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a b s t r a c t 

Partial differential equations (PDEs) involving fractional Laplace operators have been in- 

creasingly used to model non-local diffusion processes and are actively investigated using 

both analytical and numerical approaches. The purpose of this work is to study the effects 

of the spectral fractional Laplacian on the bifurcation structure of reaction–diffusion sys- 

tems on bounded domains. In order to do this we use advanced numerical continuation 

techniques to compute the solution branches. Since current available continuation pack- 

ages only support systems involving the standard Laplacian, we first extend the pde2path 
software to treat fractional PDEs (in the spectral definition). The new capabilities are then 

applied to the study of the Allen–Cahn equation, the Swift–Hohenberg equation and the 

Schnakenberg system (in which the standard Laplacian is replaced by the spectral frac- 

tional Laplacian). In particular, we investigate the changes in snaking bifurcation diagrams 

and in the spatial structure of non-trivial steady states upon variation of the order of the 

fractional Laplacian. Our results show that the fractional order induces significant qual- 

itative and quantitative changes in the overall bifurcation structures, of which some are 

shared by the three systems. This contributes to a better understanding of the effects of 

fractional diffusion in generic reaction–diffusion systems. 

© 2021 The Authors. Published by Elsevier B.V. 
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1. Introduction 

In recent years increasing research attention has been devoted to the study of partial differential equations (PDEs) in- 

volving so called fractional Laplace operators, which generalize the notion of derivative to non-integer orders. Their study 

is not only interesting from a purely mathematical point of view, but has proven extremely useful for modeling super- 

diffusion processes, which naturally appear in many applications in physics, probability, biology, ecology, medicine and 

economics [44] . Examples include models for complex phase transitions [55] , for chemical transport in heterogeneous 

aquifers [2] , for pattern formation in coral reefs [56] , for larval growth and recruitment in a turbulent environment [18] ,

for foraging of marine predators [64] , for cardiac electrical propagation [16] and for mechanisms in options pricing [39] . In
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particular, super-diffusion phenomena are associated to Lévy flights, which, in contrast to Brownian motion, are character- 

ized by the presence of long jumps and non-local interactions [28] . 

From a mathematical point of view, the fractional Laplacian does not have a unique definition. While the different def- 

initions are equivalent on unbounded domains (e.g. Fourier, singular integral, Balakrishnan formula or harmonic exten- 

sion) [38] , this is usually not the case on bounded domains. In fact, on bounded domains, boundary conditions must be

incorporated in these representations in mathematically distinct ways, leading to non-equivalent definitions (e.g. spectral 

and Riesz definitions). For a detailed review we refer to [23,40] . As a consequence the choice of the most suitable definition

for a specific application is a crucial point, and there is still no agreement in the literature. The study of fractional PDEs, and

in general of nonlocal phenomena, is indeed an actual and active research topic. Nevertheless, it is widely accepted that the

fractional Laplacian constitutes the counterpart in the theory of non-local operators of the standard Laplacian in the classical 

theory of partial differential equations. Despite the difference of the two operators, most of the relevant questions associated 

to the Laplacian (e.g. comparison principles, linear and nonlinear boundary value problems, and regularity results) have an 

equivalent for the fractional Laplacian, and many techniques for solving partial differential equations also apply to fractional 

PDEs. 

From a dynamical systems perspective, one of the most widely studied class of PDEs are standard reaction–diffusion 

problems 

∂ t u = D �u + F (u, μ) , 

where t ∈ R 

+ , x ∈ � ⊆ R 

n are the time and space variables, u (x, t) ∈ R 

N is the vector of unknowns at (x, t) , the matrix D ∈
R 

N×N contains the diffusion coefficients, � is the classical Laplacian operator, F : R 

N × R → R 

N corresponds to non-linear

reaction terms, and μ ∈ R is a parameter. In many cases a natural starting point in the study of such equations is to consider

the non-linear elliptic problem 

0 = D �u + F (u, μ) , 

which yields steady states. Of particular interest in applications is the question of how the steady states change under 

parameter variation. Several methods (Lyapunov–Schmidt reduction, center manifolds, amplitude equations, Turing insta- 

bility) exist to address this question analytically near trivial branches of homogeneous steady states [35] . In addition to

theoretical methods and criteria, the overall bifurcation structure of steady states reveals the behavior of solutions far from 

homogeneous solutions or the critical points. For classical reaction–diffusion systems on bounded domains (and n = 1 , 2 , 3 ),

the overall structure can be numerically computed with, for instance, pde2path [62] . This package is an advanced con-

tinuation/bifurcation software based on the FEM discretization of the stationary elliptic problem exploiting the package 

OOPDE [48] for the FEM discretization. Since pde2path allows branch point continuation and Hopf point continuation, 

continuation of relative equilibria (e.g., traveling waves and rotating waves), branch switching from periodic orbits (pitchfork 

bifurcation of periodic orbits and period doubling), it is quite flexible. Recently, it has also been used to treat cross-diffusion

systems [14,36] . Yet, non-standard diffusion problems are not within the classical realm of pde2path applications. 

In this framework the aim of the paper is two-fold. First, we want to extend the continuation software pde2path which

has been extensively used for classical non-linear reaction–diffusion equations, to treat fractional equations, i.e. equations 

involving the fractional Laplacian. Then, we test the new capabilities of the software onto three important benchmark prob- 

lems: namely the Allen–Cahn equation [6] , the Swift–Hohenberg equation [21,57] and the Schnakenberg system [51] on 

bounded domains in a non-local setting. All three equations have theoretical interest, concrete applications, and are cur- 

rently widely used in various communities working on PDEs. The purpose is to qualitatively and quantitatively explore the 

features of these models in the fractional setting and to better understand the effect of fractional diffusion on the steady

state bifurcation structure of generic fractional reaction–diffusion systems. 

Let � ⊂ R 

n ( n = 1 , 2 , 3 ) be a bounded domain with boundary ∂� and s ∈ (0 , 1) be the fractional order. A generic frac-

tional reaction–diffusion system can be formulated as 

∂ t u = −D (−�) s u + F (u ;μ) =: D �s u + F (u ;μ) , (1)

endowed with suitable boundary conditions and where we have introduced the shorthand notation 

�s := −(−�) s 

to be used throughout this work. In this paper we consider the spectral definition of the fractional Laplacian �s [19] , that

is, for any ω ∈ C ∞ (�) , 

�s ω(x ) = −
∞ ∑ 

j=1 

(−λ j ) 
s ω j φ j (x ) , ω j := 〈 ω, φ j 〉 L 2 

�
= 

∫ 
�

ωφ j d x (2) 

where λ j and φ j the eigenvalues and the eigenfunctions, respectively, of the standard Laplacian � on �, i.e., the solutions 

of the eigenvalue problem �φ j = λ j φ j with specific boundary conditions. 

In order to numerically treat fractional PDEs and to embed it naturally into the numerical continuation approaches based 

upon FEM, we provide a FEM discretization of the fractional operator. The approach we employ to represent (2) without a
2 
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spectral Galerkin decomposition is to use the Balakrishnan representation formula [10] , namely for s ∈ (0 , 1) 

�s u (x ) = − sin (sπ) 

π

∫ ∞ 

0 

�(ξ I − �) −1 u (x ) ξ s −1 d ξ . (3) 

The numerical approximation of (3) is based on a sinc quadrature approximation of the involved integral with respect to ξ
and a discretization of the operator ξ I − � using the finite element method in space [13] . This strategy has been successfully

applied recently in other contexts such as optimal control problems [26] . Here we integrate this discretization within the 

numerical continuation. 

Then, using the new capabilities of the continuation software, we study the effect of the fractional derivative order on 

the steady state bifurcation structure of three well known PDEs in which the standard Laplacian is replaced by a spectral

fractional Laplacian: 

– The fractional Allen–Cahn equation with cubic–quintic nonlinearities 

∂ t u = �s u + μu + u 

3 − γ u 

5 , u ∈ R , μ, γ ∈ R , (4)

will be considered on a bounded interval � ⊂ R taken with homogenous Dirichlet boundary conditions. The model with 

the standard Laplacian, proposed in [6] , is a well-studied equation for various polynomial nonlinearities [4,5,49,65] . In 

particular, the classical Allen–Cahn PDE ( s = 1 ) with a cubic nonlinearity is also known as the (real) Ginzburg–Landau

PDE [8] , an amplitude equation or normal form for bifurcations from homogeneous states [45,53] . Moreover, it is also

common to consider an additional quintic term added to the Ginzburg–Landau PDE [31,34] . Different versions of the 

fractional Allen–Cahn have been recently investigated, see for instance [1,3,15] . 

