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Abstract

This PhD thesis summarizes the results of a three-year comprehensive investigation into
the dynamic domain of speech translation (ST), with a specific emphasis on application
scenarios requiring adherence to the additional constraints posed by simultaneous
speech translation and automatic subtitling. These additional constraints, revolving
around aspects such as latency and on-screen spatio-temporal conformity, add layers of
complexity and thereby complicate the inherent challenges of ST. I started my exploration
with a novel paradigm, direct speech translation, which was in its early stages during the
beginning of my journey. Along this direction, in the pursuit of advancing simultaneous
ST (SimulST), my research challenged the conventional approach of creating task-specific
direct architectures. Instead, the focus was on leveraging the intrinsic knowledge acquired
by offline-trained direct ST models for simultaneous inference. A pivotal contribution
of this endeavor was the finding that offline-trained ST systems can not only compete
with but potentially surpass the quality and latency of those specifically trained for
simultaneous scenarios. An important subsequent step has been taken by leveraging
cross-attention information extracted from an offline direct ST model for SimulST,
demonstrating its potential to deliver high-quality, low-latency translations with minimal
computational costs and thus achieve an optimal balance between translation quality and
latency. The exploration of automatic subtitling delved into the complexities of spatio-
temporal constraints, highlighting the interplay between translation quality, text length,
and display duration. The recognition of the importance of prosody and speech cues
shaped the development of direct architectures for the task. Relevant findings include
the effectiveness of a multimodal segmenter, leveraging both audio and textual cues for
optimal segmentation into subtitles. Furthermore, my research showcased the capability
of direct ST models to generate complete subtitles, offering translations appropriately
segmented with corresponding timestamps, and demonstrating competitive performance
against existing cascaded production tools. In conclusion, the insights gleaned in this
PhD from both fields mark substantial technological progress, which I believe will set
the stage for the wide adoption of direct ST systems in the two challenging domains of
simultaneous ST and automatic subtitling.
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Chapter 1

Introduction

1.1 Motivations
The globalization of business, education, and entertainment has moved human inter-
action to the online sphere, opening a new era characterized by virtual meetings,1

e-learning platforms,2 and worldwide digital content consumption.3 The boom in online
communication4 is setting new challenges for achieving barrierless interaction among
users with diverse linguistic and accessibility requirements (Kožuh and Debevc, 2018;
Abarca et al., 2020; Dyzel et al., 2020).

As individuals who speak different languages engage in digital interaction, the need for
effective language translation becomes increasingly critical.5 Speech-to-text translation
(ST) emerges as a pivotal technology in this context (Stentiford and Steer, 1988; Waibel
et al., 1991), bridging linguistic gaps and facilitating communication, consequently
enhancing accessibility and inclusivity, fostering collaboration, knowledge exchange,
and cultural understanding (Takezawa et al., 1998; Black et al., 2002; Waibel, 2004;
Besacier et al., 2006; Fügen, 2009; Bansal et al., 2017; Anastasopoulos and Chiang, 2017;

1Workers are spending an average of 20 hours a week using digital communication tools (https:
//www.forbes.com/advisor/business/digital-communication-workplace/).

277% of corporations in the US use online learning tools, such as Udemy and Coursera, and the
e-learning market is forecasted to grow to $320 billion by 2025 (https://codeless.co/elearning-
statistics/).

3In 2023, the number of internet users attested to 5.18 billion, meaning that two-thirds of the global
population is currently connected to the world wide web (https://www.statista.com/topics/1145/
internet-usage-worldwide/).

4The number of social media users worldwide is constantly increasing and is expected to reach 5.17
billion in 2024 (https://www.statista.com/topics/1164/social-networks/).

5The market size of the Translation Services industry is $10.3 billion in 2023, an increase of
6.09% from 2022 (https://www.ibisworld.com/industry-statistics/market-size/translation-
services-united-states/).

1

https://www.forbes.com/advisor/business/digital-communication-workplace/
https://www.forbes.com/advisor/business/digital-communication-workplace/
https://codeless.co/elearning-statistics/
https://codeless.co/elearning-statistics/
https://www.statista.com/topics/1145/internet-usage-worldwide/
https://www.statista.com/topics/1145/internet-usage-worldwide/
https://www.statista.com/topics/1164/social-networks/
https://www.ibisworld.com/industry-statistics/market-size/translation-services-united-states/
https://www.ibisworld.com/industry-statistics/market-size/translation-services-united-states/


1.2. Research Questions

Dessloch et al., 2018; Lommel, 2018; Bano et al., 2020; Lee et al., 2022; Salesky et al.,
2023, among others).

Unlike traditional text-based machine translation methods (Zens et al., 2002; Koehn
et al., 2003), ST aims to seamlessly convert spoken words from one language into another,
often in real-time, providing a more natural way to understand language. However,
the development and deployment of effective ST systems are not without challenges:
the inherent complexities of speech, encompassing variations in accents, speaking rates,
disfluencies, and background noise, entail significant obstacles (Derwing and Munro,
2009; Salesky et al., 2019; Sperber and Paulik, 2020). Furthermore, in specific scenarios
where constraints like time (e.g., output latency), space (e.g., characters to be displayed
on the screen), computational resources (e.g., the necessity of running models only on
CPUs), or limited data availability (e.g., low resource language) must be considered,
delivering reliable, and high-quality translation systems becomes even more complicated
(Bansal et al., 2018; Matusov et al., 2019; Ren et al., 2020).

This thesis delves into the domain of ST, focusing on the latest research direction
where neural architectures (LeCun et al., 2015; Sejnowski, 2018) are trained to directly
generate the desired translation from the input speech without any intermediate steps
(Bérard et al., 2016; Weiss et al., 2017). By exploring novel approaches, techniques,
and frameworks, the primary objective of this PhD was to push the boundaries of
current ST capabilities, particularly in the context of specific use-case scenarios where
additional constraints come into play. In the following section, we delve deeper into these
constraints, isolating the specific requirements for the specific applications analyzed in
this PhD thesis: simultaneous ST and automatic subtitling. This exploration gave me
the possibility to establish clear and specific goals for my research path.

1.2 Research Questions

The core objective of conventional ST systems is to achieve the utmost quality of
automatic textual translations (Callison-Burch et al., 2006). However, the landscape of
ST applications encompasses tasks in which achieving high translation quality alone is
not sufficient. As addressed throughout this PhD thesis, when confronted with additional
constraints, the fundamental challenge for the ST systems becomes finding the right
balance between optimizing translation quality and ensuring the fulfillment of specific
constraints.

In this context, two constrained scenarios were analyzed during this PhD due to

2



Chapter 1. Introduction

their inherent scientific and industrial interest: simultaneous speech translation
(Section 1.2.1) and automatic subtitling (Section 1.2.2). In the remainder of this
section, we shortly introduce the two tasks, highlighting their peculiarities and inherent
challenges.

1.2.1 Simultaneous ST

In real-time6 or simultaneous ST, the primary constraint (Figure 1.1) is dictated by
the need to minimize the latency required to deliver the output (Sarkar, 2016), which
represents the time delay from when an utterance is spoken in the source language to
when it is translated into the target language. This temporal constraint introduces
additional challenges in the production of the final translation (Huang et al., 2020). On
one hand, the translated text has to be promptly displayed, ideally contemporaneously
with the spoken words, aligning smoothly with the natural pace of the speech and its
alternation with pauses and non-speech events. For example, limits on the latency
acceptability have been set between 2 and 6 seconds for the ear-voice-span7 under
different conditions and language pairs (Yagi, 2000; Chmiel et al., 2017; Fantinuoli
and Prandi, 2021). On the other hand, the translation has to uphold a commendable
standard of quality, maintaining a level of linguistic accuracy and coherence to enable
a comprehensive understanding of the conveyed message for the end user (Macháček
et al., 2023a). Therefore, finding a trade-off between translation quality and latency is
essential for a positive user experience (Niehues et al., 2018b). This balance ensures
that the translation is adequately synchronized, allowing users to efficiently process
and comprehend the content, and seamlessly understand or participate in the ongoing
conversation.

Despite the rising demand for real-time technologies,8 current systems struggle to
achieve good performance (Zhang et al., 2022b), that is an optima quality-latency trade-
off. Moreover, current SimulST models are also characterized by long and complicated
training procedures (e.g., computing complex training losses or performing multiple
training stages) to optimize the ST models for the simultaneous task (Liu et al., 2021b;

6Real-time is a broad term (Seligman, 1997) that refers to “the very short amount of time needed
for computer systems to receive data and information and then communicate it or make it available”
(https://dictionary.cambridge.org/dictionary/english/real-time).

7The ear-voice-span (EVS), also known as “décalage”, refers to the delay between the original speaker
and the interpreter in simultaneous interpretation or translation.

8The Global Real-Time Language Translation Device market is anticipated to rise at a considerable
rate (CAGR) of USD million between 2023 and 2030 (https://www.precisionreports.co/enquiry/
request-sample/21640680).

3
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1.2. Research Questions

Figure 1.1: Constraints of simultaneous ST: translation quality and latency (i.e., the
time delay from when an utterance is spoken in the source language to when it is
translated into the target language).

Zaidi et al., 2021; Chang and Lee, 2022; Zhang and Feng, 2022; Omachi et al., 2023),
which sometimes also involve creating and maintaining several models to accommodate
different latency requirements (Ren et al., 2020; Ma et al., 2020b; Zeng et al., 2021).

In light of these major drawbacks, my objective during this PhD journey was
to reassess the development of simultaneous ST systems from a different perspective.
Rather than devising sophisticated and ad-hoc training procedures for the task, I focused
on analyzing the already existing ST systems to understand if they possess intrinsic
knowledge that could be leveraged for real-time applications. Specifically, the research
questions guiding this investigation were twofold:

1. Are these sophisticated and ad-hoc training procedures necessary for
the simultaneous ST task?

2. Can we exploit the knowledge already acquired by offline direct ST
models to guide them during the simultaneous inference?

Therefore, the main goal of my studies on simultaneous ST (Chapter 3) was to investigate
the feasibility and potential extent to which a standard direct offline ST model could be
repurposed for real-time scenarios.

1.2.2 Automatic Subtitling
Subtitling is the process of providing short pieces of text translating the content of
spoken dialogue in audiovisual media, such as movies, video lectures, and TV shows.

4



Chapter 1. Introduction

Therefore, providing automatic subtitles (automatic subtitling) is a multifaceted task
characterized by several spatio-temporal constraints (Figure 1.2) related to when and
how the subtitles have to be displayed on the screen (Cintas and Remael, 2021).

Spatial or length constraints, primarily associated with subtitle length, play a crucial
role (Michael P. Hinkin and Miranda, 2014). Excessively long subtitles can present
cognitive challenges for viewers attempting to process them while concurrently watching
the video (Szarkowska et al., 2011). Conversely, overly short and compressed subtitles
(Burnham et al., 2008; Szegedy et al., 2016) might entail a loss of information, which
introduces difficulties in accurately interpreting the spoken content (Chen and Ho, 2022).

Temporal or duration constraints revolve around the synchronization of subtitles
with the audiovisual content, an indispensable aspect of user experience and comprehen-
sion (Bisson et al., 2014; Szarkowska and Gerber-Morón, 2018). Subtitles must strike a
delicate balance, staying on the screen long enough for users to easily read them, yet not
lingering excessively to avoid disrupting the natural flow of the content (Kruger et al.,
2022). Achieving this synchronicity is pivotal not only for enhancing user understanding
but also sustaining a pleasant engagement with the video (Perego, 2008; Szarkowska
and Gerber-Morón, 2018).

Figure 1.2: Constraints of automatic subtitling: translation quality, length conformity
(i.e., not excessively short or long subtitles to ease user comprehension), and duration
conformity (i.e., synchronized subtitles that stay on-screen enough to let the user
understand their content).

Being a fundamental part of human spoken communication, prosody (Hirschberg,
2006) and speech cues in general (e.g., pauses, and hesitations) are important elements,

5



1.3. List of Contributions

which can help with subtitle segmentation and temporization (Karakanta et al., 2020a,
2021a). Several studies proved the importance of prosody and attempted to integrate
this information into the process of creating subtitles (Öktem et al., 2019; Federico et al.,
2020; Virkar et al., 2021; Tam et al., 2022; Effendi et al., 2022), which was realized only,
at that time, using a pipeline of several models, losing direct contact with this important
property.

In light of this, direct models emerge as a potential solution, capable of seamlessly
leveraging such informational cues. Building upon this intuition, my research during
this PhD focused on the strategic utilization of direct models for subtitle segmentation
and fully automatizing the subtitling task. Specifically, the research questions are:

1. Is there a way to exploit prosody and speech cues accessible by direct
systems to build automatic subtitling datasets starting from already
existing ST corpora?

2. Is it possible to exploit a direct ST model for producing full subtitles
(translated texts with their corresponding timestamp)?

Initially, I explored the use of direct multimodal approaches, capable of exploiting
text and audio, to create a tool for automatically segmenting translated texts into
appropriately timed subtitles. Subsequently, I worked on developing the first direct ST
model employed for generating complete subtitles – translations properly segmented with
corresponding timestamp information – with the ultimate goal of positioning this model
as a competitive alternative to existing state-of-the-art cascade approaches (Chapter 4).

1.3 List of Contributions

In this section, all the contributions that I made during my PhD are listed in chronological
order (most recent first).

The contributions are grouped according to the specific research questions addressed
and, at the highest level, are divided into three parts: Simultaneous ST and Automatic
Subtitling, which are the main pillars of this thesis, and other contributions, which are
the works done, both as first author or in collaboration with other researchers, in the
field of ST. The “*” symbol indicates equal contributions.
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1.3.1 Simultaneous ST
• How can a unified model be developed to concurrently generate transcriptions and

translations in a streaming scenario, and what diverse approaches can be explored
to optimize the delivery of both outputs?

– Papi, S., Wang, P., Chen, J., Xue, J., Kanda, N., Li, J., Gaur, Y. (2023).
“Leveraging Timestamp Information for Serialized Joint Streaming Recogni-
tion and Translation”. In Proceedings of ICASSP 2024.9

– Papi, S., Wang, P., Chen, J., Xue, J., Li, J., Gaur, Y. (2023). “Token-Level
Serialized Output Training for Joint Streaming ASR and ST Leveraging
Textual Alignments”. In Proceedings of ASRU 2023.10

• How can attention mechanisms be effectively utilized to guide a speech translation
model in simultaneous inference?

– Papi, S., Turchi, M., Negri, M. (2023). “AlignAtt: Using Attention-based
Audio-Translation Alignments as a Guide for Simultaneous Speech Transla-
tion”. In Proceedings of INTERSPEECH 2023.

– Papi, S., Negri, M., Turchi, M. (2023). “Attention as a Guide for Simultaneous
Speech Translation”. In Proceedings of ACL 2023. Best paper nomination.

• How can we adapt the existing simultaneous speech translation metrics to deal
with scenarios where the predicted output exceeds the length of the corresponding
gold reference?

– Papi, S., Gaido, M., Negri, M., Turchi, M. (2022). “Over-Generation Cannot
Be Rewarded: Length-Adaptive Average Lagging for Simultaneous Speech
Translation”. In Proceedings of the Third Workshop on Automatic Simulta-
neous Translation.

• Is it feasible to leverage a direct speech translation system for simultaneous tasks
without re-training or adaptation? How does this approach perform across various
architectures and data conditions?

– Papi, S., Gaido, M., Negri, M., Turchi, M. (2022). “Does Simultaneous Speech
Translation need Simultaneous Models?”. In Findings of EMNLP 2022.

9Work done during an internship at Microsoft.
10Work done during an internship at Microsoft.
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– Gaido*, M., Papi*, S., Fucci, D., Fiameni, G., Negri, M., Turchi, M. (2022).
“Efficient yet Competitive Speech Translation: FBK@IWSLT2022”. In Pro-
ceedings of IWSLT 2022.

• To what extent do visualization modalities impact the delivery of simultane-
ous speech translation outputs, and how significant is their role in enhancing
comprehension and user experience?

– Papi, S., Negri, M., Turchi, M. (2021). “Visualization: The missing factor
in simultaneous speech translation”. In Proceedings of the Eighth Italian
Conference on Computational Linguistics.

1.3.2 Automatic Subtitling
• Can we fully automatize the subtitling process by leveraging a direct ST model?

How does it perform compared to state-of-the-art approaches and production tools
in different languages and data conditions?

– Papi, S., Gaido, M., Karakanta, A., Cettolo, M., Negri, M., Turchi, M. (2023).
“Direct Speech Translation for Automatic Subtitling”. In Transactions of the
Association for Computational Linguistics.

– Papi, S., Gaido M., Negri, M. (2023). “Direct Models for Simultaneous
Translation and Automatic Subtitling: FBK@IWSLT2023”. In Proceedings
of IWSLT 2023.

• Can a multimodal (speech and text) direct model effectively segment text into
subtitles? To what extent can this model be integrated "as is" into a subtitling
pipeline, and how does it perform for data augmentation?

– Papi, S., Karakanta, A., Negri, M., Turchi, M. (2022). “Dodging the Data Bot-
tleneck: Automatic Subtitling with Automatically Segmented ST Corpora”.
In Proceedings of AACL-IJCNLP 2022.

• Is it feasible to produce subtitles in real-time, and what are the implications of
various visualization strategies on the quality and user experience of the generated
subtitles?

– Karakanta*, A., Papi*, S., Negri, M., and Turchi, M. (2021). “Simultaneous
Speech Translation for Live Subtitling: from Delay to Display”. In Proceedings
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of the 1st Workshop on Automatic Spoken Language Translation in Real-
World Settings (ASLTRW).

1.3.3 Other contributions

• What is the significance of software quality within and beyond the NLP community,
and how can the repercussions of neglecting software quality in research be
empirically highlighted? What countermeasures can be introduced to enhance
code correctness?

– Papi*, S., Gaido*, M., Pilzer, A., Negri, M. (2023). “When Good and
Reproducible Results are a Giant with Feet of Clay: The Importance of
Software Quality in NLP”. Under review.

• How can we integrate information about masculine/feminine forms to use into ST
systems without retraining the model?

– Fucci, D., Gaido, M., Papi, S., Cettolo, M., Negri, M., Bentivogli, L. (2023).
“Integrating Language Models into Direct Speech Translation: An Inference-
Time Solution to Control Gender Inflection”. In Proceedings of EMNLP
2023.

• Is it possible to jointly produce speech translations and tagged named entities
within a single model and in real-time?

– Gaido, M., Papi, S., Negri, M., Turchi, M. (2023). “Joint Speech Translation
and Named Entity Recognition”. In Proceedings of INTERSPEECH 2023.

• Is it possible to build an ST model without without the initial subsampling of the
audio? What advantages does this design offer in comparison to typical speech
processing architectures?

– Papi*, S., Gaido*, M., Negri, M., Turchi, M. (2021). “Speechformer: Reducing
Information Loss in Direct Speech Translation”. In Proceedings of EMNLP
2021.

• In the development of competitive offline ST systems, how can the mismatch
between training and testing conditions be effectively addressed?
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– Papi, S., Gaido, M., Negri, M., Turchi, M. (2021). “Dealing with training and
test segmentation mismatch: FBK@ IWSLT2021”. In Proceedings of IWSLT
2021.
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Chapter 2

Preliminaries

2.1 Direct Speech Translation

Speech-to-text translation or, more simply, speech translation (ST) involves the conver-
sion of spoken sentences from one language into written text in another language. The
relevance of this area is underscored by its increasing integration into various aspects of
our daily activities and its versatility in addressing a range of applications, including
translating lectures (Fügen, 2009; Dessloch et al., 2018) and conferences (Salesky et al.,
2023), facilitating travel conversations (Takezawa et al., 1998), easing communication
with unwritten languages and dialects (Besacier et al., 2006; Lee et al., 2022), docu-
menting endangered languages (Bansal et al., 2017; Anastasopoulos and Chiang, 2017),
as well as supporting humanitarian expeditions and health (Black et al., 2002; Munro,
2010; Martin et al., 2015).

In its initial stages, ST was tackled through modular solutions, called cascade
architectures, employing dedicated systems for distinct subtasks (Stentiford and Steer,
1988; Waibel et al., 1991). Typically, these architectures comprised two main modules:
an automatic speech recognition (ASR) system responsible for generating the transcripts
of spoken utterances, and a machine translation (MT) system designed to translate the
predicted transcripts into the desired target language.

Due to their modular nature, cascade architectures have high adaptability across
languages and domains but, at the same time, face well-known challenges associated with
concatenating multiple systems. These challenges include: i) the need for ad-hoc training
and maintenance procedures for the ASR and MT modules (Peitz et al., 2012; Ruiz
et al., 2017; Martucci et al., 2021), ii) the propagation of errors from the transcription
to the translation step (Sperber and Paulik, 2020), iii) the loss of speech information
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(e.g., prosody) in the transcriptions that might be useful to produce the translations
(Tam et al., 2022), and iv) an increased latency due to sequential execution by two
modules (Weller et al., 2021).

For the aforementioned reasons, end-to-end or direct models have become increas-
ingly popular thanks to their potential to execute the whole task without relying on
intermediate representations (Bérard et al., 2016; Weiss et al., 2017). However, the direct
execution of translation from speech poses more complex challenges and, in its initial
proposal in 2016, despite its promising potential, this approach faced a considerable
performance gap compared to cascade models (Niehues et al., 2018a, 2019).

Notably, in recent times, this performance gap has been steadily diminishing (Ansari
et al., 2020; Bentivogli et al., 2021; Anastasopoulos et al., 2021, 2022; Agarwal et al.,
2023) and the ST landscape has evolved, witnessing a surge in the development of
direct systems designed to tackle multiple subtasks, including offline (Xie, 2023; Zhou
et al., 2023; Huzaifah et al., 2023), simultaneous (Yan et al., 2023; Polák et al., 2023),
multilingual (Gow-Smith et al., 2023; Wang et al., 2023b), low resource (Kesiraju et al.,
2023; Mbuya and Anastasopoulos, 2023; Kesiraju et al., 2023), subtitling (Papi et al.,
2023b; Bahar et al., 2023), and dialect translation (Deng et al., 2023; Radhakrishnan
et al., 2023; Laurent et al., 2023). This evolution underscores the increasing viability
and competitiveness of end-to-end models in addressing the challenges of ST, which has
made them an interesting research direction in the last few years (Xu et al., 2023).

In light of the recent advances in direct ST, during my PhD, I focused on this
promising paradigm and on its application to specific sub-tasks, simultaneous ST, and
automatic subtitling, which combine the general challenges of translating speech with the
specific ones rising from these two application domains. In the following, before delving
into my contributions to the specific areas of Simultaneous ST (Chapter 3) and Automatic
Subtitling (Chapter 4), I provide the fundamental notions to better understand the
inherent challenges, the technology solutions, and the evaluations discussed in this thesis.
First, I present the two main architectures used in direct speech processing, Transformer
and Conformer (Section 2.2), then I discuss the data used for direct ST model training,
including corpora and data augmentation techniques (Section 2.3). Lastly, I present the
metrics used for the evaluation of the performance of ST systems (Section 2.3).
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2.2 Architectures
In the following, I present two key sequence-to-sequence architectures widely utilized in
speech processing: Transformer (Section 2.2.1) and Conformer (Section 2.2.2). Both these
architectures were used during my PhD, with the Conformer replacing the Transformer
in my latest works.

2.2.1 Transformer
Transformer (Vaswani et al., 2017) is the most widely used architecture in speech
processing (Latif et al., 2023). It is composed of an encoder, which is in charge of
processing the input sequence to find an internal representation, and a decoder, which
produces the output exploiting the encoded information.

This encoder-decoder architecture relies on the attention mechanism (Bahdanau
et al., 2015), which allows any vector of the input sequence to access any part of the
output sequence regardless of its position. The adopted attention mechanism is a variant
of dot-product attention (Luong et al., 2015), which, starting from the query vector Q,
the key vector K, and the value vector V , is formulated as:

Attn(Q,K, V ) = softmax
(QKT

√
dk

)
V (2.1)

where dk is the size of the key vector.
In Transformer models, there are two types of attention: self-attention and cross-

attention (or encoder-decoder attention). In self-attention, Q, K, and V are derived
from the same input sequence X, transformed by linear projections (WQ, WK , and WV )
with learned weights:

SelfAttn(X) = softmax
(WQX(WKX)T√

dk

)
WVX (2.2)

In cross-attention, K, and V are derived from the encoder output E(X) while Q from
the previous decoder output Y :

CrossAttn(X, Y ) = softmax
(WQE(X)(WKY )T√

dk

)
WVE(X) (2.3)

To enable parallel computation, Vaswani et al. (2017) introduced multi-head attention,
dividing Q, K, and V into h heads, transforming each with dedicated weight matrices,
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computing attention separately, and concatenating the results as follows:

MultiHead(Q,K, V ) = Concat(Attn(q0, k0, v0), ...,Attn(qh, kh, vh))WO (2.4)

where WO ∈ R(dk,dk) is a learned matrix. As multi-head attention is always employed in
current architectures, henceforth, the term “attention” refers to the multi-head variant.

Figure 2.1: Transformer architecture. Credits to (Vaswani et al., 2017).

The final Transformer architecture (Figure 2.1) consists of a sequence of Transformer
encoder layers, each incorporating self-attention, and a series of Transformer decoder
layers, encompassing both self-attention and cross-attention mechanisms. Within each
encoder layer, there is a combination of attention and a linear layer or feed-forward
network (FFN), with both components followed by layer normalization (Ba et al., 2016)
and augmented by residual connections (He et al., 2016). Analogously, each decoder
layer encompasses self-attention and an FFN layer, with the addition of cross-attention
placed in between these components.

While the Transformer architecture has immediately demonstrated success in MT,
language modeling, and natural language processing in general (Radford et al., 2018;
Devlin et al., 2019), its direct application to speech processing encountered challenges
due to prohibitive memory requirements. Specifically, self-attention layers have quadratic
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memory complexity with respect to the length of the input sequence (T ), as the QKT

product with Q,K ∈ R(T,d) generates a matrix of dimension T × T .
Given that speech input sequences are generally around 10 times longer than their

corresponding textual counterpart, this quadratic memory complexity poses a hurdle
to the straightforward application of the Transformer without facing memory issues.
To address this, Dong et al. (2018) and Bérard et al. (2018) proposed leveraging
convolutional neural networks (CNNs – LeCun 1989), either in 1-dimensional (Wang
et al., 2020a) or 2-dimensional (Di Gangi et al., 2019c) configurations, to reduce the
input sequence length. In practice, the input sequence undergoes initial processing with
two layers of CNN, each having a subsampling factor of 2 and resulting in an overall
subsampling factor of 4. Subsequently, with its reduced dimensions, the sequence is
processed using the Transformer architecture. Due to its success, this approach has
become the de facto strategy adopted in subsequent speech-processing architectures,
including the state-of-the-art Conformer model (Section 2.2.2).

2.2.2 Conformer
Unlike Transformer, which is a general-purpose architecture, the Conformer architecture
(Gulati et al., 2020) was specifically proposed for speech processing tasks. The modifica-
tions proposed with this architecture, as compared to the Transformer, are focused on
the structure of the encoder layers, as shown in Figure 2.2.

In particular, the Conformer encoder layer introduces several key improvements:

• Relative Sinusoidal Positional Encodings: to facilitate improved general-
ization across varied input lengths, relative sinusoidal positional encodings are
incorporated into the self-attention mechanism (Dai et al., 2019);

• Two Half-Dimensional Feed-Forward Networks: instead of a single FFN
layer, the Conformer utilizes two half-dimensional FFNs that encapsulate the
self-attention mechanism. This design choice is inspired by the Macaron-Net
architecture (Lu et al., 2019);

• Additional Convolutional Module: a Convolutional Module is placed immedi-
ately after the self-attention layer and before the final FFN layer, introducing a
novel element to the Conformer architecture.

The Convolutional Module (Figure 2.3) applies a sequential series of operations
to the input. Initially, the input undergoes layer normalization (LayerNorm) and a
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Figure 2.2: Conformer Encoder. Credits to (Gulati et al., 2020).

point-wise convolution, which doubles the size of the input features. Subsequently, a
Gated Linear Unit (GLU) activation function (Dauphin et al., 2017) is employed to
restore the features to their original size. Next, a depth-wise convolution with a kernel
size of 31 is applied, followed by batch normalization (BatchNorm – Ioffe and Szegedy
2015), the Swish activation function (Ramachandran et al., 2017), another point-wise
convolution, and a Dropout module (Srivastava et al., 2014) that randomly masks a
percentage of features to mitigate overfitting. Lastly, the entire Convolutional Module
is encapsulated in a residual connection.

Figure 2.3: Convolutional Module of the Conformer Encoder.

The Conformer architecture, initially designed for ASR, has demonstrated cutting-
edge performance in the ST domain (Guo et al., 2021). Its excellence is underscored by
its widespread adoption, as evidenced by its notable milestone in the number of citations,
surpassing 2,000 in the year 2023. This acclaim has translated into its integration into
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various recent works across the spectrum of speech processing research, as observed in
recent publications (Ma et al., 2021a; Srivastava et al., 2022; Li and Doddipatla, 2023),
also in ST (Inaguma et al., 2021a).

During my PhD, I adopted both architectures: during the initial phase of my
research, discussed in Sections 3.2.1 and 4.2.1, I adopted the Transformer while, for
all the subsequent works (Sections 3.2.2, 3.2.3, and 4.2.2), I adopted the emerging and
better performing Conformer. As regards their inner attention mechanism, its use is at
the core of my latest contributions on simultaneous ST (Sections 3.2.2, and 3.2.3).

2.3 Data
Being direct ST a relatively recent field of investigation, one of the primary challenges
encountered in its early stages was the scarcity of data. At the beginning of this PhD
project, there were only three existing ST datasets covering multiple languages, namely:

• MuST-C (Di Gangi et al., 2019a): it contains about 500 hours of TED talks1

in English with translations into 8 languages, later extended to 14 target languages
(Cattoni et al., 2021);

• EuroParl-ST (Iranzo-Sánchez et al., 2020): it contains debates carried out
in the European Parliament in the period between 2008 and 2012 and comprises
30 different translation directions from and into 6 European languages;

• CoVoST-2 (Wang et al., 2020b): it is based on the CommonVoice ASR corpus
(Ardila et al., 2020) and covers translations from English into 15 languages and
from 21 languages into English, with a total of 2,880 hours;

These datasets consist of audio recordings in the source language, their corresponding
textual translations into multiple languages, and, optionally, transcriptions in the source
language. Despite having three dataset options, I predominantly utilized the MuST-
C dataset throughout this PhD (Chapters 3, and 4) as it represented the standard
benchmark in the field of ST, facilitating comparisons with existing works.

In response to the data scarcity problem represented by the limited availability
of multilingual corpora, the research community has also actively pursued innovative
approaches in both data augmentation (Section 2.3.1) and knowledge transfer
(Section 2.3.2) techniques, which I expand upon in the following.

1https://www.ted.com/talks
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2.3.1 Data Augmentation
Data augmentation techniques play a pivotal role in enhancing the performance and
robustness of models, including direct ST. In this context, where the availability of
diverse and extensive datasets is often limited, data augmentation becomes a key strategy
to mitigate the data scarcity issue. By introducing variations and diversity into the
training data, these techniques aim to expose the model to a more comprehensive range
of possible inputs, making it more suitable for handling diverse linguistic nuances, speech
patterns, and environmental conditions.

SpecAugment. The most popular data augmentation technique is SpecAugment,
initially introduced for ASR by Park et al. (2019), which has also demonstrated its
effectiveness in ST (Bahar et al., 2019). The concept behind SpecAugment is to
modify the audio features representing speech, enhancing the variability of training
data and contributing to the development of more robust systems. Operating on input
features, SpecAugment is applied with a probability p and involves masking (zeroing
out) consecutive portions of the input in both the frequency and time dimensions.

Time Stretch. With a similar objective to SpecAugment, Nguyen et al. (2020b)
proposed the time stretch, which directly manipulates audio features with the aim
of achieving effects similar to speed perturbation (Ko et al., 2015) to enhance system
robustness against variations in speech rate. This approach involves segmenting the
input sequence into windows of w features and subsequently resampling each window
using a random factor s drawn from a uniform distribution.

Synthetic Data. Another commonly utilized approach to cope with data scarcity
involves the generation of synthetic data, either in textual or audio format. To leverage
the availability of large ASR datasets (Ardila et al., 2020; Wang et al., 2021), parallel
audio-translation pairs are created by translating the transcript of each audio using an
MT model (Jia et al., 2019). This method can also be viewed as a knowledge transfer
technique known as sequence-level knowledge distillation (sequence-level KD) since it
transfers (or distills) the knowledge of the MT model into the ST model (Gaido et al.,
2021b, 2022d). Synthetic audio creation, instead, was initially explored in ASR (Mimura
et al., 2018; Li et al., 2018; Rossenbach et al., 2020). This technique involves generating
speech using text-to-speech models starting from gold or back-translated transcriptions.
While this approach is less common in the context of direct ST (Lam et al., 2022), as it
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demands more time and resources for the creation of artificial audio, the generation of
synthetic translations remains a well-established practice (Di Gangi et al., 2019b; Gaido
et al., 2020b; Inaguma et al., 2021b).

Throughout this PhD, I adopted the SpecAugment data augmentation technique,
which was also applied by default by the deep learning library, fairseq s2t (Wang et al.,
2020a), on which I based all my experiments. Moreover, for some works (Sections 3.2.1,
3.2.2, 3.2.3, and 4.2.2), I also employed sequence-level KD to enhance the translation
quality, as it is one of the less resource expensive technique to apply since it stores only
additional (translated) texts.

2.3.2 Knowledge Transfer
The notion of knowledge transfer in neural networks mirrors human learning, involving
the transmission of information acquired by a neural network trained on a specific task
to another neural network, usually smaller, which may be designed for the same or
a different task (Gutstein et al., 2008). This term is also used when systems trained
on multiple tasks or output modalities (e.g., multilingual models) can transfer the
acquired knowledge from one task/modality to the others (Escolano et al., 2019; Dabre
et al., 2020). The set of these techniques, the main examples of which will be described
below, can be effectively employed alone or in conjunction with the aforementioned data
augmentation techniques.

