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ABSTRACT

Automatic detection of musical patterns is an important task in
the field of Music Information Retrieval due to its usage in mul-
tiple applications such as automatic music transcription, genre or
instrument identification, music classification, and music recom-
mendation. A significant sub-task in pattern detection is the real-
time pattern detection in music due to its relevance in application
domains such as the Internet of Musical Things. In this study,
we present a method to identify the occurrence of known patterns
in symbolic monophonic music streams in real-time. We intro-
duce a matrix-based representation to denote musical notes using
its pitch, pitch-bend, amplitude, and duration. We propose an al-
gorithm based on an independent similarity index for each note
attribute. We also introduce the Match Measure, which is a nu-
merical value signifying the degree of the match between a pattern
and a sequence of notes. We have tested the proposed algorithm
against three datasets: a human recorded dataset, a synthetically
designed dataset, and the JKUPDD dataset. Overall, a detection
rate of 95% was achieved. The low computational load and min-
imal running time demonstrate the suitability of the method for
real-world, real-time implementations on embedded systems.

1. INTRODUCTION

The presence of repeating patterns is one of the most significant
aspects of music, as humans recognize structure in music mainly
through the perception of repetition within a piece of music [1, 2].
One of the most studied topics in the field of Music Information
Retrieval (MIR) is the detection of patterns [3, 2], and it has a
multitude of applications such as computational musicology, au-
dio fingerprinting and indexing, plagiarism detection, music clas-
sification, music recommendation, and music cognition. Although
many researchers have presented algorithms capable of detecting
repeated patterns in entire recordings or compositions, there seems
to be a lack of attention devoted towards real-time implementa-
tions, i.e., when the analysis needs to be performed on the fly, at
the exact moment in which the musical pattern is generated - usu-
ally by a musical instrument.

Real-time pattern detection is an integral part in Internet of
Musical Things (IoMusT) applications [4] on the smart musical
instruments [5]. These are an emerging class of digital musical
instruments positioned at the intersection with Internet of Things
devices, which are characterized by embedded systems dedicated
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to audio processing tasks (e.g., [6] and [7]). The intelligence em-
bedded in such instruments could be used to extract musical pat-
terns in real-time from the musician’s output and immediately re-
purpose them into controls for other connected peripherals such
as smoke machines, stage lights, visuals or smartphones of audi-
ence members in participatory live music contexts. To date, scarce
research has been conducted to address these kinds of scenarios
envisioned in IoMusT research, mainly due to the lack of appro-
priate real-time tools with constrained capabilities (such as limited
computing power, limited memory, limited I/O ports, and require-
ments for minimum power consumption).

The algorithm presented by this paper is able to recognize
monophonic musical patterns in a live musical environment uti-
lizing digital musical instruments [5]. A modified version of the
matrix-based representation method introduced in [8] is used to
denote the musical notes. The proposed method draws inspiration
from Computer Vision techniques and introduce a novel use for
the Structural Similarity Index Measure (SSIM): a metric used to
measure the similarity between two images in the domain of Com-
puter Vision.

Human performers are not always perfect, and there may be
subtle deviations present when a pattern is played. Musicians may
also insert notes, or double some notes to suit their expressive need
at the moment of playing. With the understanding that these nu-
ances contribute to the expressiveness of the music, we have taken
several steps to account for such deviations. We employ a dynamic
window to extract sequences from the incoming music stream to
account for any extra notes. We have also introduced a weighted
summation and a threshold to obtain the final metric. The size of
the dynamic window, threshold value, as well as the weights may
be enforced as strictly, or as leniently as the user desires.

Several researchers have explored the use of structural simi-
larity in the domain of music. The authors of [9] present a method
employing structural similarity to summarize digital media by the
frequency of occurrence of clusters within the media. The study re-
ported in [10] presents a structural similarity measurement method
between two recordings to enable audio-based analysis and re-
trieval. However, to our best knowledge, the usage of the structural
similarity index to detect musical patterns in real-time has not been
investigated yet.

2. RELATED WORK

There have been a multitude of research published on the detec-
tion of repeated patterns in music. However, most of these studies
are aimed towards the detection of repeated patterns in recorded
music.

