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Abstract

Land surface models (LSMs) implemented in numerical weather prediction
(NWP) models use several parameters to suitably describe the surface and its
interaction with the atmosphere, whose determination is often affected by many
uncertainties, strongly influencing simulation results. However, the sensitivity
of meteorological model results to these parameters has not yet been studied
systematically, especially in complex terrain, where uncertainty is expected to be
even larger. This work aims at identifying critical LSM parameters influencing the
results of NWP models, focusing in particular on the simulation of thermally-driven
circulations over complex terrain. While previous sensitivity analyses employed
offline LSM simulations to evaluate the sensitivity to surface parameters, this study
adopts an online coupled approach, utilizing the Noah-MP LSM within the Weather
Research and Forecasting (WRF) model. To overcome computational constraints, a
novel tool, Machine Learning-based Automated Multi-method Parameter Sensitivity
and Importance analysis Tool (ML-AMPSIT), is developed and tested. This
tool allows users to explore the sensitivity of the results to model parameters
using supervised machine learning regression algorithms, including Random Forest,
CART, XGBoost, SVM, LASSO, Gaussian Process Regression, and Bayesian Ridge
Regression. These algorithms serve as fast surrogate models, greatly accelerating
sensitivity analyses while maintaining a high level of accuracy. The versatility
and effectiveness of ML-AMPSIT enable the fast implementation of advanced
sensitivity methods, such as the Sobol method, overcoming the computational
limitations encountered in expensive models like WRF. The suitability of this tool
to assess model’s sensitivity to the variation of specific parameters is first tested in
an idealized sea breeze case study where six surface parameters are varied. Then,
the analysis focuses on the evaluation of the sensitivity to surface parameters in
the simulation of thermally-driven circulations in a mountain valley. Specifically,
an idealized three-dimensional topography consisting of a valley-plain system is
adopted, analyzing a complete diurnal cycle of valley and slope winds. The analysis
focuses on all the key surface parameters governing the interactions between Noah-
MP and WRF. The proposed approach, novel in the context of LSM-NWP model
coupling, draws from established applications of machine learning in various Earth
science disciplines, underscoring its potential to improve the estimation of parameter
sensitivities in NWP models.
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Introduction

Numerical Weather Prediction (NWP) models are indispensable tools in modern
meteorology, providing insights into atmospheric processes and aiding in weather
forecasting. A critical component of these models is the accurate representation of
land surface processes. These processes, occurring at the bottom boundary of the
atmospheric model, involve complex interactions between the land surface and the
atmosphere, including the exchange of heat and mass fluxes. Land Surface Models
(LSMs) are integrated into NWP models to simulate these interactions.

One of the most advanced LSMs frequently utilized in NWP is Noah-MP (Noah
with Multi-Physics options). One of the most remarkable peculiarities of Noah-MP
with respect to other LSMs is to consider the vegetation canopy as a separate
layer that takes into account the leaf orientation with respect to the radiation,
the space between crowns and leaves, the height and thickness of the canopies,
to account for important phenomena such as radiation scattering, trapping and
penetration in the canopy, and mutual shading. It also includes the treatment of
all the canopy and soil processes relevant for the computation of water and energy
budget, with the additional option to account for the carbon budget. Similarly
to other LSMs, Noah-MP employs an ensemble of empirical parameterizations to
compute these balances at the land surface. Moreover, the model uses more than 40
parameters to describe land cover and characterize its effects on surface-atmosphere
exchange. Despite its comprehensive approach, Noah-MP relies on fixed values for
each parameter, not accounting for the inherent variability within broad land cover
categories (e.g. mixed forests). This limitation is particularly evident in complex
terrain, where land cover can rapidly vary with changes in altitude, leading to a
significant degree of parameter heterogeneity.

Recent studies have underscored that LSMs are a major source of uncertainty
in simulating near-surface variables, especially over complex terrain (e.g., Schmidli,
Billings, et al., 2011; Massey et al., 2014; Tomasi et al., 2017). This uncertainty
arises from several factors, including the accuracy of the parameterizations used,
their general applicability across different landforms, the representativeness of
parameter values for specific regions and the grid resolution. Another possible
source of errors is the lack of updated datasets.