Model pre-training. In the context of direct ST, knowledge transfer from high-
resource tasks is traditionally implemented through model pre-training, which consists of
initializing the ST model, or part of it, with the weights of ASR or MT models having
the same structure but trained on a larger amount of data. Studies by Bérard et al.
(2018) and Bansal et al. (2019) have demonstrated the effectiveness of initializing the ST
encoder with the weights of an ASR model trained on extensive ASR corpora. However,
initializing the ST decoder with an MT model alone has shown limited effectiveness
(Bansal et al., 2019), unless supplemented with an adapter layer (Bahar et al., 2019).
Despite recent work suggesting some advantages (Li et al., 2021), the performance
benefits of this approach still remain unclear.

Multitask learning. Another strategy for knowledge transfer in direct ST is
multitask learning. In this approach, a single shared encoder is utilized by two separate
decoders, each dedicated to generating transcripts and translations (Weiss et al., 2017).
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Building on this concept, Anastasopoulos and Chiang (2018) introduced a variation
that enables each decoder to attend to the representations generated by its counterpart.
Alternatively to adding a separate ASR decoder, Bahar et al. (2019) proposed to leverage
the Connectionist Temporal Classification (CTC – Graves et al. 2006) as an auxiliary loss
to predict transcriptions directly from the encoder output (Kim et al., 2017). The CTC
loss enables the generation of output sequences of variable length, which is crucial in ST,
where input sequences (audio) are typically longer than output sequences (transcriptions).
At each time step, the CTC produces a probability distribution over possible target
tokens, incorporating a dedicated <blank> symbol indicating the absence of a target
value. These distributions are then employed to calculate probabilities for different
sequences, collapsing consecutive equal predictions and removing <blank> symbols.
Lastly, the resulting sequences are compared with the target sequence (transcription).

Knowledge Distillation. The last commonly adopted knowledge transfer tech-
nique is knowledge distillation (KD), which was introduced to transfer knowledge from a
big model into a small, compressed one (Hinton et al., 2015). The objective is to have a
small model (referred to as the student in the KD learning procedure) that is trained to
mimic the probability distribution of its larger counterpart (referred to as the teacher)
when processing the same input, so as to achieve comparable performance to the teacher.
This involves using the probabilities generated by the teacher as a reference during the
training of the student, rather than the usual reference distribution where probability
1 is assigned to the correct label and all others are set to 0. In practical terms, this
means that the student is not only optimized for the cross-entropy loss function but
also to minimize the distance between its probability distribution and that generated
by the teacher, known as Kullback-Leibler (KL) divergence loss (Kullback and Leibler,
1951). In the context of direct ST, KD has been applied not only for model compression,
as in its original purpose, but also to enhance the quality of an ST student model by
transferring knowledge from an MT teacher capable of achieving superior performance,
as demonstrated by Liu et al. (2019).

During my PhD journey, I mostly adopted the multitask learning technique since
it is easier to apply and less computationally expensive. In particular, I leveraged the
CTC loss for multitask learning in all the selected contributions discussed in this thesis
(Sections 3.2.1, 3.2.2, 3.2.3, and 4.2.1). Model pre-training, on the other hand, was only
employed in Section 4.2.2, where pre-training was executed on the ST task and then
followed by training on the automatic subtitling task.

20



Chapter 2. Preliminaries

2.4 Evaluation
The evaluation of standard ST systems is a critical aspect that mainly gauges the quality
of the generated translation. However, in the constrained scenarios investigated in this
PhD, additional evaluation aspects come into play, as already outlined in Section 1.2.

Evaluation metrics can be categorized into three main groups based on the specific
aspect they assess, in our case quality, latency, and conformity. Specifically:

• Quality: metrics that quantify the quality of the translation, encompassing
accuracy (i.e., how closely the generated translation communicates the original
meaning) and fluency (i.e., how smoothly and efficiently the generated translation
reads in the target language). Quality metrics are used throughout the whole thesis
since this is the primary dimension along which any ST application is evaluated.

• Latency: metrics measuring the elapsed time between the spoken utterance and
its corresponding translation. Latency metrics are particularly important in the
simultaneous ST scenario (Chapter 3), where balancing the trade-off between
quality and delay is crucial.

• Conformity: metrics assessing the adherence of the output to specific constraints,
including:

– Length: metrics evaluating output conformity to length constraints by con-
sidering the number of characters or words it comprises;

– Duration: metrics evaluating output conformity in terms of its display dura-
tion.

Conformity metrics are particularly important in the automatic subtitling scenario
(Chapter 4), where translation quality should be guaranteed also respecting spatio-
temporal constraints focused on user experience.

In assessing the translation quality of ST systems, various metrics have been proposed
over time. Traditional metrics, relying on string matching (either at character, n-gram,
or word level), include widely adopted measures such as Bilingual Evaluation Understudy
or BLEU (Papineni et al., 2002) (usually computed using the sacreBLEU tool (Post,
2018)), character n-gram F-score or chrF (Popović, 2015), Metric for Evaluation of
Translation with Explicit ORdering or METEOR (Banerjee and Lavie, 2005), Recall-
Oriented Understudy for Gisting Evaluation or ROUGE (Lin, 2004), and Translation
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Edit Rate or TER (Snover et al., 2006). More recently, there has been a shift towards
embracing metrics that better capture the nuances of spoken language (Freitag et al.,
2022) by leveraging, for example, the similarity of sentence or word embeddings (e.g.,
the embeddings obtained by the BERT model (Devlin et al., 2019)). Among them,
COMET (Rei et al., 2020), BLEURT (Sellam et al., 2020), and BERTScore (Zhang*
et al., 2020) are the most widespread. Despite the shift, I opted to report BLEU scores
in my research, given its common usage in prior works, and, in turn, to enable fair
comparisons.

In the context of simultaneous ST, an additional metric measuring latency is required
to assess the ability of the system to provide timely aligned translations. Section 3.1.2
will elaborate on the latency metrics commonly adopted for this task and on the new
proposals emerging from my PhD work as contributions to this ever-evolving research
area.

Within the context of automatic subtitling, both length and duration conformity
measures are required for assessing the impact of the subtitles on the screen, alongside
translation quality. Therefore, in Section 4.1.2, I provide the reader with information
about subtitling guidelines and how adherence to these aspects is evaluated.
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Simultaneous Speech Translation

3.1 Background

Simultaneous speech translation (or SimulST) is the task in which the translation of
a source language speech has to be performed on partial, incremental input. This is a
key feature for achieving low latency in scenarios, such as streaming conferences and
lectures, where the text has to be displayed following as much as possible the pace of
the speech. In other words, as the speaker talks, the translated text should appear on
the screen as quickly as possible, allowing audiences to understand and engage with the
content in real-time. This distinctive requirement sets SimulST apart from traditional
offline ASR and ST tasks, which typically process complete utterances before generating
the output.

Despite the growing demand,1 the problem is still far from being solved. SimulST is
indeed a very complex task in which the difficulties of performing speech recognition from
partial inputs are exacerbated by the problem of projecting meaning across languages. In
fact, translating spoken content involves not only understanding utterances in the source
language but also conveying that meaning accurately and fluently in the target language.
Moreover, this has to be realized while adhering to latency constraints to ensure that
the translated text is displayed in real time, adding another layer of complexity as the
system has to continuously balance the trade-off between latency and translation quality.

Similar to the history of offline speech translation (Section 2.1), the adoption of
cascade architectures was the first attempt made by the SimulST community to tackle

1Speech-to-text translation market is expected to grow from USD 2.4 billion in 2022 to USD
5.8 billion in 2027 (https://www.globalmarketestimates.com/market-report/speech-to-text-
market-3839).
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the problem of generating text from incremental input. The first cascade system for
SimulST was proposed in 2009 (Fügen, 2009) and was followed by many subsequent
studies (Fujita et al., 2013; Niehues et al., 2018b; Xiong et al., 2019; Arivazhagan et al.,
2020; Bahar et al., 2021; Iranzo-Sánchez et al., 2022). The cascade paradigm involves a
pipeline of two components, in which a streaming automatic speech recognition (ASR)
module transcribes the input speech into the corresponding text (Wang et al., 2020c;
Moritz et al., 2020), and then a simultaneous text-to-text translation module translates
the partial transcription into target-language text (Gu et al., 2017; Dalvi et al., 2018; Ma
et al., 2019a; Arivazhagan et al., 2019). This approach, which has been the main solution
until 2020, has several intrinsic limitations. First, it suffers from error propagation
(Sperber and Paulik, 2020), a well-known problem even in the offline scenario (Section
2.1), where the transcription errors made by the ASR module are propagated to the MT
module, which cannot recover them as it does not have direct access to the audio. In
the SimulST context, this is further complicated by the need to transcribe partial and
incremental audio inputs with low latency, potentially obtaining transcriptions of lower
quality when accessing only a limited context to generate the output. Another strong
limitation of cascaded systems is the extra latency added to accomplish the two-step
pipeline since the MT module has to wait until the streaming ASR output is produced.

To overcome these issues, the direct model for SimulST proposed by Ren et al. (2020)
emerged as a valid alternative to cascade architectures. In proposing the first direct
architecture for SimulST, the authors proved that the direct approach is especially
promising for SimulST, as it not only avoids the error propagation problem but also
reduces the overall latency of the system due to the absence of intermediate symbolic
representation steps. These encouraging results have driven recent efforts towards the
development of increasingly powerful and efficient models. In fact, despite the data
scarcity issue caused by the limited availability of ST corpora (Section 2.3), the adoption
of direct architectures for SimulST has gained increasing traction, with a growing number
of participants in the IWSLT SimulST Evaluation campaigns2 (Anastasopoulos et al.,
2021, 2022; Agarwal et al., 2023) opting for direct models (Wang et al., 2022; Fukuda
et al., 2022, 2023; Gaido et al., 2022e; Huang et al., 2023; Yan et al., 2023; Papi et al.,
2023b; Polák et al., 2022, 2023).

Among all aspects of SimulST, two assume a crucial role, motivating their choice as
main points for investigation in SimulST research. The first is the decision policy, the
technique used for deciding when and what to emit to best balance the quality-latency

2https://iwslt.org/
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trade-off, which constitutes one of the basic elements in the development of SimulST
architectures. The second is the evaluation, the methods and the assumptions used
to establish the behaviour and assess the quality and latency performance of SimulST
systems in real time. In the next section, the fundamentals of the two aspects will be
introduced, followed by an in-depth discussion of the research conducted during the
course of my doctoral studies.

3.1.1 Decision Policy

Output generation by a SimulST system is guided by the so-called decision policy that
is the strategy to decide, at each time step, whether the available information is enough
to produce a partial translation, i.e., to perform a write action using the audio received
until that step, or if it we need to wait and perform a read action to receive additional
information from the input. Different decision policies result in different ways to balance
the quality/latency trade-off. On one side, more read actions will provide the system
with a larger context useful to generate translations of higher quality. On the other side,
the inherent lagging introduced by each read operation will increase, sometimes up to
an unacceptable latency.3

To address this problem, two types of policy have been proposed: fixed and adaptive.
While fixed decision policies make decisions based on fixed units, such as the number of
words present in a speech chunk, adaptive policies make decisions based on contextual
information extracted from the input. Fixed policies, tied to predetermined units, offer
more precise control over output latency but run the risk of being less accurate, as they
may compel the model to generate output even when sufficient context is lacking.

In the following, fixed and adaptive decision policies are described in detail, along
with their most representative applications in the literature.

FIXED DECISION POLICY FOR SIMULST

One of the first and the most widely used policies is a fixed policy called wait-k (Ma
et al., 2019a). Simple yet effective, it is based on waiting for k source words before
starting to generate the target sentence, and then alternating read and write actions, as
shown in Table 3.1.

3For instance, the IWSLT 2021 and 2022 SimulST shared tasks define three latency regimes
(Anastasopoulos et al., 2021, 2022) – 1s, 2s, and 4s – while, in IWSLT 2023, a unique threshold is set
at 2s (Agarwal et al., 2023). Moreover, limits of acceptability have been set between 2s and 6s for the
ear-voice span depending on different conditions and language pairs (Yagi, 2000; Chmiel et al., 2017).
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source It was a way that parents ...
wait-3 - - - Es ging um eine
wait-5 - - - - - Es ging

Table 3.1: wait-k policy example with k = {3, 5}

As the original wait-k implementation was designed to operate on textual source
data, Ma et al. (2020b) adapted it to the audio domain by waiting for k fixed time
frames (audio chunks or speech frames) rather than k words. Many subsequent studies
have also adopted the wait-k policy with this formulation (Han et al., 2020; Karakanta
et al., 2021b; Nguyen et al., 2021; Gaido et al., 2022e; Wang et al., 2022; Fukuda et al.,
2022; Liu et al., 2022).

In (Ren et al., 2020), the adaptation to the audio domain was done differently, by
including a Connectionist Temporal Classification (CTC)-based (Graves et al., 2006)
segmentation module that is able to determine word boundaries. In this case, the
wait-k strategy is applied by waiting for k pauses between words that are automatically
detected by the segmenter. Inspired by previous work indicating that emitting fixed
chunks of words enhances translation quality with negligible impact on latency (Nguyen
et al., 2021), Zeng et al. (2021, 2022) adapted the CTC-based segmentation method
to emit chunks of words, allowing re-ranking during the decoding phase. This policy,
known as wait-k-stride-N, if forced to emit more than one word at a time, N in this
case, slightly increasing the latency since the output is prompted after the entire stride
is processed (i.e., after the N -th word). This small increase in latency, however, allows
the model to perform beam search on the stride, which has been shown effective in
improving translation quality (Sutskever et al., 2014).

Another way of applying the wait-k strategy was proposed by Chen et al. (2021),
where a streaming ASR system is used to guide the direct ST decoding. They look
at the ASR beam to decide how many tokens have been emitted within the partial
audio segment, hence having the information to apply the original wait-k policy in a
straightforward way.

An interesting solution is also the one by Elbayad et al. (2020), who jointly train a
direct model across multiple wait-k paths. Once the sentence has been encoded, they
optimize the system by uniformly sampling the k value for the decoding step. Even
though they reach good performance by using a single-path training with k=7 and a
different k value for testing, the multi-path approach proved to be effective. One of
its advantages is that no k value has to be specified for the training, which allows for
avoiding the training from scratch of several models for different values of k.
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Nevertheless, despite the simplicity in implementing these approaches, fixed policies
suffer from a major limitation since they do not consider various aspects of human
speech, such as different speech rates, duration, pauses, and silences (Zheng et al., 2020).
For this reason, subsequent research efforts on SimulST focused on adaptive policies
that are able to exploit the information received from the incremental audio input to
make a decision.

ADAPTIVE DECISION POLICY FOR SIMULST

After the introduction of fixed policies, several strategies have been developed to directly
learn the best policy during training by means of ad-hoc architectures and training
procedures aimed at reducing latency with an eye to a more flexible and informed use of
contextual information. This category of adaptive policies represents adaptive policies,
which can be divided into 3 main groups.
Policies modifying the attention mechanism. This group of policies focuses on
the alteration of the attention mechanism present in the ST models without radical
interventions in the architecture. The first adaptive policy of this category was proposed
in (Ma et al., 2020b), where the Monotonic Multihead Attention or MMA (Ma et al.,
2019b) initially introduced for SimulMT was adapted for SimulST. The MMA extends
the monotonic attention mechanism (Raffel et al., 2017), which constraints the attention
to a fixed reading window represented by previous encoder states, to multihead attention.
Later, Ma et al. (2021b) proposed a direct Transformer-based model equipped with an
augmented memory Transformer encoder, which augments the attention mechanism with
memory banks as originally proposed for streaming ASR with hybrid and transducer-
based models. In (Chang and Lee, 2022), the authors proposed an adaptation for
SimulST of the Continuous Integrate and-Fire (Dong and Xu, 2020), a variant of the
monotonic attention, achieving better results compared to wait-k and MMA. In a similar
fashion, Zhang and Feng (2022) adapted the concept of optimal information transport
(Villani et al., 2009) to source to target translations, realizing the Information-Transport-
based Simultaneous Translation (ITST). ITST quantifies the transported information
weight from each source representation to the current target token and injects this
information into the attention mechanism so as to decide whether to translate the target
token according to its accumulated received audio information.
Policies modifying the architecture. This group of policies focuses on the partial or
entire modification of standard encoder-decoder ST architectures. Among these works,
one of the most relevant is presented in (Liu et al., 2021a,b), where the Cross Attention
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Augmented Transducer (CAAT) model was proposed establishing the SimulST state
of the art at that time. CAAT is based on Transformer-Transducers (T-T), originally
introduced for ASR (Yeh et al., 2019), which replace the decoder of the standard
Transformer encoder-decoder architecture with two components: a predictor or label
encoder that is independent of the encoder and is in charge of generating a sequence of
label embeddings conditioned only on the previously predicted labels, and a joiner or
joint network that takes the output of both the encoder and the predictor and combines
them to compute a distribution over the next label in the output sequence. CAAT
modifies the original T-T architecture by adding the cross-attention mechanism to the
joiner and is trained also by adopting a latency loss optimized by a forward-backward
algorithm. Successively, an improved version of CAAT called Dynamic-CAAT was
realized by training across multiple values of the right context window size, achieving
good online performance without setting a prior right context window size during
training (Zhu et al., 2022). In (Deng et al., 2022), instead, the authors proposed
the use of the blockwise Transformer (Tsunoo et al., 2021) for SimulST, achieving
better results compared to the wait-k policy. In (Xue et al., 2022), the T-T with its
original formulation was proposed as a backbone for SimulST and later extended to
the multilingual scenario by (Wang et al., 2023a). Recently, Raffel and Chen (2023)
introduced the Implicit Memory Transformer that implicitly retains memory through a
new left context method. Following this new method, the left context is computed from
the attention output of the previous segment and included in the keys and values of the
current segment attention calculation, removing the need to explicitly represent memory
with memory banks. Following up the work on Transformer-augmented transducers
(CAAT), Tang et al. (2023) proposed a solution by combining Transducer and Attention-
based Encoder-Decoder (TAED) that share the same speech encoder, the predictor
in the transducer is replaced by the attention-based decoder and the outputs of the
decoder are also conditioned on the speech inputs instead of only by the outputs from
an unconditioned language model, as in the original transducers. With this new but
complicated architecture, the authors achieve new state-of-the-art results in terms of
translation quality while being competitive in terms of latency.

Other policies. This category of policies encompasses those that neither directly
involve the attention mechanism nor the architecture. In Indurthi et al. (2022), the
authors proposed the use of an external language model to improve the decision of
an MMA-based model. In (Liu et al., 2020b), a unidirectional model was fine-tuned
on partial inputs to simulate the test conditions (Niehues et al., 2018b), and a policy
named Local Agreement, where the agreeing prefixes of two consecutive audio chunks
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are considered stable hypotheses and emitted, was used for the inference phase. In
(Zaidi et al., 2022), the authors focused on the training procedure and introduced the
Cross-Modal Decision Regularization (CMDR) loss to improve the learned MMA-based
decision policy by computing the similarity between the monotonic attention of speech
and text inputs corresponding to each training example. In (Omachi et al., 2023), the
authors also worked on the training procedure but, in this case, the SimulST model
is trained to generate the unordered output and then reordered later, at the cost,
however, of increased latency. This latter method builds upon the interpreter approach,
similarly to (Dong et al., 2022) where the policy learns to segment the source speech
into meaningful units by considering both acoustic features and translation history,
maintaining consistency between the segmentation and translation. In the same research
line, Zhang et al. (2022a) worked on the audio segmentation for SimulST proposing the
integrate-and-firing method to learn when to translate the received utterance. More
recently, Zhang and Feng (2023) proposed to directly learn segmentation from the
underlying translation model. The idea is to turn hard segmentation into differentiable
during training, enabling it to be jointly trained with the translation model and thereby
learn a segmentation that is more beneficial for translation.

All these methods can be categorized as learned adaptive policies since the ST
system is – directly or indirectly – adapted for the simultaneous scenario through
ad-hoc and often complicated architectures and training procedures. With all these
studies on learned adaptive policies in mind, what I identified as an important research
question during my PhD studies on SimulST was: Is adapting these models to the
SimulST task necessary? Can we exploit the knowledge already acquired
through standard training procedures to guide the ST model during the
simultaneous inference? In other words, is there an intrinsic adaptive policy
within pre-existing ST models?

Before delving into the answer to these questions (Section 3.2), in the following, I
will introduce an essential lens through which to interpret the results: the evaluation
metrics.

3.1.2 Evaluation
A good simultaneous model should produce a high-quality translation with reasonable
timing, as waiting too long will negatively impact the streaming user experience. The
offline MT and ST communities commonly use the firm-grounded BLEU metric (Papineni
et al., 2002; Post, 2018) to measure the quality of the output translation, but a
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simultaneous system also necessitates a metric that accounts for the time spent by the
system to output the partial translation, namely a latency metric. Given the temporal
nature of this metric, lower latency serves as an indicator of superior performance,
meaning a reduced delay between speech events and the generation of the corresponding
translation. For instance, when one system achieves lower latency compared to another,
we refer to this as an improvement in latency for the first system (Figure 3.1).

Figure 3.1: Example of an improvement of the simultaneous performance curves: a
leftward shift means latency reduction and an upward shift denotes an increase in
translation quality.

Since simultaneous MT (SimulMT) was the first yet easiest simultaneous scenario
studied by the community, as the cascade was the first approach adopted, a set of
metrics was previously introduced for the textual input-output translation part, and
later extended to deal with speech inputs.

In the following, I therefore start with an overview of the metrics proposed for
SimulMT, which is followed by a discussion on their adaptation to SimulST, and a
review of with new metrics specifically proposed for this task.

LATENCY METRICS FOR SIMULMT

The first metric for SimulMT, the Average Proportion (AP), was proposed by Cho
and Esipova (2016) and measures the average proportion of source input read when
generating a target prediction, that is the sum of the tokens read when generating the
partial target:

AP =
1

|X||Y|

Y∑
i=1

di (3.1)
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where X = [x1, .., x|X|] represents the source tokens and Y = [y1, .., y|Y|] represents
the predicted translation tokens and delay di is defined as the number of tokens read
X1:j = [x1, ..., xj], j < |X| when generating yi. A major limitation of AP is that this
metric is not length invariant, i.e., its value depends on the input and output lengths and
is not evenly distributed on the [0, 1] interval. Specifically, values below 0.5 represent
models that have lower latency than an ideal policy (which is perfectly synchronous
with the received input), and an improvement of 0.1 from 0.7 to 0.6 is much harder to
obtain than the same absolute improvement from 0.9 to 0.8 (Ma et al., 2019a), making
this metric strongly unreliable.

To overcome these problems, Ma et al. (2019a) introduced Average Lagging (AL),
which is computed as follows:

AL =
1

τ(|X|)

τ(|X|)∑
i=1

di −
i− 1

γ
(3.2)

where γ = |Y|/|X|, the term i−1
γ

represents an ideal policy (wait-0) to compare with, and
τ(|X|) = min{i|di = |X|} is the index of the target token when the policy first reaches
the end of the source sentence. The AL value directly describes the lagging behind
the ideal policy but, as a downside, it is not differentiable, which is, instead, a useful
property, especially if the metric is likely to be added to the system loss computation.
For this reason, Cherry and Foster (2019) proposed the Differentiable Average Lagging
(DAL) introducing a minimum delay of 1/γ after each operation. The Equation 3.2
becomes:

DAL =
1

|Y|

|Y|∑
i=1

d′i −
i− 1

γ
(3.3)

where

d′i =

di, i = 0

max(di, di−1 + γ), i > 0

LATENCY METRICS FOR SIMULST

The most popular metric, Average Lagging, was successively adapted by the SimulST
community to the speech scenario by converting, for instance, the number of words to
the sum of the speech segment durations, as per (Ma et al., 2020a). Specifically, in
SimulST, the input sequence is represented as a stream of audio speech in the source
language X = [x1, ..., x|X|] where each element xj is a raw audio segment of duration Tj ,
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the reference as a stream of words in the target language Y∗ = [y∗1, ..., y
∗
|Y∗|], and the

model translation as a stream of predicted words Y = [y1, ..., y|Y|]. In the simultaneous
setting, a system starts to generate a partial hypothesis while it continues to receive an
incremental stream of input. This implies that, to generate the yi target word at time j,
it has access to X1:j = [x1, ..., xj] with j < |X|.

Therefore, the delay with which the yi word is emitted is di =
∑j

i=1 Ti. Using this
notation, in (Ma et al., 2020a), AL was initially defined as follows:

AL =
1

τ ′(|X|)

τ ′(|X|)∑
i=1

di − d∗i (3.4)

d∗i = (i− 1) ·
∑|X|

j=1 Tj

|Y|
(3.5)

where τ ′(|X|) = min{i|di =
∑|X|

j=1 Tj} is the index of the target token when the end of
the source sentence is reached and d∗i represents an oracle that, perfectly in sync with
the speaker, starts to emit words as soon as the speech starts.

However, the authors noticed that this adaptation was not robust for models that
tend to stop generating the hypothesis too early or, in other words, that under-generate.
This phenomenon is more likely to happen in SimulST than in SimulMT, for which
AL was first proposed. For instance, the presence of long pauses in the speech may
induce systems to generate the end-of-sentence token too early, even if the source
utterance is not yet complete. As observed by the authors, when this phenomenon
occurs, the lagging behind the oracle becomes negative. It follows that relatively good
latency-quality trade-offs can be achieved thanks to inappropriate AL discounts in case
of under-generation, while this does not reflect the reality. Thus, in (Ma et al., 2020a),
Equation 3.4 was redefined as:

d∗i = (i− 1) ·
∑|X|

j=1 Tj

|Y∗|
(3.6)

assuming that the oracle delays d∗i are computed based on the reference length rather
than on the system hypothesis length.

In a successive work done during this PhD, I pointed out a major issue of AL that
arises in opposite conditions, that is in the presence of over-generation. In this case,
AL improperly favors over-generating systems, which produce translations that are
longer than the reference. In (Papi et al., 2022a), I highlighted the problem through the
analysis of empirical outputs generated from existing SimulST systems and, to overcome
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this problem, I proposed a new version of the metric called Length-Adaptive Average
Lagging (LAAL). To take into account over-generation and allow for fair SimulST
systems comparisons, its new formulation modifies the delay definition as follows:

d∗i = (i− 1) ·
∑|X|

j=1 Tj

max{|Y|, |Y∗|}
(3.7)

In this way, neither under-generation nor over-generation is rewarded since, in the case
of under-generation (|Y| ≤ |Y∗|), we take the reference length (|Y∗|) while, in the case
of over-generation (|Y| > |Y∗|), we take prediction length (|Y|), thus never summing
negative delays.4

More recently, another metric was proposed named Average Token Delay (ATD) that
focuses on the end timings of partial translations. ATD is formulated as:

ATD =
1

|Y|

|Y|∑
i=1

(yi − xa(i)) (3.8)

where

a(i) =

s(i), s(i) ≤ Lacc(x
c(i))

Lacc(x
c(i)), otherwise

(3.9)

s(i) = i−max (Lacc(y
c(i) − 1)− Lacc(x

c(i)−1), 0) (3.10)

T (.) in Equation 3.8 represents the ending time of each token, a(i) represents the index
of the input token corresponding to yi, Lacc(x

c) =
∑c

j=1 |xj| is the cumulative length
up to the c-th chunk, and Lacc(x

0) = 0. Lacc(y
c) is defined similarly. c(i) denotes the

chunk number c to which yi belongs. As per Equation 3.10, if the previous translation
prefix is longer than the previous input prefix, s(i) becomes smaller than the output
index i, which means the previous long output makes the time difference between the
input token and the corresponding output token larger. ATD is the average delay of
output sub-segments against their corresponding input sub-segments, considering the
latency required for inputs and outputs. Although the input-output correspondence
does not necessarily mean semantic equivalence, especially for language pairs with large
differences in their word order and the numbers of tokens, the authors used this simplified
formulation for the latency measurement, the same as AL.

4Since its introduction, LAAL has been adopted in the IWSLT Evaluation Campaign on Simultaneous
Translation (https://iwslt.org/2023/simultaneous).
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In parallel, Ma et al. (2020b) raised the issue of using computational unaware metrics,
which disregard the actual computational time spent by the model to generate the
output. To overcome this issue, they proposed computational aware metrics accounting
for the time spent by the model to generate the output. Unfortunately, computing these
metrics is not easy in the absence of a unique and reproducible environment that can be
used to evaluate the performance of the SimulST models. To this end, in another work
(Ma et al., 2020a), they proposed a tool, SimulEval, for the metrics computation by
simulating a real-time scenario with a client-server scheme. This toolkit automatically
evaluates simultaneous translations (both text and speech) given a customizable agent
that can be defined by the user and that will depend on the adopted policy. This
tool will be employed in all the experiments performed during this PhD, where the
performance of SimulST, initially assessed in terms of AL, is later evaluated, in the
latest works, in terms of LAAL.

3.2 Selected Contributions

In the context of SimulST, almost all the developed systems surveyed in Section 3.1.1
are trained in a simultaneous fashion, i.e., they are trained to simulate the test-time
conditions of processing partial incremental input. Since the size of the partial input
– and consequently of the context that the SimulST system can use for translation –
varies according to the latency requirements imposed by real-world applications, several
models are usually trained and maintained to accommodate different quality-latency
trade-offs. This applies to both the more simplistic fixed policies presented in Section
3.1.1.1 and the diverse learned adaptive policies overviewed in Section 3.1.1.2.

But is this adaptation to the SimulST task necessary? What if we use
an offline-trained ST model for the simultaneous inference? When I started
my PhD, the benefits of training SimulST systems on partial inputs were taken for
granted and, although works employing offline ST models for SimulST were documented
in literature (Nguyen et al., 2021), the indispensability of simultaneous training had
never been demonstrated. To fill this gap, I first focused my studies on the systematic
comparison between models trained in simultaneous and offline fashion to discover the
performance differences in terms of both quality and latency, if any.

This comparison was conducted by applying the popular wait-k fixed policy, using a
fixed duration for each word or the CTC predictions to detect the number of words in
the audio speech. Additionally, the analysis was extended to diverse architectures (i.e.,
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Transformer and Conformer) and data conditions (i.e., with and without sequence-level
knowledge distillation to augment the training data). In the case of the simultaneous-
trained model, test-time conditions were simulated during training, and the system was
optimized to wait for a predefined number of words before starting the output generation
(e.g., k was set to different values). Consequently, several models were created, each
corresponding to a specific value of k: the larger the k, the higher the latency. In the
case of the offline-trained model, the simultaneous policy was applied only at inference
time, without any retraining or adaptation for the SimulST task. This means that only
one model was trained (or re-used from the offline ST task).

Surprisingly, this analysis revealed that the offline system can achieve, at the same
time, competitive or even superior quality and lower latency compared to the simulta-
neous counterpart. In particular, the comparison of our offline-trained model to the
state-of-the-art CAAT model, as introduced in Section 3.1.1.2, exposed that the offline-
trained model could even match or surpass the CAAT performance in the medium-high
latency regime (i.e., with computationally aware AL > 1.5s), despite neither applying
complicated training procedures nor using complex architectures as the CAAT is. Given
the positive results achieved by offline-trained models used in simultaneous, my first
selected contribution (PAPER #1: “Does Simultaneous Speech Translation need Si-
multaneous Models? ”, Section 3.2.1) represented the basis of my subsequent research on
leveraging offline ST models for SimulST.

Having confirmed the efficacy of employing offline-trained models for SimulST, as
anticipated in Section 3.1.1, the subsequent research questions on which I focused during
my doctoral studies are: Can we exploit the knowledge already acquired through
standard training procedures to guide the ST model during the simultaneous
inference? In other words, is there an intrinsic adaptive policy within pre-
existing ST models? Therefore, the next step was to identify the mechanisms within
the already existing offline ST models that could be exploited to “guide” the model during
the simultaneous inference. To this end, I focused on the attention mechanism and, in
particular, the cross-attention mechanism responsible for capturing the relationships
between audio input and textual output in an ST system. I analyzed the behavior of the
model by varying the decoder layer as well as the attention head from which to extract
the attention scores.

I observed that the ST system effectively represents alignments between audio and
textual representations, a behavior consistent with findings in other tasks like MT (Tang
et al., 2018; Zenkel et al., 2019; Garg et al., 2019; Chen et al., 2020). Additionally,
I found that the later decoder layers were more representative than the initial ones,
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Figure 3.2: Example of an audio-text alignment extracted from cross attention.

and the best representation was achieved by averaging information across the attention
heads. An example of audio-text alignment is presented in Figure 3.2.

In light of these findings, I introduced a new adaptive policy called EDAtt, which
exploits the cross-attention scores to determine when to emit a partial hypothesis. The
approach involves summing the attention scores towards the last λ frames of each token
and checking if this sum does not exceed a threshold α. The underlying hypothesis is
that, if this is true, the received encoded information can be considered stable enough
to emit the token; otherwise, the emission is stopped and the system waits for the
next speech chunk. The rationale behind EDAtt is that when attention points to
the most recent speech information, indicating higher scores towards the last audio
frames received, this information might be incomplete and, therefore, still insufficient to
generate the token.

By comparing the EDAtt policy with the CAAT model and two policies, the fixed
wait-k (Section 3.1.1.1) and the adaptive Local Agreement (Section 3.1.1.2), also applied
to the same offline ST model, EDAtt achieved the best quality-latency trade-off. With
the only exception of the very low latency scenario and the computational-unaware
latency metric (AL ≤ 1s), EDAtt resulted in the best model for all latency regimes
both computationally and non-computationally aware. Being tested on the same
environment (with the CAAT model included, which was replicated for PAPER #1),
the computational-aware latency comparison between the models was totally fair, and
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the obtained results proved that not only EDAtt achieves the lowest latency and
the highest quality but also that CAAT model is very slow mostly due to its complex
architecture.

