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Abstract 

Multi- and hyper-spectral data pose severe problems in terms of storage capacity and transmission 

bandwidth. Although recommendable, compression techniques require efficient approaches to 

guarantee an adequate fidelity level. In particular, depending on the final destination of the data, it 

could be necessary to maximize several parameters, as for instance the visual quality of the 

rendered data, the correctness of their interpretation, or the performance of their classification. 

Based on the idea of Spectral Vector Quantization, the approach proposed in this paper aims at 

combining a compression and a classification methodology into a single scheme, in which visual 

distortion and classification accuracy can be balanced a-priori according to the requirements of 

the target application. Experimental results demonstrate that the proposed approach can be 

employed successfully in a wide range of application domains. 

Keywords: Multispectral image compression, Vector Quantization, Classification 

EDICS: 1-OTHA 

A preliminary version of this work was presented at the IEEE International Geoscience and Remote 

Sensing Symposium 2000, Honolulu, 24-28 July 2000 



1. Introduction 

In the past years, due to the increase in the spatial and spectral resolution of remote sensing devices, data 

compression is becoming a need both on-board (for efficient downlinks) and on-ground (for long-term 

storage). In particular, multi- and hyper-spectral images pose severe storage and transmission problems due 

to the huge amount of data associated to a single shot. Several studies have been directed towards the 

development of efficient techniques that should be capable of achieving a good trade-off between bitrate 

reduction and quality preservation. Unfortunately, the term ‘quality’ does not only refer to the visual 

appearance of data as in classical picture coding applications, but it usually involves more complex aspects 

related to the performance of successive processing steps. As a matter of fact, the spectral signature of an 

image pixel often represents the most important information in many remote sensing applications, for it 

allows to discriminate among different targets in data analysis procedures. Despite this, most of the 

techniques currently adopted in remote sensing data compression directly mimic the corresponding 

photographic image coding approaches, thus focusing on visual distortion minimization and disregarding the 

possible impact of compression on the performance of automatic processing tools. For instance, the impact 

of compression can affect a cascade data analysis module or an automatic classifier negatively. 

In order to achieve data compression, coding techniques applied to optical remotely-sensed data take 

advantage of the presence of two redundancy sources: spatial correlation among neighboring pixels in the 

same spectral band, and spectral correlation among different bands at the same spatial location. Several 

strategies can be adopted to separately or jointly exploit these sources of redundancy, but a cascade of 

spectral and spatial decorrelation is usually preferred, as in the case of three dimensional transform coding 

[1], which is based on the combination of two transforms that successively exploit inter- and intra-band 

correlation. The Kahrunen-Loeve Transform (KLT) is usually preferred as a first step, due to its signal 

energy compaction capability, while for the second step, the Discrete Cosine Transform has been widely 

studied, also on account of its important role in international standards. In particular, the JPEG standard can 

be successfully applied to intra-band coding, since it can heavily compress the less significant image planes 

generated by the KLT (i.e., those associated to smaller eigenvalues) with a negligible visual distortion. These 

planes are in fact characterized by very low dynamics, and their number usually increases with the number of 

bands, thus making the use of 3D transform coding attractive in high spectral-resolution imagery. 



Approaches based on baseline Vector Quantization (VQ) [2], which show the advantage of simple hardware 

and software decoding, though associated to a relatively high image distortion, have long been investigated 

[3, 4]. It is to be pointed out that their efficiency strictly depends on the codebook characteristics: in 

particular, the use of adaptive codebooks that can be updated according to the image characteristics can 

produce good results at the expense of a higher complexity. 

The problem of combining compression and classification using a VQ approach has a long history. Classical 

solutions consist of an independent design for Vector Quantizer and classifier [5], with each step using a 

different optimality criterion, the former being based on MSE, while the latter on Bayesian risk 

minimization. More recently, various approaches have been proposed, mostly based on a clustering of the 

codebook, in which the VQ is explicitly designed to work as a classifier, almost ignoring the compression 

aspect [6-8]. One of the most common approaches to clustered VQ is Learning VQ (LVQ) [9, 10], where the 

encoder selects the codeword on the basis of MSE minimization, while codebook generation is performed 

attempting to limit classification error.  

In [11], the problem is investigated with particular reference to the case of hyperspectral images. The 

proposed technique, which is based on a Spectral Vector Quantization (SVQ), performs a quantization of the 

multidimensional space associated to the spectral components of image pixels. The codebook is thus 

generated by clustering the feature space and selecting a prototype signature for each cluster. 

In this work, an alternative scheme, which combines image compression and supervised classification into a 

single step, is presented. It therefore achieves excellent classification performance at the expense of 

moderate visual quality worsening. In section 2, SVQ is briefly reviewed as a basis of the proposed 

approach. Thus, in the following sections the principles of the proposed technique are described in detail, the 

experimental analysis reported, and the conclusions finally drawn. 