The authors of [11] present a geometric approach to detect
patterns in both monophonic and polyphonic music. The symbolic
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representations of music is used, and the method inspects all dis-
placements between note pairs, i.e., if there is a pattern occurring
twice in the piece, A and B - the distances from all notes in A to
their counterparts in B should be the same. The chroma vector
is used to cluster the repeated patterns. To tackle transposed pat-
terns, the authors introduce a transposition of all chroma vectors
to a single chroma vector.

The algorithm presented in [12] employs a self similarity ma-
trix to identify repetitive musical patterns. This method is able
to work with audio, or symbolic representations. A chromagram
is obtained for the windowed signal, and the key-transposition in-
variant self-similarity matrix is computed. A scoring and threshold
is performed followed by a grouping by occurrence.

The authors of [13] present a point-set comparison algorithm
where the music is presented in the form of a multi dimensional
point-set. The algorithm uses two-dimensional points, (t, p),
where each point represents a single note or sequence of tied notes
whose onset time is t in tatums and whose morphetic pitch is p.
The authors also introduce the maximal translatable patterns vec-
tor, which is the set of points in the dataset that can be translated by
a vector to give other points. This greedy compression algorithm
is able to find the best maximal translatable patterns, append them
to a new vector, and remove these points from the dataset.

Most existing literature are aimed towards the identification of
repeating patterns present in entire compositions and they operate
with knowledge of the composition in its entirety. However, we
are aiming towards a system to be used in a live environment, with
no prior knowledge of the incoming notes beforehand. Due to
this reason, a direct comparison cannot be computed between the
proposed method and the state of the art.

In our earlier study, we presented a comparison between a
deterministic method and several machine learning methods de-
signed to detect patterns in symbolic real-time music [8]. The de-
terministic method performed a simple boundary check. We also
evaluated different machine learning approaches; which include a
single neural network trained to detect all patterns, multiple neu-
ral networks trained to detect each pattern, a convolutional neural
network, and a recurrent neural network. The deterministic system
and the recurrent neural network showed the best results.

Through this work, we aim to overcome some limitations en-
countered in our previous study. The reduction of false detections,
and the ability to detect transposed patterns are some of the key
improvements of the proposed method. We also wish to reduce
the set-up time when compared with machine learning methods.

3. REPRESENTATION OF MUSICAL NOTES

We use a modified version of the matrix-based representation in-
troduced in our earlier study [8], which is inspired by the MIDI
protocol and uses three attributes to denote a single musical note -
namely the Pitch, Amplitude, and Duration. In the present study,
we introduce an additional attribute: Pitch Bend - used to denote
the graceful increase or decrease of the pitch of a musical note. A
column matrix is used to encapsulate the four attributes and de-
note a single musical note. The four attributes can be described as
follows:

• Pitch: The pitch of a note is a perceptual quality which al-
lows for it to be deemed higher or lower than other notes,
and enables a note to be ordered on a frequency-related
scale [14, 15]. We use the 12 tone equal temperament

Figure 1: Pitch bend values of an example musical note

(12-TET) tuning system, and the pitch is obtained from the
MIDI number.

• Pitch-bend: Pitch-bend is a musical technique which is
used to obtain vocal-like expressive characteristics and ar-
ticulations from musical instruments by increasing or de-
creasing the pitch of a note. String instruments achieve this
effect by bending the desired string, and keyboard style in-
struments achieve this effect by the use of a pitch controller.
Pitch-bend is similar to the music concept of glissando.
To denote the pitch bend, we use the MIDI pitchwheel pa-
rameter. Our algorithm operates under the assumption that
the common interval of ±2 semitones for the pitchwheel
range will be used [16].
To denote a smooth and graceful pitch bend, MIDI instru-
ments encode the pitch bends as a series of MIDI messages
with fine increments or decrements. Using all pitchwheel
values is not feasible as it would render extremely long se-
quences with arbitrary lengths. To overcome this issue, we
have decided to only use the local minima or maxima to de-
note the pitch bend in order to retain its shape with a mini-
mal amount of data. Fig. 1 shows an illustration of a pitch
bend done on a single musical note. For this particular note,
the pitch bend changes are represented by 158 MIDI mes-
sages. We use the values corresponding to the 6 peaks and
5 troughs instead of all 158 values. According to our repre-
sentation standard, the Pitch bend values for Fig. 1 are [0,
8191, 800, 8191, 4454, 8191, 2114, 6096, 266, 7451, 61,
7492, 0].

