
PhD Thesis Dissertation

International Doctorate School in Information and

Communication Technologies

FBK-IRST - Bruno Kessler Foundation

DIT - University of Trento

Guaranteeing Communication Quality in Real

World WSN Deployments

Matteo Ceriotti

Advisor:

Dr. Amy L. Murphy

Bruno Kessler Foundation (FBK-IRST)

May 25, 2011





Für Uns





She had never before seen a rabbit with either a waistcoat-pocket,

or a watch to take out of it, and burning with curiosity,

she ran across the field after it

Lewis Carroll





The following document, written under the supervision of Dr. Amy L. Murphy, was

reviewed by:

Prof. Prabal Dutta University of Michigan, USA

Prof. Koen Langendoen Delft University of Technology, The Netherlands

Prof. Leo Selavo University of Latvia (Riga), Latvia





Abstract

Networks of smart interconnected objects have allowed the integration of the artificial world

into the physical one. The interaction over a wireless medium is simultaneously the technology

enabler and the primary hindering factor. The complexity and variability of the behavior of

low power wireless communication is one of the challenges making the design and deployment

of a system based on this technology a unique and demanding experience. In this thesis, we

describe the deployment of two operational systems for structural health monitoring and adap-

tive lighting, undertaken by our research group. Our major contribution, among others, covers

the definition and implementation of the system services enabling the monitoring infrastructure

to guarantee the required quality. The resulting unique design and reliability provide concrete

support to the vision of wireless sensor networks as dependable monitoring infrastructure.

Despite the success in meeting the user needs, the simple yet effective solutions exploited in

the aforementioned deployments make apparent the limitations of the widely used approaches

to coordinate access to the communication medium. This thesis also argues that the currently

employed solutions at the MAC layer are insufficient to provide guarantees to the resource user.

Therefore, we introduce Reins-MAC, a Time-Division Multiple-Access (TDMA) communica-

tion scheduler that coordinates access to the medium in a fully decentralized fashion. Limited

flexibility, scalability, robustness, as well as increased overhead and complexity are commonly

recognized shortcomings of TDMA approaches. Reins-MAC overcomes these limitations by

adapting the scheduling to match local availability and natural connectivity variations. More-

over, each node is empowered with full control over its own communication resources.

The ability to anarchically apply changes to the communication schedule allows the steering

of the resource allocation towards individual needs, dictated by the higher layers in the network

stack. The resulting quality and anarchy in accessing the communication resource affect the

design and implementation of WSNs, opening new horizons where the application regains control

of the primary resource: communication.

Keywords: Wireless Sensor Networks, Low-power Wireless Communications, Network Ar-

chitecture and Design, Network Protocols, TDMA





Contents

I Introduction 1

1 Introduction 3

II Deploying Systems 7

2 Monitoring Heritage Buildings 9

2.1 Scenario, Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Sampling and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Tasking and Data Dissemination . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 TeenyLime: Deployment-driven Enhancements . . . . . . . . . . . . . . . 23

2.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Beneficial Impact of Middleware . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Adaptive Lighting in Road Tunnels 33

3.1 Scenario, Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Problem and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Peculiarities of Tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 WSN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.2 Calibration of the Light Sensors . . . . . . . . . . . . . . . . . . . . . . . 44



3.6.3 Software and Communication Protocols . . . . . . . . . . . . . . . . . . . 46

3.7 Testbed Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.1 Closing the Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.2 WSN Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Beyond Adaptive Lighting: Fire Detection . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III Bringing Quality into Communication 61

4 Bringing Anarchy to TDMA in the Versatile, Fully-Distributed Reins-MAC 63

4.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Why (Another) TDMA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Why Consider TDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Why Not to Consider TDMA . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Why Consider Reins-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Core Concept: Pulse-Coupled Oscillators . . . . . . . . . . . . . . . . . . 70

4.3.2 PCOs in Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Extending PCOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Time and Space Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Extended PCOs in Wireless Networks . . . . . . . . . . . . . . . . . . . . 73

4.5 Towards Reins-MAC: PCOs Exploited . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 TDMA with adaptable slot size . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Polite TDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Bringing Reins-MAC into Real World . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.1 Intermediate Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.2 Asymmetric Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.3 Link Variability over Time . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Reins-MAC: QoS Served with a Side of Anarchy . . . . . . . . . . . . . . . . . . 79

4.7.1 Local latency control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.2 Bandwidth reservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8.2 Evaluating Core Reins-MAC Properties . . . . . . . . . . . . . . . . . . 82

4.8.3 Reins-MAC support for QoS . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Is Reins-MAC really different? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



4.10 Identifying the Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.11 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Designing System Services with Communication Guarantees in Hand 97

5.1 Medium Access Control: Enabling Communication . . . . . . . . . . . . . . . . . 97

5.1.1 Low Power Listening: Random Access to Communication . . . . . . . . . 98

5.1.2 Reins-MAC: Flexible Communication Scheduling with Guarantees . . . 99

5.2 Different Usage of Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Impact on Network Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Network Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 Link Quality Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.3 Hop-by-Hop Reliable Data Delivery . . . . . . . . . . . . . . . . . . . . . 102

5.3.4 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.5 Latency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.6 Reliable Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.7 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Impact on Communication Abstractions . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Introduction to TeenyLime . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2 Neighborhood View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 Remote Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

IV Observing Communication 111

6 Motes in the Jungle: Lessons Learned from a Short-term WSN Deployment

in the Ecuador Cloud Forest 113

6.1 Scenario, Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Deployment Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Preliminary Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Tests with Stationary Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.3 Tests with Stationary and Mobile Nodes . . . . . . . . . . . . . . . . . . . 119

6.4 A Mote’s Life In the Jungle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.1 Preliminary Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.2 Tests with Stationary Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.3 Tests with Stationary and Mobile Nodes . . . . . . . . . . . . . . . . . . . 122

6.4.4 An Evaluation of Mobile Nodes as Connectivity Probes . . . . . . . . . . 124

6.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

iii



6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

V Conclusion 129

7 Conclusion 131

VI Bibliography 133

Bibliography 135

VII Publications 145

iv



List of Figures

2.1 Torre Aquila. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Custom WSN hardware for Torre Aquila. . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Software architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Tuple space sharing in TeenyLime. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Node types and their typical configuration. . . . . . . . . . . . . . . . . . . . . . 17

2.6 Handing sampled data over for routing. . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Hop-by-hop recovery example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Lost tuples and tree refresh operations. . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Time synchronization using capability tuples. . . . . . . . . . . . . . . . . . . . . 21

2.10 Deployment map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 Graphical user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 The acceleration signal from #145. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 First (a) and second (b) vibrational modes. . . . . . . . . . . . . . . . . . . . . . 27

2.14 Strain measurements from FOS #154. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Temperature on three floors of Torre Aquila. . . . . . . . . . . . . . . . . . . . . 28

2.16 Cumulative loss rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.17 Distance in hops from the sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.18 Time spent with a given parent node. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.19 Compression ratios with different input sets. . . . . . . . . . . . . . . . . . . . . . 30

2.20 Battery voltage readings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.21 Lines of code for our core components. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Conventional vs. adaptive control. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Light levels inside the tunnel over two days. . . . . . . . . . . . . . . . . . . . . . 40

3.3 Functional components of the architecture. . . . . . . . . . . . . . . . . . . . . . 41

3.4 A deployment-ready WSN node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Setup for the calibration of light sensors. . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Software architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 The equipment deployed in our testbed tunnel. . . . . . . . . . . . . . . . . . . . 48

3.8 Evaluating the step response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



3.9 Performance of control in the testbed tunnel. . . . . . . . . . . . . . . . . . . . . 50

3.10 Temperature and battery levels on sample nodes over a 7-month period. . . . . . 52

3.11 Total samples collected and loss rate over 1.5 months. The impact of the MAC

sleep interval was also tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Impact of delays on the control algorithm. Vertical arrows denote arrival of a

sample at the PLC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 CDF for the sample reporting jitter. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.14 Forced gateway failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.15 Average routing operations (send and recovery) per message forwarded per node. 55

3.16 Percentage of time spent by each node at a given distance (hop count) from a sink. 56

3.17 Battery discharge vs. discharge current. . . . . . . . . . . . . . . . . . . . . . . . 57

3.18 Expected lifetime, beyond one year. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.19 Experiments in a sparse setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.20 Detecting fire through infrared light sensing. . . . . . . . . . . . . . . . . . . . . . 60

4.1 Variability of the 1-hop and 2-hop neighborhood for multiple network sizes and

densities. Distance indicates the average distance between nodes (smaller dis-

tances imply higher density). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Increases in allocated bandwidth with Reins-MAC with respect to two idealized

TDMA schemes: MEAN and MAX. (Note the different y-axis scales of MEAN and MAX.) 69

4.3 Pulsing Oscillators scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Coupling functions applied at node i: (a) no coupling function (the interval be-

tween pulses equals the oscillation period); (b) excitatory coupling (reduced in-

terval); (c) inhibitory coupling (increased interval). . . . . . . . . . . . . . . . . . 71

4.5 Core Reins-MAC functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Reins-MAC extensions to support QoS. . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Average 1-hop neighborhood in the simulation settings. . . . . . . . . . . . . . . 81

4.8 Time to establish 95% stable slots with a variation of the beginning of the slot

less than 5‰ of the frame length. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Time to establish 95% stable slots with a variation in slot size less than 5‰ of

the frame length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Network duty cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11 Duty cycle wasted by receiver nodes while waiting for the actual pulse. . . . . . . 85

4.12 Stabilization of the system after node addition. . . . . . . . . . . . . . . . . . . . 86

4.13 Gains achieved by jumping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 Average time to obtain the requested slot size. . . . . . . . . . . . . . . . . . . . 88

4.15 Map of the testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.16 Results from experiments run in the testbed with stable networks. . . . . . . . . 89

vi



5.1 Low Power Listening functionalities. . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 In the jungle with mobile nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Deployment of stationary nodes; each color corresponds to about 1 m difference. 117

6.4 Average and standard deviation of the results from stationary tests with power

−1 dBm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 PDR over time with power −1 dBm from stationary tests. . . . . . . . . . . . . . 122

6.6 Results over time with power −8 dBm from stationary tests. . . . . . . . . . . . 122

6.7 Node 0 approaching node 2, attached to a tree, from different directions. . . . . . 122

6.8 Effect of tree, body, and ground on communication. The line in the RSSI plots

shows the delta in percent w.r.t. the line-of-sight shown in (a). . . . . . . . . . . 123

6.9 Aggregated results over all 11 mobile experiments. In (d) and (e), the difference

in PDR for the links longer than 38 m is outside of the chart range. . . . . . . . 125

6.10 Number of messages sent per hour along links of a given distance by stationary

and mobile tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii





List of Tables

3.1 Impact of cover and dirt on light readings. . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Results of testbed experiments with node addition, schedule reordering and band-

width reservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Results from the preliminary tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 120





Part I

Introduction





Chapter 1

Introduction

The last decade has seen the progressive interconnection of the physical and the artificial world

through the development of intelligent sensing and actuating computing infrastructures. The

most prominent and challenging example is networks made by potentially hundreds of tiny

devices with scarce resources, also called Wireless Sensor Networks (WSNs). Each node in

the network has limited energy, memory, and computational capabilities and interacts with the

others using wireless communication. The network as a whole overcomes the deficiency of the

individuals by sharing resources. A myriad of traditional applications have already benefited

from this technology, as in the case of environmental monitoring, while new ones, such as wildlife

monitoring, have been made possible.

Despite the vision of WSNs, the successful design and deployment of a monitoring infras-

tructure based on such a technology still present open challenges, e.g., programming effort and

reliability of data gathering services. In Torre Aquila, our group successfully deployed a system

for structural health monitoring, in which we acquired expertise in the field. In our second

deployment we further demonstrated the dependability of the technology by integrating it in a

closed loop to adaptively control lighting in road tunnels. Our work provided further support

to the vision of the technology as capable to concretely impact everyday life.

The access to the wireless communication medium enables the resource sharing and ulti-

mately the provisioning of system services. The experience gathered in the aforementioned de-

ployments provided the groundwork to identify both the limitations of common medium access

control techniques and the need for new communication scheduling solutions. The highlighted

challenges and limitations lead to the definition of Reins-MAC, a versatile fully-distributed

TDMA communication scheduler, the core contribution discussed in this thesis. Positioned low

in the communication stack, Reins-MAC provides the foundation for higher level abstractions

to rein in the protocol anarchy, providing control of communication quality to the application.

In the remainder of this chapter, we underline the contributions of our work.



4

Deploying Systems

The untethered monitoring infrastructure provided by WSNs is an attractive solution in several

domains. Ease of deployment, limited visual impact, and flexible sensing configuration are the

key assets interesting structural engineers in monitoring heritage buildings. We designed and

installed one such a system in a medieval tower, Torre Aquila in Trento (Italy). The building was

instrumented with an untethered monitoring infrastructure composed of heterogeneous sensors,

i.e. vibration, deformation and temperature. The contributions of the work, undertaken by our

group, range from the hardware to the graphical front-end. Remarkably, we:

• designed a data collection solution able to efficiently handle heterogeneous classes of traffic,

with both high and low data rates;

• based the design and development of the system on a tuple space abstraction, TeenyLime,

reducing the programmer effort.

The system has been working for more than two years and the data reported has been helpful

in assessing the tower’s actual stability. The invaluable in-the-field experience created the base

for subsequent deployments.

Reduced installation and maintenance costs, and ease of incorporation in operational systems

promote the integration of WSNs with conventional industrial-strength equipment. In the second

deployment in which our group was involved, the WSN was used as part of a closed control loop

in charge of adjusting the level of the lamps inside operational road tunnels based on current

external and internal conditions. In this setting, we:

• demonstrated the feasibility and effectiveness of WSNs in combination with standard tun-

nel equipment;

• investigated to what extent mainstream solutions can be successfully reused, further taking

advantage of the software decoupling fostered by TeenyLime to use components deployed

in Torre Aquila.

The deployment of networks in a small test site with a low traffic volume as well as in a longer

and more trafficked road tunnel demonstrated the ability of current WSN technology to meet

the final application requirements.

Bringing Quality into Communication

Building reliable and predictable systems based on WSNs is difficult. In addition to the inher-

ent unreliability and variability of the communication links, the techniques employed to share

the access to the wireless medium have a deep impact on the services making use of commu-

nication. Protocols coordinating access to the communication medium in a random manner



5

are easy to implement and very flexible, avoiding the costs of scheduling communication. This

category of MAC algorithms is the de facto standard for WSNs and is what we employed in the

aforementioned deployments. Despite the success of the approach, we experienced ourselves the

impossibility to effectively implement quality differentiation, and both traffic flow and latency

control. In contrast, TDMA protocols offer guarantees by enforcing a rigid slot-based commu-

nication scheduling. One commonly recognized limitation of these approaches is their inability

to adapt to the dynamic behavior typically seen in networks of low power cooperating objects.

Further, their inherent complexity and required compliance to a rigid discipline foster the belief

that dynamic changes to the communication schedule are infeasible. In this thesis, we prove the

opposite.

Our fully-distributed protocol, Reins-MAC, clearly demonstrates that a dynamically ad-

justable, flexible solution is feasible. In contrast to existing approaches, in Reins-MAC we:

• defined a distributed online scheduling mechanism that forms and reserves slots of variable

size, tailoring medium access to network conditions that vary in time and space;

• provided the foundation for higher level abstractions to express communication quality

needs and steer the resource allocation.

Reins-MAC rejects the common TDMA assumption that a single, network-wide slot size is

required. To achieve this, each individual node controls the beginning of its own slot by placing

it in the middle between the two surrounding slots owned by the neighbors. In this way, it adapts

the slot size at each node to match local availability, achieving tremendous gains in bandwidth

utilization. The approach that accomplishes this simultaneously allows Reins-MAC to adapt

to the natural connectivity variations present in WSNs.

Further, we use a simple mechanism to identify a network-wide shared slot dedicated to

coordination, in which each single node can submit requests for changes. Therefore, the flexible

slot sizes of Reins-MAC can be explicitly tuned to support dynamic application requirements,

providing guaranteed communication. Both through simulations and experiments in a real

testbed, we demonstrate the effectiveness and feasibility of the proposed solution. The strengths

of the approach arise from its algorithmic simplicity, grounded in the theoretical literature on

pulse-coupled oscillators (a.k.a. firefly pulsing), and full decentralization, where each node is

empowered to make changes to the communication schedule autonomously. The higher layers,

thanks to the application knowledge, are in charge of reining in such protocol anarchy.

The TDMA nature of Reins-MAC is profoundly different from the CSMA one of the MAC

protocol we employed in our deployments. For this reason, the implementation of the system

services on top of Reins-MAC must be rethought. We investigated such an impact by re-

vising the basic building blocks of the network protocols employed in our deployments. As a

result, Reins-MAC:



6

• promoted a radically different design, as a consequence of the deterministic and flexible

resource allocation scheme provided;

• extended its impact on both the definition of higher level abstractions and the way pro-

grammers use them.

In addition to typical expects deriving from the difference between scheduled and random com-

munication access mechanisms, Reins-MAC has the distinctive ability to allocate different re-

sources to each individual node in the network. This feature opens new horizon to the definition

of new network solutions supporting Quality of Service.

Observing Communication

The effectiveness of any introduced networking solution relies on the characteristics of the under-

lying physical layer. The influence of the environment both on the actual communication among

devices and ultimately on the system services makes building a system a unique and demanding

experience. Facing these limitations requires direct expertise and proper supporting tool. The

thesis is concluded by a description of a preliminary deployment of a WSN in a primary cloud

forest, carried out by biologists in collaboration with our group. In this context, we:

• investigated connectivity, in terms of reliability, stability, and link asymmetries in an

unfamiliar scenario;

• studied the combined usage of mobile and stationary nodes as an exploration tool to

characterize communication in unknown environments.

This work demonstrates how each WSN installation is a peculiar experience where the environ-

ment plays a major role. The installation of a network is destined to manifest problems that

can be now solved solely with in-field expertise. To make the vision of WSNs concrete, new

deployment and management solutions must be defined to make the technology accessible to

scientists.

Thesis Organization

The thesis is organized following the structure presented in this introduction. Our contributions

in developing systems to monitor heritage buildings and control lighting in road tunnels are

described respectively in Chapters 2 and 3. The discussion leads to the introduction of Reins-

MAC in Chapter 4, followed in 5 by its influence on the design of the system services we

previously employed in our deployments. Our concluding experience with a deployment in

a tropical cloud forest is discussed in Chapter 6. Finally, Chapter 7 closes the work with a

discussion of the possible research directions uncovered with this thesis.



Part II

Deploying Systems





Chapter 2

Monitoring Heritage Buildings

WSNs have the clear potential to empower the end user with new and previously impossible ways

of gathering data from the real world. However, the characteristics of the low-power wireless

communication at the core of the technology depend on the environment in which employed [74,

57]. The scarcity of resources, e.g., individual energy, memory, and communication, requires

simple yet effective solutions [69]. Moreover, the limited knowledge in building operational

systems makes the creation of a fully functional solution satisfying the final user needs a learning

and failure prone experience [40, 1].

In this chapter, we describe the first successful experience of our group with real world

deployments of WSNs. We demonstrated that building a reliable monitoring infrastructure

based on WSN technology is indeed possible and useful to the final user.1

2.1 Scenario, Motivation and Contribution

Heritage buildings are a fundamental constituent of a country’s historical memory. Their preser-

vation is thus a major concern. Planning the maintenance of such structures requires a careful

assessment of their structural integrity, along with a precise and quantitative understanding of

the factors that may affect them. The latter is traditionally achieved through sensors and data

loggers monitoring quantities such as vibrations, temperature, and humidity. However, these

devices are typically cumbersome to deploy, as they require a nearby power outlet or extensive

wiring. Therefore, their number is limited, and so is the monitoring: this is especially true in

buildings containing works of art, due to the visual impact and physical encumbrance of the

instrumentation.

1The content of this chapter is a joint work with Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Ştefan

Gunǎ, Michele Corrà, Matteo Pozzi, Daniele Zonta, and Paolo Zanon, published in “Monitoring Heritage Buildings

with Wireless Sensor Networks: The Torre Aquila Deployment”, 8th ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN’09, SPOTS track), San Francisco (CA, USA), April 2009 (Best

Paper Award) [9].



10

(a) External view.

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;<*

-=4'8%((1>*./55%''#$#*+%(%&#1&49%"(#*'#*%77%&1*'18&4((/((1*?/4"+1*+/&4"(%*-=@((15%"(1*%*#-*8&#91*
A1$%5%"(1*#-*B4'(%--1*$%""%*/(#-#CC4(1*519%*54'%&94>*

*

** *
*

** *
!! !

"#$%!&%'(!)#*+,!-.#!/.0#1!234.5.!605!.!7,4-1!89.05!.!:;-!<((=!

*
A%-*A1$%5%"(1*(/((4$#4*-%*8#((/&%*$%""%&1*'1((181'(%*4*+/%*&%'(4/&#D*#-*8&#91*:/*4((/4(1*(&4*,-#*

4""#*E%"(#*%*0&%"(4*'1((1*-4*+#&%C#1"%*+#*F#/'%88%*F%&1-4G*#-*'%51"+1G*8&191''1*%*:#"4"C#4(1*+4-2
-4*31"+4C#1"%*H&51-%*E4&C#G*:/*%::%((/4(1*"%-*;IJK*+4*L%1"%((1*0#"(1&#>*

M>N>O! >?5.49.?5#!-#!4.053;4,!
*
P4-*'%51-1*'51&'1*4#*,#1&"#*"1'(&#*+#$%&'#*'1"1*,-#*#"(%&$%"(#*+#*$4&#4*"4(/&4*5Q%*Q4""1*#"(%&%''4(1*
-4*'(&/((/&4*#"*%'49%G*%*+#*%''#*'#*8/R*(&1$4&%*/"=498#4*+15/9%"(4C#1"%*8&%''1*-=4&5Q#$#1*'(1&#51*
+%--4*.18&#"(%"+%"C4*8%&*#*7%"#*4&5Q#(%((1"#5#*SMTGSOTGSNTGSUTGS<T>*

!

*
!

"#$%!&%'@!A#3?,!-#!#?5.49.?5,!-.+!'B'(1!.054355,!4.+3C#,?.!/%!:3?-,?D!<(=!

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;<*

-=4'8%((1>*./55%''#$#*+%(%&#1&49%"(#*'#*%77%&1*'18&4((/((1*?/4"+1*+/&4"(%*-=@((15%"(1*%*#-*8&#91*
A1$%5%"(1*#-*B4'(%--1*$%""%*/(#-#CC4(1*519%*54'%&94>*

*

** *
*

** *
!! !

"#$%!&%'(!)#*+,!-.#!/.0#1!234.5.!605!.!7,4-1!89.05!.!:;-!<((=!

*
A%-*A1$%5%"(1*(/((4$#4*-%*8#((/&%*$%""%&1*'1((181'(%*4*+/%*&%'(4/&#D*#-*8&#91*:/*4((/4(1*(&4*,-#*

4""#*E%"(#*%*0&%"(4*'1((1*-4*+#&%C#1"%*+#*F#/'%88%*F%&1-4G*#-*'%51"+1G*8&191''1*%*:#"4"C#4(1*+4-2
-4*31"+4C#1"%*H&51-%*E4&C#G*:/*%::%((/4(1*"%-*;IJK*+4*L%1"%((1*0#"(1&#>*

M>N>O! >?5.49.?5#!-#!4.053;4,!
*
P4-*'%51-1*'51&'1*4#*,#1&"#*"1'(&#*+#$%&'#*'1"1*,-#*#"(%&$%"(#*+#*$4&#4*"4(/&4*5Q%*Q4""1*#"(%&%''4(1*
-4*'(&/((/&4*#"*%'49%G*%*+#*%''#*'#*8/R*(&1$4&%*/"=498#4*+15/9%"(4C#1"%*8&%''1*-=4&5Q#$#1*'(1&#51*
+%--4*.18&#"(%"+%"C4*8%&*#*7%"#*4&5Q#(%((1"#5#*SMTGSOTGSNTGSUTGS<T>*

!

*
!

"#$%!&%'@!A#3?,!-#!#?5.49.?5,!-.+!'B'(1!.054355,!4.+3C#,?.!/%!:3?-,?D!<(=!

(b) Inside views.

Figure 2.1: Torre Aquila.

In this context, wireless sensor networks (WSNs) enable radically different solutions over-

coming the above limitations. Small, self-powered nodes relying on radio communication reduce

the invasiveness of the system, allow the deployment of more devices, and enable experimenting

with different configurations of the sensing infrastructure.

Torre Aquila. The above requirements were evident in Torre Aquila, where we conducted the

study reported in this chapter. Located in the city of Trento (Italy) close to the Buonconsiglio

Castle, it is a 31 meter-tall medieval tower whose 2nd floor contains “Il ciclo dei mesi” (“The

Cycle of the Months”), a series of internationally-renowned frescoes that represent a unique

example of non-religious medieval painting in Europe, attracting thousands of visitors every

year. The tower and some of the frescoes are shown in Figure 2.1.

The preservation of the frescoes is the main source of concern for the local conservation

board. In ancient times Torre Aquila represented the main entrance to the city from the East:

with the expansion of the city in the second half of the 19th century, most of the eastern city

wall was demolished and the entrance to the city was moved a few hundred meters south of

the original gate. Today this solution is inadequate for the increasing vehicular traffic. The

solution to this problem, pursued by the Municipality of Trento, is to bypass the obstacle of the

Castle compound with a road tunnel. The construction of the tunnel has been long delayed due

to concern by the conservation board that construction work might cause unwanted settlement

of the tower foundations. The timely estimation of the potential risk to the frescoes requires

real-time monitoring and appropriate response models to reproduce the structural behavior of

the tower.

Peculiarity of the WSN deployment. The use of WSN for monitoring the integrity of civil

structures is not new, as we discuss in Section 2.2. Nonetheless, Torre Aquila poses peculiar



11

challenges that are not usually found in the deployments reported in the literature:

• Heterogeneity. The system contains many kinds of sensors, whose operation is quite dif-

ferent. Deformation and environmental parameters can be sampled at a low rate, but

vibration must be monitored at a high rate, which consequently demands efficient report-

ing of the resulting high volume of data. Both modalities must gracefully co-exist in the

same sensing infrastructure.

• Temporal span. The time constants of the phenomena of interest require monitoring to

span months or even years. In contrast, the systems found in the literature typically

operate for at most a few weeks.

• Online tasking. The ability to change the behavior of the sensing infrastructure based

on external input can be very useful. For instance, it is interesting to monitor vibrations

when a visit by a large group of people is expected, or when strong winds are forecast.

Contribution. In this chapter, we present the hardware/software solution we developed to

efficiently address the above requirements for monitoring Torre Aquila.

The hardware core is based on TMote-like devices, customized as illustrated in Section 2.3.

Deformation measurements are acquired by fiber optic sensors stretching the length of the tower.

These sensors, developed especially for our deployment, required custom integration with the

motes used to report the measurements. Moreover, high-rate sampling and reporting of vibration

data demanded buffering into a short-term storage. The flash memory usually found in motes is

ill-suited for this task, due to its high latency, energy consumption, and limited number of writes.

Hence, we integrated on the mote a 32 Kbyte FRAM (Ferromagnetic RAM) chip, overcoming

all of these problems. To the best of our knowledge, we are the first to use FRAMs in a WSN

deployment.

Unlike the hardware, our software layer is not based on what can be considered a “standard”

core. Instead of developing directly on top of the operating system, we chose to empower our

developers with the higher level of abstraction provided by a WSN middleware, TeenyLime [16].

We are unaware of studies reporting the use of a WSN middleware in the context of a real-world,

long-running deployment. Moreover, as illustrated in Section 2.4, our use of middleware is not

limited to the application logic: the lower-level services necessary to the system operation (i.e.,

data collection, data dissemination, and time synchronization) are all implemented directly on

top of TeenyLime.

Deployment details such as the placement of nodes and sensors are reported in Section 2.5.

In the same section, we show and interpret data gathered during 4 months of operation, as an

example of the insights gained about the tower status. After looking at our implementation

from the end-user’s perspective, Section 2.6 analyzes it from a system one. We evaluate the

system performance w.r.t. data delivery and lifetime—often considered key metrics in WSN

deployments—showing that our implementation achieves a data delivery close to 100% while



12

working at very low power. Moreover, we discuss the benefits brought to development by the

use of our middleware, in terms of reduction of programming effort and code reuse.

2.2 Related Work

In [36], the authors note that WSN deployments to date can be divided in two categories:

environmental monitoring applications (e.g., [50]), designed with low-power operation allowing

them to run for long periods, and high-rate, high-fidelity ones running only for a relatively short

time. The deployment in Torre Aquila inherits challenges from both classes, as we must deal

with high-rate data and yet the system is required to operate for long periods.

In general, although WSNs have been used for monitoring civil structures [36, 11, 47, 27,

85, 12], the combination of requirements we must address is unique. For instance, only a

handful of the systems surveyed in [47] can be tasked remotely, and in these cases (e.g., [12])

the implementation lacks support for low-power operations, hampering their use in long-running

deployments. Similarly, most deployments deal only with monitoring vibrations [47], without

the increased complexity due to heterogeneous sensors, as in Torre Aquila.

In some cases, the hardware is designed bottom-up for a given deployment. For instance,

the work in [36] uses directional antennas, motivated by the peculiar shape of the target area.

We cannot afford the luxury of fixing the network topology, as structural engineers are likely to

relocate the nodes over time. Moreover, the nodes used by [36] cost ∼$600 each, which in our

case would make the WSN solution not cost-effective compared to a traditional one. Instead,

one of our customized nodes costs ∼$120.

On the software side, real-world deployments mostly feature ad-hoc implementations [36, 47,

85], which make very difficult extending or adapting their functionality to different scenarios.

Moreover, where higher-level approaches have been proposed [27, 12] the deployments targeted

short-term use. Our middleware-based one sustains good performance over a long time span,

and yet fosters component reuse in other scenarios, as we discuss in Section 2.6 and show in

practice in Chapter 3.

In summary, our goals set us apart from the state-of-the-art. We are neither confirming with

a proof-of-concept “the eventual ability to cover a large civil structure with low-cost wireless

sensors” [11] nor we are validating already known models using WSNs instead of conventional

systems [36]. Our requirements, set by the structural engineers on our team, are instead to

design, implement, and deploy an operational system that, by delivering good performance over

a long period, helps them to assess the status of Torre Aquila.



13

FRAM 
chip

(a) 3MATE! node.

Gumstix

WiFi 
antenna

3MATE!

(b) Gumstix device as sink.

Optic 
cable

Sensor
3MATE!

(c) Fiber optic sensor.

3MATE!

Sensor

(d) Acceleration node and calibration.

Figure 2.2: Custom WSN hardware for Torre Aquila.

2.3 Hardware

Our requirements demand customized hardware. We selected as the core platform 3MATE!

nodes, developed by TRETEC (www.3tec.it), an easily extensible WSN node similar to the

TMote Sky [66], shown in Figure 2.2(a). The base 3MATE! is equipped with a TI MSP430

www.3tec.it


14

CPU, a ChipCon 2420 radio, and an inverted-F microstrip antenna. Differently from TMotes,

the USB interface can be detached if not needed, reducing power consumption once deployed,

and the board layout is designed to easily accommodate customized extension boards. Co-

location with the manufacturer helped us to accommodate rapidly the needs of our deployment.

The nodes have been customized differently according to their sensing goals, as described next.

Environmental nodes. We developed a 3MATE! extension board for environmental moni-

toring, equipped with simple analog temperature, relative humidity, and light sensors. In the

deployment reported in Section 2.5, however, temperature was the only measure required by

the end user. Sensitivity to temperature ranges from −40◦C to 125◦C with a typical accuracy

of 0.5◦C. This is sufficient to study phenomena such as temperature gradients across different

floors.

Deformation nodes. To study the tower deformation, we required a minimally-invasive so-

lution with very high precision. We developed a dedicated Fiber Optic Sensor (FOS) and the

corresponding 3MATE! extension board, both shown in Figure 2.2(c). The sensor and its mi-

crocontroller-based control electronics, developed by TRETEC and University of Trento, work

by differentially measuring the time taken for a laser pulse to travel through a pair of fiber

optic cables wrapped around the monitored object. As the latter deforms, the cable stretches,

modifying the travel time of the pulse. This solution is immune to electromagnetic noise and

can be used to measure deformation on different physical scales, e.g., from individual walls to

entire buildings.

The FOS is composed of a read-out unit with a synchronous laser pulser and a high-resolution

optical receiver, and the optical path formed by fiber optic cables and splitters. Differently from

all other sensors in Torre Aquila, the characteristics of FOS electronics require external power to

ensure a stable measurement. The expansion board contains also a temperature sensor similar

to the ones above, useful to correlate deformation with temperature in the same location.

Acceleration nodes. To measure vibration we used an analog, ultra-compact, tri-axial ac-

celeration MEMS sensor (ST LIS3L02AL), integrated on a custom 3MATE! board connected

through an extension cable that allows the sensor to be placed outside the node package, as

illustrated in Figure 2.2(d). The sensor features a full range of ±2 g and is capable of measuring

accelerations over a bandwidth of 1.5 KHz, with a resolution of 1 mg over 100 Hz bandwidth. We

computed calibration coefficients for each sensor with induced vibrations at different frequen-

cies and amplitudes using a shake table and piezoelectric accelerometers for seismic vibrations,

shown on the right of Figure 2.2(d).

High-volume data such as vibration pose severe demands on buffering space. Some deploy-

ments [36] use the flash chip on the mote as a temporary buffer. However, this is a viable

option only if the system operates for a limited time span, as the bound on the number of

write operations eventually results in corrupted data. Instead, we equipped the 3MATE! with

a FRAM chip, shown in Figure 2.2(a). Compared to flash memory, FRAM features lower power



15

TeenyLIME

Data 
Collection

Data 
Dissemination

TupleSpace TupleSpace

Sampling 
& Tasking
TupleSpace

Time 
Synchronization

TupleSpace

TinyOS

Figure 2.3: Software architecture.

consumption, virtually unlimited write-erase cycles, and faster write speed, enabling higher

sampling rates. In our experiments, the flash could sustain at most 500 Hz sampling, whereas

the FRAM allowed up to 1 KHz. Nonetheless, the storage area provided by FRAM is generally

smaller than flash. In our case this is not an issue, as we use our 32 Kbyte FRAM as a temporary

buffer, freed progressively as data is reported to the sink, described next.

Sink node. In Torre Aquila, the sensed data converge from all nodes to a sink where they are

collected and stored, requiring a computing device with enough storage space and processing

power. Moreover, this device must double as a gateway to interconnect with the front-end,

allowing remote users to interact with the system. Finally, the requirement to reduce invasiveness

holds also for the sink.

To address these needs, we chose a Gumstix [28] device, shown in Figure 2.2(b). Gumstixs

are easily customizable embedded PCs with a very small form factor. We equipped ours with

a board to use Secure Digital (SD) storage cards, a WiFi card to reach the external network,

and a USB board for connecting a 3MATE! to access the WSN. As shown in Figure 2.2(b),

the space required for this configuration is very small: it uses the same packaging of the WSN

nodes.

2.4 Software Design

The design of WSN software is often characterized by ad-hoc solutions built directly on top

of the operating system. The consequence is that systems become difficult to maintain and

reuse is hampered [69, 1]. In our deployment we took a different stand, and addressed since the

beginning the challenge of designing the software layer through higher-level abstractions that

simplify development and foster code reuse.

Architecture. Figure 2.3 shows the high-level architecture of our software layer. The various

macro-components interact exclusively through a shared memory space where data is read or

written as tuples, sequences of typed fields. The tuple space abstraction is provided by a

middleware called TeenyLime [16], concisely described next. Its constructs are used to implement

both application-level functionality (e.g., sensor sampling) and system-level mechanisms (e.g.,

routing and time synchronization), providing a unifying high level of abstraction throughout the

software stack.



16

The reliance on this shared tuple space yields a highly decoupled software configuration,

boosting code reuse both within and across deployments. For instance, the software deployed on

acceleration nodes differs from that of environmental nodes solely in the sampling functionality,

which inevitably depends on the quantity to sense. Moreover, it makes it easier to design

alternative deployments by removing or replacing components, without affecting the others.

TeenyLime in a nutshell. As shown in Figure 2.4, in TeenyLime each node hosts a tuple space

shared among 1-hop neighbors: a node perceives its tuple space as containing the tuples stored

locally plus those residing on its neighbors. Software components atop TeenyLime interact

locally or across nodes by reading/writing tuples from/to the shared tuple space. If needed,

however, the read/write operations can be scoped to access directly the local tuple space of a

neighbor. Read operations occur by requesting a match against a pattern: its fields express a

constraint on the field type or value in the tuples being considered for matching. For instance,

a pattern 〈”foo”, ?integer〉 matches the tuple 〈”foo”, 20〉 but not 〈”foo”, ”boo”〉. Moreover,

TeenyLime provides a form of data listener called a reaction, a code fragment whose execution

is automatically triggered upon the appearance of a matching tuple in the shared tuple space.

This provides a very powerful way to increase the decoupling among different functionality.

Other TeenyLime constructs are described in the following, whenever appropriate. TeenyLime

is implemented in nesC on top of TinyOS. Therefore, operations are asynchronous and their

result is signalled to the caller component through an event. A complete description of the

middleware, including API and implementation details can be found in [16].

We now describe the design of the main components in Figure 2.3. In every case, we first

highlight the requirements and challenges, and then report on the component design and imple-

mentation in TeenyLime.

Local Tuple 
Space 

Local Tuple
Space

Communication 
Link BA C

Physical 
Node

Local Tuple 
Space

Shared Tuple Space at node B 

Tuple 
Space 

Local Tuple
Space

BA C

Shared Tuple Space at node A 

Local Tuple 
Space

Local Tuple
Space

Figure 2.4: Tuple space sharing in TeenyLime.