– The fractional Swift–Hohenberg equation with competing cubic–quintic nonlinearities 

∂ t u = −(1 + �s ) 2 u + μu + νu 

3 − u 

5 , u ∈ R , μ, ν ∈ R , ν > 0 , (5)

will also be studied on a bounded interval � ⊂ R , again taken with homogeneous Dirichlet boundary conditions. The 

classical Swift–Hohenberg equation ( s = 1 ) [57] is a widely studied model in pattern dynamics [21,52,58] . It is also a

standard test case for deriving reduced amplitude/modulation equations [20,32,35,54,63] . Furthermore, it was found that 

overall bifurcation diagrams of the Swift–Hohenberg equation exhibit a process called (homoclinic) snaking [9,17,30] . 

Recently, also the Swift–Hohenberg equation with nonlocal reaction terms has gained particular attention [37,46] but 

results for bifurcations in the space-fractional Swift–Hohenberg equation do not seem to be available up to now. 

– The fractional Schnakenberg system is given by 

∂ t 

(
u 1 

u 2 

)
= 

(
1 0 

0 d 

)(
�s u 1 

�s u 2 

)
+ F (u 1 , u 2 ;μ) , u 1 , u 2 ∈ R , μ, d ∈ R , d > 1 , (6)

where the reaction part is 

F (u 1 , u 2 ;μ) = 

(
−u 1 + u 

2 
1 u 2 

μ − u 

2 
1 u 2 

)
+ σ

(
u 1 − 1 

u 2 

)2 
(

1 

−1 

)
, σ ∈ R . (7) 

As before, we consider a bounded interval � ∈ R taken with homogeneous Neumann boundary conditions. Note that 

with σ = 0 the reaction part (7) reduces to the classical formulation of the Schnakenberg system [51] , which is one of

the prototype reaction–diffusion systems exhibiting Turing patterns [47] . A nonzero σ modifies the primary bifurcation 

from super- to subcritical, leading to to the appearance of snaking branches between periodic branches [61,62] . 

As indicated above, the classical Swift–Hohenberg equation and the Schnakenberg system both exhibit snaking behav- 

ior [9,11,17,30,33,42,43,61] : upon variation of the main bifurcation parameter, a non-trivial branch of solutions emerges from 

a branch point and later on undergoes several fold bifurcations leading to a snaking-type structure of the bifurcation dia- 

gram and to multi-stability. Since solutions on these branches are often important localized patterns, a detailed analysis is 

required. In particular, it is important to understand, how the snaking scenario changes under nonlocal influence as already 

carried out for nonlocal reaction terms in [46] . Here we show that, in the Swift–Hohenberg equation, the snaking structure

gets “bloated” upon decreasing the fractional power s ∈ (0 , 1) , i.e. its width increases. In the Schnakenberg system, we ob-

serve a similar effect as well as further classes of deformations of the branches. Further, in all three studied systems, the

solutions tend to sharpen in the transition layers, a “sharpening of the teeth” of spatially oscillating profiles. 

The paper is organized as follows. The software pde2path as well as the discretization and the implementation of the 

fractional operator are detailed in Section 2 , followed by some preliminary results in order to validate the discretization

method. In Sections 3.1, 4.1 and 5.1 we briefly recall the standard version of each benchmark problem (the Allen–Cahn

equation, the Swift–Hohenberg equation and the Schnakenberg system respectively), including the standard steady state 

bifurcation diagrams as well as typical solutions. Sections 3.2, 4.2 and 5.2 are devoted to the presentation of the results

obtained by exploiting the new continuation capabilities, highlighting the effects of fractional diffusion on the bifurcation 

structure of the considered problems. Finally, in Section 6 some concluding remarks can be found. The Matlab code is 

reported in the Appendix, together with some explanations on the Matlab implementation. Some supplementary videos are 

available at [27] . 
3 
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2. Numerical continuation of fractional PDEs in pde2path 

As mentioned in the introduction, we want to adapt numerical continuation in the context of the Matlab bifurcation 

package pde2path to treat fractional reaction–diffusion equations. In this section, we briefly present the software in its 

standard setting, that is for PDEs with standard Laplacian. Then we explain the FEM discretization of the fractional Laplacian 

and modifications made to the FEM discretization in pde2path in order to study fractional systems. We finally present 

numerical tests in order to validate our method. The purpose of this section is not to give a complete overview of the

software for beginner users, hence we do not explain in detail the basic setup; see [25,50,59,60,62] for complete guides and

for the notation adopted in the following. 

2.1. Standard setting 

The continuation software pde2path can deal with the general class of PDEs of the form 

∂ t u = −G (u, μ) : = ∇ · (c � ∇u ) − au + b � ∇u + f, 

where u = u (x, t) ∈ R 

N , x ∈ � ⊂ R 

n , for n = 1 , 2 , 3 and � a bounded domain, μ ∈ R 

p is a parameter vector, and the diffusion,

advection and linear tensors, denoted by c ∈ R 

N ×N ×n ×n , b ∈ R 

N ×N ×n and a ∈ R 

N×N respectively, as well as the nonlinearity

f can depend on x, u, ∇u and parameters. We refer to [62] for a detailed explanation. The problem is endowed with 

generalized Neumann boundary conditions, also known as mixed conditions, 

n · (c � ∇u ) + qu = g, (8) 

where n is the outer normal to the boundary, q ∈ R 

N×N and g ∈ R 

N . This formulation covers Neumann and Robin boundary

conditions, as well as Dirichlet boundary conditions via large stiff spring pre-factors in q and g. The software spatially dis- 

cretizes the problem via the finite element method (FEM) exploiting the OOPDE toolbox [48] , leading to a high-dimensional

ODE problem. Note that a code extension is also available for periodic boundary conditions [25] and cross-diffusion terms 

[36] . 

In order to study the stationary problem related to Eq. (1) , we restrict this introduction to the case a and b null tensors,

c such that c i jkh = d i δi j δkh , i, j = 1 , . . . , N, k, h = 1 , . . . , n, and μ ∈ R , leading to 

G (u ;μ) = −D �u − f = 0 , (9) 

where D ∈ R 

N×N is the diagonal matrix of the diffusion coefficients d i . In pde2path the problem (9) , together with bound-

ary condition (8) , is converted into the algebraic system 

G (u , μ) = K tot u − F tot (u ) = 0 , (10) 

where u ∈ R 

n p N contains the nodal values of u with n p mesh points. The matrix K tot ∈ R 

n p N×n p N corresponds to the finite

element discretization of the D and q terms from Eqs. (9) and (8) , while F tot ∈ R 

n p N corresponds to the discretization of f

and g in (9) and (8) . Precisely, 

K tot = K + s BC Q BC , F tot = F − s BC G BC , (11) 

where K is the stiffness matrix and corresponds to D, s BC is the stiff spring pre-factor used to approximate Dirichelet bound- 

ary conditions (BC) and F , Q BC , G BC corresponds to f, q, g respectively. Details on the discretization for different types of

boundary conditions can be found in [50] . 

2.2. Fractional PDEs in pde2path 

In order to adapt the continuation software pde2path to treat fractional reaction–diffusion Eq. (1) endowed with homo- 

geneous Neumann or Dirichlet boundary conditions, we need to discretize the spectral fractional Laplacian (2) keeping the 

structure of Eq. (10) . We exploit the Balakrishnan formula representation [10,38] in the version appearing in [66, formula (4), 

p.260] , reported in Eq. (3) . Note that “Balakrishnan formula” refers to both the direct fractional Laplacian representation, �s u

as above, and the inverse fractional Laplacian representation, �−s u see [13,26] . In [13,26] the inverse formula has been dis-

cretized via a sinc quadrature for the integral as well as a finite element discretization in space. Here we adapt this method

to the direct formula (3) . 

First, the substitution ξ = e η ( d ξ = e ηd η) in (3) leads to 

�s u (x ) = 

sin (sπ) 

π

∫ ∞ 

−∞ 

( e ηI − �) −1 �u (x ) e ηs d η. 