 

2. Spectral Vector Quantization (SVQ) 

In Fig.1 a block scheme of a SVQ codec is depicted: for each pixel pi to be encoded, the spectral signature is 

compared to the M codevectors and associated to the nearest one according to a given distance criterion. 

Only a sequence of codevector addresses is then transmitted to the decoder, which replaces the original pixel 

with the quantized signature, operating as a simple look-up table. As to codebook generation, different 



strategies can be adopted: Kohonen’s Self Organizing Features Map (SOFM) is often considered a good 

solution, for it achieves an efficient codebook organization in terms of entropy minimization. 

The compression factor CFSVQ attained by SVQ can easily be computed on the basis of the number of vectors 

M in the codebook, the number of spectral bands N, and the number of bits originally associated to each band 

(here supposed equal for all bands, for the sake of simplicity), namely: 

 
M
bN

CFSVQ
2log
⋅=   (1) 

Compared to other techniques, SVQ presents notable advantages in terms of compression capability and 

reconstruction quality. From the viewpoint of compression performance, Eq. 1 highlights the fact that the 

efficiency of SVQ increases proportionally to the number of spectral bands, making it particularly suited to 

hyper-spectral images. As to the resulting image quality, it can be observed that the distortion introduced by 

the encoding procedure independently affects single pixels, resulting in a very low visual impact and a total 

absence of tiling artifacts, typical of block coding techniques (e.g., spatial VQ or block transform coding 

techniques).  

Several experiments have been carried out in order to test the efficiency of SVQ on various data sets with 

different characteristics. The two image sets referred to in the following results are “Feltwell” and “Blue-

bury”. The former consists of six visible spectral bands of a rural area in UK, acquired by Airborne TM 

sensors, which represent an area containing only agricultural fields, human constructions (roads, buildings, 

etc.) being totally absent. The latter consists of nine spectral bands, six of which in the visible portion of the 

electromagnetic spectrum, and three in the infrared portion (near, middle -near, and middle infrared). The 

encompassed land portion includes human constructions (roads, walls, houses, and other structures) as well 

as rural areas. In both images the intensity of each original spectral component was coded at 8 bits per pixel. 

The two datasets were also provided with the relevant ground truth, with a number of known classes of 5 and 

9, respectively. 

In Fig. 2, a detail of a spectral band of the “Feltwell” dataset is shown (2.a), and compared with the same 

details co-decoded with SVQ and JPEG, respectively (2.b-c). The size of the VQ codebook was set to M=64, 

thus yielding CFSVQ=8; the JPEG quality parameter was set so as to obtain the same compression factor. It 

can be observed that SVQ produces more appreciable results in terms of perceptive distortion, for it 



preserves the definition of fine details better and provides a more satisfying visual quality of the decoded 

image. Fig. 3 shows a set of charts, which shows the global impact of compression on average spectral 

signatures with reference to the nine classes of the “Blue-bury” dataset. For each class, the average spectral 

signatures calculated on the original and SVQ compressed images are compared. Also in this example the 

codebook size was set to M=64, although the compression factor is higher (CFSVQ=12) than the previous 

example due to the larger number of spectral bands. Apparently, only minor variations affect the spectral 

signatures of most classes. Nevertheless, it is to be pointed out that this average measure does not allow to 

appreciate the internal variation within a class, which can be very important in the classification phase. 

Moreover, it disregards the local error associated to small areas or even single points. This error can have an 

irrelevant impact on the average signature but can compromise the correct discrimination of the relevant 

image regions in an automatic classification procedure. 

To experimentally confirm the above considerations, SVQ was compared to two schemes widely used for 

remote sensing multi-spectral image compression, and some objective measures were used for performance 

estimation. The two schemes used for comparison were baseline the JPEG coding standard independently 

applied to spectral bands, and JPEG applied to spectral bands decorrelated by the Kahrunen-Loeve 

Transform (KLT-JPEG). Two quality parameters were estimated: objective distortion in terms of mean 

square error (MSE) and rate of unchanged classification (RUC). Concerning MSE, a global measure was 

obtained by averaging the errors of the N spectral bands: 
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where Npel is the number of pixels of the image, k
iI  is the k-th spectral component of the i-th pixel of the 

original image I, and k
iI

~
 is the corresponding spectral component in the decoded image I~ . 

As to the RUC, we want to evaluate how the compression impacts on data classification. To this purpose, a 

conventional supervised k-NN classifier was adopted [12], and a test set { }clN1,2,...,i   ; == icl sS
r

 was built 

by randomly selecting a sufficiently large number Ncl of samples from a dataset containing the uncompressed 

image I and the relevant ground truth. Since the target is to achieve the same classification for compressed 

and uncompressed data (i.e., compression does not affect classification), the performance index should be 



proportional to the number of samples in the test set that are equally classified before and after compression. 