• Amplitude: The amplitude corresponds to the loudness of
the note. We consider the relative loudness in each note
of a sequence as an important attribute in determining the
match with a pattern. MIDI velocity is used to represent the
amplitude.
The velocity value, as defined in the MIDI standard, cor-
responds to the rate at which a keyboard key is pressed
[16, 17]. This action on an acoustic instrument will ren-
der a louder, or a softer sound. Although MIDI velocity
may be used to control multiple parameters in a synthesizer
[17], we operate under the assumption that MIDI velocity
is used to control only the amplitude.
In music, dynamics refer to the variation in loudness be-
tween notes and phrases, and are represented using dynamic
markers, which may range from pianississimo, which refers
to very very quiet playing, to fortississimo, which refers to
very very loud playing [18]. Table 1 shows a complete list
of dynamics markers, along with their symbols and corre-
sponding MIDI velocity values as mapped by the popular
music production software Logic Pro [19].

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

162



Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

• Duration: The duration of a note is the time duration where
the note undergoes its gradual decay. For our computations,
we represent the duration in seconds.

Table 1: MIDI velocity and dynamics mapping in Logic Pro 9 (re-
trieved from [19]).

Name Level Marker Velocity
fortississimo very very loud fff 127
fortissimo very loud ff 112
forte loud f 96
mezzo-forte average mf 80
mezzo-piano average mp 64
piano quiet p 48
pianissimo very quiet pp 32
pianississimo very very quiet ppp 16

Eq. (1) provides an example of a single musical note denoted using
the representation mechanism introduced above. For any ith note
in a sequence Ni, the pitch is denoted by Pi, the current value of
pitch-bend is denoted by Bi, the amplitude is denoted by Ai, and
the duration is denoted by Di.

Ni =

 Pi

Bi

Ai

Di

 . (1)

Accordingly, eq. (2) shows a sequence of notes N , which are rep-
resented using the defined format:

N =

 Pi

Bi

Ai

Di

,

Pi+1

Bi+1

Ai+1

Di+1

,

Pi+2

Bi+2

Ai+2

Di+2

, . . .

 (2)

It should be noted that the MIDI note number 0 is used to rep-
resent the C−1 note, which is an octave below the C0 = 16.35Hz
note [20]; just below the lower limit of human hearing, and is well
outside the frequency range of most contemporary musical instru-
ments. Therefore, we can safely rule out the chances of a C−1

note occurring in contemporary music, and use its MIDI number
to represent a pause.

4. MUSICAL PATTERNS

We define a repeating musical pattern to be an ordered sequence
of notes and pauses which occur at least twice in a piece of mu-
sic. The repetitions of patterns will be shifted in time, and may be
transposed. However, in a real life performance, musicians may
repeat notes or insert extra notes to better express the emotions as-
sociated with the music piece. Such cases may also be perceived as
a pattern by the listener for as long as the melody and the emotion
of the music is preserved.

Let us consider the first four notes of the C major scale as
shown in Figure 2. If we assume that all notes have an equal mod-
erately loud amplitude (refer Table 1), no pitch bends, and a tempo
of ˇ “ = 120 bpm, we can denote S in the matrix-based represen-
tation as shown below;

S = G ˇ ˇ ˇ ˇ
Figure 2: First four notes of the C major scale

S =

 60
0
80
0.5

62
0
80
0.5

64
0
80
0.5

65
0
80
0.5

 . (3)

For our algorithm, several conditions must be met for a sequence
of notes to be a match with pattern S:

• The sequence and the pattern must be of identical length, or
the sequence may only have less than the allowed number
of notes added or doubled.

• The final metric, which is a weighted summation, should be
higher than the defined hard threshold.

5. THE STRUCTURAL SIMILARITY INDEX

The Structural Similarity Index Measure (SSIM) is a Computer
Vision technique to measure the similarity between two images.
The SSIM provides advantages over standard comparison methods
such as a Mean Squared Error, and it derives inspiration from the
human visual perception to identify structural information from a
scene [21]. The SSIM index for two image signals x and y, is
presented as follows: [21];

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µx
2 + µy

2 + C1)(σx
2 + σy

2 + C2)
. (4)

C1 and C2 are constants to ensure stability when the denominator
reaches 0 for each measure. µx, and µy is measured by averaging
over all the pixel values. σx

2 and σy
2 is measured by computing

the variance of all the pixel values, and the covariance between x
and y are denoted by σxy , as shown in eq. (6). They are defined
for each pixel i of an arbitrary variable x as below.