17

Node type Operating parameters Typical value

Environmental Sampling period P 10 min

# of sampling sessions N infinite

Deformation # of samples averaged per session A 10

Sampling period P 10 min

# of sampling sessions N infinite

Acceleration Sampling frequency F 200 Hz

Sampling duration D 30 s

# of sampling sessions N infinite

Figure 2.5: Node types and their typical configuration.

2.4.1 Sampling and Data Collection

Requirements and challenges. The deployment in Torre Aquila is characterized by het-

erogeneous sensor nodes whose sampling requirements and modalities vary greatly, as seen in

Figure 2.5. This affects not only the local processing, but also the routing protocols employed

for data collection, where reliability guarantees also play a key role. Based on our scenario, we

identify two classes of traffic for data collection:

I. Bursty, high-rate data with strong reliability requirements, i.e., those coming from accel-

eration nodes. Large amounts of data are locally stored in a buffer whose elements are all

sent in a burst after the sampling session. In this case, the loss of samples can impair the

accuracy of the signal reconstruction, and therefore the analysis. Moreover, the volume

of data generated requires compression, to reduce the amount of data transmitted and

extend lifetime. This poses an additional reliability requirement, as it is impossible to

decompress the stream if some of its packets are missing.

II. Low-rate data with weak reliability requirements, i.e., those coming from environmental

and deformation nodes. Even if one sample is occasionally lost, a meaningful data analysis

can still be carried out.

Our system also supports best-effort delivery of system data (e.g., battery status) whose loss

is not critical. We could design a solution only for the most demanding class I, and use it for

all data collected. However, this would constitute a waste of resources. Therefore, we designed

a solution able to accommodate each of the above requirements efficiently.

Design and implementation. The sampling of environmental and deformation nodes is

straightforward. The only peculiarity of deformation is that a single sample is usually not

relevant, as values tend to fluctuate: thus, the data communicated to the sink is actually an

average of the last A samples.

Instead, acceleration nodes add significant complexity due to the high volume of data sam-

pled. Each of these nodes buffers the data of an entire sampling session on FRAM. The avail-

ability of the entire data set allows us to apply a Huffman [33] compression scheme to reduce



18

Sampling

read(<emptyMsgTuple>)

TeenyLIME 
Tuple Space

write(<msgTuple>)

Data 
Collection

write(<emptyMsgTuple>)

fill(<emptyMsgTuple>)

reactTo(<msgTuple>)

route(<msgTuple>)

<emptyMsgTuple>

Figure 2.6: Handing sampled data over for routing.

the amount of data transmitted. It is important to note that, unlike other compression schemes

mentioned in the literature (e.g., wavelets in Wisden[12]), Huffman is loss-less and therefore

preserves the semantic richness of the vibration data [48]. The effectiveness of compression,

however, greatly depends on the statistical properties of the data set. We observed that differ-

ent nodes and acceleration axes produce data with different properties, which can be exploited in

the Huffman scheme. Therefore, we developed a compilation tool-chain that, using as input the

(real) uncompressed data from a node/axis, automatically generates the optimized compression

code to be used on that node. This procedure requires an extra step during system deployment,

but achieves remarkable improvements in the resulting compression, as discussed in Section 2.6.

At run-time, sampled data is encoded in a tuple that is shared by the sampling component,

through TeenyLime, with the data collection component of Figure 2.3. The coordination among

the two takes place as shown in Figure 2.6. The sampling component queries the tuple space for

an “empty” tuple, indicating the availability of a transmission slot: we describe next how and

when this is generated. If such a tuple exists, it is removed from the tuple space, filled with the

data to transmit, and output back to the tuple space. Through a previously-installed reaction

the data collection component, notified of the presence of the data tuple, can withdraw it and

begin the processing necessary for routing.

Our routing protocol builds a tree topology rooted at the sink. The tree is periodically

rebuilt to account for connectivity changes. The process is performed by flooding a special

control tuple. Each node re-propagates the tuple by writing a copy of it in the tuple space

of every node within communication range. There, the appearance of the tuple triggers a

previously-installed reaction, which updates the tuple content with path cost information and

repeats the process, eventually flooding the entire system. This flooding mechanism is reused

also by other components, as mentioned later.

The reliability metric we use in optimizing the shape of the tree is a variant of [84], based

on the Link Quality Indicator (LQI) provided by the radio chip. Interestingly, the LQI value



19

Child

send(tuple 6)

Parent

retrieve(tuple 7)

4 5 6
cache

send(tuple 7)

send(tuple 8)

5 6 7
cache

6 7 8
cache

send(tuple 9)
7 8 9
cache

Figure 2.7: Hop-by-hop recovery example.

is also accessed through TeenyLime, using special tuples whose field values are materialized by

the run-time, as described in Section 2.4.4. Finally, data forwarding occurs through the tuple

space, by writing tuples to the tuple space of the current parent in the tree.

The reliability requirements of the aforementioned class I and II are dealt with through a

hop-by-hop recovery scheme, intuitively described in Figure 2.7. Sent tuples are kept in the

local tuple space, which effectively serves as a local cache, managed as a circular buffer. The

receiving parent in the tree keeps track of the last tuple received from each child, thanks to a

sequence number included in it. Upon recognizing a hole in the sequence, the parent pulls the

missing tuple from the child’s cache, using a read operation. The child node is totally oblivious of

recovery: no dedicated processing is required, as the necessary operations are performed directly

by the parent through TeenyLime.

Since it is localized, fully distributed, and does not require system-wide flooding of recovery

information, our reliable protocol enjoys lower latencies and far less network overhead than

end-to-end, centralized solutions such as [36]. On the other hand, it might fail if a tuple is lost

right before a node changes its parent. Consider a node C switching its parent from Pold to

Pnew. In this situation, Pnew has no information about tuples previously sent by C, and cannot

detect a tuple lost during the switch. These cases do occur in practice: Figure 2.8 shows a lab

experiment where the tree is rebuilt every 2.5 minutes, and the occasional tuple losses occur

only in coincidence with such tree reconfigurations.

Situations like the above must be avoided for class I traffic, which requires 100% delivery.

They are taken care of in our protocol with a simple, yet effective, mechanism. Whenever the

sink recognizes the beginning of a burst of class I traffic, the time scheduled for the next tree

rebuild is temporarily set to infinite. This effectively prevents the tree from changing while

class I traffic is routed towards the sink, and thus removes the source of the problem.

Our implementation also considers transmission schedules. Traffic of class II is scheduled

opportunistically. In the case of class I traffic, however, a network congestion may develop due

to the high volume of data transmitted. To alleviate the problem, we employ a form of slow-



20

 0

 1

 2

12:30:00 12:45:00 13:00:00 13:15:00 13:30:00

M
e
s
s
a
g
e
s
 l
o
s
t 
/ 
1
0
 s

e
c

Time

Loss Rate Tree Refresh

Tree Refresh

Figure 2.8: Lost tuples and tree refresh operations.

start scheduling for class I traffic, varying the inter-message period at which the empty tuple

representing an available transmission slot becomes available. When a transmission failure is

detected, the inter-message is set to the highest value then slowly decreased, up to a configured

minimum, as data are successfully forwarded to the sink. With a minimum inter-message in-

terval of 1 s, the reporting of a 30-second compressed sampling session at 200 Hz takes around

8 minutes.

2.4.2 Time Synchronization

Requirements and challenges. To investigate the dynamics of Torre Aquila, the readings

taken by different nodes must be correlated w.r.t. time. This is especially true for vibrations,

e.g., to study how forces applied at the base of the tower propagate to the top floor. The samples

must be aligned in time, with a worst-case time drift up to 1 ms [47].

Design and implementation. Several time synchronization protocols for WSN exist. To

meet the requirement above, our solution is a modified version of [24]. The protocol works by

creating a hierarchy among the network nodes, whose clocks are then synchronized with the

root’s clock. As depicted in Figure 2.9, synchronization is based on a round-trip tuple exchange

between nodes at level i and i − 1 in the hierarchy. The nodes at level i record the time T1,

at which a synchronization request is issued, and T4, at which the reply from a node at i − 1

is received. This reply contains the times T2 and T3 at which the node at i − 1 received the

request and replied to it, respectively. These four values enable the nodes at the lower level i

to evaluate clock drifts and propagation delays, and adjust consequently their local time w.r.t.

nodes closer to (and therefore with a smaller drift from) the root at level 0. Since this process

is performed at each hierarchy level, it eventually synchronizes all nodes to the root.

As with the other services, we implemented time synchronization using TeenyLime. The hi-

erarchy is built trivially by relying on the same flooding mechanism described for data collection

in Section 2.4.1. However, the information flooded (and therefore the resulting tree) is different,

since data collection optimizes the tree shape w.r.t. link quality, while time synchronization

minimizes the hop-count from the sink to reduce the impact of the link latency on the time



21

Node at
level i

read(<times>)

Node at
level i-1

<T2,T3>

reifyCapabilityTuple

write(<T2, T3>)

T1 T2

T4

T3

request issued

reply received

Figure 2.9: Time synchronization using capability tuples.

estimate.

Instead, pairwise synchronization among nodes relies on one of TeenyLime’s unique con-

structs: capability tuples [16]. A capability tuple is essentially a placeholder for the actual data,

which is generated on demand. As illustrated in Figure 2.9, when a read operation whose pat-

tern matches a capability tuple is received, TeenyLime does not simply return, as usual, the

latter as result. Instead, it delegates its computation to the component that originally output

the capability tuple, using a reifyCapabilityTuple event. This is handled by computing and

outputting the actual content of the tuple, which is then finally delivered to the query issuer by

TeenyLime. This mechanism essentially enables a node to “advertise” the availability of data

without the need to keep it up-to-date by periodically regenerating it—a waste of energy when

not used by any query.

In our time synchronization component we use a capability tuple to produce on demand the

values of T2 and T3, as illustrated in Figure 2.9. It is worth noting that most of the distributed

processing is dealt with by TeenyLime, greatly simplifying the implementation.

Of course, threats to accuracy may come from the unpredictability of processing and message

transmission delays. Solving this issue actually led to extensions to the original TeenyLime API.

To alleviate the first problem, we enabled components to be notified when a given operation (e.g.,

a message send) is completed. This information is used by the synchronization component to

periodically re-evaluate processing delays. Message transmission delays, instead, are kept under

control by temporarily switching off the radio duty-cycling during a synchronization round. This

is achieved by using a newly-designed tuning interface, which enables cross-layer interactions by

giving developers direct control over the node hardware.

Evaluating precisely the accuracy of our protocol is difficult in the deployment environment.

Therefore, we performed a number of lab experiments, using 12 nodes in a chain topology. We

used a Tektronix TDS 220 two-channel oscilloscope to measure the time drifts between any

two nodes in the network. As expected, the worst-case time drift happens between the root

of the tree and the node at the opposite end of the chain. In this case, the time difference

was 732 µs, still sufficient to perform meaningful analysis of vibration data [47]. Moreover,

Section 2.6 reports that in the deployment we observed at most 6 hops between an acceleration



22

node and the sink. It is therefore unlikely that time drift in Torre Aquila is higher than in our

lab experiments.

2.4.3 Tasking and Data Dissemination

Requirements and challenges. The ideal configuration of the monitoring system deployed in

Torre Aquila, in terms of acquisition rates and intervals, is not known a priori, as often happens

when WSNs are employed to study a physical phenomenon for the first time. Moreover, in many

cases an external event may suggest a different configuration. For instance, it could be of interest

to monitor more frequently vibration and deformation when roadwork is being conducted nearby,

people are present in the tower, or strong winds are present. The ability to remotely task the

system must be supported by a mechanism that disseminates the new configuration reliably, and

guarantees that the received data is eventually consistent across the system.

Design and implementation. The set of sampling parameters that can be modified remotely

are those shown in Figure 2.5. There, we included the values suggested by the structural

engineers on our team: each parameter, however, can be changed independently. In particular,

the number of sampling sessions N can be a finite number, enabling monitoring of a given

quantity only during a given time interval.

A parameter configuration is packed in a task tuple with an appropriate format. These

tuples are generated on the sink upon a user request, issued through our graphical front-end,

and disseminated using the protocol we describe next. On every node, the sampling and tasking

component (Figure 2.3) registers a reaction matching task tuples and, upon receipt of a new

one, updates the sampling parameters accordingly.

The task tuples must be disseminated reliably throughout the system, a widely studied prob-

lem in WSNs [41, 44]. We take inspiration from the state-of-the-art by adapting the Trickle [41]

protocol. This achieves eventual consistency of the disseminated data by using monotonically

increasing sequence numbers, used to determined if a node is up to date.

This dissemination scheme lends itself to a straightforward implementation on top of Teeny-

Lime. Task tuples are initially flooded by using the mechanism described for data collection

in Section 2.4.1. Moreover, the management of missed tuples comes almost for free by using

one of TeenyLime’s constructs: neighbor tuples (or node tuples in their original definition) [16].

A neighbor tuple represents the current state of a device, and is made available inside its 1-

hop neighborhood. The format of the tuple and the rules for populating its field values are

provided by the programmer, but the periodic update of these values and the tuple propagation

to neighbors is carried out automatically by the TeenyLime run-time. Therefore, checking

whether a recovery is needed in our dissemination protocol is as simple as including the sequence

number as a field in a neighbor tuple; installing a reaction that fires whenever a neighbor’s

sequence number is newer than the local one; and recovering the missing tuple with a read



23

operation on such neighbor.

2.4.4 TeenyLime: Deployment-driven Enhancements

The requirements of the Torre Aquila deployment brought the development of TeenyLime one

step ahead. We already mentioned some of the extensions we designed, e.g., the tuning interface

in Section 2.4.2. Below is a summary of other enhancements to TeenyLime motivated by our

deployment.

Typed tuples and dynamic memory. In the presence of high-rate data such as vibrations,

it is imperative to manage efficiently the available memory. To further optimize this aspect in

TeenyLime, we introduced a notion of typed tuple. Mimicking the generic data types in modern

programming languages, developers instantiate tuples as:

tuple <uint8_t, uint16_t, float > temperature =

newTuple(actualField(TEMPERATURE_TYPE),

actualField(NODE_ID),

actualField(temperatureReading ));

where actualField indicates a field with actual data, as opposed to constraints on the field type

or value. A pre-processor we developed inspects all TeenyLime-based application components to

gather a complete view of all tuples used. Based on this, it generates optimized data structures

for storing and searching the data.

Typed tuples are managed at run-time by a component providing a form of dynamic memory

based on slabs [2]. In our case, a slab is a chunk of memory meant to store tuples of the same

size. Using slabs does not require de-fragmenting memory, which is difficult to implement on

resource-scarce devices. In the application described here, the combination of the techniques

above freed 80% of the memory allocated by our previous release of TeenyLime.

Automatic field types. Our data collection component relies on LQI as a measure of link

reliability. To relieve the programmer from the burden to explicitly query the operating system

for similar low-level information, we make it available in the form of tuples by defining a number

of special field types whose value is automatically materialized by TeenyLime as part of the

neighbor tuples. For instance, in:

NeighborTuple <uint16_t, lqi > myNeighborTuple;

the value of the second field of the neighbor tuple reflects the LQI value towards a particu-

lar neighbor. This way, low-level data becomes straightforwardly available to the application,

greatly simplifying the development of routing protocols.

Reliable, low-power operations. In TeenyLime, programmers can explicitly choose whether

the execution of a remote operation is reliable or not. In our deployment, this feature is sup-

port by a dedicated reliable communication layer exploiting mixed software/hardware link-layer

acknowledgements. This solution occupies only 252 bytes of program memory.



24

To provide low-power operations, we integrated in our run-time the Low Power Listening [77]

layer available in the TinyOS distribution. TeenyLime’s operating parameters (e.g., the timeout

for remote queries) are exposed to make them adjustable based on the expected message delays.

2.5 Deployment

The tower contains four floors, the ground one isolated from the others and used as a public

walkway. The plan is C-shaped 7.8 m × 4.5 m, and the height is 25.6 m. The 14th century

enlargement closed the tower to the West and raised the gate by an additional storey. The two

parts of the masonry body have completely different properties. The lower level walls consist of

two 40 cm thick stone blocks, with an incoherent filling. At the upper levels, the older portion of

the masonry is built of 80 cm thick stone blocks, while the most recent one is brick and blocks of

varying sizes. Visitors enter the tower from the nearby Buonconsiglio Castle, arriving through

a long corridor directly on the 2nd floor where the frescoes are.

Node placement. As shown in Figure 2.10, we deployed 16 nodes plus the sink #0. This is

placed at the top floor, the only spot guaranteeing access to the external WiFi network.

The sensor position is chosen to detect early symptoms of deterioration of the structure.

The joint between the ancient parts of the tower and the more recent ones is today perfectly

visible (bottom of Figure 2.10), but the degree of structural connection of this joint is still a

                                    

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;<=*

*
!

"#$%!&%'(!)*+,!-./$!-*/$01!231#456!7*/8.+9!5/4.+5$$#.!#/:*+#.+*!
*

*
!

"#$%!&%';!)*+,!-./$!-*/$01!231#456!7*/8.+9!:#<+5!=#!>#8?+5!1*85!6?/$.!6.!83#$.6.!*81*+/.!

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;<=*

*
!

"#$%!&%'(&!)*+#,-.!/0#.!1234056!

*527#4*04#8#032!72..2!,033244#03#!32..9-**04#+0!#3:0.;,50!
*

*
!

"#$%!&%'(<!)*+#,-.!/0#.!123405!#34+-..-+0!

FIRST FLOOR

SECOND FLOOR

THIRD FLOOR

0

141

144

145

148

149

150

151152

153

154

160

161

162

142

143

144

149

151

152

161

162

143

142

0 160
145

146

146

150

141

153

148 154

Accelerometer Fiber Optic Sensor

joint

Figure 2.10: Deployment map.



25

Figure 2.11: Graphical user interface.

major point of uncertainty. The deformation across the connection is measured on the 1st floor

by FOS #154. This is a 0.6 m gauge wrapped as an optical coil to magnify the sensor precision,

and anchored to two expansion bolts at the sides of the joint, as shown in Figure 10. Another

FOS is used to detect vertical elongation at the S-W corner of the tower, from level +5.7 m to

+25.6 m. In this case the measuring path is a protected optical fiber loop pre-tensioned between

two metal anchorings. An extension cable connects the sensor to node #153 at the 3rd floor.

The vibrations induced by traffic and, to a minor extent, by wind are recorded by acceleration

nodes #144, #145, and #146, the first at the base and the others at the top of the tower. The

analysis of acceleration readings allows to understand the dynamical behavior of Torre Aquila.

Indeed, the vibration response of a building is not completely random, but concentrates mainly

around some specific frequencies, know as natural frequencies. Daily and seasonal thermal

excursions also affect the structural response of the tower, and the knowledge of these variations

is needed to process and compensate the strain and acceleration signals recorded by FOS and

accelerometers. This motivates the presence of a number of environmental nodes distributed all

over the tower.

Data visualization and access. Effective access to the information gathered by the system is

crucial in supporting the structural engineers in their analysis. To this end, we provide a custom

graphical user interface, shown in Figure 2.11, implemented through a major re-factoring of

Octopus [60]. The GUI shows the current network topology and serves as a control center from



26

 
Figure 2.12: The acceleration signal from #145.

which the user can remotely task the WSN. Moreover, it displays the data collected, which are

also persistently stored in a database.

Preliminary data analysis. The data collected is processed by a Bayesian algorithm that

provides the user with the real-time probability of an ongoing structural disease. The algorithm

can identify a hazardous condition many days in advance w.r.t. to the actual occurrence of

the damage [87], and it has already been applied for risk analysis of historic buildings [88]. In

the following, we provide a few examples of collected data and discuss the insights that the

structural engineers on our team gained from them.

Figure 2.12 shows the acceleration measured on the X axis of #145. The top chart reports

the time history over 5 s, while the bottom one shows the corresponding frequency spectrum.

The peaks in the spectrum indicate possible natural frequencies of the structure, at 1.25 Hz,

1.80 Hz and 2.40 Hz. Every natural frequency follows a specific deflection shape, usually referred

to as vibrational mode. For instance, Figure 2.13 shows the first two vibrational modes of the

tower computed by a numerical model, respectively associated to natural frequencies of 1.25 Hz

and 1.80 Hz2.

Figure 2.14 reports the strain measured, in microstrains (µε), by the FOS #154 placed across

the joint. To eliminate the high frequency instrumental noise, we applied to the signal a moving

average filter with a 60-sample long window. The graph shows the well-known “breath” of

the structure due to daily thermal variations. The joint is forced to open because of thermal

expansion when sun rays hit the southern facade, and then closes during the night. We also

2For sake of clarity, in the picture the amplitude of the vibrational modes have been artificially magnified.



27

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;;<*

=1"'#+%&4"+1*519%*/"#(4&#4*/">455%-%&4?#1"%*!"#$##%&'()*'#*1((#%"%*/"*51&&#'81"+%"(%*'81'(42
9%"(1*94''#91*/"#(4&#1*84&#*4@*

&&* A

94B CD<EF;G !
"#

**
H* I/%'(1* 8/"(1* J* 81''#7#-%* 51"* 7/1"4* 488&1''#94?#1"%* 51"1'5%&%* -1* '(4(1* +#* +%:1&94?#12
"%K'1--%5#(4?#1"%*+%--4*'(&/((/&4*#"*&%-4?#1"%*4-*$4-1&%*+%-->455%-%&4?#1"%*9#'/&4(4*"%--%*81'#?#1"#*
+%-*(%&?1*8#4"1*L+1$%*'1"1*8&%'%"(#*,-#*455%-%&19%(&#MN*
O%&* :4&%*I/%'(1* '#* J* 488-#54(1*4--4* '(&/((/&4*91+%--4(4*/"4*+%:1&94?#1"%* #981'(4*84&#* 4*I/%--4*
+%--4*8&#94* :1&94*91+4-%F*%* #"*%"(#()* (4-%*+4*$%&#:#54&%F* #"*51&&#'81"+%"?4*+%--4*81'#?#1"%*+%-*
P1(%* EF* * -1* '81'(49%"(1* /"#(4&#1* *&!*"#$##)+,&&* L5#1J* 519%* '#* J* +%((1* 51&&#'81"+%"(%*
4-->455%-%&4?#1"%*!"#$##%&'(

)
MN* H* I/%'(1* 8/"(1F* $#'(4* -4* -#"%4&#()* +%-* 91+%--1F* '4&)* 81''#7#-%*

'(47#-#&%*/"4*51&&#'81"+%"?4*(&4*'(4(1*+#*+%:1&94?#1"%*%+*455%-%&4?#1"%K'81'(49%"(1N*
*

******************************* *
-

./01-+1%2-34567&!8/694-/&:6(;!$-<677/(:69=49;4-!>-:7/&6-&6=6-=/-?/@7!74-=4>>!-(;7A;;A7!-

*
=#Q* &#'/-(4* *84&(#51-4&9%"(%* #981&(4"(%*8%&* -1*'5181*+%-*'#'(%94*+#*91"#(1&4,,#1@* ->/(%"(%*J*

51'R*#"*,&4+1*+4*&%91(1F*'%98-#5%9%"(%*%55%+%"+1*4--4*84,#"4*S%7F*+#*51"1'5%&%*#":1&94?#1"#*
'/--1*'(4(1*+#*&#'5T#1*%*+#*+4""%,,#49%"(1*+%--4*'(&/((/&4*L4+*%'%98#1*'#*8/Q*51"1'5%&%*4*8&#1&#*
I/%-*$4-1&%*+#*455%-%&4?#1"%*5T%F*'%*-%((4F*51&&#'81"+%*4+*/"4*51&&#'81"+%"(%*48%&(/&4*+#*:%''/&%*
"%,-#*4::&%'5T#MN*
6"*I/%'(>1((#54*'#*'1"1*"/1$49%"(%*&#54$4(#*#*$4-1&#*+#*'81'(49%"(#*%*+%:1&94?#1"#*L"%--%*81'#2

?#1"#25T#4$%*+%'5&#((%*8&%5%+%"(%9%"(%M*51"*&#:%&#9%"(1*4*I/4((&1*84&(#51-4&#*$4-1&#*+#*455%-%&42
?#1"%@*
*
2*!%"#$##B&'(

)@*$4-1&%*5T%*&488&%'%"(4*L+4--%*1''%&$4?#1"#*'8%&#9%"(4-#*+%,-#*455%-%&19%(&#M* -4*
'1,-#4*4-*+#*'1((1*+%--4*I/4-%*'#*T4*(1(4-%*#"'%"'#7#-#()*+%#*'%"'1&#U*
*
2*!)"#$%&'(

)@*$4-1&%*5T%*&488&%'%"(4F*8%&*#*<*'%51"+#*+#*1''%&$4?#1"%*+%'5&#((#F*#-*$4-1&%*8#V*4-(1*
9#'/&4(1*+%-->455%-%&4?#1"%*+1$/(4*4-*&/91&%*497#%"(4-%U*
*
2*!C"D&'(

)@*$4-1&%*5T%*&488&%'%"(4*-4*9%()*+%--4*8#V*,&4"+%*455%-%&4?#1"%*5T%*8/Q*%''%&%*9#'/2
&4(4*+4#*'%"'1&#*/(#-#??4(#N*

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;;<*

=1"'#+%&4"+1*519%*/"#(4&#4*/">455%-%&4?#1"%*!"#$##%&'()*'#*1((#%"%*/"*51&&#'81"+%"(%*'81'(42
9%"(1*94''#91*/"#(4&#1*84&#*4@*

&&* A

94B CD<EF;G !
"#

**
H* I/%'(1* 8/"(1* J* 81''#7#-%* 51"* 7/1"4* 488&1''#94?#1"%* 51"1'5%&%* -1* '(4(1* +#* +%:1&94?#12
"%K'1--%5#(4?#1"%*+%--4*'(&/((/&4*#"*&%-4?#1"%*4-*$4-1&%*+%-->455%-%&4?#1"%*9#'/&4(4*"%--%*81'#?#1"#*
+%-*(%&?1*8#4"1*L+1$%*'1"1*8&%'%"(#*,-#*455%-%&19%(&#MN*
O%&* :4&%*I/%'(1* '#* J* 488-#54(1*4--4* '(&/((/&4*91+%--4(4*/"4*+%:1&94?#1"%* #981'(4*84&#* 4*I/%--4*
+%--4*8&#94* :1&94*91+4-%F*%* #"*%"(#()* (4-%*+4*$%&#:#54&%F* #"*51&&#'81"+%"?4*+%--4*81'#?#1"%*+%-*
P1(%* EF* * -1* '81'(49%"(1* /"#(4&#1* *&!*"#$##)+,&&* L5#1J* 519%* '#* J* +%((1* 51&&#'81"+%"(%*
4-->455%-%&4?#1"%*!"#$##%&'(

)
MN* H* I/%'(1* 8/"(1F* $#'(4* -4* -#"%4&#()* +%-* 91+%--1F* '4&)* 81''#7#-%*

'(47#-#&%*/"4*51&&#'81"+%"?4*(&4*'(4(1*+#*+%:1&94?#1"%*%+*455%-%&4?#1"%K'81'(49%"(1N*
*

******************************* *
-

./01-+1%2-34567&!8/694-/&:6(;!$-<677/(:69=49;4-!>-:7/&6-&6=6-=/-?/@7!74-=4>>!-(;7A;;A7!-

*
=#Q* &#'/-(4* *84&(#51-4&9%"(%* #981&(4"(%*8%&* -1*'5181*+%-*'#'(%94*+#*91"#(1&4,,#1@* ->/(%"(%*J*

51'R*#"*,&4+1*+4*&%91(1F*'%98-#5%9%"(%*%55%+%"+1*4--4*84,#"4*S%7F*+#*51"1'5%&%*#":1&94?#1"#*
'/--1*'(4(1*+#*&#'5T#1*%*+#*+4""%,,#49%"(1*+%--4*'(&/((/&4*L4+*%'%98#1*'#*8/Q*51"1'5%&%*4*8&#1&#*
I/%-*$4-1&%*+#*455%-%&4?#1"%*5T%F*'%*-%((4F*51&&#'81"+%*4+*/"4*51&&#'81"+%"(%*48%&(/&4*+#*:%''/&%*
"%,-#*4::&%'5T#MN*
6"*I/%'(>1((#54*'#*'1"1*"/1$49%"(%*&#54$4(#*#*$4-1&#*+#*'81'(49%"(#*%*+%:1&94?#1"#*L"%--%*81'#2

?#1"#25T#4$%*+%'5&#((%*8&%5%+%"(%9%"(%M*51"*&#:%&#9%"(1*4*I/4((&1*84&(#51-4&#*$4-1&#*+#*455%-%&42
?#1"%@*
*
2*!%"#$##B&'(

)@*$4-1&%*5T%*&488&%'%"(4*L+4--%*1''%&$4?#1"#*'8%&#9%"(4-#*+%,-#*455%-%&19%(&#M* -4*
'1,-#4*4-*+#*'1((1*+%--4*I/4-%*'#*T4*(1(4-%*#"'%"'#7#-#()*+%#*'%"'1&#U*
*
2*!)"#$%&'(

)@*$4-1&%*5T%*&488&%'%"(4F*8%&*#*<*'%51"+#*+#*1''%&$4?#1"%*+%'5&#((#F*#-*$4-1&%*8#V*4-(1*
9#'/&4(1*+%-->455%-%&4?#1"%*+1$/(4*4-*&/91&%*497#%"(4-%U*
*
2*!C"D&'(

)@*$4-1&%*5T%*&488&%'%"(4*-4*9%()*+%--4*8#V*,&4"+%*455%-%&4?#1"%*5T%*8/Q*%''%&%*9#'/2
&4(4*+4#*'%"'1&#*/(#-#??4(#N*

(a)

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;<=*

!"#$%&%#'()*+%&%#,!-./0123/#4*)56)789#4!-:/2;1<8=#
*

********************** *

*

*************************************************** *
*

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%&#4*
0%5"1-1,#%*+#'(&#7/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1&#5#*

*

!

*;<=*

!"#$%&%#'()*+%&%#,!-./0123/#4*)56)789#4!-:/2;1<8=#
*

********************** *

*

*************************************************** *
*

(b)

Figure 2.13: First (a) and second (b) vibrational modes.

!

!

!

!

Figure 2.14: Strain measurements from FOS #154.

note a delay between the maximum irradiation at mid-day and the maximum joint elongation,

presumably caused by the thermal inertia of the walls. The analysis of this behavior also allows

assessing the sensitivity of the joint to temperature. As for the latter, the temperature data

shown in Figure 2.15 for nodes on different floors confirm the presence of a gradient along the

tower, as well as significant seasonal changes. The daily strain variation (on the order of 500 µε)

agrees with the numerical prediction under the assumption that the joint is fully released. To

date, the strain response of the tower has not shown trends which may rise concerns about its

stability.

The benefit of the above analysis is twofold: on one hand, in the short-term it permits

identification of a reliable model for the structure response, and prediction of the behavior of

the tower during exceptional events, e.g., earthquakes or subsiding. On the other hand, the data

are stored in a database that will remain available in the long-term and constantly compared



28

 16

 18

 20

 22

 24

 26

 28

 30

03/09 09/09 15/09 21/09 27/09

D
e
g
re

e
s
 C

e
ls

iu
s

Date

148
149
152

Figure 2.15: Temperature on three floors of Torre Aquila.

with more recent data, so that any change in the tower behavior can be detected, triggering

specific analyses.

2.6 Evaluation

In this section, we study the effectiveness of our design along two lines. We report first on the

system performance in Torre Aquila, showing that our solution performs reliably and efficiently.

Next, we consider the benefits of using a middleware during the development process.

2.6.1 System Performance

To assess the effectiveness of our middleware-based design we report on three key performance

issues: i) reliable delivery of data, ii) effective compression of acceleration readings, and iii)

energy consumption and system lifetime.

Reliable delivery. During the last four months of operation, the overall loss rate always

remained below 0.01%. This performance is striking if compared to the average yield of long-

running WSN deployments reported in the current literature [1], and even more so if we consider

that ours is one of the few WSN deployments featuring high-rate data reporting for more than

 1e-06

 1e-05

 0.0001

 0.001

 0.01

30/08 01/09 03/09 05/09 07/09 09/09 11/09 13/09 15/09C
u
m

u
la

ti
v
e
 l
o
s
s
 r

a
te

 (
lo

g
 s

c
a
le

)

Date

Class I Traffic
Class II Traffic

Figure 2.16: Cumulative loss rate.



29

a few weeks.

The effectiveness of our reliability mechanisms for traffic of class I and II is exemplified

in Figure 2.16, showing the cumulative loss rate (in log scale) over time. The loss rate for

class I traffic generally remains an order of magnitude lower than that of class II traffic. In the

morning of September 3rd a malfunctioning acceleration node lost a number of tuples, which

generated the spike relative to class I traffic. Later on the same day we replaced the faulty node

and performed a few maintenance operations on the sink, temporarily suspending its operation.

This caused the spike in class II traffic. After these two events, the loss rate decreased steadily.

This performance is achieved in spite of the peculiar characteristics of the deployment sce-

nario. Although Torre Aquila is not particularly tall, the thickness of its walls greatly hinders

wireless propagation. As an indication of this, Figure 2.17 reports the percentage of time some

nodes spent at a given distance from the sink. Notably, the latter in some cases reaches the

value of 6 hops. Moreover, we observed how small changes in the node placement drastically

change the connectivity. Figure 2.17 shows two periods: in the latter we moved the sink because

of some restoration work taking place in the tower. Although the sink was moved at most by

1 m, the topology drastically changed: for instance, #148 became able to reach the sink directly

for most of the time, rather than through the 4-5 hops experienced previously.

In any case, our data collection protocol adapts effectively to topology changes. For instance,

Figure 2.18 shows how, in the context of the same sink movement, nodes select a new, better

 0

 0.2

 0.4

 0.6

 0.8

 1

#142
#143

#146
#148

#151
#152

Pe
rc

en
ta

ge
 o

f t
im

e

04 Sept - 09 Sept

#142
#143

#146
#148

#151
#152

09 Sept - 14 Sept

1 Hop
2 Hops
3 Hops
4 Hops
5 Hops
6 Hops

Figure 2.17: Distance in hops from the sink.

 0

 0.2

 0.4

 0.6

 0.8

 1

#142
#143

#146
#148

#151
#152

Pe
rc

en
ta

ge
 o

f t
im

e

04 Sept - 09 Sept

#142
#143

#146
#148

#151
#152

09 Sept - 14 Sept

Sink
#142
#143
#148
#149
#151
#152
#153

Figure 2.18: Time spent with a given parent node.



30

parent. However, topology changes are more frequently induced by connectivity fluctuations

caused by people visiting the tower and humidity gradients: the reaction to these common

causes is equally effective. For instance, we observed nodes relying on up to 4 different parent

nodes, according to the observed link reliability.

Compression. We used an Agilent 34411A digit multimeter to measure the processing time

over 166 sampling sessions of 30 s at 200 Hz, for a total of ∼1,000,000 raw acceleration samples.

Although the code was not optimized for this data set, the worst compression time was 17.32 ms,

which supports our choice of Huffman coding and confirms the efficiency of the compression code

we generate automatically.

Our tool-chain also enables optimization of the compression scheme according to the specific

node (i.e., position) and axis. In Torre Aquila, this brings considerable advantages w.r.t. a

compression tuned using all acceleration samples regardless of their source and axis, as illustrated

in Figure 2.19. Interestingly, the maximum improvement is achieved by generating the custom

compression code for the Z axis. Indeed, this axis is subject to the gravitational field, and

therefore its values are rather different from those of the X-Y axes: a dedicated compression

scheme better captures the statistical properties of the corresponding data sets.

Energy consumption and lifetime. We observed that energy consumption essentially de-

pends on the node functionality, as shown in Figure 2.20 using battery voltage. Acceleration

nodes draw more current than environmental ones: not only are they used more intensively, but

they must also continuously power the FRAM chip. Consequently, acceleration nodes deplete

their available energy more rapidly.

Estimating the expected system lifetime of our system is tricky due to the non-linear behavior

of commercially available batteries [61]. The first version of the system used a radio duty-cycle

of 100 ms and used the on-board LEDs for debugging. Under these conditions, and using one

pair of size C batteries, we observed one node dying after 3.2 months of operation. The system

is currently operating with a radio duty-cycle of 250 ms, yielding the same reliability. Moreover,

Input Node Input Axes Compression Ratio Reduction in Data Traffic

All All 17.9% 17.9%

144 All 31.45%

27.7%145 All 24.91%

146 All 26.76%

144
X-Y 47.11%

51.23%

Z 69.34%

145
X-Y 41.65%

Z 64.66%

146
X-Y 43.56%

Z 62.43%

Figure 2.19: Compression ratios with different input sets.



31

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2.95

 3

27/07 29/07 31/07 02/08 04/08

Vo
lta

ge

Date

Acceleration Node
Environmental Node

Figure 2.20: Battery voltage readings.

Component Lines of code

Sampling & Tasking 235–962

Data collection 993

Data dissemination 339

Time synchronization 916

Figure 2.21: Lines of code for our core components.

our packaging can accommodate two pairs of size C batteries. Assuming the single dead node

as a worst case, we expect the system lifetime to extend beyond one year.

2.6.2 Beneficial Impact of Middleware

We discuss the impact of our middleware-based design on programming effort and re-usability.

Programming effort. Quantifying the programming effort is hard, as it is affected by factors

difficult to measure (e.g., the complexity of the processing). Research in WSNs has hitherto

considered the number of lines of code (LOC) as a simple indication. Figure 2.21 reports this

metric for the core functionality of our system. It is interesting to compare these figures against

similar functionality available in TinyOS libraries, where it is built directly on top of the OS.

