered plans allows to represent multiple actions ac-
tive at the same time, thus capturing the case where two dif-
ferent actions are executed in parallel by two different agents
or the case where a single agent executes two actions in par-
allel by leveraging two different actuators in parallel to per-
form a task. These are our minimal requirements to repre-
sent the possible activities of the agents. Among the possi-
bly many temporal planners supporting our minimal require-
ments, we consider OPTIC [Benton et al., 2012] which sup-
ports the generation of time-triggered temporal plans mini-
mizing a given cost function. We remark that, the planning
community also considered richer formalisms like e.g. PDDL

1Available at https://github.com/RTI-BDI/Kronosim.

Figure 1: RT-BDI agent’s architecture.

3.1 [Helmert, 2008] that complements PDDL 2.1 with e.g.,
constraints, preferences. These features will be nice to have
in our framework, but, as far as our knowledge is concerned,
there are no tools that support all the features of PDDL 3.1.
For this paper we focused on PDDL 2.1.

3 The Real-Time BDI Architecture
One of the most important feature of BDI-based agents is the
ability to decide which goals to pursue and how to achieve
such goals. Traditionally, the goal deliberation problem is
addressed at the agent programming level i) leveraging pre-
programmed plans handled and coded by the agent developer
in an error-prone ad-hoc manner; ii) without considering de-
ployment constraints (e.g., real-time constraints). Moreover,
although existing BDI solutions allow for temporal schedul-
ing of agent’s tasks, they do not use any explicit represen-
tation of time in the decision making and deliberation pro-
cesses. This may cause the agent to overlook the temporal
implications, and may result in unacceptable delays.

To avoid these limitations, we designed a three layer RT-
BDI architecture, namely BDI, Execution and Monitoring,
and Real-Time layers. This framework is inspired by tradi-
tional and well established algorithms to ensure prompt reac-
tion, and encompass a reasoning cycle that consider as primi-
tive citizens concepts like computational capacity, deadlines,
scheduling constraints, periodic tasks and deliberation. Fig-
ure 1 shows pictorially our three layers RT-BDI architecture.

The BDI layer is responsible of all the high-level BDI rea-
soning capabilities, i.e. handling belief, desires (goals) and
intention (temporal plans) thus implementing and extending
a classical BDI reasoning cycle. This layer uses a model M
(shared also with the lower layer) to enable for the logical rea-
soning (i.e. the language to represent and reason about beliefs
and environment), and to define the dictionary of the possible
actions that the agent can perform to operate on the environ-
ment (comprehensive of the preconditions, duration, effects).
Each desire d has i) a pre-condition dpre i.e. a formula that
represents the condition that triggers the activation of the de-
sire itself; ii) a goal formula dgoal that represents the condi-
tion to be achieved; iii) a deadline ddeadline that represents
the (relative) time instant we expect the goal to be achieved;
iv) a priority dprio an integer representing the level of priority
for the goal. Each intention (plan) consists of either an atomic
plan (that corresponds to a durative action to be executed), a
sequential plan (that enforces a sequential execution of the
sub-plans, and execution of sub-plan at i-th position requires
successful execution of all the j ≤ i sub-plans), or paral-
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lel plan (that allows for a parallel execution of the sub-plans,
with a synchronization consisting of all the parallel sub-plans
to be successfully terminated). Each atomic plan πa is as-
sociated with i) a pre-condition πa

pre (i.e. a formula that is
expected to hold in the current state for the atomic plan to
be applicable); ii) a start time πa

start (i.e. a (relative) time
instant at which the atomic plan is expected to be started);
iii) a duration time πa

duration (i.e. the expected duration of
the atomic plan); iv) a context condition πa

cont (i.e. a for-
mula that is expected to hold for the entire duration of the
atomic plan); v) an effect condition πa

eff (i.e. a formula
that specifies how the atomic plan is expected to modify the
belief states); vi) a post-condition πa

post (i.e. a formula that
specifies what is expected to hold when the atomic plan is ter-
minated, and that entails the effect condition). The BDI layer
stores the desires in the Desire set, and uses the Goal Plan
Library to maintain an association between the desires and a
set of plans each achieving the associated goal. Moreover, it
maintains the Belief set that represents the current belief state
of the agent (it can be seen as a map that assigns a value to all
the symbols specified in the language of the model M ).