µx =
1

N

N∑
i=1

xi. (5)

σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

. (6)

The SSIM outputs a single value between −1 and +1. A value
of +1 indicates that the given images are identical, and a value of
−1 indicates that the given images are very different.

6. BICUBIC INTERPOLATION

Interpolation is a common technique used in Computer Vision to
resize images. There are several interpolation methods available
for image resizing, and bicubic interpolation is a common tech-
nique used by several popular image processing software [22].

In the context of computer vision, bicubic interpolation cal-
culates a weighted average of the surrounding 4x4 pixel square to
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Figure 3: Flow chart of the proposed algorithm.

calculate the interpolated value for an unknown pixel u. Each sur-
rounding pixel is assigned a weight based on its distance to the
destination pixel [23]. The kernel for the bicubic interpolation is
illustrated in eq. 7, where d is the distance between the interpo-
lated point and the grid point [22, 23].

u(d) =


3/2|d|3− 5/2|d|2 + 1, 0 ≤ |d| < 1,

−1/2|d|3− 5/2|d|2− 4|d|+ 2, 1 ≤ |d| < 2,

0 2 < |d|.
(7)

7. PROPOSED METHOD

We propose an algorithm to detect if a sequence of notes is a match
to a given pattern according to the conditions discussed in Section
4. The algorithm obtains an individual SSIM value for each set of
attributes belonging to the sequence and the pattern respectively.
To account for extra notes or removed notes, we have utilized a
dynamic window to obtain sequences from the incoming music
stream.

7.1. Dynamic Window

Musicians may add extra notes or remove some notes from a pat-
tern based on their expressive needs at a live performance. With
the understanding that a sequence can still be perceived as a pattern
despite some extra notes being present, we use a dynamic window
to obtain sequences to compute the SSIM against each pattern.

The size of the window can be used as a control parameter
to allow a p number of notes to be added to the pattern. In our
simulations, we used the value of 0 ≤ p ≤ 3, which allows for a
maximum of 3 extra notes to be added. As illustrated in Fig. 3, if

the length of a pattern in n, multiple sequences will be extracted
from the music stream, each with lengths n+0, n+1, n+2, and
n + 3. The value of p for our experiments was chosen arbitrarily,
and it may be adjusted to make the system as strict, or as lenient
as the user desires.

7.2. Resizing using Bicubic Interpolation

One of the primary criterion for the SSIM is that the two matrices
being compared has to be identical in size. As the windowed seg-
ments may vary in length by a factor of p, we perform a bicubic
interpolation to resize the sequences of length n+ p, to the length
of the pattern, which is n.

In our experimental setup, four windowed sequences are ex-
tracted from the incoming music stream for each pattern as 0 ≤
p ≤ 3. Interpolation is not necessary for the p = 0 sequence.
For all other sequences where p = 1, 2, 3, the interpolation is per-
formed as explained in eq. 7. Following which, the interpolated
vectors are used to compute the SSIM values with the pattern at-
tribute vectors as illustrated in Fig. 3.

7.3. SSIM Computation

The interpolated sequence and the pattern is first split into pitch,
amplitude, pitch-bend, and duration vectors. This step is taken
to ensure that each attributes contribute independently to the final
measure. We then compute the SSIM between each pair of the
pitch, amplitude, pitch-bend and duration vectors of the interpo-
lated sequence and each pattern, as illustrated by Fig. 3.

For each vector pair x and y, we calculate µx, µy , σx, and
σy as presented in eq. 4. We then use the calculated µx, µy , σx,
and σy values to compute the SSIM value for x and y, for all four
vector pairs.

