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Abstract

Multi- and hyper-spectral data pose severe problems in terms of storage capacity and transmission
bandwidth. Although recommendable, compression techniques require efficient approaches to
guarantee an adequate fidelity level. In particular, depending on the final destination of the data, it
could be necessary to maximize several parameters, as for instance the visual quality of the
rendered data, the correctness of their interpretation, or the performance of their classification.

Based on the idea of Spectral Vector Quantization, the approach proposed in this paper aims at
combining a compression and a classification methodology into a single scheme, in which visual
distortion and classification accuracy can be balanced apriori according to the requirements of
the target application. Experimental results demonstrate that the proposed approach can be

employed successfully in a wide range of application domains.
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1. Introduction

In the past years, due to the increase in the spatial and spectral resolution of remote sensing devices, data
compression is becoming a need both on-board (for efficient downlinks) and on-ground (for long-term
storage). In particular, multi- and hyper-spectral images pose severe storage and transmission problems due
to the huge amount of data associated to a single shot. Severa studies have been directed towards the
development of efficient techniques that should be capable of achieving a good trade-off between bitrate
reduction and quality preservation. Unfortunately, the term ‘quality’ does not only refer to the visual

appearance of data asin classical picture coding applications, but it usualy involves more complex aspects

related to the performance of successive processing steps. As a matter of fact, the spectral signature of an
image pixel often represents the most important information in many remote sensing applications, for it
alows to discriminate among different targets in data analysis procedures. Despite this, most of the
techniques currently adopted in remote sensing data compression directly mimic the corresponding
photographic image coding approaches, thus focusing on visua distortion minimization and disregarding the
possible impact of compression on the performance of automatic processing tools. For instance, the impact
of compression can affect a cascade data analysis module or an automatic classifier negatively.

In order to achieve data compression, coding techniques applied to optica remotey-sensed data take
advantage of the presence of two redundancy sources: spatial correlation among neighboring pixels in the
same spectral band, and spectra correlation among different bands at the same spatial location. Severa
strategies can be adopted to separately or jointly exploit these sources of redundancy, but a cascade of
spectral and spatia decorrelation is usualy preferred, as in the case of three dimensional transform coding
[1], which is based on the combination of two transforms that successively exploit inter- and intra-band
correlation. The Kahrunen-Loeve Transform (KLT) is usudly preferred as a first step, due to its signa
energy compaction capability, while for the second step, the Discrete Cosine Transform has been widely
studied, aso on account of its important role in internationa standards. In particular, the JPEG standard can
be successfully applied to intra-band coding, since it can heavily compress the less significant image planes
generated by the KLT (i.e., those associated to smaller eigenvalues) with anegligible visual distortion. These
planes are in fact characterized by very low dynamics, and their number usually increases with the number of

bands, thus making the use of 3D transform coding attractive in high spectral-resolution imagery.



Approaches based on baseline Vector Quantization (VQ) [2], which show the advantage of simple hardware
and software decoding, though associated to a relatively high image distortion, have long been investigated
[3, 4]. It is to be pointed out that their efficiency strictly depends on the codebook characteristics. in
particular, the use of adaptive codebooks that can be updated according to the image characteristics can
produce good results at the expense of a higher complexity.

The problem of combining compression and classification using aVQ approach has along history. Classical
solutions consst of an independent design for Vector Quantizer and classifier [5], with each step using a
different optimality criterion, the former being based on MSE, while the latter on Bayesan risk
minimization. More recently, various approaches have been proposed, mostly based on a clustering of the
codebook, in which the VQ is explicitly designed to work as a classifier, ailmost ignoring the compression
aspect [6-8]. One of the most common approaches to clustered VQ is Learning VQ (LVQ) [9, 10], where the
encoder selects the codeword on the basis of MSE minimization, while codebook generation is performed
attempting to limit classification error.

In [11], the problem is investigated with particular reference to the case of hyperspectral images. The
proposed technique, which is based on a Spectral Vector Quantization (SVQ), performs a quantization of the
multidimensional space associated to the spectral components of image pixels. The codebook is thus
generated by clustering the feature space and selecting a prototype signature for each cluster.

In thiswork, an aternative scheme, which combines image compression and supervised classification into a
single step, is presented. It therefore achieves excellent classification performance at the expense of

moderate visual quality worsening. In section 2, SVQ is briefly reviewed as a basis of the proposed

approach. Thus, in the following sections the principles of the proposed technique are described in detail, the

experimental analysis reported, and the conclusions finally drawn.

2. Spectral Vector Quantization (SVQ)

In Fig.1 ablock scheme of a SVQ codec is depicted: for each pixel p; to be encoded, the spectra signature is
compared to the M codevectors and associated to the nearest one according to a given distance criterion.
Only a sequence of codevector addresses is then transmitted to the decoder, which replaces the original pixel

with the quantized signature, operating as a smple look-up table. As to codebook generation, different



strategies can be adopted: Kohonen's Self Organizing Features Map (SOFM) is often considered a good
solution, for it achieves an efficient codebook organization in terms of entropy minimization.