With my second selected contribution (PAPER #2: “Attention as a Guide for
Simultaneous Speech Translation”, Section 3.2.2), I established that there is no need
to influence or adapt the behavior of the attention weights through dedicated training
strategies, unlike other works in SimulST (Zaidi et al., 2021, 2022; Chang and Lee,
2022; Zhang and Feng, 2022), and that this intrinsic knowledge acquired by the atten-
tion mechanism can be directly exploited for SimulST through a novel policy, EDAtt,
effectively achieving low latency with minimal computational costs.

Applying EDAtt requires finding the optimal value of λ (λ = 2 in the paper), while
the hyper-parameter α directly controls the latency. This decision is usually taken by
evaluating the performance of the model on a dev set, which, however, can be very
data-dependent. For this reason, in subsequent research, I aimed to simplify the EDAtt

policy formulation to rely on a single hyper-parameter dedicated solely to managing the
latency of the SimulST system. Building on this research direction, in my third and most
recent contribution (PAPER #3: “AlignAtt: Using Attention-based Audio-Translation
Alignments as a Guide for Simultaneous Speech Translation”, Section 3.2.3), I proposed
an innovative alternative to EDAtt named AlignAtt.

In AlignAtt, the attention weights are used to assign each encoder state, corre-
sponding to specific time frames, with a token in the partial hypothesis. This assignment
is realized by selecting the maximum cross-attention score, extracted following the same
strategy of EDAtt, for each frame. This way, every frame is uniquely aligned with its
corresponding token. At each step, by considering the last f frames as “forbidden frames”,
the partial hypothesis is emitted until a token is assigned to one of the f forbidden
frames. This approach reduces the hyper-parameters that handle the latency of the
SimulST system to a single parameter: the number of forbidden frames f . Notably,
although the simplified formulation, dedicated experiments involving various target
languages demonstrated that AlignAtt can match or even outperform all the other
policies applied to offline-trained models, including the EDAtt policy, thus representing
the new state of the art.

SUMMARY

All in all, in this PhD journey through simultaneous speech translation, I proposed a
paradigm shift in how to develop models for the SimulST task. Rather than relying
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on purpose-built models exclusively designed and trained for SimulST, I advocated
for leveraging offline-trained ST models that may already exist, obviating the need
for retraining, modification, or adaptation to suit the simultaneous task. Remarkably,
this transition unfolded seamlessly in terms of performance, with both latency and
translation quality remaining almost uncompromised.

With my first contribution, I was able to attain highly competitive performance
with the state of the art. As my journey progressed, the primary objective evolved
into the development of more sophisticated policies while retaining the commitment to
enhancing results without the need for resource-intensive, time-consuming training.

This commitment culminated in the development and introduction of two innovative
policies: EDAtt and, later, AlignAtt. These policies serve as proof of their simplicity
in implementation and their suitability for offline-trained ST models while consistently
maintaining the best balance between quality and latency.

In the subsequent sections (Sections 3.2.1, 3.2.2, and 3.2.3), these three major
contributions are elaborated upon, as they best represent my journey through the
SimulST scenario, and can be summarized as:

• PAPER #1 (Papi et al., 2022b):

– Publication details:

∗ Title : Does Simultaneous Speech Translation Need Simultaneous Mod-
els?

∗ Authors : Sara Papi, Marco Gaido, Matteo Negri, Marco Turchi

∗ Venue : Finding EMNLP 2022

– Research Question(s): Is the adaptation of architectures and training
procedures to the SimulST task necessary? What if we use an offline-trained
ST model for the simultaneous inference?

– Main Contribution(s)/Finding(s): Offline-trained ST systems can achieve
competitive or even superior quality and latency compared to the systems
trained in simultaneous.

• PAPER #2 (Papi et al., 2023d):

– Publication details:

∗ Title : Attention as a Guide for Simultaneous Speech Translation

∗ Authors : Sara Papi, Matteo Negri, Marco Turchi
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∗ Venue : ACL 2023

– Research Question(s): Can we exploit the knowledge already acquired
through standard training procedures to guide the ST model during the simul-
taneous inference?

– Main Contribution(s)/Finding(s): The knowledge acquired by an offline-
trained model and, in particular, the cross-attention information can be
directly exploited for SimulST, effectively achieving low latency with minimal
computational costs.

• PAPER #3 (Papi et al., 2023e):

– Publication details:

∗ Title : AlignAtt: Using Attention-based Audio-Translation Alignments
as a Guide for Simultaneous Speech Translation

∗ Authors : Sara Papi, Matteo Negri, Marco Turchi

∗ Venue : INTERSPEECH 2023

– Research Question(s): Can we further improve the way in which we look
at the cross-attention scores to enhance the ST performance in real time?

– Main Contribution(s)/Finding(s): Utilizing cross-attention information
to extract speech-translation alignment and employ it as guidance for simulta-
neous inference not only offers a straightforward formulation but also delivers
the best trade-off between quality and latency.
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3.2.1 PAPER #1

Does Simultaneous Speech Translation Need
Simultaneous Models?

INTRODUCTION

Many application contexts, such as conferences and lectures, require automatic speech
translation (ST) to be performed in real time. To meet this requirement, Simultaneous
ST (SimulST) systems strive not only for high output quality but also for low latency
(i.e. the elapsed time between the speaker’s utterance of a word and the generation of its
translation in the target language). Balancing quality and latency is extremely complex
as the two objectives are conflicting: in general, the more a system waits – which implies
higher latency – the better it translates thanks to a larger context to rely on.

SimulST models manage the quality-latency trade-off by means of a decision policy:
the rule that determines whether a system has to wait for more input or to emit one or
more target words. The most popular decision policy is the wait-k, a straightforward
heuristic that prescribes waiting for a predefined number of words before starting to
generate the translation. Initially proposed by Ma et al. (2020b) for simultaneous
machine translation (SimulMT), the wait-k is now widely adopted in SimulST (Ma et al.,
2020b; Ren et al., 2020; Han et al., 2020; Chen et al., 2021; Zeng et al., 2021; Ma et al.,
2021b) thanks to its simplicity. Apart from wait-k, other attempts have been made to
develop decision policies learned by the SimulST system itself (Ma et al., 2019b; Zaidi
et al., 2021; Liu et al., 2021a,b), all resulting in computationally expensive models with
limited diffusion.

Regardless of the decision policy, SimulST systems are usually trained to simulate
the conditions faced at inference time, that is with only a partial input available (Ren
et al., 2020; Ma et al., 2020b; Han et al., 2020; Zeng et al., 2021; Ma et al., 2021b; Zaidi
et al., 2021; Liu et al., 2021a). Since the size of the partial input – and consequently
of the context that the SimulST system can exploit to translate – varies according to
the latency requirements imposed by real-world applications,5 several models must be
trained and maintained to accommodate different quality-latency trade-offs. This results
in high computational costs that contrast with rising awareness on the need to reduce

5For instance, the IWSLT SimulST shared task defines three latency regimes (Anastasopoulos et al.,
2021) – 1s, 2s, and 4s – and limits of acceptability have been set between 2s and 6s for the ear-voice
span depending on different conditions and language pairs (Yagi, 2000; Chmiel et al., 2017).
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energy consumption (Strubell et al., 2019) towards more sustainable AI (Vinuesa et al.,
2020; Schwartz et al., 2020).

So far, the benefits of training systems on partial inputs have been taken for granted
and, although works employing models trained in offline mode are documented in
literature (Nguyen et al., 2021; Ma et al., 2021b), the indispensability of simultaneous
training in SimulST has never been demonstrated. With an eye on the burden and
environmental impact of training multiple dedicated models for different tasks – offline,
simultaneous – and latency regimes, in this work we address the following question:
Does simultaneous speech translation actually need models trained in simultaneous mode?
To this end, we experiment with a single, easy-to-maintain offline model, which can
effectively serve both the simultaneous and offline tasks. Specifically, we explore the
application of the widely adopted wait-k policy to the offline-trained ST system only
at inference time, bypassing any additional training neither to adapt the model to the
simultaneous scenario nor to accommodate different latency requirements. Through
experiments on two language directions (en→{de, es}), having respectively different and
similar word ordering with respect to the source, we show that:

• In terms of sustainability, offline training yields considerable reductions – by a factor
of 9 in our evaluation setting – in carbon emission and electricity consumption
(Sections 3.2.1.4).

• The offline-trained model outperforms or is on par with those trained in simulta-
neous within the wait-k policy framework (Section 3.2.1.5);

• Recent advancements in offline architectures and training strategies further improve
output quality without affecting latency (Section 3.2.1.6);

• The effectiveness of offline training also emerges in comparison with the state of
the art in SimulST (Liu et al., 2021b): except for the lowest latency regime, our
system is superior in the 2s-4s latency interval (ear-voice span) with gains up to
4.0 BLEU (Section 3.2.1.7).

BACKGROUND

3.2.1.2.1 wait-k

The wait-k policy requires waiting for a predefined number of words before starting to
translate. For instance, a system using a wait-3 policy generates the 1st target word
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when it receives the 4th source word, the 2nd target word when it receives the 5th source
word, and so on. The number of words to wait is controlled by the k parameter. SimulST
systems based on the wait-k policy are usually trained considering the same k used for
testing (Ren et al., 2020; Ma et al., 2020b; Zeng et al., 2021) while, in theory, its value
can be different between the training and testing phases. A parameter ktrain can indeed
be used to mask words at training time, while a parameter ktest can be used to directly
control the latency of the system at inference time according to the requirements posed
by the target application scenario.

Since many values of ktrain can be used to train the SimulST systems, even for
identical values of ktest, the standard approach involves performing several trainings
to obtain the best translation quality while satisfying different latency requirements.
In SimulMT, Elbayad et al. (2020) tried to avoid this large number of experiments by
exposing the model to different values of ktrain sampled at each iteration. Surprisingly,
they achieve the best performance on several ktest using a single value of k for training
(ktrain = 7). However, it is not clear if such a rule applies to SimulST, leaving the
problem of performing a large number of trainings still unsolved.

3.2.1.2.2 Word detection for wait-k in SimulST

Since SimulMT operates on a stream of words, applying the wait-k is straightforward
because the number of received words is explicit in the input. Conversely, its application
to SimulST is complicated by the fact that the input is an audio stream and the number
of received words has to be inferred by means of a so-called word detection strategy.

Two main categories of word detection strategies are currently employed by the
community: fixed (Ma et al., 2020b), and adaptive (Ma et al., 2020b; Ren et al., 2020;
Zeng et al., 2021; Chen et al., 2021). The fixed strategy is the easiest approach, as it
assumes that a fixed amount of time is required to pronounce every word disregarding
the information actually contained in the audio. In contrast, adaptive word detection
determines the number of uttered words by looking at the content of the audio. This
can be done either by means of an Automatic Speech Recognition (ASR) decoder (Chen
et al., 2021),6 or by means of a Connectionist Temporal Classification (Graves et al.,
2006) – CTC – module (Ren et al., 2020; Zeng et al., 2021), every time a speech chunk
is received by the system.

6This solution involves the use of two separate synchronized decoders (one for simultaneous ASR
and one for ST) and will not be analyzed in this work due to the higher computational costs of training
a double decoder architecture.
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In its simplicity, the fixed strategy does not consider various aspects of the input
speech, such as different speech rates, duration, pauses, and silences. For instance, if
there are no words in the speech (e.g. in the case of pauses or silences), the fixed strategy
forces the system to output something even if it cannot rely on sufficient context. In the
opposite case, in which more than one word is pronounced in a speech chunk, the fixed
strategy forces the emission of only one word, consequently accumulating a delay. By
trying to guess the actual number of words contained in a speech chunk, the adaptive
strategy is in principle more faithful to these audio phenomena. However, conflicting
results are reported in the literature, some in support of the adaptive strategy (Zeng
et al., 2021) while others show no advantage from its application (Ma et al., 2020b).

METHOD

While at training time the SimulST system has the entire audio available, at inference
time it receives a partial, incremental input. This mismatch between offline training
and simultaneous testing makes the system vulnerable to exposure bias (Ranzato et al.,
2016). To mitigate this potential problem, SimulST models are trained under simulated
simultaneous conditions. On an attentive model, this simultaneous training is realized
by masking future audio frames when computing the encoder-decoder attention. For a
wait-k SimulST system, the choice of the audio frames to be masked depends on two
factors: the value of ktrain and the word detection strategy. The ktrain value determines
the number of source words to mask (e.g., in the case of wait-3, the first target word is
generated by looking at the first three source words and so on). The word detection
strategy identifies the source words from the audio by detecting the number of frames
each one corresponds to. Thus, the encoder-decoder attention is computed by limiting
each target word to only attend to the audio frames that correspond to the previous
ktrain source words identified by the word detection strategy. As a result, testing different
word detection strategies requires training several systems, which in turn are trained
with different values of ktrain to obtain different latencies.

In this paper, we question the need for all these experiments by investigating whether
the simultaneous training of the ST systems is indispensable to obtain a good quality-
latency trade-off. Within the framework of the wait-k policy, we explore the ability to
translate in real-time of an offline-trained system that is neither trained nor adapted
to the simultaneous scenario. To obtain a simultaneous prediction from the offline
system, we add a pre-decision module after the encoder at inference time. Its role is
to incorporate the logic of the word detection strategy to decide whether to wait or to
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emit words when a new speech chunk is received, according to the selected ktest. In
particular, it takes as input the encoder states representing the received audio chunk
and applies the word detection strategy (either fixed or adaptive) to obtain the number
of source words present in the input. If this number is equal to or exceeds ktest, the
module activates the decoding part of the model and a word is emitted, otherwise it
keeps reading the source speech.

Since the offline system is not trained for the simultaneous task, the choice of ktest
and word detection strategy are not constrained to those used during training as in the
native SimulST case. Indeed, an offline model is trained by always attending to the
entire source input. Different from the simultaneous training mode, the encoder-decoder
attention is computed without masking, that is by considering past, current, and future
information. Although this avoids multiple training for each ktrain and word detection
strategy, it also exposes the model to operate in conditions different from its training
setup, as it is not used to receive partial inputs. To check if the exposure bias given
by this mismatch in training and testing conditions constitutes a real limitation, we
conduct a systematic analysis of the quality-latency performance of the offline-trained
system in the simultaneous scenario. To this aim, we compare the offline-trained system
with the same model trained in simultaneous mode by varying the value of ktrain and
the word detection strategy.

EXPERIMENTAL SETTINGS

We perform all our experiments on the en→{de, es} sections of the MuST-C dataset
(Cattoni et al., 2021). All the results presented are given on the corpus test set (tst-
COMMON). We use the Transformer architecture (Vaswani et al., 2017) with the
integration of the CTC in the encoder (Liu et al., 2020c; Gaido et al., 2021a), which is
used to realize the adaptive word detection strategy. The hyper-parameters, training
and inference details are presented in Appendix 3.2.1.9.1.

For the evaluation, we adopt BLEU7 (Post, 2018) for quality, and Length Adaptive
Average Lagging (Papi et al., 2022a) – or LAAL – for latency, which is the modified
version of the popular Average Lagging for speech (Ma et al., 2020b) that correctly
evaluates both shorter and longer predictions with respect to the reference. We report
the simultaneous results in LAAL-BLEU graphs where each curve corresponds to a
system trained using a different value of ktrain and each point to a different ktest. The set
of k values used for both training the simultaneous model and testing all the models is

7BLEU+case.mixed+smooth.exp+tok.13a+version.1.5.1
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k = {3, 5, 7, 9, 11}. We also report the results of the offline generation using the greedy
search and the beam search with the beam_size = 5 commonly used in offline ST.

Carbon Footprint. Each training contributed an estimated 70.3 kg of CO2eq to
the atmosphere and used 184.7 kWh of electricity. This assumes 116 hours of runtime, a
carbon intensity of 380.539g CO2eq per kWh, 4 NVIDIA Tesla K80 GPUs (utilization
93%), and an Intel Xeon CPU E5-2683 v4 (utilization 100%).8 This means that training a
single offline model instead of a model for each value of ktrain (in our case, 5 models) and
for each word detection strategy (in our case, 2 strategies) allows us to save 5 · 2− 1 = 9

experiments, amounting to 632.7 kg of CO2eq and 1662.3 kWh of electricity for each
language.

RESULTS

Fixed Word Detection. The results of the wait-k models with fixed word
detection are shown in Figure 3.3. The LAAL-BLEU curves indicate that the latency
of all the systems lies between 1700ms and 3000ms, staying in a medium-high latency
regime9 for both language pairs. Translation quality is lower for en-de, for which it
ranges from 11 to 19 BLEU, while for en-es it ranges from 14 to 25 BLEU. The difference
in performance between the two language pairs is coherent with the results of the offline
generations (both greedy and beam-5) and justified by the different levels of difficulty
when translating into the two target languages (having respectively similar and different
word ordering with respect to English). The curves of the simultaneous-trained systems
also show a tendency: if ktrain increases, both the quality and latency improve (e.g.
on en-de, the k=11 curve lies higher – indicating better quality – and more leftward –
lower latency – than the others). Interestingly, the offline-trained models (in solid black)
outperform the systems trained in simultaneous at every latency regime, with gains
from 1 to 7 BLEU for en-de and from 1 to 6 BLEU for en-es. This indicates that, to
achieve the best performance and independently from the ktest used, the offline-trained
model represents the best choice, at least for the fixed strategy.

Adaptive Word Detection. The results of the wait-k models with adaptive
word detection are shown in Figure 3.4. The systems latency lies between 1700ms

8The social cost of carbon uses models from (Ricke et al., 2018) and carbon emissions information
was estimated using the experiment-impact-tracker (Henderson et al., 2020).

9Henceforth referring to (Anastasopoulos et al., 2021), we consider three latency regimes depending
on the delay d between the time in which the speech is heard and the output translation is received.
These are: low when d<1000ms, medium when 1000 < d < 2000ms, and high when d>2000ms.
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(a) English → German (b) English → Spanish

Figure 3.3: LAAL-BLEU curves of wait-k with fixed word detection strategy.

and 3500ms and, as with the fixed strategy, the quality is higher for en-es (from 15 to
26 BLEU) than for en-de (from 14 to 20 BLEU). Looking at Figures 3.3 and 3.4, we
observe that the overall translation quality yielded by the adaptive strategy is higher
compared to that of the fixed one. Moreover, the fixed strategy curves are far from
being comparable with their offline greedy values (dashed lines), while the adaptive
strategy curves almost reach them at higher latency. However, the models with fixed
word detection perform better at lower latency, with a gain of 1 BLEU for en-de and 2
BLEU for en-es. In light of these results, there is not a clear winner between the two
word detection strategies. From Figure 3.4, we also notice that the adaptive curves are
very close to each other, in contrast with the fixed case. This phenomenon indicates
that, in the case of the adaptive strategy, changing ktrain does not significantly influence
the model performance. This suggests that the offline-trained model (comparable to a
model trained with ktrain =∞) should be on par with the simultaneous-trained ones, a
consideration corroborated by the trend of the offline-trained system curves (in solid
black) that are always above or on par with those of the simultaneous-trained systems.

All in all, we can conclude that, when using the wait-k policy, the offline-trained
model achieves similar or even better results compared to the same models
trained in simultaneous mode. Based on this finding, in the next section, we explore
the actual potential of offline training for SimulST by adopting the most promising
offline architectures and training techniques to improve the quality-latency balancing of
our systems.
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(a) English → German (b) English → Spanish

Figure 3.4: LAAL-BLEU curves of wait-k with adaptive word detection strategy.

LEVERAGING OFFLINE SOLUTIONS

Offline training brings considerable advantages in terms of reducing the computational
costs of SimulST technology. First, only one model can be trained and maintained to
serve both offline and simultaneous tasks without performance degradation. Second,
contrary to the simultaneous training mode, the choice of the word detection strategy
at run-time does not depend on the strategy used during training. Rather, it can be
made according to the specific use case, making the offline-trained model more flexible.
This also means that other decision policies can be applied to the offline-trained system
without the need to re-train it from scratch.

Using a single offline-trained model not only speeds up its development but also opens
up the possibility to directly adopt powerful offline architectures and techniques without
performing any additional training or adaptation to the simultaneous scenario. In the
following, we test this hypothesis to find out whether recent architectural improvements
(Section 3.2.1.6.1) and data augmentation techniques (Section 3.2.1.6.2) designed for
offline ST also have a positive impact on SimulST.

In recent years, many architectures have been proposed to address the offline ST task
(Wang et al., 2020a; Inaguma et al., 2020; Le et al., 2020; Papi et al., 2021b). Among them,
the Conformer (Gulati et al., 2020) has recently shown impressive results both in speech
recognition, for which it was initially proposed, and in speech translation (Inaguma et al.,
2021a). The main aspects characterizing this encoder-decoder architecture are related
to the encoder part. Inspired by the Macaron-Net (Lu et al., 2019), the Conformer
encoder is built with a sandwich structure and integrates the relative sinusoidal positional
encoding scheme (Dai et al., 2019).

Given the promising results it achieved in the offline scenario, we choose to test if
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this architecture also brings quality and latency gains in SimulST. Since we found in
Section 3.2.1.3 that fixed and adaptive word detection strategies have their own use
cases (their best results are observed at different latency regimes, respectively low for
fixed and medium-high for adaptive), we compare Conformer- and Transformer-based
architectures using both strategies. For the offline training of Conformer, we follow the
same procedure used for Transformer. Details about the model hyper-parameters are
presented in Appendix 3.2.1.9.1.

(a) English → German (b) English → Spanish

Figure 3.5: LAAL-BLEU curves of the Transformer- and Conformer-based architectures.

3.2.1.6.1 Scaling Architecture

The offline results of both architectures are presented in Table 3.2, while their simulta-
neous curves are shown in Figure 3.5.

As previously noticed by Inaguma et al. (2021a), Conformer outperforms Transformer
in offline generation. The improvements, of at least 2.4 BLEU points, are valid both for
greedy and beam search. From Figure 3.5, we can see that Conformer also outperforms
Transformer in the simultaneous setting. This holds both for fixed and adaptive
word detection, with larger BLEU gains at higher latency regimes. As far as word
detection strategies are concerned, we also notice a similar trend between Conformer
and Transformer: the fixed one performs better or on par at lower latency while being
outperformed by the adaptive one when the latency increases.

In light of the better results obtained by Conformer, we conclude that improving
the architecture of the offline system also has a positive impact on its
simultaneous performance, enhancing translation quality without affecting latency.
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Model En-De En-Es
greedy beam-5 greedy beam-5

Transformer 20.6 22.2 26.1 27.2
Conformer 23.3 24.8 28.5 29.6

Table 3.2: BLEU results of the offline generation.

(a) English → German (b) English → Spanish

Figure 3.6: LAAL-BLEU curves of offline- and simultaneous-trained Conformer models
with sequence-level KD.

3.2.1.6.2 Scaling Data

Data augmentation is a common practice used to improve systems performance. One
approach to data augmentation is to apply knowledge distillation (KD), which was
introduced to transfer knowledge from big to small models (Hinton et al., 2015). Among
the possible methods, sequence-level KD (Kim and Rush, 2016) is one of the most
popular ones in ST thanks to its application simplicity and the consistent improvements
observed (Potapczyk and Przybysz, 2020; Xu et al., 2021; Gaido et al., 2022c). Sequence-
level KD consists of replacing the target references of a given parallel training corpus
with the predicted sequences generated by a teacher model (usually, an MT model),
from which we want to distil the knowledge to a student model.

To investigate the effects of such a knowledge transfer on quality and latency, we
apply sequence-level KD to our offline-trained SimulST system. To this end, we translate
the transcripts present in the en→{de, es} sections of MuST-C with an MT model (more
details are provided in Appendix 3.2.1.9.1) and we substitute the gold translations with
the MT-generated ones to build new data. As in (Liu et al., 2021b), to train the models
we use both gold and synthetic data by concatenating them. Since the performance
of the Conformer model scales with data (Gaido et al., 2022e) and is better compared
to that of Transformer (Section 3.2.1.6.1), we adopt the Conformer for the following
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study. We extend our analysis to the simultaneous-trained systems to verify if the
offline-trained one continues to perform at least on par with them and we report the
best simultaneous-trained system curve for each word detection strategy.

The effects of the additional KD data are shown in Figure 3.6. Compared to Figure
3.5, we notice a performance improvement that comes without sacrificing latency. On
en-de, the quality of the offline-trained Conformer with KD ranges from 18 to 25 BLEU,
against the previous 15 to 22 BLEU. On en-es, it ranges from 19 to 30 BLEU, against
the previous 18 to 29 BLEU. Moreover, the offline-trained system (solid curves) is still
better or at least comparable with the simultaneous-trained ones (dotted curves) for
both language pairs. From Figure 3.6, we also notice that adaptive word detection
(blue curves) shows overall better results compared to the fixed one (pink curves), even
at lower latency. This suggests that comparing the two strategies by using models
with higher translation quality shows the superiority of adaptive word detection at any
latency regime.

In light of these results, we conclude that data augmentation improves the
offline-trained system quality without affecting latency. To better assess these
performance gains in the simultaneous framework, in the next section we present a
detailed comparison of our offline-trained Conformer with the state-of-the-art SimulST
architecture.

COMPARISON WITH THE STATE OF THE ART

So far, we discovered that scaling to better-performing architectures and more data
further improves the simultaneous results of offline-trained models. But how good is
their performance compared to the state of the art in SimulST? To answer this question,
we compare our best system, the offline-trained Conformer with adaptive word detection,
with the Cross Attention Augmented Transducer (Liu et al., 2021b) – CAAT – used
by the winning submissions at IWSLT 2021 Anastasopoulos et al. (2021) and 2022
Anastasopoulos et al. (2022). Inspired by the Recurrent Neural Network Transducer by
Graves (2012), CAAT is made of three Transformer stacks: the encoder, the predictor,
and the joiner. These three elements are jointly trained in simultaneous to optimize the
quality of the translations while keeping latency under control.

For training and testing the CAAT architecture, we use the code published by the
authors and adopt the same hyper-parameters of their paper. As the performance of
the CAAT model is sensitive to sequence-level KD (Liu et al. 2021b show a 2 BLEU
degradation without it), we compare it with the offline-trained Conformer model using
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(a) English → German (b) English → Spanish

Figure 3.7: LAAL/LAALCA-BLEU curves of our offline-trained Conformer and state-of-
the-art (CAAT) models.

the same data settings – see Section 3.2.1.6.2. We report the CAAT results obtained
by adopting both the greedy search used in our SimulST settings and the beam search
used by Liu et al. (2021b). As suggested by Ma et al. (2020b), we also compute the
Computational Aware (CA) version of the LAAL metric (LAALCA), which is defined as
the time elapsed from the beginning of the generation process to the prediction of the
partial target.10 Since LAALCA represents the real wall-clock elapsed time experienced
by the user, it gives a more reliable evaluation of the SimulST performance in a real-time
scenario. For the sake of completeness, we also report the results of Average Lagging
(Ma et al., 2020a) in Appendix 3.2.1.9.3.

We present the comparison in Figure 3.7. From the LAAL-BLEU curves, we see that,
at low latency regime, the CAAT model (in solid red) outperforms our offline-trained
Conformer model (in solid blue) by 2 BLEU on en-de and 4 BLEU on en-es. However,
moving to medium-high latency regime, the Conformer significantly outperforms CAAT,

10Given that LAALCA depends on the computation time, we perform all the generations on one
NVIDIA Tesla K-80 GPU and provide the results by averaging over 3 runs. However, we notice a very
small variance among the runs (in the order of 10ms), suggesting that averaging is not necessary to
provide sound results.
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reaching gains of 4 BLEU on en-de and 2 BLEU on en-es. We can also notice a
degradation of the CAAT en-de translation quality that is caused by an under-generation
problem at higher latency, for which we give details in Appendix 3.2.1.9.2.

When it comes to LAALCA-BLEU, the scenario changes, bringing CAAT curves
much closer to those of Conformer. The state of the art still outperforms the Conformer
at lower latency but in this case, waiting about 100/200ms more, the Conformer
performance starts to improve consistently.

Comparing the LAAL- and LAALCA-BLEU curves, we see that our offline-trained
system is more coherent between computational and non-computational aware met-
rics: while Conformer has a computational overhead of 400/500ms, CAAT requires
1400/1500ms more than its ideal LAAL. The CAAT greedy curves (dotted red) show
only a little improvement in latency compared to the beam search (solid red), suggesting
that its higher computational cost does not depend on the generation strategy but on
other factors like its complex and more computationally expensive architecture.

All in all, we can say that, compared to the state of the art in SimulST, the
lower performance of our offline-trained Conformer at low latency regime is
balanced by consistently higher BLEU scores at medium and high latency.

CONCLUSIONS

To reduce the potentially large amount of experiments usually performed to build
SimulST models, we explored the use of a single offline-trained model to serve both
offline and simultaneous tasks. Through comparison with native SimulST systems, we
showed that our offline-trained model can be successfully used in real-time, achieving
comparable or even better results. To further enhance its performance, we investigated
the adoption of consolidated techniques and emerging architectures from offline research,
showing consistent improvements also in the simultaneous scenario. The benefits of
offline training indicate the potential of applying this method without the need for
any additional training or adaptation. Besides facilitating system deployment, another
important advantage of building and reusing one single model to rule both tasks is
the drastic reduction of the carbon footprint of ST training (by a factor of 9 in our
evaluation setting). This represents an important step in response to rising concerns
about the AI energy consumption and environmental impact toward more sustainable
development.

As regards SimulST evaluation, the differences between results computed with non-
computationally and computationally aware latency metrics suggest that including
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computational time in the measurements heavily influences the outcomes of system
comparisons. In our particular case, the differences in latency between the offline-
trained models and the state of the art observed in terms of the non-computationally
aware LAAL metric become smaller when considering its computational aware version.
Although lower latency is theoretically reached by the state-of-the-art CAAT model, this
comes at the cost of a more complex and computationally expensive architecture that
shows its limitations at inference time. We therefore invite the SimulST community to
use computationally aware metrics for more sound evaluations, referring to ideal metrics
only in the absence of similar testing assets, as machines with comparable computational
power.

APPENDIX

3.2.1.9.1 Models Architecture

Transformer The models used in Section 3.2.1.5 are based on 12 encoder and 6
decoder layers of Transformer (Vaswani et al., 2017) architecture. The embedding
dimension is set to 256, the number of attention heads to 4 and the feed-forward
embedding dimension to 2048, both in the encoder and in the decoder. The number of
parameters is ∼ 32.4M We use Fairseq (Ott et al., 2019) library for all the trainings.
The wait-k with fixed word detection strategy was already present in the Fairseq library,
while we implemented the adaptive one.

We use the hyper-parameters of (Ma et al., 2020b) for all the trainings of the
Transformer-based model. We use a unigram SentencePiece model (Kudo and Richardson,
2018) for the target language vocabulary of size 8,000 Di Gangi et al. (2020). For the
source language vocabulary of size 5,000 we use a BPE SubwordNMT model (Sennrich
et al., 2016) with Moses tokenizer (Koehn et al., 2007). The reason for which we used
SubwordNMT instead of SentencePiece lies in the strategy used for determining the
end of a word, which is crucial for simultaneous inference. While SentencePiece uses
the character “_” at the beginning of a new word, SubwordNMT appends “@@” to any
token that does not represent the end of a word. Thus, SentencePiece units require
the generation of the first token of the next word to determine if the current word is
over while SubwordNMT units do not. For instance, the sentence “this is a phrase”, is
encoded into SentencePiece units as “_th is _is _a _ph rase”. As such, to determine if
“_th is” is a complete word, we have to wait for the next word with the “_” character
at the beginning, that is “_is”. Instead, with SubwordNMT we have “th@@ is is a
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ph@@rase ”, and we do not need to receive “is” to determine that “th@@ is” is finished.
We select the best checkpoint based on the loss and early stop the training if the loss

does not improve for 10 epochs. We trained the system for 100 epochs at maximum. At
the end of the training, we make the average of the 7 checkpoints around the best one.

For the inference part, we use the SimulEval tool (Ma et al., 2020a) as in (Ma et al.,
2020b) with the additional force_finish tag that forces the model to generate text
until the source speech has been completely ingested, i.e. to ignore the end of sentence
token if predicted before the end of an utterance. In case of wait-k with adaptive word
detection, we also force the model to predict the successive most probable token if the
end of sentence is predicted (that we called avoid_eos_while_reading), while for the
fixed we found that it degrades the performance. The detection is taken every average
word duration, that is every 280ms, as estimated by Ma et al. (2020b) in the MuST-C
dataset.

Conformer For the Conformer model, we build an architecture similar to Inaguma
et al. (2021a), we use 12 Conformer encoder layers and 6 Transformer decoder layers.
The number of parameters is ∼ 35.7M. We use the same embedding dimension of our
Transformer-based architecture, 4 attention encoder heads and 8 attention decoder heads.
For the Conformer Feed-Forward layer, Attention layer, and Convolution layer, we use
0.1 as dropout. We use a kernel size of 31 for the point- and depth-wise convolutions
of the Convolution layer. The vocabularies are the same as the Transformer-based, as
well as the selection of the checkpoint. At inference time, the force_finish tag is used
with the avoid_eos_while_reading for both the word detection strategies.

Machine Translation The MT model used to generate the target for the KD
was trained on OPUS datasets (Tiedemann, 2016). It is a plain Transformer with 16
attention heads and 1024 features in encoder/decoder embeddings, resulting in 212M
parameters. The English→German MT scores 32.1 BLEU and the English→Spanish
MT scores 35.8 BLEU on MuST-C tst-COMMON.

3.2.1.9.2 Under-generation Statistics

In Section 3.2.1.7, while discussing the en-de curves of Figure 3.7, we highlighted a
performance degradation of CAAT at higher latency regimes. In fact, during our
experiments, we observed that CAAT tends to generate shorter sentences as the value of
k increases. This behaviour becomes apparent in Table 3.3, where we report the word
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length difference between the generated hypotheses and the corresponding references.
For en-de, CAAT exhibits a strong tendency to under-generate (indicated by negative
values) at high latency and this is presumably the reason why we observed the BLEU
drop.