A compressed version of the test set { }clN1,2,...,i   ;
~~ == icl sS
r

 is then constructed by selecting the 

corresponding samples from the compressed image I~ , and a Boolean variable iCδ  is defined as follows: 
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On this basis, the rate of unchanged classification can be defined as: 
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which gives the percentage number of pixels whose classification is not modified by compression. 

The two parameters were measured for the two datasets Feltwell and Blue-bury, at varying compression 

factor: Figs. 4 and 5 report the respective results. From the analysis of the charts, a different behavior can be 

observed depending on the compression factor. For low compressions (CF<8), SVQ provides good MSE 

values, comparable with KLT-JPEG, and much better than simple JPEG. In the same compression range it 

also achieves a good classification performance (RUC>92%). On the contrary, the results are not satisfactory 

for higher compression factors. This drawback of SVQ is due to the fact that it can produce critical 

alterations on the pixel spectral signature, which can compromise the correct classification of the relevant 

target area. The reason for this problem is twofold:  

i. the codebook used by the encoder can be thought of as a heavy quantization of the feature space, and 

is generated through an unsupervised clustering of a training set of pixel samples in a set of classes of 

the same cardinality as the codebook; 

ii.  the encoding procedure is based upon the association between image pixels and codevectors, which is 

usually performed on the basis of a simple minimization of the Euclidean distance (MSE). 

The first point means that, whereas in spatial VQ the spectral combinations associated to a single pixel are 

almost infinite, in SVQ only M combinations are possible, where M is the number of codevectors. Moreover, 

there is no clear relationship between number/type of codevectors and image characteristics (number and 

type of natural classes, ground truth, etc.). The second point stresses the fact that the pixel-codevector 

associations is essentially a very rough classification of the pixel in one of the M clusters generated so far, 



based on a 1-nearest-neighbor rule, thus providing a very noisy classification. A situation in which these 

problems are particularly evident is the case of a class represented by a few samples in the image or 

characterized by a high variance: it is easy to verify that such a class will not be adequately represented in 

the codebook, and the relevant image samples will be heavily damaged in the encoding process (in 

particular, when codebook size is reduced to increase compression). 

 

3. Spectral Classified Vector Quantization (SCVQ) 

As already mentioned, SVQ presents several advantages, such as ease of implementation, fast decoding, and 

low visual distortion. Nonetheless, the intrinsic limitation in classification performance can represent a 

serious problem in many common applications of remote sensing data, as for instance automatic target 

discrimination or land cover mapping. 

In order to overcome such problems, [13] proposes a generalized distortion measure (GDM) to be used both 

in the generation of the codebook and in the coding phase. The GDM simultaneously takes into account 

ordinary distortion and classification error through a Lagrangian modified distortion expression. Although 

the basic idea is very interesting, the authors do not suggest how to implement such an encoder, nor do they 

explain how to balance the two error parameters within the compression process. In the present work, similar 

concepts are used to define a new coding technique, which combines the principles of SVQ and of 

supervised classification into a single operation, thus allowing to optimize different quality parameters 

during data encoding jointly. This technique is called Spectral Classified VQ (SCVQ). 

The basic concept behind SCVQ is the definition of a specific cost function made up of two terms: an 

objective measure of distortion and a classification performance parameter. The two parameters are merged 

into a weighted sum, where the weights can be opportunely varied according to the particular application 

which the data are addressed to. A simple but effective choice of the two parameters is proposed and 

experimented. A major innovation of SCVQ is that the use of the above cost function is limited to the coding 

phase only, thus allowing to generate a single codebook to encode images with different visual quality and 

classification accuracy. In this way, the operation of the encoder simply requires the setting of a numerical 

parameter. 



The generation of a unique codebook is a problem in itself, and requires the a-priori knowledge of class 

distribution and population in the training set. In the following sections, the SCVQ coding scheme and the 

codebook generation procedure are analyzed in detail. 

3.1 Coding Scheme 

Let ix
r

 be an image vector, made up of the N spectral components associated to the pixel ip , and j,id  the 

Euclidean distance between ix
r

 and the codevector jv
r

: the cost j,iD  of representing ip  with jv
r

 in 

replacement of ix
r

 can be expressed as: 
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where jic ,  represents the classification cost parameter, and can assume the following values: 
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The classification can be performed by any supervised technique. Since it is quite troublesome to adapt the 

classifier to the compressed domain, due to the necessity of re-training the system for every possible 

configuration of coding parameters, the same classifier is usually adopted in the compressed and 

uncompressed domains. In the case of k-NN, this means that the nearest neighbors are searched within the 

original uncompressed training set also in the classification of compressed images. Accordingly, each 

codevector can be associated to a class a-priori. 