The compression factor CFg,q attained by SVQ can easily be computed on the basis of the number of vectors
M in the codebook, the number of spectral bands N, and the number of bits originally associated to each band

(here supposed equal for all bands, for the sake of simplicity), namely:
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Compared to other techniques, SVQ presents notable advantages in terms d compression capability and
reconstruction quality. From the viewpoint of compression performance, Eqg. 1 highlights the fact that the
efficiency of SVQ increases proportionally to the number of spectral bands, making it particularly suited to
hyper-spectral images. As to the resulting image quality, it can be observed that the distortion introduced by
the encoding procedure independently affects single pixels, resulting in avery low visual impact and a total
absence of tiling artifacts, typical of block cding techniques (e.g., spatia VQ or block transform coding
techniques).

Severa experiments have been carried out in order to test the efficiency of SVQ on various data sets with
different characteristics. The two image sets referred to in the following results are “Feltwell” and “Blue-
bury”. The former consists of six visible spectral bands of a rural area in UK, acquired by Airborne TM

sensors, which represent an area containing only agricultura fields, human constructions (roads, buildings,
etc.) being totally absent. The latter consists of nine spectral bands, six of which in the visible portion of the
eectromagnetic spectrum, and three in the infrared portion (near, middle-near, and middle infrared). The
encompassed land portion includes human constructions (roads, walls, houses, and other structures) as well
asrura areas. In both images the intensity of each original spectral component was coded at 8 bits per pixel.
The two datasets were also provided with the relevant ground truth, with a number of known classes of 5 and
9, respectively.

In Fig. 2, adetall of a spectral band of the “Feltwell” dataset is shown (2.8), and compared with the same
detail s co-decoded with SVQ and JPEG, respectively (2.b-c). The size of the VQ codebook was set to M=64,
thus yielding CFs,o=8; the JPEG quality parameter was set S0 as to obtain the same compression factor. It

can be observed that SVQ produces more appreciable results in terms of perceptive distortion, for it



preserves the definition of fine details better and provides a more satisfying visual quality of the decoded
image. Fig. 3 shows a set of charts, which shows the globa impact of compression on average spectra
signatures with reference to the nine classes of the “Blue-bury” dataset. For each class, the average spectral
signatures calculated on the original and SVQ compressed images are compared. Also in this example the
codebook size was set to M=64, athough the compression factor is higher (CFsyq=12) than the previous
example due to the larger number of spectral bands. Apparently, only minor variations affect the spectra
signatures of most classes. Nevertheless, it is to be pointed out that this average measure does not alow to
appreciate the internal variation within a class, which can be very important in the classification phase.
Moreover, it disregards the local error associated to small areas or even single points. This error can have an
irrelevant impact on the average signature but can compromise the correct discrimination of the relevant
image regions in an automatic classification procedure.

To experimentally confirm the above considerations, SVQ was compared to two schemes widely used for
remote sensing multi-spectral image compression, and some objective measures were used for performance
estimation. The two schemes used for comparison were baseline the JPEG coding standard independently
applied to spectral bands, and JPEG applied to spectra bands decorrelated by the Kahrunen-Loeve
Transform (KLT-JPEG). Two quality parameters were estimated: objective distortion in terms of mean
square error MSE) and rate of unchanged classification (RUC). Concerning MSE, a global measure was

obtained by averaging the errors of the N spectral bands:
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where N,y is the number of pixels of the image, | is the k-th spectral component of the i-th pixel of the

origina image I, and Ek is the corresponding spectral component in the decoded image I
Asto the RUC, we want to evaluate how the compression impacts on data classification. To this purpose, a
conventional supervised k-NN classifier was adopted [12], and atest set S 2{3; i=12,..., Nd} was built

by randomly selecting a sufficiently large number N, of samples from a dataset containing the uncompressed
image | and the relevant ground truth. Since the target is to achieve the same classification for compressed

and uncompressed data (i.e., compression does not affect classification), the performance index should be



proportiona to the number of samplesin the test set that are equally classified before and after compression.

A compressed version of the test set §d :{S; i=1,2,...,Nd} is then constructed by sdlecting the

corresponding samples from the compressed image I , and aBoolean variable dC, is defined as follows:

~

_11 if the k-NN dasdfications of § and § coincide

=i . 3
10 otherwise

On this basis, the rate of unchanged classification can be defined as:

el % .0

RUC = aadc = 100 (4)
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which gives the percentage number of pixels whose classification is not modified by compression.
The two parameters were measured for the two datasets Feltwell and Blue-bury, at varying compression
factor: Figs. 4 and 5 report the respective results. From the analysis of the charts, a different behavior can be
observed depending on the compression factor. For low compressions (CF<8), SVQ provides good MSE
values, comparable with KLT-JPEG, and much better than simple JPEG. In the same compression range it
also achieves a good classification performance (RUC>92%). On the contrary, the results are not satisfactory
for higher compression factors. This drawback of SVQ is due to the fact that it can produce critica
aterations on the pixel spectral signature, which can compromise the correct classification of the relevant
target area. The reason for this problem is twofold:
i. the codebook used by the encoder can be thought of as a heavy quantization of the feature space, and

is generated through an unsupervised clustering of atraining set of pixel samplesin a set of classes of

the same cardinality as the codebook;

il. the encoding procedure is based upon the association between image pixels and codevectors, which is
usualy performed on the basis of a ssimple minimization of the Euclidean distance (MSE).