The BDI Reasoning Loop iterates over the Desire set and
selects among the desires whose preconditions hold in the
current Belief set those with highest priority and removes
them from the Desire set adding them in the set of active de-
sires G. Then for each desire d ∈ G, it checks whether there
exists a plan achieving it in the Goal Plan Library. If no plan
exists, then a Temporal Planner is invoked to generate one
(assuming the goal is achievable). The plan generated by the
Temporal Planner is then stored in the Goal Plan Library. At
this point, there is a plan achieving desire d in the Goal Plan
Library, and it is selected and inserted in the active intentions
set I for being executed by the lower layer.

The Execution and Monitoring layer is responsible of
the execution and monitoring of the plans to achieve the
goals. In this layer, if the plan preconditions hold the exe-
cution of the composing actions is started. The verification
of the preconditions consists in evaluating the formula ex-
pressing them w.r.t. the sensed state. The verification of the
preconditions is complemented with the verification of real-
time schedulability constraints to ensure proper execution of
the plan in a real-time environment, given the current active
plans. If such constraints are not met, then the BDI layer is
notified to activate respective further reasoning. If these pre-
liminary checks pass, then the execution and monitoring of
the actions in the plan starts. The monitoring verifies that
the expected effects of the different actions or the possible
context conditions (that shall hold for the whole action dura-
tion) are satisfied. If not satisfied, the execution of the plan
is aborted, and a notification is sent to the above layer trig-
gering further reasoning, which may include the need for re-
planning and re-simulation of tasks schedulability. This layer
leverage on a Library of Tasks that maps each atomic plan
into low level periodic tasks to be executed in the underneath
RT operating system.

The Real-Time layer is responsible of the execution of the
different low level tasks in a real-time operating system envi-
ronment according to classical task execution strategies of a
real-time operating systems (e.g. RT-Linux, VxWorks) fol-

Algorithm 1 RT-BDI Reasoning cycle
1: ▷ D: Desire set, P : Goal Plan Library, M : Model
2: function REASONINGCYCLE(D, P , M )
3: G← ∅ ▷ Active goals
4: I ← ∅ ▷ Active intentions
5: B ← READSENSINGDATA(M ) ▷ Read sensing data
6: while (True) do
7: ▷ Updates G with all di ∈ D such that dipre hold in B
8: G← UPDATEACTIVEGOALS(G,B,D)
9: ▷ Selects intentions for each active goal
10: I ,P ← SELECTINTENTIONS(B, G, I , P , D)
11: ▷ Progresses the selected intensions and goals
12: I ,G← RT-PROGRESSANDMONITORINTENTIONS(B, I , G)
13: B← READSENSINGDATA(M ) ▷ Read sensing data
14: end while
15: end function

lowing the scheduling policy established in the above layer.
Algorithm 1 reports the pseudo-code for our revised rea-

soning cycle. Initially, the set of active intentions (I) and ac-
tive goals (G) are empty (lines 3-4). The belief set B repre-
senting the current knowledge of the agent (all the symbols in
the model M have a value) is initialized through reading the
sensors (line 5) calling READSENSINGDATA(M ). Then the
loop starts (lines 6-14), and at the beginning (line 8) the set
of active goals is updated through function UPDATEACTIVE-
GOALS(G,B,D) that iterates over the desire set D and adds
in G those desires d ∈ D such that dpre holds in B. Upon
possible update of G, function SELECTINTENTIONS(B, G,
I , P , D) is invoked (line 10) to update the active intentions
I . This function for each newly added desire g first checks
whether there exists in the Goal Plan Library a plan π such
that i) achieves g; ii) πpre holds in the current belief state
B; iii) πdeadline ≤ gdeadline. If such a plan π exists, then
it is added to I . If more than one plan π exists, then the
”best” 2 one is selected and added to I . Otherwise, a tempo-
ral planner is invoked to compute such a plan for the given
desire g starting from B (the returned plan by construction
will be such that it achieves the goal g, the preconditions
will be satisfied in B, and the deadline will also be satis-
fied). In this case the newly generated plan will be added
to I , and to the Goal Plan Library to enlarge the knowledge-
base. Then the set of active intentions is given to the function
RT-PROGRESSANDMONITORINTENTIONS(B, I , G) that is
responsible of executing/progressing the plans in I and to up-
date the set of active goals G. In particular this functions per-
forms the following steps. First, for each of the plans π in the
set of active intention I it keeps track of where the respective
execution is (i.e. like a program counter in a classical pro-
gram). Each plan is executed according to a topological sort-
ing visit of the graph representing the plan π. If an atomic
action πa needs to be executed, then first it is checked if its
preconditions hold in the current belief state B. If it is not
the case, the execution of the plan is aborted and the informa-
tion is propagated to handle the contingency. Otherwise, the
respective low-level task is activated and inserted in the set
of low level active tasks (i.e. those low level periodic tasks
to be executed in the RT environment). The set of low level
active tasks is sorted in a low level active tasks list accord-

