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SUMMARY

Flows in closed channels, such as rain storm sewers, often contain transitions from free surface flows to pressurized flows, or vice

versa. These phenomena usually require two different sets of equations to model the two different flow regimes. Actually, a few

specifications for the geometry of the channel and for the discretization choices can be sufficient to model closed channel flows

using only the open channel flow equations. Transitions can also occur in open channels, like those from super- to subcritical

flow, or vice versa. These particular flows are usually difficult to reproduce numerically and strong restrictions are imposed on

the numerical scheme to simulate them. In this paper, an implicit finite-difference conservative algorithm is proposed to deal

properly with these problems. In addition, a special flux limiter is described and implemented to allow accurate flow simulations

near hydraulic structures such as weirs. A few computational examples are given to illustrate the properties of the scheme and

the numerical solutions are compared with experimental data, when possible.

key words: Saint Venant equations; free surface flow; pressurized flow; supercritical flow; subcritical flow; transitions;

hydraulic jumps; flux limiter

1 Introduction

The transition from free surface to pressurized flow or

vice versa is a phenomenon often occurring in closed

channels.

This situation may happen for example in storm

sewers systems during heavy storm events or even in a

closed channel with initially free surface flow as a result

of the start-up of machinery (turbines, pumps, gates).

Because of the wide range of practical problems

involving closed channel flows, numerical methods are

needed to predict the water profile, pressure and dis-

charge during pipes pressurization and depressurization.

The one-dimensional equations for free surface as

well as pressurized flows in closed channels are essentially

the Saint Venant Equations:

At + Qx = 0 (1)

Qt + (UQ)x + gAηx + cf
|U |
RH

Q = 0 (2)

where U is the cross-sectional averaged water velocity,

η is the water level for free surface flows and the

pressure head for pressurized flows measured vertically

from a reference datum, A(x, η(x, t)) is an arbitrary but

prescribed function of space and water surface elevation

representing the cross-section area and Q = AU is the

discharge; g is the gravitational constant, cf is a non-

negative friction coefficient (see, e.g., Reference [3] for

the definition) and RH is the hydraulic radius.
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Moreover, H = η + h, where H is the total water

depth and h is the depth below reference plane.

Two types of algorithms broadly used in the

literature for the numerical solution of the Saint Venant

Equations are the explicit and the implicit ones.

Explicit algorithms are such that the time step

is limited to the Courant condition. This limitation

cannot be fulfilled for pressurized flows due to the

infinite propagation velocities. In fact, assuming the

incompressibility of water, the wave celerity is infinite

in pressurized sections and the same explicit algorithm

used for the free surface flow part of the domain cannot

be used to solve the pressurized parts.

To avoid this inconvenience, almost all existing

models use the Preissmann slot technique [4, 5, 8], that

is an approximation of the real, closed section with an

open section displaying a very small top width, called

Preissmann slot.

In case of free surface flows the slot has no effects

and the open channel flow Equations apply as usual.

Moreover, in case of pressurized flows, the small slot

allows a finite value of the wave celerity and the use of the

free surface flow model everywhere in the computational

domain.

A delicate issue is the choice of the slot width ε.

In fact, if ε is too small, the use of the Preissmann

approximation can produce a large wave celerity and a

corresponding strict time step limitation, while, if ε is

too large, inaccuracies may results.

On the other hand, unconditionally stable methods

like fully implicit methods [2, 10] are able to

simulate the transition from free surface to pressurized

flow in channels with closed sections without any

approximation of the section geometry. In fact, assuming

the incompressibility of water, they can manage

instantaneous transmission of pressure and velocity

changes arising in the pressurized part of the channel.

In the present paper, the performance of the

numerical scheme presented in Reference [1] is

investigated for the simulation of free surface as well as

pressurized flows in closed channels. This technique is

semi-implicit in time, fully water volume conservative,

satisfies a correct momentum balance near large

gradients and deals properly with problems presenting

flooding and drying. For the reasons mentioned above,

in case of closed channel flow the fully implicit version

of this technique will be considered here.

This paper is organized in 5 sections. In Section

2 a brief description of the numerical scheme for the

discretization of the Equations (1) and (2) is given. A

special flux limiter function is described in Section 3

to face the problem of low resolution in case of critical

flows. Section 4 presents a test to verify its behaviour and

shows the ability of the scheme in dealing with weir flows,

for both critical and subcritical situations including

the transition. The first part of Section 5 presents the

numerical results obtained solving the pressurization of

a horizontal pipe and shows the comparison with the

experimental data used by Wiggert in Reference [11].