The CTP [77] collection protocol and the DIP dissemination protocol [44] have almost twice

as many LOC as our solutions, and yet the former addresses only low-rate data. The original

implementation of the time synchronization protocol [24] contains 80% more LOC than our

version. We maintain that the significant reduction in LOC is achieved by delegating part of

the processing to the middleware. For example, most of the recovery processing in our data

collection component takes place within TeenyLime, as described in Section 2.4.1. Parsing

recovery requests, finding the message to be re-sent, and re-trying the transmission are captured

by a single remote read operation.

Decoupling and re-usability. The use of TeenyLime fosters asynchronous and data-centric

interactions, which increases decoupling. As a result, the design for Torre Aquila can be easily



32

extended to meet different requirements. For example, consider adding distributed data aggre-

gation. This functionality is usually embedded within routing, resulting in the two becoming

entangled. Instead, in our design this would require no modification to the data collection com-

ponent. It is sufficient to tag differently the tuples carrying raw data, and make the new data

aggregation component react to them. Aggregated data would then be output as message tuples

triggering a reaction in the data collection component, as already happens in our current design.

All these changes would not even require a wiring of nesC interfaces.

The high decoupling is also beneficial w.r.t. memory consumption. The size of the binary

image installed on our nodes ranges from 37 KB (environmental nodes) to 47 KB (acceleration

nodes). The latter is close to the 48 KB limit on TMotes, but it is the most complex as it also

includes the compression code. Using components from the TinyOS libraries to provide similar

functionality (i.e. CTP, DIP, and the implementation of [24]) would yield a binary of at least

51 KB, which would not fit the program memory.

2.7 Concluding Remarks

The deployment in Torre Aquila demonstrated that a monitoring infrastructure based on WSNs

can effectively meet the requirements of, in our specific case, the civil engineers. The sensor

heterogeneity defined a unique set of requirements, which we satisfied with a custom design

based on TeenyLime. The employed communication abstraction supported the development of

system services, simplifying the programming effort and shifting the focus from OS-level details

to the exchange of data among components and nodes. Finally, the deployment provided a

unique and valuable in-the-field experience, which can hardly be obtained by only looking at

the related literature.



Chapter 3

Adaptive Lighting in Road Tunnels

The deployment described in Chapter 2 presented an example of a monitoring infrastructure in

which data are delivered to a central base station and afterwards made available for analysis.

The defined requirements imposed on the network involved the different data types and their

reliable delivery, as typical of a monitor-only system. However, the vision of WSNs places them

at the interconnection between the physical and the artificial reality. In such a vision, the

WSNs enable not only monitoring, but also controlling of the real world. When the application

influences the environment under observation, the loop is closed and new requirements rise to

successfully accomplish the control goal.

In this chapter, we describe a control loop in which the light values reported by a monitoring

infrastructure are used to actuate lamps inside road tunnels. By meeting the requirements

with mainstream WSN solutions, we demonstrated the suitability of the technology in systems

required to operate in scenarios where safety is crucial.1

3.1 Scenario, Motivation and Contribution

The system described in this chapter has been developed in TRITon (Trentino Research &

Innovation for Tunnel Monitoring, triton.disi.unitn.it), a project carried out by research

centers and companies, funded by the local administration in Trento, Italy, with the goal of

reducing the management costs of road tunnels and improving their safety. Our WSN-based

control system is to be installed in operational tunnels on a high-traffic freeway—an ambitious

goal given that WSNs have never been used in this context.

1The content of this chapter is a joint work with Michele Corrà, Leandro D’Orazio, Roberto Doriguzzi, Daniele

Facchin, Ştefan Gunǎ, Gian Paolo Jesi, Renato Lo Cigno, Luca Mottola, Amy L. Murphy, Massimo Pescalli, Gian

Pietro Picco, Denis Pregnolato, Carloalberto Torghele, published in “Is There Light at the Ends of the Tunnel?

Wireless Sensor Networks for Adaptive Lighting in Road Tunnels”, 10th ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN’11, SPOTS track), Chicago (IL, USA), April 2011 (Best Paper

Award) [8].

triton.disi.unitn.it


34

Adaptive lighting in road tunnels. In state-of-the-art solutions, tunnel lighting is either

pre-set based on current date and time, or set by an open-loop regulator relying on an external

sensor. Both solutions disregard the actual lighting conditions inside the tunnel, and may

endanger drivers or consume more power than needed.

In the system we describe here, a WSN deployed along tunnel walls measures the light

intensity and reports it to a controller, which closes the loop by setting the lamps to match the

lighting levels mandated by law. Unlike conventional solutions, our system adapts to fine-grained

light variations, both in space and time, and dynamically and optimally maintains the legislated

light levels. This enables energy savings at the tunnel extremities, where sunlight enters, but it

is also useful inside the tunnel to ensure the target light levels even when lamps burn out or are

obscured by dirt. We detail further the adaptive lighting problem in Section 3.3.

Motivation for WSNs. We are sometimes asked: “Why should one use a WSN in tunnels,

where power and network cables are already available?” Although power cables are present

along with lighting, realizing the shunts necessary to operate the distributed sensor nodes at the

right voltage is expensive. Similar considerations hold for network cables, actually found only

in medium and long tunnels. Finally, the untethered WSN nodes can be placed anywhere along

the tunnel—i.e., where lighting engineers say it is best to sense light—and not only where cables

already exist.

A WSN solution drastically reduces installation and maintenance costs, especially when the

target is an already-existing tunnel, where changes to the infrastructure should be minimized.

This is often the case in Trentino, the province managed by the administration funding TRITon,

a mountainous area of 6.200 km2, 500,000 people, and over 150 tunnels for a total of 50 km, the

majority of which are old and under 500 m. In these tunnels, a small investment can significantly

improve safety and reduce energy bills.

Challenges. As we discuss in Section 3.4, tunnels are harsh environments, relatively well-

studied but for which real-world WSN experiences are largely missing. In our case matters are

complicated by vehicular traffic, which affects wireless communication, and light itself, which is

notoriously difficult to measure accurately and yet whose (abrupt) variations are the essence of

our application. These challenges notwithstanding, the practical goal of TRITon is to deploy

a WSN-based adaptive lighting system in a 630 m, two-lane, double-carriageway operational

tunnel with an average traffic of more than 27,000 vehicles per day. The design decisions for

the WSN supporting closed-loop control in such a safety-critical environment are dominated by

real-world constraints, including:

I. extended lifetime is paramount: changing batteries can be easily performed during tunnel

maintenance, but tunnel operators expect at least a 1-year lifetime;

II. continuous operation implies that the WSN cannot fail: node failures are important, but

sink failures are critical;

III. sensed data must arrive timely: we do not face hard real-time constraints, yet delays



35

induced by node and communication failures may jeopardize control;

IV. the quality of sensing impacts directly the quality of control: sensor accuracy and noise

reduction are key;

V. integration with conventional, industrial-strength equipment poses complex engineering

challenges.

Contribution. We deliberately choose to tackle the challenges above by reusing existing tech-

niques whenever possible, as the target scenario already entails several complex engineering

and deployment issues. However, the staple WSN mechanisms and protocols in monitoring-

only deployments have essentially never been tested in such a challenging setting, also including

closed-loop control. Bearing this in mind, our contribution lies precisely in:

I. verifying that a WSN-based solution to adaptive lighting is feasible in road tunnels;

II. understanding to what extent the solution can be achieved by relying on mainstream WSN

technology;

III. identifying a combination of techniques, among the many reported in the literature, suc-

cessful in our peculiar setting;

IV. demonstrating the above in an operational testbed where the WSN is integrated with

standard tunnel equipment.

We also believe that gaining practical insights into the aspects above reaches beyond the specifics

of our road tunnel scenario. Some of the requirements we are forced to cope with are akin to

related scenarios where the use of WSNs is envisioned but only partly accomplished; for example,

metropolitan subways [10], underground mines [42], and service pipes [75]. The real-world lessons

we learned may be an asset for the designers of these systems.

Section 3.5 illustrates the system architecture by concisely describing each functional com-

ponent. The focus of our work is however on the WSN one. Section 3.6 describes how we

tackled the aforementioned challenges by relying on a popular platform: TelosB-like motes run-

ning TinyOS. The motes host custom-made sensor boards we calibrated for our tunnel setting.

The software deployed on the motes includes dedicated communication protocols, whose design

however relies on the combination of well-known techniques. A distinguishing aspect of our

software layer is that both application and system-level services (e.g., routing) are built atop

middleware [16] that, compared to using directly the operating system as in the vast majority of

reported WSN deployments, greatly reduces the programming effort and yields a smaller binary

footprint.

The high volume of vehicular traffic in our final tunnel deployment prevents us from using it

for experimenting with parameters and performing validation tests. Therefore, in this chapter

we report on results in a second tunnel that, although operational, is less trafficked and offers a

more flexible experimental testbed to analyze and tune our system, which must work right away

upon installation in the final tunnel. The equipment we installed is described in Section 3.7. The



36

testbed experiments, over a 7-month period, are reported in Section 3.8, where we analyze both

the quality of control and the WSN performance. Results show that our system accurately closes

the control loop even in the presence of noisy and inappropriate lighting equipment. Moreover,

they confirm that the WSN meets the above challenges by guaranteeing a 99.98% data yield, a

reporting delay compatible with the operation of the control system, and an (under-)estimated

lifetime well beyond a year.

Section 3.9 concisely reports on experiments hinting at the fact that the WSN we designed

for adaptive lighting can be reused effectively to detect fire, with only very minor modifications.

3.2 Related Work

The literature related to this work concerns the use of wireless technology, including WSNs,

in tunnels and similar environments, and the design of closed-loop control systems relying on

WSNs.

Wireless technology in tunnels. The behavior of wireless transmissions in tunnels and

similar environments has been studied extensively, e.g., for what concerns path loss [76] and

radio propagation [55]. Existing works show that the shape of tunnels determines an “oversized

waveguide” effect [55]. As for WSNs, we discussed our own experience with the wireless topology

of two tunnel deployments in comparison with a vineyard one in [57]. Section 3.4 summarizes

some of the main findings.

Existing WSN applications in road tunnels focus on monitoring for emergency services [6]

and disaster management [15]. These, however, are sophisticated proof-of-concept systems,

not designed to sustain long-term operation like the one we present here. WSNs have also

been applied in tunnel-like environments, including subways [10], coal mines [42], and service

pipes [75]. However, none of these systems involves closed-loop control, and integration with

existing, industrial-strength infrastructure is usually not an issue. These are instead some of the

characterizing features of our work.

WSN-based closed-loop control systems. Few WSN experiences involve closed-loop con-

trol. Lynch et al. [49] integrate a WSN with a semi-active damper to mitigate the structural

response of civil infrastructures during earthquakes and similar phenomena. Singhvi et al. [73]

rely on mobile nodes to acquire information on the users’ behavior and context, to perform adap-

tive lighting in buildings. Both works focus almost exclusively on the design and optimization

of the control algorithms. In contrast, the safety concerns and practical deployment issues con-

cerned with an operational setting play a fundamental role in our work. Kim et al. [37] deploy

five wireless sensing stations to perform feedback-driven site-specific irrigation. Their setup is

much simpler than ours: each sensing station enjoys permanent power, communicates directly

with the base station, and is mapped to a single actuator. Han et al. [30] rely on a WSN to drive

the operation of a numerical simulator for plume detection and movement prediction. However,



37

unlike our system, the control loop is entirely within the software realm, and does not affect the

physical environment. Finally, Park et al. [62] report on a WSN design for closed-loop light con-

trol for entertainment and media production. While the goal of their system is somewhat more

sophisticated than ours, their implementation is limited to a small-scale lab proof-of-concept,

which therefore is not confronted with the complexity and engineering challenges of a long-term,

operational system in a real-world environment, which is instead one of the defining features of

the work reported in this chapter.

3.3 Problem and Approach

Designing an appropriate lighting for roads is challenging, as it directly affects safety and requires

huge amounts of energy. Tunnels inherit these challenges and pose additional ones. Illumination

varies significantly along a tunnel’s length, unlike on roads, and requires a more sophisticated

control in response to environmental conditions. Moreover, and most importantly, the light

conditions at the entrance must match closely the external ones to ensure that drivers can still

discern obstacles when entering the tunnel.

Satisfying this latter requirement during daytime hours has a huge impact on energy con-

sumption. Indeed, daylight is several orders of magnitude larger than that sufficient for night

vision, due to the ability of the human eye to adapt to darkness. To get a concrete feel of the

values at stake, solar light may reach in excess of 100,000 lx while night road illumination is

usually 5-10 lx. Therefore, the initial few meters of a road tunnel can easily consume in daytime

hours the equivalent of kilometers of road lighting at night. On a broader perspective, the 150+

road tunnels in Trentino consume 20 GWh per year, as much as 16,000 people in the same

region. Therefore, even a small improvement of the tunnel lighting system can return significant

savings on the energy bills.

Tunnel lighting must abide by an illumination curve defined by law [13], that specifies the

light level as a function of the distance inside the tunnel, as shown in Figure 3.1. At the entrance,

the curve aims at ensuring continuity of light conditions from the outside to the inside, to avoid

that drivers perceive the tunnel as too bright or too dark. As the distance from the entrance

increases, the light level is allowed to decrease, as the human eye adapts to darkness.

Conventional solutions. The legislated curve is currently met by simple solutions that over-

approximate the safe light levels, therefore wasting energy. The most common solution is a

simple timer, that automatically sets the light intensity along the tunnel based on date and time,

entirely oblivious of the conditions inside or outside the tunnel. More sophisticated solutions

employ an open-loop regulator relying on an external sensor: the light setting is based on the

outside conditions, but the inside ones are still disregarded.

The desired illumination levels are achieved by relying on two separate circuits. The first one

(permanent lighting) guarantees a constant illumination and is always on. The second circuit



38

(reinforcement lighting) provides the extra light necessary to match the daytime external light,

and is therefore normally switched off at night. As lamps are typically set in groups, the curve

generated by the reinforcement has a step-wise shape. Each step is typically set well above the

target legislated curve—it is not uncommon to see designs that over-approximate by a factor of

two. Given that pre-set and open-loop solutions lack information from inside the tunnel, this

conservative choice ensures a safety margin accommodating the aging of lamps (which reduces

their light) and other problems such as burned out lamps. However, it clearly induces a waste

of energy, shown in Figure 3.1 as the area between the step-wise curve used in conventional

systems and the one mandated by law.

Closed-loop adaptive control. The figure shows a third line, representing our closed-loop

adaptive control where light measurements inside the tunnel are used as feedback to tune the

intensity of the lamps, which are individually controlled. The knowledge of the actual conditions

inside the tunnel is the key to dynamically match the legislated curve without unnecessary, costly

over-provisioning. This knowledge allows us to reconcile the goals of high safety and low energy

consumption, unlike pre-set or open-loop solutions. Moreover, knowledge of the inside conditions

enables us to leverage natural light to reduce consumption at the entrance—the largest energy

drain. Indeed, sun rays entering the tunnel may contribute enough light to push further inside

the point at which the artificial lighting becomes necessary. To achieve optimal, dynamic control

of the tunnel lighting three “components” are required:

I. An external sensor measuring the veil luminance, i.e., the contrast between the tunnel

entrance and its background. This parameter is used by regulations to define when a

driver can be negatively affected (e.g., dazzled) by the tunnel lighting.

II. A grid of light measurements along the tunnel length, used to compute the error between

entrance
zone

transition
zone

interior
zone

exit
zone

distance0

illu
m

in
an

ce

conventional
control

target legislated curve

adaptive control 

en
try ex

it

Figure 3.1: Conventional vs. adaptive control.



39

the legislated target curve (determined as a function of the input veil luminance) and the

actual lighting conditions in the tunnel.

III. A control algorithm to drive the above error to zero.

The first component recently became available on the market. The internal measurement system

is the main contribution of this work, reporting on a WSN-based solution. Finally, the design

of a control algorithm for adaptive lighting is complicated by the high number of individually-

controlled lamps and the mutual influence between these and the sensors. Before presenting our

system architecture, however, we describe the characteristics of our scenario.

3.4 Peculiarities of Tunnels

Road tunnels are largely unexplored by WSN deployments. Tunnels are harsh environments,

where dirt and dust accumulate rapidly and therefore affect sensing, as we discuss in Sec-

tion 3.6.2. Periodic tunnel cleaning constitutes an additional threat for the nodes, as it is often

performed using high-pressure jets of aggressive detergents. The node packaging is therefore

of paramount importance, as it must also meet the general tunnel regulations, e.g., concerning

resistance to fire. Vehicular traffic further complicates matters, as the metallic vehicles create

interference with the WSN radios, and create occlusions and noise to the light sensors. More-

over, traffic limits access to the tunnel for deployment and debugging purposes, as each visit

requires blocking one lane, if not the entire tunnel.

We touch on some of these issues in the rest of the chapter. Hereafter, instead, we focus on

two aspects that are key to understand our contribution: the characteristics of light in a tunnel

environment and how the tunnel shape affects wireless communication.

Light variations. Light is a physical quantity whose precise measurement is already very

difficult per se. Tunnels introduce an additional complication, as the light levels vary greatly

along its length. Figure 3.2 shows some of the high-rate (5 s) light measurements we collected for

one of the tunnels in TRITon, to understand the light variations and properly design the on-board

management of the sensed data. Distance from the entrance determines how much the external

sunlight affects the reading, with clouds and direct sunlight contributing to the largest daily

variations. For example, on the second day shown in the figure, direct sunlight entered the tunnel

at sunset, causing readings to go off the scale of this chart. Deeper inside the tunnel, the artificial

lights have instead the most influence. In Figure 3.2 one can clearly see the steps caused by

changes in the light levels set by the (conventional) control system. Moreover, vehicle headlamps

produce transient high readings (barely visible in the night portions of the chart) while trucks

occlude sensors and cause the dips visible in the figure. The sensor uncertainty, combined with

these phenomena, suggests on-node processing for properly filtering and compensating the data

before relaying them to the control system, as we discuss in Section 3.6.3.



40

Communication. As discussed in [57], tunnels enjoy better connectivity (i.e., longer links)

than outdoor, due to the waveguide effect. This solves and creates problems: better connectiv-

ity improves robustness, but also increases the probability of packet collisions. Moreover, the

network links are more stable in tunnels w.r.t. what is typically reported in the literature for

more conventional environments, therefore impacting the relative performance of link estimators.

Even in the presence of vehicular traffic, both intermediate and high quality links are accurately

identified, and there is a stronger linear correspondence between LQI and packet error rate.

As a consequence, LQI performs in tunnels similarly to popular choices such as ETX [17]. We

confirmed these findings in the tunnels described here and therefore, as discussed in Section 3.6,

our routing solution relies on LQI.

3.5 System Architecture

The functional components of our closed-loop solution for adaptive lighting are shown in Fig-

ure 3.3. The system relies on the WSN for acquiring dense light measurements in the tunnel and

wirelessly relaying them in multi-hop to a gateway. Multiple gateways are deployed, to reduce

the network diameter and provide redundancy against gateway failures. The gateways forward

the sensed data to a Programmable Logic Controller (PLC), the “brain” of the control system.

The PLC takes as input the value of the veil luminance measured by an external sensor, along

with the data from the WSN. The former is used to determine the target reference lighting,

while the latter is used to measure the error from the reference. The PLC directly actuates

the lamps to reduce the error and meet the legislated lighting curve. The PLC has access to

all the equipment in the tunnel, and can be supervised through the Supervisory Control And

 0

 500

 1000

 1500

 2000

 2500

07/13
00:00

07/13
06:00

07/13
12:00

07/13
18:00

07/14
00:00

07/14
06:00

07/14
12:00

07/14
18:00

07/15
00:00

Se
ns

or
 R

ea
di

ng
 (c

ou
nt

s)

Entrance Zone
Entrance to Transition Zone

Transition Zone
Transition to Interior Zone

Figure 3.2: Light levels inside the tunnel over two days.



41

external
veil luminance

sensor
PLC

lamps

SCADA

WSN

WSN
gateways

feedback 
loopdatacommands

Figure 3.3: Functional components of the architecture.

Data Acquisition (SCADA) component. PLC, gateways, and SCADA are interconnected by a

standard industrial Ethernet LAN, running a firewalled TCP/IP suite. The lamps and the veil

luminance sensor are instead connected as peripherals of the PLC.

Our system is designed with fault-tolerance in mind. We already mentioned that multiple

gateways provide redundancy in the WSN. In the unlikely case that all gateways fail, the PLC

switches to an open-loop control relying solely on the external sensor. If this fails too, the PLC

defaults to a pre-set lighting curve guaranteeing safety.

As this work focuses on the WSN component, the corresponding hardware and software

architecture is described separately and in more detail in Section 3.6. The rest of this section

illustrates the remaining components to the extent necessary for this chapter.

Veil luminance external sensor. The regulations determine the lighting inside the tunnel

based on the veil luminance at the entrance. The latter requires a dedicated external sensor,

in our case a device by Reverberi Enetec designed specifically to operate in road tunnels. The

device is based on a camera-like 1.3 Mpixel CCD sensor, whose output is sent to the device’s

CPU. The veil luminance value is computed according to regulations [13] and output as an

analog 4-20 mA line signal delivered to the PLC, described next.

PLC and control logic. In harsh environments like tunnels, the control functionality is usually

implemented by means of a PLC. Its computation is cycle-based: tasks are executed within each

cycle, based on the timing requirements of the control algorithm. The hardware and computing

power of the PLC depends on the complexity of the tasks and on the number of I/O variables

that the PLC must acquire and control. We use a Siemens SIMATIC S7-400H with redundant

CPUs, equipped with the appropriate peripherals.

The control logic of the PLC is complicated by the following:

• the number of lamps is large (even hundreds depending on the tunnel) and each must be

controlled independently;



42

• the number of measurement points is also large, to enable a dense-enough sampling of

illumination;

• a sensor is affected by many lamps and a lamp affects many sensors, requiring the compu-

tation of a complex transfer function from each lamp to each sensor.

This scenario defines a multi-in, multi-out control problem that is highly under-determined, i.e.,

with fewer measured inputs than controlled variables. Although the control logic is not the focus

of this chapter, we briefly summarize the problem to the extent allowed by space limitations, to

properly place our contribution in context.

Let Φ = [φ1, . . . , φL] be the vector of light flows from each lamp, M = [m1, . . . ,mM ] the

sensed light measurements, and

H =


h11 h12 · · · h1L

h21 h22 · · · h2L

...
...

. . .
...

hM1 hM2 · · · hML


the transfer function of the light intensity from each lamp to each sensor. We can define M =

HΦT + N as the set of measured light samples, where N is a vector of additive noise samples

affecting the sensors’ measurements, and R = HΦT
0 as the target reference working point,

computed based on the external sensor and the tunnel lighting standards. The difference between

the two, ∆ = M − R, represents the error between the target lighting and the one actually

measured. The control problem consists of identifying Φ0 and actuating the lamps to obtain it.

Due to the noise term N , the direct and exact computation of Φ0 is not possible, and we resort

to minimizing the mean square error

Φ0 = argmax
Φ

(E[||∆||2])

where || is the standard Euclidean norm.

The minimization problem above is a convex hull by construction, since all coefficients in

H are non-negative and Φ is strictly positive. The solution can thus be obtained by employ-

ing either a Least Square Error (LSE) or Recursive Square Error (RSE) technique [45]. The

complexity of LSE is O(L) in the number L of lamps, and leads to a simpler implementation,

potentially allowing us to use a cheaper PLC. On the other hand, RSE is O(L3) but its conver-

gence is faster thanks to the presence of “memory” in the form of an integral component in the

control loop. The problem, however, is further constrained by the fact that the light intensity of

lamps cannot be set arbitrarily high, and is bound to a maximum value which depends on the

lamp characteristics and technology. We are currently evaluating through in-field experiments

in our testbed which approach provides the best trade-off among performance, noise sensitivity,

and implementation complexity.



43

Lamps and actuators. The lighting of our final tunnel includes LED (Light Emitting Diode)

and HPS (High Pressure Sodium) lamps. The latter, recognizable by their yellow light, are

commonly used in road lighting due to their high emission and relatively low consumption.

They can be controlled only within 30% to 100% of their illumination range, and changing

their intensity takes minutes. LED technology appeared only recently in tunnel lighting. Its

white light enables better vision, the lamps have much lower energy consumption, and can be

controlled over their entire illumination range almost instantaneously. Our LED lamps have been

developed specifically for TRITon. However, in the testbed deployment described in Section 3.7

we only had HPS lamps installed.

Lamps are controlled individually by the PLC through a digital bus, which enables setting

illumination precisely at the level required. Instead, conventional solutions control large sets of

lamps at once, yielding constant illumination over long sectors of the tunnel with the consequent

energy waste mentioned in Section 3.3.

SCADA. The overall system is completed by a SCADA subsystem connected to the PLC. The

SCADA provides an interface to a human operator e.g., to visualize alarms, manually force light

settings, and perform other configuration and management tasks remotely. The SCADA also

logs all the data coming from the PLC, for statistical as well as legal reasons. In TRITon, we

customized the SCADA to be able to access directly the gateway and therefore the WSN, e.g.,

to collect data and status from the sensor nodes, as well as change configuration parameters

such as the sampling rate.

3.6 WSN Architecture

We illustrate the WSN hardware, the calibration of sensors, and the architecture of application

and communication protocols.

3.6.1 Hardware

WSN node and sensors. We used WSN nodes functionally equivalent to TelosB motes [66],

equipped with an MSP430 microcontroller, a Chipcon 2420 radio chip, and an on-board inverted-

F microstrip antenna. We did not use an external antenna since the on-board already performs

well in tunnels, as mentioned in Section 3.4.

Our nodes are however more easily expandable than TelosB, thanks to three external con-

nectors that simplify the integration of sensor modules as expansion boards. This proved useful

in our case, where we custom-designed an expansion board for the needs of TRITon. The board

contains 4 ISL29004 digital light (illuminance) sensors, and 1 TC1047A temperature sensor. As

shown in Figure 3.4, the board is mounted orthogonally to the node, in a “butterfly” config-

uration. The 4 light sensors are spread in pairs across the horizontal dimension of the board.

As discussed in Section 3.6.3, the reading reported to the gateway is a (filtered) average of



44

2 light
sensors 

temperature 
sensor

TelosB-like
mote

2 light
sensors 

expansion
board

battery pack

Figure 3.4: A deployment-ready WSN node.

the 4 sensor readings. The temperature sensor is not required by light control, but it is useful

to analyze the WSN behavior, especially w.r.t. battery discharge phenomena, as we discuss in

Section 3.8.2.

Node and sensor board are powered by 4 Duracell Procell D-size batteries. All the above is

packaged in a certified IP65 (water and fireproof) polycarbonate box with a transparent cover.

Gateways. We used a Verdex-Pro embedded computer by Gumstix, equipped with two ex-

pansion boards providing Ethernet, USB, and RS232 ports. The former is used to ensure

connectivity with PLC and SCADA, while the communication between gateway and WSN sink

occurs through the on-board USB port. The RS232 ports are used for debug purposes only. The

operating system (Embedded Linux) and applications are stored on the 32 MB flash memory

and use the 128 MB of RAM. A 1 GB microSD card provides additional storage. This hosts

the database logging WSN light samples, which can be queried directly by the SCADA, and is

also useful for debugging the WSN. The database size depends on the number of nodes: for a

20-node WSN it can easily reach 100 MB in a week.

3.6.2 Calibration of the Light Sensors

We must ensure that the off-the-shelf light sensors are accurate and precise enough in our

tunnels. We verified that their response is linear, reducing the calibration task to determining

the “right” coefficient α converting from the raw sensor (count) readings to lux. However, the

calibration is still complex because i) light measurements suffer from a non-negligible, intrinsic

uncertainty—at least ±10% in real-world, non-controlled environments—and ii) the calibration

factor α strongly depends on the light source employed.

Our laboratory setup included professional equipment (e.g., mechanical, high-precision posi-

tioners) to guarantee uniformity of the light source (an HPS lamp) and fine control over the light

emission. The setup is shown in Figure 3.5. As a reference gauge we used an ILT1400A radiome-



45

Attenuation

Clean cover 9,3%

Clean cover (45◦) 10,8%

Dirty cover (A) 30,7%

Dirty cover (B) 33,9%

Table 3.1: Impact of cover and dirt on light readings.

ter along with its companion SCL110 illuminance probe. Both products are NIST-complaint.

We based the calibration measures on 10 sensors, randomly selected. The measured response

included the entire sensor board circuitry, as the integration of the ILS29004 sensor may affect its

response. The measurements yielded a value α = 0.596, with a determination factorR2 = 0.9986.

We estimated the uncertainty at the end of calibration as s = ±
√

(2σ)2 + s2
g + s2

NIST where

σ = 3.2% is the standard deviation of the uncertainty between the measures from sensor and

reference gauge, sg = ±4, 4% is the uncertainty of the reference gauge, and sNIST = ±0, 5% is

the intrinsic uncertainty of the gauge w.r.t. NIST standards. Our measurements yield a total

uncertainty s = ±7, 8%.

Impact of cover and dirt. The measurements above were carried out by exposing the sensor

directly to the light source. However, once deployed, the sensors receive light through the

transparent cover of the package described in Section 3.6.1. Dust and other agents quickly

deposit a dirt film over it, especially at the entrances where nodes are easily splashed by water

and mud.

Determining how these factors affect light readings is key to ensuring that adaptive control

relies on the actual tunnel conditions. We performed experiments with clean and dirty covers,

comparing the results with the previous ones. We used dirty covers from one of our testbeds on

a high-traffic road, after an entire winter with heavy rain and snow. The results are shown in

Table 3.1. A clean, transparent cover is enough to cause a 10% attenuation. The incidence angle

does not affect this value significantly. Dirt induces an additional 20-30% attenuation: Table

Figure 3.5: Setup for the calibration of light sensors.



46

TeenyLIME 

Data 
Collection

Data 
Dissemination

TupleSpace TupleSpace

Sensing

TupleSpace

TinyOS

Security
TupleSpace

Figure 3.6: Software architecture.

3.1 shows two of the dirtiest covers. Although tunnels are periodically cleaned, we are studying

ways to prevent or mitigate attenuation, including online calibration and repellent coating.

3.6.3 Software and Communication Protocols

The software and communication protocols of our WSN rely on TinyOS [31]. However, unlike

the vast majority of deployments where application and system software sit directly on the

operating system, we built the TRITon software on top of the TeenyLime [16, 52] middleware.

Our choice was motivated by our successful experience in Torre Aquila, described in Chapter 2,

and the possibility to verify the effectual ability to reuse the components developed in such a

context.

Overview. Figure 3.6 illustrates the architecture of the WSN software. Similarly to the design

described in 2.4, all macro-components in the TRITon application sit atop TeenyLime, which

offers a 1-hop shared memory space abstraction in the form of a tuple space, i.e. a collection

of typed sequences of fields, on which components can insert, query and receive notifications

regarding the data. TeenyLime both replaces the default message passing communication con-

structs provided by TinyOS, and bestows upon the architecture a flat layout. Indeed, both

application (e.g., sensing) and system components (e.g., data collection) lie on the same level

and interact exclusively through the tuple space. We next offer details on these components.

Sensing. The control algorithm requires input values every 30 s from nodes in the entrance,

transition, and exit zones, where solar light has a higher influence, and every 5 min from the

nodes in the interior zone. During these intervals, the sensing component collects samples from

all 4 light sensors at a configurable rate, set to 5 s by default. As described in Section 3.4, vehicles

produce transient noise—abnormally low or high readings caused by big vehicles and headlights,

respectively—that must be filtered out. These outliers are eliminated as follows. Each time a

sample is taken, the value of the 4 sensors is averaged into si, by excluding the saturating ones,

if any. When reporting to the sink, the average sall of all the values si is computed. For each si,

if the difference |sall−si| differs from sall by more than 50%, si is discarded and sall recomputed.

Data collection. Single-sink collection trees, the most common solution in the literature, are

less effective in tunnels. The tunnel linear shape yields a larger network diameter: nodes closer to



47

the root bear a heavier load, funneling information from a large portion of the WSN. Moreover,

the larger number of hops increases the probability of data loss between the leaves and the root.

Reliability is complicated further by the permanent asymmetries present in tunnel links [57],

reducing the effectiveness of the link-layer acknowledgments commonly used to ensure successful

transmission.

To provide load balancing and mitigate the risk of message loss on long, multi-hop paths,

we adopted a solution collecting data at multiple sinks, ideally spread evenly along the tunnel.

Each sink periodically and independently builds a collection tree by flooding a control tuple

containing path cost information. The latter is determined by aggregating the per-hop LQI,

similar to MultihopLQI [79], as this technique in tunnels produces overlays similar to those

obtained with ETX-based protocols but with much less overhead [57]. Sink selection occurs

implicitly, as in CTP [26], by choosing as parent the neighbor with the smallest node-to-sink

routing cost. The tree is periodically reconstructed with a sink-initiated message. This allows

the routing topology to adjust to topology changes and simultaneously serves as a “keep-alive”,

enabling nodes to detect when a sink is no longer available. This, together with the implicit

sink selection scheme above, provides an automatic hand-over functionality in case a sink fails.

Data reliability is achieved with a hop-by-hop recovery scheme. Data tuples contain a se-

quence number; upon forwarding, a small number of tuples are cached in the tuple space. When

a communication failure occurs, the parent identifies a gap in the sequence and “pulls” the

missing tuple from the child’s cache.

Dissemination. The WSN nodes can be configured remotely by exploiting one-to-many com-

munication from the gateways, e.g., to change the light sampling frequency or modify MAC

parameters. This is useful both to implement the functionality necessary to the SCADA and to

manage experiments on the WSN. To disseminate the necessary configuration commands from

the gateways to the WSN nodes we employ a Trickle-like scheme [41], which guarantees eventual

consistency of the information available at all nodes.

Security. In our environment, physical security is the greatest concern, since the WSN nodes

are easily accessible and can be easily damaged or stolen. Nevertheless, we designed a simple

message authentication scheme based on dynamically-distributed symmetric keys, to ensure that

light readings come from legitimate nodes. This component is placed between the operating

system and the middleware, effectively providing a secure channel on top of TinyOS.

3.7 Testbed Deployment

As mentioned, our final deployment is on a high-traffic road. Carrying out experiments in this

site would be impractical, due to the need to block the road partially or totally, and also risky,

given that we affect illumination, a key constituent of road safety. Therefore, we were granted

access to a shorter, lower-traffic tunnel that served as a testbed we could more easily access to



48

!"#$%&"'#$%(")$%*+"#$% !",#$%

-.*-.,
$*$$,$$+$$!$$#$$&$$'$$/$$($*)$***,*+*!*#*&*'*/*(,)

,*,,,+,!,#,&,',/,(+)+*+,+++!+#+&+'+/+(!)

*)).$012$34%5,#).$012$34%5 .26$789: .26$789:$;<87=>83? .26$@4=:A4B

!"#$%!"#$%!"#$%!"#$%!"#$%!"#$%!"#$%!"#$%!"#$%!"#$%(")$%(")$%(")$%(")$%*+"#$%

C7%474@:9$34%5
1DE .FGF$H>F9@:

Figure 3.7: The equipment deployed in our testbed tunnel.

setup our experiments. However, the downside is that we were allowed to replace only partially

the tunnel lighting infrastructure. The tunnel is a 260 m-long, two-way, two-lane tunnel. Neither

automation nor communication infrastructure was present.

Figure 3.7 illustrates the equipment we deployed to match the architecture described in

Section 3.5, along with the positions of the various devices. We replaced the first 16 HPS lamps

in one of the lanes with 9 250 W HPS lamps (used as reinforcement) and 7 100 W HPS lamps

(used as permanent), shown in the figure as dark and white rectangles, respectively. Each lamp

is equipped with a ballast containing the electronics necessary to control the emitted luminous

flux. These are the only lamps we can control: the others, shown as dashed rectangles in

Figure 3.7, are set by the pre-existing infrastructure through a simple timer.

The lamps are controlled by the PLC, housed in an industrial rack at the tunnel entrance.

The PLC bases its decisions on the data collected from the WSN, which contains 40 nodes. The

nodes are split evenly between the tunnel walls, and placed at a height of 1.70 m, compatible

with regulations. It is important to note that the spacing among nodes, shown in Figure 3.7,

is driven more by the need to stress-test the WSN and the rest of the system rather than to

optimally close the control loop. Indeed, in our final deployment the position of the WSN nodes

is determined by lighting engineering considerations. These are difficult to derive in our testbed

because we manage only a fraction of the lighting system in the tunnel. Therefore, the number

of WSN nodes is higher and their placement denser than needed. The PLC relies only on the

first 15 nodes: the others are extra, used for our experiments. On the other hand, we are putting

ourselves in a situation that is worse than the one we will find in the final deployment. Indeed,

while in the latter we plan to have 44 nodes over 630 m in each pipe, in our testbed we have

about the same number of nodes over one-third of the length, increasing the number of collisions

and retransmissions. We analyze this factor with dedicated experiments in Section 3.8.2.

The data from the WSN is collected by 2 gateways, installed on the same wall at 2 m

and 80 m from the entrance. These test the effectiveness of our techniques for dividing the load

of data collection and enabling one gateway to take over when the other fails. The gateways are

connected to the PLC via Ethernet and powered by cables run from the tunnel power panel.



49

A WiFi bridge at the entrance connects the PLC with a SCADA in our labs, allowing remote

configuration of the experiments and collection of results.

3.8 Evaluation

We evaluate our system first from the point of view of the application, assessing the ability to

effectively and accurately close the control loop based on the data sensed by the WSN. Then,

we look at the performance of the WSN itself.

3.8.1 Closing the Control Loop

First, we evaluate the response to artificial step-wise changes to the reference, to verify stability

and convergence. Second, we evaluate the complete system according to its intended operation,

with the reference properly set based on real-world light conditions.

Before these tests, we verified that the light readings of our sensors are indeed accurate in the

tunnel, by comparing them against the illuminance probe we used for calibration in Section 3.6.2.