2The choice of the plan to add considers several factors, like e.g.,
duration, computational cost w.r.t. the other plans already in I .
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ing to a given task scheduling policy (e.g. EDF that exhibits
good behavior [Calvaresi et al., 2018a]). The scheduling pol-
icy will consider not only the deadlines of the different low
level active tasks, but also their priorities. Then the respective
execution slot for each element in the low level active task list
is executed in the low level RT environment according to the
computed order. At each low-level execution cycle, it is veri-
fied whether the context conditions of all the executing tasks
holds, and possible anomalies are reported to higher layers
to handle them. When a low-level task terminates, it is re-
moved from the low level active task list, and it is checked
whether the atomic task post conditions hold in the current
belief state (obtained through internal calls to READSENS-
INGDATA(M )), and if it is the case the frontier of the execu-
tion of the corresponding plan is updated to progress to the
remaining parts of the plan. Otherwise, the task is aborted,
and the problem is reported to higher levels. Finally, at line
13, the current belief state is updated, and the loop repeated.

4 The Real-Time BDI Agents Simulator
In order to validate the proposed RT-BDI architecture, we
i) implemented it as an extension of the Kronosim multi-agent
real-time simulator; ii) deployed and configured the simulator
within a video-game scenario built on top of the Unity frame-
work. We extended Kronosim along three main directions.
First, we added the feature to invoke a PDDL 2.1 based delib-
eration engine (we have chosen OPTIC [Benton et al., 2012])
planner to synthesize new plans. This functionality is seen as
an external service with a corresponding API to be invoked
by Kronosim to compute a new plan. This solution enables
for plugging different deliberation engines and/or distributing
the computation load in the cloud or among different compu-
tation resources if needed. Second, we added a proper API to
communicate with a physical/dygital environment to acquire
sensing data, to send actuation commands, and to monitor the
respective progress. Third, we added the possibility to add
dynamically new desires to the Desire set for being consid-
ered in the BDI reasoning cycle. Finally, we extended the
framework to handle periodic tasks needed to simulate the
execution of the actions within the real-time system infras-
tructure with a strict collaboration with the physical and/or
digital system through the defined API.

In order to invoke the external planner the internal repre-
sentation of the model M is converted in PDDL by leverag-
ing on the language to define the objects and predicates, and
on the library of tasks to create the (durative) actions and the
respective preconditions, effects, context condition and dura-
tion. The current Belief set B together with a goal g ∈ G is
converted in PDDL as well to constitute the problem file to
be given to the planner for generating the plan. The temporal
plan computed by OPTIC specifies for each action the time
instant the action should start, and the respective duration.
This structure is then converted in the internal representation
within Kronosim as follows. We create a parallel plan where
each branch corresponds to an action in the temporal plan
computed by the planner. The time when an action shall start
its execution, is used to specify a delay timing for each branch
of the constructed parallel plan. The preconditions associated

to each parallel branch action are taken directly from the re-
spective action’s preconditions. The resulting parallel plan
structure preserves the semantics of the temporal plan gen-
erated by OPTIC, and simplifies its execution. More sophis-
ticated encoding structures could be considered for instance
leveraging Behavior Trees and considering causal dependen-
cies among the actions (but this is left for future work).

The environment and Kronosim executions operate in par-
allel following a kind of step-wise alternated execution: Kro-
nosim receives updates from the environment about new de-
sires, modification of the environment (e.g. new obstacles ap-
pears, battery level), completion of an action. Then Kronosim
uses this information to monitor the execution of the active in-
tentions I and to progress them. Indeed, in Kronosim, actions
execution and effects are (resp.) activated, perceived and ver-
ified in the external environment after waiting for the time of
execution. If it is not possible to validate expected effects, as
in the case of external interference, the goal is re-planned in
the next reasoning cycle. Components communicate through
TCP/IP, thus allowing for a distributed execution.