Based on the above considerations, Eqs. 5-6 state that in the computation of the cost j,iD , codevectors jv
r

 

associated to a different class of image vector ix
r

 are penalized by setting the classification cost to the upper 

limit, while codevectors jv
r

 associated to the same class of image vector ix
r

 benefit of a cost reduction 

proportional to a given parameter α. Incidentally, setting cij=1 in Eq. 5 reduces the distortion measure to a 

simple Euclidean distance. Since each image pixel is encoded by the codevector that minimizes the cost 

function j,iD , the parameter α, called “classification factor”, can be treated as a user-defined parameter, and 

allows to achieve the desired trade-off between the MSE and the classification error introduced by the 

encoder. 



Due to the importance of the classification factor on the system performance, some studies have been carried 

out on the relationship between α and data degradation. The example in Fig. 6 is useful to introduce the 

results of this analysis: here, a vector ix
r

 associated to an image pixel ip , and two codevectors mv
r

, nv
r

 are 

geometrically mapped in the relevant feature space. For the sake of simplicity, a two-dimensional space was 

considered. mv
r

 is the codevector nearest to ix
r

, but it belongs to a different class with respect to pixel ip , 

while nv
r

 is the nearest among those belonging to the same class of ix
r

. Particularly in this example, 

n,im,i d4.0d = . According to the standard SVQ criterion, ip  will be encoded by mv
r

, thus modifying the 

classification result in the compressed image. On the other hand, the SCVQ criterion states that ip  should be 

assigned to mv
r

 only if: 

 ninimiminimi DddDDD ,,,,,, 2
1

          =⋅+<=⇒< α
 (7) 

that is, if the parameter á  is set so that: 

 12 −> âá  (8) 

where nimi dd ,, /=β  is the ratio between the distances of mv
r

 and nv
r

 from ix
r

, then 10 <≤ β , and 

11 <≤− α  as hypothesized. In our example, 4.0d/dâ n,im,i == , and the threshold value αth for which 

ip  is assigned to nv
r

 instead of to the nearer but misclassifying codevector mv
r

 is 2.012 =−= βαth . 

Seen inversely, if α is set to a given value α*, a threshold value βth=(α*+1)/2 can be determined, which 

gives the maximum tolerance in terms of distance increase for a codevector associated to the same class to 

prevail over a nearer misclassifying codevector. For instance, given α=0, we have βth=0.5, thus a ‘correct’ 

codevector wins against a nearer ‘wrong’ codevector, only if its distance from the sample is less than double 

the ‘wrong’ codevector’s distance. This example also explains that the RUC is inversely proportional to βth, 

thus it monotonically decreases for increasing α values (see Eq. 8). 

Figure 7 gives a graphic interpretation of the behavior of the cost function jiD ,  versus the parameter α . To 

this purpose the image vector ix
r

 and the two codevectors mv
r

 and nv
r

 in the example in Fig. 6 are mapped 

according to the new metric defined in Eq. 5, as a function of α. In Fig. 7.a, α is taken equal to 1, then the 



resulting configuration matches the one based on the Euclidean metric (standard VQ). In Figs. 7.b-c, 

progressively lower values of α  are used, consequently moving the vector nv
r

 towards ix
r

 in the parametric 

space defined by Eq. 5 (the cost of nv
r

 decreases with α). In Fig. 7.b the value of α is above the threshold αth  

and the encoder still selects the codevector mv
r

, while in Fig. 7.c the value of α  falls below the 

threshold (α = −0.4 < αth) and nv
r

 becomes the nearest codevector. For the sake of completeness, the 

threshold case α = αth is depicted in Fig. 7.d, where the distance of mv
r

 and nv
r

 from ix
r

 is exactly equal: in 

this case, nv
r

 is obviously selected. It should to be noted that the vector mv
r

 maintains a fixed distance from 

ix
r

 (equal to the Euclidean distance) for every value of the classification factor. In general, given an image 

vector ix
r

 and the nearest codevector mv
r

 that is classified differently from ix
r

, there is always a value of the 

classification factor α below which the nearest codevector nv
r

 belonging to the same class of ip  falls inside 

the circle defined by mv
r

. 

Fig. 8.a shows the flow-graph of the proposed coding algorithm. The main differences compared to a 

standard VQ consist in the introduction of a classification module in the encoder, which is used to set the 

jic ,  coefficients according to Eq. 6, and in the introduction of the input parameter α set by the user to tune 

the classif ication/distortion trade-off. The last parameter favors the objective image quality versus the 

preservation of the classification results and vice-versa, as described previously. A level of preserved 

classification accuracy is not assured with this scheme, while quality degradation can  be controlled. In fact, 

once the α parameter is set to α*, the MSE increase is set to 2
thβ  in the worst case. 