Finally, recall that, as mentioned in Section 3.7, our testbed is realized by partially replacing

the pre-existing lighting infrastructure. The latter includes old and unreliable lamps we do not

control, influencing (and sometimes interfering with) the operation of our system.

Step response. The response of a closed loop system to step-wise changes in the reference

 80
 90

 100
 110
 120
 130
 140
 150
 160
 170

19:00
20:00

21:00
22:00

23:00
00:00

01:00
02:00

03:00
04:00

Ill
um

in
an

ce
 (l

x)

Time

Node 7
Reference

 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

Ill
um

in
an

ce
 (l

x)

Node 4
Reference

Figure 3.8: Evaluating the step response.



50

point is fundamental to assess both the stability of the algorithm and its ability to track the

reference. Moreover, for implementation reasons, the PLC changes the reference point of all

sensors in small steps and not continuously. We ran the step-response tests at night, to avoid

the bias induced by daylight, thus obtaining a controlled experiment in a real-world deployment.

Figure 3.8 focuses on two nodes, showing their target reference value (dashed line) and the

light value actually sensed (solid line). The node position relative to the lamps bears a great

influence. Node 4 is in an unfortunate place, receiving only little light from controlled lamps

 100

 1000

Av
g.

 il
lu

m
in

an
ce

 (l
x)

Nodes
Reference

(a) nodes 1-6: entrance zone

 40

 50

 60

 70

 80

 90

 100

 110

 120

-10
 0
 10
 20Av

g.
 il

lu
m

in
an

ce
 (l

x)

Er
ro

r %
   

   
   

   
   

   
   

   
   

   
   

   
   

   

Nodes
Reference

Error

(b) nodes 7-12: transition zone

 0

 10

 20

 30

 40

 50

 60

03/24
12:00

03/25
00:00

03/25
12:00

03/26
00:00

03/26
12:00

03/27
00:00

03/27
12:00

03/28
00:00

03/28
12:00

03/29
00:00

-10
 0
 10
 20Av

g.
 il

lu
m

in
an

ce
 (l

x)

Er
ro

r %
   

   
   

   
   

   
   

   
   

   
   

   
   

   

Time

Nodes
Reference

Error

(c) nodes 13-15: interior zone

Figure 3.9: Performance of control in the testbed tunnel.



51

and a copious amount from uncontrolled ones, some of which are old and flicker. This situation

is reflected in the noisy measures and imprecise convergence shown in the figure, still the system

is able to track the step-wise reference variations. The position of node 7 is instead closer to

what lighting design suggests, and its tracking of the reference is very good. The behavior of

the other nodes is closer to node 7 than node 4.

In our final tunnel deployment, node placement follows from an accurate lighting design: we

expect the performance to be similar to or better than the one of node 7, due to newer lighting

equipment. However, the impossibility to fully redesign the lighting infrastructure of our testbed

led to an interesting (albeit involuntary) worst-case experiment. Indeed, the results for node 4

confirm that, even with noisy measurements and an incorrect sensor placement, our system is

robust enough to follow the reference trend.

Real-world reference. Figure 3.9 shows the results of experiments over 4 days. For conve-

nience we group sensors in zones, roughly corresponding to the entrance (nodes 1–6), transition

(7–12), and interior zone (13–15). In each chart, the solid line represents the light measured in

the zone, while the dashed line is the reference. The dotted line in Figures 3.9(b) and 3.9(c) is

the percent error between the two, whose scale is shown on the right-hand side y axis.

The dynamic range of any control system is limited by the actuators’ capability. Due to

the presence of a single power circuit, the actuation at the entrance of a tunnel is limited to a

maximum of 150 lx. This prevents correct control in the entrance zone, shown in Figure 3.9(a).

External light enters the initial part of the tunnel and the luminous flow achievable by the

installed lamps is insufficient to match it—note the log-scale of the y axis. The reference set at

night is instead achieved with precision.

Figure 3.9(b) shows the situation in the transition zone: node readings follow the reference

so closely that the two are almost indistinguishable. Finally, as shown in Figure 3.9(c), in

the interior zone the system matches the reference closely during the day, but remains slightly

below it at night. This is due to node positioning that is not the result of an appropriate lighting

engineering study. However, the error remains within ±10% of the reference.

Despite the testbed limitations, these results show that the system can adapt effectively to

the tunnel conditions.

3.8.2 WSN Performance

We report about experiments over a 7-month period from August 13th, 2009 through February

2010. We initially separated the nodes in two networks on different radio channels: one for

testing the control algorithm, and the other for testing routing and sampling. In mid-October,

all 40 nodes became part of the same network, reporting to gateway GW2. We added the

second gateway GW1 in mid-January. Apart from these major interventions, we performed

other maintenance, e.g., to modify the software on the nodes. However, we never changed the

batteries: Figure 3.10 shows energy consumption at select nodes, over the entire 7-month period.



52

 2.6
 2.7
 2.8
 2.9

 3

2009/09/01 2009/10/01 2009/11/01 2009/12/01 2010/01/01 2010/02/01 2010/03/01
-10
 0
 10
 20
 30

Ba
tte

ry
 L

ev
el

 (V
)

Te
m

pe
ra

tu
re

 (C
)

Date

Temperature Battery #2 Battery #9 Battery #18

 2.6
 2.7
 2.8
 2.9

 3

2009/09/01 2009/10/01 2009/11/01 2009/12/01 2010/01/01 2010/02/01 2010/03/01
-10
 0
 10
 20
 30

Ba
tte

ry
 L

ev
el

 (V
)

Te
m

pe
ra

tu
re

 (C
)

Date

Temperature Battery #2 Battery #9 Battery #18

Figure 3.10: Temperature and battery levels on sample nodes over a 7-month period.

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06

01/23 01/30 02/06 02/13 02/20 02/27
 0.01
 0.1
 1
 10
 100

C
ol

le
ct

ed
 S

am
pl

es

Lo
ss

 R
at

e 
(%

)

Date

Collected Samples Loss Rate

gateway
maintenance

sleep interval
250 ms

sleep interval
500 ms

serial failures, reprogramming, forced gateway failures

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06

01/23 01/30 02/06 02/13 02/20 02/27
 0.01
 0.1
 1
 10
 100

C
ol

le
ct

ed
 S

am
pl

es

Lo
ss

 R
at

e 
(%

)

Date

Collected Samples Loss Rate

gateway
maintenance

sleep interval
250 ms

sleep interval
500 ms

serial failures, reprogramming, forced gateway failures

Figure 3.11: Total samples collected and loss rate over 1.5 months. The impact of the MAC

sleep interval was also tested.

As we discussed in Section 3.6.3, the control algorithm relies on different sampling rates

along the tunnel. Nevertheless, we configured all nodes to report at the highest one (every 30 s),

regardless of their position. This yields more data to test the control algorithm, and allows

us to analyze the WSN behavior in more challenging conditions w.r.t. the final deployment.

Besides light samples, each node reports once per minute other data made available through

the SCADA (i.e., battery voltage, temperature, and routing parent) or used for debugging and

experimentation purposes.

The WSN in our testbed is much denser, and challenging, than our target deployment, as

we already noted. Therefore, at the end of this section we also report about experiments in a

sparser deployment matching more closely our final one.

Data yield. A fundamental metric to analyze the performance of our routing layer is the amount

of data correctly received from the WSN. Our application imposes a significant workload: the

required reporting frequency for light samples results in an aggregated goodput (i.e., application

messages collectively flowing in the WSN) of 1.3 msg/s, that increases to 2 msg/s if one includes

also the reporting of system information. Nevertheless, the loss rate typically remains between

0.1% and 0.2%, as shown with a logarithmic scale in Figure 3.11. The spike on January 27th

is caused by a 2-hour intervention required to update the gateways’ software due to failures of

the local connection to the sink. The other major spikes up to 10% are due to other transient

errors on this connection, to forced shut-down of one of the gateways to test our redundancy

mechanisms, and to minor maintenance to individual nodes. The remaining, smaller, variations

are actual data losses in the WSN.



53

The reliability of communication is influenced also by the configuration of the underlying

MAC layer, in our case the low-power listening (LPL) MAC available in TinyOS[78]. Prior to

February 19th the MAC was configured with a sleep interval of 100 ms. We then changed it,

as shown in Figure 3.11, initially to 250 ms and, on February 26th, to 500 ms. The increase

to 250 ms results in a slight, still acceptable increase in loss rate. Instead, the 500 ms interval

appears to be incompatible with our high throughput and network density, as the time spent

transmitting and waiting for the receiver to wake up becomes significant. Apart from these

experiments, the rest of the 7-month period used the 100 ms sleep interval.

Timely delivery. In a closed-loop system, high data yield alone is not sufficient. For data to

be useful, it must arrive on time. In our system, the control algorithm runs every 30 s on the

data collected during that interval. Each data sample reported by a node is timestamped at the

gateway, allowing the PLC to recognize stale data. The jitter between samples from the same

node is therefore of paramount importance, as shown in Figure 3.12. If two samples from the

same node are received more than 30 s apart, the PLC may execute one of its cycles without a

sample from the node, as in the case of node A on the right-hand side of Figure 3.12. However,

if two samples are more than 60 s apart, as in the case of node B, the PLC will miss a sample

from one or more intervals.

The critical interval is therefore between 30 s and 60 s. Figure 3.13 shows the cumulative

distribution function of the sample reporting jitter in this interval, for the same LPL settings

considered earlier, and for the sparse network described at the end of this section. As expected,

the largest 500 ms sleep interval generates an excessive jitter: because of packet losses, about

3.5% of the samples miss the 30 s deadline, and a small fraction (<0.5%) misses the 60 s one.

When using the smallest 100 ms sleep interval, 1.5% of the samples misses the 30 s deadline.

Increasing the sleep interval to 250 ms introduces an additional 0.5% loss. However, in both

cases the system recovers the situation within 60 s. Therefore, it is never the case that the PLC

misses a sample from the same node for two or more consecutive intervals. This performance,

achieved without routing mechanisms devoted to reducing jitter, is perfectly in line with the

requirements of our control problem: the only consequence of these delays is a minor increase

in convergence time.

time
30 s 

30 + ε   30 + ε   
60 + ε

node A

node B

Figure 3.12: Impact of delays on the control algorithm. Vertical arrows denote arrival of a

sample at the PLC.



54

Resilience to gateway failures. As our closed-loop control system must guarantee continuous

operation, the WSN must automatically recover from failures, and limit their effects. In our

target scenario, the WSN will be sparser than our testbed but still dense enough to allow

alternate routes in the presence of one or more node failures, as we describe at the end of this

section. The worst-case scenario is instead failure of one of the gateways, as this would prevent

delivery to the PLC of all the data funneled through the failed sink. To reproduce this situation,

we remotely forced the sink to disable its radio, disconnecting the gateway from the WSN. In this

experiment, we killed gateway GW2, restored it after 2.5 hours, then killed the other gateway

GW1. The two steps in the top chart of Figure 3.14 show the increase in data loss when either

gateway fails. The failure of GW2 is more disruptive, as it collects data from more nodes, due

to its position. After each failure, the cumulative loss rate decreases, and eventually converges

to the previous values. As expected, losses are induced by gateway failures only: as shown in

Figure 3.14, restoring GW2 did not affect the loss rate.

The bottom of Figure 3.14 shows instead that jitter increases sharply in the presence of

a gateway failure. The amplitude of the peak corresponds to the time required by the nodes

to switch to the new gateway. This occurs when the next tree refresh message is received: as

 96
 96.5

 97
 97.5

 98
 98.5

 99
 99.5
 100

 30  35  40  45  50  55  60

C
D

F 
(%

)

Jitter (s)

LPL 100ms
LPL 250ms
LPL 500ms

Sparse network

Figure 3.13: CDF for the sample reporting jitter.

 0

 15000

 30000

 45000

 60000

 0
 0.25
 0.5
 0.75
 1
 1.25
 1.5
 1.75

C
ol

le
ct

ed
 S

am
pl

es

Lo
ss

 R
at

e 
(%

)

Samples Collected
Loss Rate

 30
 60
 90

 120

06:00 08:00 10:00 12:00 14:00 16:00 18:00

Ji
tte

r (
s)

Time

Moving Average Jitter

GW2
down

GW1
down

GW2 up

Figure 3.14: Forced gateway failures.



55

 1.03
 1.06
 1.09
 1.12

C
um

ul
at

iv
e

Av
er

ag
e

LPL 100ms LPL 250ms LPL 500ms

 1.03
 1.06
 1.09
 1.12

02/01
02/02

02/03

M
ov

in
g

Av
er

ag
e

02/22
02/23

02/24
Date

03/01
03/02

03/03

R
ou

tin
g 

O
ps

 p
er

 F
or

w
ar

de
d 

M
es

sa
ge

Network Nodes 1 to 20 Nodes 21 to 40

Figure 3.15: Average routing operations (send and recovery) per message forwarded per node.

one of the gateways is missing, all nodes receive the message only from the remaining gateway,

and select their parent accordingly. In our case, a tree refresh message is sent every 3 minutes:

therefore, the worst-case delay is twice this time.

A closer look at routing. We obtain a high data yield thanks to mechanisms that overcome

communication failures, i.e., retransmissions of non-acknowledged data and recoveries from the

child cache when missing data is detected. Figure 3.15 shows the average number of operations

issued by the routing protocol per message successfully forwarded by each node to its parent. In

an ideal network, this value is 1. The chart shows the results with the usual LPL sleep intervals,

each during a 2-day experiment. An operation in this context is the sending of a data tuple,

or its recovery due to link failure. This high-level cost does not consider the operation details,

e.g., the messages actually required to recover the lost data from the child cache, or the MAC

overhead due to competing on the wireless medium. Nevertheless, it offers an indication of the

effort made by the routing layer to sustain the high delivery rates in our dense setting. We

provide a more detailed estimate of lifetime next. The top, cumulative average plots show that

the cost to the whole network (the middle line in each plot) increases from approximately 6%

for the smallest sleep interval to 10% for the largest. The bottom plots show the actual data

as a moving average. For the smallest interval of 100 ms there is a higher cost during the day,

when vehicular traffic slightly interferes with communication.

Additional insights can be gathered by considering separately the costs of nodes on opposite

walls. Figure 3.15 shows that the costs for nodes on the same wall as the sinks (nodes 1-20) are

approximately 5% higher than for nodes on the opposite wall. To understand why, we compute

the fraction of time a node spends at a given hop count from the sink. Figure 3.16(a) shows

that nearly all nodes that spend more than 50% of their time at 2 hops are located on the same

wall as the sinks. Indeed, nodes communicate better with nodes on the facing wall: they select

one of these as their parent, which then crosses the tunnel back using a second, high quality link

to the sink. Although a multi-hop path costs more than a 1-hop link, the extremely low cost



56

observed for 1-hop links to sinks can be attributed to the fact that these do not duty-cycle like

all other nodes, therefore transmissions towards them have very low failure rates.

With this in mind, we note that when both gateways are active, nodes always select the one

with the shortest path. This is clearly seen in the other two plots in Figure 3.16, corresponding to

the gateway failure experiments of Figure 3.14. Interestingly, a comparison among these charts

shows that Figure 3.16(a) (both gateways active) appears to be the “union” of Figure 3.16(b)

and 3.16(c) (only one gateway active): a node behaves in the WSN with both gateways as in

the best of the configurations with only one gateway active.

Expected lifetime. It is generally difficult to predict the lifetime of WSN nodes. This quantity

is indeed affected by many unpredictable aspects, including the effect of environmental conditions

on battery performance—an important factor in our target scenario.

 0
 25
 50
 75

 100

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Ti
m

e 
(%

)

Node

1 Hop 2 Hops 3 Hops >3 Hops

 0
 25
 50
 75

 100

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

Ti
m

e 
(%

)

Node

(a) Both sinks GW1 and GW2 active.

 0
 25
 50
 75

 100

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Ti
m

e 
(%

)

Node

 0
 25
 50
 75

 100

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

Ti
m

e 
(%

)

Node

(b) Only sink GW2 active.

 0
 25
 50
 75

 100

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Ti
m

e 
(%

)

Node

 0
 25
 50
 75

 100

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

Ti
m

e 
(%

)

Node

(c) Only sink GW1 active.

Figure 3.16: Percentage of time spent by each node at a given distance (hop count) from a sink.



57

Figure 3.17: Battery discharge vs. discharge current.

To obtain a lifetime estimate, we equipped 6 nodes evenly distributed along the testbed with

new batteries, and recorded their voltage readings using the on-board sensor during 22 days of

continuous operation. We determine the expected lifetime as follows:

I. For each day of our experiments, we match the day-long average voltage and average

temperature against the battery discharge profile we obtained from the manufacturer [32].

This determines the service hours provided by the battery, given the current voltage and

temperature.

II. We compute the average temperature for every day in 2009, based on publicly-available

temperature data gathered by a weather station close to the testbed.

III. Using the temperature data at point 2, we replicate “in the future” (i.e., beyond the

experiment duration) the battery discharge behavior we observed, essentially simulating

the latter until the number of available service hours reaches zero.

The procedure above greatly underestimates lifetime. First, battery discharge profiles depend

on the discharge current. In point 1 above, we use the profile for a 100 mA average discharge

current, the lowest value in our battery data sheet. However, the current for WSN nodes running

a LPL-like MAC protocol in configurations similar to ours [63] is expected to be a few mA. As

shown in Figure 3.17 for our batteries, an order of magnitude difference in discharge current

determines a significant increase of service hours. Second, as we replicate the behavior observed

at the beginning of a battery’s life, we are considering the portion of the discharge profile where

the battery loses service hours more rapidly.

Figure 3.18 illustrates the results of our analysis according to the LPL configuration. The

minimal requirement of 1-year lifetime we stated in the introduction is always satisfied. The

best performance always corresponds to a 250 ms sleep interval, the best trade-off between the

power consumed in channel checks and packet strobing during transmissions. Instead, running

LPL with a 500 ms sleep interval yields the worst performance in most cases. We conjecture

that in this setting the power consumption due to long strobing outweighs the gains yielded



58

by less frequent channel checks. Node 31, on the other hand, performs worse with a 100 ms

sleep interval. Presumably, its location in the topology diminishes the bad effects of the 500 ms

setting, which provides slightly longer lifetime than the 100 ms one. Instead, node 20 shows a

markedly higher expected lifetime in all settings: this node is frequently a leaf in the routing

tree, and therefore experiences a reduced routing load.

Towards the final deployment. The WSN behavior in our testbed is deeply affected by the

high density of nodes. The final tunnel deployment will be much sparser. The placement of

nodes is driven by considerations of the lighting engineers, who place the nodes in the interior

zone—where fine-grained measurements are less important—with an inter-node distance up to

60 m. To gather insights on long-range links, we setup experiments using 8 new nodes, divided

evenly between the two walls. The experiments ran from December 4th to the 14th, on a

different radio channel w.r.t. the rest of the WSN in Figure 3.7. For these tests we relied on

GW1 (recall that the two-gateway tests began in mid-January). The 8 nodes were positioned

as follows. Starting from the sink on GW1, nodes on the same wall were placed 60 m apart,

and approximately 30 m from the closest node on the facing wall. To investigate if connectivity

was retained in the presence of node failures, we disconnected two of the central nodes (node 4

and 5) on December 10th and 11th, yielding an inter-node distance of 120 m on the same wall.

These experiments ran with a 100 ms LPL interval.

Figure 3.19 shows the results. In the sparse WSN we setup, our routing achieves 99.98%

delivery with an extra cost (i.e., #operations) less than 4%, as shown by Figure 3.19(a). Spikes

in the moving average for cost are due to the selection of a low quality parent, and are absent in

times of low vehicular traffic (e.g., the weekend of December 12-13). The overall improved per-

formance w.r.t. previous experiments is motivated by the decreased density: channel contention

is reduced and the MAC layer handles communication more effectively. Notably, the forced fail-

ure of the two center nodes has no impact, confirming the considerable length of reliable links

in the tunnel environment. The routing tree, shown in Figure 3.19(b), has a higher depth w.r.t.

 12

 13

 14

 15

 16

 17

 18

14 17 20 22 31 34

E
x
p
e
c
te

d
 l
if
e
ti
m

e
 (

m
o
n
th

s
)

Node id

LPL 100 ms
LPL 250 ms
LPL 500 ms

Figure 3.18: Expected lifetime, beyond one year.



59

 0

 50000

 100000

 150000

 200000

 250000

 0.02

 0.04

 0.06

 0.08

 0.1

C
ol

le
ct

ed
 S

am
pl

es

Lo
ss

 R
at

e 
(%

)

Samples Collected
Loss Rate

 1.03

 1.04

 1.05

12/05
12/06

12/07
12/08

12/09
12/10

12/11
12/12

12/13
12/14

 1

 1.1

 1.2

 1.3

R
ou

tin
g 

O
pe

ra
tio

ns
 p

er
Fo

rw
ar

de
d 

M
es

sa
ge

C
um

ul
at

iv
e 

Av
er

ag
e

M
ov

in
g 

Av
er

ag
e

Date

Cumulative Average
Moving Average

(a) Data loss and cost in terms of number of operations

 0
 25
 50
 75

 100

8 6 4 2Ti
m

e 
(%

)

Node

1 Hop 2 Hops 3 Hops >3 Hops

 0
 25
 50
 75

 100

7 5 3 1

Ti
m

e 
(%

)

Node

(b) Time spent by each node at a given distance from the sink

Figure 3.19: Experiments in a sparse setting.

the situation in Figure 3.16. Nevertheless, this does not negatively affect the jitter, as shown in

Figure 3.13.

Although the ultimate answer will come from the final tunnel deployment, these results show

that the latter should perform better than the overly-dense experimental testbed reported in

this chapter.

3.9 Beyond Adaptive Lighting: Fire Detection

TRITon is a large project encompassing several technologies. At one point, another team tested

their camera-based fire detection system with real fires staged by the local fire department. As

this occurred in our testbed tunnel, we took advantage of the event to investigate whether the

WSN we conceived for light sampling could be used also for fire detection.

Indeed, the ISL29004 illuminance sensor we used relies on two photodiodes: the first one (DA)

is sensitive to both visible and infrared (IR) light, while the second one (DB) is sensitive mostly

to IR. Measuring illuminance requires that the wavelength of incident light is compensated to

follow the human eye response, which is achieved by “subtracting” the response of DB from the



60

 0
 200
 400
 600
 800

 1000
 1200
 1400

58:00 58:10 58:20 58:30 58:40 58:50 59:00 59:10 59:20

Se
ns

or
 R

ea
di

ng
 (c

ou
nt

s)

Time (min:sec)

Node 6
Node 12
Node 16

Figure 3.20: Detecting fire through infrared light sensing.

one of DA. It is well-known that fire, unlike tunnel lamps, emits a significant fraction of light in

the IR spectrum. Detecting fire with the ISL29004 sensor then essentially means monitoring the

output of DB: in the presence of fire, this diode immediately reports a value much higher than

DA. Therefore, in practice, running this experiment came at negligible cost. We modified the

sensor driver to report IR along with illuminance, and made minimal changes to the sampling

rate (1 s) and message format.

In the experiment we report here, a fireman on the back of a truck held a tube connected

to a propane tank, which continuously fueled a flame at the free extremity of the tube. The

truck moved from right to left w.r.t. Figure 3.7. Figure 3.20 shows the data reported by our

WSN, charting over time the IR values from nodes at different distances inside the tunnel. The

presence of a flame causes a distinct and instantaneous increase in the IR value. The many

peaks at node 12 are due to the fireman waving the flame in front of it.

Full-fledged fire detection requires more in-depth studies. However, this impromptu experi-

ment hints at the fact that, once a WSN is deployed in a tunnel, applications other than lighting

become feasible, possibly with only minimal changes to the base design.

3.10 Concluding Remarks

Differently from the experience described in Chapter 2, we reported on a WSN monitoring in-

frastructure closing a control loop. Despite differences in the requirements on the WSN, e.g.,

timeliness, we successfully demonstrated the possibility to reuse components developed for the

system in Torre Aquila, as fostered by the usage of the TeenyLime middleware. The depend-

ability of the employed solution was proved by several months of operation in an experimental

testbed and, from August 2010, in the final deployment site.



Part III

Bringing Quality into

Communication





Chapter 4

Bringing Anarchy to TDMA in the

Versatile, Fully-Distributed

Reins-MAC

The experience acquired by building two operational monitoring infrastructures presented our

concrete background on real world deployments. Their definition clearly manifested a set of

requirements imposed by the end user on the network: reliability, efficient support for heteroge-

neous classes of traffic and timeliness. In the development and implementation of these systems,

we made full use of the default medium access control mechanism provided by the operating

system we used. Despite the fact that no guarantee is explicitly provided by such a solution, the

system services built on top demonstrated themselves to be sufficient to support the required

service quality in both our deployments.

Nevertheless, the impact of different configurations of the protocol on the system perfor-

mance, as experimentally faced in Chapter 3, provided an intuition of the restrictions imposed

by the specific employed solution. Motivated by our own direct experience and further inspired

by the recognized limitations of the current state of the art [14, 39], we defined Reins-MAC. We

provided, in the fully distributed and versatile nature of the introduced solution, an innovative

access control scheme able to bring quality into the definition of communication.

4.1 Motivation and Contribution

Effectively managing access to the shared communication medium of a WSN has been one of

the fundamental challenges faced since the emergence of the vision of large wireless networks

built by resource constrained devices. A plethora of MAC protocols has been proposed [39].

Due to the generally successful employment of CSMA solutions in real deployments [59, 9, 20],

the problem is often considered solved. Nevertheless, no solution exists to support application



64

driven Quality of Service (QoS) requirements in an effective manner.

When such guarantees are needed, systems adopt TDMA-like solutions and enforce dis-

ciplined coordination through rigid slot-based scheduling [72, 5]. One commonly recognized

limitation of these approaches is their inability to adapt to the typical dynamic behavior typi-

cally seen in networks of low power cooperating objects [14]. Further, their inherent complexity

and required compliance to a rigid discipline foster the belief that dynamic changes to the

communication schedule are infeasible [39].

We introduce Reins-MAC, a new TDMA-based protocol that clearly demonstrates that a

dynamically adjustable, flexible solution is feasible and the resulting coordination offers a solid

foundation for QoS requirements arising from higher layers in the protocol stack. Reins-MAC

rejects the common TDMA assumption that a single, network-wide slot size is required. Instead

it adapts the slot size at each node to match local availability, achieving tremendous gains in

bandwidth utilization. The approach that accomplishes this simultaneously allows Reins-

MAC to adapt to the natural connectivity variations present in WSNs. Further, the

flexible slot sizes of Reins-MAC can be explicitly tuned to support dynamic application

requirements, providing guaranteed communication. These points are expanded upon in Sec-

tion 4.2.

The Reins-MAC protocol builds on the theoretical foundations of Pulse-Coupled Oscilla-

tors (PCO) (Section 4.3), an intuitive and easy to implement mechanism to organize individual

node behavior in a network, originally inspired by firefly flash-synchronization. To successfully

adapt PCOs to support scheduling in Reins-MAC, we extend the basic scheme to make ex-

plicit the time (allowing flashes to have duration) and space (restricting flashes to be seen at

defined distances) dependencies among node activities (Section 4.4). The result is Reins-MAC,

a TDMA-protocol with adaptable slot size and flexibility to adapt to network variability (Sec-

tion 4.5), capable of both facing typical communication shortcomings experienced in real world

scenarios (Section 4.6) and support QoS guarantees (Section 4.7).

These achievements are supported by extensive experimental evaluation of Reins-MAC

(Section 4.8) showing scalability, quick response to varying conditions, and solid support for

higher level quality of service requirements. Finally, the implementation of the solution in a

real testbed proves the feasibility of the approach. These results make Reins-MAC a clear step

forward with respect to the current state of the art (Section 4.9) overcoming TDMA limitations

and supporting Quality of Service requirements.

4.2 Why (Another) TDMA?

By dividing communication in periodic frames with slots allocated to unique senders, TDMA

solutions offer guaranteed communication. This section offers motivation for a new approach,

first discussing why TDMA techniques are generally appealing for a variety of applications,



65

showing a challenge that places a barrier to efficient TDMA solutions today, and concluding

with a summary of the benefits of our approach, including how it overcomes the previously

outlined challenge as well as other common criticisms to TDMA.

4.2.1 Why Consider TDMA

To support the claim that a TDMA solution offers many benefits over a CSMA (e.g., B-MAC [65],

X-MAC [4], or their combined TinyOS implementation, BoX-MAC [56]) solution, we offer few

back-of-the-envelope calculations based on our experiences with the road tunnel deployment

described in Chapter 3, and the one in Torre Aquila described in Chapter 2.

Homogeneous Network with Timeliness Requirements. In the road tunnel scenario, we

deployed a WSN to monitor light. The information provided by the sensors is used to adaptively

govern lamps accordingly to current internal and external lighting conditions. This closed control

loop ultimately saves energy and improves safety. Our testbed involved a dense deployment of

40 nodes with a maximum network diameter of 3 hops. Given that data collected at a gateway

is used to control actuators, it is required that one sample from each node arrives at the sink

every 30 s. For a standard TDMA solution, we must define the frame size and the number of

slots per frame.

To guarantee that data, moving in the worst case only one hop per frame, reaches the sink

on-time, the frame could be as long as 10 s (30 s / 3 hops), however, taking a conservative

approach, we suggest a frame length of 5 s. To determine the number of slots, we conservatively

suggest 40 slots (one per node in the network), which yields a slot size of 125 ms (5 s / 40

nodes). Our 100 bytes data packets require approximately 5 ms to transmit; in each slot, a

node can therefore send more than 20 messages, either to deliver local data or to support multi-

hop transmission. If fewer packets must be transmitted, the node is allowed to sleep for the

remainder of the slot, saving energy.

One criticism of TDMA is the requirement that nodes wake up at the beginning of each

slot to potentially receive a packet from the neighbor assigned to that slot. In the scenario just

described, with a maximum 1-hop neighborhood size of 20 nodes (again, a conservative, over

estimate), the 5 s frame length requires a node to wake up on average every 250 ms. This is in

line with the wake-up requirements of BoX-MAC with a reasonable sleep interval.

Further, once the schedule is built, sending a packet in TDMA requires only data and

headers to be transmitted. Instead, a CSMA protocol must also send some amount of preamble

(an average of half the sleep interval for BoX-MAC). Additionally, TDMA, by construction,

ensures collision free communication, bounding the additional costs for retransmissions and

acknowledgments to the actual link losses. Further, TDMA has the potential to guarantee the

timeliness requirement of the application; a CSMA implementation does not.

Heterogeneous Network with Bandwidth Requirements. The deployment in Torre Aqui-



66

la supports offline structural monitoring in a medieval tower with a 15 node, 6-hop network. This

system includes three accelerometers, each sending bursts of 1422 packets. To avoid overloading

the network, our BoX-MAC-based implementation sends maximum one packet per second; data

from a single sampling session, without compression, takes 30 minutes to reach the sink.

For a TDMA solution, we conservatively suggest a frame length of 4 minutes with 15 slots.

The resulting 16 s slot size is sufficient for all packets in the burst to be forwarded one hop,

meaning that data will arrive at the sink in the worst case after 24 minutes (4 minutes * 6 hops).

The energy expenditure between TDMA and CSMA in this case is notable. In our BoX-MAC

implementation, a node on the data path will, for each packet (optimistically): (1) transmit on

average for 50 ms (half of the employed 100 ms sleep interval) and (2) receive for 10 ms.1 In other

words, the radio will be active for at least 85 s in the 30 minute interval, ignoring retransmissions.

With a TDMA solution, instead, a node will (1) transmit for 15 s and (2) receive for 15 s, for

a total active time of only 30 s per 24 minute interval. This means that the network lifetime is

expected to double, simply by adopting TDMA.

Additionally, in our BoX-MAC implementation, our experience suggests that adding more

accelerometers would overload the system due to increased channel contention and collisions.

Instead, with TDMA and a 4 minute frame, in 24 minutes we could transmit data from 6

accelerometers without creating bottlenecks. Alternately, we could increase the data rate from

the existing sensors. Notably, for a TDMA solution we can easily calculate these possibilities,

instead the CSMA behavior depends heavily on the random timings to access the channel, which

possibly cause collisions, and complicate similar calculations.

4.2.2 Why Not to Consider TDMA

While the rough calculations above clearly support the use of TDMA for a range of applications,

accurately selecting the slot size remains a challenge. Here we consider this issue for fixed

ideal networks, and outline additional challenges arising from the natural dynamics of WSN

environments.

TDMA in Wonderland. Under the assumption of an ideal channel, communication properties

among nodes remain constant over time, without the manifestation of intermediate delivery

probabilities. In this scenario, the interference sets, i.e., the direct and indirect neighbors whose

simultaneous communication results in a collision at a potential receiver, are invariant over time.

A TDMA protocol, to avoid collision by construction, must assign a different slot to each node

in the same interference set. As defined by the hidden terminal problem, the area of possible

communication interference spans the 2-hop neighborhood.

Figure 4.1 (we defer details of our simulation setup to Section 4.8.1) shows the maximum

(Max) 2-hop neighborhood size for networks of different sizes and densities. Notably for networks

1We ignore the BoX-MAC detail according to which a node remains in listening mode for some time after

receiving a packet.



67

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

100 200 300 400 500 600 700 800 900 1000

N
ei

gh
bo

rh
oo

d 
Si

ze

Number of Nodes

1 Hop
2 Hops (MEAN)

2 Hops (MAX)

(a) Distance 24.

 0
 10
 20
 30
 40
 50
 60
 70

100 200 300 400 500 600 700 800 900 1000

N
ei

gh
bo

rh
oo

d 
Si

ze

Number of Nodes

1 Hop
2 Hops (MEAN)

2 Hops (MAX)

(b) Distance 28.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

100 200 300 400 500 600 700 800 900 1000

N
ei

gh
bo

rh
oo

d 
Si

ze

Number of Nodes

1 Hop
2 Hops (MEAN)

2 Hops (MAX)

(c) Distance 32.

 0
 5

 10
 15
 20
 25
 30
 35
 40

100 200 300 400 500 600 700 800 900 1000
N

ei
gh

bo
rh

oo
d 

Si
ze

Number of Nodes

1 Hop
2 Hops (MEAN)

2 Hops (MAX)

(d) Distance 36.

Figure 4.1: Variability of the 1-hop and 2-hop neighborhood for multiple network sizes and

densities. Distance indicates the average distance between nodes (smaller distances imply higher

density).

of 100 nodes, more nodes are on the edges of the network, lowering the average neighborhood

size. Instead, for networks with 500 or 1000 nodes, this effect is minimal, and average sizes are

more consistent. In any case, a typical TDMA solution will identify a priori a single, network-

wide slot size corresponding to the maximum 2-hop neighborhood size, as it ensures that a

collision-free schedule can be devised. Identifying the actual maximum density of the network is

challenging, usually resulting in worst case provisioning and reduced bandwidth utilization [35].

The figure also shows the mean (Mean) 2-hop neighborhood size; the gap between Mean

and Max indicates the variability of network density throughout the topology. Intuitively, in

areas of low density, allocating the number of slots according to the maximum density will leave

some slots unassigned, wasting bandwidth. For example, in the mid-density scenario defined by

an inter-node distance of 28, shown in Figure 4.1(b), the difference between Mean and Max is

approximately 30, implying a sizable waste.

The assumption of no slot reuse, used so far, is a simplification that does not necessarily hold

in solutions available in the literature. Mechanisms to assign unused slots have been defined at

the cost of an increased algorithmic complexity and reduced scalability.

TDMA in the Real World. The above considerations are based on an idealized scenario

with stable networks. Instead, low-power wireless channels deviate from the ideal one [74]: links



68

manifest intermediate packet delivery probabilities, asymmetries and variability over time.

In real world conditions, the definition of the interfering set is non trivial. In addition to

perfect links with either 100% or 0% probability of delivery, it is common to find intermediate

links. Moreover, considering the variability over time, a node may become part of a 2-hop

neighborhood different from the one in which the schedule was formed. As the interfering set

changed, the schedule must be updated, which usually reduces to a rebuild from scratch. As a

result, a TDMA solution should implement a monitoring mechanism running frequently enough

to adjust the schedule to the current conditions. Moreover, these changes in the connectivity

may vary the size of the 2-hop neighborhood, and their occurrence in a dense area may invalidate

the slot size chosen before deployment under the initial network conditions.

Finally, the discretization of time, defined by the slot size, requires time synchronization,

which needs to be executed continuously to account for clock drifts. Usually the time alignment is

handled with dedicated protocols, independent from the scheduling ones. This forced decoupling

of protocols, heavily affecting one another, hampers the efficiency of the whole solution. The

need for continuous realignment due to the poor clock quality and the intrinsic price of the

synchronization mechanism are commonly recognized obstacles to the usage of TDMA solutions

in practice.

4.2.3 Why Consider Reins-MAC

With Reins-MAC, we have developed a TDMA protocol that dynamically adjusts to both

network density and connectivity changes, thus wasting less bandwidth and tolerating natural

WSN dynamics.

Bandwidth Gains. To concretely demonstrate the potential gains, Figure 4.2 shows the band-

width allocated by Reins-MAC in comparison to two idealized slot allocation schemes: MAX

and MEAN.

MAX is representative of common TDMA solutions and establishes a single, fixed slot size

for the entire network by dividing the frame equally among the largest 2-hop neighborhood:

1/max (2-hop neighborhood size). MAX is only an indication of what an optimal solution can

achieve, assuming perfect information about a stable topology and without considering possible

subsequent neighborhood set fluctuations. At the same time, it does not consider any possible

slot reuse, which can increase the bandwidth individually available.

MEAN, instead, considers a hypothetical solution with variable slot sizes set according to

the local density. Specifically, MEAN divides the frame among the average 2-hop neighborhood:

1/avg(2-hop neighborhood size).