Finally, the numerical scheme is validated simulating a

flow in a horizontal and downwardly inclined pipe and

comparing the numerical results with the experimental

data obtained in the laboratory.

2 Numerical method

Equations (1) and (2) are discretized in the spatial

interval [0,L] on a space staggered grid whose nodes

are denoted by xi and xi+1/2, i = 0, N + 1. The

discrete discharge Qi+1/2 (or the velocity Ui+1/2) is

defined at half integer nodes and the discrete variable

ηi, representing the water level for free surface flows

and the pressure head for pressurized flows, is defined

at integer nodes as well as the cross-sectional area Ai

and the bottom hi.

An implicit discretization in time is chosen in order

to obtain an efficient and stable numerical method able

to cope with free surface flows as well as with pressurized

flows.

Specifically, the continuity Equation (1) is inte-
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grated in time to obtain

Vi(η
n+1

i ) = Vi(η
n
i ) − ∆tθ[Qn+θ

i+1/2
− Qn+θ

i−1/2
] (3)

where Vi(ηi) =
∫ xi+1/2

xi−1/2
Adx is, in general, a non linear

function of η representing the volume occupied by the

water [1] and Qn+θ = θQn+1 + (1 − θ)Qn.

Moreover, the scheme for the momentum Equation

(2) is the following

(1 + cf

|U |ni+1/2

RH
∆t)Qn+1

i+1/2
+

+gAn
i+1/2θ

∆t

∆xi+1/2

(ηn+θ
i+1

− ηn+θ
i ) = Fn

i+1/2 (4)

where Fn
i+1/2

is a finite difference operator including

the explicit discretizations of the advective and the free

surface (or pressure head) slope terms [1].

From the point of view of the spatial discretization,

the discharge is defined as Qi+1/2 = Ai+1/2Ui+1/2.

Therefore, remembering that the cross sectional

area A, the variable η and the bottom h are initially

defined at integers nodes, it is necessary to define

explicitly their value at the half integer node i + 1/2.

To do this, the following upwind rule based on the

sign of the momentum Qi+1/2 is used for the definition

of η

ηi+1/2 =







ηi if Qi+1/2 ≥ 0

ηi+1 if Qi+1/2 < 0
, (5)

while the value of the bottom hi+1/2 is given by

hi+1/2 = max(hi, hi+1), (6)

except for the case we can analytically express it as

hi+1/2 = h(xi+1/2).

3 A flux limiter for critical flows

A special flux limiter function has been constructed to

be used in the extrapolation of the value ηi+1/2 in case

of critical flows and it is given, assuming positive flow

direction, by the following relation

Ψi+1/2 = Ψ(xi+1/2) = min(0,max(
−ηi/3

ηi+1 − ηi
, 1)) (7)

One can show that

0 ≤ Ψi+1/2 ≤ 1

that means that a data reconstruction using the flux

limiter function Ψ defined in (7) is consistent, because it

is a Total Variation Non Increasing (TVNI) scheme, as

stated in the Harten’s Theorem [6].

In particular, the reconstruction of η in the

node i + 1/2 assumes the following form for x ∈
[xi−1/2, xi+1/2]

η(x) = ηi +
(x − xi)

∆x
Ψ(x)(ηi+1 − ηi) (8)

and can be written in a more compact notation as follows

ηi+1/2 = min(ηi,max(
2

3
ηi, ηi+1)). (9)

The derivation of this special flux limiter follows

from the analysis of the specific energy head function [3]

in case of a constant discharge

E = H +
U2

2g
. (10)

This function assumes its minimum respect to H in the

case of critical flows, that is if Fr = 1 (U =
√

gH), and

its minimum value is

E =
3

2
(

Q2

gA2
)

1
3 (11)

where Hcr = (U2

g )
1
3 is called critical depth.

Thus, in case of critical flow, one has H = 2

3
E (see,

e.g., [3]).

Equation (9) is finally obtained assuming that the

squared velocity is negligible with respect to H and

introducing a min-max rule to ensure consistency.

The implementation of this flux limiter improves

the accuracy of the method and helps in facing the

problems arising in case of low resolution of the grid. An

application of this flux limiter can be found in Section 4.