Using a truncated equally spaced quadrature (sinc quadrature [41] ) one can then approximate the integral as 

�s u (x ) ≈ sin (sπ) 

π
κ

n + ∑ 

l= −n −

e κ ls ( e κ l I − �) −1 �u (x ) , 
4 
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where κ > 0 is the quadrature step size and n + , n − are positive integers suitably chosen (see Appendix A ). A fully discrete

version of Eq. (3) is obtained as 

�s u (x ) ≈ − sin (sπ) 

π
κ

n + ∑ 

l= −n −

e κ ls v l (x ) , (12) 

where v l ∈ U (τ ) (being U (τ ) the finite element space satisfying the boundary conditions [13] ) is the solution of the Galerkin

variational problem 

e κ l 

∫ 
�

v l w −
∫ 
�

�v l w = −
∫ 
�

�uw ∀ w ∈ U (τ ) , 

approximated via FEM as the solution of the linear system 

( e κ l M + K ) v l = K u . (13) 

where M and K are the classical FEM mass and stiffness matrices respectively, and v l denotes the node vector for v l . Hence,

we obtained an approximation of �s u, which requires to solve n − + n + + 1 independent linear systems. 

However, to fit the pde2path setup (which necessitates the gradient expression of G in (10) ) given by K tot − ∇F tot ), we

need a matrix approximation of the operator �s itself. Such matrix, called K s , can be built column by column by testing the

proposed approximation method on the standard basis of R 

n p of vectors ˆ e i , 1 ≤ i ≤ n p , such that ( ̂  e i ) j = δi j for all 1 ≤ j ≤ n p .

In detail, the i th column of K s is obtained computing �s ˆ e i with the proposed scheme. Once the matrix K s has been built, we

end up with an algebraic system of the form (10) by replacing the standard stiffness matrix K with −MK s in the expression

of K tot in formula (11) . 

The complete method is presented in Algorithm 1 . A description of its implementation in pde2path can be found in

Appendix A . In particular, the Matlab code is given in Listing A.1 and the choice of the quantities k, n + , n − as well as further

implementation issues are discussed. 

2.3. Numerical tests 

In order to validate the algorithm presented in the previous section, we first present some numerical results on the 

eigenvalues of the fractional Laplacian. The algorithm is then applied to a simple Poisson problem, exemplifying the effect 

of fractional diffusion. 

2.3.1. Spectrum of the discretized fractional Laplacian 

A first simple test consists in checking the convergence of the eigenvalues of the discretized fractional operator K s to-

wards those of the continuous operator as the mesh-size is decreased. According to (2) , on a one-dimensional domain of

length L, the Neumann spectral fractional Laplacian �s has eigenpairs (φ j , λ j ) = 

(
cos ( jπx /L ) , −( jπ/L ) 2 s 

)
for j ≥ 0 . The first 

n e eigenvalues λ(h ) 
j 

, j = 1 , . . . , n e of the discretized fractional Laplacian K s can be numerically computed, and the maximum

relative error can be used as a measure of the convergence 

err n e (λj , λ
(h) 
j 

) := max 
j≤n e 

( 

| λ j − λ(h ) 
j 

| 
| λ j | 

) 

. (14) 

We choose a domain � = (0 , 1) of length L = 1 and we vary the number of discretization points n p between 50 and 250.

For each n p , we compute K s according to the method presented in Section 2 (see Listing A.1 for the Matlab code) and use

the Matlab command eig to obtain the eigenvalues from which we select the first n e = 40 (in ascending order according to

their absolute value). Fig. 1 shows the convergence of the maximum relative error (14) for fractional order s = 0 . 9 , s = 0 . 5 ,

s = 0 . 3 and s = 0 . 1 . Even if the a priori convergence rate of the discretization method described in the previous section

has not been studied, we observe that the error decreases in O (h 2 ) (denoted by the dashed line in Fig. 1 ). This is also the

expected convergence rate of eigenvalues for the standard Laplacian discretized via finite elements method with P1 Lagrange 

elements. 

2.3.2. A simple Poisson problem 

Another simple test can be done which exemplifies the effect of different fractional orders. We consider the one- 

dimensional Poisson problem on the interval � = (0 , 1) 

(−�) s u (x ) = f (x ) , (15) 

where f (x ) = 6 x + 2 , the fractional operator (−�) s is understood in the spectral definition (2) and with homogeneous

Dirichlet boundary conditions u | ∂� = 0 . We want to study the convergence of the solution computed applying the method

presented in Section 2 as the mesh size decreases. While the solution to problem (15) for the standard Laplacian ( s = 1 )

reads u D (x ) = −x (x − 1)(x + 2) , the analytical solution for the fractional Laplacian problem is not known. Therefore, we use

the numerical solution on a mesh with 500 nodes, ū , as reference solution. 
5 
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Fig. 1. Convergence of the eigenvalues of the fractional Laplacian, approximated numerically via a discretization of the Balakrishnan formula based on 

finite elements, towards the eigenvalues of the fractional Laplacian. On the y -axis the maximum relative error defined in Eq. (14) for decreasing values 

of h and several fractional orders is reported, considering n e = 40 . Convergence order 2 (black dashed line) is shown as reference, being also the order of 

convergence of eigenvalues for the standard Laplacian discretized via finite elements. 

Fig. 2. Left: convergence rates of the numerical solution to (15) with f (x ) = 6 x + 2 , homogeneous Dirichlet boundary conditions on the domain � = (0 , 1) , 

for different fractional orders s . Black dashed and solid lines, corresponding to order of convergence one and two respectively, are shown as reference. Right: 

numerical solutions for different fractional orders s . The dashed curve corresponds to the analytical solutions to (15) with s = 1 (standard Laplacian), while 

the black solid line indicates the reaction term. (For interpretation of the color references, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

We compute solutions for fractional orders ranging between s = 0 . 1 and s = 0 . 9 , increasing the number of nodes from

n p = 10 to n p = 250 . The convergence towards the numerical solution as the mesh size decreases is shown in Fig. 2 (left

panel) for s = 0 . 75 , s = 0 . 5 , and s = 0 . 25 . We observe that the convergence rate decreases from O (h 2 ) for s = 0 . 75 to O (h )

for s = 0 . 25 . Note that a similar effect has been observed in [26] . 

The deformation of the numerical solutions as s decreases can be seen in Fig. 2 (right panel). As s → 0 , the solution tends

to 6 x + 2 which does not satisfy Dirichlet boundary conditions. Therefore this creates an abrupt change in the solution at

the boundary values which could affect the convergence. 

3. The (fractional) Allen–Cahn equation 

In the following, we first briefly recall the standard Allen–Cahn equation, its steady state bifurcation diagram and typ- 

ical solutions before investigating the fractional version of the problem. The figures for the standard case, presented in 

Section 3.1 , are obtained using the continuation software pde2path and were already shown in [50,62] . The results pre-

sented in Section 3.2 exploit the new capabilities of pde2path adapted to treat fractional problems, see Section 2 . 
6 
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Fig. 3. Left panel: steady state bifurcation diagram for the Allen–Cahn Eq. (16) with γ = 1 , on the domain � = (−5 , 5) with homogeneous Dirichlet 

boundary conditions. Right panel (a–b): steady state solution profiles of the Allen–Cahn equation, along the second bifurcating branch originating at the 

bifurcation point B 2 . In the bifurcation diagram, thicker lines denote stable solution while thinner lines correspond to unstable ones. Circles and crosses 

indicate branch and fold points respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. The Allen–Cahn equation with standard Laplacian 

The Allen–Cahn equation was proposed to model phase separation in alloy systems with multiple components. With 

standard diffusion and cubic-quintic non-linearity it reads 

∂ t u = �u + μu + u 

3 − γ u 

5 , (16) 

where u = u (x, t) ∈ R is the unknown and μ, γ ∈ R are parameters. 

We consider the equation on a one-dimensional bounded domain � = (−L/ 2 , L/ 2) , where L = 10 with homogeneous

Dirichlet boundary conditions, u | ∂� = 0 . Then ū = 0 is a homogeneous stationary solution of Eq. (16) for all choices of μ, γ .