On the contrary, if a given level of classification accuracy is to be guaranteed, a slightly different scheme, 

represented in Fig. 8.b, can be used. In this case, the desired RUC is given as an input to the encoder, which 

automatically determines the value β=β* that attains this RUC. To do so, the encoder first computes the 

factor iβ , i=1 ,…, Npel, relevant to each pixel ip , then it achieves the sorted array iβ̂  and selects the 

value β*= iβ̂ , i=Npel⋅RUC/100. In this way, one can precisely control the final classification accuracy, while 

the MSE increase can again be estimated as a function of β* in the worst case. 



3.2 Codebook design 

As already mentioned, SCVQ performance is strongly affected by the codebook characteristics. As a matter 

of fact, an inappropriate definition of the codevectors to be used in the encoding phase can have a very 

negative impact on both visual distortion and classification performance. In particular, while classical VQ 

codebook generation techniques simply aim at minimizing an error measure (usually, the MSE) without 

taking into account any a-priori constraint, SCVQ behavior is affected by the way the codevectors are 

distributed among the specific classes. 

A first problem is that all classes, whatever their population, need to be suitably represented in the codebook. 

Furthermore, the statistical properties of each class (distribution and dispersion) should be taken into 

account. Consequently, the typical codebook initialization based on random criteria cannot guarantee an 

acceptable result, and also more sophisticated initialization strategies (e.g., choosing the initial number of 

codevectors for each class proportionally to the cardinality of the relevant cluster in the training set) could be 

insufficient to ensure an effective outcome. In fact, a class barely represented in the training collection will 

consequently have a very low number of initial codevectors, and the refinement process (whose target is to 

achieve a lower average error) will probably reduce them further. This can prevent a correct classification of 

pixels belonging to less numerous classes, in particular if their statistical distribution in the features’ space 

has a high variance value. 

According to this reasoning, a certain number of strategies for SCVQ codebook generation were 

investigated, using the classical algorithm by Linde, Buzo, and Gray (LBG) as a basis of all the developed 

techniques [14]. The main conclusion of this study was that for our purposes the most important point in 

codebook generation is the definition of a good codebook initialization strategy. An accurate choice of the 

starting configuration in fact afforded a good balancing among classes also in the final codebook, without 

requiring any complex modification of the iterative algorithm. In order to achieve a good configuration, both 

membership information and spreading of clusters in the collection of training vectors were taken into 

account, as explained in the following. 

Given a training set { }VQ1,2,...Ni   ; == iVQ tS
r

 built from the samples of a multi-spectral image, and a 

classification of the same image in C classes, each represented by a number of samples cN , so that 
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, the problem is to determine the quote of initial codevectors to be assigned to each class in 

order to construct a codebook of size M. Note that the training set SVQ used for codebook computation does 

not necessarily correspond to the training set Scl used for classification. 

The “proportional” rule is the simplest and most intuitive, and consists of assigning to each class a starting 

number of patterns cm  proportional to its occurrence in the training set, namely: 
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. This strategy generally provides a good average result, but it shows two main 

drawbacks: (i) it concentrates the error on the classes with low cN  values, which are initialized with very 

few clusters and can completely disappear in the final codebook; (ii) this method does not take into account 

any statistical parameter on cluster distribution. 

As to the first problem, we studied a modification of the rule expressed by Eq. 9, which consists of the 

introduction of a more complex relationship between cm  and cN . A general formulation of the new rule is 

the following: 

 ( )c
VQ

c Ng
N
M
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where g( cN ) is a polynomial function, whose aim is to smooth the differences in the population of the 

various classes.  

Various functional forms have been tested, limiting the analysis to low degree polynomials. In fact, although 

the use of higher order polynomials allows to impose a more specific behavior to the desired response curve, 

it also involves growing complexity. In Fig. 9 a generic curve, which intersects the straight line representing 

a linear dependency of cm  on cN , is represented. The two dashed areas correspond to the quantity of 

patterns added to or subtracted from the c-th cluster with respect to the proportional rule. The parameters that 

identify the curve should be chosen so that the two areas compensate each other and the total number of 

vectors remains constant. 



In the specific case of a third degree polynomial the expression g(NC) becomes:  

 dcNbNaNNg CCCC +++= 23)(  (11) 

where the four parameters a, b, c, d should be determined by imposing four constraints, i.e., the curve 

symmetry with respect to a desired point ccN , a flex with unit angular coefficient at the same point, the 

condition max,21 ccc NN = , and a constraint that guarantees that +A = −A  and implies that the curve has 

maximum in max,cc NN =  and minimum in 0Nc = . 