The constants C1, and C2 are small constants, included to
avoid instability when µx

2 + µy
2, and σx

2 + σy
2, respectively,

is very close to zero. For our evaluations, we used the arbitrary
values K1 = 0.01, and K2 = 0.03, the same values used in the
original publication. Furthermore, we selected the value L = 127,
which is the dynamic range for pitch and amplitude. C1 and C2

are defined as [21]:

C1 = (K1L)
2, (8)

C2 = (K2L)
2. (9)

As discussed above, we obtain four SSIM values for each pair
of note attributes. For each sequence x, and pattern y, the SSIM
between the two pitch vectors is SSp(x,y), the SSIM between the
two amplitude vectors is SSa(x,y), the SSIM between the two
pitch-bend vectors is SSpb(x,y), and the SSIM between the two
duration vectors is SSd(x,y). We then use the four SSIM values
to compute the Match Measure (MM) for between each sequence
and pattern.

7.4. Match Measure

MM is is obtained through a weighted summation of all four SSIM
values as illustrated in eq. 10. This step ensures that all attributes
in the sequence and the pattern make a contribution based on their
importance to the definition of a pattern. A greater difference in
one set of attributes will lead to a smaller MM. If all attributes are
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Figure 4: MM values for each windowed sequence for a composi-
tion in the human dataset.

identical, a value of MM = 1.7 is obtained, and for every devia-
tion from the pattern, the MM will decrease. The lowest possible
value is MM = −1.7

MM(x,y) = SSp(x,y) + 0.2× SSa(x,y)+

0.2× SSpb(x,y) + 0.3× SSd(x,y).
(10)

Each note attribute contribute to the MM independently. As
a result, any deviation in one attribute will lower the MM value,
which allows us to identify the similarity between a note sequence
and a pattern.

7.5. Tolerances and Weights

As discussed above, MM is obtained through a weighted summa-
tion of the SSIM values of the four note attribute vector pairs. The
weights for each SSIM value, as shown by eq. 10, were selected
arbitrarily based on the relative contribution each attribute makes
to the definition of the pattern.

The on-time pitch pairs are the most important attribute to de-
termine if a sequence and a pattern is a match [24]. We identified
empirically that the amplitude contributes less to the definition of a
pattern. It should be noted that the user may change these weights
based on the importance they give to each note attribute.

Fig.4 shows the MM values for a single pattern for a compo-
sition in the dataset. It is clear that some sequences have a signifi-
cantly higher MM values, and we defined the final threshold values
based on the relative difference of MM values. Each composition
requires a unique threshold value to determine the allowable devi-
ations from a pattern. The users may set the threshold value to be
as strict, or as lenient as they desire.

To illustrate on the algorithm let us consider an example from
the JKUPDD dataset, specifically Beethoven’s Piano Sonata in F
minor, and consider one repeating pattern, 29 notes in length. Let
us name the pattern pitch vector as Pp, the amplitude vector as Pa,
the pitch-bend vector as Ppb, and the duration vector as Pd:

Pp = [69, 69, 67, 65, 62, 64, 65, 67, 69, 62, 64, 65,

67, 69, 65, 67, 67, 64, 65, 67, 67, 69, 65, 67,

65, 64, 65, 64, 65]

(11)

Pa = [90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90,

90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90,

90, 90, 90, 90, 90]

(12)

Ppb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(13)

Pd = [0.72, 0.24, 0.48, 0.48, 0.24, 0.24, 0.24, 0.24,

0.48, 0.72, 0.24, 0.24, 0.24, 0.24, 0.24, 1.44,

0.48, 0.48, 0.48, 0.72, 0.24, 0.48, 0.48, 0.72,

0.24, 0.48, 0.96, 0.48, 0.48]

(14)

Within the piece, there is a repetition of the pattern where two
doubled notes are present, making the sequence 31 notes long. Let
us illustrate this sequence pitch vector as Sp, the amplitude vector
as Sa, the pitch-bend vector as Spb, and the duration vector as Sd:

Sp = [65, 69, 69, 67, 65, 62, 64, 65, 67, 69, 62, 64,

65, 67, 69, 65, 67, 67, 64, 65, 67, 67, 69, 65,

67, 65, 64, 65, 64, 65, 69]

(15)

Sa = [90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90,

90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90,

90, 90, 90, 90, 90, 90, 90]

(16)

Spb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(17)