Limitations. Our implementation suffers of the follow-
ing limitations. The Real-Time Layer only considers task
scheduling and goal deadlines. It disregards plan search time
and time for executing the BDI loop. This limitation could af-
fect performances in real-world agents. Future work include
a study about how to weaken this limitation by introducing
more requirements on the simulation environment, as well as
adopting a satisfycing temporal planner that sacrifices opti-
mality in spite of efficiency. However, we remark that we
generate plans that already consider deadlines as first-citizens
thus more suitable to be scheduled in a real-time environment.
The current implementation supports goals (and sub-goals)
with associated deadlines within (manually specified) plans,
and relies on the deadline information associated to compute
the real-time schedule. When we execute a plan that con-
tains goals to schedule we use the deadlines associated to the
subgoals. In particular, we check whether there exists a plan
that achieves the goal and meets the goal deadline. If such a
plan exists we execute it. Otherwise we invoke the planner
to search for a new plan respecting the associated deadline
and achieving the goal. If the planner succeeds we execute
the new generated plan. Otherwise we give up execution by
aborting the plan. Another limitation consists in the fact that
the agent reacts to external events after all currently scheduled
tasks have completed execution. This is due to the underly-
ing simulator, which was not originally intended for run-time
simulation, but only for simulating predefined scenarios.

5 Validating the RT-BDI Agent Architecture
To validate our proposed solution we deployed it in a video-
game setting, where each agent in the game executes on top of
a unique real-time execution environment with limited com-
putation capabilities, that is possibly running other real-time
tasks. This example/experiment is paradigmatic of real sce-
narios in which the agents (who in our game are assigned with
goals by the players) execute their tasks on top of a unique
real-time execution environment to guarantee a deterministic
behavior and the required predictability of execution.
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Execution 1 Simulator Execution log.
1: [0] REASONINGCYCLE: execution 1
2: [0] UPDATEACTIVEGOALS: pursue goal G1: ”R1 and R2 delivered to W ”
3: [0] SELECTINTENTIONS: available plan P1 ([0] C1 move up; [10] C1

move right; [20] C1 move right, ...) selected to pursue G1
4: [0] RT-PROGRESSANDMONITORINTENTIONS: I1(P1: C1 move up)
5: [10] READSENSINGDATA: C1 moved up
6: [10] REASONINGCYCLE: execution 2
7: [10] UPDATEACTIVEGOALS: goal G1 still valid
8: [10] SELECTINTENTIONS: plan P1 still valid, intention I1 still active
9: [10] RT-PROGRESSANDMONITORINTENTIONS: I1(P1: C1 move right)
10: [15] PLAYER’S INTERACTION: A new robot ”C2” is added to the scene
11: [20] READSENSINGDATA: C1 move right, C2 added to scene
12: [20] REASONINGCYCLE: execution 3
13: [20] UPDATEACTIVEGOALS: goal G1 still valid
14: [20] SELECTINTENTIONS: new plan P2 generated, I2 activated based P2
15: [20] RT-PROGRESSANDMONITORINTENTIONS: I2(P2: C1 move up & C2

move up)
16: ▷ ... simulation progresses ...
17: [60] READSENSINGDATA: robot ”C1” is on ”R1”, robot ”C2” is on ”R2”
18: [70] REASONINGCYCLE: execution 6
19: [70] UPDATEACTIVEGOALS: goal G1 still valid
20: [70] SELECTINTENTIONS: plan P2 still valid, intention I2 still active
21: [70] RT-PROGRESSANDMONITORINTENTIONS: I2(P2: C1 gather resour-

ce & C2 deposit resource)

The implemented resource collection video game, called
Kronity3, is such that a) the concept of non-player character
has the same purpose as the BDI agent model; b) the player
interaction with the game provides a simulation of an unpre-
dictable environment; The game consists of a set of robots
moving in a 2-D grid with possible obstacles that can move
resources among different locations. Resources can be pro-
duced and/or consumed. The robots while moving consume
fuel, and can be refueled in particular locations. Based on
this video-game we performed a detailed validation leverag-
ing on the following paradigmatic scenarios: i) the ability to
promptly react to the happening of external events that may
require re-planning some or all the current active intentions;
ii) the ability to coordinate multiple agents in an unified en-
vironment; iii) the efficiency of the RT-BDI reasoning cy-
cle; iv) the ability to learn new plans to then reuse in other
situations if suitable for fulfilling new desires; v) the han-
dling of goal deadlines and real-time constraints. Hereafter
we will discuss the third and last scenarios, and we refer to
https://rti-bdi.github.io/ijcai2022/ for the others.

Reasoning cycle. Here, we discuss a step-by-step execu-
tion of the agent reasoning cycle, generated by executing the
following scenario. There are two robots C1 and C2 that col-
laborate to gather resources R1 and R2 and deliver them to the
warehouse W. The Execution 1 presents an excerpt of the ex-
ecution logs, in which log lines have the following structure:
[timestamp] EVENTNAME: additional information.