English→German
Model k=3 k=5 k=7 k=9 k=11

Conformer -1 -0.94 -0.93 -0.77 -0.63
CAAT 0.47 -0.3 -0.79 -1.26 -1.55

English→Spanish
Model k=3 k=5 k=7 k=9 k=11

Conformer 0.48 0.49 0.53 0.74 0.80
CAAT 1.57 0.96 0.61 0.35 0.18

Table 3.3: Average word length difference w.r.t. the reference. Positive values indicate
exceeding words, negative values indicate missing words.
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3.2.1.9.3 Average Lagging

(a) English → German

(b) English → Spanish

Figure 3.8: AL/ALCA-BLEU curves of our offline-trained Conformer and CAAT models.
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3.2.2 PAPER #2

Attention as a Guide for Simultaneous Speech
Translation

INTRODUCTION

In simultaneous speech translation (SimulST), systems have to generate translations
incrementally while concurrently receiving audio input. This requirement poses a
significant challenge since the need of generating high-quality outputs has to be balanced
with the need to minimize their latency, i.e. the time elapsed (lagging) between when a
word is uttered and when it is actually translated by the system.

In direct SimulST systems (Bérard et al., 2016; Weiss et al., 2017),11 the balance
between output quality and latency is managed by a decision policy, which is the strategy
for determining, at each time step, whether to emit a partial translation or to wait
for additional audio input. Decision policies can be divided into two categories: fixed
and adaptive. Fixed policies are usually based on simple heuristics (Ma et al., 2019a),
while adaptive policies take into account the actual input content to make the decisions
(Zheng et al., 2020). Recent works (Liu et al., 2021b; Zaidi et al., 2021, 2022; Zhang
and Feng, 2022) proved the superiority of adaptive policies over fixed ones. However,
a major limitation of these policies is that they require training ad-hoc and complex
SimulST architectures, which results in high computational costs.

Computational costs are also inflated by the common practice of simulating the
simultaneous test conditions by providing partial input during training to avoid the
quality drops caused by the mismatch between training and test conditions (Ren et al.,
2020; Ma et al., 2020b, 2021b; Han et al., 2020; Zeng et al., 2021; Liu et al., 2021a;
Zaidi et al., 2021, 2022). This practice is independent of the decision policy adopted,
and typically requires dedicated trainings for each latency regime. To mitigate this
issue, offline-trained ST systems have been employed for simultaneous inference (Liu
et al., 2020b; Chen et al., 2021; Nguyen et al., 2021) and, along this direction, Papi
et al. (2022b) demonstrated that dedicated trainings simulating the inference conditions
are not necessary since offline-trained systems outperform those specifically trained for
SimulST. The effectiveness of using offline-trained ST models for simultaneous inference

11In this paper, we focus on direct models that exhibit lower latency and better performance compared
to traditional cascade architectures composed of separate automatic speech recognition and machine
translation components (Ansari et al., 2020; Anastasopoulos et al., 2021, 2022).
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has been also confirmed by the last IWSLT 2022 evaluation campaign (Anastasopoulos
et al., 2022), where the winning submission to the SimulST task (Polák et al., 2022) is
an offline model exploiting the Local Agreement policy by Liu et al. (2020b). However,
despite its good results, this policy relies on a strategy (the generation of two consecutive
hypotheses prior to starting the emission) that has a significant impact on latency. This
raises the need for effective policies that i) are adaptive, ii) are directly applicable to
offline ST models, and iii) achieve low latency at low computational costs.

Towards these objectives, we propose EDAtt (Encoder-Decoder Attention),12 a
novel adaptive policy for SimulST that leverages the encoder-decoder attention patterns
of an offline-trained ST model to decide when to emit partial translations. In a nutshell,
our idea is that the next word of the partial hypothesis at a given time step is safely
emitted only if the system does not attend to the most recent audio frames, meaning
that the information received up to that time step is sufficient to generate that word.
Building on this idea, our contributions are summarized as follows:

• We introduce EDAtt, a novel adaptive decision policy for SimulST, which guides
offline-trained ST models during simultaneous inference by looking at the attention
patterns dynamically computed from the audio input over time;

• We show that EDAtt outperforms the Local Agreement policy applied to the
same offline ST models at almost all latency regimes, with computational-aware
average lagging (AL_CA) reductions up to 1.4s for German and 0.7s for Spanish
on MuST-C (Cattoni et al., 2021);

• We show that EDAtt also outperforms the state-of-the-art CAAT architecture
(Liu et al., 2021b), especially in terms of AL_CA, with gains of up to 7.0 BLEU
for German and 4.0 BLEU for Spanish.

BACKGROUND

In terms of architectural choices, Transformer (Vaswani et al., 2017) and its derivatives
(Gulati et al., 2020; Chang et al., 2020; Papi et al., 2021b; Burchi and Vielzeuf, 2021;
Kim et al., 2022; Andrusenko et al., 2022) are the de-facto standard both in offline and
simultaneous ST (Ansari et al., 2020; Anastasopoulos et al., 2021, 2022).

A generic Transformer model is composed of an encoder, whose role is to map the
input speech sequence X = [x1, ..., xn] into an internal representation, and a decoder,

12Code, outputs and offline ST models used for our experiments are released under Apache License
2.0 at: https://github.com/hlt-mt/fbk-fairseq.
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whose role is to generate the output textual sequence Y = [y1, ..., ym] by exploiting
the internal representation in an auto-regressive manner (Graves, 2013), that is by
consuming the previously generated output as additional input when generating the
next one.

The encoder and the decoder are composed of a stack of identical blocks, whose
components may vary depending on the particular Transformer-based architecture,
although they all share the same dot-product attention mechanism (Chan et al., 2016).
In general, the attention is a function that maps a query matrix Q and a pair of key-value
matrices (K, V ) to an output matrix (Bahdanau et al., 2016). The output is obtained
as a weighted sum of V , whose weights are computed through a compatibility function
between Q and K that, in the case of the scaled dot-product attention used in the
original Transformer formulation, is:

A(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where dk is the dimension of K. The attention A is computed on h heads in parallel,
each applying learned linear projections WQ, WK , and W V to the Q, K, and V matrices.
These representations are then concatenated and projected using another learned matrix
WO, resulting in the final output:

Multihead(Q,K, V ) =

Concat(head1, head2, ..., headh)WO

where headi = A(QWQ
i , KWK

i , V W V
i ).

In the encoder layers, Q, K, and V are computed from the same speech input
sequence X, realizing the so-called self -attention Aself(X). Differently, in the decoder
layer, two types of attention are computed sequentially: self-attention, and encoder-
decoder (or cross) attention. In the encoder-decoder attention, Q comes from the previous
decoder layer (or directly from the previously generated output Y, in the case of the first
decoder layer) while K and V come from the output of the encoder, hence the matrix
can be expressed as Across(X,Y). In this work, we only exploit the encoder-decoder
attention matrix to guide the model during simultaneous inference. Therefore, we use
the notation A instead of Across for simplicity, and henceforth refer to this matrix as the
encoder-decoder representation of a specific decoder layer d considering the attention
head h.
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EDATT POLICY

We propose to exploit the information contained in the encoder-decoder attention matrix
of an offline ST model during inference to determine whether to wait for additional audio
input or emit a partial translation. The use of attention as the core mechanism of our
policy is motivated by related works in machine translation (MT) and language modeling,
which prove that attention scores can encode syntactic dependencies (Raganato and
Tiedemann, 2018; Htut et al., 2019) and language representations (Lamarre et al., 2022),
as well as align source and target tokens (Tang et al., 2018; Zenkel et al., 2019; Garg
et al., 2019; Chen et al., 2020). We posit (and demonstrate in Section 3.2.2.5) that
this encoder-decoder attention relationship between source audio and target tokens
also exists in offline ST models, and can be used to guide them during simultaneous
inference.

Our approach builds on the following hypothesis (see Figure 3.9): at each time step,
if the attention is focused towards the end of the input audio sequence (1), the system
will probably need more information to correctly produce the current output candidate.
On the contrary (2), if the attention concentrates on early audio frames (far enough
from the last received ones), the current output candidate can be safely emitted because
the early encoded information is sufficient. Accordingly, the model will continue to emit
the next token of the partial hypothesis until the above condition is verified, that is until
its encoder-decoder attention scores do not focus towards the end of the received speech
segment. The rationale is that if the encoder-decoder attention of the predicted token
points to the most recent speech information – i.e. attention scores are higher towards
the last audio frames received – this information could be incomplete and therefore still
insufficient to generate that token.

More formally, at each time step t, EDAtt determines whether to emit the next
token yj, given the previously generated tokens Yj−1 = [y1, ..., yj−1] and the partial
audio input sequence Xt, by looking at the sum of the last λ encoder-decoder attention
weights of the vector Aj(Xt,Yj−1). Specifically, yj is emitted if:

t∑
i=t−λ

Ai,j(Xt,Yj−1) < α, α ∈ (0, 1) (3.11)

where α is a hyperparameter that controls the quality-latency trade-off: lower values of
α increase the latency, as they reduce the possibility to satisfy Equation 3.11 (i.e. the
sum of the last λ encoder-decoder attention weights will likely exceed α), and vice versa.
When Equation 3.11 is satisfied, yj is emitted and the same process is repeated for yj+1,
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(1) When the first speech segment is received, the partial hypothesis “Ich werde” is emitted
since the attention is not concentrated towards the end of the segment while “reden.” is not
since the attention is all concentrated on the last frames.

(2) When the second speech segment is received, the new partial hypothesis “über Klima
sprechen.” is emitted since the attention is not concentrated towards the end of the segment.

Figure 3.9: Example of the EDAtt policy. Links indicate where the attention weights
point to.

and so on. The process continues until we reach the token yj+w for which Equation 3.11
is no longer verified. At that point, the emission is stopped and the total number of
tokens emitted at time step t is w.

EXPERIMENTAL SETTINGS

3.2.2.4.1 Data

To be comparable with previous works (Ren et al., 2020; Ma et al., 2020b; Zeng et al.,
2021; Liu et al., 2021b; Papi et al., 2022b; Zhang and Feng, 2022), we train our models
on MuST-C en→{de, es} (Cattoni et al., 2021). The choice of the two target languages is
also motivated by their different word ordering: Subject-Object-Verb (SOV) for German
and Subject-Verb-Object (SVO) for Spanish. This opens the possibility of validating our
approach on target-language word orderings that are respectively different and similar
with respect to the English (i.e. SVO) source audio. We also perform data augmentation
by applying sequence-level knowledge distillation (Kim and Rush, 2016; Gaido et al.,
2021b, 2022a) as in (Liu et al., 2021b; Papi et al., 2022b), for which the transcripts of
MuST-C en→{de, es} are translated with an MT model (more details can be found in
Appendix 3.2.2.9.1) and used together with the gold reference during training. Data
statistics are given in Appendix 3.2.2.9.2.
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3.2.2.4.2 Architecture and Training Setup

For our experiments, we use the bug-free implementation by Papi et al. (2023c) of the
Conformer-based encoder-decoder model for ST (Guo et al., 2021). The offline model is
made of 12 Conformer encoder layers (Gulati et al., 2020) and 6 Transformer decoder
layers (dmax = 6) with a total of ∼115M parameters. Each encoder/decoder layer has
8 attention heads (hmax = 8). The input is represented as 80 audio features extracted
every 10ms with sample window of 25 and processed by two 1D convolutional layers
with stride 2 to reduce its length by a factor of 4 (Wang et al., 2020a). Utterance-level
Cepstral Mean and Variance Normalization (CMVN) and SpecAugment (Park et al.,
2019) are applied during training. Detailed settings are described in Appendix 3.2.2.9.1.

3.2.2.4.3 Inference and Evaluation

We use the SimulEval tool (Ma et al., 2020a) to simulate simultaneous conditions
and evaluate all the models. For our policy, we vary α of Equation 3.11 in the range
[0.6, 0.4, 0.2, 0.1, 0.05, 0.03] and set the size of the speech segment to 800ms. During
inference, the features are computed on the fly and CMVN normalization is based on
the global mean and variance estimated on the MuST-C training set. All inferences
are performed on a single NVIDIA K80 GPU with 12GB memory as in the IWSLT
Simultaneous evaluation campaigns.

We use sacreBLEU (Post, 2018)13 to evaluate translation quality, and Average Lagging
(Ma et al., 2019a) – or AL – to evaluate latency, as in the default SimulEval evaluation
setup. As suggested by Ma et al. (2020b), for our comparisons with other approaches
we also report computational-aware average lagging (AL_CA), which measures the real
elapsed time instead of the ideal one considered by AL, thus giving a more realistic
latency measure when the system operates in real time. Its computation is also provided
by SimulEval.

3.2.2.4.4 Terms of Comparison

We conduct experimental comparisons with the state-of-the-art architecture for SimulST
(CAAT) and, respectively, the current best (Local Agreement) and the most widely used
(Wait-k) policies that can be directly applied to our offline ST systems for simultaneous
inference. In detail:

13BLEU+case.mixed+smooth.exp+tok.13a+version.1.5.1
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Cross Attention Augmented Transformer (CAAT) – the state-of-the-
art architecture for SimulST (Liu et al., 2021b), winner of the IWSLT 2021 SimulST task
(Anastasopoulos et al., 2021). Inspired by the Recurrent Neural Network Transducer
(Graves, 2012), it is made of three Transformer stacks: the encoder, the predictor, and
the joiner. These three elements are jointly trained to optimize translation quality while
keeping latency under control. We train and evaluate the CAAT model using the code
provided by the authors,14 and on the same data used for our offline ST model.

Local Agreement (LA) – the state-of-the-art decision policy introduced by
Liu et al. (2020b), and used by the winning system at IWSLT 2022 (Anastasopoulos
et al., 2022). It consists of generating a partial hypothesis from scratch each time a new
speech segment is added, and emitting it – or part of it – if it coincides with one of those
generated in the previous l time steps, where l is a hyperparameter. Since Liu et al.
(2020b) empirically found that considering only the most recent previously generated
tokens (l = 1) as memory works better, we adopt the same strategy to apply this policy.

Wait-k – the simplest and most widely used decision policy in SimulST (Ren et al.,
2020; Ma et al., 2020b; Zeng et al., 2021). It consists in waiting for a fixed number of
words (k) before starting to emit the translation, and then proceeding by alternating
waiting and writing operations. Since in SimulST the information about the number of
words is not explicitly contained in the audio input, a word detection strategy is used to
determine this information. Detection strategies can be fixed when it is assumed that
each word has a pre-defined fixed duration, or adaptive when the information about the
number of words is inferred from the audio content. Following Papi et al. (2022b), we
adopt a CTC-based adaptive word detection strategy to detect the number of words.
In addition, to be comparable with the other approaches, we employ beam search to
generate each token.

ATTENTION ANALYSIS

To validate our hypothesis and study the feasibility of our method, we start by exploring
the encoder-decoder attention matrices of the offline trained models. We proceed
as follows: first, by visualizing the attention weights, we check for the existence of
patterns that could be exploited during simultaneous inference. Then, we analyze the
performance of the EDAtt policy to discover the best value of λ, the decoder layer d,

14https://github.com/danliu2/caat

63

https://github.com/danliu2/caat


P
A

P
E
R

#
2:

A
ttention

as
a

G
uide

for
Sim

ultaneous
Speech

Translation

3.2. Selected Contributions

(a) Unfiltered (b) Filtered

Figure 3.10: Encoder-decoder attention scores on a random sample of the MuST-C
en→de dev set, before (a) and after (b) the filtering of the last frame from the attention
matrix.

and the attention head h from which to extract the attention scores that better balance
the quality-latency trade-off.

Do attention patterns exist also in ST? To answer this question, we
conducted an analysis of the encoder-decoder matrices obtained from the MuST-C
en-de dev set. Through the visualization of attention weights, we observed a consistent
phenomenon across our two language directions (en→{de, es}): the attention weights
concentrate on the last frame, regardless of the input length, as shown in Figure 2a. This
behaviour has already been observed in prior works on attention analysis, showing that
attention often concentrates on the initial or final token (Clark et al., 2019; Kovaleva
et al., 2019; Kobayashi et al., 2020; Ferrando et al., 2022), with up to 97% of attention
weights being allocated to these positions. As this might hinder the possibility to
effectively visualize attention patterns, similarly to (Vig and Belinkov, 2019), we filtered
out the last frame from the attention matrix and then re-normalized it. In this way,
as shown in Figure 2b, we obtained a clear pseudo-diagonal pattern compared to the
previous unfiltered representation. Such correspondence emerging from the encoder-
decoder attention scores after the removal of the last frame indicates a relationship
between the source audio frames and target translation texts that can be exploited by
our adaptive attention-based policy during simultaneous inference.

What is the optimal value of λ? To find the best number of frames (λ) on
which to apply Equation 3.11, we analyse the behavior of EDAtt by varying α and
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Figure 3.11: Effect of λ on MuST-C en→{de, es} dev set. We visualize the results with
AL ≤ 2.5s.

setting λ ∈ [2, 4, 6, 8].15 For this analysis, we extract the attention scores from the 5th

decoder layer (d = 5) by averaging across the matrices obtained from each attention
head (h = [1, ..., 8]) in accordance with the findings of (Garg et al., 2019) about the
layer that best represents word alignment. We perform the analysis on the MuST-C dev
set for both language pairs, and present the results in Figure 3.11. As we can see, as the
value of λ increases, the curves shift towards the right, indicating an increase in latency.
This means that, consistently across languages, considering too many frames towards
the end (λ ≥ 6) affects latency with little effect on quality. Since λ = 2 yields the lowest
latency (AL ≈ 1.2s) in both languages, and especially in Spanish, we select this value for
the following experiments. This outcome is noteworthy as it demonstrates that, at least
in our settings, the same optimal value of λ applies to diverse target languages with
different word ordering. However, this might not hold for different source and/or target
languages, advocating for future explorations as discussed in the Limitations section.

What is the best layer? After determining the optimal value of λ, we proceed to
analyze the EDAtt performance by varying the decoder layer from which the encoder-
decoder attention is extracted. We conduct this study by using λ = 2, as previously
determined to be the optimal value for both languages. In Figure 3.12, we present the
SimulST results (in terms of AL-BLEU curves) for each decoder layer d = [1, ..., 6].16

15We do not report the experiments with λ = 1 since we found that it consistently degrades translation
quality. We also experimented with different ways to determine λ, such as using a percentage instead
of a fixed number, but none of them yielded significant differences.

16We also tried to make the average of the encoder-decoder attention matrices of each layer but this
led to worse results.
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Figure 3.12: SimulST results on MuST-C dev set en→{de, es} for each decoder layer d.
We visualize the results with AL ≤ 2.5s.

As we can see, in both languages, Layers 1 and 2 consistently perform worse than the
other layers. Also, Layer 3 achieves inferior quality compared to Layers ≥ 4, especially
at medium-high latency (AL ≥ 1.2s) despite performing better than Layers 1 and 2.
This aligns with the findings of Garg et al. (2019), which observed inferior performance
by the first three layers in the alignment task for MT models. Concerning Layer 6, both
graphs show that the curves cannot achieve lower latency, starting at around 1.5s of AL.
This phenomenon is also valid for Layer 5 compared to Layer 4, although being much
less pronounced. We also observe that Layer 5 achieves the best performance at higher
latency on both languages. However, since Layers 5 and 6 never achieve low latency (AL
never approaches 1.2s), we can conclude that the optimal choice for the simultaneous
scenario is Layer 4. This is in line with Lamarre et al. (2022), which indicates the middle
layers as the best choice to provide accurate predictions for language representations.
As a consequence, we will use d = 4 for the subsequent experiments with EDAtt.

Would a single attention head encode more useful information?
According to prior research examining the usefulness of selecting a single or a set of
attention heads to perform natural language processing and translation tasks (Jo and
Myaeng, 2020; Behnke and Heafield, 2020; Gong et al., 2021), we also investigate the
behavior of the EDAtt policy by varying the attention head h from which the encoder-
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decoder attention matrix A is extracted. In Table 3.4,17 we present the results obtained
from each attention head h = [1, ..., 8].18 Firstly, we observe that many heads are unable
to achieve low latency, particularly for Spanish. Furthermore, there is no consensus on
the optimal head among languages or at different latencies (e.g. Head 6 is the best in
Spanish at 1.6s, but it does not achieve lower latency). However, we notice that the
average across all heads (last row) has an overall better performance compared to the
encoder-decoder matrices extracted from each individual head, and this holds true for
both languages. Consequently, we choose to compute the average over the attention
heads to apply our EDAtt policy in order to achieve a better quality-latency trade-off
for SimulST.

Head en→de en→es
1.2s 1.6s 2s 1.2s 1.6s 2s

Head 1 17.6 19.2 20.5 27.6 30.8 32.1
Head 2 19.0 21.9 23.4 - 31.9 33.9
Head 3 - 22.3 23.9 27.2 29.8 31.1
Head 4 - 21.5 23.3 - 28.4 30.7
Head 5 19.2 22.2 23.8 - 30.9 32.5
Head 6 18.7 21.2 22.7 - 32.0 33.3
Head 7 - 21.9 23.5 - 30.8 32.6
Head 8 19.2 20.7 21.6 - 31.7 33.9
Average 20.3 22.8 24.0 28.6 32.4 34.1

Table 3.4: BLEU scores on MuST-C dev set en→{de, es} for each attention head h of
Layer 4. Latency (AL) is reported in seconds. “-” means that the BLEU value is not
available or calculable. The last row represents the numerical values of Layer 4 curves
of Figure 3.12 obtained by averaging across all 8 heads.

RESULTS

3.2.2.6.1 Comparison with Other Approaches

For the comparison of EDAtt with the SimulST systems described in Section 3.2.2.4.4,
we report in Figure 3.13 both AL (solid curves) and AL_CA (dashed curves) as latency
measures to give a more realistic evaluation of the performance of the systems in real

17A tabular format is used instead of AL-BLEU curves as many parts of the curves are indistinguishable
from each other. AL = 1.2s is the first latency measure reported because it is the minimum value
spanned by the head-wise curves, and AL = 2s is the last one since increasing latency above this value
does not significantly improve translation quality (BLEU).

18Since obtaining a specific latency in seconds is not possible with this method, we interpolate the
previous and successive points to estimate the BLEU value, when needed.
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time, as recommended in (Ma et al., 2020b; Papi et al., 2022b). Results with other
metrics, DAL (Cherry and Foster, 2019) and LAAL (Papi et al., 2022a), are provided in
Appendix 3.2.2.9.3 for completeness. Numeric values for all the plots are presented in
Section 3.2.2.9.4. For our policy, we extract the encoder-decoder attention matrix from
Layer 4 (d = 4), average the weights across heads, and set λ = 2 as it was found to be
the optimal setting on the MuST-C dev set for both languages, as previously discussed
in Section 3.2.2.5.

Quality-latency curves for en→de and en→es show similar trends. The EDAtt

policy achieves better overall results compared to the LA and wait-k policies applied to
offline ST models. EDAtt consistently outperforms the wait-k policy, with gains ranging
from 1.0 to 2.5 BLEU for German and 1.0 to 3 for Spanish, when considering both ideal
(AL) and computationally aware (AL_CA) latency measures. Additionally, it is able to
achieve lower latency, as the starting point of the wait-k policy is always around 1.5s,
while EDAtt starts at 1.0s. In comparison to the LA policy, we observe an AL_CA
reduction of up to 1.4s for German and 0.7s for Spanish. Moreover, the computational
overhead of EDAtt is consistently lower, 0.9s on average between languages, against
1.3s of LA. Therefore, the computational cost of our policy is 30% lower compared to
the LA policy. Additionally, EDAtt outperforms LA at almost every latency, with
gains up to 2.0 BLEU for German and 3.0 for Spanish.

Compared with CAAT, when ideal latency is considered (solid curves), we notice
that EDAtt achieves higher quality at medium-high latency (AL ≥ 1.2s), with BLEU
gains up to 5.0 points for German and 2.0 for Spanish. When AL < 1.2s, instead, there
is a decrease in performance with BLEU drops ranging from 1.5 to 4.0 for German and
1.0 to 2.5 for Spanish. However, when considering the realistic computational-aware
latency measure AL_CA (dashed curves), we observe that the EDAtt curves are always
to the left of those of the CAAT system, indicating that our policy always outperforms
it with BLEU gains up to 6.0 points for German and 2.0 for Spanish.

In light of this, we can conclude that EDAtt achieves new state-of-the-art results in
terms of computational-aware metrics, while also being superior at medium-high latency
when considering the less realistic computational-unaware measure.

3.2.2.6.2 Effects of Accelerated Hardware

To further investigate the computational efficiency of EDAtt, we conducted experiments
on all the systems described in Section 3.2.2.4.4 using a highly accelerated GPU, an
NVIDIA A40 with 48GB memory, during simultaneous inference.
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Figure 3.13: Comparison with the SimulST systems described in Section 3.2.2.4.4 on
MuST-C en→{de, es} tst-COMMON. Solid curves represent AL, dashed curves represent
AL_CA.

Figure 3.14 reports the results in terms of quality-latency trade-off. When comparing
the curves with the computationally aware ones in Figure 3.13 (dashed), it can be
observed that the LA policy seems to benefit more from the use of expensive accelerated
hardware, with a latency reduction of 0.5-1s. However, this reduction is not sufficient
to reach a latency lower than 2s with this policy. Considering the other systems, both
wait-k and CAAT curves show a slight left shift (by less than 0.5s), similar to EDAtt.19

In conclusion, our policy proved to be superior even when using accelerated and
expensive hardware, further strengthening the previously discussed findings. Moreover,
these results indicate that there are no significant differences between the systems
when using less or more accelerated GPU hardware and advocate for the wider use of
computationally aware metrics in future research.

RELATED WORKS

The first policy for SimulST was proposed by Ren et al. (2020) and is derived from
the wait-k policy (Ma et al., 2019a) developed for simultaneous text-to-text translation.
Most of subsequent studies have also adopted the wait-k policy (Ma et al., 2020b; Han
et al., 2020; Chen et al., 2021; Zeng et al., 2021; Karakanta et al., 2021b; Nguyen

19Despite the benefits in terms of quality-latency trade-off, the significantly higher costs of the A40
GPU over the K80 GPU (4.1 vs 0.9 USD/h in Amazon Web Services, https://aws.amazon.com/
it/ec2/pricing/on-demand/) makes unlikely that such a GPU will soon be of widespread use for
simultaneous inference.
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Figure 3.14: Effect of using NVIDIA A40 GPU on MuST-C en→{de, es} tst-COMMON
considering all the systems of Section 3.2.2.4.4. Results are computationally aware.

et al., 2021; Papi et al., 2022b). In parallel, several strategies have been developed to
directly learn the best policy during training by means of ad-hoc architectures (Ma
et al., 2021b; Liu et al., 2021a,b; Chang and Lee, 2022) and training procedures aimed
at reducing latency (Liu et al., 2021a,b; Zaidi et al., 2021, 2022; Chang and Lee, 2022;
Zhang and Feng, 2022; Omachi et al., 2023). The latter adaptive policies obtained better
performance according to the most recent results observed in (Anastasopoulos et al.,
2021, 2022). We define our policy as adaptive as well, as it relies on the encoder-decoder
attention mechanism, whose dynamics are influenced by the audio input that increases
incrementally over time. However, EDAtt completely differs from prior works on
adaptive policies that exploit attention (Zaidi et al., 2021, 2022; Chang and Lee, 2022;
Zhang and Feng, 2022) because is the first policy that does not require influencing the
behaviour of the attention weights through dedicated training strategies, therefore being
directly applicable to offline-trained ST models. By doing so, we realize i) an adaptive
policy, ii) directly applicable to offline-trained ST models, iii) which achieves low latency
at low computational costs.

CONCLUSIONS

After investigating the encoder-decoder attention behavior of offline ST models, we
presented EDAtt, a novel adaptive decision policy for SimulST that guides an offline
ST model to wait or to emit a partial hypothesis by looking at its encoder-decoder
attention weights. Comparisons with state-of-the-art SimulST architectures and decision
policies reveal that, at lower computational costs, EDAtt outperforms the others at
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almost every latency, with translation quality gains of up to 7.0 BLEU for en→de and
4.0 BLEU for en→es. Moreover, it is also capable of achieving a computational-aware
latency of less than 2s with a reduction of 0.7-1.4s compared to existing decision policies
applied to the same offline ST systems.

APPENDIX

3.2.2.9.1 Training Settings

We use 512 as embedding size and 2,048 hidden neurons in the feed-forward layers both
in the encoder and in the decoder. We set dropout at 0.1 for feed-forward, attention,
and convolution layers. Also, in the convolution layer, we set 31 as kernel size for
the point- and depth-wise convolutions. The vocabularies are based on SentencePiece
(Sennrich et al., 2016) with dimension of 8,000 (Di Gangi et al., 2020) for the target
side (de, es) and of 5,000 (Wang et al., 2020a) for the source side (en). We optimize
with Adam (Kingma and Ba, 2015) by using the label-smoothed cross-entropy loss with
0.1 as smoothing factor (Szegedy et al., 2016). We employ Connectionist Temporal
Classification – or CTC – (Graves et al., 2006) as auxiliary loss to avoid pre-training
(Gaido et al., 2022e) and also to compress the input audio, reducing RAM consumption
and speeding up inference (Gaido et al., 2021a). The learning rate is set to 5 · 10−3 with
Noam scheduler (Vaswani et al., 2017) and warm-up steps of 25k. We stop the training
after 15 epochs without loss decrease on the dev set and average 7 checkpoints around
the best (best, three preceding, and three succeeding). Trainings are performed on 4
NVIDIA A40 GPUs with 40GB RAM. We set 40k as the maximum number of tokens
per mini-batch, 2 as update frequency, and 100,000 as maximum updates (∼23 hours).

The MT models used for knowledge distillation are trained on OPUS (Tiedemann,
2016) en→{de, es} sections and are plain Transformer architectures with 16 attention
heads and 1024 embedding features in the encoder/decoder, resulting in ∼212M parame-
ters. We achieve 32.1 and 35.8 BLEU on, respectively, MuST-C tst-COMMON German
and Spanish.

3.2.2.9.2 Data Statistics

MuST-C training data (train set) has been filtered: samples containing audio longer
than 30s are discarded to reduce GPU computational requests. The total number of
samples used during our trainings is shown in Table 3.5.
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split en→de en→es
train 225,277* 260,049*
dev 1,423 1,316
tst-COMMON 1,422 1,315

Table 3.5: Number of samples for each split of MuST-C. * means this number doubled
due to the use of KD.

3.2.2.9.3 Main Results with Different Latency Metrics

Apart from AL, two metrics can be adopted to measure latency in simultaneous. The
first one is the Differentiable Average Lagging – or DAL – (Cherry and Foster, 2019),
a differentiable version of AL, and the Length-Adaptive Average Lagging – or LAAL –
(Papi et al., 2022a), which is a modified version of AL that accounts also for the case in
which the prediction is longer compared to the reference. Figure 3.15 and 3.16 show the
results of the systems of Figure 3.13 by using, respectively, DAL and LAAL considering
both computational aware (CA) and unaware metrics for German and Spanish. Numeric
values are presented in Section 3.2.2.9.4.

As we can see, the results of Figure 3.15 and 3.16 confirm the phenomena found in
Section 3.13, indicating EDAtt as the best system among languages and latency values.
We observe also that DAL reports higher latency for all systems (it spans from 3 to 7.5s
for German and to 5.5s for Spanish), with a counter-intuitive curve for the LA method
considering its computational aware version. However, we acknowledge that DAL is less
suited than AL/LAAL to evaluate current SimulST systems: in its computation, DAL
gives a minimum delay for each emitted word while all the systems considered in our
analysis can emit more than one word at once, consequently being improperly penalized
in the evaluation.
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Figure 3.15: DAL results for the SimulST systems of Section 3.2.2.4.4. Solid curves
represent DAL, dashed curves represent DAL_CA.
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Figure 3.16: LAAL results for the SimulST systems of Section 3.2.2.4.4. Solid curves
represent LAAL, dashed curves represent LAAL_CA.
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3.2.2.9.4 Numeric Values for Main Results

Table 3.6 on the next page.
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en-de
Policy BLEU AL AL_CA LAAL LAAL_CA DAL DAL_CA

wait-k

19.6 1.43 2.36 1.53 2.43 1.86 3.14
23.5 2.00 3.00 2.10 3.05 2.42 3.89
25.1 2.51 3.53 2.60 3.57 2.89 4.46
25.7 2.97 4.02 3.04 4.05 3.30 4.95
26.1 3.37 4.43 3.43 4.45 3.66 5.33

LA

19.5 1.27 3.25 1.41 3.31 1.98 7.27
23.1 1.69 3.32 1.79 3.37 2.37 5.85
24.8 2.04 3.49 2.12 3.54 2.73 5.37
25.9 2.33 3.73 2.39 3.77 3.01 5.36
26.4 2.64 3.98 2.70 4.02 3.32 5.41

CAAT

20.3 0.88 1.98 1.02 2.09 1.49 3.28
20.8 1.32 2.55 1.40 2.61 1.99 3.76
20.5 1.74 3.14 1.78 3.18 2.46 4.29
19.9 2.14 3.77 2.16 3.78 2.88 4.86
19.0 2.54 4.24 2.54 4.25 3.26 5.23

EDAtt

16.8 0.88 1.61 1.08 1.76 1.64 2.83
19.1 1.04 1.75 1.20 1.87 1.73 2.91
21.6 1.34 2.09 1.46 2.17 2.01 3.26
24.0 1.74 2.56 1.83 2.63 2.43 3.71
25.6 2.26 3.26 2.33 3.31 2.99 4.40
26.3 2.74 3.93 2.80 3.96 3.46 4.97

en-es
Policy BLEU AL AL_CA LAAL LAAL_CA DAL DAL_CA

wait-k

24.9 1.39 2.41 1.58 2.53 1.96 3.51
28.4 1.97 3.07 2.16 3.18 2.52 4.30
29.0 2.50 3.63 2.68 3.72 3.03 4.91
29.2 2.98 4.09 3.14 4.17 3.45 5.30
29.4 3.41 4.57 3.55 4.63 3.82 5.73

LA

22.1 1.12 2.46 1.42 2.65 2.03 4.59
26.4 1.52 2.56 1.76 2.72 2.42 4.01
28.1 1.87 2.81 2.08 2.96 2.75 4.10
28.9 2.17 3.03 2.36 3.17 3.05 4.20
29.5 2.46 3.28 2.63 3.41 3.33 4.39

CAAT

25.1 0.74 2.02 1.02 2.23 1.54 3.57
26.0 1.15 2.57 1.37 2.72 2.03 4.03
26.6 1.53 3.14 1.71 3.26 2.51 4.54
26.6 1.91 3.70 2.05 3.79 2.92 5.02
26.7 2.27 4.25 2.38 4.33 3.31 5.51

EDAtt

23.0 0.95 1.74 1.24 1.97 1.81 3.01
25.0 1.10 1.90 1.36 2.10 1.92 3.12
26.6 1.28 2.09 1.52 2.27 2.09 3.29
27.8 1.52 2.42 1.74 2.59 2.38 3.62
28.9 1.81 2.87 2.02 3.01 2.74 4.03
29.2 2.14 3.37 2.34 3.50 3.12 4.48

Table 3.6: Numeric values for the plots presented in Sections 3.2.2.6 and 3.2.2.9.3.
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3.2.3 PAPER #3

AlignAtt: Using Attention-based
Audio-Translation Alignments as a Guide for

Simultaneous Speech Translation

INTRODUCTION

Simultaneous speech translation (SimulST) involves the generation, with minimal delay,
of partial translations for an incrementally received input audio. In the quest for high-
quality output and low latency, recent developments led to the advent of direct methods,
which have been demonstrated to outperform the traditional cascaded (ASR + MT)
pipelines in terms of both quality and latency (Anastasopoulos et al., 2022). Early
works on direct SimulST require the training of several models which were optimized
for different latency regimes (Ren et al., 2020; Ma et al., 2020b; Zeng et al., 2021),
consequently resulting in high computational and maintenance costs. With the aim of
reducing this computational burden, the use of offline-trained direct ST models for the
simultaneous inference has been recently studied (Papi et al., 2022b) and is becoming
popular (Liu et al., 2020b; Chen et al., 2021; Nguyen et al., 2021) due to its competitive
performance compared to dedicated architectures specifically developed for SimulST
(Anastasopoulos et al., 2022). Indeed, this approach enables an offline ST model to work
in simultaneous by applying, only at inference time, a so-called decision policy, which is
in charge of determining whether to emit a partial hypothesis or wait for more audio
input. As a result, no specific adaptation is required either for the SimulST task or to
achieve different latency regimes.