The first point means that, whereas in spatial VQ the spectral combinations associated to a single pixel are

amogt infinite, in SYQ only M combinations are possible, where M is the number of codevectors. Moreover,

there is no clear relationship between number/type of codevectors and image characteritics (number and

type of natural classes, ground truth, etc.). The second point stresses the fact that the pixelcodevector

associations is essentialy a very rough classification of the pixel in one of the M clusters generated so far,



based on a Inearest-neighbor rule, thus providing a very noisy classification. A situation in which these
problems are particularly evident is the case of a class represented by a few samples in the image or
characterized by a high variance: it is easy to verify that such a class will not be adequately represented in
the codebook, and the relevant image samples will be heavily damaged in the encoding process (in

particular, when codebook size is reduced to increase compression).

3. Spectral Classified Vector Quantization (SCVQ)

As already mentioned, SV Q presents severa advantages, such as ease of implementation, fast decoding, and
low visua distortion. Nonetheless, the intrinsic limitation in classification performance can represent a
serious problem in many common applications of remote sensing data, as for instance automatic target
discrimination or land cover mapping.

In order to overcome such problems, [13] proposes a generalized distortion measure (GDM) to be used both
in the generation of the codebook and in the coding phase. The GDM simultaneoudly takes into account
ordinary distortion and classification error through a Lagrangian modified distortion expression. Although
the basic idea is very interesting, the authors do not suggest how to implement such an encoder, nor do they
explain how to balance the two error parameters within the compression process. In the present work, similar
concepts are used to define a new coding technique, which combines the principles of SVQ and of
supervised classification into a single operation, thus alowing to optimize different quality parameters
during data encoding jointly. This technique is called Spectra Classified VQ (SCVQ).

The basic concept behind SCVQ is the definition of a specific cost function made up of two terms: an
objective measure of distortion and a classification performance parameter. The two parameters are merged
into a weighted sum, where the weights can be opportunely varied according to the particular application
which the data are addressed to. A simple but effective choice of the two parameters is proposed and
experimented. A mgjor innovation of SCVQ is that the use of the above cost function is limited to the coding
phase only, thus alowing to generate a single codebook to encode images with different visual quality and
classification accuracy. In this way, the operation of the encoder simply requires the setting of a numerical

parameter.



The generation of a unique codebook is a problem in tself, and requires the apriori knowledge of class
distribution and population in the training set. In the following sections, the SCVQ coding scheme and the

codebook generation procedure are analyzed in detail.

3.1 Coding Scheme
Let X, be an image vector, made up of the N spectral components associated to the pixel p;, and dj i the
Euclidean distance between X; and the codevector \7j : the cost Di j of representing p; with \7j in

replacement of X; can be expressed as:

D, =d,, L) )

where C; ; represents the classification cost parameter, and can assume the following values:

ic; =1 if X ,v, belong to different classes
ic, =4,[al£1 otherwise

©)

The classification can be performed by any supervised technique. Since it is quite troublesome to adapt the
classifier to the compressed domain, due to the necessity of re-training the system for every possible
configuration of coding parameters, the same classifier is usualy adopted in the compressed and
uncompressed domains. In the case of k-NN, this means that the nearest neighbors are searched within the
original uncompressed training set aso in the classification of compressed images. Accordingly, each
codevector can be associated to a class apriori.

Based on the above considerations, Egs. 5-6 state that in the computation of the cost D; ; , codevectors V

i,j
associated to a different class of image vector X, are penalized by setting the classification cost to the upper

limit, while codevectors Vj associated to the same class of image vector X; benefit of a cost reduction

proportional to a given parameter a. Incidentally, setting ¢;;=1 in Eq. 5 reduces the distortion measure to a

simple Euclidean distance. Since each image pixel is encoded by the codevector that minimizes the cost

function Dy i the parameter a, called “ classification factor”, can be treated as a user-defined parameter, and

alows to achieve the desired trade-off between the MSE and the classification error introduced by the

encoder.



Due to the importance of the classification factor on the system performance, some studies have been carried
out on the relationship between a and data degradation. The example in Fig. 6 is useful to introduce the
results of this analysis: here, a vector X, associated to an image pixel p;, and two codevectors V., V, are
geometrically mapped in the relevant feature space. For the sake of simplicity, a two-dimensional space was

=

considered. V,, is the codevector nearest to X, but it belongs to a different class with respect to pixel pj,
while V, is the nearest among those belonging to the same class of X.. Particularly in this example,
d; m =0.4d; ,,. According to the standard SVQ criterion, p; will be encoded by Vv, , thus modifying the
classification result in the compressed image. On the other hand, the SCVQ criterion states that p; should be
assignedto v, only if:

D,<D, P D= -m<“7a>di,n=Di,n @)

i,m i,n ,m I,

that is, if the parameter a is set o that:

a>2a-1 )

where b=d, . /d

in

is the ratio between the distances of Vv and vV, from X ,thenO£ b <1, and

- 1£a <1 as hypothesized. In our example, a=d; o,/ dj , =0.4, and the threshold value a., for which

p; isassigned to V, instead of to the nearer but misclassifying codevector v, isa,, =2b- 1=0.2.

Seen inversdly, if a is set to a given value a*, athreshold value by,=(a*+1)/2 can be determined, which
gives the maximum tolerance in terms of distance increase for a codevector associated to the same dassto
prevail over a nearer misclassifying codevector. For instance, given a=0, we have b,=0.5, thus a ‘ correct’

codevector wins against a nearer ‘wrong’ codevector, only if its distance from the sample is less than double
the ‘wrong’ codevector’s distance. This example also explains that the RUC is inversely proportiona to by,

thus it monotonically decreases for increasing a values (see Eqg. 8).