Figure 4.2 shows that Reins-MAC achieves an increase in the average slot size for all

scenarios, up to more than 200%. This means that Reins-MAC can support up to three times

the rate of a typical TDMA solution. Further, the same mechanisms that allow it to adjust the

allocated bandwidth according to variable densities allow it to dynamically adapt to network



69

 0
 15
 30
 45
 60

 100  200  300  400  500  600  700  800  900  1000

G
ai

n 
R

at
io

 (%
)

M
EA

N

Number of Nodes

 60
 90

 120
 150
 180
 210
 240
 270
 300

G
ai

n 
R

at
io

 (%
)

M
AX

24 28 32 36

Figure 4.2: Increases in allocated bandwidth with Reins-MAC with respect to two idealized

TDMA schemes: MEAN and MAX. (Note the different y-axis scales of MEAN and MAX.)

changes. Details on the Reins-MAC mechanisms enabling these significant gains are offered in

Section 4.5.

Support for dynamic applications. To this point we have considered only applications with

static constraints. Instead, many applications vary their requirements during operation.

For example, in the volcano monitoring [82] application, WSN nodes periodically report

summary information, but, when something “interesting” is detected, the gateway requests

detailed data from specific nodes, dynamically changing the data profile of the application from

periodic low data rate transmission to bulk transmission along the path from the selected data

sources to the sink. A single slot size common to all nodes may not support the required bursts.

Instead, a better approach would adapt the slot size to accommodate the required bursts,

specifically reserving bandwidth on the required paths. Similarly, latency requirements can vary

over time with the application. Section 4.7 describes how Reins-MAC supports these dynamic

needs.

Simplicity of approach. TDMA is also criticized for the complicated mechanisms required to

establish collision free schedules, the overhead required for time synchronization, and the overall

complexity of the implementations.

We argue that Reins-MAC successfully addresses these concerns. By basing the protocol

behavior on the PCO mechanism, Reins-MAC takes on a simplicity that is both easy to un-

derstand and implement. Further, its fully-distributed nature reflects the locality of forming a

2-hop collision-free schedule, allowing it to scale to large deployments. Finally, Reins-MAC

does not rely on any external time synchronization mechanisms, as the required synchronization

is guaranteed in the core functionality of the protocol.



70

Oscillation
period

Pulse

Phase

Oscillator

(a) Phase Domain.

time

PulsePulse

Oscillation
period

Pulse

Phase

(b) Time Domain.

Figure 4.3: Pulsing Oscillators scheme.

4.3 Background

Pulse-Coupled Oscillators [64, 54] are a distributed coordination scheme inspired by firefly be-

havior. Here we show how PCOs can naturally describe distributed solutions to synchronization

and scattering problems. The minor modifications required to apply PCOs in wireless net-

works (Section 4.3.2) combined with our novel extensions (Section 4.4) form the groundwork for

describing Reins-MAC.

4.3.1 Core Concept: Pulse-Coupled Oscillators

PCOs draw inspiration from firefly behavior [54]. Each beetle periodically emits a light. Other

fireflies observe these flashes and alter the timing of their own flashes, eventually yielding a

unison blinking of the whole swarm. We focus first on individual behavior, then on mutual

coupling.

Formally, the periodic behavior can be described as a cyclic oscillator manifest as a phase

variable that (i) assumes a value in a given range, e.g., [0, 1), (ii) increases linearly over time

and (iii) resets to the first limit when the second is reached. To mimic the flash of a firefly,

resetting the phase variable can be combined with a pulse that is essentially a notification of

the reset. As shown in Figure 4.3, the resulting behavior is a periodic pulsing at the oscillation

frequency. We formalize the notion of pulse observation by defining for each oscillation period

k, the set of observed pulses as:

Θk
i = {θki,j |j ∈ c(i)} (4.1)

where c(i) contains the node identifiers whose pulse i can observe, and θki,j is the value of the

phase at node i when j pulsed. For notational simplicity, we remove the assumption that the

local pulse happens when the phase variable resets; instead we define φki as the phase of the

local pulsing.

In fireflies, pulsing and observing are not sufficient to produce synchrony, which is achieved

by either actively anticipating or delaying the individual pulse. Therefore, the phase variable



71

time

θi,j1
θi,j2 Δi'

Δi
(b) excitatory coupling

( Δi' < Δi )
(c) inhibitory coupling

( Δi' > Δi )

(a) no coupling

j1

j2

i

Δi'

Figure 4.4: Coupling functions applied at node i: (a) no coupling function (the interval between

pulses equals the oscillation period); (b) excitatory coupling (reduced interval); (c) inhibitory

coupling (increased interval).

no longer varies as a constant, linear function over time, but exhibits spontaneous changes in

response to observations. The rules driving such changes are captured in a coupling function

that establishes the phase variable at which the flash will occur in the next oscillation round

k + 1:

φk+1
i = f(φki ,Θ

k
i ) (4.2)

. As shown in Figure 4.4, early pulsing is referred to as excitatory coupling, while delayed pulsing

is inhibitory coupling. Adapting the local phase according to observation can be exploited to

drive the emergence of different network behaviors, such as pulse synchronization or scattering.

Pulse Synchronization. Continuing the firefly analogy, PCOs have been successfully applied

to achieve synchronization without requiring a master, reference anchor. The original mech-

anism [54] applies only excitatory coupling by moving pulses more when far from synchrony,

and less when closer to being synchronized. Interestingly, another time synchronization tech-

nique [43] can be simply expressed in PCO terms. In contrast to the original approach, it

combines inhibitory and excitatory coupling, modifying the pulse according to the average of

the perceived pulses:

φk+1
i =

∑
θki,j∈Θk

i
θki,j + φki

|c(i)|+ 1
(4.3)

Intuitively, such a combination of inhibitory and excitatory coupling brings the system to con-

vergence by iteratively decreasing the distance between the extreme pulses and reducing the

synchronization error round by round.

Pulse Scattering. Another distributed problem that can be reduced to the PCO scheme is

pulse scattering [25, 19], whose goal is to obtain pulsing schedules where all the nodes that

can hear each others beating are evenly spread throughout the oscillation period. A simple

but effective solution is to distance the local pulse as much as possible from the surrounding



72

ones; this is achieved by placing the beating almost exactly in the middle between two perceived

pulses:

φk+1
i = (1− η)φki + η(θki,PREV (i) + θki,NEXT (i))/2 (4.4)

, where PREV(i) and NEXT(i) are the preceding and following nodes in the pulsing schedule and

η is the coupling strength that defines how close to the center of the two pulses the local pulse

is placed.

4.3.2 PCOs in Wireless Networks

The scheme presented can naturally be adopted in WSNs to couple node activities. In addition to

synchronization [83], scattering has been applied to spread sensing activities among duty cycling

nodes [25]. Specifically, if sensing tasks are scheduled when a local pulse happens and the sensing

area covered by a node is comparable to its communication range, the pulse notifications a node

perceives come from the nodes sensing similar events. Therefore, aligning sensing to the pulsing

schedule reduces the temporal overlaps when neighboring nodes actively sense the same area.

PCOs can be easily implemented in WSNs with a local clock to drive the oscillation and a

broadcast message to notify others of the phase reset. By receiving notifications, a node builds

the set of observed beatings. In multi-hop networks, direct observation is limited to the nodes

in communication range. This set is then used to compute the changes in the pulsing according

to the employed coupling function.

Wireless communication imposes limitations due to the shared nature of the medium, where

simultaneous transmissions can collide, as well as the cost of radio activations. Random delays

(termed deferred pulsing) have been employed to reduce the probability of collisions. Moreover,

although the original PCO scheme [54] applied a coupling function after each received pulse,

straightforward modifications achieve the same effect when applying the function only one time

in each round [83], reducing both the number of radio activations and the probability of pulse

collisions.

4.4 Extending PCOs

Although the presented PCO scheme offers a solution path to different problems, we identify

two fundamental constraints that limit its applicability. First, the pulse is instantaneous, while

node activities driven by the pulsing have a finite duration. Further, node behavior can couple

only with nodes immediately observable, whereas inter-node dependencies may span beyond

the perceivable horizon. We consider these as temporal and spatial restrictions and propose

straightforward extensions to PCOs to accommodate them.



73

4.4.1 Time and Space Dimensions

Pulse Duration. In PCOs, a pulse is an instantaneous event with an immediate effect. E.g.,

when used for time synchronization, the event (the unison beating) occurs suddenly. Consider,

in contrast, that in the example of pulse scattering each node is awake to detect events for a

finite time. We can conceive of situations where nodes may have different awake intervals, e.g.,

keeping nodes with more energy active for longer time. To support this, we make the pulse

dependent on the activity length with a pulse duration adding a temporal dimension. Each

pulse is described as:

Φk
i = 〈φki , δki 〉 (4.5)

, where φki is the pulsing reference and δki is the duration of the pulse i at iteration k.

Pulsing Distance. As defined thus far, a node establishes its own pulse time by coupling with

other nodes it can directly communicate with. In general, the influence between activities inside

a community need not be restricted to the members in immediate contact with one other. E.g.,

the hidden terminal problem arises when simultaneous transmissions by nodes not able to hear

each other interfere at an intermediate node. Generalizing this, we make explicit the range or

distance of influence in the coupling scheme by introducing pulse distance: the symbolic distance

at which a remote pulse can be perceived. Pulses that can be directly perceived are at distance

1; the pulses heard by nodes at distance 1 have distance 2, etc. In the end, the set of perceived

pulses is:

Θk
i = {〈θki,j , δkj , hkj 〉|j ∈ c(i) and hkj <= H} (4.6)

, where hkj is the distance of the pulse at node j and H is the coupling horizon of the coupling

function. Therefore, all the pulses h-distant from the point where the function is evaluated

combine to influence the pulsing behavior.

4.4.2 Extended PCOs in Wireless Networks

Nature implements the pulsing mechanism in fireflies with a light that inherently conveys the

required information, i.e., the time of the flash. Migrating to the artificial, wireless network

domain introduces both advantages and disadvantages. Using a broadcast message to model

the phenomenon, the transmitted packet can be exploited to carry arbitrary information. As

mentioned, collisions, not present with light pulses, can be overcome with the deferred pulse

mechanism, with packets advertised at a random offset after their actual firing. To compensate

for this delay, the offset is carried in the message.

To implement the proposed extensions, we define the structure of a single pulse as the 4-tuple

〈source identifier, distance, duration, offset〉. Multiple tuples can be aggregated, e.g., allowing a

node to append its own tuple to the tuples of nodes from distances within the coupling horizon.

By combining tuple aggregation with deferred pulsing and allowing several messages to compose

the pulse, each node can send information about multiple pulses at once.



74

A

C

B

D

(a) Network Topology.

A

BC

SEND

LISTEN

LISTEN

D

(b) 1-hop Scattering at A.

A

B
C

SEND

LISTEN

LISTEN

D

SLEEP

(c) 2-hop Scattering at A.

A

B
C

D

N
θN

(d) Polite Joining of N.

Figure 4.5: Core Reins-MAC functionality.

4.5 Towards Reins-MAC: PCOs Exploited

The extended coupling scheme of Section 4.4 can be used as basis to solve many problems of

coupling behavior in distributed settings. One such problem in WSNs is sharing communication

resources. As sketched in [18], and further developed in [58], PCOs offer the foundation for a

TDMA-like MAC protocol overcoming many TDMA shortcomings.

Our approach creates slots and assigns them to senders, but unlike most TDMA approaches,

the slot size of each node can vary. To achieve this, we use pulse scattering to identify the begin-

ning of the slot for each node, and apply a pulsing distance to ensure communication does not

overlap within a 2-hop radius. Further, we use pulse synchronization to identify a slot common

to all nodes that is exploited to coordinate schedule changes, e.g. allowing node additions with-

out interfering with ongoing communication. The resulting protocol, Reins-MAC, provides the

basic mechanisms required to share communication resources in an application agnostic man-

ner. In this section, we introduce our TDMA scheduling assuming an ideal scenario with perfect

links; in Section 4.6, we face the common problems of realistic links.

4.5.1 TDMA with adaptable slot size

Problem Definition. In TDMA-based communication, each member is assigned a portion

of time in each frame to allow collision-free interactions. Such an allocation must take into

account interference caused both by nodes in direct communication range as well as by those

connected by an intermediate node. The main challenge in a multi-hop scenario is, in fact, the

classic hidden terminal problem in which two nodes, A and D in Figure 4.5(a), that cannot

communicate with one other, simultaneously attempt to communicate with the same node, C,

causing interference at C. Preventing such collisions is the main goal of requiring all 2-hop

neighbors to have non-overlapping slots. It is worth noting that this property is localized to the

2-hop neighborhood.

Classic Solution. In typical TDMA solutions, time is divided into periodic frames composed

by a sequence of slots assigned to each node. The slot size is defined a priori and is equal at



75

all nodes. The value must be tuned for each deployment. As discussed in Section 4.2, basing

slot size on maximum density can result in bandwidth waste. Further, most TDMA protocols

need extensive information to form schedules, e.g., requiring complete information at a sink or

complex distributed mechanisms to guarantee collision avoidance. Such rigid schemes cannot

easily adapt to changes in connectivity arising from either changing environmental conditions

or explicit addition or removal of nodes.

Through the PCO lens. We approach slot size selection and slot allocation through the lens of

PCOs, noting the similarity between this communication problem and that of pulse scattering

in Section 4.3.1. Consider the case when all nodes are within communication range. Nodes

spread their pulses evenly throughout the frame. If a transmission slot for a specific node is

defined to begin at the moment at which it pulses and end when the next node pulses, a TDMA

schedule with variable slot sizes emerges. This solution has been studied in [19]. This solution

is applicable only for 1-hop scenarios.

Consider directly applying such an algorithm in a multi-hop network. While node C in

Figure 4.5(a) will scatter with respect to both A and D, because A and D are not within range,

they do not scatter with respect to one another and their slots may overlap. Simultaneous

transmissions from A and D will collide at C, as shown in Figure 4.5(b). This issue is solved by

applying pulse scattering with a horizon of 2 as in [18, 58] and shown in Figure 4.5(c). When

the node’s own pulse fires, it can transmit; when a 1-distant pulse is received, the node listens

for incoming transmissions; when a 2-distant pulse is expected the node, if it is sending, stops

any transmission.

In [18, 58], no duty cycle scheme is described. However, in the assumption of ideal channels

and perfect clocks, a simple scheme can make each node wake up right before its own slot, send

the local pulse and the data messages, followed by a concluding message indicating the end of

the transmission. After this last message, the sender can turn off the radio. Then, right before

a 1-distant pulse is expected, the node can wake up to receive both pulse and messages. Finally,

once the sender signals the end of the transmission, the node can return to sleep. This scheme

fails in real settings, where clock drifts and lossy links can cause a node to miss a pulse. We

face this problem in Section 4.6.

It is worth noting that the described scheduling mechanism does not require time synchro-

nization, as the schedules are based on a per-node reference system. Although nodes must know

when the other nodes in their schedule will transmit, the nodes are not required to share a

common zero time.

4.5.2 Polite TDMA

Problem Definition. The simple solution presented above naturally adapts to changes due to

node removals and it is already able to handle node additions: new nodes simply begin pulsing,



76

and the schedules in the 2-hop neighborhood scatter accordingly. However, in order to recognize

such changes, nodes must periodically listen for an entire oscillation period to perceive pulses not

yet integrated in their local knowledge. Moreover, while nodes can join the network by simply

starting to pulse, it is likely that this new pulse will interrupt an ongoing communication. As

our goal is to support communication guarantees, such interruptions are not acceptable.

Classic Solution. Non disruptive changes to the communication scheme are usually handled

by effectively reserving a slot, known to all nodes, for control messages such as the intention

to join the schedule. In classic TDMA protocols, time synchronization is already required to

align the beginning of the time frames on all the nodes. This service can therefore be exploited

to declare the beginning of each frame for coordination. However, time synchronization is

commonly defined as a stand-alone service, independent from the solution in charge of defining

the communication schedule.

Through the PCO lens. We first recall that no synchronization is required in the solution

presented above. In fact, a node wanting to join the system can learn the current communi-

cation schedule by listening to the pulsing of its neighbors, and independently decide the best

placement of its own pulse. However, this solution does not avoid collisions with ongoing com-

munication. Therefore, we adopt the approach employed in classic TDMA solutions, allocating

a coordination slot, common across all schedules. Augmenting our MAC-solution with a syn-

chronized slot is trivial: we require nodes to pulse twice. One pulse is still controlled by the

scattering equation, while the other is updated according to a synchronization coupling function,

exploiting Equation (4.3).

The synchronized pulse identifies a small, fixed size slot, shown as a shaded region in Fig-

ure 4.5(d), during which all nodes must listen, and any node can transmit using a simple CSMA

approach. For a node to join the schedule, it transmits in the control slot a deferred pulse

indicating its preferred location in the schedule. E.g., to maximize the assigned slot size, a node

should identify the largest distance between two consecutive pulses in the schedule, and place

its new pulse in the middle. All nodes incorporate the pulses indicated in the control messages,

and after a stabilization period, the new node can begin to transmit at its pulse-assigned slot

without disrupting ongoing communications. Further, notification of both scattering and syn-

chronization pulses is combined and transmitted at the beginning of the assigned transmission

slot. This, as previously noted, naturally avoids collisions among pulse notification messages

and makes the cost of the synchronization procedure negligible.

4.6 Bringing Reins-MAC into Real World

As discussed in Section 4.2.2, the scheduling mechanisms introduced must account for the typi-

cal characteristics of low power wireless communication. Several real world experiences [74, 57]

reported the presence of links with intermediate reception probabilities, asymmetries, and vari-



77

ability over time. In this Section, we describe how Reins-MAC faces these challenges.

4.6.1 Intermediate Links

In low-power wireless the presence of intermediate links is common. As a consequence, the

existence of a link between nodes is insufficient to guarantee the delivery of a message. In

contrast, in ideal scenarios links are perfect; all messages sent along a link are always either

received or lost. Notably, intermediate links may lead to transmission failures despite a perfect

schedule.

Manifestation in Reins-MAC. Scheduling, as a consequence of the PCO nature, is a con-

tinuous process that runs at every oscillation epoch. The coupling function uses information

from the pulses collected in the previous epoch to compute the new pulsing phase. If all pulses

from the neighbors are always received, the local schedule is up to date with the changes in the

interference set and the node can follow it straightforwardly.

However, if a pulse notification gets lost, the local schedule contains wrong information.

E.g., we can assume a small network made by two nodes, A and B, with an intermediate link

connecting them. If a pulse sent by A is not received by B, B does not know if A’s pulsing time

changed and can only use the last information it has. Given φt−1
A and φtA as the previous and

current phase of A, the former is the time when B will wake up to wait for A’s pulse whereas

the latter is the one at which A will pulse. Due to the scattering coupling function, the current

phase may move either ahead or behind the one of the previous round. If the phase did not

change, B will be awake at the right time for A to pulse. If φt−1
A precedes φtA, B will be awake

before A’s pulse; after some time, B will nonetheless receive the pulse notification. Instead, if

φt−1
A follows φtA, A will pulse before B will be awake to receive the notification. In this case, B

will loose the reference to A’s pulse possibly forever, resulting in a wrong schedule.

Through the Reins-MAC lens. As described in the example, the problem manifests when the

current pulse precedes the prior ones from the same node, and its previous notification is lost by

a neighbor. The local node, however, can identify the phase range in which neighbors that lost

previous pulses would wake up waiting for the local notification. In fact, it knows the extremes

in its pulsing history. If the pulse notification is sent at the latest phase in such a range, all

the possible receivers are already awake. Similarly, all the possible interfering transmitters have

certainly ended transmissions.

The notification message, therefore, includes both its delay from the actual pulsing phase

and the information of the latest phase in the pulsing history. The former is needed to compute

the schedule as described in Section 4.5 and to control the wake up time; the latter allows the

receivers to go to sleep if no notification is received, saving energy in case of lossy links. Finally,

to keep the schedule updated and limit the memory occupation, a prune timeout, of the order

of few rounds, is used to remove no longer valid information and limit the size of the pulsing



78

history.

4.6.2 Asymmetric Links

The statement on non ideal links can be extended to asymmetric delivery probabilities, where

nodes cannot assume reciprocal knowledge of one another.

Manifestation in Reins-MAC. Extreme asymmetric links can affect the correctness of the

protocol. E.g., consider that A cannot hear B, but A directly precedes B in B’s schedule. In this

case, A’s transmission slot will not end when B’s begins, causing interference. Moreover, the

asymmetry can affect the synchronization, resulting in the impossibility to align the coordination

slot in the extreme case of an isolated node that cannot hear any pulse.

Through the Reins-MAC lens. Fortunately, our protocol already sends connectivity infor-

mation, which can be exploited to clearly identify asymmetric links. In fact, each node provides

its own neighborhood view inside the pulse. If an asymmetric link exists, a node B will not see

itself in the schedule of a 1-hop neighbor, A, and can realize the impossibility to communicate

from B to A. In this case, if A precedes B in B’s schedule, B can relocate its slot to a different

position in the schedule through a jumping operation: the node stops pulsing in its own slot,

pulses in the coordination slot notifying the desired position, and after a while moves in such

position. The node can start using the slot right after recognizing the moving of the pulses

surrounding the desired position. Finally, for what concerns synchronization, we both discard

the pulses related to the coordination slot received along asymmetric links and avoid using such

a slot on nodes without perceived neighbors.

4.6.3 Link Variability over Time

The above link characteristics are known to vary with time. Seasonal and environmental changes

can redefine the physical topology. This can also be forced by the physical addition, removal or

relocation of nodes.

Manifestation in Reins-MAC. The schedule is affected when the neighbor set changes. A

node leaving the interference set is automatically removed from the schedule thanks to the prune

timeout and its slot is overtaken by the surrounding nodes in the schedule. A node physically

added to the network starts notifying in the coordination slot its desired pulsing position, and is

included in the schedule automatically. The problem manifests when temporal variations create

new links previously unavailable. In this case the two end points do not have any information

about the pulses of one another, causing possible interference.

Through the Reins-MAC lens. Similarly to the case of physical addition, each node can

notify its own pulse in the coordination slot. Given the fact that the coordination slot is

globally agreed upon and all the nodes are listening, a notification can then be easily integrated

in the schedule. Two approaches can be used to trigger the notification in the coordination slot:



79

A

B

D

C

[θD,θB]

(a) Reordering for Latency.

A

BC

D

δC 

gC
-

gC-
(b) Guarding Bandwidth.

Figure 4.6: Reins-MAC extensions to support QoS.

proactive or reactive. Our proactive scheme is based on nodes periodically notifying their pulse.

The period frequency depends on the local density of the network and is tuned to decrease the

probability of collision in the coordination slot. Our reactive mechanism adds sequence numbers

to the sent messages; losses in the sequence of messages are counted and notified in the pulse

for each possible sender. If a node receives a pulse indicating a high number of missed messages

corresponding to itself in the recent epochs, it schedules the notification of its own pulse in the

coordination slot.

4.7 Reins-MAC: QoS Served with a Side of Anarchy

The protocol described thus far offers a basic medium access scheme, able to adapt to topology

changes in a fully decentralized fashion. As analyzed in Section 4.8, the computed communica-

tion schedule offers advantages with respect to typical TDMA approaches. The foundation of

its effectiveness is the ability to autonomously exploit local properties such as network density

instead of requiring explicit tuning, often resulting in worst case configurations. However, the

resulting schedule remains independent of application requirements.

QoS support at the MAC layer is usually driven by latency and bandwidth constraints aris-

ing from the application. These requirements are typically seen as difficult to support and yield

rigid solutions. In this section, we finalize the definition of Reins-MAC by integrating QoS

requirements. Latency control is supported with the same simple, but effective jumping tech-

nique introduced in Section 4.6.2. Bandwidth reservation exploits our pulse duration extension,

defining a new coupling function to exploit it. The resulting solution enables each node to obtain

communication quality guarantees in a flexible, unsupervised, anarchic manner.

4.7.1 Local latency control

Problem Definition. The first QoS parameter we address is latency, defined as the time for

a single message to move from source to destination. In this chapter our focus is on the MAC



80

layer, which has no knowledge of the data route. However, if we assume a higher layer in the

protocol stack provides this information, the MAC layer should minimize the forwarding latency

by placing the sending slot as soon as possible after the slot when the message is received.

Through the PCO lens. In the scheduling solution described thus far, the sequence of node

pulses is fixed. Put another way, a node is constrained to always pulse between the same PREV

and NEXT. Our solution is simply for a node to remove itself from the schedule, then re-enter

the schedule at its desired location, effectively jumping to a different position. This is shown in

Figure 4.6(a) as node C removes itself from its original location in the schedule between A and

B, and uses the control slot to announce its new, desired position between nodes D and B.

4.7.2 Bandwidth reservation

Problem Definition. The mechanisms described reserve one sending slot to each node. Be-

cause slot sizes are variable, the allocated slot may not satisfy application needs. In principle,

we could exploit our basic scheme and allow each node to pulse more than once, increasing the

number of allocated slots. While this solution likely increases the total allocated bandwidth,

further modifications to the schedule by other nodes can arbitrarily affect slot assignment, and

no guarantees are possible. Moreover, this solution increases both the number of times each

node in the neighborhood wakes up and the overhead in terms of messages exchanged.

Through the PCO lens. A better solution is to increase the single, assigned slot to the size

requested at run-time. To accomplish this, we integrate a pulse duration equal to the requested

slot size, δi, and indicate the beginning and end of the pulse with guarding phases, g and g,

spread equal distance from the center of the pulse. These phases are described as:

gk
i

= φki −
δki
2

and gki = φki +
δki
2

(4.7)

. While equation 4.7 is expressed in terms of the local variable φki , the value of the guarding

phases can be similarly computed at any observing node j in terms of θkj,i. To accommodate

duration, the coupling function expressed in Equation (4.4) is applied with respect to the guards:

φk+1
i = (1− η)φki + η(gk

PREV (i)
+ gkNEXT (i))/2 (4.8)

. As depicted in Figure 4.6(b), by extending the pulse duration of C to begin at the first guard,

g, and end at the second, g, the slots of A and B shift, leaving a slot of at least size δC that

provides the requested bandwidth guarantee to C. Setting the duration to the minimum, zero,

reduces this to Equation (4.4). On the other side, the total reserved duration must be less than

the distance between the pulses of PREV and NEXT, A and B in our example, as placing the

guards beyond these limits results in incorrect pulse scattering.

Notably, the reservation effectively steals bandwidth by forcing the surrounding pulses to

move away from the guards, ultimately losing their own non-guarded resources. This pulse shift-



81

 0

 2

 4

 6

 8

 10

 100  200  300  400  500  600  700  800  900  1000

1 
H

op
 N

ei
gh

bo
rh

oo
d 

Si
ze

Number of Nodes

24 28 32 36

Figure 4.7: Average 1-hop neighborhood in the simulation settings.

ing process propagates recursively among neighboring nodes, balancing the cost of the reserva-

tion throughout the surrounding area. Additionally, as previously noted, the maximum allowed

reservation is restricted by the original pulses of PREV and NEXT, while in theory additional

bandwidth may be available. As shown in Figure 4.6(b), once the guards have been placed by

C, the subsequent movement of A and B does make additional resources available that can be

reserved by further increasing δC . In a sense, this iterative procedure refines the actual resource

availability.

4.8 Evaluation

In this Section we evaluate Reins-MAC. After describing the simulation settings, we turn to the

fundamental properties of the protocol, then to its ability to support QoS. Finally, we evaluate

the implementation of Reins-MAC on real hardware.

4.8.1 Simulation Settings

All evaluations are performed with the Castalia 3.1 [3] simulator. Results are obtained for

runs over 40 different uniformly random node placements in square fields, and show standard

deviation. We control the size of the field to yield an average target density of between 4 and

10 1-hop neighbors, as shown in Figure 4.7. Each target density is described by the average

distance between nodes: the larger the distance, the smaller the size of the neighborhood. We

set the duration of the oscillation period (frame length) to 10 seconds, with a coordination slot of

250 ms. The setting of these values is dependent on the actual application scenario, as discussed

in Section 4.2.1. Further we use a coupling strength of η = 0.3; as discussed in [25, 19], low

values of this parameter decrease the convergence speed but increase the stability and robustness

of the convergence.

One of our motivations in selecting Castalia is its realistic channel and radio models and clock



82

drifts, all of which clearly affect the behavior of Reins-MAC. Clock drifts have the potential

to de-synchronize a synchronized solution. Fortunately the very nature of PCOs supports and

manages this. We set the prune timeout, described in Section 4.6.1, to 10. Notably, a too

large prune value results in over provisioning, while a too small value affects convergence. We

experienced this in simulations by setting the prune timeout to 5 and observing continuous

changes to the schedule be due to links with very high loss rates. Finally, each node defines a

minimum slot size of 50ms; if the slot shrinks and its length does not respect the limit, the node

relocates its own pulse.

4.8.2 Evaluating Core Reins-MAC Properties

To verify the effectiveness of the scheduling mechanisms, the main metrics we consider are gain

over potential competing solutions, convergence, duty cycling and ability to support topology

changes such as the addition of nodes.

Gain. As shown in Section 4.2.3, the ability of Reins-MAC to dynamically establish the slot

size based on network density produces substantial gains over a typical TDMA scheme such as

MAX that selects a single, fixed slot size for the entire network based on the maximum 2-hop

density.

For networks of high density, Reins-MAC achieves an average slot size double that of MAX,

as shown in Figure 4.2. Even larger gains, up to 200%, are seen for less dense networks. In fact,

Reins-MAC by default does not change the sequence of pulses. Once a pulse is positioned in

the schedule, it is constrained by PREV and NEXT. The initial position is chosen randomly and,

therefore, in more dense scenarios it is more likely to be placed in a locally “poor” location. We

study the potential benefits of changing pulse location in Section 4.8.3. In any case, establishing

slot sizes based on local constraints produces clear advantages over the fixed slot size MAX solution,

even when this fixed size is identified optimally.

Interestingly, Reins-MAC also offers gains over the MEAN solution. We initially expected

Reins-MAC to essentially find this size and allocate it. Instead, when considering nodes at a

2-hop distance, a 2-hop neighbor can communicate concurrently to a 1-hop neighbor, as long

as they are in different interference sets. Interestingly Reins-MAC identifies these allowed

overlaps, resulting in the gains over MEAN.

Convergence. Reins-MAC creates a schedule through the iterative update and exchange

of pulse information. To accommodate clock drifts and connectivity variability, this process

continues for the lifetime of the network, constantly making minor modifications to the schedule.

Despite the continuous movement of the pulses inside the schedule, each single node can start

using its own transmission slot right after notifying in the coordination slot its intent to pulse.

We force a node to wait 3 frame before using a new slot, a value which has demonstrated

sufficient in all our simulations.



83

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 100  200  300  400  500  600  700  800  900  1000

#F
ra

m
es

 to
 C

on
ve

rg
e

Number of Nodes

24 28 32 36

Figure 4.8: Time to establish 95% stable slots with a variation of the beginning of the slot less

than 5‰ of the frame length.

To give an index of the time the solution requires to stabilize, we offer two definitions of

stability. First, we consider a schedule stable when the location of 95% of the pulses, and

therefore of the beginning of the slots, in the network vary less than 0.5%, or 5‰, of the frame

length. It gives an indication of the time the scattering function takes to refine the schedule.

It is worth remembering that even if the pulses move, the solution presented in Section 4.6.1

both keeps the scheduling correct, and, more importantly, allows the uninterrupted usage of all

the slots to transmit application messages. Figure 4.8 shows the results from networks with all

nodes started at once, without any initial synchronization provided. According to this metric,

networks converge on average in less than 40 rounds, and more dense scenarios with smaller

slots converge much faster. Notably, within a given density (a single line in the figure), the time

to converge is consistent across networks.

Focusing on the beginning of each slot ignores variations in the slot length arising from

changes in the beginning of the slot of the next node in the schedule. Therefore, we consider a

more comprehensive stability property, namely when 95% of the slots in the entire network vary

less than 5‰ of the frame length. As this metric is affected by more changes in the schedule,

Figure 4.9 shows an increase in the converge time. Nevertheless, if we consider that we are

starting all the nodes at once and that also the ongoing synchronization process moves the

coordination slot in the schedule, these convergence times are quite acceptable. The remainder

of this chapter uses this, more strict stability metric.

In both these convergence plots, sparse networks take longer to converge than dense networks.

This is due to our definition of convergence that depends on variations w.r.t. the total frame

length. E.g., consider that slot sizes in sparse networks are larger than in dense scenarios. With

large slots, variations either in terms of the beginning (Figure 4.8) or the size (Figure 4.9) are

likely to be large, influencing convergence more. Nevertheless, we maintain these convergence



84

 0

 20

 40

 60

 80

 100

 120

 140

 100  200  300  400  500  600  700  800  900  1000

#F
ra

m
es

 to
 C

on
ve

rg
e

Number of Nodes

24 28 32 36

Figure 4.9: Time to establish 95% stable slots with a variation in slot size less than 5‰ of the

frame length.

metrics as the behavior of communication on top of Reins-MAC depends on the absolute

variations in the slot.

Duty Cycle. Duty cycling with a schedule continuously changing is challenging. In Figure 4.10,

the time, in which the radio is active, is shown. In general, decreasing the density reveals an

increase in the duty cycle. This behavior is due to the presence of intermediate links causing

pulses to be missed. If the pulse information is old, the node must stay awake waiting for the

current pulse, which will happen certainly after, as described in Section 4.6.1. However, if the

pulse is not received again due to a link loss, the node stays awake until the pulse of the node

following in the schedule. With a decreased density, the distance in time between consecutive

pulses is bigger and therefore the energy wasted is more. In any case, the duty cycle assesses

between 7% and 9%, with 2.5% duty cycle spent in the coordination slot. In achieving these

results, the frame length as a clear impact; lower duty cycles can be achieved by increasing the

period of the schedule.

As discussed in Section 4.6.1, nodes wake up before the sender pulses, to prevent intermediate

links from affecting the ability of receivers to follow the pulsing node. As shown in Figure 4.11,

the higher the density, the more energy is wasted while waiting for such a pulse. As density

increases, it also increases the number of receivers and the number of pulses each node must

wake up to receive. The result is an higher energy cost, about 2% of the duty cycle.

Topology Change. While the previous discussion addresses the ability of Reins-MAC to

support network variations arising from wireless communication, here we consider topology

changes caused by the addition of nodes at uniformly random locations. We consider the time to

stabilize the schedules after a given percentage of nodes are added to a previously stable solution.

Given the consistency of the previously shown results and the clear behavioral differences based

on density, for the remainder of the evaluation we focus on networks with a fixed number of



85

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5

 100  200  300  400  500  600  700  800  900  1000

D
ut

y 
C

yc
le

 (%
)

Number of Nodes

24 28 32 36

Figure 4.10: Network duty cycle.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100  200  300  400  500  600  700  800  900  1000

D
ut

y 
C

yc
le

 (%
)

Number of Nodes

24 28 32 36

Figure 4.11: Duty cycle wasted by receiver nodes while waiting for the actual pulse.



86

 0
 10
 20
 30
 40
 50
 60

 24  28  32  36

#F
ra

m
es

 to
 C

on
ve

rg
e

Distance between Nodes

5% 15% 25%

Figure 4.12: Stabilization of the system after node addition.

nodes and varying densities.

From a network composed of 500 nodes placed as in the previous experiments, we randomly

select 5%, 15%, and 25% of nodes which are started only once the other nodes in the network

have defined a stable schedule. Figure 4.12 shows that the system stabilizes, in all scenarios,

within half the rounds required when the whole network is started from scratch (Figure 4.9).

As expected, scenarios that add fewer nodes converge slightly faster, as do dense networks.

4.8.3 Reins-MAC support for QoS

We now turn our focus to the ability to support QoS constraints coming from higher layers in

the network stack. This section focuses on the contributions at the MAC layer, using simplified

high-level requirements and mechanisms.

Schedule reordering. Section 4.7.1 discussed the possibility for a node to change its location

in the schedule to meet latency requirements. The same jumping mechanism can be used to

increase the allocated bandwidth without an explicit reservation (which we show next). By

doing so, we demonstrate both the use of jumping to increase system utilization, but also show

the general behavior of the jumping technique.

To analyze the benefits of jumping, we study networks of 500 nodes, allowing some nodes

to change location in the schedule. Intuitively, the largest bandwidth gain can be achieved by

selecting the largest slot in the local schedule. To reduce the probability of neighboring nodes

choosing the same slot, we force only one node to jump in each frame.

The top of Figure 4.13 shows the increase in the slot size of nodes applying this jumping

strategy (termed: Jumpers). The deviation of the results is quite large due to the high variability

of the opportunities to jumpers at the time of changing slot. In fact, it is possible that a jumper

has a slot either larger than average or, vice versa, significantly smaller. A more complex jumping

strategy can take this into account in selecting which nodes move. Additionally, our metric to

identify the slot to jump to does not guarantee that a node will increase its slot size, further

affecting the individual results. Nevertheless, the overall trends can be analyzed.



87

 0
 4
 8

 12

 24  28  32  36G
ai

n 
R

at
io

 (%
)

N
et

w
or

k

Distance between Nodes

 0

 10

 20

 30

 40

G
ai

n 
R

at
io

 (%
)

Ju
m

pe
rs

5% 15% 25%

Figure 4.13: Gains achieved by jumping.

In dense networks, jumping is likely to offer larger increases in slot size, around 20%. This

indicates that nodes really are being trapped in poor, small locations in their schedule. In

practice, this means that if bandwidth needs are not being met, a node may opt to jump to a new

location. In sparse networks, nodes already have quite large slots, therefore the gains achievable

by jumping are proportionally smaller. While clearly most of the jumpers gain bandwidth, one

may be concerned of the negative effect on other nodes. However, for all scenarios studied, the

average, network-wide slot size increases as shown in the bottom of Figure 4.13. Some of this

gain is attributed to the larger slots of the jumping nodes, but one must also consider that

every jumping node leaves behind an empty slot. Reins-MAC adjusts the schedule to allow the

neighboring nodes to absorb this slot, generally allowing gains.