Further, linearizing Eq. (16) around ū , it can be shown that this state is stable as long as μ < (π/L ) 2 , and first becomes un-

stable to modes with wavenumber k c = π/L when the parameter reaches the critical value μc = (π/L ) 2 . Subsequent modes

become unstable, at μ j = ( jπ/L ) 
2 
, j ≥ 2 . 

The steady state bifurcation structure of Eq. (16) can be computed numerically to obtain a detailed picture far from the

homogeneous branch. The branches of non-homogeneous stationary solutions bifurcating from the homogeneous branch are 

illustrated in Fig. 3 for the case γ = 1 . They bifurcate via pitchfork bifurcations and experience a fold at larger amplitude. The

first bifurcating branch is unstable until the fold and becomes stable after the fold. All other branches are unstable for μ < 2 ,

and they stabilize for greater values of μ. In addition, Fig. 3 a–b show solution profiles along the second branch (originating

at the second bifurcation point μ2 = (π/ 5) 2 , denoted B 2 in the figure) for increasing vales of μ: spatial subregions appear

occupied by one of two phases between which there is an interface which sharpens as μ increases. 

3.2. The fractional Allen–Cahn equation 

We start with the fractional Allen–Cahn equation with cubic–quintic nonlinearity (4) on a 1D domain of length L with

homogeneous Dirichlet boundary conditions. As for the standard Allen–Cahn Eq. (16) , the homogeneous solution ū = 0 is a

stationary steady state of Eq. (4) . Furthermore, using the Fourier property of the fractional Laplacian, one can easily find the

bifurcations from the homogeneous states to be located at 

μ j = 

(
jπ

L 

)2 s 

, j ≥ 1 , (17) 

from which we expect the bifurcation points to move towards μ = 1 as s tends to zero. To obtain a complete picture of the

bifurcation diagram far from the homogeneous solution, numerical continuation techniques are required. 

The following numerical results are obtained fixing γ = 1 and a domain � = (−5 , 5) of length L = 10 . We used n p =
301 mesh points, with corresponding meshsize h = 0 . 0333 . The Dirichlet boundary conditions read u (−5) = u (5) = 0 . Fig. 4

shows that, indeed, the shifting of the first and second bifurcation points as s decreases agrees with the values computed

using formula (17) . The maximum relative error for the first bifurcation point is 4 · 10 −3 and for the second bifurcation point

it is 2 · 10 −3 . 

Fig. 5 shows the evolution of the bifurcation diagram (with respect to the L 2 -norm of u ) of Eq. (4) as the fractional

order of the Laplacian decreases. We observe the gathering of branches which is a consequence of the shifting of bifurcation
7 
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Fig. 4. Evolution of the location of the first (dashed blue line) and second (continuous purple line) bifurcation points on the homogeneous branch as 

a function of the fractional order of the Laplacian s for the fractional Allen–Cahn Eq. (4) on a bounded domain with homogeneous Dirichlet boundary 

conditions. The dots indicate numerical values, while the lines correspond to values computed analytically via formula (17) . (For interpretation of the color 

references, the reader is referred to the web version of this article.) 

Fig. 5. Bifurcation diagram of the fractional Allen–Cahn Eq. (4) on a bounded domain with homogeneous Dirichlet boundary conditions for decreasing 

values of the fractional order s . For sake of clarity, only the first three branches bifurcating from the homogeneous state are shown. Thick and thin lines 

denote stable and unstable solutions, while circles and crosses indicate branch and fold points respectively. (For interpretation of the color references, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

points. In addition, one can see that a stable region appears on the second and third bifurcating branches at s = 0 . 2 ( Fig. 5 c).

These stable states exist in fact for all fractional orders, however they appear at much smaller μ values when s is decreased.

This is better understood by looking at the solution profiles. We have seen in Section 3.1 that the steady state solutions

of the Allen–Cahn equation correspond to situations where the space is divided into subregions occupied by one of two 

phases. We also know that the interface between these phases sharpens as μ increases. Similar observations can be made 

for the steady states of the fractional Allen–Cahn Eq. (4) . However, the “sharpening” of solutions occurs at much lower μ,

as s decreases. Thus, assuming a relation between the sharpening of solutions and their stability, it seems reasonable for the

stability of solutions to be shifted to lower μ values too. Fig. 6 illustrates the change in solution profiles as s decreases, for

μ = 2 fixed, on the first, second and third branch. Note that for each solution profile u (x ) in Fig. 6 , −u (x ) , is also a solution

to (4) . These two solutions lie on the same branch in the bifurcation diagram due to symmetry. 

4. The (fractional) Swift–Hohenberg equation 

In this section, we first recall the standard version of the Swift–Hohenberg equation before investigating it’s fractional 

version. As explained in the previous section, the standard steady state bifurcation diagrams and typical solutions, presented 

in Section 4.1 are obtained using the continuation software pde2path , and were already shown in [61] . The results pre-

sented in Section 4.2 exploit the new capabilities of pde2path adapted to treat fractional problems, see Section 2 . 
8 
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Fig. 6. Stationary solutions to the fractional Allen–Cahn Eq. (4) with homogeneous Dirichlet boundary conditions, on the first, second and third bifurcating 

branches of Fig. 5 at μ = 2 , for fractional orders s = 0 . 9 , s = 0 . 5 and s = 0 . 2 . Note that for s = 0 . 2 all the three solutions are stable. One also observes 

clearly the sharpening of the layers (or “teeth”) once the fractional order is decreased. 

 

 

 

 

 

 

 

 

 

4.1. The Swift–Hohenberg equation with standard Laplacian 

The Swift–Hohenberg equation is one of the simplest phenomenological model for pattern formation. With cubic–quintic 

non-linearity it reads 

∂ t u = −(1 + �) 2 u + μu + νu 

3 − u 

5 , (18) 

with parameter μ ∈ R and ν > 0 . This equation presents the following characteristics: it is reversible in space, i.e. it is

equivalent under the transformation x → −x, u → u, and, due to the choice on nonlinearity, is also symmetric under the

transformation x → x, u → −u . 

We consider the one-dimensional bounded domain � of length L = mπ, m ∈ N > 0 with homogeneous Dirichlet boundary 

conditions u | ∂� = 0 . In this case the trivial state ū = 0 is the only spatially homogeneous steady state of Eq. (18) . Linearizing

Eq. (18) around ū , it can be shown that the trivial state is stable as long as μ < 0 and first becomes unstable to modes

with wavenumber k c = 1 at μc = 0 . On the bounded domain � further bifurcations occur at the parameter values μ j =
(1 − ( jπ/L ) 2 ) 2 , j ≥ 1 . 

As in the previous section, the bifurcation structure can be obtained numerically and is shown in Fig. 7 for � =
(−5 π, 5 π) and ν = 2 . The (spatially) periodic patterns arise on the blue branch bifurcating subcritically from the homo-

geneous (black) branch (as shown in [17, equation 9] for ν > 0 ). The subcriticality of the bifurcation is of fundamental

importance for the appearance of the “snaking” (red) branch, which emerges on bounded domains from the branch of 

non-homogeneous stationary solutions close to the origin at μ < 0 . This branch corresponds to front solutions shown in 

Fig. 7 a–d. At each turn in the snaking, one additional oscillation is added to the pattern until the domain is filled with

oscillations. Then, the snaking branch reconnects close to the fold of the periodic branch. 
9 
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Fig. 7. Steady state bifurcation diagram of the Swift–Hohenberg Eq. (18) with ν = 2 on the domain � = (−5 π, 5 π) with homogeneous Dirichlet boundary 

conditions. Blue: branch of non-homogeneous stationary solutions with wavenumber k = 1 . Red: branch of front solutions illustrated in subfigures a–d. For 

sake of clarity only the first periodic and first snaking branch are shown. Thicker lines denote stable solution while thinner lines correspond to unstable 

ones. Circles and crosses indicate branch and fold points respectively. (For interpretation of the color references, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

Note that additional bifurcations further up the periodic branch lead to other snaking branches corresponding to front or 

localized patterns. These branches are not illustrated here for the sake of clarity. 