Along this line of research, we propose AlignAtt, a novel policy for SimulST that
exploits the audio-translation alignments obtained from the attention weights of an
offline-trained model to decide whether to emit or not a partial translation. Our policy
is based on the idea that, if the candidate token is aligned with the last frames of
the input audio, the information encoded can be insufficient to safely produce that
token. The audio-translation alignments are automatically generated from the attention
weights, whose representativeness has been extensively studied in linguistics-related
tasks (Raganato and Tiedemann, 2018; Htut et al., 2019; Lamarre et al., 2022), including
word-alignment in machine translation (Tang et al., 2018; Garg et al., 2019; Chen et al.,
2020).

All in all, the contributions of our work are the following:
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Chapter 3. Simultaneous Speech Translation

(1) The emission stops when “Ich werde heute” has been generated because the token
“darüber ” (“about”) is aligned with an inaccessible frame (in striped red).

(2) After “Ich werde heute”, also “über Klima sprechen” is emitted since no token is aligned
with inaccessible frames.

Figure 3.17: Example of the AlignAtt policy with f = 2 at consecutive time steps t1
(a) and t2 (b).

• We present AlignAtt, a novel decision policy for SimulST that guides an offline-
trained model during simultaneous inference by leveraging audio-translation align-
ments computed from the attention weights;

• We compare AlignAtt with popular and state-of-the-art policies that can be
applied to offline-trained ST models, achieving the new state of the art on all the
8 languages of MuST-C v1.0 (Cattoni et al., 2021), with gains of 2 BLEU points
and a latency reduction of 0.5-0.8s depending on the target languages;

• The code, the models, and the simultaneous outputs are published under Apache
2.0 Licence at: https://github.com/hlt-mt/fbk-fairseq.
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ALIGNATT POLICY

AlignAtt is based on the source audio - target text alignment obtained through
the attention scores of a Transformer-based model (Vaswani et al., 2017). In the
Transformer, encoder-decoder (or cross) attention AC is computed by applying the
standard dot-product mechanism (Chan et al., 2016) as follows:

AC(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where the matrices K (key) and V (value) are obtained from the encoder output and
consequently depend on the input source x, the matrix Q (query) is obtained from
the output of the previous decoder layer (or from the previous output tokens in case
of the first decoder layer), and consequently depends on the prediction y, and dk is
a scaling factor. Cross attention can be hence expressed as a function of x and y,
obtaining AC(x,y). Exploiting the cross attention AC(x,y), the alignment vector Align
is computed by considering, for each token yi of the prediction y = [y1, ..., ym], the index
of the most attended frame (or encoder state) xj of the source input x = [x1, ..., xn]:

Aligni = argmax
j

AC(x, yi)

This means that, for every predicted token yi, we have a unique aligned frame xj of
index Aligni.

Our policy (Figure 3.17) exploits the obtained alignment Align to guide the model
during inference by checking whether each token yi attends to the last f frames or not. If
this condition is verified, the emission is stopped, under the assumption that, if a token
is aligned with the most recently received audio frames, the information they provide
can be insufficient to generate that token (i.e. the system has to wait for additional
audio input). Specifically, starting from the first token, we iterate over the prediction y

and continue the emission until:

Aligni /∈ {n− f + 1, ..., n}

which means that we stop the emission as soon as we find a token that mostly attends
to one of the last f frames. Thus, f is the parameter that directly controls the latency
of the model: smaller f values mean fewer frames to be considered inaccessible by the
model, consequently implying a lower chance that our stopping condition is verified and,
in turn, lower latency. The process is formalized in Algorithm 1.
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Chapter 3. Simultaneous Speech Translation

Algorithm 1 AlignAtt
Require: Align, f , y
i← 1
prediction← [ ]
stop← False
while stop ̸= True do

if Aligni ∈ {n− f + 1, ..., n} then
stop← True ▷ inaccessible frame

else
prediction← prediction+ yi
i← i+ 1

end if
end while

Since in SimulST the source speech input x is incrementally received and its length
n is increased at every time step t, applying the AlignAtt policy means applying
Algorithm 1 at each timestep to emit (or not) the partial hypothesis until the input x(t)
has been entirely received.

EXPERIMENTAL SETTINGS

3.2.3.3.1 Data

We train one model for each of the 8 languages of MuST-C v1.0 (Cattoni et al., 2021),
namely English (en) to Dutch (nl), French (fr), German (de), Italian (it), Portuguese
(pt), Romanian (ro), Russian (ru), and Spanish (es). We filter out segments longer
than 30s from the training set to optimize GPU RAM consumption. We also apply
sequence-level knowledge distillation (Kim and Rush, 2016) to increase the size of our
training set and improve performance. To this aim, we employ NLLB 3.3B (Costa-jussà
et al., 2022) as the MT model to translate the English transcripts of the training set
into each of the 8 languages, and we use the automatic translations together with the
gold ones during training. As a result, the final number of target sentences is twice the
original one while the speech input remains unaltered. The performance of the NLLB
3.3B model on the MuST-C v1.0 test set is shown in Table 3.7.

Model de es fr it nl pt ro ru Avg
NLLB 33.1 38.5 46.5 34.4 37.7 40.4 32.8 23.5 35.9

Table 3.7: BLEU results on all the language pairs of MuST-C v1.0 tst-COMMON of
NLLB 3.3B model.
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3.2.3.3.2 Architecture and Training Setup

The model is made of 12 Conformer (Gulati et al., 2020) encoder layers and 6 Transformer
decoder layers, having 8 attention heads each. The embedding size is set to 512 and the
feed-forward layers are composed of 2,048 neurons, with ∼115M parameters in total.
The input is represented by 80 log Mel-filterbank audio features extracted every 10ms

with a sample window of 25, and pre-processed by two 1D convolutional layers of striding
2 to reduce the input length by a factor of 4 (Wang et al., 2020a). Dropout is set to
0.1 for attention, feed-forward, and convolutional layers. The kernel size is 31 for both
point- and depth-wise convolutions in the Conformer encoder. The SentencePiece-based
(Sennrich et al., 2016) vocabulary size is 8,000 for translation and 5,000 for transcript.
Adam optimizer with label-smoothed cross-entropy loss (smoothing factor 0.1) is used
during training together with CTC loss (Graves et al., 2006) to compress audio input
representation and speed-up inference time (Gaido et al., 2021a). Learning rate is set
to 5 · 10−3 with Noam scheduler and 25,000 warm-up steps. Utterance-level Cepstral
Mean and Variance Normalization (CMVN) and SpecAugment (Park et al., 2019) are
also applied during training. Trainings are performed on 2 NVIDIA A40 GPUs with
40GB RAM. We set 40k as the maximum number of tokens per mini-batch, update
frequency 4, and 100,000 maximum updates (∼28 hours). Early stopping is applied
during training if validation loss does not improve for 10 epochs. We use the bug-free
implementation of fairseq-ST (Papi et al., 2023c).

3.2.3.3.3 Terms of Comparison

We conduct experimental comparisons with the other SimulST policies that can be
applied to offline systems, thus policies that do not require training nor adaptation to
be run, namely:

• Local Agreement (LA) (Liu et al., 2020b): the policy used by (Polák et al., 2022)
to win the SimulST task at the IWSLT 2022 evaluation campaign (Anastasopoulos
et al., 2022). With this policy, a partial hypothesis is generated each time a new
speech segment is added as input, and it is emitted, entirely or partially, if the
previously generated hypothesis is equal to the current one. We adapted the docker
released by the authors to Fairseq-ST (Wang et al., 2020a). Different latency
regimes are obtained by varying the speech segment length Ts.

• Wait-k (Ma et al., 2019a): the most popular policy originally published for
simultaneous machine translation and then adapted to SimulST (Ren et al., 2020;
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Chapter 3. Simultaneous Speech Translation

Zeng et al., 2021). It consists in waiting for a predefined number of words (k)
before starting to alternate between writing a word and waiting for new output.
We employ adaptive word detection guided by the CTC prediction to detect the
number of words in the speech as in (Zeng et al., 2021; Papi et al., 2022b).

• EDAtt (Papi et al., 2023d): the only existing policy that exploits the attention
mechanism to guide the inference. Contrary to our policy that computes audio-text
alignments starting from the attention scores, in EDAtt the attention scores of
the last λ frames are summed and a threshold α is used to trigger the emission.
While α handles the latency, λ is a hyper-parameter that has to be empirically
determined on the validation set. This represents the main flaw of this policy since,
in theory, λ has to be estimated for each language. Here, we set λ = 2 following
the authors’ finding.

3.2.3.3.4 Inference and Evaluation

For inference, the input features are computed on the fly and Global CMVN normalization
is applied as in (Ma et al., 2020b). We use the SimulEval tool (Ma et al., 2020a)
to compare AlignAtt with the above policies. For the LA policy, we set Ts =

[10, 15, 20, 25, 30]20; for the wait-k, we vary k in [2, 3, 4, 5, 6, 7]21; for EDAtt, we set
α = [0.6, 0.4, 0.2, 0.1, 0.05, 0.03]22; for AlignAtt, we vary f in [2, 4, 6, 8, 10, 12, 14].
Moreover, to be comparable with EDAtt, for our policy we extract the attention
weights from the 4th decoder layer and average across all the attention heads. All
inferences are performed on a single NVIDIA TESLA K80 GPU with 12GB of RAM
as in the IWSLT Simultaneous evaluation campaigns (Anastasopoulos et al., 2021,
2022). We use sacreBLEU (↑) (Post, 2018)23 to evaluate translation quality and Length
Adaptive Average Lagging (Papi et al., 2022a) – or LAAL (↓) – to measure latency.24 As
suggested by (Ma et al., 2020b), we report the computational-aware version of LAAL25

that accounts for the real elapsed time instead of the ideal one, consequently providing
a more realistic latency measure.

20Smaller values of Ts do not improve computational aware latency.
21We do not report results obtained with k = 1 since the translation quality highly degrades.
22These are the same values indicated by the authors of the policy.
23BLEU+case.mixed+smooth.exp+tok.13a+version.1.5.1
24Length Adaptive Average Lagging is a an improved speech version of Average Lagging (Ma et al.,

2019a), which accounts for both longer and shorter predictions compared to the reference.
25We present all the results with LAALmax = 3.5s.
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RESULTS

In this section, we present the results of our offline systems trained for each language
pair of MuST-C v1.0 to show their competitiveness compared to the systems published
in the literature (Section 3.2.3.4.1) and the results of the AlignAtt policy compared
to the other policies presented in Section 3.2.3.3.3 (Section 3.2.3.4.2).

3.2.3.4.1 Offline Results

To provide an upper bound to the simultaneous performance and show the competitive-
ness of our models, we present in Table 3.8 the offline results of the systems trained on
all the language pairs of MuST-C v1.0 compared to systems published in literature that
report results for all languages. As we can see, our offline systems outperform the others
on all but 2 language pairs, en→{es, fr, it, nl, pt, ro}, achieving the new state of the art
in terms of translation quality. BLEU gains are more evident for en→fr and en→it, for
which we obtain improvements of about 1 BLEU point, while they amount to about 0.5
BLEU points for the other languages.

Concerning the other 2 languages (de, ru), our en→ru model achieves a similar result
(18.4 vs 18.5 BLEU) with that obtained by the best model for that language (XSTNet
(Ye et al., 2021)), with only a 0.1 BLEU drop. Moreover, our system reaches a slightly
worse but competitive result for en→de (28.0 vs 28.7 BLEU) compared to STEMM
(Fang et al., 2022), which instead makes use of a relevant amount of external speech
data, and it also outperforms all the other systems for this language direction. On
average, our approach stands out as the best one even if it does not involve the use
of external speech data: it obtains an average of 29.4 BLEU across languages, which
corresponds to 0.5 to 4.6 BLEU improvements compared to the published ST models.

3.2.3.4.2 Simultaneous Results

Having demonstrated the competitiveness of our offline models, we now apply the
SimulST policies introduced in Section 3.2.3.3.3 to the same offline ST model for each
language pair of MuST-C v1.0. Figure 3.18 shows the results in terms of latency-quality
trade-off (i.e. LAAL (↓) - BLEU (↑) curves).

As we can see, our AlignAtt policy is the only policy, together with EDAtt,
capable of reaching a latency lower or equal to 2s for all the 8 languages.26 Specifically,

26The maximum acceptable latency limit is set between 2s and 3s from most works on simultaneous
interpretation (Barik, 1975; Fantinuoli and Montecchio, 2022).
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Chapter 3. Simultaneous Speech Translation

Model Ext. Data de es fr it nl pt ro ru AvgSpeech Text
Fairseq-ST (Wang et al., 2020a) - - 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
ESPnet-ST (Inaguma et al., 2020) - - 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8 25.1
Chimera (Han et al., 2021) ✓ ✓ 27.1 30.6 35.6 25.0 29.2 30.2 24.0 17.4 27.4
W-Transf. (Ye et al., 2021) ✓ - 23.6 28.4 34.6 24.0 29.0 29.6 22.4 14.4 25.8
XSTNet (Ye et al., 2021) ✓ ✓ 27.8 30.8 38.0 26.4 31.2 32.4 25.7 18.5 28.9
LNA-E,D (Li et al., 2021) ✓ ✓ 24.3 28.4 34.6 24.4 28.3 30.5 23.3 15.9 26.2
LightweightAdaptor (Le et al., 2021) - - 24.6 28.7 34.8 25.0 28.8 31.0 23.7 16.4 26.6
E2E-ST-TDA (Du et al., 2022) ✓ ✓ 25.4 29.6 36.1 25.1 29.6 31.1 23.9 16.4 27.2
STEMM (Fang et al., 2022) ✓ ✓ 28.7 31.0 37.4 25.8 30.5 31.7 24.5 17.8 28.4
ConST (Ye et al., 2022) ✓ - 25.7 30.4 36.8 26.3 30.6 32.0 24.8 17.3 28.0
ours - ✓ 28.0 31.5 39.0 27.3 31.8 32.9 26.3 18.4 29.4

Table 3.8: BLEU results on MuST-C v1.0 tst-COMMON. “Ext. Data” means that
external data has been used for training: “Speech” means that either unlabelled or
labelled additional speech data is used to train or initialize the model, “Text” means
that either machine-translated or monolingual texts are used to train or initialize the
model. “Avg” means the average over the 8 languages.

Figure 3.18: LAAL-BLEU curves for all the 8 language pairs of MuST-C tst-
COMMON.AlignAtt is compared to the SimulST policy presented in Section 3.2.3.3.3.
Latency (LAAL) is computationally aware and expressed in seconds (s).
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LA curves start at around 2.5s or more for all the language pairs, even if they are able to
achieve high translation quality towards 3.5s, with a 1.2 average drop in terms of BLEU
across languages compared to the offline inference. Similarly, the wait-k curves start at
around 2/2.5s but are not able to reach high translation quality even at high latency
(LAAL approaching 3.5s), therefore scoring the worst results. Compared to these two
policies, AlignAtt shows a LAAL reduction of up to 0.8s compared to LA and 0.5s
compared to wait-k. Despite achieving lower latency as AlignAtt, the EDAtt policy
achieves worse translation quality at almost every latency regime compared to our policy,
with drops of up to 2 BLEU points across languages. These performance drops are
particularly evident for en→de and en→ru, where the latter represents the most difficult
language pair also in offline ST (it is the only language with less than 20 BLEU on Table
3.8). The evident differences in the AlignAtt and EDAtt policy behaviors, especially
in terms of translation quality, prove that, despite both exploiting attention scores as a
source of information, the decisions taken by the two policies are intrinsically different.
Moreover, AlignAtt is the closest policy to achieving the offline results of Table 3.8,
with less than 1.0 BLEU average drop versus 1.8 of EDAtt.

We can conclude that, on all the 8 languages of MuST-C v1.0, the AlignAtt policy
achieves a lower latency compared to both wait-k and LA, and an improved translation
quality compared to EDAtt, therefore representing the new state-of-the-art SimulST
policy applicable to offline ST models.

CONCLUSIONS

We presented AlignAtt, a novel policy for SimulST that leverages the audio-translation
alignments obtained from the cross-attention scores to guide an offline-trained ST model
during simultaneous inference. Results on all 8 languages of MuST-C v1.0 showed the
effectiveness of our policy compared to the existing ones, with gains of 2 BLEU and
a latency reduction of 0.5-0.8s, achieving the new state of the art. Code, offline ST
models, and simultaneous outputs are released open source to help the reproducibility
of our work.
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Chapter 4

Automatic Subtitling

4.1 Background
Automatic subtitling is the task in which the content of audio-visual resources (e.g.,
YouTube videos, TV series, movies, and video lectures) has to be transcribed in the
source language (intralingual subtitles) or translated into another language (interlingual
subtitles), and organized in a subtitle block displaying the text (element 1 in Figure
4.1) associated with timestamp information indicating the start and the end time of its
on-screen duration (element 2 in Figure 4.1). Throughout this PhD thesis, I focused

Figure 4.1: Example of a subtitle composed of a block of text (1), and the corresponding
timestamp (2).

on automatizing interlingual subtitling (hereinafter, only subtitling), framing it as an
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application of ST.
Differently from standard ST, in automatic subtitling, the generated text has to

comply with multiple requirements related to its length, format, and the time it is
displayed on the screen (Cintas and Remael, 2021). These particular requirements,
which naturally vary depending on the nature of the video content and the intended
target language and audience, are fundamentally driven by the need to minimize the
cognitive load placed on viewers, optimizing comprehension and maintaining the audience
engagement (Perego, 2008; Szarkowska and Gerber-Morón, 2018). This frequently results
in a process of condensation applied to the original spoken content, aimed at reducing
the time viewers spend reading subtitles, thereby allowing them to dedicate more time
to the actual video content (Burnham et al., 2008; Szarkowska et al., 2016). In essence,
automatic subtitling seeks to strike a balance between improving comprehension and
sustaining viewer engagement, all while considering the particular language preferences
of the target audience.

Despite the continuous growth of websites and streaming platforms such as YouTube
and Netflix,1 along with the consequent dramatic increase in the amount of audiovisual
content available online that necessitates subtitles,2 when I started my PhD journey
there had been limited research dedicated to the advancement of automated subtitling
tools (Álvarez et al., 2015; Vitikainen and Koponen, 2021).

Initial efforts to (semi-)automate the subtitling process have primarily involved the
deployment of cascade systems (Piperidis et al., 2004; Melero et al., 2006; Matusov et al.,
2019; Koponen et al., 2020; Bojar et al., 2021) comprising:

• an ASR model, which transcribes the uttered speech by also producing the
timestamp information for each transcribed word;

• a subtitle segmenter, which segments the transcriptions into timed blocks and
lines;

• an MT model, which translates the subtitle-segmented transcriptions into the
desired target language.

In most of the works on automatic subtitling, a significant focus had been directed
towards adapting the MT module specifically for the task, with a prominent objective
being the generation of more concise and compressed textual content. This adaptation

1For instance, Netflix almost doubled its revenues in 2022 (31.62B USD) compared to 2018 (https:
//www.statista.com/outlook/dmo/digital-media/video-on-demand/video-streaming-svod).

2Netflix’s original production hours have increased from just under 1,200 in 2017 to just over 3,500
in 2022 (https://omdia.tech.informa.com/OM029224/Online-Original-Production--2022).
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was realized through various techniques, such as statistical approaches trained on
subtitling corpora (Volk et al., 2010; Etchegoyhen et al., 2014; Bywood et al., 2013),
as well as the development of specialized decoding solutions for both statistical (Aziz
et al., 2012) and neural models (Matusov et al., 2019). More recently, the research has
been concentrated on controlling the length of MT model outputs to satisfy isometric
requirements between source transcripts and target translations (Lakew et al., 2019;
Matusov et al., 2020; Lakew et al., 2021, 2022). Furthermore, studies conducted by
Öktem et al. (2019); Federico et al. (2020); Virkar et al. (2021); Tam et al. (2022); Effendi
et al. (2022) have underscored the utility of incorporating prosodic cues, such as pauses,
in determining subtitle boundaries. Along this line of research, Karakanta et al. (2020a,
2021a) proposed the first direct ST system able both to translate the spoken content and
segment the text into subtitles, confirming with their results that the ability of direct
ST systems to leverage prosody has particular importance for subtitle segmentation.
Despite the promising advancements, their study has two major drawbacks:

1. it is limited to only one domain, TED talks,3 since the model is trained on the only
existing corpus comprising both audio and subtitles available online, MuST-Cinema
(Karakanta et al., 2020b);

2. it only covers the translation and segmentation into subtitles, completely neglecting
the timestamp generation, which is left to external components.

Given the aforementioned limitations, during my PhD studies on automatic subti-
tling, I identified two main research questions: 1) Is there a way to exploit the
ST corpora that already exist (and cover many domains other than TED
talks) for automatic subtitling? and 2) Is it possible to exploit a direct ST
model for producing full subtitles (translated texts with their corresponding
timestamps)?

Before delving into my work to answer these questions, in the following, I will explain
in detail two fundamental aspects of subtitling: the subtitling guidelines comprising
all the requirements defining a good subtitle, and the evaluation metrics used to
evaluate the quality of the segmentation, the content of the subtitle itself, and its
temporal synchronization.

3https://www.ted.com/
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4.1.1 Subtitling Guidelines
Subtitles are short pieces of timed text, generally displayed at the bottom of the screen,
which describe, transcribe, or translate the dialogue or narrative (Figure 4.2).

Figure 4.2: Example of a subtitled image. See https://commons.wikimedia.org/
wiki/File:Example_of_subtitles_(Charade,_1963).jpg for licence.

A subtitle is composed of two elements: the text, shown into “blocks”, and the
corresponding start and end display time – or timestamps. The segmentation in blocks
is generally indicated by a specific marker <eob>, and the new line within each block is
indicated by another marker <eol>, as shown in Figure 4.3.

Figure 4.3: Example of a subtitle in the widely used subtitle format SubRip (srt): The
first element denotes the sequential number, the second contains the start and end
timestamps, and the third presents the subtitle block with its textual content divided
into lines. Below, is the subtitle content representation in blocks and lines, denoted by
<eol> and <eob> markers.

Depending on the subtitle provider and the audiovisual content, different requirements
have to be respected concerning both spatial and temporal constraints or, in other words,
the text space and its temporal synchronization. These constraints typically consist in:
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1. using at most two lines per block;

2. keeping linguistic units (e.g. noun and verb phrases) together in the same line;

3. not exceeding a pre-defined number of characters per line (CPL), spaces included;

4. not exceeding a pre-defined reading speed for each block, measured in the number
of characters per second (CPS).

In particular, point 1. is to avoid occupying too much space on the screen so as
not to interfere with what the video intends to show, points 2. and 4. aim to make
the content easier and faster to read by requiring low cognitive effort, and point 3. is
to facilitate on-screen reading in terms of physical effort, avoiding saccades (i.e., quick,
simultaneous movements of both eyes between two or more phases of fixation in the
same direction)4. Moreover, a fundamental requirement is the need for subtitles to be
synchronized with the corresponding audiovisual content.

While a typical value used as the maximum CPL threshold is 42 for most Latin
languages,5 there is no agreement on the maximum CPS allowed. For instance, Netflix
guidelines6 allow up to 17 CPS for adults and 15 for children programs, The Walt Disney
Studios7 up to 20 CPS for adults and 17 for children, TED guidelines8 up to 21 CPS, and
Amara guidelines9 up to 25 CPS. In addition, some subtitle providers, such as Netflix
and The Walt Disney Studios, impose some constraints on the minimum duration of
each subtitle, which is set to about 800 milliseconds, and on the maximum duration,
which is set to 7 seconds, as well as on the minimum gap between two subtitles of 70-80
milliseconds.

Concerning text segmentation into subtitles, many subtitle providers, such as TED
and Netflix, specifically instruct subtitlers on how to perform it, providing examples
of how to balance the textual content in the subtitles, which are the typical words
that cannot be followed by a line break (e.g., after “a”, “an”, “the”, “which”, “that”, and

4https://en.wikipedia.org/wiki/Saccade
5https://www.ted.com/participate/translate/subtitling-tips
6https://partnerhelp.netflixstudios.com/hc/en-us/articles/219375728-Timed-Text-

Style-Guide-Subtitle-Templates
7Disney Digital Supply Chain Subtitle and Closed Captioning Style Guide of 2019 (https:

//disneymasteringspecs.s3.amazonaws.com/Disney_Digital_Supply_Chain_Subtitleand_CC_
Style_Guide_1_1_1_2022_06_06_77ae3ac064.pdf).

8https://www.ted.com/participate/translate/subtitling-tips
9https://blog.amara.org/2020/10/22/create-quality-subtitles-in-a-few-simple-

steps/
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“who”), what type of linguistic units cannot be split (e.g., person names, nouns with
their adjectives, and verbs with their subjects), just to mention few.10

As already mentioned in Section 4.1, to convey the meaning of the audiovisual
product while adhering to time and space constraints, in some domains and scenarios,
subtitles require compression or condensation (Kruger, 2001; Gottlieb, 2004; Aziz et al.,
2012; Liu et al., 2020a; Buet and Yvon, 2021). For instance, TED guidelines suggest
compressing subtitles over 21 CPS while trying to preserve as much meaning as possible.
However, being the compression task less structured, there are no specific suggestions
about how to correctly compress subtitles but only recommendations on how to do it
without changing the meaning of the textual content or what are the cases in which a
subtitle must not be compressed.11

Lastly, there are some guidelines that are language-specific, such as for French, Dutch,
and Chinese, containing ad-hoc recommendations for each target language. For instance,
the European Association for Studies in Screen Translation collects many guidelines
spanning from French to German to Chinese languages,12 similar to the AudioVisual
Translators Europe for some European languages.13

Building upon the discussion about subtitling guidelines, it is evident that automatic
subtitling is an inherently multifaceted task, requiring the generation of subtitles that
adhere to a multitude of constraints. This adherence can result in a diverse set of
subtitles, each variation being equally acceptable based on the established criteria.
However, this inherent diversity introduces challenges in the evaluation process, as
capturing the varied dimensions of subtitling quality becomes challenging. The difficulty
arises from the absence of comprehensive and accurate metrics tailored for this intricate
task. Existing metrics, if available, often specialize in different aspects of subtitling,
lacking a holistic view. Consequently, as we will see in the next section, assessing the
overall quality of automatic subtitling becomes a complex undertaking, requiring an
evaluation framework capable of addressing the diverse dimensions of subtitled content
accurately.

10For more examples, refer to the TED guidelines on lines breaking (https://translations.ted.
com/How_to_break_lines).

11For more details, refer to the TED guidelines on subtitles compression (https://translations.
ted.com/How_to_Compress_Subtitles).

12https://esist.org/resources/avt-guidelines-and-policies/#interlingual_subtitling
13https://avteurope.eu/what-is-av-translation/standards/
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4.1.2 Evaluation

As already discussed in Section 1.2.2, subtitles have to satisfy specific constraints in
terms of quality, space, and time. For evaluating translation quality, the BLEU metric
(Papineni et al., 2002; Post, 2018) is commonly employed, similarly to SimulST (Chapter
3) and generic ST (Chapter 2), and computed over the texts without <eob> and <eol>

markersz.

For the segmentation quality, instead, several metrics have been proposed over time,
starting from 1999. In (Beeferman et al., 1999), the authors proposed to assign penalties
for each moving window if subtitle ends are detected to be in different segments between
reference and hypothesis. In (Pevzner and Hearst, 2002), the WindowDiff metric was
proposed, consisting of assigning a penalty if the number of boundaries (<eob> or <eol>)
in each window is different for reference and hypothesis. Álvarez et al. (2016) proposed
precision, recall, and F1 (the harmonic mean of precision and recall). Precision was
defined as the proportion of boundaries in the hypothesis that agree with the reference
boundaries over the total number of hypothesis boundaries, while recall was defined as the
number of correct boundaries divided by the reference boundaries. In following studies,
edit distance-based metrics were proposed: Segmentation similarity (Fournier and
Inkpen, 2012), which computes the proportion of boundaries that are not transformed
when comparing segmentations using edit distance as a penalty function, and Boundary
similarity (Fournier, 2013), which is an adaptation of segment similarity, where different
weights are applied for each edit type. Building upon the concept of edit distance,
Karakanta et al. (2020a) introduced TERbr. In this metric, all words, excluding <eob>

and <eol>, within each hypothesis-reference pair are masked, and TER (Snover et al.,
2006) is subsequently computed over the masked sequences. Exploiting BLEU, the
authors also proposed BLEUbr, where BLEU is computed on text containing subtitle
boundaries (<eob> and <eol>) as special symbols.

The major drawback of all these metrics, except for TERbr and BLEUbr, is that
they cannot be computed on imperfect texts i.e., hypotheses whose text does not match
that of the reference, making their use impractical for evaluating automatically-translated
subtitles.

More recently, Karakanta et al. (2022) proposed Sigma (S), which is based on
BLEUbr and is formulated as:

S =
BLEUbr

BLEU+
br

where BLEU+
br is the upper bound of BLEUbr and is obtained by computing the standard
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BLEU score on the translated text without subtitle boundaries. Sigma values close
to 100 should represent a good segmentation, while values close to 0 indicate a bad
segmentation, irrespective of the value of BLEU. Through comparisons with all the
aforementioned metrics, Sigma proved its effectiveness both with perfect and imperfect
texts, resulting in the best metric for measuring segmentation quality.

Regarding the evaluation of timestamp quality of a generated subtitle, a metric
exclusively measuring this aspect does not exist yet. Instead, two metrics have been
proposed in the literature to measure the overall quality of the produced subtitles
including time: t-BLEU (Cherry et al., 2021), and SubER (Wilken et al., 2022).

The first metric, Timed BLEU or t-BLEU, is based on computing the standard
BLEU score over temporally aligned target-reference segment pairs. The temporal
alignment is realized by assigning a timestamp to each token in the target by linearly
interpolating the subtitle timings, and then by assigning the target to the reference
subtitle segments based on temporal overlap. However, a bad estimation of a target
word timestamp can result in its misalignment with a segment without a corresponding
reference word, or the word can even be dropped from the hypothesis if it does not fall
into any reference segment.

To overcome this major drawback, SubER was introduced, which exploits the
Levenshtein distance (Levenshtein, 1966) and is computed as:

SubER =
# word edits + # break edits + # shifts
# reference words + # reference breaks

where “#” indicates “number of”, “word edits” are insertions, deletions, and substitutions
(allowed only if the hypothesis and reference words are from subtitles that overlap in
time), “break edits” are insertions, deletions, and substitutions of <eob> and <eol>

breaks (allowed between breaks not between a word and a break and within the time
overlap), and “shifts” are movements of one or more adjacent hypothesis words and/or
breaks to a position of the matching reference phrase, which is allowed only if the
words overlap in time with the reference. The authors compared SubER with the other
subtitling metrics, including t-BLEU, and showed that their metric better correlates
with human judgment, thus resulting in the best metric for automatic subtitling.

Regarding the conformity constraints mentioned in Section 4.1.1, two main measures
can be computed from subtitles: characters-per-line (CPL) and characters-per-second
(CPS). The CPL is calculated by computing the percentage of subtitles featuring a
maximum length of 42 characters, which is the maximum limit according to standard
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subtitling guidelines (Section 4.1.1):

CPL(%) =
∑

i=1,...,N

len-conformi

N
∗ 100

where

len-conformi =

1, if len(subtitlei) ≤ 42

0, otherwise

and the length of the subtitles (len(subtitle)) is computed as the number of characters
in the subtitle block, excluding <eob> and <eol> but including spaces, and N is the
total number of subtitle blocks.