Bandwidth reservation. To evaluate bandwidth reservation, we build a path with a random

walk. Each node makes a reservation and forwards the request to one neighbor not yet in the

path. On reception of the request, the node reserves three quarters of the distance between PREV

and NEXT. As the scattering function brings the pulse in the middle between those pulses, the

reservation is equivalent to one and a half the currently owned slot.

Figure 4.14 shows the average time for a node to achieve a slot at least as big as the reser-

vation. On average, the allocation takes a little more than 10 frames. This depends on the

mechanism described in Section 4.6.1. The node keeps the beginning of the slot at the latest

pulse in its own pulsing history. By setting the pulsing history to 10, the slot can be effectively

used only once the pulse references active before the reservation are pruned. Interestingly, once

those references are removed from the history, the slot is already big enough to support the

request as both PREV and NEXT move as soon as the request is submitted. In some cases, NEXT

moves fast enough to support the reservation in fewer rounds.



88

 0
 5

 10
 15
 20
 25

 24  28  32  36#F
ra

m
es

 to
 R

es
er

va
tio

n

Distance between Nodes

5 hops 15 hops 25 hops

Figure 4.14: Average time to obtain the requested slot size.

40 m

Nodes

60 m

Figure 4.15: Map of the testbed.

4.8.4 Implementation

To verify the feasibility of the presented solution, we discuss the implementation of Reins-MAC

on real hardware and the evaluation of its performance in a testbed.

Description of the code. We implemented Reins-MAC on top of TinyOS v2.1.1 [77]. The

code requires around 12 KB of ROM and 1.5 KB of RAM, most of which devoted to store and

maintain the neighborhood information. In our experiments we defined the neighborhood table

to contain 40 records. Despite our choice to develop the solution specifically on the TelosB [66]

platform, the one available in our testbed, we avoided any platform specific optimization. The

only exception is the message timestamping at transmission and reception. The code, available

for download at *.sf.net, is therefore easily portable to different hardware platforms and room

is available for more optimizations.

Experiments setup. At our institution, we installed 50 TelosB nodes in an area of about

*.sf.net


89

 0
 5

 10
 15
 20
 25
 30
 35

-10 -7 -5 -3

N
ei

gh
bo

rh
oo

d 
Si

ze

Transmission Power (dBm)

1 Hop
2 Hops (MEAN)

2 Hops (MAX)

(a) Neighborhood.

 0
 10
 20
 30

-10 -7 -5 -3G
ai

n 
R

at
io

 (%
)

M
EA

N

Transmission Power (dBm)

 30
 40
 50
 60
 70
 80

G
ai

n 
R

at
io

 (%
)

M
AX

(b) Gain.

 5
 6
 7
 8
 9

 10
 11
 12
 13

-10 -7 -5 -3

D
ut

y 
C

yc
le

 (%
)

Transmission Power (dBm)

(c) Duty Cycle.

 10
 20
 30
 40
 50
 60
 70
 80

-10 -7 -5 -3

#F
ra

m
es

 to
 C

on
ve

rg
e

Transmission Power (dBm)

(d) Convergence.

Figure 4.16: Results from experiments run in the testbed with stable networks.

60x40 m2. The devices are located as depicted in Figure 4.15 underneath the corridors on poles

that lift the tiles from the concrete floor. Each node is connected through an infrastructure of

USB hubs and routers to a PC from which the testbed can be controlled.

The network density, using standard transmission power, is higher than the one we tested in

simulations. Most of the results are influenced by edge effects. Therefore, we used lower trans-

mission powers and vary them to test different densities. However, as shown in Figure 4.16(a),

significant differences in the number of direct neighbors start to appear only using very low,

unreliable, transmission power. Moreover, differently from the simulation setup, the network

density is more homogeneous, with a smaller difference between the average and the maximum

2 hop neighborhood size.

Evaluation. The results, obtained by running 20 executions varying the time of node boot to

force different scheduling, are shown in Figure 4.16 for stable networks along different transmis-

sion powers. The gain with respect to MAX and MEAN is lower than the one seen in simulations,

as the network is smaller and more homogeneous. Nonetheless, the gain with respect to MAX is

always more than 50%. The duty cycle assesses between 8% and 9%, with more variability for

networks with more unreliable links. In terms of convergence time for the highest transmission

powers tested, the results are in line with the simulations; however, decreasing the transmission



90

Operation Metric Avg Stddev

Add (10%) Convergence (frames) 11.45 6.2

Add (20%) Convergence (frames) 15.21 5.1

Jump (10%) Gain Jumpers (%) 13.43 12.5

Gain Network (%) 2.67 3.8

Jump (20%) Gain Jumpers (%) 12.75 11.9

Gain Network (%) 4.99 3.41

Guard (5 hops) Reservation (frames) 4.65 2.2

Guard (10 hops) Reservation (frames) 4.45 2.1

Table 4.1: Results of testbed experiments with node addition, schedule reordering and band-

width reservation.

power results in more unreliable links, which ultimately increases the number of rounds required

to achieve a stable schedule, as shown in the case of -10 dBm.

In Table 4.1, we show results for experiments using -5 dBm transmission power, with addition

of nodes, schedule reordering via jumping, and bandwidth reservation. The node addition

requires about 5 rounds on average more than simulations to stabilize. As the nodes are not

uniformly displaced in the area, the addition of nodes in key locations can connect previously

disjoint neighborhoods, with a longer convergence time required to merge the schedules. The

results obtained with schedule reordering follow the trend of the simulations; the reduced gain

is due to the small and homogeneous neighborhood, with limited chances to find significantly

better positions. Finally, reserving bandwidth takes less time because the slots are big enough

to allow NEXT to move further away from the requester, in fewer rounds.

4.9 Is Reins-MAC really different?

We classify Reins-MAC as a TDMA communication scheduling protocol. As such, it clearly

contrasts commonly employed CSMA-based contention solutions in which the channel is allo-

cated only when data must be sent. Prominent examples are B-MAC [65] and X-MAC [4] where

the carrier is periodically sensed for incoming communications and different forms of preambles

are used to reserve the channel before transmission. Despite the simplicity that makes them

suitable in practice, they cannot provide deterministic guarantees either on channel availability

or on collision avoidance.

In TDMA approaches, instead, collisions are prevented by construction. This comes at the

cost of building the communication schedule for the entire network, either in a centralized,

as in PEDAMACS [23] or LiteTDMA[72], or distributed fashion. Examples of the latter are

LMAC [81], TRAMA [68], and CRANKSHAFT [29], where the slot owner is elected depend-

ing on a priority index resolving contending requests. All these solutions rigidly define the



91

reservation scheme, require explicit ownership mechanisms, and limit adaptation to variable

communication requirements.

Alternative solutions are based on the pulse scattering algorithm introduced in DESYNC [19]

and Wake-Up Scattering [25]. In [18] and [58], the DESYNC algorithm is extended to solve the

hidden terminal problem, obtaining the same solution we describe in Section 4.5.1. The works

present only a preliminary discussion and evaluation of the solution. Moreover, they are limited

to building the communication schedule, without providing radio duty cycling. Reins-MAC,

instead, not only enables nodes to sleep but also evolves the basic solution to make changes

to the schedule possible without interrupting ongoing communication, ultimately, providing the

application with full control of the resource allocation.

Once a TDMA schedule is defined, hybrid approaches are also possible. DRAND [71], the

TDMA distributed scheduling protocol used in ZMAC [70], achieves pseudo-optimal collision

free slot assignments. On top of such schedule, a CSMA policy is defined to hand over the slot

from the actual owner to neighbors, increasing channel reuse. Notably, Reins-MAC does not

prevent the definition of specific policies to handle the communication inside each slot, making

the definition of a hybrid behavior possible.

Next we discuss the TDMA recognized limitations as presented by the ZMAC authors,

describing how Reins-MAC, while retaining a pure TDMA nature, faces them.

Building an Efficient Schedule. Computing a collision-free communication schedule maxi-

mizing bandwidth utilization is complex. Therefore, usually topological information is collected

centrally where a schedule for the whole network is computed. Data traffic patterns can also be

taken into account. Similarly, in the IEEE 802.15.4 standard [34], nodes organize in Personal

Area Networks (PANs). In each PAN, the coordinator controls the access to the communication

medium, assigning time slots to nodes upon request. These techniques usually result in limited

scalability.

With distributed scheduling, the communication frame is discretized in slots of equal size.

The nodes notify their intention to use one or more slots together with the neighborhood in-

formation. In LMAC, the first node notifying interest in a slot becomes its owner; in TRAMA

and CRANKSHAFT, a system-wide election function identifies a slot leader among multiple

contenders. The efficiency of these solutions is bounded by the properties of such functions, re-

stricting their applicability to different applications and topologies. Otherwise, generic solutions

require high computational complexity, as in DRAND. In any case, the fixed slot and frame sizes

confine the optimality of the solution to the feasible schedules. Selecting the right parameters

fitting all the possible system states is crucial.

Reins-MAC defines a suboptimal schedule. Each node selects its local position in the

schedule. This choice does not result in a predefined amount of bandwidth, and the final achieved

slot length is a consequence of the movements of the surrounding pulses. This constraint does

not guarantee optimal channel reuse. However, the fixed scheduling ordering can be modified by



92

relocating pulses. The efficiency of the mechanism employed is grounded in the anarchic control

of the pulse, which is automatically accounted for by the nodes in the same interference set.

Properties of the schedule can be changed by the application, which is ultimately responsible

for efficient communication resource assignment.

Clock Synchronization. TDMA techniques usually assume the execution of a synchroniza-

tion protocol, such as RBS [22], FTSP [51], or TPSN [24]. Depending on the synchronization

requirements, such protocols are run frequently enough to guarantee slots alignment, at a consid-

erably high cost. In contrast, Reins-MAC aligns the schedule implicitly, by using the reference

provided by the surrounding pulses. The definition of a coordination slot, used only to no-

tify changes to the schedule, exploits a synchronization mechanism that naturally integrates in

the protocol. The cost of the procedure, a field in the pulsing message, is almost negligible

and explicit in the scheduling mechanism. Moreover, the merging of the synchronization pulse

with the one used for scattering communication solves the limitations of PCO synchronization

mechanisms [83], e.g., the collision of simultaneous pulsing.

Low Utilization with Low Contention. In case of low contention, generic TDMA solutions

can result in low utilization due to the assignment of a slot to each node in the network.

DRAND relies on CSMA to reuse an unused slot. In LMAC, TRAMA, and CRANKSHAFT,

nodes can renounce to their own slots, making these available to others. Similarly, Reins-MAC

can be extended to allow nodes to leave the schedule, avoiding unused resource allocation. In

addition, Reins-MAC lets a node define the slot size it uses with the duration property; this

mechanism allows the application to guide the utilization of the resources depending on the

current needs.

High Delays. TDMA fixes the position of a slot and repeats the same frame, enabling the

sender to communicate only in defined times. In between owned slots, no information can

be sent, forcing increased delays in communication. The application cannot dictate any latency

requirement, as the underlying scheduling mechanisms do not support changes on demand. This

limitation is solved in Reins-MAC, enabling the application to define position and duration of

a slot.

Radio Interference outside Communication Range. One of the advantages of TDMA is

the ability to schedule a collision-free communication. Unfortunately, the communication range

can be different from the interference one [86], affecting the identification of the interference

sets. This problem is not explicitly faced in any of the previously mentioned protocols, if not

by either the extension of the schedule horizon to span 3 hops or the usage of CSMA in hybrid

approaches. Reins-MAC, instead, tries to identify error in the definition of the interference

sets by detecting anomalous message losses and signaling this condition to the sender.

Time Varying Topologies. In common TDMA solutions, the strict framing needs atomic

actions for slot assignment. The reevaluation of the entire schedule is required to face changes.



93

Time varying topology are common in WSNs. In LMAC, TRAMA, and CRANKSHAFT, those

modifications require the reevaluation of the prioritization indexes, if possible. In DRAND the

whole network needs to be rescheduled. In Reins-MAC, instead, the resources owned by a node

no longer in the interference set are automatically acquired by the ones surrounding that node;

in a similar way, a node entering the interference set steals resources to make room for itself in

the schedule. Temporary inconsistencies are possible but are automatically fixed locally by the

protocol itself.

4.10 Identifying the Limitations

Reins-MAC does not pretend to be the panacea for all the problems involving communication.

In this section, we discuss its limitations, some of which originate from its TDMA nature,

whereas others are intrinsic to the introduced scheduling mechanism itself. Their identification

highlights the applicability of the solution, the tradeoffs, and the possible future directions of

research.

Time and Message Complexity. The scheduling mechanism is a continuous process that lasts

the lifetime of the network. This enables the high flexibility previously discussed, which allows

the adaptation to both changing topologies and variable application requirements. Therefore,

there is no stable convergence of the scheduling and it is unclear how to analyze the time

complexity of the solution in real scenarios.

For what concerns the complexity in terms of messages, to support responsive adaptation

to changes, each node must keep notifying its current view of the schedule at the beginning

of the transmission slot, as well as listen to the others’ schedule information. The amount of

information exchanged at each round clearly depends on the number of elements in the schedule

that need to be notified, which is ultimately dependent on the size of the direct neighbors.

The more dense is the network, the more messages each node must either send or receive at

the beginning of a slot (e.g., in our current implementation 10 neighbors can be notified in a

message of 100 bytes, in addition to the information about the transmitter itself).

State Maintenance. The information about the whole schedule must be maintained in mem-

ory. It essentially requires to keep and update data for each and every node in the 2-hop

neighborhood. The minimum amount of information needed is the tuple 〈source identifier, dis-

tance, duration, pulsing phase, pulsing history flags〉, which in our implementation requires 12

bytes. If the employed OS does not support dynamic memory allocation, a predefined maximum

number of records must be stored in memory. It results in waste of memory and limitation on

the actual adaptability of the solution to the current scenario as constrained by the worst case

identified a priori.

Fairness. A recognized property of common TDMA solutions is fairness. This is guaranteed by

construction as all the slots have the same size and, therefore, each node is allocated the same



94

amount of communication resources. In Reins-MAC, instead, the nodes own transmission slots

of different sizes depending on the local density and the position in the schedule. This clearly

produces an unfair scheduling. The solution, however, does not force any node to remain trapped

in the current state. In fact, the ability to change the slot and reserve some amount of bandwidth

can change the balance of the resource allocation. In the specific case of fairness, if it is required

by the application, each node can simply be asked to reserve a minimum amount of bandwidth,

to guarantee a minimum level of fairness.

One Parameter: Frame Length. Despite Reins-MAC removes one of the fundamental

parameter of common TDMA solutions, i.e., the slot size, the length of the schedule frame still

needs to be identified a priori. This parameter contribute to define the actual transmission

latency, the supported traffic load and the resulting duty cycle. E.g., in the case of very low

traffic and no latency requirements, a long frame would dilute the protocol overhead over a long

period of time, decreasing the resulting duty cycle. This change would, however, also reduce

the speed at which the solution can react to changes to the schedule. With Reins-MAC, these

tradeoffs must be still taken into account in the tuning of the solution before deployment.

Effectiveness Depends on the Traffic. The traffic workload is one of the important factors

defining the effectiveness of the achieved solution. The difference between CSMA and TDMA is

clear: the lower the traffic, the more impact has the constant overhead of scheduled mechanisms.

CSMA is very efficient when the contention on the channel is low; as soon as the traffic increases,

the channel becomes too busy to handle all the traffic, with an increasing number of messages

lost in collisions and more energy spent in coordinating the access to the channel. In the case

of TDMA solutions, the overhead of building a collision-free schedule is constant over time. As

the traffic increases, the probability of collisions does not vary, whereas the cost of handling

communication decreases. In fact, the scheduling requires the same amount of overhead to

handle an increasing number of application messages. However, if no communication is ongoing,

the schedule must be maintained. With this respect, setting a proper frame length is crucial.

Dependency on the network characteristics. As Reins-MAC is a fully distributed pro-

tocol, it is affected by the ability of spreading in the network information required to maintain

the schedule. If we consider partitioned networks, each individual entity builds an independent

schedule. This holds in particular for the position of the coordination slot. If disjoint networks

become able to communicate, e.g., due to addition of nodes or changes in the communica-

tion range caused by the environment, they may not be able to align the coordination slot. It is

enough to ask the nodes connecting the two networks to stay awake so to reconcile the, otherwise

independent, schedules. As of now, the protocol faces this problem with the same mechanism

used to handle interference ranges. The detection of abnormal message losses can trigger both

an extended overhearing period and eventually a relocation of the transmission slots.

Anarchy and flexibility transfer to the application. Reins-MAC moves the burden of



95

controlling the allocation of communication resources to the higher layers. Both CSMA and

TDMA solutions available in the literature either seize the channel in an application agnostic

fashion [56, 81] or merge the application needs inside the protocol [67, 21]. In the former case,

the application cannot control the resources allocated; in the latter, instead, the solution can be

applied only to specific application profiles. The flexibility and anarchy of Reins-MAC, instead,

asks the application to rein in the resource allocation and adjust the schedule, as it naturally

emerges from individual choices, to better fit the overall network goals.

Only the application has the knowledge required to define what is the best resource allocation

according to the service it must provide. In this direction, Reins-MAC pushes further the cross-

layer architecture typical of WSNs, without constraining a priori the application. However, the

simple send and receive interface provided by standard MAC protocols hides the wider range

of possibilities offered by Reins-MAC. Furthermore, the addition of commands to monitor the

schedule and apply changes to it increases the complexity of the application. To simplify it, an

intermediate layer between the MAC and the application with a proper interface can simplify

the development of system services, enabling the application to steer the protocol anarchy,

ultimately leading to the full exploitation of the protocol potentials.

4.11 Concluding Remarks

Although the domain of MAC protocols for WSNs seems to be saturated with works covering

nearly every letter in the alphabet [38], here we identified a clear direction that has not been

explored: simultaneously offering both flexibility and guarantees. The evaluation of Reins-

MAC clearly demonstrated its ability to outperform traditional TDMA approaches in terms

of slot size allocation and flexibility to varying application needs. The determinism offered

by Reins-MAC makes possible the careful design of the network, according to the application

requirements. The explicit allocation of communication empowers the higher layers with the

ability to steer the communication resources, to ultimately improve the resulting service quality

provided to the final user.



96



Chapter 5

Designing System Services with

Communication Guarantees in Hand

The availability of Reins-MAC opened new possibilities, not at our disposal at the time of

designing and building the systems described in Chapters 2 and 3. As already mentioned in

our motivation to define a new MAC protocol, the heterogeneous traffic requirements of the

deployment in Torre Aquila and the timeliness ones in the closed loop control of light in road

tunnels delineated two case studies for Reins-MAC. In this chapter, we reconsider the design

of the system services employed in such monitoring infrastructures and evaluate the impact

of Reins-MAC on their definition.

5.1 Medium Access Control: Enabling Communication

One of the main resources available in a WSN is, as the term itself states, wireless communica-

tion, which enables the technology itself. Unfortunately, the wireless medium is shared among

all the nodes and concurrent communications can result in failures, unless properly scheduled.

Communication is inherently broadcast, and messages sent simultaneously by different senders

can collide at the receiver side even if the transmitters are not in each other’s communication

range. Finally, the radio is one of the main sources contributing to energy consumption and

maintaining the radio active waiting for possible transmissions becomes a considerable energy

expenditure. To solve the problem, several MAC protocols have been defined in the litera-

ture [39]. Among all the alternatives, B-MAC [65] and X-MAC [4] (or BoX-MAC [56] in their

TinyOS combined implementation) are the most used solutions in real world deployments. In

this section, after a brief description of their functioning, we summarize Reins-MAC, the pro-

tocol we introduced in Chapter 4 able to define a flexible communication schedule and provide

guarantees.



98

time
Sender

Receiver

Channel
check

Sleep interval

Msg retransmissions

Detection Ack

(a) Unicast Transmission.

timeSender

Receiver

Channel
check

Sleep interval

Detection

Msg retransmissions
(b) Broadcast Transmission.

Figure 5.1: Low Power Listening functionalities.

5.1.1 Low Power Listening: Random Access to Communication

A low-power listening (LPL) [56] asynchronous MAC is the default medium access control avail-

able in TinyOS. Based on a Carrier Sense Multiple Access (CSMA) mechanism with clear channel

assessments (CCA), LPL makes each node wake up periodically to check if there is any ongoing

communication possibly of interest. Defined as sleep interval SI the period between consecu-

tive receive checks, every SI a node turns on the radio and performs a CCA. If the channel is

busy, the node keeps the radio active for the time required to receive the transmitted packet;

otherwise, it goes to sleep, turning off the radio. The transmitter, once a message is ready to

be sent, performs a CCA to assess that no other transmitter in communication range is using

the channel. Then, if the channel is free, it continuously retransmits the message for the entire

SI of the expected receiver.

As depicted in Figure 5.1, LPL differentiates between unicast and broadcast transmissions.

In the former case, the receiver is asked to acknowledge the reception of the message. By leaving

between message retransmissions the time for the acknowledgement to be sent, the sender can

detect the successful delivery of the message and therefore stop the transmission. To facilitate

the relay of trail of messages, the receiver stays awake for a small period after each reception

to save the otherwise required preamble. If instead a broadcast transmission is required, no

acknowledgement mechanism is used and the retransmission of the message concludes after the

SI period of the receivers. In fact, all the nodes in communication range are expected to wake

up in such an interval and check for ongoing transmissions.

The only interface provided by LPL to the application allows the configuration of the local

SI and the remote one. The application can set those intervals during the network lifetime to

better adapt the sleep interval to the ongoing traffic, as the two are correlated in defining the

effective duty cycle of the system. The simplicity and robustness of the mechanism make it



99

very attractive to be used in real world deployments, as we did both in Torre Aquila and in

road tunnels. However, its random CSMA nature causes the impossibility to guarantee channel

availability at any point in time. Moreover, its scope restricted to the 1-hop neighborhood is

unable to prevent collisions at the receiver side, as it does not solve the hidden terminal problem.

5.1.2 Reins-MAC: Flexible Communication Scheduling with Guarantees

Opposite from CSMA approaches, periodic Time-Division Multiple-Access (TDMA) techniques

schedule communication allocating dedicated resources to each node in the network. The de-

terminism and the guarantees gained by using these approaches are usually overcome by the

reduced flexibility, scalability, robustness, as well as the increased algorithmic complexity. In

Chapter 4 we introduced Reins-MAC, a new TDMA protocol that arguably solves the lim-

itations typical of this category of solutions, making it an appealing alternative to currently

employed CSMA approaches.

As Reins-MAC defines a periodic schedule with time slots allocated to senders, each node

is guaranteed the availability of dedicated communication resources. In the definition of the

scheduling, each node has full control of the beginning of its own slot, which is not required to

be aligned to any predefined grid, as instead happens in common TDMA protocols. Moreover,

the individuals can apply changes and reserve available resources without any active negotiation.

As discussed in Section 4.7, this mechanism offers anarchic support for both reordering of the

scheduling to control latency and guarding of the slots for bandwidth allocation.

The form of resource reservation supported by Reins-MAC allows the solution designer to

exploit the provided determinism in the definition of the higher layers protocols, as well as in

the overall system design. Moreover, the protocol only adjusts the schedule to accommodate

both topology changes and requests to apply modifications, without constraining a priori the

resource allocation. Therefore, the network protocols can coordinate the exploitation of the

communication schedule, as it best matches the application requirements.

5.2 Different Usage of Communication

Reins-MAC is placed right above the physical communication layer, providing deterministic

access to communication to all the higher layer components interacting remotely. Moreover,

the protocol provides an interface enabling each component to request changes to the resource

allocation. Both the scheduled availability of communication and the possibility to steer resource

allocation impact on the design of system services. In this section, we describe the general

differences in using communication as fostered by the types of access to the medium we have

experience with, as implemented by LPL and Reins-MAC. In Section 5.3, we discuss concrete

examples of this influence on the design of network protocols.

From Pull to Push. Given that LPL tries to allocate communication resources immediately



100

after a message is created by the application, a pull approach is favored in the implementation

of a request-reply message exchange. The request is sent as soon as possible after it is submitted

by the application to the MAC; similarly, the replier processes the query when it arrives and

the answer, shortly submitted by the application to the communication layer, is delivered right

after. As communication resources are allocated only on demand, the programmer is promoted

to pull information on the basis of explicit needs.

In Reins-MAC, the timings of the communication are driven by the periodicity of the

defined schedule. For this reason, once the application provides a message, it must wait for the

beginning of the time allocated to it for transmission. This latency between the creation of the

data and its delivery to the destination is further amplified in the case of a query-reply pattern.

In this case, the interaction may require up to two entire scheduling periods before completion.

Moreover, the resources are reserved even if no exchange of application information is ongoing.

As a result, the programmer is encouraged to push the information that may be of interest in

the neighborhood, as the resources are already allocated and the latency would be minimized.

From Sequential to Parallel. Following from the previous discussion, as the round trip time

of a request-reply is short in CSMA approaches, the programmer has clear advantages in waiting

for an answer to a query before submitting a new operation. This reduces the amount of state

the application must keep. In TDMA techniques, instead, the latency in exchanging information

and the allocation of time slots, in which multiple messages can be transmitted at once, favors

the parallelization of requests, at the cost of a larger amount of information to maintain at the

application level.

Reliability Mechanisms. LPL, by construction, does not avoid the possibility of collisions

at the destination, as possibly caused by the hidden terminal problem. Furthermore, LPL

requires a trail of messages to be sent by the transmitter for the entire sleep interval, keeping the

channel busy for an extended amount of time, increasing the probability of a hidden terminal to

concurrently transmit, ultimately causing collisions. As reliability is one of the most important

requirements of a monitoring infrastructure based on WSNs, the programmer devotes a lot

of effort to implement dedicated mechanisms. The simple and most common solution is to

use acknowledgments sent by the destination at the reception of the information. Being the

acknowledgment an additional message sent on the channel, it can further contribute to cause

collisions.

Being a TDMA, instead, Reins-MAC solves the problems of collisions by construction. It

confines the probability of successful delivery to the physical characteristics of the link along

which the packet is sent. Moreover, as the receiver of a message can not reply until its scheduled

time for transmission, it becomes more efficient to use negative acknowledgments. In fact,

in addition to the possible reception of multiple messages from the same sender at once, the

losses are likely going to be fewer than in the case of LPL, as collision is avoided. Finally, the

information on the successful receptions sent by the destination will not affect the reliability of



101

other ongoing transmissions as they are forced to be scattered in time.

Broadcast vs Unicast Communication. The technique used by LPL to coordinate commu-

nication requires the sender to transmit for the whole sleep interval of the receivers, in the case

of broadcast communication. This solution keeps the channel busy for long times, spending a lot

of energy and favoring collisions. A TDMA approach, instead, sends one single packet to deliver

a message to the whole neighborhood, exploiting the broadcast nature of the communication

medium. Moreover, in a TDMA, a broadcast or unicast communication has the same probability

to fail, which is independent from the ongoing activities in the network.

Communication Requirements. As access to the medium is random and it does not avoid

collisions, LPL is unable to support any guarantee, which forces the programmer to explicitly de-

fine solutions at the higher layers. Common TDMA techniques already allocate communication

resources to each single node in the network. Therefore, the network protocols can rely on the

deterministic availability of reserved time slots in which collision-free interactions can be per-

formed. Instead, the unique flexibility of the scheduling implemented in Reins-MAC allows the

network protocols not only to passively exploit the schedule as allocated by the MAC itself, but

also to actively impose changes. In this way, the current application needs can explicitly guide

the distribution of communication resources, which are then allocated directly by Reins-MAC.

5.3 Impact on Network Protocols

The successful experience in the two deployments described in Chapter 2 and 3 provides our

background in building system services. As mentioned in the motivations to the definition

of Reins-MAC, we expect the usage of the protocol to have a considerable impact in such

scenarios. In this section, we focus our attention on reconsidering the design of the network

protocols, as a natural continuation of the discussion presented in the previous section. The

analysis is divided based on the fundamental building blocks our group developed in the Torre

Aquila and road tunnel deployments.

5.3.1 Network Flooding

The first functionality we consider is the dissemination of information from one single point to

each node in the network. In our deployments, this basic technique is used to refresh the routing

paths. As a message is received, the parent is reevaluated and, if any change is applied, the

information is further broadcasted in the network.

LPL perspective. The flooding can be based on a simple broadcast. Through the usage

of sequence numbers set at the initiator, messages already forwarded can be recognized and

discarded. However, as discussed in Section 5.2, the broadcast operation is likely to cause

collisions. Moreover, if we consider that multiple nodes can receive a broadcast at about the



102

same time, the synchronization in the re-broadcast would further increase the probability of

collisions. To limit the effect of such synchronization, small random backoffs are used.

Through the Reins-MAC Lens. The same mechanisms of the case of LPL, based on broadcast

and sequence numbers, is enough to implement the flooding. Interestingly, the developer does

not need to implement any backoff, as communication is desynchronized by construction.

5.3.2 Link Quality Estimators

In order to collect data at one or multiple sources, each node must select a single node to which

deliver the information. This is usually accomplished by choosing among the neighbors the

node with the highest probability to deliver the messages to the final intended destination. The

selection is based on link quality estimators. In our deployments, we used the LQI informa-

tion provided at the reception of a message, however, other techniques are also possible, e.g.,

ETX [17].

LPL perspective. A quality estimator, unless dependent solely on application traffic, requires

additional communication. The messages needed to compute the metric are scheduled as any

other and, therefore, they risk colliding. The collision can affect the selection of the parent,

making it dependent on the concurrency between the metric evaluation and the application

traffic. For example, we can consider that ETX uses messages to identify the expected number

of retransmissions required to communicate with a neighbor. If the beacons used to compute

the metric collide with the application traffic, the determined metric is artificially affected.

Through the Reins-MAC Lens. As the communication is scheduled, the evaluation of a

link is independent from the actual ongoing message exchange. Moreover, information on the

neighborhood is continuously collected to update the schedule. Both the information already

available inside Reins-MAC as well as the continuous pulsing mechanism can be exploited in

the computation of the metric and in the spreading of information.

5.3.3 Hop-by-Hop Reliable Data Delivery

Once the collection tree is built and a parent has been selected, data can be funneled towards

the collection point. Given the importance of the data for the end user, the reliable delivery

is a key requirement. Differently from end-to-end reliability, in our deployments we exploited

hop-by-hop reliability to localize the effort of recovering from losses.

LPL perspective. Each message transmission is required to be acknowledged. Both messages

and acks can fail, in which case the message gets retransmitted. Given the possibility of false

acknowledgments, in both our deployments we used a mechanism to allow the next hop to

recover a missed packet. A cache is kept at the sender and sequence numbers are used to find

holes in the sequence of messages at the receiver side. If a hole is found, a pull approach is used

so that the missed information is recovered by the receiver, asking the sender to search in its



103

cache for the specified missing messages. This scheme requires new data to be received by the

destination in order for recovery to happen.

Through the Reins-MAC Lens. All the messages are sent inside the sending slot and cached

locally. Per-message acknowledgments are not possible at transmission time, which would break

the collision-free schedule. Therefore, the receiver in his slot notifies the senders about the last

message seen by each of them and the holes in the sequence of received messages, effectively

using negative acknowledges. The senders then retransmit the messages during their own slots.

Transmission failures are suddenly identified and fixed. However, as both transmission and

retransmission require in the worst case an entire frame before being executed, the messages

waiting to be delivered to the next hop must be stored in buffers. Given the need to buffer

possibly multiple messages, data aggregation sounds as a natural approach to investigate.

5.3.4 Flow Control

In the Torre Aquila deployment, the heterogeneity of requirements asked for the definition of

specific solutions able to control the amount of data injected by the application into the network.

In particular, accelerometers produce a big amount of data in very short time, which are then

made available to the services in charge of delivering those data to the base station, possibly via

a multi-hop forwarding.

LPL perspective. We assume that a data transmission failure, a missed acknowledge in the

scheme previously defined, is correlated to a congestion on the channel. After this event, the

sub-tree is notified about the congestion state with a notification sent in broadcast, forwarded

only by the nodes receiving such notification from their own parent in the tree. Alternatively

a parent in congestion state can wait for the child to transmit data, effectively forwarding a

notification only if needed. On the sources, a simple timer with a constant backoff can be used

for low-rate traffic in order to delay transmission to the time when congestion is expected to be

solved.

For high-rate, bursty traffic, we used a mechanism that controls the application rate with

a variable timeout. Such timeout is controlled depending on the notifications of congestion. If

no congestion is heard, the timeout decreases, increasing the allowed application rate, until a

defined threshold is reached. When a congestion is notified, the timeout is restarted from an

initial value, suddenly increasing the time between sending of consecutive messages and reducing

the application rate. Different LPL values can also be used to increase the speed at which data

are sent along specific paths. Finally, this solution uses several parameters, whose setting is

complex and requires evaluation directly in the field.

Through the Reins-MAC Lens. The source limits the application rate to the reserved slot

duration (not to the actual slot size). The application rate is then controlled by changing the

reserved slot size. At any point in time in the lifetime of the application, a source changes the



104

duration of the slot to the one supporting the application rate or to the maximum it can reserve.

The parent modifies its slot to last at least as much as the sum of the slot duration of each child,

considering also the local application needs. If the bigger slot that can be allocated is smaller

than the demand, a message is sent to the children asking each one to reduce the flow by an

amount proportional to the data flow.

5.3.5 Latency Control

The deployment in road tunnels, being part of a control loop, imposed timeliness requirements.

The maximum latency of information being forwarded along a routing tree from the sources to

the sink needs to be controlled in order to provide the control algorithm with fresh data each

time it is executed.

LPL perspective. As discussed in Chapter 3, controlling latency can be supported only

through a careful parameter setting. Despite LPL tries to send a message as soon as possible

and no delay is required by construction before the transmission can start, the jitter between

consecutive data from the same source can greatly vary. Moreover, congestion may easily arise

if sampling is synchronized on the sources, forcing delays in the delivery.

Through the Reins-MAC Lens. Reins-MAC offers the possibility to reorder the slot as-

signment. A simple policy, similar to what described in [46], can require each node to move its

slot before the parent, adjusting the slot size to fit the traffic flowing from the children. The

resulting latency is, therefore, driven by the length of the frame. Interestingly, an alternative

solution, to control the resulting latency, can ask the base station to increase its own slot to

the point of minimizing the time elapsing in between sources and forwarder slots. Finally, the

possible synchronicity of the sampling does not contribute to affect the network performance.

5.3.6 Reliable Dissemination

When a configuration needs to be spread in the network, we need to guarantee eventual delivery

of the provided information. In the previously discussed refresh of the routing tree, a node

may skip a rebuilding round as it would happen in the case in which the concurrent flooding

of neighbors collide at that node. Instead, when reliable dissemination is employed, we require

each device to either receive the information at the time of the flooding or to have the possibility

to obtain it from a neighbor later.

LPL perspective. Each information to disseminate is identified by a sequence number. Each

node broadcast, as in the case of simple flooding, a message with a newer sequence number and

discards the ones received with an older identifier. The identifier of the last information received

can be used to determine the dissemination state in which a node is. If a neighbor has an higher

state, it means that it received some newer information not yet available on the local node, and

vice versa in the case in which the node has a lower state.



105

By piggybacking the state identifier on the outgoing messages, each node can spread in

the neighborhood the information about its local state. This mechanism of course reduces the

amount of payload available for application data and its efficiency is clearly dependent on the

remote interactions issued by either the application or the other services. An alternative is a

periodic beaconing, which, in any case, can not be guaranteed to collide neither with other

beacons nor with application traffic.

Once a mismatch between the local and some remote state is realized, two policies to update

the node with missing information are possible: ask a node to push the information to the node

with a lower state, or make the node lacking behind pull data from a node with the higher state.

In our deployments, we made use of the latter. In particular in the case of road tunnels, pushing

information can result in a lot of collisions due to the high density.

Through the Reins-MAC Lens. Reins-MAC already notifies local information by pulsing,

corresponding to one or more messages sent in broadcast at the beginning of the slot. The local

state id can easily be piggybacked on such pulse. The data can still be initially broadcasted as

in the flooding. Moreover, Reins-MAC keeps an updated consistent view of the neighborhood,

therefore the network flooding can avoid the broadcast of data already received by all the

neighbors.

To face a difference in the state of a neighbor, a push approach is the most natural and

easy to implement, given that collisions are avoided by construction. This solution still runs

the risk that multiple pushes can happen before the node with a lower state notifies its updated

state in its slot. However, at the cost of sending more information, this solution reduces the

implementation burden of handling a query-reply interaction and the latency that this would

cause in case the operation needs to be submitted multiple times.

5.3.7 Time Synchronization

A common service required in deployments is the synchronization of the clocks on the nodes.

Given its additional cost, its employment is connected to strong requirements. The analysis of

data coming from the vibration sensors deployed in Torre Aquila required synchronized sampling.

In the adaptive lighting application, instead, the absence of requirements on the relative sampling

time at the sources suggested to omit the usage of this service. However, we can foresee possible

useful usages, e.g., the simultaneous application of system configurations.

LPL perspective. Given the possible latency introduced by LPL in the exchange of time

references, the sleep interval is usually reduced to zero when the synchronization procedure is

run. After disabling LPL, a protocol like FTSP[51] is executed, which synchronizes the clocks

to a reference. The synchronization needs to be run frequently enough to overcome clock drift;

however, the specific employed frequency is usually based only on the experience of the network

designer. Furthermore, while the synchronization procedure is running, the ongoing application



106

can be affected by the additional communication introduced by the synchronization protocol.