4.2. The fractional Swift–Hohenberg equation 

We now study the steady state fractional Swift–Hohenberg equation with cubic–quintic non-linearity (5) , on a 1D do- 

main of length L with homogeneous Dirichlet boundary conditions. The homogeneous state ū = 0 is a stationary solu- 

tion of the fractional Eq. (5) . Further, according to (2) the Dirichlet spectral fractional Laplacian has eigenpairs (φ j , λ j ) =
( sin ( jπx /L ) , −( jπ/L ) 

2 s ) for j ≥ 1 . The bifurcations from the homogeneous states occur at 

μ j = 

( 

1 −
(

jπ

L 

)2 s 
) 2 

, j ≥ 1 . (19) 

Thus, as in the standard problem, the homogeneous state ū is stable for μ < 0 and first becomes unstable at μc = 0 . In

addition, note that as s tends to zero, μ j tends to μc = 0 . 

Substituting (u 1 , u 2 ) = (u, �s u ) in the stationary Eq. (5) , we convert the Swift–Hohenberg equation into a system of

second order PDEs (
1 0 

0 0 

)
∂ t 

(
u 1 

u 2 

)
= 

(
−�s u 2 − 2 u 2 − (1 − μ) u 1 + νu 

3 
1 − u 

5 
1 

�s u 1 − u 2 

)
, 

which fit the pde2path framework based on finite elements. 

To obtain the following numerical result, we fix ν = 2 and the domain � = (−5 π, 5 π) of length L = 10 π with boundary

conditions: u (−5 π) = u (5 π) = 0 and �s u (−5 π) = 0 = �s u (5 π) = 0 . We choose the meshsize h = 0 . 04 , corresponding to

n p = 786 mesh points. 

As mentioned above, the bifurcation points on the homogeneous branch accumulate at μc = 0 as the fractional order 

s tends to 0. Fig. 8 shows, as an example, the shifting of the second and third bifurcation points, corresponding to kernel

vectors ( sin ( 9 πx /L ) , −( 9 π/L ) 2 s ) and ( sin ( 11 πx /L ) , −( 11 π/L ) 2 s ) respectively. The values obtained numerically are marked 

with dots and the analytical values, computed using formula (19) with L = 10 π, are showed as lines on the figure. We find

that the maximum relative error is on the order of 10 −2 for both points and observe that the numerical values indeed

coincide with the ones expected from the analysis. In addition, we observe that the two bifurcation points interchange their 

positions at s = 0 . 5 . 

In order to get a general impression of the effects of fractional diffusion on the bifurcation structure of problem (5) ,

Fig. 9 shows the bifurcation diagram for four different fractional orders (namely s = 0 . 9 , s = 0 . 7 , s = 0 . 5 and s = 0 . 3 ), which
10 
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Fig. 8. Evolution of the location of the second (continuous purple line) and third (dashed blue line) bifurcation points on the homogeneous branch (black in 

Fig. 9 ) as s decreases, for the fractional Swift–Hohenberg Eq. (5) on a bounded domain with homogeneous Dirichlet boundary conditions. Dots correspond 

to numerical values, while lines correspond to analytical values obtained via Eq. (19) . (For interpretation of the color references, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can be compared to the bifurcation structure of the standard Swift–Hohenberg equation presented in Section 4.1 . The ho-

mogeneous branch is shown in black, the first branch bifurcating at μ = 0 is shown in blue and the first snaking branch in

red. As we already said, bifurcation points relative to other wave numbers shift towards the primary bifurcation. Looking at 

the computed bifurcation structure, we notice two other important changes as s decreases. Firstly, the width of the snaking 

branch is significantly increasing. Secondly, for s = 0 . 5 and s = 0 . 3 the snaking branch does not reconnect to the blue branch

anymore, but to other branches with different wave numbers. Note that this behaviour also occurs for standard (Laplacian) 

Swift–Hohenberg equations varying the domain length [12] . 

In addition to the increase in width, one can see in Fig. 9 that the back and forth oscillations forming the snaking tend

to tilt on the left for smaller s . This phenomenon is particularly visible for s = 0 . 3 . The solutions along the upper part of the

snaking branch are illustrated in Fig. 10 . We see that the oscillations significantly enlarge as we move up the snaking branch.

They would then narrow again after the next turn in an “accordion” effect. The deformation of the snaking branch of the

snaking branch is not a known effect for the fractional Laplacian but is known to occur for other nonlocal Swift–Hohenberg

equations [46] . Further, counting the number of turns on the snaking branches in Fig. 9 , we see that whereas for s = 0 . 9 we

have 8 pair of turns, for s = 0 . 7 and s = 0 . 5 we have 9 pairs and for s = 0 . 3 only 6. As shown in Fig. 10 , the first snaking

branch corresponds to front solutions. At each snaking turn, one oscillation is added to the front. Thus, the number of turns

is directly related to the final number of oscillations in the solution. This is linked to the next observation which regards

the reconnection of the snaking to a branch of non-homogeneous stationary solutions. 

In fact, as s decreases the snaking branch does not reconnect to the first periodic branch anymore but to periodic

branches originating from subsequent bifurcations on the homogeneous branch. For instance, for s = 0 . 5 and s = 0 . 3 it con-

nects to the branches originating from the the third and ninth bifurcation points, respectively, on the homogeneous (black) 

branch. Magnified views of the bifurcation diagram for s = 0 . 5 close to the reconnection and the starting points are reported

in Fig. 11 . 

Finally, a last comment has to be made on the shape of the solutions. Looking at Fig. 9 , one can notice that, as the frac-

tional order s decreases, the non-homogeneous steady states (blue-branch) have slightly larger L 2 -norm values. The solutions 

indeed tend to “sharpen” for smaller values of s closer resembling a square-profile. This is illustrated in Fig. 12 , where the

solution profiles on the first (blue) branch at μ = 4 are shown for different values of the fractional order s . We see that,

whereas the solution at s = 0 . 9 and s = 0 . 7 do not differ much, at s = 0 . 5 the profile significantly “flattens” towards the

top of oscillation. Note that this pattern has also been observed in the previous section for the periodic solutions of the

fractional Allen–Cahn equation. 

5. The (fractional) Schnakenberg system 

Finally, we turn to the Schnakenberg system. The next subsection (5.1) is devoted to the standard version of the 

Schnakenberg system. The standard steady state bifurcation diagrams and typical solutions are obtained using the continu- 

ation software pde2path and were already shown in [62] . Section 5.2 then presents the results for the fractional version

of the system, exploiting the new version of pde2path adapted to treat fractional problems, see section 2 . 
11 
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Fig. 9. Evolution of the bifurcation structure with respect to the bifurcation parameter μ of the fractional Swift–Hohenberg Eq. (5) with ν = 2 on a bounded 

domain � = (−5 π, 5 π) with homogeneous Dirichlet boundaries as the order of the fractional Laplacian decreases. We clearly see that the snaking pattern 

emerges for different fractional orders, yet it gets stretched (“bloated”) as the fractional order decreases. Thick and thin lines denote stable and unstable 

solutions, while circles and crosses indicate branch and fold points respectively. (For interpretation of the color references, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

5.1. The Schnakenberg system with standard Laplacian 

The Schnakenberg system has been used to model the spatial distribution of a morphogen for tissue patterning, and it 

presents the activator-inhibitor structure crucial in Turing instability. The system reads 

∂ t 

(
u 1 

u 2 

)
= 

(
1 0 

0 d 

)(
�u 1 

�u 2 

)
+ F (u 1 , u 2 ;μ) , (20) 

where the reaction part F is given in (7) and also depends on the parameter σ . The homogeneous state ū = (μ, 1 /μ) is

a steady state solution of system (20) , independent of the value of σ in the reaction part. Further, following [24] , we find

that ū is stable for parameter values μ > μc and that at μc non-homogeneous steady states bifurcate from the homogeneous 

branch with critical wavenumber k c , where 

μc = 

√ 

d(3 −
√ 

8 ) , k c = 

√ 

d − μ2 
c 

2 d 
= 

√ √ 

2 − 1 . 

On a finite domain, the first bifurcation is followed by a discrete set of further bifurcations in μ < μc as further modes

become unstable. The bifurcation diagram for the steady states of (20) with σ = 0 is shown in Fig. 13 , considering the do-

main � = (−5 π/k c , 5 π/k c ) (chosen to accommodate the basic periodic patterns bifurcating from the homogeneous branch).
12 
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Fig. 10. Solutions along the upper part of the snaking branch for s = 0 . 3 in the fractional Swift–Hohenberg Eq. (5) on a bounded domain with homogeneous 

Dirichlet boundary conditions. 