4 Open channels tests

The first test presented in this section simulates a steady

state problem including a hydraulic jump over a non-flat

bed profile in a rectangular frictionless channel.
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A hydraulic jump consists in the transition

from a supercritical flow to a subcritical flow, it is

extremely turbulent and characterized by a strong energy

dissipation.

In the analysis of supercritical flows, the main

aspect to be investigated is the location of the hydraulic

jump.

On the other hand, in case of subcritical flows, a

precise estimation of the energy head loss due to the

hydraulic jump is essential to have the correct upwind

water level and the correct discharge over the sill once

the downstream water level is fixed.

The numerical test presented in this section shows

the ability of the numerical method and of the flux

limiter function provided by (9) in fulfilling these

requirements, even in the case of a low resolution grid.

The domain length is L = 100m and in the middle

of the channel there is a sill with a crest of 1m height

and 10m long and the tangent of the slopes of the sill

are abrupt within one grid cell.

Moreover, there are two open boundaries, the

inflow and the outflow, where a discharge of 1m3/s and

a water depth of 1m, respectively, are imposed [9].

The discretization parameters are cf = 0, g =

9.81m/s2, θ = 1 and ∆t = 10−3s.

Figure 1 shows a comparison between the numerical

solutions obtained for 100 grid points using the flux

limiter (7) only over the sill (Solution 1 ) and the

numerical solutions obtained for 20 grid points with

(Solution 2 ) and without (Solution 3 ) the help of the

flux limiter.

The numerical Solutions 1 and 2 are coincident in

almost all the nodes in common (and in particular at

the upstream end) altough the second grid is five times

coarser than the first.

Moreover, on equal grid size, the numerical solution

obtained using the limiter (Solution 2 ) shows an

upstream water level that is consistent with that of

Solution 1 and higher than that obtained without the

limiter (Solution 3 ): the reduction of the resolution of

the grid causes the upstream water level to decrease in
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Figure 1: High and low resolution grids: effect of the flux

limiter

the numerical solution of the first order model.

The quality of the results can also be appreciated

from the approximation of the energy line plotted in

Figure 1: as one can see, it is constant everywhere, except

near the hydraulic jump where the energy head drops

as is to be expected by considerations based on open

channel hydraulics [3].

The second test presented in this section is an

interesting proof of the robustness of the proposed

scheme in simulating continuous transitions from

subcritical to supercritical flow and vice versa.

These transitions are obtained imposing as

downstream boundary condition a water level following

the hydrograph depicted in Figure 2 and described by

the equation

η(L, t) = 0.8sin(0.01t) + 1 (12)

Figure 3 shows the numerical results obtained

for the upstream water level during two complete

oscillations of the downstream boundary condition (12).

As expected, in the range for η(L, ·) corresponding

to imperfect weirs, any small change of its value affects

the upstream flow condition, because the wave celerity

is larger than the flow velocity.

On the other hand, in the range for η(L, ·) cor-

responding to perfect weirs, a downstream disturbance
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Figure 2: Downstream boundary condition on the water
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Figure 3: Upstream water level: effects of varying

downstream boundary condition

does not travel upstream and identical upstream depth

estimations are produced.

5 Closed channel tests

In this section, the numerical results obtained by the

algorithm presented in Reference [1] modelling a flow in

a horizontal and in a horizontal and downwardly inclined

pipe are compared with the experimental data.

Before presenting these test problems, a few

specifications regarding the geometrical and the physical

quantities involved in them are needed.

In case of free surface flows in a closed channel, as

well as for open channel flows, η is the instantaneous

water surface elevation measured vertically from a

reference datum and assuming an horizontal interface

between water and air, the quantities H and A have the

usual definitions.

In case of pressurized flows, η plays the role of the

pressure head, the water height H is the maximum height

reachable Htop = ηtop + h and the wetted area A is the

area of the whole cross section Atop.

Therefore, the total water depth H in a closed

channel can be expressed as follows

H =







η + h if η ≤ ηtop

Htop if η > ηtop.
(13)

Moreover, the cross-sectional area A in a closed

channel is a piecewise derivable non decreasing functions

of η and it is defined depending on the channel geometry.

For a rectangular closed channel with constant

width B one has A = BH, while for the special case

of a circular channel with diameter D it holds

A =



















D2

4

[

arccos(1 − 2H
D ) − (1 − 2H

D )
√

1 − (1 − 2H
D )2

]

if η ≤ ηtop

π(D/2)2 if η > ηtop

(14)

5.1 Pressurization in a rectangular pipe

This test [5] reproduces a free surface and pressurized

flow in a horizontal, rough, rectangular, closed channel
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of length L = 10m, width B = 0.51m, height Htop =

0.148m and cf = g
n2

M

R
1/3

H

, where nM = 0.12 is the

Manning’s roughness coefficient [3].