Events reported in the logs include the beginning
of a new reasoning cycle REASONINGCYCLE and its
phases, referring directly to the function defined in Al-
gorithm 1 presented in Section 3, which includes goal
deliberation UPDATEACTIVEGOALS, plan selection SE-
LECTINTENTIONS, intention progress and monitoring RT-
PROGRESSANDMONITORINTENTIONS, and sensing READ-
SENSINGDATA. Additionally, PLAYER’S INTERACTION
identify an interaction of the player with the game.

The first reasoning cycle starts at the beginning of the sim-

3Code available at https://github.com/RTI-BDI/AT-Kronity.

ulation and ends when the first step in the current intention is
completed, in 10 time units, after having sensed the expected
effects. Then, in the middle of the second reasoning cycle,
the player spawns a new robot in the scene (time: 15). When
the current intention sub-task ends, at 20 time units, the agent
became aware of the new robot. In the third reasoning cycle,
the context condition of the old plan P1 does not hold any-
more because the total number of available agents changed,
so the agent replan its intentions considering now both the
robots, then starts to execute parallel sub-tasks, one for each
robot. Finally, after additional omitted steps, sixth reasoning
cycle begins and robots collect and deposit resources.

When, in the execution phase, external events prevent the
plan to complete its execution, the agent may need to trigger
re-planning and analyze the schedulability of newly gener-
ated tasks. We adopt such a re-planning approach also in the
run-time synchronized video-game simulation, so that in the
case of an external event or missed deadline a new plan is
computed trying to achieve the goal on time.

Deliberation goal deadlines and real-time scheduling
constraints. Here we compare goal and plan deadlines,
scheduling constraints at the deliberation (planning) level,
and constraints at the real-time scheduling level. We consider
a scenario with two robots that act (move or collect resources)
at the same time, given a plan that include parallel actions.

Figure 2 shows the timeline of a simulation, in which
a single-agent system is planning tasks for two controlled
robots. More in detail, the upper part of Figure 2 depicts the
sequence of parallel durative actions for the collector robots,
as generated by the planner. The lower part depicts the cu-
mulative computation cost of executing such actions in par-
allel. In the deliberation phase the planner generates a plan
considering action deadlines and assigning at most one single
action to each agent at the same time. The result is a valid
optimal plan to achieve the overall goal in just 600 time units.
At a second stage, in the execution and monitoring layer, the
real-time system has to schedule the plan taking into consid-
eration the computational capacity so that each action com-
pletes within its own deadline while computational cost does
not exceed current computational capacity. Even if, at the
planning stage, no constraints were violated, now, at the real-
time scheduling stage, it is not possible to fulfill the intention
given the maximum available computational capacity. Thus,
the agent realizes that the cumulative computation cost at step
four exceeds the maximum computational capacity available,
and the plan cannot be scheduled. This is due to the fact
that, in a multi-agent environment, some preconditions may
be broken by the other agents, therefore the agents may fail
to complete their original intention, and this may trigger ad-
ditional operations to handle this contingency. This example
demonstrates that if the planning does not properly consider
scheduling aspects it can lead to solutions that could not be
executed in a real-time execution environment. More specifi-
cally, if the planning assumption is that robots can be assigned
each with one action, in parallel with others, this may not be
true for the low-level real-time scheduler, for which actions
may have varying costs that, when summed, may exceed the
maximum available computation capacity. We are working

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

515

https://rti-bdi.github.io/ijcai2022/
https://github.com/RTI-BDI/AT-Kronity


Figure 2: Timeline of the simulation: sequence of parallel durative
actions (up); corresponding cumulative computation cost (down).

to a more tight integration of planning and execution where
real-time scheduling issues are considered at planning level
within the search for a solution plan.

6 Related Work
The architecture presented in this article proposes a solution
that takes advantage of the flexibility of the BDI model in
real-time scenarios.

A three-layer autonomy architecture has been first dis-
cussed in [Gat, 1992; Gat, 1997; Ghallab et al., 2001] and
constituted the basis for several subsequent works [Williams
and Nayak, 1996; Fesq et al., 2002; Kapellos, 2005; Woods
et al., 2006; Ceballos et al., 2011; Bozzano et al., 2021]. De-
spite these works addressed the problem of providing auton-
omy to (single-)agents, their BDI reasoning capabilities are
rather limited, and they lack of a proper handling of real-time
constraints. In this work we showed how to decline it to han-
dle a complete real-time BDI reasoning framework.