Sd = [0.48, 0.72, 0.24, 0.48, 0.48, 0.24, 0.24, 0.24,

0.24, 0.48, 0.72, 0.24, 0.24, 0.24, 0.24, 0.24,

1.44, 0.48, 0.48, 0.48, 0.72, 0.24, 0.48, 0.48,

0.72, 0.24, 0.48, 0.96, 0.48, 0.48, 0.72]

(18)

The interpolation resizes the pitch, amplitude, pitch-bend and
duration vectors of the sequence to fit the length of the correspond-
ing pattern vectors. The interpolated sequence has a pitch vector
Ip, an amplitude vector Ia, a pitch-bend vector Ipb, and a duration
vector Id as follows:

Ip = [65, 69, 68, 66, 64, 62, 64, 66, 68, 64, 63, 64,

66, 68, 65, 67, 66, 64, 65, 67, 67, 67, 66, 65,

64, 64, 64, 64, 68]

(19)

Ia = [90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89,

90, 90, 90, 90, 90, 89, 90, 90, 90, 90, 90, 90,

90, 90, 90, 90, 90]

(20)

Ipb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(21)

Id = [0.50, 0.66, 0.29, 0.48, 0.40, 0.24, 0.24, 0.24,

0.38, 0.63, 0.38, 0.24, 0.24, 0.24, 0.28, 1.35,

0.48, 0.48, 0.55, 0.55, 0.34, 0.48, 0.61, 0.43,

0.4, 0.84, 0.57, 0.48, 0.70]

(22)

The interpolated vectors, and the pattern vectors are of iden-
tical length, and the SSIM between each vector pair can now be
calculated. The obtained SSIM values for the above pattern and
sequence are:
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• SSIM between Pp (eq:11) and Ip (eq. 19) = 0.98175

• SSIM between Pa (eq:12) and Ia (eq. 20) = 0.99998

• SSIM between Ppb (eq:13) and Ipb (eq. 21) = 1.0

• SSIM between Pd (eq:14) and Id (eq. 22) = 0.32245

Following the computation of the SSIM values, we can com-
pute the MM between the pattern and the sequence as shown by
eq. 10. The final metric is MM = 1.478481.

8. DATASET

We used three separate datasets to evaluate the system; namely the
Human Dataset, the Synthesized Dataset, and the Johannes Ke-
pler University Patterns Development Database (JKUPDD). Each
dataset is able to represent different application domains and have
their own unique characteristics which are discussed below.

8.1. Human Dataset

This dataset was recorded by one of the authors and it contains
subtleties in note attributes that can only be achieved with human
playing. The dataset contains staccato and legato styled playing,
changes in amplitude, as well as pitch-bends. The Human Dataset
consists of 45 tracks. Each track was recorded so that they con-
tain one, or several repeating patterns with other sequences in be-
tween. There are 15 distinct patterns with a total of 300 repeti-
tions which contain extra notes, doubled notes as well as added
pitch bends. The pattern occurrences were annotated at the time
of recording. The dataset was recorded using an M-Audio Oxygen
Pro Mini MIDI keyboard, with Cubase LE AI Elements 8.

8.2. Synthesized dataset

We constructed an ad-hoc dataset from 16 symbolic monophonic
tracks of contemporary songs and music pieces to evaluate the sys-
tem. The dataset is an extension of the dataset used in our earlier
research [8], and it spans across multiple styles of music includ-
ing pop, rock, heavy metal, instrumental songs, classical pieces,
and folk songs. We identified repeating patterns in each track that
would warrant the use of the proposed system. There are 36 dis-
tinct patterns present with a total of 753 repetitions. All pattern
occurrences are either transposed, or identical to the ground truth.
Pattern repetitions were identified by listening, and annotated man-
ually. The symbolic data was obtained through the community
contributed, online resource Ultimate Guitar1.

8.3. JKUPDD dataset

The Johannes Kepler University Patterns Development Database is
an industry standard, annotated, open source dataset used in many
pattern recognition tasks2. It contains 5 classical pieces in both
monophonic, and polyphonic versions with repeating patterns, and
has been widely used to evaluate algorithms. The ground truth, as
well as all pattern occurrences are provided in the dataset. We
used the monophonic MIDI version of the dataset to evaluate our
system.