Figure 7 gives a graphic interpretation of the behavior of the cost function D, ; versusthe parameter a . To

this purpose the image vector X; and the two codevectors V,, and V,, in the example in Fig. 6 are mapped

according to the new metric defined in Eq. 5, as a function of a. In Fig. 7.a, a is taken equal to 1, then the



resulting configuration matches the one based on the Euclidean metric (standard VQ). In Figs. 7.b-c,

progressively lower values of a are used, consequently moving the vector Vv, towards X; in the parametric
space defined by Eq. 5 (the cost of Vv, decreaseswith a). In Fig. 7.b the value of a is above the threshold ay,

and the encoder ill selects the codevector V_, while in Fig. 7.c the value of a fals below the

threshold (a = -0.4 < ay,) and V, becomes the nearest codevector. For the sake of completeness, the
threshold case a = a, is depicted in Fig. 7.d, where the distance of V., and Vv, from X; isexactly equal: in
thiscase, V, isobviously selected. It should to be noted that the vector v, maintains a fixed distance from
% (equal to the Euclidean distance) for every vaue of the classification factor. In general, given an image
vector X; and the nearest codevector V, that is classified differently from X; , thereis aways a value of the
classification factor a below which the nearest codevector Vv, belonging to the same class of p; falsinside

the circledefined by Vv, .

Fig. 8.a shows the flow-graph of the proposed coding agorithm. The main differences compared to a

standard VQ consist in the introduction of a classification module in the encoder, which is used to set the
C,; coefficients according to Eqg. 6, and in the introduction of the input parameter a set by the user to tune

the classfication/distortion trade-off. The last parameter favors the objective image quaity versus the
preservation of the classification results and vice-versa, as described previoudy. A level of preserved

classification accuracy is not assured with this scheme, while quality degradation can be controlled. In fact,

once thea parameter issetto a*, the MSE increaseis set to b’ in the worst case.

On the contrary, if a given level of classification accuracy is to be guaranteed, a dightly different scheme,

represented in Fig. 8.b, can be used. In this case, the desired RUC is given as an input to the encoder, which

automatically determines the value b=b* that attains this RUC. To do so, the encoder first computes the

factor b,, i=1,..., Ny, relevant to each pixel p;, then it achieves the sorted array Bi and selects the

A

vaue b*=b. , i=N,,>RUC/100. In this way, one can precisely control the final classification accuracy, while

the M SE increase can again be estimated as a function of b* in the worst case.



3.2 Codebook design

As aready mentioned, SCVQ performance is strongly affected by the codebook characteristics. As a matter
of fact, an inappropriate definition of the codevectors to be used in the encoding phase can have a very
negative impact on both visua distortion and classification performance. In particular, while classica VQ
codebook generation techniques smply aim at minimizing an error measure (usualy, the MSE) without
taking into account any apriori constraint, SCVQ behavior is affected by the way the codevectors are
distributed among the specific classes.

A first problem isthat all classes, whatever their population, need to be suitably represented in the codebook.
Furthermore, the statistical properties of each class (distribution and dispersion) should be taken into
account. Consequently, the typical codebook initialization based on random criteria cannot guarantee an
acceptable result, and also more sophisticated initiaization strategies (e.g., choosing the initid number of
codevectors for each class proportionally to the cardinality of the relevant cluster in the training set) could be
insufficient to ensure an effective outcome. In fact, a class barely represented in the training collection will
consequently have a very low number of initial codevectors, and the refinement process (whose target is to
achieve alower average error) will probably reduce them further. This can prevent a correct classification of
pixels belonging to less numerous classes, in particular if their statistical distribution in the features' space
has a high variance value.

According to this reasoning, a certain number of strategies for SCVQ codebook generation were
investigated, using the classical algorithm by Linde, Buzo, and Gray (LBG) as abasis of al the developed
techniques [14]. The main conclusion of this study was that for our purposes the most important point in
codebook generation is the definition of a good codebook initialization strategy. An accurate choice of the
starting configuration in fact afforded a good balancing among classes aso in the final codebook, without
requiring any complex modification of the iterative algorithm. In order to achieve a good configuration, both
membership information and spreading of clusters in the collection of training vectors were taken into

account, as explained in the following.
Given atraining st S, ={ﬂ; i =1,2,...NVQ} built from the samples of a multi-spectral image, and a

classification of the same image in C classes, each represented by a number of samples N, so that



C
Ny, = é_ N. ., the problem is to determine the quote of initial codevectors to be assigned to each class in
c=l
order to construct a codebook of size M. Note that the training set S,q used for codebook computation does
not necessarily correspond to the training set S used for classification.

The “proportiona” rule is the smplest and most intuitive, and consists of assigning to each class a starting

number of patterns m, proportional to its occurrence in the training set, namely:

m, =—= ; ¢=1...C 9

C
so that é m, =M . This strategy generaly provides a good average result, but it shows two main

c=1
drawbacks: (i) it concentrates the error on the classes with low N values, which are initialized with very
few clusters and can completely disappear in the final codebook; (ii) this method does not take into account
any statistical parameter on cluster distribution.