Applying the above constraints, with a few mathematical passages we obtain: 
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As to the second problem, statistical differences in the distribution of samples within each class were taken 

into account by introducing in Eq. 10 a cluster distribution factor cd , computed as follows: 
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where norm
cσ  represents the normalized standard deviation relevant to the class c. Eq. 10 becomes: 

 M)N(gdm ccc ⋅⋅=  (14) 

Again, in the case of a cubic function, we have: 
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with the same polynomial coefficients determined in Eq. 12. For other polynomial functions, an analogous 

reasoning can be applied to find the optimal coefficients. 

The cubic law provided in Eq. 15 proved to be a good solution for initial codebook set up, providing very 

good results in terms of classification performance. In particular, it achieves a percent classification error 

almost independent of class cardinality. Moreover, it positively affects two parameters that characterize 

codebook refinement operated by the LBG algorithm: speed of convergence (number of iterations to reach 

the minimum) and final error (MSE obtained in the last iteration). In the charts of Fig. 10, the learning curves 

relevant to the set “Blue-bury” are reported. In particular, the MSE is displayed versus the iteration step: it is 



possible to observe how the cubic law produces the best results in terms of MSE, also converging faster than 

other methods (it reaches the asymptote after a few iterations). 

 

4. Experimental Results  

Several experiments have been carried out to prove the efficiency of the developed methods. SCVQ was 

applied to different image sets varying the codebook size and the classification factor. The global impact of 

compression was then evaluated computing the two quality measures introduced in section 2. 

In the following, for the sake of conciseness, the experimental results are discussed with reference to the 

“Feltwell” and “Blue-bury” test sets and varying the codebook size in the range 64 to 512 for both sets. 

Concerning the classification factor á , a variability in the range ]0.1 ;8.0[ −  was considered, with steps of 

0.2, corresponding to threshold classification indexes βth in the range ]0.1 ;1.0 [  with step 0.1. As can be 

inferred from the tables and charts reported in this section, the proposed technique provides the expected 

results. In spite of the particular association criterion adopted in the encoding phase, which may cause a pixel 

to be assigned even to a very distant codevector, the visual quality of the encoded images was suitably 

preserved. This is confirmed also in the case of a dominant weight of the classification parameter in the cost 

function, which generates only limited MSE increases. The reason of this behavior is mainly imputable to the 

good configuration of the codebook, that is generated taking into account the cardinality and distribution of 

the classes. 

Figs. 11-12 show the MSE and RUC values varying the codebook size and the classification factor for the 

two image sets. In particular it can be noticed that for low values of α, very low classification discrepancies 

are present (almost all image pixels are equally classified in the original and compressed image), while only 

a slight worsening in terms of MSE is introduced. From the observation of Figs. 11-12, the monotonic 

behavior of the RUC in dependency of á  (see § 3.1), with a maximum in á =-0.8 corresponding to the lower 

extreme of the á  variability range is also evident. 

Another important point is that the achieved classification improvement uniformly involves all the classes, 

whatever the number and distribution of their samples, as shown for “Feltwell” in Table II (for a codebook 

size M=512). This fact is even more evident for the set “Blue-bury” (reported in Table II), which is 



characterized by a more unbalanced class distribution. In particular, the rows corresponding to less numerous 

classes (classes 7-9) show an increase in the rate of unchanged classification from 30-40% up to 90-95%, 

provided that the classification factor is set to a sufficiently low value. Such an improvement is reflected in 

minor increases in terms of average MSE (about 0.2 for “Feltwell” and 0.7 for “Blue-bury”). 

As regards compression, it should be pointed out that baseline SCVQ, like SVQ, cannot achieve very high 

CFs. This is due to the fact that the amount of compression can only be controlled by setting the codebook 

size (see Eq. 1). Since it is not reasonable to reduce the size of the codebook below a given value (typically, 

64 vectors), SCVQ does not allow to increase the compression arbitrarily. In particular, for "Feltwell" CF is 

in the range of 5.3÷8, while for “Blue-bury” the range is 8÷12, due to the larger number of spectral bands. 