We believe that the three datasets are able to provide a good
base to evaluate the proposed method due to their unique charac-
teristics. The datasets are able to simulate situations that may arise

1http://ultimate-guitar.com
2https://github.com/ns2max/jkupdd_dataset
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Figure 5: A segment from Pachelbel’s Canon in D: a test pattern
used in the synthetic dataset

in a live performance or in programmed music. We have made all
datasets and source codes publicly available3. Figure 5 is an ex-
ample of a repeating patterns present in the dataset, which contains
long sequences of notes with varying durations.

9. RESULTS

In order to simulate a real-time operation, we streamed each track
to the system, note by note. Note sequences were obtained, in-
terpolated, and MM was computed on the fly. The results of our
simulations are presented in Table 3, along with other details on the
datasets - such as the total number of patterns, number of distinct
patterns, total length of patterns and non-patterns as well as the
ratio between patterns/ non-patterns and tracks in Table 2. Results
show that the proposed system is capable of identifying a major-
ity of patterns in the Human and JKUPDD datasets, and 100% of
patterns in the Synthetic Dataset.

We introduced a comparison between several probabilistic and
deterministic methods for the same task in a previous publication
[8]. The highest performing methods of said study, namely the De-
terministic System (Det), and the recurrent Neural Network based
System (RNN) were used as benchmarks to assess the accuracy of
the proposed system.

Det consists of a series of boundary checks for each note at-
tribute and sequence and a pattern are deemed as a match if all note
attributes are within the specified tolerances from each other. RNN
consists of a recurrent neural network with an input layer whose
length is equal to the longest pattern, two LSTM layers, a dense
layer, a dropout layer, and a dense output layer with a softmax
activation function. As deep learning requires large training sets
for maximum accuracy, a large training dataset was constructed
by artificially introducing variations for the selected patterns. We
also generated sequences which are non patterns and labelled them
accordingly.

Table 3 provides a comparison of the precision, recall and F-
measure of each method globally, and for each dataset. Results
show that the proposed system was able to identify an excellent
percentage of patterns in the dataset. Det and RNN both suffered
due to their inability to detect transposed patterns. Moreover, RNN
showed a significant amount of false positives despite its good per-
formance in recognizing patterns.

As illustrated by Table 4, the proposed system showed a low
computational load when compared with compared with Det and
RNN. All tests were performed on a workstation laptop with an In-
tel core i7−11800H (2.3GHz) processor with 16GB of memory.

3https://github.com/ns2max/ssimpatt
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Table 2: Overview of the utilized datasets.

Human recorded dataset Synthesized dataset JKUPDD
Number of tracks 45 16 5
Number of distinct patterns 15 36 31
Total number of patterns 300 753 137
Total length of all patterns 296 644 1430
Total length of all tracks 9872 16872 3547
Distribution length of patterns and tracks 0.029 0.038 0.403
Distribution length of non-patterns and tracks 0.971 0.962 0.597

However, these results show that the proposed method is suitable
for a real-time application on a resource constrained embedded
system as well [6].

Table 3: Comparison of the performances between MM, Det, and
RNN for each dataset.

MM Det RNN

Combined Dataset

Accuracy 95.0% 53.6% 51%
Precision 0.95 0.94 0.86
Recall 0.97 0.53 0.51
F-measure 0.96 0.68 0.64

Human Dataset

Accuracy 96.6% 56% 55%
Precision 0.93 0.94 0.82
Recall 0.98 0.54 0.54
F-measure 0.96 0.69 0.65

Synthetic Dataset

Accuracy 100% 51.8% 49.4%
Precision 0.97 0.95 0.89
Recall 0.98 0.51 0.49
F-measure 0.97 0.66 0.63

JKUPDD

Accuracy 70.5% 57.3% 50.7%
Precision 0.95 0.90 0.76
Recall 0.97 0.61 0.59
F-measure 0.96 0.73 0.66

Table 4: Comparison between average running times and average
memory usage of different pattern detection methods.

MM Det RNN
Average running time (in ms) 0.6 2.1 24.8
Average memory usage (in MB) 69 62 384

10. DISCUSSION AND CONCLUSION

In this paper, we have presented an algorithm capable of identi-
fying the presence of predefined patterns in monophonic music in
real-time. We employ a dynamic window to allow a musician to
double notes, or insert extra notes to a pattern. The notes are rep-
resented using the four attributes: pitch, amplitude, pitch-bend,
and duration. The SSIM is calculated independently for each at-
tribute pair of the pattern and the interpolated sequence. Finally, a
weighted summation is performed to obtain the final metric MM.