The CPS is calculated by computing the percentage of subtitles featuring a maximum
of 21 characters per second, which is the maximum limit according to TED guidelines,
similar to The Walt Disney guidelines and in between Netflix and Amara guidelines
(Section 4.1.1):

CPS(%) =
∑

i=1,...,N

time-conformi

N
∗ 100

where

time-conformi =

1, if len(subtitlei)
time(subtitlei)

≤ 21

0, otherwise

and the time duration of the subtitle blocks (time(subtitle)) is obtained by the associated
timestamp (end time - start time).

In practice, these two metrics, CPL and CPS, evaluate the percentage of subtitles
that conform to, respectively, the length and time constraints14 and are very important
indicators of what is the impact of the subtitles on the screen and, consequently, on
users’ experience.

4.2 Selected Contributions
In the context of training automatic subtitling (AS) systems, the data scarcity problem,
which also affects standard ST (Section 2.3), is exacerbated by the absence of datasets
containing subtitle-like texts with <eob> and <eol>. To tackle this problem, during the
first phase of this PhD, I focused on the generation of synthetic data to develop AS

1442 and 21 are the values (arbitrary) that have become established in research on the topic, and
that I too have adopted in my work on subtitling. However, nothing is preventing the use of other
limits depending on the context and usage scenario.
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systems. The fundamental question was: Is there a way to exploit the already
existing ST corpora, which span multiple domains, for automatic subtitling?

The primary goal was to devise a method for automatically segmenting translated
texts into subtitles accurately without compromising the final AS model performance.
With this objective in mind, in my first selected contribution (PAPER #1: “Dodging
the Data Bottleneck: Automatic Subtitling with Automatically Segmented ST Corpora”,
Section 4.2.1), I compared various models for the segmentation task and proposed a
multilingual multimodal segmenter capable of taking both audio and text as input to
perform segmentation. This approach was motivated by previous work in subtitling
(Section 4.1), which proved the importance of speech cues, such as pauses, for text
segmentation into subtitles (Öktem et al., 2019; Federico et al., 2020; Virkar et al., 2021;
Tam et al., 2022; Effendi et al., 2022). The main advantage of starting the generation of
the synthetic subtitled data from ST corpora is that both audio and text are available
and can be exploited to produce a better segmentation.

In practice, the proposed automatic segmenter processes plain texts (with corre-
sponding speeches for the multimodal segmenter) and adds subtitle markers <eob> and
<eol> without altering the original texts. A direct ST system is then trained on these
audio-automatically segmented text pairs to produce the translations with <eob> and
<eol> directly from the audio in an end-to-end fashion. Therefore, this model would
allow the exploitation of any existing ST corpus for the subtitling task.

Through extensive comparisons with textual segmenters (i.e., segmenters that take
only plain texts as input) trained on the same data and the very large OpenSubtitles
(Lison et al., 2018)), I showed that the proposed multilingual multimodal segmenter
not only yields more accurate segmentations while maintaining high length conformity
(CPL%) but also generalizes better to unseen languages (i.e., language pairs that have
not been used to train the model). This applies to both similar languages (for example,
a model trained in Italian and used in zero-shot for Spanish, another Latin language)
but also to different languages (for example, a model trained in Italian and used in
zero-shot for Dutch, a Germanic language). Moreover, multilingualism, that is exposing
the model to multiple languages during training, can further enhance the performance
of the segmenter compared to training separate ad-hoc segmenters for each language.

With this automatic segmentation tool, it became possible to train and compare direct
ST systems across various domains and data scenarios. Nevertheless, a fundamental
component was still missing from the direct ST systems at that time: the timestamp
estimation. Filling this gap was the objective of my subsequent research in automatic
subtitling, where I aimed to answer the question: Is it possible to exploit a direct ST
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model for producing “full” subtitles also including timestamp information?

Working on this problem, in my second selected contribution (PAPER #2:“Di-
rect Speech Translation for Automatic Subtitling”), I proposed the first full-automatic
subtitling system that leverages a direct ST model to produce full-automatic subtitles.
The direct ST model was trained on translations with <eob> and <eol> markers (either
automatically or manually assigned across different experimental scenarios) using a
standard cross-entropy loss in combination with an auxiliary CTC loss (Graves et al.,
2006) trained on segmented transcripts. To retrieve timestamp information, I exploited
the CTC predictions obtained through the auxiliary loss, which directly maps the time
frames with corresponding target tokens. Specifically, I used the CTC segmentation
algorithm (Kürzinger et al., 2020) that, starting from the subtitle-segmented transcrip-
tion, is able to obtain the time information from the corresponding subtitle blocks. The
resulting timestamps are then projected into the target, providing the timestamp-subtitle
pairs necessary to produce “full” timed subtitles.

This AS system was trained under both constrained data conditions (specifically on
all the language pairs of MuST-Cinema (Karakanta et al., 2020b)), and unconstrained
data conditions (using data available for the IWSLT Evaluation Campaign on Automatic
Subtitling15). The performance was evaluated against a cascade architecture trained on
the same data, as well as five different production tools.

To further enrich the evaluation, two new test sets were also proposed in the paper.
One set consisted of short videos from the European Commission16, covering various
topics (e.g., inclusivity, and environmental problems), and featuring background music
and multiple speakers. The other set included interviews with mostly non-native speakers
from the European Parliament17, with highly compressed subtitles. These test sets
provided an opportunity to benchmark AS systems moving a step further towards diverse
domains that pose additional challenges compared to TED talks, including the presence
of background noise, multiple speakers, and the need to generate subtitles with a higher
level of compression.

Through comprehensive comparisons with both cascade solutions and production
tools, the proposed system not only emerged as a viable alternative to existing approaches
but also outperformed them in terms of SubER, despite not being initially designed for
production purposes, achieving the new state-of-the-art in automatic subtitling.

15https://iwslt.org/2023/subtitling
16https://commission.europa.eu
17https://www.europarl.europa.eu
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SUMMARY

My research journey in the field of automatic subtitling has been driven by the goal of
advancing the adoption of direct ST systems for this specific task. Early in my research,
I recognized a significant challenge posed by data scarcity in the context of automatic
subtitling. To address this challenge, I proposed a method for synthetically generating
AS corpora. This approach allowed me to bridge the gap between the limited availability
of AS data and the growing need for automatic subtitling tools.

Once this initial obstacle was successfully overcome, I shifted my focus toward a
more comprehensive and forward-looking study. The central theme of this phase of my
research was to develop direct ST systems tailored for “full” automatic subtitling. An
in-depth analysis of the proposed solution covering diverse domains and data scenarios
enabled a thorough understanding of the model adaptability and performance across
a wide spectrum of conditions. Additionally, performance comparison against state-of-
the-art methods and production tools revealed that our proposed solution can achieve
comparable results and sometimes even surpass them.

By taking this multifaceted approach, my research has not only introduced ground-
breaking solutions but also laid the foundation for future advancements in automatic
subtitling. These contributions collectively reinforce the idea that direct ST systems hold
the potential to revolutionize automatic subtitling technology, providing efficient and
high-quality solutions to meet the demands of an ever-evolving media and communication
landscape.

In the subsequent sections (Sections 4.2.1, and 4.2.2), these major contributions are
presented, as they best represent my journey through automatic subtitling:

• PAPER #1 (Papi et al., 2022c):

– Publication details:

∗ Title : Dodging the Data Bottleneck: Automatic Subtitling with Auto-
matically Segmented ST Corpora

∗ Authors : Sara Papi, Alina Karakanta, Matteo Negri, Marco Turchi

∗ Venue : AACL 2022

– Research Question(s): Can we cope with the data scarcity issue of auto-
matic subtitling? Can we automatically but accurately segment the existing
ST corpora into subtitles?

– Main Contribution(s)/Finding(s): Automatic segmentation into subtitles
can be effectively achieved by a multimodal segmenter, which exploits both
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audio and texts in order to find the best segmentation points, and the subtitle-
segmented data can be used to train a SubST model with no significant drop
in the performance compared with gold segmentation.

• PAPER #2 (Papi et al., 2023a):

– Publication details:

∗ Title : Direct Speech Translation for Automatic Subtitling

∗ Authors: Sara Papi, Marco Gaido, Alina Karakanta, Mauro Cettolo,
Matteo Negri, Marco Turchi

∗ Venue : Transactions of ACL (TACL) 2023

– Research Question(s): Can we leverage a direct ST model to produce
the full subtitles (comprising both texts segmented into subtitles and their
timestamp)?

– Main Contribution(s)/Finding(s): The first study on exploring direct ST
models for full automatic subtitling (text segmented into subtitles with their
corresponding timestamp that must adhere to spatio-temporal constraints),
which shows that these models can effectively produce full subtitles and are
also competitive with production tools.
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4.2.1 PAPER #1

Dodging the Data Bottleneck: Automatic
Subtitling with Automatically Segmented ST

Corpora

INTRODUCTION

Massive amounts of audiovisual content are available online, and this abundance is
accelerating with the spread of online communication during the COVID-19 pandemic.
The increased production of pre-recorded lectures, presentations, tutorials and other
audiovisual products raises an unprecedented demand for subtitles in order to facilitate
comprehension and inclusion of people without access to the source language speech.
To keep up with such a demand, automatic solutions are seen as valuable support
to the limited human workforce of trained professional subtitlers available worldwide
Tardel (2020). Attempts to automatize subtitling have focused on Machine Translation
for translating human- or automatically-generated source language subtitles Volk et al.
(2010); Etchegoyhen et al. (2014); Matusov et al. (2019); Koponen et al. (2020). Recently,
direct ST systems Bérard et al. (2016); Weiss et al. (2017) have been shown to achieve
high performance while generating the translation in the target language without
intermediate transcription steps. For automatic subtitling, Karakanta et al. (2020a)
suggested that, by directly generating target language subtitles from the audio (i.e.
predicting subtitle breaks together with the translation), the model can improve subtitle
segmentation by exploiting additional information like pauses and prosody. However,
the scarcity of SubST corpora makes it hard to build competitive systems for automatic
subtitling, especially if no corpus is available for specific languages/domains.

One solution to the SubST data bottleneck could be leveraging ST corpora by
inserting subtitle breaks on their target side. Automatic segmentation of a text into
subtitles is normally implemented with rule-based approaches and heuristics, e.g. a
break is inserted before a certain length limit is reached. More involved algorithms
(SVM, CRF, seq2seq) predict breaks using a segmenter model trained on subtitling data
for a particular language Álvarez et al. (2016, 2017); Karakanta et al. (2020c). Still, the
performance of these models relies on high-quality segmentation annotations for each
language, which web-crawled subtitling corpora like OpenSubtitles Lison et al. (2018)
rarely contain.

In this work, we address the scarcity of SubST corpora by developing a multimodal
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segmenter able to automatically annotate existing ST corpora with subtitle breaks in a
zero-shot fashion. Specifically, our segmenter exploits, for the first time in this scenario,
the source language audio (here: en) and segmented target text already available
in a few languages (here: de, en, fr, it). Its key strength is the ability to segment
not only target languages for which high-quality segmented data is available but also
unseen languages having some degree of similarity with those covered by the original ST
resource(s). This opens up the possibility of automatically obtaining synthetic SubST
training data for previously not available languages. Along this direction, our zero-shot
segmentation results in two unseen languages (es, nl) show that training a SubST system
on automatically segmented data leads to comparable performance compared to using a
gold, manually-segmented corpus.

METHOD

Our approach for leveraging ST corpora for SubST is summarized as follows: i) initially,
we train various segmenters on available human-segmented subtitling data to identify
the most effective one; ii) next, we apply the selected segmenter in a zero-shot manner
(i.e. without fine-tuning or adaptation) to insert subtitle breaks into unsegmented texts
of unseen languages; iii) then, we pair the automatically annotated texts with their
corresponding audio to create a synthetic parallel SubST corpus; iv) lastly, we train a
SubST model on the synthetic corpus.

We evaluate the effectiveness of our approach on two language pairs (en-es, en-nl)
by conducting a comparative analysis between SubST models trained on synthetic data
and those trained on the original gold data.
Segmenter. We adopt the general segmentation approach introduced in Karakanta
et al. (2020b), which employs a sequence-to-sequence Textual segmenter, trained on
pairs of unsegmented-segmented text, to insert subtitle breaks into unsegmented text.

To enhance the quality of segmentation, we extend this approach in two ways. Our
first extension involves multimodal training. Given that speech-related phenomena
such as pauses and silences have a significant impact on subtitle structure (Carroll and
Ivarsson, 1998), we expect that incorporating information from the speech modality
could enhance segmentation quality. To investigate this hypothesis, we extend the
textual segmenter with a multimodal architecture (Sulubacak et al., 2020), capable of
receiving input from different modalities, specifically audio and text. 18

18Images and videos with subtitling material are often protected by copyright and thus not publicly
available. Improving the segmenter with data from the visual modality is thus left to future work,
contingent on the availability of such resources.
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Our Multimodal segmenter is constructed using a dual-encoder architecture: one
for processing text (with the same structure as the textual segmenter) and one for
processing audio. We combine the encoder states obtained by the two encoders using
parallel cross-attention (Bawden et al., 2018),19 as it has demonstrated to be effective
in both speech and machine translation (Kim et al., 2019; Gaido et al., 2020a). The
parallel attention mechanism (Figure 4.4) operates by attending to the same intermediate
representation (the decoder self-attention); then, the cross-attention from the audio
encoder and the text encoder are summed together and fed to the feed-forward layer.

Figure 4.4: Parallel Multimodal segmenter architecture.

Given that subtitling constraints remain consistent across multiple languages, our
second extension is to learn segmentation multilingually. To this aim, we employ
established techniques commonly utilized in MT and ST, respectively: for the textual
segmented, we combine samples from multiple languages within the same training step
(Ott et al., 2018); for the multimodal segmenter, we introduce a language prefix token
to the target text (Inaguma et al., 2019). This multilingual training approach, similar
to that employed in MT (Ha et al., 2016), has been demonstrated to boost performance
(Wang et al., 2020a) while maintaining only one model for multiple languages.

EXPERIMENTAL SETTINGS

Data. To train our textual and multimodal segmenters, we use en→{de, fr, it} sections
of MuST-Cinema (Karakanta et al., 2020b),20 the only publicly available SubST dataset.
Each section contains paired audio utterances, English transcripts, and translations in
the corresponding language, where both sides of the text are built from subtitles created

19We also tried sequential cross-attention (Zhang et al., 2018) but we do not report these results
since they are slightly worse compared to parallel cross-attention.

20https://ict.fbk.eu/must-cinema/ - License: CC BY-NC-ND 4.0
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by humans. For French (275K sentences), German (229K sentences) and Italian (253K
sentences), we collect the segmented translations of the corresponding MuST-Cinema
sections. For English, we concatenate the segmented transcripts of the previous three
sections (757K sentences). For each language (de, en, fr, it), the training data for the
segmenter consists of unsegmented texts and, in the case of the multimodal segmenter,
audio as the source input, and segmented texts (subtitles) as the target. Using the
corpus notation, subtitle breaks are defined as: block break <eob>, which marks the
end of the current subtitle displayed on the screen, and line break <eol>, which splits
consecutive lines inside the same block. For unsegmented texts, <eob> and <eol> are
removed.

To test the segmenters in zero-shot conditions and train our SubST models, we select
two target languages also contained in MuST-Cinema:21 Dutch (an SOV – Subject-
Verb-Object – language) and Spanish (SVO).
Baselines. We compare the performance of the segmenters with two baselines. One is a
rule-based method (Count Chars) where a break is inserted before a 42-character limit.
This is the simplest method to always produce length-conforming subtitles and serves as a
lower bound for segmentation performance. Our second baseline (Supervised) is a neural
textual segmenter trained on OpenSubtitles, the largest collection of publicly available
textual subtitling data, for the respective language (es, nl). Although OpenSubtitles is
available for a variety of languages, it has some limitations: it does not contain audio, the
subtitle and segmentation quality varies since subtitles are often machine-translated or
created by non-professionals, and line breaks were lost when pre-processing the subtitles
to create the corpus. These limitations may have a detrimental effect on the quality of
segmenters trained on this data (Karakanta et al., 2019).
Architectures and Training Settings. The Textual segmenter is a Transformer-based
(Vaswani et al., 2017) architecture consisting of 3 encoder layers and 3 decoder layers.
We set the hyper-parameters as in the fairseq (Ott et al., 2019) multilingual translation
task, both for the mono- and multilingual textual segmenters. For the multilingual
model, a mini-batch for each language direction (here: 4) is built and the model weights
are updated after each mini-batch, a mechanism already present in fairseq Multilingual
Machine Translation (Ott et al., 2019).

The Multimodal segmenter is an extension of the textual segmenter encoder-decoder
structure with an additional speech encoder composed of 12 Transformer encoder layers
as in the original speech-to-text task (Wang et al., 2020a) but with the addition of a CTC

21Though present in MuST-Cinema, es and nl data are only used for testing purposes so as to simulate
the zero-shot conditions required to select the best segmenter and evaluate our SubST systems.
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(Graves et al., 2006) module to avoid the speech encoder pre-training (Gaido et al., 2021a).
The encoder and decoder embeddings are shared. We select the hyper-parameters of the
Fairseq implementation,22 except for a higher learning rate of 1 · 10−3 since pre-training
was skipped. The vocabulary is generated using SentencePiece (Kudo and Richardson,
2018), setting the size to 10k unigrams both for the mono- and multilingual segmenters.

For the Supervised baseline using OpenSubtitles data, we follow the data selection
process for the highest-performing segmenter in (Karakanta et al., 2020c) (OpenSubs-
42 ). We first filter sentences with subtitles of a maximum of 42 characters. Since
line breaks are not present in OpenSubtitles, we substitute <eob> symbols with <eol>

with a probability of 0.25, paying attention not to insert two consecutive <eol>. This
proportion reflects the <eol>/<eob> distribution featured by the MuST-Cinema training
set. We noted that almost 90% of the sentences filtered contain only one subtitle. This
is not very informative for the segmenter, since the only operation required is inserting
one <eob> at the end of the sentence. For this reason, we further select only sentences
with at least two subtitles (or two subtitle lines). This results in 2,956,207 sentences for
es and 683,382 sentences for nl. We then add the same number of sentences containing
only one subtitle. After this process, we obtain 5,912,414 sentences for es and 1,366,764
sentences for nl. The supervised baseline is trained with the same settings as the textual
monolingual segmenter.

For the Count Chars baseline, a break is inserted before reaching the 42-character
limit, as per TED guidelines. If the 42-character limit is reached in the middle of a
word, the break is inserted before this word. This method will always obtain a 100%
conformity to the length constraint. As with the data filtering process, <eol> is inserted
with a probability of 0.25.

For the SubST models, we use the speech-to-text task small architecture of Fairseq
with the additional CTC module as in (Papi et al., 2021a).

We use 4 GPUs K80 for training all the architectures: it takes around 1 day for the
textual-only and around 1 week for the multimodal segmenters and the SubST models.
All results are obtained by averaging 7 checkpoints (best, three preceding and three
succeeding checkpoints).

Evaluation. To evaluate both the quality of the SubST output and the accuracy of
our segmenters, we resort to reference-based evaluation. For translation quality of the
SubST output, we use sacreBLEU (Post, 2018)23, computed on the text from which the

22https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/mustc_
example.md

23BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1
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subtitle breaks are removed. For segmentation accuracy, we use Sigma (Karakanta et al.,
2022), a novel subtitle segmentation metric based on BLEU. Sigma is the ratio of the
segmentation achieved for a given text to the best segmentation that could be achieved.
Contrary to other standard segmentation metrics, such as F1, it can be computed when
the output text is different from the reference text. To ensure that the system does not
over- or under-generate subtitle breaks, we additionally report Break coverage computed
as follows:

Coverage(%) =

(
#<break>pred
#<break>ref

· 100
)
− 100

where <break> corresponds to either <eol> or <eob>. EOL and EOB coverage obtains
negative values when the segmenter inserts fewer breaks than required or positive values
when it inserts more. Lastly, we use length conformity (or characters per line – CPL),
corresponding to the percentage of subtitles not exceeding the allowed maximum length
of 42 CPL, as per TED guidelines.24

RESULTS

4.2.1.4.1 Segmentation on seen languages

We train the mono/multi-lingual versions of our Textual/Multimodal segmenters for the
four languages (de, en, fr, it) and measure their performance in terms of Sigma and
CPL. The results are shown in Table 4.1.

Looking at the Sigma values, both the Textual and the Multimodal segmenter perform
better than the rule-based baseline, despite a small drop in CPL. The Multimodal
segmenter always outperforms the Textual one by 2 Sigma points on average and inserts
break symbols more accurately. Moreover, it benefits from multilingual training in all
languages. In contrast, overall subtitle conformity is higher for the Textual segmenter in
3 out of 4 languages, where its CPL scores are 1.2-2.6 percentage points above those
obtained by the Multimodal one. In addition, except for one case (German), higher CPL
values are obtained with monolingual training.

4.2.1.4.2 Zero-shot segmentation

Aiming to build a SubST model for unseen languages (es, and nl), we first select the
best segmenter for generating synthetic en→{es, nl} data. As shown in Table 4.2,
all the models that receive only text as input (Count Chars, Supervised and Textual)

24https://www.ted.com/participate/translate/subtitling-tips
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Segmenter Training English French German Italian
Sigma CPL Sigma CPL Sigma CPL Sigma CPL

Count Chars - 63.71 100% 62.87 100% 62.34 100% 61.49 100%

Textual mono 84.87 96.6% 83.68 96.7% 83.62 90.9% 82.22 90.0%
multi 85.98 88.5% 84.56 94.3% 84.02 90.9% 83.04 91.2%

Multimodal mono 85.76 94.8% 84.25 93.9% 84.22 91.4% 82.62 89.9%
multi 87.44 95.0% 86.49 94.1% 86.4 89.9% 85.33 90.0%

Table 4.1: Segmentation results on seen languages.

achieve low segmentation performance, with Sigma ranging between 63-75. The zero-shot
Textual segmenter achieves higher segmentation quality compared to the Count Chars
and Supervised baselines by 10 points. However, its main drawback is the inability
to copy the actual text, as shown by the BLEU values of 61 for nl and 69 for es. In
this respect, the baselines perform much better. Despite being trained on subtitling
data for the particular language, the low segmentation performance of Supervised can
be attributed to the different domain compared to the MuST-Cinema test set. For
example, MuST-Cinema mainly contains long sentences with multiple breaks, while in
OpenSubtitles we rarely come across sentences with more than three breaks. Moreover,
both Supervised and Textual generate subtitles conforming to the CPL constraint in only
70% of the cases, despite having received only length-conforming subtitles as training
data. The negative values of EOL and EOB coverage show that all textual methods
under-generate subtitle breaks. From these results, we can conclude that zero-shot
segmentation does not perform satisfactorily with textual input only.

Dutch
Segmenter BLEU Sigma CPL EOL EOB
Count Chars 100 63.2 100% -21.2% -7.1%
Supervised 89.5 64.4 71.2% -31.4% -51.3%
Textual 61.3 74.4 77.8% -23.4% -9.9%
Multimodal 99.9 80.3 91.4% -27.2% +0.4%

Spanish
Segmenter BLEU Sigma CPL EOL EOB
Count Chars 100 63.2 100% -24.6% -4.4%
Supervised 92.6 64.1 71.2% -32.3% -45.4%
Textual 69.6 75.8 70.1% -47.6% -19.3%
Multimodal 99.6 78.7 91.8% -22.4% +4.7%

Table 4.2: Segmentation results on unseen languages.

In comparison, the Multimodal segmenter performs significantly better. It reaches an
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absolute gain of 6.1 Sigma points for nl and 2.9 for es compared to Textual. Moreover,
contrary to Textual and Supervised, the Multimodal model learned to perfectly copy the
text, as shown by the high BLEU scores (up to 99.9 on nl), close to the maximum score
of a method – Count Chars – that by design does not change the original text. The
CPL results are in agreement with BLEU: for both languages, the Multimodal model
respects the length constraint in more than 91% of the subtitles. Strikingly, even if the
two target languages were never seen by the model, these results are similar to those
obtained on seen languages (see Table 4.1). Unlike the rest of the models, Multimodal is
the only model which does not under-generate <eob>. This is in line with the results
of (Karakanta et al., 2020a), who showed that exploiting the audio in ST is beneficial
for inserting subtitle breaks (<eob>, for instance, typically corresponds to longer speech
pauses). The results are more discordant for the EOL Coverage. On es, Multimodal
shows a lower tendency to under-generate, while on nl both models fail to insert at least
the 23.4% of <eol>. We assume this phenomenon is caused by the lower frequency of
<eol> in the corpus since a subtitle can be composed of only one line, as well as by the
higher difficulty in placing the break for which the system cannot resort to speech clues
(e.g. pauses).

Ablation. To test the effectiveness of the Multimodal model also in the absence of
similar languages in the training set, we train it on a limited set of Latin languages
(Italian and French) and test it on Dutch, which is a Germanic language.

The results (fr, it only) are shown in Table 4.3. Even if trained on only two languages
from a different language group, the fr, it only Multimodal model shows competitive
results. In terms of segmentation, there is only a slight degradation of 3 Sigma points
compared to the full multilingual Multimodal model and a 3.6% drop in CPL conformity,
which could be attributed to a lower EOL coverage. However, it is still significantly
better in terms of Sigma, CPL conformity and EOB coverage compared to all the other
segmenters (Count Chars, Supervised, and Textual). In terms of changes to the text, as
shown by BLEU, it is on par with Supervised, a model trained only on Dutch subtitles,
and better than the Textual by 25 BLEU points. The presence of related languages
seems to help the model better copy the text since the main drop compared to the full
Multimodal model is in terms of BLEU. Overall, we can conclude that the presence of
related languages in the training set can enhance the performance, but the segmentation
accuracy and conformity are only minimally affected. The results obtained by the fr, it
only Multimodal confirm the ability and superiority of this model in segmenting texts
on unseen languages also belonging to different language groups.
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Segmenter BLEU Sigma CPL EOL EOB
Count Chars 100 63.2 100% -21.2% -7.1%
Supervised 89.5 64.4 71.2% -31.4% -51.3%
Textual 61.3 74.4 77.8% -23.4% -9.9%
Multimodal 99.9 80.3 91.4% -27.2% +0.4%

- fr, it only 88.9 77.0 87.8% -34.8% -0.4%

Table 4.3: Ablation results on MuST-Cinema amara en→nl. All but the last line are
from Table 4.2.

4.2.1.4.3 SubST with Synthetic Data

Since our Multimodal segmenter achieves the best performance overall, we use it to
automatically generate the synthetic counterpart of the en→{es, nl} sections of MuST-
Cinema. The resulting data is respectively used to train two SubST systems. The goal
is to achieve comparable performance to that of similar models trained on manually
segmented subtitles. For this purpose, using the same architecture, we also train two
systems on the original manual segmentations of MuST-Cinema.

Dutch
Data BLEU Sigma CPL EOL EOB
Original 25.3* 81.58 91.2% -36.8% +8.0%
Synthetic 24.3* 75.52 94.7% -20.4% +4.8%

Spanish
Data BLEU Sigma CPL EOL EOB
Original 30.7* 79.21 96.7% -10.0% +10.9%
Synthetic 30.7* 77.84 94.2% -21.5% +9.9%

Table 4.4: Results of the SubST systems. The * stands for statistically not significant
results according to the bootstrap resampling test (Koehn, 2004)

As shown in Table 4.4, the SubST system trained on our automatically segmented
data (Synthetic) shows comparable performance with the system trained on the original
segmentation (Original). The BLEU between the two models is identical for es, while
for nl the difference is not significant. On the contrary, the Sigma for the system
trained on manual segmentations is higher than for the synthetic ones by 6 points
for nl but less than 2 for es. These results highlight that the breaks introduced by a
non-perfect automatic segmentation influence the way the subtitle breaks are placed in
the translation but not necessarily the translation itself. For the length constraint, both
systems obtain high CPL conformity, with the Synthetic model scoring 3.5% more on nl
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and 2.5% less on es. This is related to the number of <eol> and <eob> inserted by the
system: the more subtitle breaks are present, the more fine-grained the segmentation,
leading to higher conformity. Indeed, CPL is higher when the Break Coverage is high.
Manual Analysis. Upon examination of the segmentation patterns of the two en→es
systems,25 we did not identify particular differences. Specifically, the inserted <eob>

tags follow punctuation marks in 76% of the cases for both models and are followed by
prepositions and conjunctions in 32% and 29% for Original and Synthetic respectively.
Similar patterns between outputs were observed for <eol> too, which is followed by a
comma in the majority of cases and by the same function words as <eob>. These results
suggest that systems trained on automatically segmented data are able to reproduce
similar segmentation patterns to those trained on original data without showing a
significant degradation in the translation.

CONCLUSIONS

We presented an automatic segmenter able to turn existing ST corpora into SubST
training data. Through comparative experiments on two language pairs in zero-shot
conditions, we showed that SubST systems trained on this synthetic data are com-
petitive with those built on human-annotated subtitling corpora. Building on these
positive results, and conditioned to the availability of suitable benchmarks, verifying
the portability of the approach to a larger set of languages and domains is our priority
for future work.

25We were unable to replicate the analysis on nl as we do not have the required linguistic competencies.
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4.2.2 PAPER #2

Direct Speech Translation for Automatic
Subtitling

INTRODUCTION

With the growth of websites and streaming platforms such as YouTube and Netflix,26

the amount of audiovisual content available online has dramatically increased. Suffice
to say that the number of hours of Netflix original content has increased by 2,400%
from 2014 to 2019.27 This phenomenon has led to a huge demand for subtitles, which is
becoming more and more difficult to satisfy only with human resources. Consequently,
automatic subtitling tools are spreading to reduce subtitlers’ workload by providing
them with suggested subtitles to be post-edited (Álvarez et al., 2015; Vitikainen and
Koponen, 2021). In general, subtitles can be either intralingual (hereinafter captions),
if source audio and subtitle text are in the same language, or interlingual (hereinafter
subtitles), if the text is in a different language. In this paper, we focus on automatizing
interlingual subtitling, framing it as a speech translation (ST) for the subtitling problem.

Differently from ST, in automatic subtitling, the generated text has to comply with
multiple requirements related to its length, format, and the time it should be displayed
on the screen (Cintas and Remael, 2021). These requirements, which depend on the type
of video content and target language, are dictated by the need to keep users’ cognitive
effort as low as possible while maximizing comprehension and engagement (Perego,
2008; Szarkowska and Gerber-Morón, 2018). This often leads to a condensation of the
original spoken content, aimed at reducing the time required for reading subtitles while
increasing that of watching the video (Burnham et al., 2008; Szarkowska et al., 2016).

Being such a complex task, automatic subtitling has so far been addressed by dividing
the process into different steps (Piperidis et al., 2004; Melero et al., 2006; Matusov
et al., 2019; Koponen et al., 2020; Bojar et al., 2021): automatic speech recognition
(ASR), timestamp extraction from audio, segmentation into captions, and their machine
translation (MT) into the final subtitles. More recently, drawing from the evidence that
direct models achieve competitive quality with cascade architectures (Ansari et al., 2020),
Karakanta et al. (2020a) proposed an ST system that jointly translates and segments into
subtitles, arguing that direct models are able to better exploit speech cues and prosody

26https://www.insiderintelligence.com/insights/ott-video-streaming-services/
27https://www.statista.com/statistics/882490/netflix-original-content-hours/
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in subtitle segmentation. However, their system does not generate timestamps, hence
missing a critical aspect to reach the goal of fully automatic subtitling. Furthermore, the
current lack of benchmarks hinders a thorough evaluation of the technologies developed
for automatic subtitling. In fact, the only corpus publicly available to date is MuST-
Cinema (Karakanta et al., 2020b), which contains only single-speaker audios in the
TED-talks domain with verbatim translations.

To fill these gaps, this paper presents the first automatic subtitling system that per-
forms the whole task with a single direct ST model and introduces two new benchmarks.
Our contributions can be summarized as follows:

• We propose the first direct ST model for automatic subtitling able to produce
both subtitles and timestamps. Code and pre-trained models are released under
the Apache License 2.0 at: https://github.com/hlt-mt/FBK-fairseq/;

• We introduce two (en→{de, es}) benchmarks for automatic subtitling, covering
new domains, news/documentaries and interviews, with the presence of background
noise and multiple speakers. We release them under the CC BY-NC 4.0 license
at: https://mt.fbk.eu/ec-short-clips/ and https://mt.fbk.eu/europarl-

interviews/;

• We conduct the first extensive comparison between automatic subtitling systems
based on cascade and direct ST models on all the 7 language pairs of MuST-Cinema
(en→{de, es, fr, it, nl, pt, ro}), showing the superiority of our direct solution,
while also demonstrating its competitiveness with production systems on both
MuST-Cinema and out-of-domain benchmarks.

BACKGROUND

4.2.2.2.1 Direct Speech Translation

While the first cascaded approach to ST was proposed decades ago (Stentiford and Steer,
1988; Waibel et al., 1991), direct models28 have recently become increasingly popular
(Bérard et al., 2016; Weiss et al., 2017) due to their ability to avoid error propagation
(Sperber and Paulik, 2020), their superior exploitation of prosody and better audio
comprehension (Bentivogli et al., 2021), and their lower computational cost (Weller

28According to the official IWSLT definition (https://iwslt.org/2023/offline), a direct model is
a system that does not use intermediate discrete representations to generate the outputs from audio
segments and whose parameters used during decoding are all trained altogether on the ST task, while
it does not consider the audio segmentation.
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et al., 2021). Motivated by these advantages, direct models are rapidly evolving and
their initial performance gap with cascade architectures (Niehues et al., 2019) has been
significantly reduced, leading to a substantial parity in the latest IWSLT campaigns
(Ansari et al., 2020; Anastasopoulos et al., 2021, 2022). Such improvements can be
partly attributed to the development of specialized architectures for speech processing
(Chang et al., 2020; Papi et al., 2021b; Burchi and Vielzeuf, 2021; Kim et al., 2022;
Andrusenko et al., 2022), which are all variants of a Transformer model (Vaswani et al.,
2017) preceded by convolutional layers that reduce the length of the input sequence
(Bérard et al., 2018; Di Gangi et al., 2019c). Among them, Conformer (Gulati et al.,
2020) is currently the best-performing model in ST (Inaguma et al., 2021a). For this
reason, we build our systems with this architecture and test, for the first time, its
effectiveness in the challenging task of fully automatic subtitling.