Fig. 11. Magnified views of the reconnection (a) and starting points (b) of the snaking branch of the fractional Swift–Hohenberg Eq. (5) on a bounded 

domain with homogeneous Dirichlet boundary conditions for fractional order s = 0 . 5 . The snaking branch in red originating from the first bifurcation point 

on the blue branch reconnects to the blue-green branch originating from the third bifurcation point on the homogeneous branch (black). The bifurcation 

diagram in Subfigure c is provided for reference purpose only. (For interpretation of the color references, the reader is referred to the web version of this 

article.) 

Fig. 12. Solution profiles to the fractional Swift–Hohenberg Eq. (5) on a bounded domain with homogeneous Dirichlet boundary conditions for μ = −0 . 4 

at different fractional orders: s = 0 . 9 in blue, s = 0 . 5 in red and s = 0 . 3 in black. (For interpretation of the color references, the reader is referred to the 

web version of this article.) 
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Fig. 13. Steady state bifurcation diagram of the Schnakenberg Eq. (20) with d = 60 and σ = 0 in the reaction part (7) , on a bounded domain with length 

L = 10 π/ k c , with homogeneous Neumann boundary conditions. For sake of clarity, only the first three branches bifurcating from the homogeneous states 

(black) are shown. Thicker lines denote stable solution while thinner lines correspond to unstable ones. Circles indicate branch points. (For interpretation 

of the color references, the reader is referred to the web version of this article.) 

Fig. 14. Steady state bifurcation diagram of the Schnakenberg system (20) with d = 60 and modified reaction terms (7) with σ = −0 . 6 , on a domain 

with length L = 10 π/k c with homogeneous Neumann boundary conditions. Black: homogeneous states. Blue, red, green, light blue: branches of non- 

homogeneous stationary solutions presenting 5, 4.5, 5.5 and 4 bumps, respectively. Purple: snaking branch of front solutions shown in Figs. 14 a – 14 d, 

connecting the blue branch to the red one (thick and thin lines denote stable and unstable solutions respectively, while circles and crosses indicate branch 

and fold points). (For interpretation of the color references, the reader is referred to the web version of this article.) 

 

 

 

The non-homogeneous (blue) branch bifurcates supercritically at μc from the homogeneous (black) branch. Two further 

branches are shown in red and magenta. 

Note that both μc and k c are independent of σ . This is because σ does not affect the linearization. However, it affects

the nonlinear terms in (20) and hence the restabilization of modes at higher amplitudes [61] . Thus, we can use σ to tune

the primary bifurcation from super- to subcritical. This enables us to “create” snaking branches between periodic branches, 

as is illustrated in Fig. 14 . As for the Swift–Hohenberg equation, the snaking branch corresponds to front solutions illustrated

in Fig. 14 a–d. 
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Table 1 

Values of the domain size L, the number of meshpoints n p 
and the corresponding meshsize h for different values of the 

fractional orders s, used for the fractional Schnakenberg sys- 

tem (6) with classical and modified reaction terms ( σ = 0 and 

σ = −0 . 6 , respectively). 

σ = 0 

s L n p h 

0.9 6 . 5 π 401 0.05 

0.7 7 . 5 π 1501 0.01 

0.5 9 . 7 π 2501 0.009 

σ = −0 . 6 

s L n p h 

0.95 15 . 9 π 1601 0.0312 

0.9 16 . 4 π 1601 0.322 

0.8 17 . 2 π 1901 0.028 

0.73 18 . 3 π 2601 0.022 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. The fractional Schnakenberg system 

We finally study the fractional Schnakenberg system (6) . The problem is considered on a one dimensional domain of 

length L with homogeneous Neumann boundary conditions. We study both classical ( σ = 0 ) and modified ( σ � = 0 ) reaction

terms (7) as presented in the Introduction. 

As for the Schnakenberg system with standard Laplacian (20) , the spatially homogeneous state ū = (μ, 1 /μ) is a sta-

tionary solution to (6) . Moreover, according to (2) the Neumann spectral fractional Laplacian has eigenpairs (φ j , λ j ) =
( cos ( jπx /L ) , −( jπ/L ) 

2 s ) for j ≥ 0 . The bifurcation points on the homogeneous branch then turn out to be located at 

μ j = k s j 

√ 

d(1 − k 2 s 
j 
) 

1 + k 2 s 
j 

, k j = 

jπ

L 
, j ≥ 0 . (21) 

Further, the critical parameter μc at which the first instability occurs is not affected by the fractional diffusion, being 

μc = 

√ 

d(3 −
√ 

8 ) . (22) 

The critical wavenumber, however, changes as a function of the fractional order s 

k c = 

(
d − μ2 

c 

2 d 

) 1 
2 s 

= 

(√ 

2 − 1 

) 1 
2 s 

. (23) 

Thus, we expect the wavelength of non-homogeneous stationary solutions from the first bifurcation to increase as s de- 

creases. In the following, we fix the diffusion coefficient d = 60 . Thus, Eq. (22) leads to the critical parameter μc ≈ 3 . 21 .

Further, we choose the domain 

� = 

(
−mπ

k c 
, 

mπ

k c 

)
, m ∈ N > 0 , (24) 

i.e. the domain is “tuned” to the primary bifurcation for each fractional order s . Precisely, according to Eq. (23) we know

that k c decreases with s, thus the size of �, L = 2 mπ/ k c , is increased with s in such a way that the first unstable mode

always has m periods in the domain. This choice guarantees that the primary bifurcation always occur at μc to modes with

known wavenumber given by formula (23) . Note that for the Allen–Cahn equation and for the Swift–Hohenberg equation, 

the domain size was always fixed since in these systems k c did not depend on s . Furthermore, because of this choice and to

be able to compare results for different fractional orders, it is important to use a measure for the bifurcation diagram that

does not depend on the domain size. The normalized L 2 -norm which was used in previous sections satisfies this criteria. In

addition, we also use the normalized L 8 -norm [61] 

‖ u ‖ L 8 = 

(
1 

| �| 
∫ 
�

| u (x ) | 8 d x 

) 1 
8 

, 

since in some situations it has been shown to be more suitable for plotting than the standard normalized L 2 -norm as it

produces larger differences between states. 

Finally, note that since the domain size increases as s decreases, we must accordingly increase the number of discretiza- 

tion points to guarantee the accuracy of the computation (the values used in the following are listed in Table 1 ). This induces

a significant increase in computational cost. For this reason we studied the problem with fractional order not smaller than 

s = 0 . 5 . 
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Fig. 15. Non-homogeneous stationary solutions of the Schnakenberg system (6) with classical reaction terms ( σ = 0 ) close to the first bifurcation from 

the homogeneous states. Left: decrease of the critical wavenumber k c . Right: increase in the wavelength of the solutions for μ ≈ μc for different fractional 

orders s . Remember that to each fractional order corresponds a different domain size according to (24) ; in this figure we show only part of the solutions 

for a comparison. (For interpretation of the color references, the reader is referred to the web version of this article.) 

Fig. 16. Evolution of the structure of the bifurcation diagram for the steady state Schnakenberg system (6) with classical reaction terms ( σ = 0 ) as the 

order of the fractional Laplacian decreases. Thick and thin lines denote stable and unstable solutions respectively, while circles indicate branch points. (For 

interpretation of the color references, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.1. Numerical results for the non-modified system 

In this section we consider the fractional Schnakenberg system (6) with classical reaction terms, i.e. σ = 0 . We choose

a relatively small domain, namely m = 2 in (24) , to limit the increase in computational cost as the fractional order s gets

smaller. 

Before showing the bifurcation diagram of system (6) , let us first illustrate the increase in the wavelength of solutions as

s decreases. The critical wavenumber, computed via Eq. (23) , for different values of s is plotted in Fig. 15 a. Fig. 15 b shows

the corresponding change in wavelength for solutions close to the first bifurcation at μ ≈ 3 . 2 . Further, one can see that the

amplitude of the solution decreases with s . In fact, we notice that the L 2 -norm of these solutions is conserved for all s from

0.5 and above (as mentioned, solutions below s = 0 . 5 have not been computed). 