The individual SSIM calculation allows for each note attribute
pair to contribute independently to the final metric. We have as-
signed weights for each SSIM measure based on their relative im-
portance to the definition of a pattern. The proposed system was
capable of identifying approximately 95% of patterns in the com-
bined dataset.

The algorithm was able to successfully detect approximately
96% of the patterns in the Human dataset. This dataset was
recorded by human performers, and it contains many subtle vari-
ations that cannot be synthetically achieved. Due to the dynamic
window, the algorithm was able to detect instances where extra
notes were added to pattern repetitions.

The proposed method was able to successfully identify the oc-
currence of approximately 70% of the patterns in the JKUPDD
dataset. The JKUPDD dataset contains repetitions of patterns,
transpositions, as well as variations of patterns.

There are many instances where repetitions of patterns con-
tain doubled notes as well as extra notes and pauses. The pro-
posed method was able to identify such patterns due to its usage
of the dynamic window. However, the algorithm failed to iden-
tify pattern repetitions which had notes removed. The JKUPD
dataset also contains pattern repetitions whose durations are highly
altered. These patterns generated a lower MM than the defined
threshold and were note detected.

The synthetic dataset had a 100% detection rate, as variations
such as extra notes and pauses are absent. Although we introduced
deviations for note attributes in the dataset, we did not introduce
any pauses, doubled notes, or changes in pitch to the synthetic
dataset to accurately represent music that may be programmed or
computer generated. The proposed system was able to identify
all occurrences of patterns and their transpositions in the synthetic
dataset.

It is evident from Table 2 that the distribution ratio between
patterns and tracks is low when compared with that between non-
patterns and tracks. These figures show that non-pattern sequences
occupy a majority of the dataset, much like a real world perfor-
mance.

Table 3 shows the performance for each method for the global
dataset as well as for each individual datasets. The proposed sys-
tem showed a better accuracy when compared with Det and RNN
in all fronts as RNN and Det were unable to detect transposed ver-
sions of patterns. It is possible to configure Det to identify trans-
posed patterns by utilizing the pitch differences instead of the ab-
solute pitch. However, we aim to develop a system that is able to
identify the degree of match between a sequence and a pattern, and
Det is unable to accomplish this due to its nature. RNN showed
a good percentage of detections, but a relatively high number of
false positive detections was also present. This, coupled with the
fact that an extremely large dataset is required to adequately train
a machine learning model, as well as the high training time, are
drawbacks to any machine learning based model in this context.
Such limitations inhibit these systems from a real-world, real-time
implementation.

This research intends to improve several limitations that our
previous study encountered [8]. The proposed algorithm is able to
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detect patterns and establish a degree of match between a sequence
and a pattern while having a better accuracy and lower computa-
tional cost over our previous work. The average computational
time is well within the 10 millisecond limit for accepted latency
in real-time digital musical instruments [7]. The proposed system
also shows advantages as there is minimal set up when compared
to Neural Network-based methods which usually require a consid-
erable time and data for training.

However, the proposed method contains several limitations
that we wish to overcome to allow more artistic freedom to a mu-
sician. We hope to further increase the accuracy as well as reduce
the number of false detections. The current version of the algo-
rithm requires an input from the user to set the threshold value for
each composition. We hope to improve the system to dynamically
adjust its weights, as well as the threshold values for an improved
and completely automated detection of patterns.

For future work, we plan to create a database of patterns that is
more suited to evaluate pattern recognition tasks by interviewing
different musicians from various musical and ethnic backgrounds,
influences, playing styles, and age groups. As the playing styles
and subtle variations will be unique to each individual musician,
this dataset will be able to accurately represent most variations we
might encounter in a real life performance.

We also plan to implement an intelligent instrument capable of
detecting predefined patterns in real-time, where the proposed al-
gorithm will run on an embedded system working in tandem with
a MIDI keyboard controller. Upon identifying a successful match,
a control message will be sent to the predefined peripherals. The
MIDI data will then be passed through to other plugins or synthe-
sizers to produce sound.
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