4.2.2.2.2 Subtitling Requirements

Subtitles are short pieces of timed text, generally displayed at the bottom of the screen,
which describe, transcribe, or translate the dialogue or narrative. A subtitle is composed
of two elements: the text, shown into “blocks”, and the corresponding start and end
display time – or timestamps.29

Depending on the subtitle provider and the audiovisual content, different requirements
have to be respected concerning both the text space and its timing. These constraints
typically consist in: i) using at most two lines per block; ii) keeping linguistic units
(e.g. noun and verb phrases) in the same line; iii) not exceeding a pre-defined number
of characters per line (CPL), spaces included; iv) not exceeding a pre-defined reading
speed, measured in number of characters per second (CPS). While a typical value used
as the maximum CPL threshold is 42 for most Latin languages,30 there is no agreement
on the maximum CPS allowed. For instance, Netflix guidelines31 allow up to 17 CPS
for adults and 15 for children programs, TED guidelines32 up to 21 CPS, and Amara
guidelines33 up to 25 CPS.

To convey the meaning of the audiovisual product while adhering to time and space
constraints, in some domains and scenarios, subtitles require compression or condensation

29The most widespread subtitle format is SubRip or srt.
30https://www.ted.com/participate/translate/subtitling-tips
31https://partnerhelp.netflixstudios.com/hc/en-us/articles/219375728-Timed-Text-

Style-Guide-Subtitle-Templates
32https://www.ted.com/participate/translate/subtitling-tips
33https://blog.amara.org/2020/10/22/create-quality-subtitles-in-a-few-simple-

steps/
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(Kruger, 2001; Gottlieb, 2004; Aziz et al., 2012; Liu et al., 2020a; Buet and Yvon, 2021).
Due to the rehearsed nature of TED talks, the subtitles in MuST-Cinema have a limited
degree of condensation, and the translation is mostly verbatim. In addition, the audio
conditions (no background noise and a single speaker) are not representative of all the
diverse contexts where subtitling is applied, such as news and movies. To fill this gap, we
introduce two new benchmarks that feature different domains, scenarios (e.g., multiple
speakers), and levels of subtitle condensation.

4.2.2.2.3 Automatic Subtitling

Attempts to (semi-)automatize the subtitling process have been done with cascade
systems made of an ASR, a segmenter, and an MT model. Most works focused on
adapting the MT module to subtitling with the goal of producing shorter and compressed
texts. This has been performed either using statistical approaches trained on subtitling
corpora (Volk et al., 2010; Etchegoyhen et al., 2014; Bywood et al., 2013) or by developing
specifically tailored decoding solutions on statistical (Aziz et al., 2012) and neural models
(Matusov et al., 2019). In particular, recent research efforts focused on controlling the
MT output length so as to satisfy isometric requirements between source transcripts and
target translations (Lakew et al., 2019; Matusov et al., 2020; Lakew et al., 2021, 2022).
In addition, (Öktem et al., 2019; Federico et al., 2020; Virkar et al., 2021; Tam et al.,
2022; Effendi et al., 2022) proved the usefulness of injecting prosody information about
speech cues, such as pauses, in determining subtitle boundaries. Given the possibility for
direct ST systems to access this information and their advantages mentioned in Section
4.2.2.2.1, Karakanta et al. (2020a, 2021a) built the only (to the best of our knowledge)
automatic subtitling system using a direct ST model, confirming with their results that
the ability of direct ST systems to leverage prosody has particular importance for subtitle
segmentation. However, their solution only covers the translation and segmentation into
subtitles, neglecting the timestamp generation. Our study is hence the first to complete
the entire subtitling process with a direct ST model and to evaluate its performance on
all aspects of the subtitling task.

METHOD

Motivated by all the advantages discussed in Section 4.2.2.2.1 and 4.2.2.2.3, we build the
first automatic subtitling system solely based on a direct ST model (Figure 4.5). Our
system works as follows: i) the audio is fed to a Subtitle Generator (Section 4.2.2.3.1)
that produces the (untimed) subtitle blocks; ii) the computed encoder representations
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Figure 4.5: Architecture of the direct ST system for automatic subtitling.

are passed to the Source Timestamp Generator (Section 4.2.2.3.2) to obtain the caption
blocks and their corresponding timestamps; iii) the subtitle timestamps are estimated
by the Source-to-Target Timestamp Projection (Section 4.2.2.3.3) from the generated
subtitles, captions, and source timestamps. These modules are described in the rest of
this section.

4.2.2.3.1 Subtitle Generation

We train a direct ST Conformer-based model that jointly performs the ST task and the
segmentation of the generated translation into (untimed) subtitle blocks and lines. To
this end, we add two special tokens to the vocabulary of our system, <eob> and <eol>,
which respectively represent the end of a subtitle block and the end of a line within a
block. Both at training and inference time, <eob> and <eol> are treated as any other
token, without giving them different weights or adding specific loss. Additionally, we
do not incorporate losses aimed at minimizing the number of generated characters or
explicitly optimizing for CPL and CPS compliance.

4.2.2.3.2 Source Timestamp Generation

Estimating timestamps for the generated subtitle blocks from source audio is a challenging
task. Current sequence-to-sequence models, in fact, generate target sequences that are
decoupled from the input and, therefore, their tokens do not have a clear relationship
with the frames they correspond to. To recover this relationship, we start from the
observation that direct ST models are often trained with an auxiliary Connectionist
Temporal Classification or CTC loss (Graves et al., 2006) in the encoder to improve
model convergence (Kim et al., 2017; Bahar et al., 2019). The CTC maps the input
frames to the transcripts – in our use case, captions – and we propose to leverage this
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CTC module at inference time to estimate the block timestamps.
In particular, the encoder representations computed during the forward pass are fed

to the CTC module that provides the frame-level probability distribution over the source
vocabulary tokens (including <eob>, <eol>, and the additional CTC blank token). This
sequence of CTC probabilities over the source vocabulary serves two purposes. First,
it is used to predict the caption with the CTC beam search algorithm (Graves and
Jaitly, 2014).34 Second, it is fed, together with the generated caption, to the CTC-based
segmentation algorithm (Kürzinger et al., 2020), whose task is to find the most likely
alignment between caption tokens and audio frames. The algorithm builds a trellis over
the time steps for the generated tokens and, at each time step, only three paths are
possible: i) staying at the same token (self-loop); ii) moving to the blank token; iii)
moving to the next token. To avoid forcing the caption to start at the beginning of
the audio, the transition cost for staying at the first token is set to 0. Otherwise, the
transition cost is the CTC-predicted probability for a given token in that time step. The
trellis is then backtracked from the time step with the highest probability in the last
token of the generated caption until the first token is reached. In our case, since we are
interested in the timestamps of the subtitle blocks, we extract block-wise alignments
that correspond to the start and the end time of each block. This means finding the
time in which the first word of each subtitle is pronounced and the time in which the
corresponding <eob> symbol is emitted by using the aforementioned algorithm.

4.2.2.3.3 Source-to-Target Timestamp Projection

After generating the untimed subtitles (Section 4.2.2.3.1), and captions with their
timestamps (Section 4.2.2.3.2), the next step is to obtain the timestamps for subtitle
blocks on the target side. In general, caption and subtitle segmentation may differ for
many reasons (e.g. due to different syntactic patterns between languages) and imposing
the caption segmentation on the subtitle side – as done in most cascade approaches
(Georgakopoulou, 2019; Koponen et al., 2020) – could be a sub-optimal solution. For
this reason, we introduce a caption-subtitle alignment module that projects the source
timestamps to the target blocks. To perform this task, we tested the three alternative
methods described below.
Block-Wise Projection (BWP). This method operates at character level to project
the predicted source-side (captions) timestamps on the target side (subtitles) without

34We also tested greedy decoding, in which the most likely label for each time step is chosen to obtain
the output sequence. However, this approach did not prove effective.
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Figure 4.6: Example of BWP projection with (a) same number of blocks and (b) different
number of blocks between caption and subtitle.

alterations. When the number of caption and subtitle blocks is equal, a condition that
occurs in ∼80% of the cases, the timestamps of each caption block are directly assigned
to the corresponding subtitle block.35 This process is depicted in Figure 4.6.a, in which
“C” and “B” respectively stand for characters and blocks in the caption and subtitle.
When the number of caption and subtitle blocks is different (Figure 4.6.b), the target
segmentation is discarded and replaced with the caption segmentation. In this case, line
and block boundaries (<eol>/<eob>) are inserted in the target side by matching the
number of characters each line/block has in the caption. If the insertion falls in the
middle of a word, the <eol>/<eob> is appended to the word. This approach has two
main weaknesses. First, it assumes that, when captions and subtitles have the same
number of blocks, these blocks contain the same linguistic content, while this is not
guaranteed. Second, it ignores the subtitle segmentation in ∼20% of the cases.

Levenshtein-based Projection (LEV). To overcome the above limitations, our
second method exploits the Levenshtein distance-based alignment (Levenshtein, 1966)
between captions and subtitles. This method estimates the target-side timestamps from
the source-side timestamps without ever altering the original target-side segmentation.
First, all the non-block characters are masked with a single symbol (“C”). For instance,
“This is a block <eob>” is converted into “CCCCCCCCCCCCCCCB”, where “B” stands
for <eob>. Then, the masked caption and subtitle are aligned with the weighted version
of Levenshtein distance, in which the substitution operation is forbidden so as to avoid

35Selecting the candidates with the closest number of blocks among the source and target n-best lists
had negligible effects.

114



P
A

P
E
R

#
2:

D
ir

ec
t

Sp
ee

ch
Tr

an
sl

at
io

n
fo

r
A

ut
om

at
ic

Su
bt

it
lin

g
Chapter 4. Automatic Subtitling

the replacement of a character with a block and vice versa. If the positions of a block
in the aligned caption and subtitle match, its caption timestamp is directly assigned
to the subtitle block. If they do not match, the timestamps of the subtitle blocks
are estimated from the caption timestamps based on the alignment of “B”s and the
number of characters. For instance, given the caption “CCCBCCCCBCCCCCB” and
the subtitle “CCCCCCBCCBCCCB”, the optimal source-target alignment with the
corresponding timestamp calculation is shown in Figure 4.7. In detail, the first subtitle
block (CCC-CCC-B) is matched with the first two caption blocks (CCCBCCCCB) and
the corresponding timestamp (00:01,5) is directly mapped. This also happens with the
timestamp 00:02,5 of the last caption (BCC-CCCB) and subtitle block (CCCB). For
the second subtitle block (CCB), the timestamp (00:01,9) is estimated proportionally
from the caption (BCC-CCCB) using the character ratio between the orange block and
the orange + green blocks.

Figure 4.7: Example of Levenshtein-based projection.

Semantic-based Projection (SEM) The third method projects the predicted source-
side timestamps on target blocks by looking at the semantic content of the generated
captions and subtitles. The method is based on SimAlign (Jalili Sabet et al., 2020),
which combines semantic embeddings from fastText (Bojanowski et al., 2017), VecMap
(Artetxe et al., 2018), mBERT,36 and XLM-RoBERTa (Conneau et al., 2020) to align
source and target texts at the word level. Specifically, we first align captions and
subtitles word by word (<eol>/<eob> included) with SimAlign. Then, when all <eob>s
of a subtitle are aligned with <eob>s in the caption (66% of the cases), we assign the
corresponding timestamp (Figure 4.8). Otherwise, i.e. when at least one <eob> in the
subtitle is aligned with a caption word or <eol> or is not aligned at all, one of the two
previous methods is applied as a fallback solution.

36https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 4.8: Example of Semantic-based projection.

EXPERIMENTAL SETTINGS

4.2.2.4.1 Training Data

For the comparison between cascade and direct architectures (Section 4.2.2.5.2), we train
the models in a controlled and easily reproducible data setting by using MuST-Cinema
v1.1, the only publicly available subtitling corpus also containing the source speech. It
covers one general domain (TED talks), and 7 language pairs, namely en→{de, es, fr, it,
nl, pt, ro}. The number of hours in the training set of each language pair is shown in
the first row of Table 4.5.

For the comparison with production tools (Section 4.2.2.5.3), we experiment in a
more realistic unconstrained data scenario and we focus on en→de and en→es.37 For
training, we use MuST-Cinema, two ST datasets – Europarl-ST (Iranzo-Sánchez et al.,
2020) and CoVoST2 (Wang et al., 2020b) – and three ASR datasets – CommonVoice
(Ardila et al., 2020), TEDlium Hernandez et al. (2018) and VoxPopuli (Wang et al.,
2021). We translate the ASR corpora with the Helsinki-NLP MT models (Tiedemann
and Thottingal, 2020) and filter out data with a very high or low transcript/translation
character ratio, as per (Gaido et al., 2022e). The use of automatic translations as
targets, also known as sequence-level knowledge distillation (Kim and Rush, 2016), is a
popular data augmentation method used in the most recent IWSLT evaluation campaigns
(Anastasopoulos et al., 2021, 2022) to enhance the performance of ST systems. Since
none of the training sets, except for MuST-Cinema, includes the subtitle boundaries
(<eob> and <eol>) in the target translation, we automatically insert them by employing
the publicly-released multimodal and multilingual segmenter by Papi et al. (2022c).
The segmenter takes the source audio and the unsegmented text as input and outputs
the segmented text i.e., containing <eob> and <eol>. By doing this, we can train our
system to jointly translate from speech and segment into subtitles without the need

37We select these two language pairs due to, respectively, a different and similar word ordering with
respect to the source.
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Dataset de es fr it nl pt ro
MuST-Cinema 388 479 469 441 421 364 410
Europarl-ST 75 74 - - - - -
CoVoST2 412 412 - - - - -
CommonVoice 885 885 - - - - -
TEDlium 444 444 - - - - -
VoxPopuli 519 519 - - - - -

Table 4.5: Number of hours of the training sets.

for manually curated subtitle targets, which are hard to find and costly to create. The
number of training hours is reported in Table 4.5.

4.2.2.4.2 Test Data

The models are tested in both in-domain and out-of-domain conditions. For in-domain
experiments, we use the MuST-Cinema test set, for which we adopt both the original
audio segmentation (for reproducibility and for the sake of comparison with previous and
future work) and more realistic automatic segmentation obtained with SHAS (Tsiamas
et al., 2022). Notice that this audio segmentation is a completely different task from
determining subtitle boundaries. Its only goal is splitting long audio files into smaller
chunks (or utterances) that can be processed by ST systems, limiting performance
degradation due to information loss caused by sub-optimal splits (e.g., in the middle of
a sentence). In general, each resulting utterance contains multiple subtitle blocks. For
instance, in the MuST-Cinema training set there are ∼2.5 blocks per utterance, even
though utterances are quite short (6.4s on average). When automatic segmentation
methods like SHAS are applied, this ratio significantly increases, as audio segments are
typically much longer, with many segments lasting between 14 and 20 seconds (Gaido
et al., 2021c; Tsiamas et al., 2022).

For out-of-domain evaluations, we introduce the two new (en→{de,es}) test sets
described below, which we also segment with SHAS.
EC Short Clips. The first test set is composed of short videos from the Audiovisual
Service of the European Commission (EC)38 recorded between 2016 and 2022. These
informative clips have an average duration of 2 minutes and cover various topics discussed
in EC debates such as economy, environment, and international rights. This benchmark
presents several additional difficulties compared to TED talks since the videos often
contain multiple speakers, and background music is sometimes present during the speech.

38https://audiovisual.ec.europa.eu/
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We selected the videos with the highest subtitle conformity (at least 80% of the subtitles
conforming to 42 CPL, and 75% conforming to 21 CPS), and removed subtitles describing
on-screen text. This resulted in 27 videos having a total duration of 1 hour. The target
srt files contain ∼5,000 words per language.
EuroParl Interviews. The second test set is compiled from publicly available video
interviews from the European Parliament TV39 (2009-2015). We selected 12 videos of 1
hour total duration, amounting to ∼6,500 words per target language. The videos present
multiple speakers and sometimes contain short interposed clips with news or narratives.
Apart from the more challenging source audio properties compared to the clean single-
speaker TED talks, here the target subtitles are not verbatim and demonstrate a high
degree of compression and reduction. As a consequence, the CPL and CPS conformity
is very high (∼100%) but this comes at the cost of being more difficult for automatic
systems to perfectly match the non-verbatim translations. Nonetheless, to achieve real
progress in automatic subtitling, it is particularly relevant to evaluate automatic systems
on realistic and challenging benchmarks like the ones we provide.

4.2.2.4.3 Training Settings

Our systems are implemented on Fairseq-ST (Wang et al., 2020a), following the default
settings unless stated otherwise. The input is represented by 80 audio features extracted
every 10ms with sample window of 25 and pre-processed by two 1D convolutional layers
with stride 2 to reduce the input length by a factor of 4. All segments longer than
30s in the training set are filtered out to speed up training. The models are based on
encoder-decoder architectures and composed by a stack of 12 Conformer encoder layers
and 8 Transformer decoder layers. We apply CTC loss to the 8th encoder layer and use
its predictions to compress the input sequences to reduce RAM consumption (Liu et al.,
2020c; Gaido et al., 2021a). Both the Conformer and Transformer layers have a 512
embedding dimension and 2,048 hidden units in the linear layer. We set dropout to 0.1
in the linear, attention, and convolutional modules. In the convolutional modules, we
also set a kernel size of 31 for the point- and depth-wise convolutions.

For the comparison between cascade and direct architectures, we train a one-to-many
multilingual ST model that prepends a token representing the selected target language
for decoding (Inaguma et al., 2019) on all the 7 languages of MuST-Cinema. Conversely,
for the comparison with production tools, we develop a dedicated ST model for each
target language (de, es). For inference, we set the beam size to 5 for both subtitles and

39https://www.europarltv.europa.eu/
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captions.
We train with Adam optimizer (Kingma and Ba, 2015) (β1 = 0.9, β2 = 0.98) for

100,000 steps. The learning rate increases linearly up to 0.002 for the first 25,000 warm-up
steps and then decays with an inverse square root policy, apart from fine-tunings, where
it is fixed at 0.001. Utterance-level Cepstral Mean and Variance Normalization (CMVN)
and SpecAugment Park et al. (2019) are applied during training, as per Fairseq-ST
default settings. The vocabularies are based on SentencePiece models (Sennrich et al.,
2016) with size 8,000 for the source language. For the multilingual model trained on
MuST-Cinema, a shared vocabulary is built with a size of 16,000 while, for the two
models developed to compare with production tools, we build German and Spanish
vocabularies with a size of 16,000 subwords each. The ASR of our cascade model is
trained using the same source language vocabulary of size 8,000 used in the translation
setting. The MT model is trained using the standard hyper-parameters of the Fairseq
multilingual MT task (Ott et al., 2019), with the same source and target vocabularies
of the ST task.

For all models, we stop the training when the validation loss does not improve for
10 epochs and the final models are obtained by averaging 7 checkpoints (the best, 3
preceding and 3 succeeding). Training is performed on 4 NVIDIA A100 (40GB RAM),
with 40k max tokens per mini-batch and an update frequency of 2, except for the MT
models for which 8 NVIDIA K80 (12GB RAM) are used with 4k max tokens and an
update frequency of 1. Table 4.6 lists the total number of parameters of our direct
models, showing that it is ∼1/3 of the cascade system used as a term of comparison.

4.2.2.4.4 Terms of Comparison

We compare our direct ST system with a cascade pipeline trained under the same data
conditions and with production tools.
Cascade. We build an in-domain cascade composed of: an ASR, an audio-forced
aligner, a segmenter, and an MT system. The ASR has the same architecture as our ST
system (Conformer encoder + Transformer decoder), and it is trained on MuST-Cinema
transcripts without <eob> and <eol>. The audio forced aligner used to estimate the
timestamps (Gretter et al., 2021) is based on the Kaldi40 acoustic model. The subtitle
segmenter is the same multimodal segmenter we used to segment the training data for
the direct system (Section 4.2.2.4.1). The MT is a multilingual model trained on the
MuST-Cinema (transcript, translation) pairs without <eob> and <eol>. The pipeline

40https://github.com/kaldi-asr/kaldi
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System Num. params
Direct 124.6M
Cascade 341.9M

- ASR 116.4M
- Audio forced aligner 9.7M
- Segmenter 40.6M
- Multilingual MT 175.2M

Table 4.6: Number of parameters for the direct (both multilingual and monolingual)
and cascade systems.

works as follows. The audio is first transcribed by the ASR and word-level timestamps
are estimated with the forced aligner. Then, the transcript is segmented into captions
with the segmenter and each block timestamp is obtained by averaging the end time
of the word before an <eob> and the start time of the word after it. The segmented
text is then split into sentences according to the <eob> and, finally, these sentences
are translated by the MT. The <eob>s are automatically re-inserted at the end of each
sentence while <eol>s are added to the subtitle translation using the same segmenter.

Production Tools. As a term of comparison for the unconstrained data condition, we
use production tools for automatic subtitling. These tools take audio or video content
as input and return the subtitles in various formats, including srt. We test three online
tools,41 namely: MateSub,42 Sonix,43 and Zeemo.44 We also compare with the AppTek
subtitling system,45 a cascade architecture whose ASR component is equipped with a
neural model that predicts the subtitle boundaries before feeding the transcripts to the
MT component (Matusov et al., 2019). For this system, two variants of the MT model
are evaluated: a standard model and a model specifically trained to obtain shorter
translations in order to better conform to length requirements (Matusov et al., 2020).
Since we are not interested in comparing the tools with each other, all system scores are
anonymized.

41All outputs were collected in August 2022.
42https://matesub.com/
43https://sonix.ai
44https://zeemo.ai/
45https://www.apptek.com/
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4.2.2.4.5 Evaluation

Translation quality, timing, and segmentation of subtitles are measured with multiple
metrics. First, we compute SubER (Wilken et al., 2022),46 a tailored TER-based metric
(the lower, the better) that scores the overall subtitle quality by considering translation,
segmentation and timing altogether. We adopt the cased and with punctuation version
of the metric since these aspects are crucial for the quality and comprehension of the
subtitles. Next, specifically for translation quality, we use SacreBLEU (Post, 2018),47

on texts from which <eol> and <eob> have been removed. The quality of segmentation
into subtitles is evaluated with Sigma from the EvalSub toolkit (Karakanta et al., 2022).
Since BLEU and Sigma require the same audio segmentation between reference and
predicted subtitles, we re-align the predictions in case of non-perfect alignment with
the mWERSegmenter (Matusov et al., 2005). Lastly, to check the spatio-temporal
compliance described in Section 4.2.2.2.2, we compute CPL conformity as the percentage
of lines not exceeding 42 characters, and CPS conformity as the percentage of subtitle
blocks having a maximum reading speed of 21 characters per second.48 Confidence
intervals (CI) are computed with bootstrap resampling (Koehn, 2004).

RESULTS

In this section, we first (Section 4.2.2.5.1) choose the best timestamp projection method
among those introduced in Section 4.2.2.3.3. Then (Section 4.2.2.5.2), we compare the
cascade and direct approaches trained in the same data conditions. Lastly (Section
4.2.2.5.3), we show that our direct model, even though trained in laboratory settings, is
competitive with production tools. In addition, in Appendix 4.2.2.7.1, we analyze the
performance of the CTC-segmentation algorithm for timestamp estimation compared to
forced aligner tools.

4.2.2.5.1 Timestamp Projection

The quality of source-to-target timestamp projection is crucial to correctly estimate
the target-side timestamps and, in turn, to produce good subtitles. To select the best
strategy, we compare the methods in Section 4.2.2.3.3 using the constrained model on

46Version 0.2.0.
47case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
48We used version 1.1 of the script adopted for the IWSLT subtitling task (https://iwslt.org/

2023/subtitling): https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_
to_text/scripts/subtitle_compliance.py.
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en-de en-es
Model SubER (↓) Sigma (↑) CPL (↑) CPS (↑) SubER (↓) Sigma (↑) CPL (↑) CPS (↑)

Gold audio segmentation
Baseline 63.5 65.6 77.7 64.4 52.0 70.4 80.7 68.0
BWP 60.8 75.6 86.1 64.0 48.6 78.5 90.9 66.9
LEV 58.7 78.8 88.8 65.4 46.7 81.1 93.9 68.4
SEM 60.7 75.5 88.6 63.7 48.6 78.8 94.0 65.5

Automatic audio segmentation
Baseline 66.9 62.0 78.2 70.5 55.7 66.0 79.9 75.1
BWP 62.8 73.3 86.2 70.3 51.8 75.9 89.6 73.5
LEV 60.3 78.5 88.9 72.1 48.5 80.6 94.2 76.1
SEM 62.8 75.8 88.9 69.7 51.4 78.3 94.2 72.9

Table 4.7: Comparison of timestamp projection methods on the MuST-Cinema en→{de,
es} test set.

the MuST-Cinema test sets for en→{de, es}. To test the robustness of the various
methods when gold-segmented audio is not available, we also report the results using
the automatic audio segmentation in addition to that obtained using the gold one.

Results are shown in Table 4.7. BLEU is not reported because the translated text is
always the same, regardless of the timestamp projection method. We also report, as a
baseline, a method that completely ignores the target segmentation and always maps
the caption segmentation onto the subtitle as in BWP when the number of caption and
subtitle blocks is different (Section 4.2.2.3.3). For the SEM method, if the source-target
alignment is not found by SimAlign, the LEV method is applied instead.49

The results highlight the superiority of the LEV method, which outperforms the
others on almost all metrics, with similar trends for both language pairs. The gap
is more marked in the realistic scenario of automatically segmented audio, likely due
to the fact that the audio segments produced by SHAS are longer than the manually
annotated ones (8.6s vs 5.5s). As such, each audio segment contains more blocks to align,
so the difference between the methods emerges more clearly. The low scores obtained
by the baseline confirm that the caption segmentation is not optimal for the target
language. Furthermore, SEM yields results that are either comparable to or slightly
better than those obtained by BWP, especially in terms of Sigma and CPL, while being
always worse than LEV. In addition, SEM exhibits lower CPS conformity even compared
to the baseline. Consequently, its performance suggests that semantically-motivated
approaches are not the best solution for timestamp projection.

49We also applied the baseline and the BWP method as a fallback method for SEM but it led to
worse results.
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Focusing on the LEV method, we observe that segmentation quality (higher Sigma)
and overall subtitle quality (lower SubER) are slightly better when the gold segmentation
is used, as expected. Conversely, CPS conformity is higher with automatic audio seg-
mentation. This counter-intuitive result can be explained as follows: audio segmentation
not only splits but sometimes also cuts the audio according to speakers’ pauses, while
manual segmentation delimits speech boundaries more aggressively than automatic one.
In our case, manual segmentation results in audio segments that are about 2% shorter
than those obtained with the automatic segmentation, thus “forcing” the generated
subtitles to appear on screen for a shorter time, which in turn leads to a higher reading
speed.

Sys. en-de en-es en-fr en-it en-nl en-pt en-ro Avg.
SubER (↓)

Casc. 64.2 (64.2±2.4) 50.5 (50.5±2.2) 57.0 (57.0±1.8) 54.2 (54.2±1.7) 52.8 (52.8±1.8) 49.7 (49.7±1.7) 52.7 (52.7±2.0) 54.4
Dir. 58.7 (58.7±2.3) 46.7 (46.7±2.1) 52.9 (52.9±1.7) 50.4 (50.4±1.7) 47.4 (47.4±1.9) 44.6 (44.6±1.7) 48.5 (48.5±2.1) 49.9

BLEU (↑)
Casc. 18.9 (18.9±1.4) 32.4 (32.4±1.8) 25.1 (25.1±1.5) 26.0 (26.0±1.6) 25.8 (25.8±1.5) 31.4 (31.4±1.7) 28.4 (28.3±1.6) 26.9
Dir. 22.1 (22.1±1.6) 35.9 (35.8±1.9) 28.0 (28.0±1.6) 29.6 (29.6±1.8) 31.6 (31.6±1.8) 36.8 (36.7±1.7) 31.9 (31.8±1.8) 30.8

Sigma (↑)
Casc. 79.5 (79.5±2.0) 80.9 (80.9±1.5) 84.0 (84.0±1.7) 83.8 (83.8±1.6) 77.5 (77.4±1.8) 81.2 (81.2±1.7) 86.4 (86.4±1.5) 81.9
Dir. 78.8 (78.8±2.0) 81.1 (81.1±1.5) 84.1 (84.1±1.7) 85.1 (85.1±1.5) 83.1 (83.1±1.6) 84.5 (84.4±1.4) 85.3 (85.3±1.4) 83.1

CPL (↑)
Casc. 81.8 (81.8±1.9) 83.4 (83.3±1.8) 85.2 (85.2±1.7) 81.4 (81.4±1.9) 83.3 (83.2±1.9) 78.1 (78.1±2.0) 53.3 (53.3±3.0) 78.1
Dir. 88.9 (88.9±1.5) 94.0 (94.0±1.1) 91.9 (91.9±1.2) 89.3 (89.2±1.5) 84.0 (84.0±1.8) 88.2 (88.2±1.5) 92.1 (92.1±1.2) 89.8

CPS (↑)
Casc. 69.1 (69.1±2.6) 74.0 (73.9±2.7) 64.3 (64.3±2.9) 71.2 (71.2±2.8) 74.4 (74.4±2.5) 74.7 (74.7±2.6) 76.2 (76.2±2.4) 72.0
Dir. 65.4 (65.4±2.7) 68.4 (68.3±2.7) 60.7 (60.8±2.8) 67.9 (67.9±2.6) 72.2 (72.2±2.6) 71.9 (71.8±2.7) 76.0 (75.9±2.4) 68.9

Table 4.8: Cascade (Casc.) and direct (Dir.) results on all MuST-Cinema language
pairs with 95% CI in parentheses.

4.2.2.5.2 Cascade vs. Direct

After selecting LEV as our best timestamp projection method, we evaluate cascade
and direct ST systems trained in the same data condition. Before this, to ensure the
competitiveness of our cascade baseline, we compare it with the results obtained on the
MuST-Cinema test set by the other cascade systems presented in literature, namely:
en→{de, fr} by Karakanta et al. (2021a), and en→fr by Xu et al. (2022). As these works
report only BLEU with breaks, that is BLEU computed including also <eob> and <eol>,
we compare our cascade baseline with them on that metric.50 Although these works

50<eob> and <eol> are considered as a single token and replaced, respectively, with § and µ as in the
EvalSub toolkit.

123



P
A

P
E
R

#
2:

D
irect

Speech
Translation

for
A

utom
atic

Subtitling

4.2. Selected Contributions

leverage large additional training corpora for both ASR (e.g. LibriSpeech – (Panayotov
et al., 2015)) and MT (e.g. OPUS – (Tiedemann, 2016) – and WMT-14 – (Bojar et al.,
2014)), our cascade trained only on MuST-Cinema performs on par with them. It scores
20.2 in German and 26.2 in French, which are similar or even better than, respectively,
19.9 and 26.9 of (Karakanta et al., 2021a), and 25.8 in French of (Xu et al., 2022). These
results confirm the strength of our baselines and the soundness of our experimental
settings.

Table 4.8 reports the scores of the constrained direct and cascade models. The overall
subtitle quality of the direct solution is significantly higher compared to that of the
cascade on all language pairs, with a SubER decrease of 3.8-5.5 points, corresponding
to an ∼8% improvement on average. Since SubER measures translation, segmentation
and timestamp quality altogether, to disentangle the contribution of each of these
aspects we leverage the other metrics. The higher Sigma of our system (+1.2 average
improvement) demonstrates that the joint generation of subtitle content and boundaries
results in superior segmentation. This finding corroborates previous research on the
value of prosody (see Section 4.2.2.2.3), and the ineffectiveness of projecting caption
segmentation onto subtitles, as done by cascade approaches (Georgakopoulou, 2019;
Koponen et al., 2020). The sub-optimal placement of block boundaries in the cascade
system can also account for the superior translation quality of our method (+3.9 BLEU
average improvement): as the MT component translates the caption block-by-block,
inaccurate boundaries can impede access to information required for proper translation.

Looking at the conformity metrics, the direct system complies with the length
requirement of 42 characters (CPL) in almost 90% of cases while the cascade system does
so in only 78.1%. This difference is explained by the higher number of <eol> generated
by the direct model (10-15% more than the cascade), although it is still lower than that
of the reference (8-10% less). According to the statistics computed on the outputs of
the two systems, the cascade does not only have a higher average number of characters
per line (32 vs. 29), but its variance is 1.5-2 times greater, with lines sometimes close to
or even longer than 100 characters on all language pairs. In contrast, most of the CPL
violations of the direct system are caused by lines shorter than 60 characters, and lines
never exceed 70 characters. The trend for CPS is instead different since the cascade
generates subtitles with a higher conformity to the 21-CPS reading speed (72.0 vs 68.9).
This can be partially explained by looking at the generated timestamps: upon a manual
inspection of 100 subtitles, we noticed that the direct model tends to assign the start
times of the subtitles slightly after those of the cascade (within 100ms of difference),
and end times slightly before those of the cascade (mostly within 200ms). Overall, on
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the MuST-Cinema test sets, this leads to a total of ∼2,940s with subtitles on the screen
for the cascade and ∼2,850s for the direct (∼3% lower).

To sum up, our direct system proves to be the best choice to address the automatic
subtitling task in constrained data conditions, reaching better translation quality and
more well-formed subtitles. Our results also indicate that improving the reading speed
of the generated subtitles is one of the main aspects on which to focus future works.