Through the Reins-MAC Lens. Reins-MAC already provides pulse synchronization. This

is not enough per se for time synchronization. As defined in [83], the mechanism we ported

into Reins-MAC offers synchronicity : the agreement among the nodes in the network on a

common period and a reference phase. This is due to the absence of a need for an absolute

reference, which aligns both period and phase to a global clock. However, once a reference node

is defined, it can easily provide the time anchor for each synchronization pulse, which can then

be forwarded in the network as information integrated into nodes pulses.

5.4 Impact on Communication Abstractions

In both our deployments, we implemented the system services on top of the communication

abstraction provided by TeenyLime, which replaces the OS-level communication interface with

operations on a data space shared among 1-hop neighbors. This abstraction demonstrated

itself very useful in reducing the programming effort and the resulting binary size. Moreover,

it fostered the decouple of the application and system service components, enabling the reuse

of functionalities implemented for Torre Aquila first, in the road tunnel scenario next. After

describing TeenyLime, we discuss how the usage of Reins-MAC impacts also the abstraction

and the use of it made by the higher layers.

5.4.1 Introduction to TeenyLime

TeenyLime defines a communication abstraction to share data among nodes in direct communi-

cation. Each node is provided with a local tuple space populated with data in forms of tuples,

i.e., an ordered sequence of typed fields. The tuple space is made available both locally and

remotely to the neighbors, through a set of operations at disposal of software components built

atop TeenyLime to modify and query the state of the tuple space, as well as get notifications

of changes to such a state. The operations make use of patterns to filter the tuples currently

stored in the data space; the pattern defines constraints on each tuple field based on its actual

type and value.

The interface of TeenyLime offers operations to insert (out) a tuple in the tuple space, and

read (rd) or remove (in) a single data matching the provided pattern already available at the

time of the query. As multiple tuples can match against a single pattern, rdg and ing can be

used to retrieve the whole set of results present. Finally, the construct of the reaction is provided

to signal a notification at the insertion of information of interest. To differentiate between local

and remote interactions, each operation has a scope that can be local, neighborhood, to

identify all the nodes in communication range, or the identifier of a specific node.

TeenyLime also offers a dedicated mechanism to provide information about a node to its

neighbors: the neighbor tuple. This special tuple is a description of the node, defined and



107

provided by the application, which is piggybacked on each message TeenyLime exchanges with

neighbors. Consequently, at the time of message reception, TeenyLime extracts the neighbor

tuple and makes it available in the tuple space as any other data. After a pre-defined timeout,

the information expires and then it is removed from the tuple space.

Finally, the programmer can ask to execute remote operations reliably. In this case, instead

of simply delivering the request in a best effort manner, the middleware requires a notification

from the receiver and, in the case it does not receive it, it retries the operation for a maximum

given number of times. At the end of the operation, the software component that submitted

the operation is informed about the resulting state of the operation, i.e., if the request and the

corresponding answer were successfully delivered or not.

5.4.2 Neighborhood View

TeenyLime autonomously makes available tuples describing the neighbors in the tuple space and

takes care of both updating and removing them after a period.

LPL Perspective. Without any explicit interaction, no exchange of messages happens among

the nodes. For this reason, the only implementation choice to spread the neighbor tuple in a

cost effective manner is to piggyback on already planned transmissions. Therefore, in addition

to the fact that nodes not communicating remain invisible to the neighbors, no consistency on

the view of the neighborhood is provided and the part of the exchanged packets available to

data is reduced by the presence of the neighbor tuple.

The programmer is, therefore, in charge of defining a specific component that explicitly

submits remote operations to update the neighbor tuples in the neighborhood. Alternatively, the

components must rely on each other communication patterns, according to which the neighbor

tuple will be updated. The result is a clear dependency among application components and the

timings with which they interact remotely, ultimately hampering their decoupling.

Through the Reins-MAC Lens. In order to build the schedule and update it, Reins-MAC

makes each node pulse periodically, already exchanging information with the neighbors. By

exploiting this background communication, it is possible to provide each node with a consistent

and updated view of the whole neighborhood. In this way, TeenyLime can make full use of

message to fill it with one bigger tuple or multiple tuples. As a consequence, not only the

programmer can make full use of the size of the communicated packets, but it can also rely on

a uniform updating mechanism of the informations related to neighbors, which is independent

from the application components.

5.4.3 Remote Queries

Whereas interactions among local components are clearly independent from the usage of the

wireless medium, querying a remote tuple space requires both the requester and the replier to



108

access the shared medium. In the case of random CSMA access, the interaction completes in very

short time. With a periodic scheduling of communication, as provided by TDMA approaches,

the operations require longer times and their results can explicitly depend on the scheduling.

LPL Perspective. By accessing the medium as soon as a message is ready to be sent, com-

munication in LPL is localized with computation, as near as possible. Therefore, as soon as

the application submits an operation, TeenyLime tries to forward the request to the destination

and the same is done right after the reply is computed at the destination side. In this way, the

round trip required to conduct the operation ends potentially shortly after its submission, in

the worst case after twice the sleep interval.

Moreover, the requester does not have any advantage in submitting more requests at the same

time, as the communication required by subsequent operations would likely collide with the reply

of the previous ones. Therefore, in the development of the application, the programmer prefers

to wait the completion of previous operations before continuing the processing. In addition, the

effectively immediate reply to the operation further limits the probability that other concurrent

remote operations involve the same requester and replier.

Through the Reins-MAC lens. Given the scheduled access implemented by Reins-MAC,

once an operation is submitted by the application, the query must wait the beginning of the local

transmission slot, similarly the waiting is forced at the replier. In the worst case, the operation

must wait for an entire frame before a chance of completion. If any remote operation depends

on the result of a previous one, it must wait possibly long before having a chance to continue in

the processing, further delaying the end of the computation.

As each node is provided with a continuous slot, multiple messages can be sent all at once.

However, operations dependent on each other would require to wait for some result in order to

continue in the processing. The result is a limitation in the number of messages sent in each

slot, ultimately wasting the allocated communication resources. Alternatively, the application

should handle the parallelization of the requests, their state, and their interdependency, until

the result is returned.

More importantly, the execution of remote operations would be forced to be interleaved

according to the communication scheduling, resulting in a clear dependency of the operation

results from the order in the schedule. For example, we can consider a network composed by

three nodes, A, B, and C, which follow each other in the alphabetical order in the communication

schedule. Assuming that A and B wants to query C’s tuple space, the query of A would be

forced to be queued on C, followed by the one coming from B. In the case in which A and B

are contending to obtain and remove some data from C, A would clearly always success to the

detriment of B. This would not happen with LPL, as the access to the channel is random and

therefore all the neighbors have equal chance to obtain access to the same data.

Finally, the aforementioned impact implies changes at the internal implementation of Teeny-

Lime. In particular, to handle the interleaving and the delays between request and reply two



109

different alternatives are possible: either the result is computed at the reception of the request or

right before producing the reply. Despite this does not affect the previously discussed example,

we can consider a local process running on C that submits a local operation to remove the

same data in between others’ requests and corresponding replies. Depending on the selected

implementation choice, different results can be obtained.

5.5 Concluding Remarks

In this chapter, we reconsidered the system services used in the Torre Aquila and road tunnel

deployments. We demonstrated the impact of the underlying MAC on their design. This is

partially a consequence of the inherent differences between TDMA and CSMA techniques in

supporting access to the medium. However, this effect is also caused by the unique flexibility

of Reins-MAC and the interface it provides to the higher layers. Furthermore, the repercussions

of our MAC protocol extend to the definition and usage of communication abstractions, which

are supposed to hide the details of the underlying communication mechanisms. This first step

demonstrated the ability of Reins-MAC to provide a concrete alternative to currently employed

solutions.



110



Part IV

Observing Communication





Chapter 6

Motes in the Jungle: Lessons

Learned from a Short-term WSN

Deployment in the Ecuador Cloud

Forest

The design of a system and the definition of the services and algorithms employed in it are bound

to the deployment scenario. The characteristics of connectivity are the main factor affecting the

performance of an implemented solution in the field. Given that assessing the specifics of a target

environment is crucial and complex, a preliminary pilot deployment is required. In this process,

the final user is usually involved only to define the requirements not to actively handle the

technology. In this last chapter, we report about a short-term deployment, undertaken directly

by biologists, which took place in the cloud forest of the North-Western slopes of Ecuadorian

Andes during March 29–April 3, 2010.1

6.1 Scenario, Motivation and Contribution

The work described here is part of a larger research effort targeting the monitoring of biodiver-

sity in community-based primary cloud forest reserves in this Andean region. Indeed, this area

is at the confluence of two of the world’s hottest biological hotspots: the Chocó-Darién Western

Ecuadorian and the Tropical Andes. Available checklists of vertebrates likely miss most reptile

and mammal species, including medium-to-large ones. The knowledge about these species’ use

1The content of this chapter is a joint work with Matteo Chini, Amy L. Murphy, Gian Pietro Picco, Francesca

Cagnacci, and Bryony Tolhurst, published in “Motes in the Jungle: Lessons Learned from a Short-term WSN

Deployment in the Ecuador Cloud Forest”, 4th Workshop on Real-World Wireless Sensor Networks (RealWSN’10),

Colombo (Sri Lanka), December 2010 [7].



114

of space and community interactions is essential to ascertain their susceptibility to environmen-

tal changes and guide conservation measures. Available information is extremely sparse and

based on discontinuous observations and occasional surveys. Direct observation of animals is

not a robust method, due to the very dense vegetation, while traditional indirect methods, such

as capture-mark-recapture or radio-tracking are extremely effort-demanding as these areas are

secluded. Recent advancements in wildlife studies, e.g., the use of GPS devices, are expensive

and therefore applicable to a small number of species and sample size. WSNs provide a new,

exciting option in such challenging environmental conditions, especially for long-term monitor-

ing. Advantages include the need for only a single capture (to fit the node) and the possibility

to study a large sample thanks to the relatively low equipment and deployment cost. However,

an essential step in seizing this opportunity is the evaluation of the node performance in the

target environment.

The envisioned WSN application will encompass nodes permanently deployed in the environ-

ment at known locations as well as attached with collars to the animals themselves. We intend

to use motes functionally equivalent to Moteiv’s TMote Sky [66], arguably the most popular

platform today. However, the 2.4 GHz band used by the CC2420 radio chip on these motes is

known to be highly sensitive to foliage and water—essential ingredients of a cloud forest. There-

fore, the primary motivation behind the study described here was to assess the connectivity

characteristics of the target environment to determine the feasibility of our WSN architecture

and guide its design.

Related work. A few real-world deployments focus on forests [80], but with characteristics

different from ours. Despite the importance of understanding the connectivity of the environment

targeted by a WSN, this information is rarely reported in the literature. Instead, the problem

is usually tackled with studies targeting either static [74] or mobile [53] scenarios. All the

reported works, however, leverage the possibility to progressively refine the investigation based

on the findings. Our need to define a priori the entire experimentation pushed us towards a

more general methodology, something still not available in the literature. To design our study

we leveraged our prior expertise in comparing the network characteristics of a tunnel against

the vineyard environment [57]. However, the differences in the application scenario, involving

mobile nodes, and the inability to access the experiment site demanded a significant revision of

our techniques.

Challenges. The deployment itself presented non-trivial logistical difficulties due to the geo-

graphical distance and the harshness of our target environment. Things were further complicated

by the fact that the WSN experiments were “piggybacked” on the biologist’s trip to Ecuador

for other research purposes.

As a consequence, we faced rather unusual requirements. In the literature, similar experi-

ments are typically run by the WSN developers, often in rather controlled environments. Instead,

in our case the experiments had to be run by the biologists, and in isolation. Remote WSN



115

configuration was not an option, due to the absence of data connectivity from the experiment

location—the jungle. Similarly, a multi-phase deployment, where the output of one experiment

guides the setup of the next, was also not an option due to the distance between the experiment

location and the closest Internet access, and to the duration of the experiments. The latter was

limited by the biologist’s already-established trip schedule, further reduced by the inevitable

lost baggage.

Simply put, this meant that our hw/sw WSN setup had to work out of the box for the entire

duration of the experimental campaign, and had to be simple enough to be operated by someone

without expertise with this technology.

Contributions and findings. The details about our cloud forest experiments are provided in

Section 6.3. The main contributions of the work described in this chapter are the following:

I. Low-power wireless in the jungle environment. In Section 6.4 we analyze the gathered data.

The depth of the analysis is somewhat limited by the aforementioned logistic problems,

as we did not have a second chance to investigate the source of unexpected behaviors.

However, we are not aware of other studies investigating low-power wireless communication

in an environment similar to ours and therefore, even with these limitations, we believe

our study can be of value for the research community. Moreover, some of our findings are

somewhat surprising. For instance, we expected links to be rather short and unreliable, due

to foliage, water, and humidity. Instead, our data show that 30-meter links are common,

and in some cases reliable communication occurs up to 40 m.

II. Mobile nodes as a connectivity exploration tool. The inclusion of experiments with mobile

nodes was initially motivated by the animal-borne nodes in our envisioned application.

We expected to draw the bulk of our considerations from stationary-only experiments.

Instead, mobile nodes played a much more relevant role in our study. On one hand, the

stationary-only experiments did not deliver the amount of data we expected. The con-

nectivity patterns were not known in advance, and a multi-phase deployment was not

an option, as already discussed. Mobile experiments provided a data set complementing

the stationary ones. On the other hand, with hindsight, the use of mobile nodes is an

effective way to explore connectivity, regardless of mobility requirements. Intuitively, a

broadcasting node moving through a single, well-designed path yields a wealth of infor-

mation, more varied and fine-grained w.r.t. stationary-only experiments, even considering

the interference introduced by the person executing the experiments. This enables a more

precise “connectivity map” of the environment, that can be used for instance to guide

node placement. We believe the use of mobile nodes can become an essential element of

studies aimed at characterizing connectivity in WSN environments.

III. When WSN developers are not in charge. Our experiments were run by someone other

than the WSN developers because of opportunity. There may be other reasons, e.g., the

necessity to require authorizations or safety concerns related to the target deployment



116

area. In any case, for WSN to become truly pervasive, end-users must be empowered with

the ability to deploy their own system. The lessons we learned, distilled in Section 6.5,

can be regarded as a contribution towards this goal.

6.2 Deployment Scenario

Location. The community-based reserve of Junin, in the Intag region of the Imbabura province

in Ecuador (0o16’19.09”N; 78o39’28.92”W) is between 1,200 and 2,800 m above sea level of the

North-Western slopes of the Ecuadorian Andes. Significant portions of these mountain areas are

primary cloud tropical forests, almost permanently cloudy and foggy. According to the United

Nation’s World Conservation Center, cloud forests comprise only 2.5% of the world’s tropical

forests, and approximately 25% are found in the Andean region. Therefore, they are considered

at the top of the list of threatened ecosystems. The climate is tropical, and the flora and fauna

incredibly rich, with about 400 species of birds and 50 known mammal species (including 20

carnivores), many probably still unchecked or even unknown. The small human community of

about 50 people is 20 km from the closest village, and a 7 hour dirt-road drive from the closest

town. The vegetation is made by relatively scattered mature trees, constituting the canopy, and

a dense undergrowth of shrubs and epiphites. During the rainy season (November-May), when

we ran our experiments, it rains every day for nearly the entire day.

WSN Equipment. Our experiments used 18 TMote Sky nodes, equipped with the Chip-

Con 2420 IEEE 802.15.4-compliant, 2.4 GHz radio and on-board inverted-F micro-strip omni-

directional antenna. The choice of this popular platform is motivated both by our intended

use of a similar platform in our own wildlife application, and to enable comparison with simi-

lar experiments in different environments reported in the literature. Alternate hardware would

significantly modify the results, e.g., an external antenna would likely dramatically increase

the observed connectivity. Moreover, these motes are provided with an external flash memory,

enabling storage of the experiment data.

As stationary motes were intended to be attached to trees in a very humid environment, under

heavy rain, we used IP65 water-proof boxes with a transparent cover, enabling the sampling of

the light as requested by the biologists. Inside each box we glued a USB female connector to

easily anchor and replace the node as needed. Each box also contained a battery holder with

two size D batteries and desiccant bags to protect the node against humidity. The packaging

is shown in Figure 6.1 in the same orientation as it was attached to the trees. In contrast, the

mobile node was simply a TMote Sky powered by 2 AA batteries, wrapped in a plastic bag.



117

Figure 6.1: Packaging.

Stationary Node

Video Camera

Mobile Node

Figure 6.2: In the jungle with mobile nodes.

6.3 Experiment Design

The WSN was composed of 8 nodes, placed in a cross configuration, as shown in Figure 6.3(a).

The placement was determined as part of the stationary experiments, described next. Node 0

served as the experiment coordinator, broadcasting a message indicating the start time and con-

figuration of each experiment. All communication took place on channel 18. Since no computer

was available in-field, we used the motes’ LEDs to visualize the node functionality. For example,

toggling the yellow LED indicated message transmission, while toggling together the other two

LEDs indicated message reception. At node boot time, a visual code for the battery voltage was

shown to advise for battery replacement in case of values below 2.7 V, the minimum required

to write to the flash memory. To start an experiment, the biologist pressed the user button.

The software was built on TinyOS and without any MAC protocol, given our goal of char-

acterizing physical connectivity. Packet collision was avoided by an appropriate transmission

schedule sent at the beginning of each experiment by node 0. For each experiment, and for each

link i→ j, we recorded in the flash the following metrics:

• Packet Delivery Ratio (PDRi→j), the number of packets received at node j over the total

number of packets sent by node i;

• Received Signal Strength Indicator (RSSIi→j), the signal strength of the packets trans-

mitted by i, as observed by the radio of j;

Tree

Node

6
3

7
4

5 2
0

1

17 m 
9.5 m 

28 m 

7 m 

14 m 
24 m 14 m Highest level  

Base level  

Lowest level  

(a) Node placement.

(5
,7

)

(2
,7

)
(6

,7
)

(1
,6

)
(3

,7
)

(5
,6

)
(1

,3
)

(1
,7

), 
(4

,5
)

(2
,6

), 
(3

,5
)

(0
,7

), 
(4

,6
)

(0
,6

)
(2

,3
)

(2
,4

), 
(3

,4
)

(1
,5

)
(0

,3
)

(0
,5

)
(4

,7
)

(1
,2

)
(1

,4
)

(0
,2

)
(0

,1
), 

(0
,4

)

(2
,5

)
(3

,6
)

64
 m

55
 m

52
 m

49
 m

47
 m

44
 m

42
 m

40
 m

39
 m

38
 m

35
 m

33
 m

31
 m

30
 m

28
 m

26
 m

24
 m

22
 m

20
 m

17
 m

14
 m

10
 m7 
m

0 
m

(b) Link Distances.

Figure 6.3: Deployment of stationary nodes; each color corresponds to about 1 m difference.



118

• Link Quality Indicator (LQIi→j), the correlation index between the symbol received at j,

sent by i, and the one to which it is mapped after radio soft decoding.

6.3.1 Preliminary Tests

Goals. Given the lack of reported experiences in scenarios similar to ours, the primary goal

of these tests was to determine the communication range, to properly place nodes in the next

experiments. These experiments also investigated different power transmission levels as well as

the impact of direct tree obstruction.

Implementation. The experiments exploited only node 0 and 3 in Figure 6.3(a). We im-

plemented two experiments, one to determine the range of communication, and the other to

investigate the effect of signal power and tree obstruction. In the former, each node sent 600

messages with an inter message interval (IMI) of 2 s. All messages were sent with −1 dBm trans-

mission power. The LED visual feedback was used to guide the identification of the maximal

communication range. In the latter experiment, each node sent a sequence of 3000 messages with

a 2 s IMI, interleaving sending between the involved nodes. These messages are logically divided

into 5 tests of 600 messages each, 3 at −1 dBm, commonly used in WSN deployments, and 2

at −8 dBm, to investigate the effect of reduced power. For each 600-message set we stored the

aggregated average RSSI (RSSI ), average LQI (LQI ) and PDR values over all received messages.

Deployment. In all experiments node 0 was attached to a tree at 1 m height, while node 3

was placed on a chair. In the first experiment, the two nodes were in line of sight (LoS)

and the biologist gradually moved the chair away from the tree while monitoring the LEDs for

determining a safe communication range, which she established at 28 m. The second experiment

with different power levels was run a first time with nodes in line of sight, and then again with

node 0 directly behind the tree, creating a link obstruction.

6.3.2 Tests with Stationary Nodes

Goals. The purpose of these tests was to investigate connectivity among nodes at different

distances, over a long time interval, and at different node heights.

Implementation. These experiments used the nodes as in Figure 6.3(a) and, as in the pre-

liminary tests, relied on node 0 for disseminating the start time and transmission schedule. In

each experiment, each node sent 215 messages with an IMI of 8 s, resulting in an interval of

1 s between nodes adjacent in the transmission schedule. The experiments were batched and

ran for an entire day, interleaving 23 experiments at −1 dBm with 22 experiments at −8 dBm.

Before this batch, a 1-hour setup experiment (with LEDs enabled) was performed, to verify

connectivity and thus node placement. At the end, each node computed and stored the overall

PDR, RSSI , and LQI w.r.t. all other nodes.



119

Deployment. Node 0 and 3 were left in place after the preliminary tests. During the setup

experiment, all the others were moved one by one away from node 0 in small steps. Based on

high-level instructions, the LEDs blinking, and the communication range of 28 m determined

in the preliminary tests, the biologists determined the final placement shown in Figure 6.3(a),

yielding the set of distances covered as shown in Figure 6.3(b). The experiments were executed

twice for a total of 2 days.

Our original idea was to deploy the nodes in a flat area, placing them first at ground level,

then at 1 m from the ground, and finally at various, possibly higher heights. The rationale was

to determine node placement in the least favorable connectivity conditions, close to the ground.

Unfortunately, due to the delayed arrival on site (caused by lost luggage), the biologists decided

to eliminate the first experiment. Moreover, due to the available terrain, highly irregular and on a

sort of hill as shown in Figure 6.3(a), the second and third deployments were reversed. Therefore,

the deployment was setup in the connectivity conditions most favorable, which affected the

subsequent experiments. Indeed, undergrowth interfered significantly during the second test,

making its results unusable. Also, node 2 failed to start some tests and its data has been

excluded.

6.3.3 Tests with Stationary and Mobile Nodes

Goals. These experiments were initially motivated by our wildlife application, combining fixed

and animal-borne nodes. When interpreting the results, however, we realized the importance

of these tests in enabling exploration of connectivity at many more distances w.r.t. the static

deployment, yielding more spatial continuity to data points.

Implementation. In these experiments, node 0 was carried by the biologist, who moved

throughout the deployment area. Stationary nodes only listened, while node 0 broadcast mes-

sages at −1 dBm for 15 min, with an IMI of 500 ms, yielding 1,800 messages per experiment.

Unlike stationary experiments, which recorded only one aggregate value for each link, in the

mobile tests statistics about each individual message were recorded. This allowed us to treat

each message separately, by considering the distance between the mobile node and each sta-

tionary node at the moment it was sent. Offline data correlation across nodes was enabled by

timestamping the message at the sender, and saving this along with the RSSI and LQI values

at the receiver. During experiments the biologist moved freely, her path recorded by a video

camera carried by a second team member (Figure 6.2), allowing us to visualize the movements

and correlate the timings.

Deployment. The placement of stationary nodes was the same as in Section 6.3.2, but the

nodes were physically replaced as their (pre-loaded) software was different. The nodes were

placed at 1 m from the ground. The mobile node was either held in the biologist hands (as in

Figure 6.2) with the antenna parallel to her shoulders and the board facing the sky or carried



120

Link TX power PDR RSSI LQI

LoS Tree LoS Tree LoS Tree

0→ 3 −1 dBm 86.7% 79.5% −87 dBm −91 dBm 99 90

3→ 0 −1 dBm 84.4% 69.7% −88 dBm −92 dBm 98 88

0→ 3 −8 dBm 24.2% 1.3% −92 dBm −93 dBm 80 77

3→ 0 −8 dBm 11.8% 0.5% −92 dBm −94 dBm 77 75

Table 6.1: Results from the preliminary tests.

chest height inside a pouch, unfortunately with undefined orientation. First, the biologist stood

near a stationary node (node 2) and made simple movements of approximately 1 m amplitude

along the horizontal plane at the node height and along the tree, approaching the node from

four directions—front, back, right, and left. Then, the biologist moved back and forth between

node 1 and 3, then between 2 and 5. Although these experiments focused on movement between

a subset of the available nodes, all nodes in the network recorded message reception, thus we

gathered a large amount of data. Finally, the biologist composed a path visiting all stationary

nodes. Each path was repeated 4 times. In total, these experiments produced 116,448 data

points. We excluded the data collected by node 7 as we verified that its short-range reception

was abnormal.

6.4 A Mote’s Life In the Jungle

This section presents our experimental results. Due to the previously described limitations,

analysis is limited, and further insights into the observed behaviors require additional dedicated

tests. Nevertheless, valuable information about communication in the jungle environment is

presented.

6.4.1 Preliminary Tests

The results of the tests on transmission power and tree influence are shown in Table 6.1. As

discussed in Section 6.3.1, these involved only node 0 and 3. At −1 dBm, both PDR and LQI

are high. This is expected as these results are at the distance of 28 m the biologists chose as the

border of good connectivity. Interestingly, our initial guess for a safe communication distance

was much lower, around 10-15 m, given the presence of thick vegetation and high humidity.

RSSI is low but, given the absence of radio interference in the forest, it does not significantly

affect PDR. The presence of a tree right in front of a node may cause link asymmetries. With

nodes in line of sight, the PDR difference between the two link directions is only 2%, but with the

tree in between this increases to 10%, indicating a weaker link when communication originates

near the tree. RSSI and LQI do not show marked asymmetries, although they decrease when



121

the tree obstructs the link. With lower transmission power, PDR is non-negligible but more

heavily influenced by the tree. The low LQI is consistent with the next experiments showing

that 28 m is well outside the good-connectivity range at −8 dBm.

6.4.2 Tests with Stationary Nodes

Long-Distance, High-Quality Links. We expected the dense jungle foliage to significantly

limit communication. Instead, Figure 6.4(a) shows that communication is almost perfect up

to 20 m, although the high PDR at 19.8 m occurs with a relatively low signal strength (Fig-

ure 6.4(b)). Further, although the 38 m link falls well beyond the region with perfect communi-

cation, analysis over time (Figure 6.5) shows that this link was also perfect for more than half of

the experiment duration. While this is clearly an anomaly of the setup, it clearly demonstrates

that connectivity in the jungle is much different than expected. At −8 dBm, the area with

perfect links is only slightly reduced to 14 m.

Fluctuations and Asymmetries of Mid-Range Links. Figure 6.4(a) and 6.4(b)) show that

links with mid-range distances of 20–40 m have highly-variable quality and low RSSI. The PDR

large standard deviation is best viewed over time in Figure 6.5, where each point describes the

result of one 30-min experiment for a given link. From the detail on the right-hand side of the

figure, one can see that the variability is unpredictable. For example, around hour 15 some links

improve while others decline. Further, some links such as (3, 0) show transient asymmetries.

Weather could be the culprit, and indeed it rained during the majority of these tests. Although

one would expect a global decay of link quality, it is possible that humidity, rain, and pools of

collected water affect communication in local, unpredictable ways, although we do not have direct

observations confirming this. In any case, mid-range links clearly cannot guarantee connectivity,

but they can certainly be exploited transiently by adaptive routing algorithms.

Long-Range Interference with Reduced Power. At −8 dBm, links outside the perfect

communication range disappear for long periods of time (Figure 6.6). While these links are

basically unusable, they can cause long-range interference. For example, Figure 6.6(b) shows

 0
 20
 40
 60
 80

 100

 0  10  20  30  40  50  60

PD
R

 (%
)

Distance (m)

(a) PDR vs Distance.

-90
-80
-70
-60
-50
-40

 0  10  20  30  40  50  60

R
SS

I (
dB

m
)

Distance (m)

(b) RSSI vs Distance.

 0
 20
 40
 60
 80

 100

 60  70  80  90  100  110

PD
R

 (%
)

LQI

(c) PDR vs LQI .

Figure 6.4: Average and standard deviation of the results from stationary tests with power

−1 dBm.



122

 5  10  15  20  25  30  35  40
 5

 10
 15

 20

 0
 20
 40
 60
 80

 100

PD
R

 (%
)

Link Length (m)

Time
 (hours)

PD
R

 (%
)

 0
 50

 100

 5  10  15  20
Time (hours)

Link (7,4), 24m 0
 50

 100 Link (3,0), 28m 0
 50

 100

PD
R

 (%
)

Link (5,1), 30m 0
 50

 100 Link (4,3), 31m 0
 50

 100 Link (7,0), 38m

5 10 15 20
Time (hours)

Link (4,7), 24m

Link (0,3), 28m

Link (1,5), 30m

Link (3,4), 31m

Link (0,7), 38m

Figure 6.5: PDR over time with power −1 dBm from stationary tests.

 5  10  15  20  25  30  35  40
 5

 10
 15

 20

 0
 20
 40
 60
 80

 100

PD
R

 (%
)

Link Length (m)

Time
 (hours)

PD
R

 (%
)

(a) PDR.

 5  10  15  20  25  30  35  40
 5

 10
 15

 20

-90

-80

-70

-60

R
SS

I (
dB

m
)

Link Length (m)

Time
 (hours)

R
SS

I (
dB

m
)

(b) RSSI .

Figure 6.6: Results over time with power −8 dBm from stationary tests.

-90
-80
-70
-60
-50
-40
-30

 12

R
SS

I (
dB

m
)

Time (minutes since beginning of experiment)

Front

Average

Left

 13

Back

 14

Right

Figure 6.7: Node 0 approaching node 2, attached to a tree, from different directions.

messages received with very low RSSI even at 40 m. Although these distant transmissions rarely

succeed, they could easily disrupt overlapping shorter-range ones.

6.4.3 Tests with Stationary and Mobile Nodes

“Omnidirectional” Antenna. Figure 6.7 shows the effect of a node approaching a second

one fixed to a tree, as described in Section 6.3.3. Based on the biologist’s 1-meter horizontal



123

movements, the different shapes of the Front, Left, and Back curves clearly show the well-known

fact that the used antenna is not perfectly isotropic. Interestingly, the flat tops in Right do not

correspond to a movement pause, rather to the “saturation” of RSSI for very short links. Tree

obstruction is clearly evident in the Back curve.

Influence of Body, Tree, and Ground. In Figure 6.8 the biologist, holding the mobile

node in front of her chest, looped four times around nodes 1 and 3. We decomposed the data

trace to distinguish the possible obstructions. For example, when walking from 1 to 3, the tree

obstructed communication received at 3 (Figure 6.8(b)), and the body obstructed receptions

 0
 20
 40
 60
 80

 100

 0  10  20  30  40  50

PD
R

 (%
)

Distance (m)

-100
-90
-80
-70
-60
-50
-40
-30

 0  10  20  30  40  50

R
SS

I (
dB

m
)

Distance (m)

 60
 70
 80
 90

 100
 110

 0  10  20  30  40  50

LQ
I

Distance (m)

(a) Line-of-sight at 1 m height.

 0
 20
 40
 60
 80

 100

 0  10  20  30  40  50

PD
R

 (%
)

Distance (m)

PDR

-100
-90
-80
-70
-60
-50
-40
-30

 0  10  20  30  40  50

-60
-40
-20
 0
 20
 40
 60

R
SS

I (
dB

m
)

D
el

ta
 w

rt 
Lo

S 
(%

)

Distance (m)

RSSI
Delta

 60
 70
 80
 90

 100
 110

 0  10  20  30  40  50

LQ
I

Distance (m)

LQI

(b) Tree obstruction.

 0
 20
 40
 60
 80

 100

 0  10  20  30  40  50

PD
R

 (%
)

Distance (m)

PDR

-100
-90
-80
-70
-60
-50
-40
-30

 0  10  20  30  40  50

-60
-40
-20
 0
 20
 40
 60

R
SS

I (
dB

m
)

D
el

ta
 w

rt 
Lo

S 
(%

)

Distance (m)

RSSI
Delta

 60
 70
 80
 90

 100
 110

 0  10  20  30  40  50

LQ
I

Distance (m)

LQI

(c) Body obstruction.

 0
 20
 40
 60
 80

 100

 0  10  20  30  40  50

PD
R

 (%
)

Distance (m)

PDR

-100
-90
-80
-70
-60
-50
-40
-30

 0  10  20  30  40  50

-60
-40
-20
 0
 20
 40
 60

R
SS

I (
dB

m
)

D
el

ta
 w

rt 
Lo

S 
(%

)

Distance (m)

RSSI
Delta

 60
 70
 80
 90

 100
 110

 0  10  20  30  40  50

LQ
I

Distance (m)

LQI

(d) Line-of-sight at ground level.

Figure 6.8: Effect of tree, body, and ground on communication. The line in the RSSI plots

shows the delta in percent w.r.t. the line-of-sight shown in (a).



124

at 1 (Figure 6.8(c)). As a reference, we chose the line-of-sight case: reception at 1 when walking

from 3 to 1 (Figure 6.8(a)). The same experiment was run with the mobile node held a few

centimeters from the ground (Figure 6.8(d)).

Trees induce a reduction up to 20% on RSSI in short links (< 20 m), while longer links

are not affected. The body also reduces RSSI in short links, but more significantly, up to

40%. Moreover, the body reduces the maximum communication range by 10 m, as denoted in

Figure 6.8(c) by a nearly-zero PDR beyond 30 m. As expected, the simultaneous obstruction

of tree and body yields a combination of previous results: a shorter communication range and

RSSI reductions up to 60%. This bears an important implication for our wildlife application,

where we need to estimate the distance between animals upon contact: RSSI-based distance

approximation schemes may have a significant error, induced by trees, the body of animals, and

the direction the animal approaches the tree, as discussed previously.

Placing the sender near the ground produces a different combination of effects. Specifically,

the line-of-sight communication range is much shorter than in Figure 6.8(a), but the RSSI is

affected by at most 20%. As this scenario is the closest to our target deployment with tagged

animals, it warrants additional study.

6.4.4 An Evaluation of Mobile Nodes as Connectivity Probes

We take a step back from the data analysis to consider our data collection methodology, specif-

ically, comparing the results of stationary test against those with mobile ones.

Aggregated Mobile Tests vs. Stationary Tests. Thus far we have looked only at excerpts

of the mobile traces, extracting cases with specific characteristics. Here, we aggregate all data

points collected over all node movements, with the results shown in Figure 6.9(a)–6.9(c). To

plot PDR, we calculate the distance between the mobile and each stationary node, then plot the

number of messages received over those sent at each distance. RSSI and LQI are instead shown

as the average and standard deviation over all the messages received along links of a specific

length. We then compare these data to those collected in the stationary tests of Figure 6.4, by

plotting the percentage difference in Figure 6.9(d), only for the points studied in the stationary

scenario.

In the mobile scenario, the reduction of RSSI on short links (< 15 m) is likely attributable

to body interference as observed in Figure 6.8(c). From the PDR comparison in Figure 6.9(a),

we note that at all distances, the mobile scenario produces worse results, meaning that the PDR

at a given distance is lower in the mobile scenario than in the stationary. To understand the

implications, consider that we intend to use the results of this study to plan a future deployment.

If we base this deployment only on the results of the mobile study, all stationary nodes in our

future deployment would certainly be connected. Instead, if we base our fixed node placement on

the stationary results, we would erroneously expect to communicate with mobile nodes carried by

animals at the same distance. In other words, the mobile case underestimates the communication



125

potential of stationary nodes while the stationary overestimates communication to mobile nodes.

Interestingly, Figure 6.9(c) shows better quality links in the mobile scenario. While this

is opposite from the observations of PDR, the stationary experiments showed that LQI varied

significantly throughout the day. Instead, the mobile experiments were concentrated in less

time, and may have taken place in favorable connectivity conditions.

Figure 6.9(e) accounts only for the data recorded in conditions similar to those of the sta-

tionary only tests, i.e. removing the body shielding and using the data from Figures 6.8(a)

and 6.8(b), namely LoS and tree-only obstruction. For short links (< 20 m), values are in

agreement while longer links are hampered by interference from the ground and dense low-level

foliage in the mobile scenario. In the stationary tests, nodes were always within LoS, therefore

the undergrowth had minimal effect.

Statistical Relevance of Mobile Tests. The experiments run with a mobile node made

it possible to explore the physical space in a continuous fashion, spreading the collected data

points over more distances w.r.t. stationary-only tests. To understand the effectiveness of this

 0
 20
 40
 60
 80

 100

 0  10  20  30  40  50  60

PD
R

 (%
)

Distance (m)

(a) PDR.

-90
-80
-70
-60
-50
-40

 0  10  20  30  40  50  60

R
SS

I (
dB

m
)

Distance (m)

(b) RSSI .

 60
 70
 80
 90

 100
 110

 0  10  20  30  40  50  60

LQ
I

Distance (m)

(c) LQI .

-100
-80
-60
-40
-20

 0

 0  10  20  30  40  50  60

PD
R

D
el

ta
 (%

)

Distance (m)

-40
-20

 0
 20
 40

 0  10  20  30  40  50  60

R
SS

I
D

el
ta

 (%
)

Distance (m)

-40
-20

 0
 20
 40

 0  10  20  30  40  50  60

LQ
I

D
el

ta
 (%

)

Distance (m)

(d) Comparison of mobile with stationary tests.

-80
-40

 0
 40
 80

 0  10  20  30  40  50  60

PD
R

D
el

ta
 (%

)

Distance (m)

-40
-20

 0
 20
 40

 0  10  20  30  40  50  60

R
SS

I
D

el
ta

 (%
)

Distance (m)

-40
-20

 0
 20
 40

 0  10  20  30  40  50  60

LQ
I

D
el

ta
 (%

)

Distance (m)

(e) Comparison of mobile (no body shielding) with stationary tests.

Figure 6.9: Aggregated results over all 11 mobile experiments. In (d) and (e), the difference in

PDR for the links longer than 38 m is outside of the chart range.