In Fig. 16 we report the bifurcation diagrams of system (6) for three different fractional orders (namely s = 0 . 9 , s = 0 . 7

and s = 0 . 5 ). We observe several changes as s decreases. First, the bifurcation points on the homogeneous branch (in black)

seem to move towards the first bifurcation at μc . In addition, the second and third bifurcation points seem to exchange

their position between s = 0 . 8 and s = 0 . 7 . Correspondingly, the second (red) and third (magenta) bifurcating branches move

closer and towards the first branch (blue) when s becomes smaller. The numerical values of the bifurcation parameter μ for 

the location of the second and third bifurcation points, corresponding respectively to kernel vectors ( cos ( 3 πx /L ) , −( 3 π/L ) 2 s ) 

and ( cos ( 5 πx /L ) , −( 5 π/L ) 2 s ) , are shown in Fig. 17 . These values can easily be verified using formula (21) for the domain

size L = 4 π/k c and the corresponding curves are plotted as reference in Fig. 17 . We observe that the numerical values agree

with the analytical ones (with a maximum error of the order of 10 −3 ). In addition, the bifurcation points come closer as the

fractional order s decreases and intersect close to s = 0 . 7 . Note that the bifurcation points eventually converge towards μc 

as s → 0 . 

Second, we observe in Fig. 16 that the L 8 -norm of the branches of solutions is increasing. This is better understood by

looking at the solution profiles. Fig. 18 shows the solution on the first bifurcating branch at μ = 3 for s = 0 . 9 and s = 0 . 5 .

We see once more the wavelength increasing. In addition, for lower s the solutions “valleys” tend to flatten. This is now a
16 
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Fig. 17. Location of the second (blue dashed line) and third (purple continuous line) bifurcation points on the homogeneous branch of the Schnakenberg 

system (6) with classical reaction terms ( σ = 0 ) for a domain of size L = 4 π/k c as s decreases. The dots correspond to numerical values and the lines are 

computed via Eq. (21) . (For interpretation of the color references, the reader is referred to the web version of this article.) 

Fig. 18. Change in the solution profiles on the first bifurcating branch as the order of the fractional Laplacian decreases for the Schnakenberg sys- 

tem (6) with classical reaction terms ( σ = 0 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

known effect, which we had already observed in the solutions of Allen–Cahn and Swift–Hohenberg equations. In contrast to 

previous systems, however, the amplitude of the solution increases and the “peak” sharpens. 

The last observation arising from Fig. 16 regards the stability of solutions. As for the standard problem, with fractional

diffusion the first branch bifurcating from the homogeneous states (blue) is entirely stable and the second one (red) becomes 

stable at some μ < μc . But, in contrast to the standard case, the third branch is unstable for s = 0 . 9 and s = 0 . 7 and a stable

zone appears at s = 0 . 5 . This can be a consequence of the position exchange of the second and third bifurcation points on

the homogeneous branch (see Fig. 17 ). 

5.2.2. Numerical results for the modified system 

We now turn to the fractional modified Schnakenberg system, i.e. Eq. (6) with σ � = 0 in the reaction term. Recall from

Section 5.1 that in this case we expect to observe a snaking branch in the bifurcation diagram. Since in small domains

snaking branches have very few turns, we choose here a domain larger than in the previous section in order to have more

turns and facilitate our observations, namely m = 5 in (24) . Since we consider larger domains as the fractional order de-

creases, the computational costs increase, as explained in the previous section. Therefore we only consider fractional orders 

of the Laplacian greater than s = 0 . 7 . 

The numerical and analytical values for the location of the second and third bifurcation points (with kernel vectors 

( cos ( 9 πx /L ) , −( 9 π/L ) 2 s ) and ( cos ( 11 πx /L ) , −( 11 π/L ) 2 s ) ) for fractional order s between 0.7 and 0.9 are shown in Fig. 19 .

The analytical values are computed using formula (21) with m = 5 and and agree with the numerical ones up to 3 decimal

digits. However this accuracy could not be maintained for fractional orders below s = 0 . 7 . Note that, from the analytical

curves, we see that the bifurcation points cross each other close to s = 0 . 7 . 

In order to get a first impression of the effects of the fractional Laplacian on the bifurcation structure of system (6) with

modified reaction terms ( σ � = 0 ), Fig. 20 shows the bifurcation diagram for four different fractional orders, namely s = 0 . 95 ,

s = 0 . 9 , s = 0 . 8 and s = 0 . 73 . In the bifurcation diagrams, the blue branch, called P 5 , corresponds to non-homogeneous sta-
17 
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Fig. 19. Location of the second and third bifurcation points on the homogeneous branch of (6) for a domain of size L = 10 π/k c as s decreases for the 

fractional Schnakenberg system (6) with modified reaction terms ( σ = −0 . 6 ). (For interpretation of the color references, the reader is referred to the web 

version of this article.) 

Fig. 20. Evolution of the structure of the bifurcation diagram of the fractional Schnakenberg system (6) with modified reaction terms ( σ = −0 . 6 ) as the 

order of the fractional Laplacian decreases. Thick and thin lines denote stable and unstable solutions, while circles, crosses and diamonds indicate branch, 

fold and Hopf points respectively. (For interpretation of the color references, the reader is referred to the web version of this article.) 

18 
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Fig. 21. Solutions along the first snaking branch of the fractional modified Schnakenberg system (6) ( σ = −0 . 6 ) with fractional order s = 0 . 73 . (left) Snaking 

branch: purple denotes the first part of the snaking branch, while the second part is marked with light purple. (right) a–c: Solutions along the first part 

of the snaking branch. d–f: Solutions along the second part of the snaking branch. (For interpretation of the color references, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tionary solutions with five oscillations in the domain. The light blue branch, called P 4 , corresponds to periodic solutions

with four oscillations in the domain. Analogously, the red ( P 4 . 5 ) and the green ( P 5 . 5 ) branches correspond to periodic solu-

tions with 4.5 and 5.5 oscillations in the domain, respectively. Further, the snaking branch generated at the first bifurcation 

point on P 5 is shown in purple. We observe three important changes in the bifurcation structure as s decreases. First, as

expected from the previous section, the bifurcation points are accumulating towards the critical point μc as s gets smaller. 

Second, looking closely at the bifurcation diagrams, we see that the stable solutions on the blue branch shift towards the

fold, that is towards higher μ values, as s decreases. Recall that this effect was also observed in the fractional Allen–Cahn

system ( Section 3.2 ). Third, we observe that the snaking is widening as s becomes smaller. In addition, at s = 0 . 73 , it neither

reconnect to P 4 nor “climb” to other branches. Moreover, the fractional order appears to have a significant influence on the

behavior of the snaking branch. As mentioned above, we have seen in Fig. 20 , that the number of turns and height of the

snaking branch decreases progressively, and it does not “climb” anymore for s = 0 . 73 ( Fig. 20 d). In addition, we can observe

an increase in the width of the snaking as s gets smaller. 

Furthermore, Fig. 21 shows solution profiles along the snaking branch at s = 0 . 73 . As we had seen in Section 5.1 , they

initially correspond to front solutions. Going up the snake, we expect the front to move “forward”, that is gaining more and

more oscillations until the domain is filled, to match the number of oscillations of the reconnecting branch. However, here, 

we see that the oscillations does not gain the fourth complete bump. In fact, at the upper fold point the front stops moving

forward. In addition, unstable localized solutions appear after the fourth fold, which progressively present oscillations in the 

central part of the domain ( Fig. 21 f). This change of behavior can be due to an interaction between the first snaking branch

of front solutions with the snaking branch of homoclinic solutions originating (in the standard Schnakenberg system) from 

the second bifurcation point on P 5 [61] . 

One last observation has to be made looking at Figs. 20 –21 . Along the snaking branches the software detects Hopf bifur-

cations (indicated by a diamond marker in the figures) which are not present with the standard Laplacian. However, further 

investigations of the presence of time-periodic orbits and the branch switching at these Hopf points will be matter of future

works. 
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6. Conclusion and outlook 

In this paper we have successfully extended for the first time numerical continuation methods to nonlinear space- 

fractional PDEs. Specifically, in the context of pde2path , we have interfaced FEM with the fractional Laplacian via a dis-

cretization of the Balakrishnan formula. This enabled us to investigate some of the effects of super-diffusion on the steady 

state bifurcation structure and solution profiles of the Allen–Cahn Eq. (4) , the Swift–Hohenberg Eq. (5) and the Schnaken-

berg system (6) . We highlight here the common effects that were observed, which contribute to a better understanding of

the effects of the fractional Laplacian on the steady solutions of generic reaction–diffusion systems on bounded domains. 