Asto the first problem, we studied a modification of the rule expressed by Eq. 9, which consists of the
introduction of amore complex relationship between m. and N . A genera formulation of the new ruleis

the following:

m, =—_g(N,) (10
vQ

whereg(N, ) isapolynomial function, whose aim is to smooth the differencesin the population of the
various classes.

Various functional forms have been tested, limiting the analysis to low degree polynomials. In fact, although
the use of higher order polynomials alows to impose a more specific behavior to the desired response curve,
it also involves growing complexity. In Fig. 9 a generic curve, which intersects the straight line representing
a linear dependency of m. on N, is represented. The two dashed aress correspond to the quantity of
patterns added to or subtracted from the c-th cluster with respect to the proportional rule. The parameters that
identify the curve should ke chosen so that the two areas compensate each other and the total number of

vectors remains constant.



In the specific case of athird degree polynomia the expression g(Nc) becomes:

g(N.)=aNg +bNZ +cN, +d (12)

where the four parameters a, b, ¢, d should be determined by imposing four congtraints, i.e., the curve

symmetry with respect to a desired point N, a flex with unit angular coefficient at the same point, the

condition N, =1/2N and a constraint that guarantees that A= A" and implies that the curve has

c,max !

maximumin N, =N_ . axdminimumin N, =0.

ax

Applying the above constraints, with a few mathematical passages we obtain:

4 3
:-W; b:-EXchmaxxa; c=0; d=-

C,max

a N2 xa (12)

As to the second problem, statistical differences in the distribution of samples within each class were taken

into account by introducing in Eq. 10 a cluster distribution factor d, computed as follows:

1+ énorm

de =—— 13
S (13

where s ™™ represents the normalized standard deviation relevant to the class c. Eq. 10 becomes:
Mg = d¢ Xg( N )M (14

Again, in the case of a cubic function, we have:
+ norm

m, :%Nl (a><NC3+b><Nf +d), (15

vQ
with the same polynomial coefficients determined in Eg. 12. For other polynomial functions, an analogous
reasoning can be applied to find the optimal coefficients.

The cubic law provided in Eq. 15 proved to be a good solution for initial codebook set up, providing very
good results in terms of classification performance. In particular, it achieves a percent classfication error
amost independent of class cardindity. Moreover, it postively affects two parameters that characterize
codebook refinement operated by the LBG agorithm: speed of convergence (number of iterations to reach
the minimum) and final error (M SE obtained in the last iteration). In the charts of Fig. 10, the learning curves

relevant to the set “Blue-bury” are reported. In particular, the MSE is displayed versus the iteration step: it is



possible to observe how the cubic law produces the best results in terms of M SE, also converging faster than

other methods (it reaches the asymptote after afew iterations).

4. Experimental Results

Severa experiments have been carried out to prove the efficiency of the developed methods. SCVQ was
applied to different image sets varying the codebook size and the classification factor. The global impact of
compression was then evaluated computing the two quality measures introduced in section 2.

In the following, for the sake of conciseness, the experimental results are discussed with reference to the
“Feltwell” and “Blue-bury” test sets and varying the codebook size in the range 64 to 512 for both sets.
Concerning the classification factor &, avariability intherange [ - 0.8; 1.0] was considered, with steps of

0.2, corresponding to threshold classification indexes by, intherange [ 0.1; 1.0] with step 0.1. Ascan be

inferred from the tables and charts reported in this section, the proposed technique provides the expected
results. In spite of the particular association criterion adopted in the encoding phase, which may cause a pixel
to be assigned even to a very distant codevector, the visual quality of the encoded images was suitably
preserved. Thisis confirmed aso in the case of a dominant weight of the classification parameter in the cost
function, which generates only limited M SE increases. The reason of this behavior is mainly imputable to the
good configuration of the codebook, that is generated taking into account the cardinality and distribution of
the classes.

Figs. 11-12 show the MSE and RUC values varying the codebook size and the classification factor for the
two image sets. In particular it can be noticed that for low values of a, very low classification discrepancies
are present (almost all image pixels are equaly classified in the original and compressed image), while only
a dight worsening in terms of MSE is introduced. From the observation of Figs. 11-12, the monotonic
behavior of the RUC in dependency of & (see § 3.1), with amaximum in & =-0.8 corresponding to the lower
extreme of the & variability range is also evident.

Another important point is that the achieved classification improvement uniformly involves al the classes,
whatever the number and distribution of their samples, as shown for “Feltwell” in Table Il (for a codebook

sze M=512). This fact is even more evident for the set “Blue-bury” (reported in Table I1), which is



characterized by a more unbalanced class distribution. In particular, the rows corresponding to less numerous
classes (classes 7-9) show an increase in the rate of unchanged classification from 30-40% up to 90-95%,
provided that the classification factor is set to a sufficiently low value. Such an improvement is reflected in
minor increases in terms of average M SE (about 0.2 for “Feltwell” and 0.7 for “Blue-bury”).