4.2.2.5.3 Comparison with Production Tools

To test our approach in more realistic conditions, we train our models on several openly
available corpora (unconstrained condition) and compare them with production tools,
which represent very challenging competitors as they can leverage large proprietary
datasets. We focus on two language pairs (en→{de, es}) for both the in-domain MuST-
Cinema and in the two out-of-domain EC Short Clips and EuroParl Interviews test sets.
We feed all systems with the full test audio clips, so each system has to segment its
audio. Only in the case of EC Short Clips, and EuroParl Interviews, we clean the audio
using Veed51 before processing it, for the sake of a fair comparison with production tools
that have similar procedures.52 The impact of audio cleaning is analyzed in Appendix
4.2.2.7.2.

MuST-Cinema. The results of the unconstrained models on the in-domain MuST-
Cinema test set are shown in Table 4.9. Compared to production tools, our system
shows better translation and segmentation quality as well as a significantly better overall
quality on both languages. Gains in BLEU are more evident in Spanish, where we obtain
a ∼6% improvement compared to the second-best model (System 4). Also, considerable
Sigma improvements are observed with gains of 5.3-34.5% for German and 2.9-24.2%
for Spanish, which are in line with SubER improvements of, respectively, 2.6-12.0% and
8.8-27.6%. A perfect CPL conformity is reached by System 1 and 2 for both languages,
while our system is on par with System 3 on en-es and falls slightly behind System 3
and 4 on en-de, with a ∼90% average conformity for the two language pairs. System 5
is by far the worst, as it violates the 42 CPL constraint in more than 50% of the lines.
As for CPS conformity, we observe that our system achieves better scores compared to
System 1 and 5 but it is worse than System 2, 3, and 4 in both language directions,
highlighting again the need to improve this aspect in future work.

51https://www.veed.io/.
52E.g., see https://www.apptek.com/post/asr-in-captions-accessibility-series-article-

7 and https://sonix.ai/articles/how-to-remove-background-audio-noise.
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en-de
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 66.9 (66.9±2.8) 20.1 (20.2±1.5) 71.7 (71.6±2.4) 100 (100±0.0) 58.7 (58.6±3.1)

System 2 61.5 (61.5±2.4) 22.3 (22.2±1.6) 71.8 (71.8±2.3) 100 (100±0.0) 76.2 (76.2±2.7)

System 3 68.1 (68.1±1.5) 13.5 (13.5±1.2) 62.1 (62.0±2.6) 91.6 (91.7±1.4) 89.3 (89.3±1.8)

System 4 67.5 (67.1±7.3) 23.3 (23.2±1.7) 57.9 (57.9±2.2) 96.4 (96.4±0.9) 83.7 (83.7±2.3)

System 5 66.8 (66.8±2.9) 19.5 (19.5±1.5) 74.0 (74.0±2.0) 44.1 (42.8±3.0) 50.2 (50.2±3.1)

Ours 59.9 (59.9±3.2) 23.4 (23.4±1.6) 77.9 (78.0±2.1) 86.9 (86.9±1.6) 68.6 (68.6±2.7)

en-es
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 52.2 (52.2±2.7) 33.4 (33.3±1.8) 76.9 (76.9±1.9) 100 (100±0.0) 64.6 (64.6±2.9)

System 2 51.3 (51.2±2.4) 32.7 (32.6±1.8) 77.1 (77.0±2.0) 100 (100±0.0) 77.6 (77.6±2.5)

System 3 58.3 (58.3±1.7) 23.3 (23.2±1.4) 66.1 (66.0±2.3) 94.1 (94.1±1.2) 87.1 (87.1±2.0)

System 4 53.8 (53.8±4.7) 35.3 (35.3±2.0) 65.7 (65.7±1.8) 81.3 (81.3±2.2) 86.2 (86.1±2.2)

System 5 64.6 (64.6±2.0) 18.6 (18.6±1.3) 79.3 (79.3±1.9) 48.5 (48.5±3.0) 63.0 (62.9±2.8)

Ours 46.8 (46.7±2.2) 37.4 (37.5±2.0) 81.6 (81.7±1.5) 93.2 (93.3±1.1) 74.6 (74.6±2.5)

Table 4.9: Unconstrained results on MuST-Cinema with 95% CI in parentheses.

EC Short Clips. This out-of-domain test set presents additional difficulties com-
pared to TED talks, namely the presence of multiple speakers and background music
during speech. It is worth mentioning that our direct ST models have not been trained
to be robust to these phenomena, as they are not present in the training data, whereas
production tools are designed to deal with any condition, and may have dedicated
modules to handle them.

Nevertheless, the results in Table 4.10 show that, even in these challenging conditions,
our direct ST models are competitive with production tools on BLEU, Sigma, and SubER.
Indeed, there is no clear winner between the systems as the best score for each metric
is obtained by a different model, which also varies across languages. Looking at the
conformity constraints, Systems 1, 2, and 4 achieve a perfect CPL conformity (100%),
while ours is comparable with System 3 and better than System 5. This difference is
likely motivated by the number of <eol> inserted by our system, which is considerably
lower than that of System 4 (368 vs. 635 for German and 451 vs. 594 for Spanish).
Instead, the results for CPS conformity follow the same trend observed in the constrained
data condition (Section 4.2.2.5.2).

Even though this scenario features completely different domain and audio characteris-
tics, some trends are in line with the results shown in Table 4.9. System 3 always achieves
the best CPS conformity, while Systems 1, 2, and 4 achieve perfect CPL conformity
on both languages. Moreover, although System 4 achieves the best translation quality
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en-de
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 63.0 (63.0±2.4) 23.8 (23.8±1.9) 71.6 (71.5±2.7) 100 (100±0.0) 76.1 (76.1±2.8)

System 2 60.8 (60.8±1.8) 22.1 (22.1±1.9) 67.2 (67.1±2.9) 100 (100±0.0) 91.1 (91.1±1.9)

System 3 59.0 (58.9±1.9) 25.0 (25.0±1.9) 70.4 (70.4±2.8) 84.6 (84.6±1.9) 95.4 (95.4±1.4)

System 4 61.5 (61.5±3.3) 28.2 (28.3±2.0) 59.4 (59.4±2.2) 100 (100±0.0) 94.9 (95.0±1.5)

System 5 62.4 (62.4±2.2) 24.2 (24.2±1.8) 71.3 (71.2±2.2) 39.8 (39.7±3.4) 71.3 (71.3±3.3)

Ours 59.9 (59.9±2.2) 25.3 (25.3±1.9) 70.8 (70.7±2.4) 81.3 (81.3±2.2) 79.9 (80.0±2.7)

en-es
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 52.9 (52.9±1.8) 33.7 (33.7±1.8) 76.0 (75.9±2.2) 100 (100±0.0) 80.4 (80.3±2.8)

System 2 51.7 (51.6±1.6) 32.2 (32.3±1.9) 75.6 (75.6±2.2) 100 (100±0.0) 93.5 (93.5±1.7)

System 3 49.7 (49.7±1.8) 35.5 (35.5±1.8) 74.9 (74.9±1.9) 87.3 (87.4±1.8) 95.3 (95.3±1.4)

System 4 50.2 (50.2±2.2) 39.6 (39.6±1.9) 61.9 (61.9±1.8) 100 (100±0.0) 93.4 (93.4±1.4)

System 5 64.9 (64.9±1.6) 21.9 (21.9±1.5) 79.7 (79.6±2.0) 41.7 (41.6±3.3) 73.1 (73.0±3.2)

Ours 52.7 (52.7±2.0) 34.8 (34.9±2.0) 72.6 (72.7±2.0) 88.6 (88.5±1.6) 79.1 (79.0±2.6)

Table 4.10: Unconstrained results on EC Short Clips with 95% CI in parentheses.

(and it is the second best on MuST-Cinema, after our system), its segmentation quality
(Sigma) is always the worst, indicating that its subtitles are not segmented in an optimal
way to facilitate comprehension. All in all, these results suggest that each production
tool has been optimized on a different aspect of automatic subtitling (e.g. System 3
has been optimized to achieve high CPS conformity). In contrast, our direct model,
which has been trained without prioritizing any specific aspect, performs on average,
also achieving competitive results in out-of-domain scenarios.

EuroParl Interviews. EuroParl Interviews represents the most difficult of the
three test sets: it contains multiple speakers, and the target translations are not verbatim
since they are compressed to perfectly fit the subtitling constraints (Section 4.2.2.2.2).
This characteristic is very challenging for current automatic subtitling tools, especially
for our direct model since it has not been trained on similar data.

The results are shown in Table 4.11. As on the EC test set, our system performs
competitively with production tools, even achieving the best Sigma for German. For
CPL, instead, most systems have high length conformity, even reaching 100%. As
already noticed on the other test sets, the CPL conformity is strongly correlated with
the number of <eol> inserted by a system: our model has an average conformity of
85.5% with only 451 <eol> inserted, nearly half of those inserted by System 1 (864),
System 2 (711), and System 4 (774) that always comply with the CPL constraint. CPS
conformity shows the same trend as with the other test sets.
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en-de
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 84.9 (85.0±2.4) 12.3 (12.3±1.1) 64.8 (64.8±2.8) 100 (100±0.0) 67.6 (67.7±2.8)

System 2 78.4 (78.4±2.0) 13.2 (13.2±1.1) 63.9 (63.9±2.9) 100 (100±0.0) 79.8 (79.8±2.3)

System 3 78.1 (78.1±1.9) 13.6 (13.6±1.1) 69.6 (69.6±2.8) 86.9 (86.9±1.6) 93.2 (93.3±1.4)

System 4 80.1 (80.1±2.7) 15.8 (15.8±1.3) 56.9 (56.9±2.8) 100 (100±0.0) 83.8 (83.9±2.2)

System 5 85.1 (85.1±1.9) 11.4 (11.4±1.1) 69.8 (69.8±2.5) 44.4 (44.4±2.8) 59.2 (59.3±2.7)

Ours 80.3 (80.3±2.4) 12.5 (12.5±1.1) 70.0 (70.0±2.8) 80.9 (81.0±1.9) 68.8 (68.8±2.5)

en-es
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 75.5 (75.5±2.3) 19.8 (19.8±1.3) 72.7 (72.7±2.2) 100 (100±0.0) 72.7 (72.8±2.5)

System 2 71.4 (71.4±2.1) 20.9 (20.9±1.4) 73.8 (73.8±2.0) 100 (100±0.0) 81.4 (81.5±2.3)

System 3 70.0 (70.1±2.2) 20.8 (20.8±1.4) 72.8 (72.8±2.0) 90.5 (90.5±1.4) 93.7 (93.7±1.3)

System 4 68.6 (68.5±2.5) 25.4 (25.4±1.4) 61.6 (61.6±2.0) 100 (100±0.0) 91.5 (91.5±1.8)

System 5 80.8 (80.8±1.7) 13.0 (12.9±1.1) 77.3 (77.3±2.4) 52.1 (52.1±2.8) 67.4 (67.5±2.7)

Ours 72.3 (72.3±2.2) 20.8 (20.9±1.4) 70.4 (70.4±2.0) 90.1 (90.1±1.3) 76.9 (76.9±2.4)

Table 4.11: Unconstrained results on EuroParl Interviews with 95% CI in parentheses.

Compared to the results in Tables 4.9 and 4.10, we can see that all systems struggle
in achieving a comparable overall subtitle quality (SubER), high-quality segmentations
(Sigma), and, above all, high translation quality (BLEU). The translation quality of
all systems degrades by at least 10 BLEU compared to the values observed on the
MuST-Cinema and EC test sets. However, as previously mentioned, these results are
expected since the EuroParl Interviews test set contains condensed translations of the
source speech.

All in all, we can conclude that our direct ST model, even though not developed
as a production-ready system (it is not trained on huge amounts of data and different
domains), is competitive with production tools. Indeed, considering the SubER metric
computed over the three test sets (Table 4.12), our direct ST approach is the best in
both German (67.0) and Spanish (57.2). As only the scores of System 2 fall within the
confidence interval of our direct model in both cases, we can conclude that our model is
on par with the best production system and outperforms the others in terms of SubER.

System 1 System 2 System 3 System 4 System 5 Ours
en-de 72.0 (72.0±1.6) 67.2 (67.1±1.3) 69.0 (69.0±1.2) 70.1 (70.1±3.3) 71.9 (71.9±1.7) 67.0 (67.0±1.7)

en-es 60.3 (60.3±1.5) 58.2 (58.2±1.3) 59.8 (59.8±1.2) 57.8 (57.8±2.4) 70.2 (70.2±1.1) 57.2 (57.1±1.5)

Table 4.12: SubER (↓) over the three test sets with 95% CI in parentheses.
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CONCLUSIONS

In this paper, we proposed the first approach based on direct speech-to-text translation
models to fully automatize the subtitling process, including translation, segmentation
into subtitles, and timestamp estimation. Experiments in constrained data conditions
on 7 language pairs demonstrated the potential of our approach, which outperformed the
current cascade architectures with a ∼7% improvement in terms of SubER. In addition,
to test the generalisability of our findings across subtitling genres, we extended our
evaluation setting by collecting two new test sets for en→{de, es} covering different
domains, degrees of subtitle condensation, and audio conditions. Finally, we compared
our models with production tools in unconstrained data conditions on both existing
benchmarks and the newly collected test sets. This comparison further highlighted that
our approach represents a promising direction: although trained on a relatively limited
amount of data, our systems achieved comparable quality with production tools, with
improvements in SubER ranging from 0.2 to 5.0 on en→de and from 0.6 to 13.0 on
en→es over the three test sets.

APPENDIX

4.2.2.7.1 Timestamp Extraction Method

To validate the effectiveness of extracting source-side timestamps with the CTC-based
segmentation algorithm, we conduct an ablation study, where we replace it with the
forced aligner tool of the Cascade architecture (§4.2.2.4.4). Table 4.13 reports the
scores. The forced aligner tool (FA) achieves similar results compared to the CTC-based
segmentation algorithm (CTC), with a slightly worse SubER (+0.1) on average on the
three test sets. Moreover, it is important to highlight that our method does not require
an external model. These findings support our choice and align with previous research
by Kürzinger et al. (2020), which highlighted the competitiveness of the CTC-based
segmentation approach compared to widely used forced aligners (in their case, Gentle53).

4.2.2.7.2 Effect of Background Noise

The presence of background noise in the test sets complicates both the audio segmentation
(performed with SHAS) and the generation with the direct ST model. For this reason,
for the sake of a fair comparison with production tools, we used Veed to remove the

53https://github.com/lowerquality/gentle
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4.2. Selected Contributions

Method en-de en-es Avg.MC ECSC EPI MC ECSC EPI
CTC 59.9 59.9 80.3 46.8 52.7 72.3 62.0
FA 59.7 60.3 80.7 46.7 52.7 72.2 62.1

Table 4.13: SubER scores (↓) on MuST-Cinema test set (MC), EC Short Clips (ECSC),
and EuroParl Interviews (EPI) when the CTC-based audio segmentation (CTC) or the
forced aligner (FA) method is used to extract the source-side timestamps.

background noise from EC Short Clips and EuroParl Interviews, as mentioned in
§4.2.2.5.3. Table 4.14 shows the impact of background noise on the resulting subtitling
quality. By comparing 1. and 3., we notice that the presence of background noise
causes an overall relative error increase of ∼5% on average over the two test sets and
two language pairs. The degradation is caused both by the lower quality of the audio
segmentation of SHAS and by worse outputs produced by the direct ST system, as the
absence of noise during segmentation (2.) improves by an average of 1.7 SubER the
results obtained without noise removal (3.). Creating models robust to background
noise, though, is a task per se (Seltzer et al., 2013; Li et al., 2014; Mitra et al., 2017)
and goes beyond the scope of this work.

Noise en-de en-es Avg.Removed ECSC EPI ECSC EPI
1. Yes 59.9 80.3 66.3 72.3 52.7
2. Only Segm. 61.4 82.0 68.4 73.9 56.4
3. No 63.1 81.7 69.5 75.3 58.1

Table 4.14: SubER scores (↓) on EC Short Clips (ECSC) and EuroParl Interviews (EPI)
with background noise removal for: both the audio segmentation with SHAS and the
prediction of the direct ST system (1.); only the audio segmentation, but the noisy
audio is fed as input to the direct ST model (2.); no noise removal (3.).

130



Chapter 5

Conclusions

5.1 Summary of contributions
This PhD thesis represents a comprehensive exploration of the multifaceted realm of
speech translation, with a particular focus on two main aspects: simultaneous speech
translation and automatic subtitling. My academic journey has unfolded across the
inherent difficulties of integrating into standard ST systems the additional constraints
required by these specific application scenarios, mainly regarding spatio-temporal as-
pects. During this journey, in particular, I initially focused on the direct or end-to-end
architectures (Chapter 2) capable of directly generating the desired output from the
input speech without intermediate steps, as they represented the emerging architectures
when this PhD started in 2020.

Subsequently, the endeavor to enhance simultaneous speech translation (Chapter 3)
and leverage existing ST systems without the need for extensive retraining or task-specific
adaptation prompted an investigation into harnessing the intrinsic knowledge acquired
by these systems during standard (offline) training for guiding simultaneous inference.
This pursuit challenges a well-established paradigm of creating ad-hoc architectures for
the task, advocating for a reassessment of the potential of applying offline direct ST
models “as is” in the simultaneous scenario. Along this direction, my contributions can
be summarized in the following findings:

• Offline-trained ST systems that are used in simultaneous inference can attain
quality and latency that are competitive or even superior to those specifically
trained for simultaneous processing;

• The intrinsic knowledge acquired by an offline-trained ST model, especially the
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cross-attention information, can be directly leveraged for SimulST, resulting in
low latency translations with reduced computational costs;

• Leveraging cross-attention information to extract alignment between speech and
translation and using it as guidance for simultaneous inference not only provides a
straightforward formulation but also achieves an optimal balance between quality
and latency.

The chapter dedicated to automatic subtitling (Chapter 4) delves into the complexities
of spatio-temporal constraints, unraveling the complicated interplay between text length,
display timing, and user cognition. Here, I recognized the significance of prosody, pauses,
and speech cues, shaping the development of direct architectures capable of directly
accessing and exploiting these features. Specifically, my main findings in the automatic
subtitling domain are as follows:

• To cope with data scarcity, direct multilingual multimodal models, which utilize
both audio and textual cues to identify optimal segmentation points, revealed
their effectiveness in automatic subtitle segmentation, delivering performance
comparable to gold segmentation;

• Direct ST models demonstrate the capability of generating subtitles, which consist
of segmented translations with corresponding timestamps, showing competitive
performance against existing production tools.

As we approach the conclusion of this PhD, the insights gained and contributions
made underscore the significant milestones achieved throughout my journey in the field
of speech translation in the presence of specific constraints. Despite the challenges faced,
these studies have been immensely rewarding, providing me with a deeper understanding
of the obstacles and potential advancements within the dynamic domains of simultaneous
communication and automatic subtitling.

Looking ahead, the broader goal of facilitating, supporting, and enriching the
accessibility and comprehension of audiovisual materials by overcoming language barriers
still persists: a lot has been done, but there is still room for many research directions.
In the next section (Section 5.2), I therefore outline a collection of promising ideas for
future research that I could not pursue within the three-year span of my journey. My
hope is that these ideas will serve as a source of inspiration for those who, after me,
will start their studies in the field of speech translation. The rapid evolution of the
domain and these unrealized possibilities stand as invitations for further exploration
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and innovation, encouraging the next generation of researchers to delve into the exciting
challenges and opportunities that lie ahead.

As a concluding note in the final section of this chapter (Section 5.3), I elaborate on
how simultaneous speech translation and automatic subtitling can be combined together,
giving rise to live subtitling. Specifically, I trace the evolution in the field from the
early stages of my PhD journey to the present, offering insights into the performance
achievable through the innovations developed in these domains over the past three years.

5.2 Future Directions

5.2.1 Simultaneus Speech Translation

Advancing from Simultaneous to Streaming ST. The transition from
simultaneous to streaming speech translation represents a fundamental step in addressing
real-world applications. While simultaneous ST involves near-instantaneous conversion
of speech to textual translation, streaming extends this concept further. In streaming
scenarios, the system processes input in a continuous, real-time manner, catering to
evolving content. In practice, the audio is not pre-segmented (as in simultaneous or even
offline ST) but is represented by a single stream, requiring the system to dynamically
determine what information from the past has to be retained in memory and what
is no longer relevant for generating the current output. This evolution brings forth
unique challenges in maintaining low latency, and ensuring seamless transitions without
affecting the overall user experience. Investigating methodologies to optimize and adapt
existing simultaneous decision policies for streaming applications is a crucial avenue
for future exploration. Preliminary works exist on streaming ST (Iranzo-Sánchez et al.,
2021; Iranzo Sanchez et al., 2022), but these studies predominantly utilize cascade
systems as their backbone architecture. Consequently, an interesting research direction
lies in investigating the integration of direct models into streaming ST frameworks and
evaluating their performance in comparison to cascade systems.

Integrating External Knowledge for Enhanced Translation Quality
and Accuracy. One promising direction, often referred to as knowledge injection
(Nguyen et al., 2020a; Borghesi et al., 2020; Magnini et al., 2023), involves the integration
of external sources of information, such as vocabularies. In the translation field, this
technique aims to enhance translation quality in specific scenarios where named entities
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and domain terminology are more frequent, as in live sports broadcasts and political
debates, where current ST systems have been shown to struggle (Gaido et al., 2023b).
By incorporating domain-specific lexicons or terminologies, the system gains contextual
awareness, resulting in improved accuracy and coherence (Li et al., 2013; Dougal and
Lonsdale, 2020; Gaido et al., 2021d, 2022b, 2023a). Research efforts should focus on
developing robust methodologies for seamlessly injecting external knowledge but with
the intrinsic additional difficulty of simultaneous speech translation, thus minimizing
the required latency.

Latency Metrics with Real Audio-Translation Alignment. The
accurate measurement of latency in the context of simultaneous ST is pivotal for
assessing system performance. SimulST metrics should avoid approximations related
to audio-translation alignment, an assumption underlying all the evaluation metrics
proposed so far (Ma et al., 2020a; Papi et al., 2022a; Kano et al., 2023), ensuring a
more precise and reliable evaluation of latency. This involves developing metrics that
exactly detect the time delay between the spoken word in the source language and
the corresponding translated output word (e.g., through audio-translation alignment
obtained by external pre-trained models), providing a comprehensive understanding of
the latency performance of the SimulST systems, taking also into account factors like
pauses, hesitations, and other elements inherent in natural speech.

Leveraging Foundation Models to enhance Multilinguality and
Performance. The incorporation of large multilingual models (LMMs), such as
Whisper (Radford et al., 2023) and SeamlessM4T (Barrault et al., 2023), into the ST
landscape holds the promise of multilingual benefits and improved overall performance.
However, adapting LMMs for use in simultaneous translation poses considerable chal-
lenges. Overcoming the high latency1 introduced by the typically large size of these
models is a key hurdle (Macháček et al., 2023b). Finding innovative approaches to
efficiently integrate or modify them for the simultaneous scenario without compromising
their high quality and multilingual capabilities but with the stringent requirements of
low-latency generation presents an exciting yet challenging research frontier.

1Estimated to be of approximately 3.3 seconds for the Whisper large-v2 model.
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5.2.2 Automatic Subtitling

Direct Timestamp Generation Without Intermediate Transcrip-
tion. A paradigm shift in subtitling involves eliminating the transcription step, directly
generating subtitles with associated timestamps without intermediate representations,
hence realizing the first direct system for “full” automatic subtitling. This direct gener-
ation of timestamps has the potential to reduce complexity, avoid error propagation,
accelerate the subtitling process (with benefits in terms of latency), and open the
application to source languages without written form (Lee et al., 2022). Practically,
it would entail completing a full transition from models reliant on transcripts for all
automatic subtitling subtasks (i.e., translation, segmentation into subtitles, and times-
tamp estimation) to more robust and efficient transcription-free models. Investigating
methods to seamlessly integrate direct timestamp generation into the subtitling model
is, therefore, essential for enhancing efficiency and accuracy.

Tailoring Translations for Specific Audience. Customizing translation
approaches based on user characteristics such as cultural background and age introduces
a layer of personalization to the subtitling process. For instance, adapting translations to
be simpler for children can significantly enhance comprehension and engagement for this
particular user group (Huang and Eskey, 1999; Capodieci et al., 2020). This approach
also holds true for non-native speakers attempting to learn the language of the subtitles
(Bisson et al., 2014). Investigating methods to dynamically adjust translation styles
based on user profiles and demographics is a useful and interesting research direction,
to align subtitling content with diverse audience needs and broadening its application.

Towards more Compressed and Time-Compliant Subtitles. The
first IWSLT Evaluation Campaign on automatic subtitling in 2023 has revealed that
all approaches, either exploiting cascade or direct ST systems, struggle in producing
subtitles conforming to reading speed constraints (Agarwal et al., 2023), as measured
with the CPS metric. This indicates an opportunity for enhancement in the production
of more time-compliant subtitles. The challenge lies in refining existing models to
produce translations with optimal CPS rates, ensuring more compressed yet informative
and linguistically correct subtitles (Burnham et al., 2008; Szarkowska et al., 2016) and
represents an interesting avenue for further research.

135



5.3. The Evolution of Live Subtitling

Introducing Timestamp Metric: Quantifying Temporal Precision.
Timestamp accuracy is a critical aspect of subtitle quality. However, in previous research
(Matusov et al., 2019, 2020; Koponen et al., 2020; Papi et al., 2023b), this aspect is
rarely explored since no metric specifically assesses the quality of timestamp predictions.
Proposing and adopting a metric explicitly designed to measure temporal precision would
represent an important step to ensure a more comprehensive evaluation. This dedicated
metric should consider factors such as synchronization with speech, and precision in
reflecting the actual translation content. Moreover, developing a standardized evaluation
framework would provide a valuable tool for researchers and practitioners to assess and
compare different subtitle generation models also under the temporal aspects.

Adapting Foundation Models for Multilingual Subtitling. As also
discussed for simultaneous ST, leveraging large multilingual models (LMMs) for multilin-
gual subtitling presents an opportunity to enhance performance and language diversity
as well as to meet the growing demand for subtitles. Adapting existing LMMs for subti-
tling tasks should involve optimization, for instance through fine-tuning, to generate
more compressed translations formatted into lines and blocks, thus with the emission of
the required <eob> and <eol> markers. Future research should delve into a seamless
integration of these characteristics into current LMM architectures while ensuring the
retention of their multilingual capabilities and preserving or even improving performance.

5.3 The Evolution of Live Subtitling
In the culmination of this comprehensive exploration of Simultaneous Speech Translation
and Automatic Subtitling, this concluding section unfolds the potential convergence of
these two research areas into a unified task: Live Subtitling. Live subtitling (Aliprandi
et al., 2014) entails generating an incremental translation from partial input speech
(Chapter 3) while adhering to the spatio-temporal constraints typical of subtitling
(Chapter 4).

Initially designed for intralingual subtitles – those in the same language as the source
speech – to assist the deaf or hard-of-hearing in following live TV programs (Lambourne,
2006), live subtitling expanded its scope to include interlingual subtitles Dawson (2019)
– those in a language different from the source speech.

In its interlingual mode, live subtitling is an emerging practice, prompting the
industry to experiment with different profiles for the role of interlingual live subtitlers
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Figure 5.1: Architecture of the offline-trained direct model for automatic subtitling
enhanced with the AlignAtt decision policy for simultaneous inference.

(Pöchhacker and Remael, 2020; Fantinuoli et al., 2021). This role demands skills
from three disciplines: subtitling, respeaking (Lambourne, 2006), and simultaneous
interpreting (Marsh, 2004). Consequently, the availability of highly skilled professionals
for interlingual live subtitling falls short of meeting the growing demands in real-time
multilingual communication.

In the early stages of my research studies, I attempted to realize the first live
subtitling system based on a direct architecture (Karakanta et al., 2021b). At that time,
the technologies were in their initial development, and I employed the wait-k decision
policy, a straightforward yet simple strategy, to enable a subtitling system to operate
in simultaneous scenarios (Section 3.1.1.1). Moreover, the system was built specifically
for the live subtitling task, with the wait-k policy employed during training, using a
specific value of k.

After two years of research, assessing the current evolution status of live subtitling
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systems no longer necessitates the creation of ad-hoc models for the task. Instead, more
advanced solutions can exploit the same offline systems trained at that time, enhanced
with the AlignAtt2 decision policy proposed in my latest work on simultaneous ST
(Section 3.2.3), to build a live subtitling system without the need for any adaptations.
The complete architecture is depicted in Figure 5.1.

As illustrated in the example, the audio speech in Italian (IT: “Ciao Tom! Lei è
Samantah”, EN: “Hi Tom! She is Samantah”) is processed by an offline-trained direct
ST model for automatic subtitling (i.e., able to generate the <eob> and <eol> markers)
composed of a Conformer speech encoder and a Transformer text decoder. Subsequently,
the model predicts the subtitle-segmented translation into English (EN: “Hi Tom! <eol>
She’s Sarah <eob>”), which is then processed by the AlignAtt policy, which determines
the words to be emitted (WRITE: “Hi Tom! <eol> She’s”) and those to be discarded
(DISCARD: “Sarah! <eob>”). Lastly, the selected translation text is shown on the screen
in subtitle format (with markers substituted with newlines).

Figure 5.2 shows the simultaneous results in terms of quality (BLEU) and latency
(LAAL) in the three languages (en-de, en-it, en-fr) analyzed in previous work, and,
in Table 5.1, the detailed scores are provided together with the corresponding CPL
conformity.

It can be observed that the performance of the offline-trained models applying
AlignAtt at inference time is noticeably superior to that of the systems trained with
the wait-k policy. The AlignAtt curves (in red, round dots) always stay above (i.e.,
better – higher – quality) or towards the left (i.e., better – lower – latency) with respect
to the wait-k curves (in blue, triangle dots). Also, the CPL conformity is higher with the
AlignAtt policy, with values approaching the offline ones. These results demonstrate
that the technological advancements pursued during my PhD allow for outperforming
the results published in 2021, even using the same model without any re-training or
adaptation.

As an additional proof of concept, I used the offline ST model developed for my
most recent work on automatic subtitling (Section 4.2.2), and with which I participated
in the first IWSLT Evaluation Campaign on automatic subtitling (Papi et al., 2023b),
applying AlignAtt to obtain live subtitling outputs. This en-de model3 is a better
performing direct architecture trained on high-resource conditions.4 The simultaneous

2We set the simultaneous hyper-parameter frame (f) to 2 and 20.
3All the material of the FBK submission at IWSLT is publicly accessible at: https://github.com/

hlt-mt/FBK-fairseq/blob/master/fbk_works/IWSLT_2023.md.
4All the datasets available for the constrained data condition (https://iwslt.org/2023/

subtitling) were used for training the offline ST model.
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Figure 5.2: LAAL-BLEU curves for three language pairs of MuST-Cinema. Scores are
obtained with SimulEval v1.1.0.

Model en-it en-de en-fr
BLEU LAAL CPL BLEU LAAL CPL BLEU LAAL CPL

offline 24.2 - 93.1 17.7 - 95.0 23.9 - 95.3
wait-k (k = 3) 10.9 1781 90.5 6.6 1438 93.6 12.5 1639 91.4
wait-k (k = 5) 13.5 1977 91.2 9.8 2100 90.1 16.4 2173 93.6
AlignAtt (f = 2) 13.0 1519 92.3 12.0 1861 95.0 12.5 1146 94.7
AlignAtt (f = 20) 15.3 1738 92.6 14.5 2260 95.4 16.1 1449 93.7

Table 5.1: BLEU without <eol> and <eob> (sacreBLEU v2.3.1), LAAL (in milliseconds)
and CPL conformity (%) on three language pairs (en-de, en-fr, en-it) of MuST-Cinema
amara.

results are shown in Figure 5.3, and the numeric BLEU/LAAL values, together with
CPL conformity, are presented in Table 5.2.

As it can be seen in the first row of Table 5.2, the translation quality of the offline
model increased by 8 BLEU points compared to the system developed in 2021 (Table 5.1).
This huge performance gain is yielded by two factors. On one side, by a more advanced
architecture since Transformer was replaced by the more competitive Conformer. On
the other side, by the use of more training data, even if most of them were synthetically
segmented using our multilingual multimodal subtitle segmenter (Section 4.2.1), which
also explains a slight drop in terms of CPL conformity compliance (-2%). In Figure 5.3,
it can be observed that the increase in translation quality of the offline system is also
reflected by improved simultaneous performance, showing an average of 8 BLEU points
gain with almost no additional latency compared to the 2021 systems (Figure 5.2).

In bringing together the realms of simultaneous ST and automatic subtitling, this
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Figure 5.3: LAAL-BLEU curves on MuST-Cinema amara en-de. Scores are obtained
with SimulEval v1.1.0.

Model BLEU LAAL CPL
offline 25.7 - 91.0
AlignAtt (f = 2) 19.7 1666 88.3
AlignAtt (f = 6) 21.8 1975 88.2
AlignAtt (f = 12) 22.6 2508 88.2

Table 5.2: BLEU without <eol> and <eob> (sacreBLEU v2.3.1), LAAL (in milliseconds)
and CPL conformity (%) on MuST-Cinema amara en-de.

final section unfolded a brief exploration, throughout empirical experiments, of live
subtitling models, providing interesting insights into their dynamics and performance in
delivering simultaneous subtitles. The promising potential observed in these automatic
models, marked by escalating quality and reduced latency, holds substantial implications
for translators and interpreters. By alleviating their workload, these tools emerge as
possible valuable aids (Fantinuoli and Dastyar, 2022; Fantinuoli, 2023), fostering a
more streamlined and efficient human-computer collaboration in language-related tasks
(Prandi, 2015, 2020) and representing a valid direction for future research endeavors.

Such a conclusion goes well beyond my expectations at the beginning of this long
and rewarding PhD journey. Along the way, I dedicated myself to achieving substantial
advancements in these two challenging application domains of speech translation and, by
combining insights derived from three years of research, I hope to have laid a foundation
for future endeavors in this field.
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