– Firstly, in all systems we have observed that the bifurcation points on the branch of homogeneous solutions accumulate 

at a precise value of the bifurcation parameter (at which a change of stability of the homogeneous solution occurs) as

the fractional order s tends to zero. This can be seen from equations (17), (19) and (21) , and it is illustrated in Figs. 4,

8, 17 and 19 . In particular, for the fractional Allen–Cahn all the bifurcation points vary and tend to the value μ = 1 as

s → 0 + . For the Swift–Hohenberg equation and the Schnackenberg system the first bifurcation point (where the change 

in stability occurs) remains fixed, while the others move towards μ = 0 and μ = μc (formula (22) ), respectively. 

– Secondly, we have seen that, for a fixed value of the bifurcation parameter, the non-homogeneous stationary solutions 

to the three equations tend to have flatter peaks or valleys as the fractional order of the Laplacian decreases. This effect

can be memorized as “sharpening the teeth” of the spatial solution profiles. We suppose that this effect comes from the 

fact that diffusion acts more ballistically as s decreases, producing a larger spread and larger tails. 

– Finally, in both systems featuring a snaking branch of localized solutions, that is the Swift–Hohenberg equation and 

the Schnakenberg system, we have observed that decreasing the fractional order of the Laplacian leads to a significant 

widening of the snaking, see Figs. 9 and 20 . This can be memorized as “bloated snaking”. Furthermore, the re-connection

properties of the snaking branch change as the fractional order is decreased. 

Hence, our results pave the way for further analytical investigations of nonlinear reaction–diffusion systems involving 

fractional operators. 

Our investigation focused on one-dimensional fractional problems, where matrices associated with the discretized prob- 

lem can be kept sufficiently small. Thus, these problems can still be treated numerically on today’s standard desktop com- 

puters. To discretize the fractional operator in higher dimensions poses additional numerical challenges. In this regard, the 

choice of interfacing the pde2path package with the fractional Laplacian via a discretization of the Balakrishnan formula 

makes the solver flexible and, in particular, suitable for higher dimensional problems involving adaptive meshes. To obtain 

accurate results the Balakrishnan formula involves the solution of a large number of linear systems of equations of signif- 

icant size. Therefore, it might be interesting to check the performance of iterative linear system solvers in order to make

the computation more efficient. In particular, a method based on Krylov subspaces has recently been implemented [26] , 

which could be helpful in future work. Of course, it would be interesting to use other discretizations of the spectral frac-

tional Laplacian on bounded domains based on the integral formulation of the operator via the heat-semigroup formalism 

as proposed in [22] or based on the very weak FEM [7] . Furthermore, the choice of parameters k, n + , n −, appearing in the

FEM discretization of the fractional Laplacian as well as the detailed study of the numerical accuracy could be addressed 

in future work. Since we have benchmarked the method already against analytical results, which gave excellent agreement 

with the numerics, we expect that the numerical analysis is also going to yield favorable results. 

Beyond perspectives of computational and numerical optimizations, the preliminary results obtained within this work 

bring up fascinating issues, which will be matter of future work. For instance, the deformations and changes of the snaking

branch in the Schnakenberg system for fractional order smaller than 0.7 is an open issue. Another point of interest is the

nature of secondary bifurcation points, the bifurcating branches and their fate as the fractional order s goes to zero, as

well as the presence of time-periodic orbits and the branch switching at the Hopf points as the fractional order becomes

smaller. Furthermore, a natural extension at this point is the numerical investigation of these models in higher-dimensional 

domains. Regarding other models, it could be interesting to investigate if the fractional Laplacian can lead to the appearance 

of unexpected patterns (which are not shown with standard diffusion). In particular, looking towards the applications, we 

could also focus on models that arise in the literature, for which the application of the continuation software could lead

to a better undertanding of the studied phenomena. Finally, implementing other discretizations for different definitions of 

the fractional operator [13,29] , we will be able to contrast and compare them by looking at the bifurcation diagrams and

stationary solutions. 

In conclusion, the paper constitutes the meeting point between theoretical results, bifurcation theory, numerical analysis 

and scientific computing. Extending advanced continuation methods, such as implemented in pde2path , allowed us to 

treat a much larger class of systems. In particular, we gained a new tool to investigate bifurcations and pattern formation

in fractional PDEs. Thus, we established a novel interaction between continuation techniques and fractional PDEs. This point 

of view will shed new light on the field as it allows for global exploration of nonlinear systems involving the fractional

Laplacian. We can now systematically apply our approach to investigate a large class of problems in many fields (biology, 

epidemiology, population dynamics). Furthermore, the paper can be viewed as a key contribution towards a dynamical 

system approach to fractional reaction–diffusion systems. 
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Appendix A. The MatLab code 

We provide here the Matlab code which implements the FEM discretization of the fractional Laplacian presented in 

Algorithm 1 in Section 2 . We do not explain in detail the basic setup of pde2path ; see [50,61,62] for a complete overview

of the continuation software for beginner users. 

In order to numerically study fractional reaction–diffusion equation of the form (1) in pde2path , we must adapt the

standard setup providing a new function FractionalLaplacian which will be called by the function oosetfemops . We 

recall that the routine oosetfemops generates the matrices (11) appearing in the algebraic system (10) . In the fractional

case, this file differs from the standard setting only for the line by which the FEM stiffness matrix K, stored in the Matlab

variable p.mat.K , is replaced by −MK s , the matrix approximation of the fractional Laplacian multiplied with the mass 

matrix. Else the usage of pde2path stays the same for the basic continuation calls. A fully exacutable code reproducing

Figs. 5, 6, 9 and 20 can be found at [27] . 

The new function FractionalLaplacian implementing Algorithm 1 is presented in Listing A.1 . The required input 

arguments are the standard stiffness and mass matrices K and M , which must encode the proper boundary conditions, the

number of mesh points np , the (uniform) mesh size h and the fractional order s . The output of the function is the matrix

approximation of the fractional Laplacian Ks . 
Few remarks need to be made concerning the Matlab implementation. The first comment regards the choice of parame- 

ters κ, n + and n − in the quadrature approximation (12) , denoted by k, Np, Nm in Listing A.1 . Given a spacial discretization

with mesh size h, the value of κ must be chosen such that the sinc quadrature error balances with the finite element error.

Following [26, Corollary 2] where a similar discretization method was used, we choose 

κ = 

1 

| log(h ) | , 
corresponding to Line 9 in Listing A.1 . Then, again following [26] , the values n + and n − are chosen proportional to 1 /κ2 : 

n + := 

⌈
π2 

4(1 − s ) κ2 

⌉
and n − := 

⌈
π2 

4 sκ2 

⌉
, 

and they are assigned in Lines 10, 11 in Listing A.1 . 

The second comment regards the efficiency and correctness of the computation. For each column of K s we need to solve

n + + n − + 1 systems of equations (see Eq. (13) ) of the type 

( e κ l M + K) y = K ̂

 e i , 

where −n − ≤ l ≤ n + . Since all columns as well as all systems are independent, ideally, we would like to parallelize both

loops in Lines 16 and 22. However, nested parallelism is not allowed in Matlab. Therefore, we only parallelize the outer loop

(using parfor in Line 16). 

Finally, when e κ l becomes sufficiently small, we have that ( e κ l M + K) ≈ K. Since K is singular, there exist infinitely many

solutions to systems of the form Kv = z. In the Matlab implementation, the typical backslash operator would produce one

solution but we would not know which solution it produces. In order to have a more robust routine, we use lsqminnorm
which computes the minimum norm least-squares solution to the system using the complete orthogonal decomposition of 

( e κ l M + K) (see Line 25 in Listing A.1 ). 
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Listing A.1. FractionalLaplacian.m 

Algorithm 1: Algorithm that allows to build the matrix K s , which corresponds to a FEM discretization of the fractional 

Laplacian. A detailed description of the implementation of this algorithm in pde2path is given in Appendix A . 

choose κ
set n + and n −
for i = 1 → n p do 

t = ˆ e i % test vector 

z = Kt 

col = 0 

for l = n − → n + do 

solve ( e κ l M + K) ∗ v = z for v 
col = col + e κ ls · v 

end 

col = − κ ·sin (sπ) 
π · col 

i th column of K s ← col 
end 
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