As regards compression, it should be pointed out that baseline SCVQ, like SVQ, cannot achieve very high
CFs. This is due to the fact that the amount of compression can only be controlled by setting the codebook
size (see Eq. 1). Since it is not reasonable to reduce the size of the codebook below a given value (typicaly,
64 vectors), SCVQ does not allow to increase the compression arbitrarily. In particular, for "Feltwell" CF is
in the range of 5.3+8, while for “Blue-bury” the range is 8+12, due to the larger number of spectral bands.
Nevertheless, it is always possible to achieve very significant compression factors by exploiting the residua
spatial redundancy, which isin genera very high: in fact, differently from spatial VQ spectral VQ works on
single pixels, thus preserving (or even increasing) the spatia correlation. Effective post-coding algorithms,
capable of achieving sharp spatial redundancy reduction, can be introduced without modifying the proposed
coding scheme, ssmply by working on the address stream generated by SCV Q. Although a specific analysis
of these methods is beyond the scope of this paper, we here present some results achieved by a smple
lossless post-coding approach. This method is based on a work by Poggi [15], and consists of a predictive
coding of the VQ stream. In fact, the codebook is sorted in such a way as to have similar codevectors
associated to near addresses, thus allowing to apply a DPCM-like technique to the sequence of VQ
addresses. The agorithm was tested for different classification factors and codebook sizes, providing
satisfactory results, as shown in Table I1l. As expected, only minor differences have been observed on
varying the a factor, while a higher performance was achieved on small codebooks, due to better prediction
results. More complex post-coding approaches can also be adopted, if a higher performance is required, at
the expense of heavier computation (see [16][17]).

In order to compare the performance of SCVQ to other competing approaches, specific tests have been
implemented by considering two other classical compression methods widely used for RS images. the
standard JPEG and a three-dimensional transform coder (KLT-JPEG). In Fig. 13, the results are reported in

terms of MSE (Fig. 13.a) and RUC percentage (Fig. 13.b) for the test set “Feltwell”, using a classification

factor & =- 0.4. It can be observed that the proposed method improves the classification performance even



for higher ranges of compression, while ensuring sufficiently low MSE vaues. The choice of the value
a=-04 is very typical in our simulations, as it achieves a good compromise between improvement in
classification performance and low MSE degradation. As a matter of fact, from the analysis of the chartsin
Figs. 11-12, it can be observed that the increase in MSE is very low for a >- 0.3, while it is higher for
a <- 0.5, due to the predominant weight of the classification factor in the cost function. On the contrary,
RUC values are characterized by a more uniform behavior. Therefore, a value of a in the range [-0.5,-0.3]
ensures a significant improvement in the classification performance, without producing a notable damage
from the visua standpoint.
Compared to the SVQ, the SCVQ agorithm presents an increase in computational complexity due to the
introduction of a classifier in the encoder and to the use of a more complex cost function. Concerning
classfication let refer with N to the size of the feature vector and Z to the cardinality of the training set.
Then, a standard k-NN classifier requires to compute the distance of each vector to each other in the training
set, that requires ZN products + N(N-1) sums, and to order the resulting distances, that requires ZlogZ checks.
Then the pixel is classified looking for the predominant class in the K vectors of the training that result to be
the closest ones to the pixel to be classified. Accordingly, we can say that the computational complexity
introduced with the kNN classifier for each pixel is of the order of ZN products. Considered that the VQ
encoding of the same pixel requires MN products, the increase in computation is not negligible, especialy if
alargetraining set is used compared to the codebook dimension M. Nevertheless, it is to be pointed out that
SCVQ works irrespectively of the adopted classifier, thus alowing to choose a more computationally
effective approach, such as the Bayesian or the Neural one.
Concerning the cost function, the two alternative schemes proposed in Fig. 8 show a different complexity. In
thefirst casg, if K isthe number of classes, the additional computation required is summarized as follows:
NoeXM additional checks have to be performed in order to check whether each pair of image pixel and
codebook vector belong to the same class;,

+a

Ny M /K additional products of d; j with the scaling factor ! (congtant for every pixd) have

to be performed. This isin fact the number of times the image pixel and codevector belong to the same

class.



In the second case, we need to perform an additional ordering of the b, coefficients that introduces a
computational complexity of N, logN .

Thisanaysis shows that the modified cost function in the SCV Q agorithm introduces a negligible amount of
processing respect to the classical SVQ, and only the use of the k-NN classifier can introduce some issues
relevant to the computational complexity of the SCVQ agorithm.

A fina remark regards the peculiarity of this technique of low visua impact on decompressed images,
compared to classical block coding techniques. This property, which is derived from the basic SVQ
technique, can be appreciated on observing Fig. 14, which compares a detail of band 4 of “Feltwell”

compressed with SCVQ, SVQ, and the JPEG standard.

5. Conclusions

Based on the idea of Spectra Vector Quantization, a new approach to multispectral image compression for
remote sensing applications, called Spectra Classified Vector Quantization, has been presented. SCVQ
combines a compression and a classification methodology into a single scheme, alowing the user to set the
desired trade-off between classification accuracy and objective image quality (SNR). Two aternative
schemes are presented in which the interaction with the system simply consists of tuning a single parameter,
thus rendering the use of the codec particularly intuitive even for unskilled users. Implementation
suggestions are provided, mainly concerning the set up of encoder parameters and some tips are given for
effective codebook design.

The technique was tested on several multispectral data sets, and experimental results showed that SCVQ can
provide the expected performance. Further work is being conducted by the authors in order to test the
efficiency of the presented technique for hyperspectral images. Preliminary experiments in this sense are

giving encouraging resullts.