126

 500
 1500
 2500
 3500

 0  10  20  30  40  50  60

#m
sg

s 
pe

r h
ou

r

St
at

io
na

ry

Distance (m)

 500
 1500
 2500
 3500

M
ob

ile

Figure 6.10: Number of messages sent per hour along links of a given distance by stationary

and mobile tests.

approach, Figure 6.10 compares the average number of messages received in 1 hour for each

distance covered in the mobile case, to the number of messages that the stationary experiment

would receive with the same IMI as the mobile nodes, i.e. 500 ms. Recall that to avoid collisions,

our stationary experiments used a 1 s IMI. The distribution of the tested distances is naturally

biased by the executed movements. Nonetheless, even without a guided motion plan, all dis-

tances less than 40 m have been tested by at least 400 messages, i.e., 25% of the messages sent

by the stationary tests for each link. The ability of the mobile node to cover so many distances

clearly motivates its use as a probe to characterize connectivity.

6.5 Lessons Learned

Our experiments were run in a challenging scenario by biologists without WSN expertise, with

limited equipment, and in isolation. Our group have never faced this combination in previous

real world deployments, and we learned interesting lessons.

Mobile Nodes: Application Insights or Connectivity Probes? It was the biologists

who requested experiments with mobile nodes, to concretely understand what WSNs could offer

them. Nevertheless, we learned that the use of mobile nodes, despite the inherent imprecision, is

useful for characterizing an unknown environment and guiding the actual deployment. Further

work is needed to explore the opportunities of this technique and understand its limitations,

e.g., the difficulty to capture long-term variations.

The Role of LEDs. In our study, the node output had to be simple yet informative enough

to guide the biologists. Our solution, based on giving a visual clue only about send/receive

operations, contributed to the creation of very long links between stationary nodes which in

turn contributed to the failure of the second set of stationary experiments, as mentioned in

Section 6.4.2. A visual representation of the RSSI values (e.g., represented by a “histogram”

using the three LEDs), would have led to shorter links, which would have produced meaningful

data even in the second set of experiments.



127

Testing Blindly. Our experimental campaign involved many decisions taken blindly. We

did not have an understanding of the environment based on previous studies. We did not

have a well-defined methodology for performing this kind of experiments, and none yet exists

in the WSN field. Finally, we could not modify experiments based on intermediate results.

We partially reduced the unknowns by breaking down experiments into phases with well-defined

outputs. Examples are the preliminary tests (Section 6.3.1) and the 1-hour setup phase preceding

the stationary tests (Section 6.3.2). These enabled the biologists to take informed decisions

autonomously, partially obviating the absence of WSN experts in-field. Nevertheless, this did

not avoid incorrect decisions, and could not provide answers for unanticipated questions (e.g.,

the cause of high time variance of links).

6.6 Concluding Remarks

The work described in this chapter presented an analysis of low power wireless communication

in a previously unknown scenario, which manifested unexpected results. After the mission

in Ecuador, eager to further investigate similar environments and encouraged by the manifest

interest of the biologists, we reproduced the same experiment campaign in the mountains nearby

our institution in Trento. Different vegetation and presence of snow were just some of the

factors we experienced as key in defining the behavior of communication. This demonstrated

that characterizing a scenario, and therefore its impact on the functioning of a WSN, only at

deployment time is insufficient. Significant and unanticipated changes can happen during the

whole system lifetime. Such influence and variability ask for the definition of comprehensive and

effective exploration techniques, comprehensible to non experts. Our experience in Ecuador was

a first step in this direction.



128



Part V

Conclusion





Chapter 7

Conclusion

In this thesis, we described the concrete experience obtained by our group in building real world

deployments, fostering the vision of WSNs as a viable technology in diverse scenarios. Despite

the decade of progress in the field, building reliable systems with WSNs at their core is a chal-

lenging task, still relying on the experts’ skills. Some of the limitations reside at the physical

layer, for which the human remains the most reliable solution. Handling proper node place-

ment is still a challenge currently solved through informed choices made by experts. Whereas

deployment methodology is still an unexplored research subject, mechanisms to control access

to the wireless medium are a well investigated topic. Nonetheless, we argue that the literature

lacks solutions able to make the vision of WSNs a reality. Works introduced so far either limit

their applicability and efficiency or fail to maintain their promises in operational systems. With

the objective of reinstating the control of communication in the hands of the resource user, we

introduced Reins-MAC. The protocol defines a scheduling mechanism that the common belief

considered impractical. Its ability to empower the higher layers in the communication stack with

the control of resource allocation, factoring out the coordination needed to support it, promotes

both the revision of old solutions and the design of new ones. In addition to the deployments

described in this work, Reins-MAC is a promising solution in all the contexts where controlling

communication quality is a requirement.

As a concrete example, the reader can consider a scenario where a monitoring infrastructure

is used to detect movements of rocks and signal early alarms in case of landslides or avalanches.

Networks composed by hundreds of nodes could make use of Reins-MAC to guarantee latency

control of warnings, dynamically reconfiguring the resource allocation as the network topology

changes with the sliding of the terrain. In order for Reins-MAC to keep the resource alloca-

tion consistent, a view of the nodes in communication range is continuously maintained. This

information does not only enable the application to reason about communication resource allo-

cation, but also exports knowledge of the current network topology. By exploiting such a view,

we can conceive, for example, of automatic deployment of sensors made by unmanned aerial



132

or terrestrial vehicles. Helicopters or quadcopters would place nodes in hazardous scenarios,

e.g., car accidents inside road tunnels or catastrophes in civil areas, guaranteeing the basic con-

nectivity properties required to form a continuous and dense monitoring infrastructure. Once

deployed, such a network can also provide to the members of the rescue teams an alternative

communication channel to exchange information when traditional wired or wireless technologies

are either damaged or unavailable. Despite the focus on WSNs, arguably one of the most chal-

lenging networking scenarios, Reins-MAC defines generic scheduling mechanisms that apply

to multiple contexts. In particular, mobile platforms, e.g., phones as well as the already men-

tioned unmanned vehicles, are gaining increasing attention as sensing and networking devices.

Despite the more powerful platform, their interconnection remains a challenge. This scenario

would investigate the limits of the introduced scheduling flexibility as well as the effectiveness

of Reins-MAC anarchy in highly dynamic settings.



Part VI

Bibliography





Bibliography

[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The hitchhiker’s guide to suc-

cessful wireless sensor network deployments. In Proceedings of the 6th ACM conference on

Embedded network sensor systems, SenSys ’08, pages 43–56, New York, NY, USA, 2008.

ACM.

[2] J. Bonwick. The slab allocator: an object-caching kernel memory allocator. In Proceedings

of the USENIX Summer 1994 Technical Conference on USENIX Summer 1994 Technical

Conference - Volume 1, USTC’94, pages 6–6, Berkeley, CA, USA, 1994. USENIX Associa-

tion.

[3] A. Boulis. Castalia: A simulator for WSNs. http://castalia.npc.nicta.com.au/index.

php, 2010.

[4] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: a short preamble MAC protocol

for duty-cycled wireless sensor networks. In Proceedings of the 4th international conference

on Embedded networked sensor systems, SenSys ’06, pages 307–320, New York, NY, USA,

2006. ACM.

[5] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: ultra-low power data gathering

in sensor networks. In Proceedings of the 6th international Conference on Information

processing in sensor networks, IPSN ’07, pages 450–459, New York, NY, USA, 2007. ACM.

[6] U. I. centric Government & Enterprise Next Generation Networks-Vision 2010. www.

u-2010.eu.

[7] M. Ceriotti, M. Chini, A. L. Murphy, G. P. Picco, F. Cagnacci, and B. Tolhurst. Motes in

the jungle: lessons learned from a short-term WSN deployment in the ecuador cloud forest.

In Proceedings of the 4th international workshop on Real-world wireless sensor networks,

REALWSN’10, pages 25–36, Berlin, Heidelberg, 2010. Springer-Verlag.

[8] M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna, G. P. Jesi,

R. Lo Cigno, L. Mottola, A. L. Murphy, M. Pescalli, G. P. Picco, D. Pregnolato, and

C. Torghele. Is there light at the ends of the tunnel? wireless sensor networks for adaptive

http://castalia.npc.nicta.com.au/index.php
http://castalia.npc.nicta.com.au/index.php
www.u-2010.eu
www.u-2010.eu


136

lighting in road tunnels. In Proceedings of the 2011 International Conference on Information

Processing in Sensor Networks, IPSN ’11, 2011. To Appear.

[9] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra, M. Pozzi, D. Zonta,

and P. Zanon. Monitoring heritage buildings with wireless sensor networks: The torre

aquila deployment. In Proceedings of the 2009 International Conference on Information

Processing in Sensor Networks, IPSN ’09, pages 277–288, Washington, DC, USA, 2009.

IEEE Computer Society.

[10] S. Cheekiralla. Poster abstract: Wireless sensor network-based tunnel monitoring. In

Proceedings of the 1st international workshop on Real-world wireless sensor networks, RE-

ALWSN’05, 2005.

[11] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govindan, E. John-

son, and S. Masri. Monitoring civil structures with a wireless sensor network. IEEE Internet

Computing, 10:26–34, March 2006.

[12] K. Chintalapudi, J. Paek, O. Gnawali, T. S. Fu, K. Dantu, J. Caffrey, R. Govindan, E. John-

son, and S. Masri. Structural damage detection and localization using NETSHM. In Pro-

ceedings of the 5th international conference on Information processing in sensor networks,

IPSN ’06, pages 475–482, New York, NY, USA, 2006. ACM.

[13] CIE—International Commission on Illumination. Guide for the Lighting of Road Tunnels

and Underpasses (CIE 88-2004), 2004.

[14] CONET Consortium. Roadmap. http://www.cooperating-objects.eu/roadmap/, 2009.

[15] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G. P. Picco, T. Sivaharan,

N. Weerasinghe, and S. Zachariadis. The RUNES middleware for networked embedded

systems and its application in a disaster management scenario. In Proceedings of the Fifth

IEEE International Conference on Pervasive Computing and Communications, pages 69–

78, Washington, DC, USA, 2007. IEEE Computer Society.

[16] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Programming wireless sensor net-

works with the TeenyLime middleware. In Proceedings of the ACM/IFIP/USENIX 2007

International Conference on Middleware, Middleware ’07, pages 429–449, New York, NY,

USA, 2007. Springer-Verlag New York, Inc.

[17] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path metric

for multi-hop wireless routing. Wireless Networks, 11:419–434, July 2005.

[18] J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies. In Pro-

ceedings of the 2008 Second IEEE International Conference on Self-Adaptive and Self-

Organizing Systems, pages 129–138, Washington, DC, USA, 2008. IEEE Computer Society.

http://www.cooperating-objects.eu/roadmap/


137

[19] J. Degesys, I. Rose, A. Patel, and R. Nagpal. DESYNC: self-organizing desynchronization

and tdma on wireless sensor networks. In Proceedings of the 6th international conference on

Information processing in sensor networks, IPSN ’07, pages 11–20, New York, NY, USA,

2007. ACM.

[20] V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, C. Mascolo, B. Pásztor, S. Scellato,

N. Trigoni, R. Wohlers, and K. Yousef. Evolution and sustainability of a wildlife monitoring

sensor network. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor

Systems, SenSys ’10, pages 127–140, New York, NY, USA, 2010. ACM.

[21] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An ultra low power MAC protocol for multi-

hop wireless sensor networks. In First Int. Workshop on Algorithmic Aspects of Wireless

Sensor Networks (ALGOSENSORS 2004), Lecture Notes in Computer Science, LNCS 3121,

pages 18–31. Springer-Verlag, July 2004.

[22] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using ref-

erence broadcasts. In Proceedings of the 5th symposium on Operating systems design and

implementation, OSDI ’02, pages 147–163, New York, NY, USA, 2002. ACM.

[23] S. C. Ergen and P. Varaiya. PEDAMACS: Power efficient and delay aware medium access

protocol for sensor networks. IEEE Transactions on Mobile Computing, 5:920–930, July

2006.

[24] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor networks.

In Proceedings of the 1st international conference on Embedded networked sensor systems,

SenSys ’03, pages 138–149, New York, NY, USA, 2003. ACM.

[25] A. Giusti, A. L. Murphy, and G. P. Picco. Decentralized scattering of wake-up times in

wireless sensor networks. In Proceedings of the 4th European conference on Wireless sensor

networks, EWSN’07, pages 245–260, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree protocol. In

Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys

’09, pages 1–14, New York, NY, USA, 2009. ACM.

[27] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein, A. Joki, D. Estrin,

and E. Kohler. The tenet architecture for tiered sensor networks. In Proceedings of the 4th

international conference on Embedded networked sensor systems, SenSys ’06, pages 153–166,

New York, NY, USA, 2006. ACM.

[28] Gumstix. www.gumstix.com.

www.gumstix.com


138

[29] G. P. Halkes and K. G. Langendoen. Crankshaft: an energy-efficient mac-protocol for dense

wireless sensor networks. In Proceedings of the 4th European conference on Wireless sensor

networks, EWSN’07, pages 228–244, Berlin, Heidelberg, 2007. Springer-Verlag.

[30] Q. Han, A. P. Jayasumana, T. H. Illangasekare, and T. Sakaki. A wireless sensor network

based closed-loop system for subsurface contaminant plume monitoring. In Proceedings of

the 22nd IEEE International Symposium on Parallel and Distributed Processing, IPDPS

’08, pages 1–5. IEEE, 2008.

[31] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture

directions for networked sensors. SIGPLAN Notices, 35:93–104, November 2000.

[32] W. X. Hu, 2010. Duracell Corp - Private correspondence.

[33] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings

of the IRE, 40(9):1098–1101, 1952.

[34] Institute of Electrical and Electronics Engineers. Inc. IEEE Standard 802 for Information

technology - Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific requirements - Part 15.4: Wireless Medium Access

Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal

Area Networks (LR-WPANs), September 2006.

[35] B. Karaoglu, T. Numanoglu, and W. Heinzelman. Adaptation of TDMA parameters based

on network conditions. In Proceedings of the 2009 IEEE Conference on Wireless Commu-

nications & Networking Conference, WCNC’09, pages 1830–1835, Piscataway, NJ, USA,

2009. IEEE Press.

[36] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon. Health

monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the

6th international conference on Information processing in sensor networks, IPSN ’07, pages

254–263, New York, NY, USA, 2007. ACM.

[37] Y. Kim, R. G. Evans, and W. M. Iversen. Evaluation of closed-loop site-specific irrigation

with wireless sensor network. Journal of Irrigation anf Drainage Engineering, 135(1):25–31,

2009.

[38] K. Langendoen. The mac alphabet soup. http://www.st.ewi.tudelft.nl/~koen/

MACsoup/.

[39] K. Langendoen. Medium access control in wireless sensor networks. In H. Wu and Y. Pan,

editors, Medium Access Control in Wireless Networks, pages 535–560. Nova Science Pub-

lishers, Inc., May 2008.

http://www.st.ewi.tudelft.nl/~koen/MACsoup/
http://www.st.ewi.tudelft.nl/~koen/MACsoup/


139

[40] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: experiences from a pilot

sensor network deployment in precision agriculture. In Proceedings of the 20th international

Conference on Parallel and distributed processing, IPDPS’06, pages 174–174, Washington,

DC, USA, 2006. IEEE Computer Society.

[41] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: a self-regulating algorithm for

code propagation and maintenance in wireless sensor networks. In Proceedings of the 1st

conference on Symposium on Networked Systems Design and Implementation - Volume 1,

pages 2–2, Berkeley, CA, USA, 2004. USENIX Association.

[42] M. Li and Y. Liu. Underground coal mine monitoring with wireless sensor networks. ACM

Transations on Sensor Network, 5:10:1–10:29, April 2009.

[43] Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Transactions on

Computers, 55:214–226, February 2006.

[44] K. Lin and P. Levis. Data discovery and dissemination with DIP. In Proceedings of the

7th international conference on Information processing in sensor networks, IPSN ’08, pages

433–444, Washington, DC, USA, 2008. IEEE Computer Society.

[45] W. Liu, J. C. Principe, and S. Haykin. Kernel Adaptive Filtering: A Comprehensive Intro-

duction. Wiley Publishing, 1st edition, 2010.

[46] G. Lu, B. Krishnamachari, and C. Raghavendra. An adaptive energy-efficient and low-

latency MAC for data gathering in wireless sensor networks. In Proceeding of the 18th

Parallel and Distributed Processing Symposium, page 224, April 2004.

[47] J. P. Lynch and K. J. Loh. A summary review of wireless sensors and sensor networks for

structural health monitoring. Shock and Vibration Digest, Mar 2006.

[48] J. P. Lynch, A. Sundararajan, K. H. Law, A. S. Kiremidjian, and E. Carryer. Power-

efficient data management for a wireless structural monitoring system. In Proceedings of

the 4th International Wrkshp. on Structural Health Monitoring, 2003.

[49] J. P. Lynch, Y. Wang, R. A. Swartz, K. C. Lu, and C. H. Loh. Implementation of a closed-

loop structural control system using wireless sensor networks. Structural Control and Health

Monitoring, 15(4):518–539, 2008.

[50] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor

networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, WSNA ’02, pages 88–97, New York, NY, USA,

2002. ACM.



140

[51] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding time synchronization protocol.

In Proceedings of the 2nd international conference on Embedded networked sensor systems,

SenSys ’04, pages 39–49, New York, NY, USA, 2004. ACM.

[52] D3S Research Group. teenylime.sourceforge.net.

[53] E. Miluzzo, X. Zheng, K. Fodor, and A. T. Campbell. Radio characterization of 802.15.4

and its impact on the design of mobile sensor networks. In Proceedings of the 5th European

conference on Wireless sensor networks, EWSN’08, pages 171–188, Berlin, Heidelberg, 2008.

Springer-Verlag.

[54] R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators.

SIAM Journal on Applied Mathematics, 50(6):1645–1662, 1990.

[55] J.-M. Molina-Garcia-Pardo, M. Lienard, and P. Degauque. Propagation in tunnels: exper-

imental investigations and channel modeling in a wide frequency band for MIMO applica-

tions. EURASIP J. Wirel. Commun. Netw., 2009:7:1–7:9, January 2009.

[56] D. Moss and P. Levis. BoX-MACs: Exploiting physical and link layer boundaries in low-

power networking. Technical Report SING-08-00, Stanford University, 2008.

[57] L. Mottola, G. P. Picco, M. Ceriotti, c. Gunǎ, and A. L. Murphy. Not all wireless sensor

networks are created equal: A comparative study on tunnels. ACM Transactions on Sensor

Networks, 7:15:1–15:33, September 2010.

[58] C. Mühlberger and R. Kolla. Extended desynchronization for multi-hop topologies. Tech-

nical Report 460, Institut für Informatik, Universität Würzburg, Institut fr Informatik,

2009.

[59] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis. Koala: Ultra-low power data retrieval in

wireless sensor networks. In Proceedings of the 7th international Conference on Information

processing in sensor networks, IPSN ’08, pages 421–432, Washington, DC, USA, 2008. IEEE

Computer Society.

[60] Octopus Home Page. http://csserver.ucd.ie/~rjurdak/Octopus.htm.

[61] C. Park, K. Lahiri, and A. Raghunathan. Battery discharge characteristics of wireless sensor

nodes: an experimental analysis. In Proceedings of the 2nd International Conference on

Sensor and Ad-hoc Communications and Networks, SECON ’05, pages 430 – 440, September

2005.

[62] H. Park, J. Burke, and M. B. Srivastava. Design and implementation of a wireless sensor

network for intelligent light control. In Proceedings of the 6th international conference on

teenylime.sourceforge.net
http://csserver.ucd.ie/~rjurdak/Octopus.htm


141

Information processing in sensor networks, IPSN ’07, pages 370–379, New York, NY, USA,

2007. ACM.

[63] S. Park, A. Savvides, and M. Srivastava. Battery capacity measurement and analysis using

lithium coin cell battery. In Proceedings of the 2001 international symposium on Low power

electronics and design, ISLPED ’01, pages 382–387, New York, NY, USA, 2001. ACM.

[64] C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute of Mathematical

Sciences, New York University, New York, NY, USA, 1975.

[65] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor

networks. In Proceedings of the 2nd international conference on Embedded networked sensor

systems, SenSys ’04, pages 95–107, New York, NY, USA, 2004. ACM.

[66] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless research.

In Proceedings of the 4th international symposium on Information processing in sensor

networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[67] V. Rajendran, J. Garcia-Luna-Aceves, and K. Obraczka. Energy-efficient, application-aware

medium access for sensor networks. In 2nd IEEE Conf. on Mobile Ad-hoc and Sensor

Systems (MASS 2005), Washington, DC, Nov. 2005.

[68] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves. Energy-efficient collision-free

medium access control for wireless sensor networks. In Proceedings of the 1st international

conference on Embedded networked sensor systems, SenSys ’03, pages 181–192, New York,

NY, USA, 2003. ACM.

[69] B. Raman and K. Chebrolu. Censor networks: a critique of ”sensor networks” from a

systems perspective. SIGCOMM Computing Communincation Review, 38:75–78, July 2008.

[70] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-MAC: a hybrid MAC for wireless sensor networks.

In Proceedings of the 3rd international conference on Embedded networked sensor systems,

SenSys ’05, pages 90–101, New York, NY, USA, 2005. ACM.

[71] I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: distributed randomized TDMA scheduling

for wireless ad-hoc networks. In Proceedings of the 7th ACM international symposium on

Mobile ad hoc networking and computing, MobiHoc ’06, pages 190–201, New York, NY,

USA, 2006. ACM.

[72] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang,

J. Stankovic, D. Young, and J. Porter. LUSTER: wireless sensor network for environmental

research. In Proceedings of the 5th international Conference on Embedded networked sensor

systems, SenSys ’07, pages 103–116, New York, NY, USA, 2007. ACM.



142

[73] V. Singhvi, A. Krause, C. Guestrin, J. H. Garrett, Jr., and H. S. Matthews. Intelligent

light control using sensor networks. In Proceedings of the 3rd international conference on

Embedded networked sensor systems, SenSys ’05, pages 218–229, New York, NY, USA, 2005.

ACM.

[74] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical study of low-power wireless.

ACM Transactions on Sensor Networks, 6:16:1–16:49, March 2010.

[75] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline. PIPENET: a wireless sensor

network for pipeline monitoring. In Proceedings of the 6th international conference on

Information processing in sensor networks, IPSN ’07, pages 264–273, New York, NY, USA,

2007. ACM.

[76] Z. Sun and I. Akyildiz. Channel modeling of wireless networks in tunnels. In Proceedings

of the International Global Telecommunications Conference, GLOBECOM ’08, pages 1 –5,

December 2008.

[77] TinyOS Official Source Tree. www.tinyos.net.

[78] TinyOS. TEP 105 - Low Power Listening. www.tinyos.net. Accessed on 1/2010.

[79] TinyOS. TEP 119 - Collection. www.tinyos.net. Accessed on 1/2010.

[80] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson,

P. Buonadonna, D. Gay, and W. Hong. A macroscope in the redwoods. In Proceedings of

the 3rd international conference on Embedded networked sensor systems, SenSys ’05, pages

51–63, New York, NY, USA, 2005. ACM.

[81] L. van Hoesel and P. Havinga. A lightweight medium access protocol (LMAC) for wireless

sensor networks: Reducing preamble transmissions and transceiver state switches. In 1st

International Workshop on Networked Sensing Systems (INSS, Tokio, Japan, pages 205–

208, Tokio, Japan, 2004. Society of Instrument and Control Engineers (SICE).

[82] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and yield in

a volcano monitoring sensor network. In Proceedings of the 7th symposium on Operating

systems design and implementation, OSDI ’06, pages 381–396, Berkeley, CA, USA, 2006.

USENIX Association.

[83] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired sensor

network synchronicity with realistic radio effects. In Proceedings of the 3rd international

conference on Embedded networked sensor systems, SenSys ’05, pages 142–153, New York,

NY, USA, 2005. ACM.

www.tinyos.net
www.tinyos.net
www.tinyos.net


143

[84] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable multihop

routing in sensor networks. In Proceedings of the 1st international conference on Embedded

networked sensor systems, SenSys ’03, pages 14–27, New York, NY, USA, 2003. ACM.

[85] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Es-

trin. A wireless sensor network for structural monitoring. In Proceedings of the 2nd inter-

national conference on Embedded networked sensor systems, SenSys ’04, pages 13–24, New

York, NY, USA, 2004. ACM.

[86] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity on

wireless sensor networks. In Proceedings of the 2nd international conference on Mobile

systems, applications, and services, MobiSys ’04, pages 125–138, New York, NY, USA,

2004. ACM.

[87] D. Zonta, M. Pozzi, and P. Zanon. Manging the historical heritage using distributed tech-

nologies. International Journal of Architectural Heritage, 2(3):200–225, 2008.

[88] D. Zonta, M. Pozzi, P. Zanon, G. A. Anese, and A. Busetto. Real-time probabilisitc health

monitoring of the portogruaro civic tower. In Proceedings of the 6th International Confer-

ence on Structural Analysis of Historical Constructions, SAHC ’08, pages 723–731, 2008.





Part VII

Publications





Publications

International Journals

Authors Luca Mottola, Gian Pietro Picco, Matteo Ceriotti, Ştefan Gunǎ, and Amy L. Murphy

Title Not All Wireless Sensor Networks Are Created Equal: A Comparative Study On Tunnels

Journal ACM Transactions on Sensor Networks, Volume 7, Issue 2, August 2010

Abstract Wireless sensor networks (WSNs) are envisioned for a number of application sce-

narios. Nevertheless, the few in-the-field experiences typically focus on the features of

a specific system, and rarely report about the characteristics of the target environment,

especially w.r.t. the behavior and performance of low-power wireless communication. The

TRITon project, funded by our local administration, aims to improve safety and reduce

maintenance costs of road tunnels, using a WSN-based control infrastructure. The ac-

cess to real tunnels within TRITon gives us the opportunity to experimentally assess the

peculiarities of this environment, hitherto not investigated in the WSN field. We report

about three deployments: i) an operational road tunnel, enabling us to assess the impact

of vehicular traffic; ii) a non-operational tunnel, providing insights into analogous sce-

narios (e.g., underground mines) without vehicles; iii) a vineyard, serving as a baseline

representative of the existing literature. Our setup, replicated in each deployment, uses

mainstream WSN hardware, and popular MAC and routing protocols. We analyze and

compare the deployments w.r.t. reliability, stability, and asymmetry of links, the accuracy

of link quality estimators, and the impact of these aspects on MAC and routing layers.

Our analysis shows that a number of criteria commonly used in the design of WSN pro-

tocols do not hold in tunnels. Therefore, our results are useful for designing networking

solutions operating efficiently in similar environments.

Authors Daniele Zonta, Huayong Wu, Matteo Pozzi, Paolo Zanon, Matteo Ceriotti, Luca

Mottola, Gian Pietro Picco, Amy L. Murphy, Ştefan Gunǎ, and Michele Corrá

Title Wireless Sensor Networks for Permanent Health Monitoring of Historic Constructions



148

Journal International Journal on Smart Structures and Systems (SPIE), Special Issue on Wire-

less Sensor Advances and Applications for Civil Infrastructure Monitoring, Volume 6, Issue

5-6, June 2010

Abstract This paper describes the application of a wireless sensor network to a 31 meter-tall

medieval tower located in the city of Trento, Italy. The effort is motivated by preservation

of the integrity of a set of frescoes decorating the room on the second floor, representing

one of most important International Gothic artworks in Europe. The specific application

demanded development of customized hardware and software. The wireless module se-

lected as the core platform allows reliable wireless communication at low cost with a long

service life. Sensors include accelerometers, deformation gauges, and thermometers. A

multi-hop data collection protocol was applied in the software to improve the system’s

flexibility and scalability. The system has been operating since September 2008, and in

recent months the data loss ratio was estimated as less than 0.01%. The data acquired so

far are in agreement with the prediction resulting a priori from the 3-dimensional FEM.

Based on these data a Bayesian updating procedure is employed to real-time estimate the

probability of abnormal condition states. This first period of operation demonstrated the

stability and reliability of the system, and its ability to recognize any possible occurrence

of abnormal conditions that could jeopardize the integrity of the frescos.

International Conferences and Workshops

Authors Matteo Ceriotti, Michele Corrá, Leandro D’Orazio, Roberto Doriguzzi, Daniele Facchin,

Ştefan Gunǎ, Gian Paolo Jesi, Renato Lo Cigno, Luca Mottola, Amy L. Murphy, Massimo

Pescalli, Gian Pietro Picco, Denis Pregnolato, and Carloalberto Torghele

Title Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting

in Road Tunnels

Venue 10th ACM/IEEE International Conference on Information Processing in Sensor Net-

works (IPSN’11, SPOTS track), Chicago (IL, USA), April 2011 (Best Paper Award)

Abstract Existing deployments of wireless sensor networks (WSNs) are often conceived as

stand-alone monitoring tools. In this paper, we report instead on a deployment where

the WSN is a key component of a closed-loop control system for adaptive lighting in

operational road tunnels. WSN nodes along the tunnel walls report light readings to a

control station, which closes the loop by setting the intensity of lamps to match a legislated

curve. The ability to match dynamically the lighting levels to the actual environmental

conditions improves the tunnel safety and reduces its power consumption. The use of

WSNs in a closed-loop system, combined with the real-world, harsh setting of operational

road tunnels, induce tighter requirements on the quality and timeliness of sensed data,



149

as well as on the reliability and lifetime of the network. In this work, we test to what

extent mainstream WSN technology meets these challenges, using a dedicated design that

however relies on well-established techniques. The paper describes the hw/sw architecture

we devised by focusing on the WSN component, and analyzes its performance through

experiments in a real, operational tunnel.

Authors Matteo Ceriotti, Matteo Chini, Amy L. Murphy, Gian Pietro Picco, Francesca Cagnacci,

and Bryony Tolhurst

Title Motes in the Jungle: Lessons Learned from a Short-term WSN Deployment in the Ecuador

Cloud Forest

Venue 4th Workshop on Real-World Wireless Sensor Networks (RealWSN’10), Colombo (Sri

Lanka), December 2010

Abstract We study the characteristics of the communication links of a wireless sensor network

in a tropical cloud forest in Ecuador, in the context of a wildlife monitoring application.

Thick vegetation and high humidity are in principle a challenge for the IEEE 802.15.4

radio we employed. We performed experiments with stationary-only nodes as well as in

combination with mobile ones. Due to logistics, all the experiments were performed in

isolation by the biologists on our team. In addition to discussing the characteristics of

links in this previously unstudied environment, we also discuss the lessons we learned from

operating under peculiar constraints in a peculiar deployment scenario.

Authors Matteo Ceriotti, Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Ştefan Gunǎ,

Michele Corrá, Matteo Pozzi, Daniele Zonta, and Paolo Zanon

Title Monitoring Heritage Buildings with Wireless Sensor Networks: The Torre Aquila Deploy-

ment

Venue 8th ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN’09, SPOTS track), San Francisco (CA, USA), April 2009 (Best Paper Award)

Abstract Wireless sensor networks are untethered infrastructures that are easy to deploy and

have limited visual impact—a key asset in monitoring heritage buildings of artistic interest.

This paper describes one such system deployed in Torre Aquila, a medieval tower in Trento

(Italy). Our contributions range from the hardware to the graphical front-end. Customized

hardware deals efficiently with high-volume vibration data, and specially-designed sensors

acquire the building’s deformation. Dedicated software services provide: i) data collection,

to efficiently reconcile the diverse data rates and reliability needs of heterogeneous sensors;



150

ii) data dissemination, to spread configuration changes and enable remote tasking; iii)

time synchronization, with low memory demands. Unlike most deployments, built directly

on the operating system, our entire software layer sits atop our TeenyLime middleware.

Based on 4 months of operation, we show that our system is an effective tool for assessing

the tower’s stability, as it delivers data reliably (with loss ratios < 0.01%) and has an

estimated lifetime beyond one year.

Authors Matteo Ceriotti, Amy L. Murphy, and Gian Pietro Picco

Title Data Sharing vs. Message Passing: Synergy or Incompatibility? An Implementation-

Driven Case Study

Venue 23rd Annual ACM Symposium on Applied Computing (SAC’08), Fortaleza, Brazil, March

2008

Abstract One reasonable categorization of coordination models is into data sharing or message

passing, based on whether the information necessary to coordination is persistently stored

and shared, or instead is only transiently available during communication. Generally

speaking, approaches based on data sharing are more expressive and provide full decoupling

in space and time. The alternative approach requires the simultaneous presence of the

coordinated parties, but is typically more scalable. Prominent examples are, respectively,

tuple spaces and publish-subscribe. An open research question is whether it is possible

to exploit in synergy the best of these two approaches, e.g. by implementing the more

complex data sharing coordination on top of the more lightweight message passing one.

In this paper, we seek an answer to this question in a pragmatic way: we analyze an

implementation of the Lime tuple space middleware on top of REDS, an open source

publish-subscribe system. Our implementation-driven style of investigation forces us to

face details that do not surface when reasoning in the abstract about the nature and

expressiveness of the models. We report about lessons we learned in this experience, and

propose an extension to the publish-subscribe model that, albeit useful per se, constitutes

a more effective foundation for data sharing coordination models.

Posters and Demos

Authors Matteo Ceriotti, and Amy L. Murphy

Title Demo Abstract: A MAC Contest between LPL (the Champion) and Reins-MAC (the

Challenger, an Anarchic TDMA Scheduler Providing QoS)

Venue 8th ACM International Conference on Embedded Networked Sensor Systems (SENSYS),

Zurich, Switzerland, November 2010



151

Authors Matteo Ceriotti, and Amy L. Murphy

Title Poster Abstract: Introducing an adaptive MAC layer to support Quality of Service in

WSN

Venue 5th European conference on Wireless Sensor Networks (EWSN’08), Bologna, Italy, Jan-

uary 2008

Non-refereed Publications

Authors Daniele Zonta, Matteo Pozzi, Huayong Wu, Paolo Zanon, Matteo Ceriotti, Luca

Mottola, Gian Pietro Picco, Amy L. Murphy, and Ştefan Gunǎ

Title Real-Time Health Monitoring of Historic Buildings with Wireless Sensor Networks

Venue 7th International Workshop on Structural Health Monitoring (IWSHM’09), Stanford

(CA, USA), September 2009.

Authors Matteo Ceriotti, Roberto Doriguzzi, Ştefan Gunǎ, Renato Lo Cigno, Luca Mottola,

Amy L. Murphy, Matteo Nardelli, Gian Pietro Picco, and Carloalberto Torghele

Title Demo Abstract: Adaptive Lighting in Road Tunnels Using Wireless Sensor Networks

Venue 1st European TinyOS Technology Exchange (ETTX’09), Cork (Ireland), February 2009.


	I Introduction
	Introduction

	II Deploying Systems
	Monitoring Heritage Buildings
	Scenario, Motivation and Contribution
	Related Work
	Hardware
	Software Design
	Sampling and Data Collection
	Time Synchronization
	Tasking and Data Dissemination
	TeenyLime: Deployment-driven Enhancements

	Deployment
	Evaluation
	System Performance
	Beneficial Impact of Middleware

	Concluding Remarks

	Adaptive Lighting in Road Tunnels
	Scenario, Motivation and Contribution
	Related Work
	Problem and Approach
	Peculiarities of Tunnels
	System Architecture
	WSN Architecture
	Hardware
	Calibration of the Light Sensors
	Software and Communication Protocols

	Testbed Deployment
	Evaluation
	Closing the Control Loop
	WSN Performance

	Beyond Adaptive Lighting: Fire Detection
	Concluding Remarks


	III Bringing Quality into Communication
	Bringing Anarchy to TDMA in the Versatile, Fully-Distributed Reins-MAC
	Motivation and Contribution
	Why (Another) TDMA?
	Why Consider TDMA
	Why Not to Consider TDMA
	Why Consider Reins-MAC

	Background
	Core Concept: Pulse-Coupled Oscillators
	PCOs in Wireless Networks

	Extending PCOs
	Time and Space Dimensions
	Extended PCOs in Wireless Networks

	Towards Reins-MAC: PCOs Exploited
	TDMA with adaptable slot size
	Polite TDMA

	Bringing Reins-MAC into Real World
	Intermediate Links
	Asymmetric Links
	Link Variability over Time

	Reins-MAC: QoS Served with a Side of Anarchy
	Local latency control
	Bandwidth reservation

	Evaluation
	Simulation Settings
	Evaluating Core Reins-MAC Properties
	Reins-MAC support for QoS 
	Implementation

	Is Reins-MAC really different?
	Identifying the Limitations
	Concluding Remarks

	Designing System Services with Communication Guarantees in Hand
	Medium Access Control: Enabling Communication
	Low Power Listening: Random Access to Communication
	Reins-MAC: Flexible Communication Scheduling with Guarantees

	Different Usage of Communication
	Impact on Network Protocols
	Network Flooding
	Link Quality Estimators
	Hop-by-Hop Reliable Data Delivery
	Flow Control
	Latency Control
	Reliable Dissemination
	Time Synchronization

	Impact on Communication Abstractions
	Introduction to TeenyLime
	Neighborhood View
	Remote Queries

	Concluding Remarks


	IV Observing Communication
	Motes in the Jungle: Lessons Learned from a Short-term WSN Deployment in the Ecuador Cloud Forest
	Scenario, Motivation and Contribution
	Deployment Scenario
	Experiment Design
	Preliminary Tests
	Tests with Stationary Nodes
	Tests with Stationary and Mobile Nodes

	A Mote's Life In the Jungle
	Preliminary Tests
	Tests with Stationary Nodes
	Tests with Stationary and Mobile Nodes
	An Evaluation of Mobile Nodes as Connectivity Probes

	Lessons Learned
	Concluding Remarks


	V Conclusion
	Conclusion

	VI Bibliography
	Bibliography

	VII Publications