Several frameworks have been proposed in the literature
to associate temporal schedules to BDI agent’s tasks (e.g.,
Jade [Bellifemine et al., 1999], Jack [Busetta et al., 1999],
Jason [Bordini et al., 2007]). However, none of them explic-
itly provides an explicit representation and handling of time
and of real-time constraints in the decision-making and de-
cision actuation processes. The consequence is that agents
overlook the temporal implications of their intended means,
resulting in possible delays in the execution of their tasks,
when an overload of the computation resources occurs.

There are also works that deal with real-time scheduling
in a BDI setting (e.g.[Alzetta et al., 2020], [Vikhorev et al.,
2011], [Vincent et al., 2001] and [Calvaresi et al., 2021]).
In [Alzetta et al., 2020], the authors proposed a RT-BDI archi-
tecture that, similarly to our one, integrates real-time concepts
into the reasoning cycle of a BDI agent.However, while they
can guarantee the respect of deadlines at task level, agent’s
goals are not subject to a deadline, and thus they do not allow
for the agent taking decisions based on goal’s related dead-
lines. Our solution enforces deadlines at all levels, thus en-
suring real-time compliance of the entire execution process.
AgentSpeak(RT) [Vikhorev et al., 2011] provides logical op-
erators and scheduling criteria, delivered through TAEMS
task structures (inherited from AgentSpeak(XL) [Bordini et
al., 2002]), associated with deadlines. This framework allows
programmers to specify an upper bound for the reaction to
events with prioritization criteria. This approach, similarly to
our, deals with deadlines, but differently from us, it does not
address the schedulability problem of the selected actions on
a real-time operating system and it does not leverage on ap-

propriate computational capacity scheduling algorithms [Cal-
varesi et al., 2018b]. Soft Real-Time [Vincent et al., 2001]
focuses on the granularity of deadlines in applications where
fractions of seconds are relevant by proposing a specialized
scheduler for processes that can deal with hard-deadlines, but
still above the grain-size afforded by the operating system,
where local competing processes exists. Differently, we show
the deployment on a native real-time operating systems, in
which full control over the real-time scheduling of processes
is possible to stick to required reaction times and computa-
tional costs. Compared to [Calvaresi et al., 2021], that pro-
vides mostly a formal framework for RT-MAS, the contribu-
tion of our paper consists in going down to the scheduling of
actions of a plan on the processor. We further remark that,
in our framework, we consider both the goal deadlines and
the issues related to dispatchability of the actions of the plans
considering the respective execution in a real-time operating
environment. We also support autonomous deliberation lever-
aging on the integration of a temporal planner. Finally, we
consider both scheduling constraints and goal deadlines, thus
supporting full real-time control over the whole execution.

In the video-game setting, several works adopted BDI ar-
chitectures mainly relying on machine learning techniques,
and few ones use model-based approaches. [Bartheye and Ja-
copin, 2009a; Bartheye and Jacopin, 2009b] show how PDDL
planning can be used to implement the concept of a BDI
agent inside the Iceblox and in the VBS2 games. All these
solutions simply let the BDI agent complete the levels by its
own, avoiding the main challenges: the unpredictability of
the player’s action and the handling of real-time constraints.

As far as autonomous deliberation is concerned, we remark
that typically agent’s programming languages tend to not sup-
port this feature, leading to the necessity of creating ad-hoc
systems to implement it. [Meneguzzi and De Silva, 2015]
claims the general preference in implementing BDI agents
through the usage of predefined plan libraries rather than in-
tegrating automatic deliberation reasoning capabilities. We
leverage a PDDL temporal planner to generate new plans to
deal with contingencies when flexibility is fundamental. The
new plans can be added to a plan library for future re-use.

7 Conclusion
In this paper we addressed the problem of developing agents
that can reason and act taking into account the fact that the
agents reason and execute on top of a real-time infrastruc-
ture with limited computation capabilities. The proposed
RT-BDI-based framework ensures predictability of execu-
tion, considers as primitive citizens concepts like compu-
tational capacity, deadline, scheduling constraints, durative
actions, periodic tasks and temporal planning deliberation.
We demonstrated the practical applicability of the proposed
framework through an implementation of a video-game.

As future work, we plan to deploy our architecture in dif-
ferent contexts e.g. in the robotic setting. We also plan to
investigate a more tight integration of planning and execution
where details of the low-level real-time scheduling are taken
into account, at planning level, by considering constraints as
provided by PDDL 3.1 [Helmert, 2008].
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