6. References

[1] J A. Saghri, A. G. Tescher and J. T. Reagan, “Practica Transform Coding of Multispectral Imagery”,

|[EEE Sgnal Processing Magazine, Jan. 1995, pp. 32-43



[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9
[10]

[11]

[12]

[13]

[14]

R. M. Gray, “Vector Quantization”, IEEE ASSP Magazine, vol. 1, pp. 4-29, April 1984

M. Ryan and J. Arnold, “The lossess compression of AVIRIS images by vector quantization”, IEEE
Trans. On Geoscience and Remote Sensing, 35(3), pp. 546-550, May 1997

S-E-Qian, A. Hollinger, D. Williams and D. Manak, “3D data compression of Hyperspectral imagery
using vector quantization with NDVI-based multiple codebooks’, 1GARSS 1998, Sesattle, 610 July
1998

G. F. McLean, “Vector Quantization for texture classification”, IEEE Trans. Systems, Man, and
Cybernetics, vol. 23, no. 3, pp. 637-649, May-Jun. 1993

Q. Xie, C. A. Lazlo and R. K. Ward, “Vector quantization technique for nonparametric classifier
design”, |IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 12, pp. 1326-1330, Dec.
1993

K. Popat and R. W. Picard, “Novel cluster based probability model for texture synthesis, classification
and compression”, Proc. SPIE Visula Comm. And Image Processing, Boston, Nov. 1993

K. Popat and R. W. Picard, “ Cluster based probability model applied to image restoration and
compression”, Proc. ICASSP, Addlaide, Austraia, 1994

T. Kohonen, “ Self-organization and Associative Memory”, Berlin: Springer -Verlag, 3¢ ed., 1989

T. Kohonen, G. Barna, and R. Chridey, “Statistical pattern recognition with neural networks:
Benchmarking studies’, IEEE Int. Conf. Neural Networks, July 1988, pp. 61-68

G. Mercier, M. C. Mouchot and G. Cazaguel, “ Joint Classification and Compression of Hyperstpectral
Images’, IGARSS 99, Hamburg, 28 June — 2 July 1999

R.O. Duda & P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.

K. L. Oehler, R. M. Gray, “Combining Image Compression and Classification Using Vector
Quantization”, |[EEE Trans. On Pattern Analysis and Machine Intelligence, vol. 17, no. 5, pp. 461-473,
May 1995,

Y. Linde, A. Buzo, R. M. Gray, “An Algorithm for Vector Quantizer Design”, |EEE Transactions on

Communication, vol. COM-28, pp. 84-95, Jan. 1980



[15] G. Poggi, “Address-predictive vector quantization of images by topology-preserving codebook
ordering”, European Transactions on Telecommunications and Related Technologies, vol. 4, pp. 423
434, July/August 1993

[16] N.M. Nasrabadi and Y. Feng, “Image compression using address-quantization”, |EEE Transactions on
Communication, vol. COM-38, pp. 2166-2173, December 1990

[17] F.G.B. De Natale, S. Fioravanti, and D.D. Giusto, “DCRVQ: a new strategy for efficient entropy coding
of vector-quantized images’, IEEE Transactions on Communication, vol. COM-44, no. 6, pp. 696-706,

Jan. 1996



List of Captions

Table |: MSE and RUC versus classification factor for “ Feltwell” (M=512, CF=5.33)
Table 11: MSE and RUC versus classification factor for “ Blue-bury” (M=512, CF=8.0)
TableI11: compression ratio before and after applying the lossess spatial coding of [15] on varying the

codebook dimension for “ Feltwell” and “ Blue-bury”

Figure 1. (a) Spectral VQ block diagram; (b) Codebook generation with LBG algorithm

Figure 2: Feltwell dataset (250x350 pels, 6 spectral bands at 8bpp), a detail of band 4 and its compressed
versions (compression ratio 1:8) (a) Original, (b) SVQ, (c) JPEG

Figure 3: Blue-bury: compression impact on class average spectral signaturesin the case M=64

Figure 4: Feltwell, performance comparison among SVQ, JPEG, and KLT-JPEG for increasing
compression rates: (@) MSE , (b) RUC

Figure 5: Blue-bury, performance comparison among SVQ, JPEG, and KLT-JPEG for increasing
compression rates. (a) MSE , (b) RUC

Figure 6: Assignment criterion: practical example in a 2D feature space

Figure 7: Graphic representation of the SCVQ method: (a) Euclidean distances of v, and V,, from X; (b)
parametric distances defined in Eq. 5of V., and V,, from X; in the case of a = 0.2, (c) a = -0.4, and (d) for
a = - 0.2 for which the two vectors have the same corrected distance from X;

Figure8: Flowchart of the SCVQ coding algorithm: (a) coding driven by the a parameter (b) coding driven
by the desired RUC parameter

Figure 9: Codebook initialization: definition of codevectors distribution by a polynomial function

Figure 10: Codebook generation: MSE versus LBG iterations for (a) M=128, (b) M=256

Figure 11: MSE and RUC versus classification factor for “ Feltwell”

Figure 12: MSE and RUC versus classification factor for “ Blue-bury”