Nevertheless, it is always possible to achieve very significant compression factors by exploiting the residual 

spatial redundancy, which is in general very high: in fact, differently from spatial VQ spectral VQ works on 

single pixels, thus preserving (or even increasing) the spatial correlation. Effective post-coding algorithms, 

capable of achieving sharp spatial redundancy reduction, can be introduced without modifying the proposed 

coding scheme, simply by working on the address stream generated by SCVQ. Although a specific analysis 

of these methods is beyond the scope of this paper, we here present some results achieved by a simple 

lossless post-coding approach. This method is based on a work by Poggi [15], and consists of a predictive 

coding of the VQ stream. In fact, the codebook is sorted in such a way as to have similar codevectors 

associated to near addresses, thus allowing to apply a DPCM-like technique to the sequence of VQ 

addresses. The algorithm was tested for different classification factors and codebook sizes, providing 

satisfactory results, as shown in Table III. As expected, only minor differences have been observed on 

varying the á  factor, while a higher performance was achieved on small codebooks, due to better prediction 

results. More complex post-coding approaches can also be adopted, if a higher performance is required, at 

the expense of heavier computation (see [16][17]). 

In order to compare the performance of SCVQ to other competing approaches, specific tests have been 

implemented by considering two other classical compression methods widely used for R-S images: the 

standard JPEG and a three-dimensional transform coder (KLT-JPEG). In Fig. 13, the results are reported in 

terms of MSE (Fig. 13.a) and RUC percentage (Fig. 13.b) for the test set “Feltwell”, using a classification 

factor 4.0á −= . It can be observed that the proposed method improves the classification performance even 



for higher ranges of compression, while ensuring sufficiently low MSE values. The choice of the value 

4.0á −=  is very typical in our simulations, as it achieves a good compromise between improvement in 

classification performance and low MSE degradation. As a matter of fact, from the analysis of the charts in 

Figs. 11-12, it can be observed that the increase in MSE is very low for α > −0.3, while it is higher for 

α < −0.5, due to the predominant weight of the classification factor in the cost function. On the contrary, 

RUC values are characterized by a more uniform behavior. Therefore, a value of α in the range [-0.5,-0.3] 

ensures a significant improvement in the classification performance, without producing a notable damage 

from the visual standpoint. 

Compared to the SVQ, the SCVQ algorithm presents an increase in computational complexity due to the 

introduction of a classifier in the encoder and to the use of a more complex cost function. Concerning 

classification let refer with N to the size of the feature vector and Z to the cardinality of the training set. 

Then, a standard k-NN classifier requires to compute the distance of each vector to each other in the training 

set, that requires ZN products + N(N-1) sums, and to order the resulting distances, that requires ZlogZ checks. 

Then the pixel is classified looking for the predominant class in the K vectors of the training that result to be 

the closest ones to the pixel to be classified. Accordingly, we can say that the computational complexity 

introduced with the k-NN classifier for each pixel is of the order of ZN products. Considered that the VQ 

encoding of the same pixel requires MN products, the increase in computation is not negligible, especially if 

a large training set is used compared to the codebook dimension M. Nevertheless, it is to be pointed out that 

SCVQ works irrespectively of the adopted classifier, thus allowing to choose a more computationally 

effective approach, such as the Bayesian or the Neural one. 

Concerning the cost function, the two alternative schemes proposed in Fig. 8 show a different complexity. In 

the first case, if K is the number of classes, the additional computation required is summarized as follows: 

• NpelxM additional checks have to be performed in order to check whether each pair of image pixel and 

codebook vector belong to the same class; 

• KMN pel ×  additional products of jid ,  with the scaling factor 
2

1 α+
 (constant for every pixel) have 

to be performed. This is in fact the number of times the image pixel and codevector belong to the same 

class. 



In the second case, we need to perform an additional ordering of the iβ  coefficients that introduces a 

computational complexity of pelpel NN log . 

This analysis shows that the modified cost function in the SCVQ algorithm introduces a negligible amount of 

processing respect to the classical SVQ, and only the use of the k-NN classifier can introduce some issues 

relevant to the computational complexity of the SCVQ algorithm. 

A final remark regards the peculiarity of this technique of low visual impact on decompressed images, 

compared to classical block coding techniques. This property, which is derived from the basic SVQ 

technique, can be appreciated on observing Fig. 14, which compares a detail of band 4 of “Feltwell” 

compressed with SCVQ, SVQ, and the JPEG standard. 

 

5. Conclusions  

Based on the idea of Spectral Vector Quantization, a new approach to multispectral image compression for 

remote sensing applications, called Spectral Classified Vector Quantization, has been presented. SCVQ 

combines a compression and a classification methodology into a single  scheme, allowing the user to set the 

desired trade-off between classification accuracy and objective image quality (SNR). Two alternative 

schemes are presented in which the interaction with the system simply consists of tuning a single parameter, 

thus rendering the use of the codec particularly intuitive even for unskilled users. Implementation 

suggestions are provided, mainly concerning the set up of encoder parameters and some tips are given for 

effective codebook design. 