The upstream boundary condition is the hydro-

graph for the pressure head described in Figure 4, while

the downstream boundary condition is a fixed water

level, HN+1 = 0.128m.
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Figure 4: Water height at the upstream boundary against

time.

Initially the following free surface flow conditions

with still water are present:

U(x, 0) = 0m/s, η(x, 0) = top(x) = 0.128 (15)

Then a wave, coming from the outside left side, causes

the closed channel to pressurize starting from upstream.

The interface separating pressurized from free surface

flow moves from upstream to downstream as a front

wave.

The physical and computational parameters are

g = 9.81m/s2, ∆x = 0.1m, θ = 1. and ∆t = 5. 10−3s.

Figure 5 shows the behaviour of the numerical

instantaneous pressure head η against time at x = 3.5m

compared with the experimental data [5]. The agreement

is satisfactory.

5.2 Hydraulic jump in a circular pipe

These experiments have been carried out by the

University of Delft and Delft Hydraulics in collaboration

with the majority water boards in the Netherlands [7].
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Figure 5: η at x = 3.5 against the time.

The aim of these experiments is the investigation

about the air-water phenomena in wastewater pressure

mains with respect to transportation and dynamic

hydraulic behaviour. Free gas in pressurized pipelines

can in fact significantly reduce the flow capacity and may

cause undesirable efficiency loss.

These experiments have been conducted in a

dedicated facility for research on gas pockets that are

located at the transition from horizontal to inclined

pipes.

The test section of the pipe consists of three parts: a

horizontal pipe of length L1 = 2m, a downward inclined

pipe (α = 10◦) of length L2 = 4m and a horizontal pipe

of length L3 = 2m. The pipes have an inner diameter of

220mm and are made of transparent material (Perspex

with equivalent sand roughness height of ks = 0).

Injecting air into the water and preserving a

constant water discharge at the inlet of the pipe and

a constant pressure head downstream, an air pocket

appears in the inclined part of the pipe and the obtained

configuration presents similarities with hydraulic jumps

in open channels.

The numerical results of the present model for the

pressure head at the steady state of the phenomenon are

compared with the experimental data. They are given as

measurements of the water depth in a certain number of

nodes located along the air pocket at a distance of about

30cm one to the other. The hydraulic jump is located
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after at most 30cm from the last measurement.

Table 1 summarizes the boundary conditions

imposed on the scheme in performing different tests.

Test 1 2 3 4

Q1/2 (l/s) 30 36 40 45

η (m) 0.554 0.583 0.634 0.69

Table 1: Boundary Conditions

The physical and computational parameters are

g = 9.81m/s2, ∆x = 0.06m, θ = 1. and ∆t = 10−2s.

Figures 6, 7, 8, 9 show a good agreement between

the measured and the predicted data.
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Figure 6: Test 1.
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Figure 7: Test 2.
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Figure 8: Test 3.
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Figure 9: Test 4.
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6 Conclusions

The performance of the one dimensional, conservative,

semi-implicit finite difference model presented in

Reference [1] in simulating free surface as well as

pressurized flows in channels with arbitrary cross-

sections has been investigated. A special flux limiter

has been described and implemented to allow accurate

flow simulations near hydraulic structures such as weirs,

for both critical and subcritical situations including

the transition. Some numerical test has been carried

out in order to show the performance of the model.

The numerical results have been validated against the

experimental data, when possible.

List of symbols

Q = water discharge

U = water velocity

η = water level or pressure head ( z in Figures )

H = total water depth (H = η + h)

−h = bottom of the channel

A = cross-section area

V = volume

L = channel length

B = channel width

D = diameter

g = gravitational constant

cf = friction coefficient

nM = Manning coefficient

RH = hydraulic radius

kS = equivalent sand roughness height

N = number of nodes of the spatial grid

x = space

t = time

∆x = spatial grid size

∆t = time step

θ = parameter for the discretization in time

α = inclination

ε = Preissmann slot width

Ψ= flux limiter function

E = energy head

top = top level value in a closed conduit

i = element index

n = time level index

cr = value corresponding to critical flows
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