Figure 13: Comparison among SCVQ (& =-0.4 ), JPEG and KLT-JPEG in terms of () MSE and (b) RUC

versus CF
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Tablesand figures

Tablel
a -08 | -06 | -04 | -02 0.0 +0.2 | +04 | +06 | +0.8 | +1.00
b 0.10 | 0.20 | 030 | 040 | 060 | 0.70 | 0.80 | 090 | 1.00 | 1.00
Band M SE
1 1,535 | 1,517 | 1,496 | 1,467 | 1,446 | 1,423 | 1,406 | 1,387 | 1,382 | 1,369
2 1,043 | 1,030 | 1,010 | 0,992 | 0,977 | 0,962 | 0,953 | 0,944 | 0,941 | 0,932
3 1593 | 1,564 | 1,507 | 1,459 | 1,418 | 1,383 | 1,350 | 1,328 | 1,318 | 1,297
4 2,650 | 2572 | 2,511 | 2,468 | 2,420 | 2,392 | 2,356 | 2,342 | 2,321 | 2,334
5 2,301 | 2,270 | 2,238 | 2,223 | 2,201 | 2,186 | 2,155 | 2,134 | 2,116 | 2,118
6 2,579 | 2,538 | 2,468 | 2,418 | 2,379 | 2,353 | 2,343 | 2,332 | 2,336 | 2,343
Average | 1,950 | 1,915 | 1,872 | 1,838 | 1,807 | 1,783 | 1,760 | 1,745 | 1,736 | 1,732
Class RUC
1 99,66 | 99,04 | 9855 | 9822 | 9754 | 96,87 | 96,09 | 9513 | 94,31 | 9354
2 100,00 | 99,47 | 98,70 | 97,98 | 97,35 | 96,29 | 9538 | 94,27 | 92,63 | 91,19
3 100,00 | 99,89 | 99,46 | 99,35 | 98,81 | 97,95 | 97,20 | 9579 | 9504 | 93,20
4 99,83 | 99,52 | 9849 | 97,02 | 9564 | 9451 | 9231 | 90,36 | 88,16 | 8574
5 99,85 | 98,90 | 98,09 | 9669 | 9573 | 9455 | 92,78 | 91,53 | 90,35 | 89,03
Average | 99,85 | 99,34 | 9859 | 97,73 | 96,85 | 9586 | 94,53 | 93,18 | 91,75 | 90,18




Tablell

a -0.8 -0.6 -04 | -0.2 0.0 +0.2 | +04 | +06 | +0.8 | +1.00
b 010 { 020 | 030 | 040 | 060 | O.70 | 080 | 090 | 1.00 | 1.00
Band M SE
1 257 | 233 | 219 | 213 | 209 | 207 | 205 | 2,05 | 2,05 | 2,04
2 210 | 1,82 | 1,67 | 1,60 | 1,56 153 | 152 | 151 151 | 151
3 197 | 168 | 153 | 144 | 1,39 | 1,36 | 1,35 | 1,34 | 1,34 | 1,33
4 215 | 1,84 | 167 | 157 | 152 | 1,49 | 147 | 146 | 1,46 | 1,45
5 217 | 1,86 | 1,70 | 1,61 | 157 | 154 | 153 | 152 | 152 | 152
6 29 | 240 | 212 | 198 | 1,9 | 1,8 | 1,83 | 1,81 | 1,79 | 1,79
7 183 | 153 | 138 | 1,31 | 126 | 124 | 122 | 1,21 | 1,21 | 1,20
8 188 | 166 | 155 | 149 | 145 | 143 | 142 | 141 | 141 | 1,40
9 346 | 302 | 273 | 257 | 248 | 243 | 240 | 239 | 2,38 | 2,38
Average| 2,34 | 202 | 184 | 1,74 | 169 | 166 | 164 | 163 | 1,63 | 1,63
Class RUC
1 90.62 | 99.19 | 98.64 | 98.34 | 98.05 | 97.81 | 97.69 | 97.53 | 97.27 | 97.10
2 99.65 | 98.56 | 97.00 | 96.20 | 94.93 | 94.12 | 93.38 | 92.63 | 92.34 | 91.88
3 98.97 | 98.46 | 98.20 | 97.94 | 97.94 | 97.94 | 9794 | 97.43 | 97.17 | 96.92
4 98.21 | 92.86 | 87.50 | 85.71 | 82.14 | 82.14 | 82.14 | 80.36 | 78.57 | 78.57
5 99.53 | 99.53 | 99.53 | 99.05 | 98.58 | 97.63 | 97.63 | 97.16 | 97.16 | 97.16
6 99.44 | 99.03 | 96.67 | 95.00 | 92.50 | 90.42 | 89.03 | 88.33 | 85.97 | 84.31
7 89.61 | 76.62 | 64.94 | 59.74 | 51.95 | 44.16 | 42.86 | 37.66 | 35.06 | 33.77
8 95.26 | 83.16 | 73.16 | 62.63 | 58.42 | 55.79 | 53.68 | 49.47 | 47.37 | 43.68
9 96.34 | 89.02 | 83.33 | 77.24 | 70.33 | 67.07 | 64.23 | 61.79 | 58.94 | 56.91
Average | 99.26 | 98.03 | 96.59 | 95.56 | 94.46 | 93.69 | 93.18 | 92.58 | 91.97 | 91.44
Tablelll
Codebook size 512 256 128 64
Technique
SCVQ 5.3 6 6.9 8
ettt Socc}i/%* spatial 9.02 9.97 123 16
"Blue-bury" | SCVQ 8 9 10.3 12
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