The technique was tested on several multispectral data sets, and experimental results showed that SCVQ can 

provide the expected performance.  Further work is being conducted by the authors in order to test the 

efficiency of the presented technique for hyperspectral images. Preliminary experiments in this sense are 

giving encouraging results. 
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Tables and figures 
 

Table I 

á -0.8 -0.6 -0.4 -0.2 0.0 +0.2 +0.4 +0.6 +0.8 +1.00 

ββ th 0.10 0.20 0.30 0.40 0.60 0.70 0.80 0.90 1.00 1.00 
           

Band MSE 

1 1,535 1,517 1,496 1,467 1,446 1,423 1,406 1,387 1,382 1,369 

2 1,043 1,030 1,010 0,992 0,977 0,962 0,953 0,944 0,941 0,932 

3 1,593 1,564 1,507 1,459 1,418 1,383 1,350 1,328 1,318 1,297 

4 2,650 2,572 2,511 2,468 2,420 2,392 2,356 2,342 2,321 2,334 

5 2,301 2,270 2,238 2,223 2,201 2,186 2,155 2,134 2,116 2,118 

6 2,579 2,538 2,468 2,418 2,379 2,353 2,343 2,332 2,336 2,343 

Average 1,950 1,915 1,872 1,838 1,807 1,783 1,760 1,745 1,736 1,732 
           

Class RUC 

1 99,66 99,04 98,55 98,22 97,54 96,87 96,09 95,13 94,31 93,54 

2 100,00 99,47 98,70 97,98 97,35 96,29 95,38 94,27 92,63 91,19 

3 100,00 99,89 99,46 99,35 98,81 97,95 97,20 95,79 95,04 93,20 

4 99,83 99,52 98,49 97,02 95,64 94,51 92,31 90,36 88,16 85,74 

5 99,85 98,90 98,09 96,69 95,73 94,55 92,78 91,53 90,35 89,03 

Average 99,85 99,34 98,59 97,73 96,85 95,86 94,53 93,18 91,75 90,18 

 



Table II 

á -0.8 -0.6 -0.4 -0.2 0.0 +0.2 +0.4 +0.6 +0.8 +1.00 

ββ th 0.10 0.20 0.30 0.40 0.60 0.70 0.80 0.90 1.00 1.00 
           

Band MSE 

1 2,57 2,33 2,19 2,13 2,09 2,07 2,05 2,05 2,05 2,04 

2 2,10 1,82 1,67 1,60 1,56 1,53 1,52 1,51 1,51 1,51 

3 1,97 1,68 1,53 1,44 1,39 1,36 1,35 1,34 1,34 1,33 

4 2,15 1,84 1,67 1,57 1,52 1,49 1,47 1,46 1,46 1,45 

5 2,17 1,86 1,70 1,61 1,57 1,54 1,53 1,52 1,52 1,52 

6 2,95 2,40 2,12 1,98 1,90 1,85 1,83 1,81 1,79 1,79 

7 1,83 1,53 1,38 1,31 1,26 1,24 1,22 1,21 1,21 1,20 

8 1,88 1,66 1,55 1,49 1,45 1,43 1,42 1,41 1,41 1,40 

9 3,46 3,02 2,73 2,57 2,48 2,43 2,40 2,39 2,38 2,38 

Average 2,34 2,02 1,84 1,74 1,69 1,66 1,64 1,63 1,63 1,63 
           

Class RUC 

1 99.62 99.19 98.64 98.34 98.05 97.81 97.69 97.53 97.27 97.10 

2 99.65 98.56 97.00 96.20 94.93 94.12 93.38 92.63 92.34 91.88 

3 98.97 98.46 98.20 97.94 97.94 97.94 97.94 97.43 97.17 96.92 

4 98.21 92.86 87.50 85.71 82.14 82.14 82.14 80.36 78.57 78.57 

5 99.53 99.53 99.53 99.05 98.58 97.63 97.63 97.16 97.16 97.16 

6 99.44 99.03 96.67 95.00 92.50 90.42 89.03 88.33 85.97 84.31 

7 89.61 76.62 64.94 59.74 51.95 44.16 42.86 37.66 35.06 33.77 

8 95.26 83.16 73.16 62.63 58.42 55.79 53.68 49.47 47.37 43.68 

9 96.34 89.02 83.33 77.24 70.33 67.07 64.23 61.79 58.94 56.91 

Average 99.26 98.03 96.59 95.56 94.46 93.69 93.18 92.58 91.97 91.44 
 

 

 

Table III 

 
 Codebook size  

Technique  

512 

 

256 

 

128 

 

64 

 

SCVQ 5.3 6 6.9 8 

"Feltwell" SCVQ + spatial 
coding 

9.02 9.97 12.3 16 

"Blue -bury" SCVQ 8 9 10.3 12 



 SCVQ + spatial 
coding 

15.6 17 21.1 29 
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