The unique challenges posed by complex terrain areas, such as mountains,
further exacerbate these uncertainties. In these regions, the topography itself



2 Introduction

acts as a physical barrier, affecting atmospheric flows and introducing additional
dynamics compared to flat terrain. The geometries involved in complex terrain also
give rise to thermally driven circulations, that can only be observed in these regions
due to differential heating and the consequent formation of pressure gradients
(Figure 1).

Figure 1: Diurnal (a) and nocturnal (b) atmospheric circulation in the valley, from
Monteith et al., 1979.

In addition to this, LSMs implemented in meteorological models are typically
single-column models, meaning they do not account for interactions between
neighboring grid cells, including lateral flow. This is particularly problematic in
mountainous regions, where it can significantly impact the simulation in areas
characterized by strong spatial heterogeneity, for example in sparsely vegetated
sites (Zhang, Chen, et al., 2020) or with spatio-temporal soil moisture variability
(Krauss et al., 2010).

Moreover, the computation of surface fluxes in LSMs often relies on scaling
relations based on Monin-Obukhov similarity theory. The assumptions of this
theory, including quasi-stationarity and horizontal homogeneity, are frequently
violated in the boundary layer of mountainous terrain, leading to discrepancies in
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model simulations.

Each of these sources of uncertainty can have a large impact on the final output
if the model is highly sensitive to these errors, i.e., if the output is highly sensitive
to parameterization-related inputs. Hence, there is a need to assess the sensitivity
before interpreting the model output.

This thesis aims to investigate the sensitivity of LSM parameters in NWP
models, with a specific focus on complex terrain. The objectives include quantifying
the relative sensitivity of the model output to the LSM parameters that go into
the forcing process calculation, evaluating their influence over complex terrain,
and identifying parameters and processes with a significant impact on numerical
simulations. Where possible, recommendations for optimal parameter selection will
be provided.

To address these objectives, the use of idealized simulations is proposed. These
simulations are preferable as they allow for the isolation of parameter-induced
variations, free from confounding factors such as issues related to initial/boundary
conditions, observation uncertainties, and unrelated phenomena. The idealized
simulations performed for this thesis focus on synoptically undisturbed conditions
in mountainous terrain. The sensitivity of the model results is evaluated with
particular emphasis on thermally driven circulations, analyzing near-surface fields
and vertical profiles. A first test is performed for a sea breeze system over flat
terrain, then the same methodology is applied to a simplified topography inspired
by other studies in the literature (Schmidli, Billings, et al., 2011), representing a
valley-plain system with a horizontal inner valley floor and characteristic dimensions
representative of the main Alpine valleys.

The model used for the simulations is the Weather Research and Forecasting
(WRF) model. WRF is an open-source tool for both research and operational
applications, widely used around the globe. The dynamical core (ARW) solves
the flux-form Euler equations for a compressible non-hydrostatic fluid in terrain-
following coordinates. The equations are solved by decomposing each term in its
hydrostatic part plus a perturbation, with forcings coming from dedicated physics
modules for radiation, microphysics, turbulent mixing, etc. It features a range of
refined numerical techniques for time and space discretization, including a time-split
method with an outer third-order Runge-Kutta integration scheme and an inner
loop for acoustic modes. The spatial discretization is staggered with an Arakawa-C
grid, and the accuracy order can be chosen by the user up to the fifth order for
horizontal and vertical advection. It can employ numerical diffusion terms to
smooth out turbulent eddies resulting in more stable simulations.

The sensitivity analysis methodology involves assessing the impact of small
perturbations in input parameters on the model output. However, traditional
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one-at-a-time (OAT) sensitivity methods, which treat parameters as independent
from each other, can be misleading due to potential interactions between factors.

Moreover, when dealing with one or two parameters, it might be feasible to
perform an OAT sensitivity analysis where the output response (the "response
curve") can be easily assessed by eye, but when dealing with multiple input
parameters, the problem becomes high-dimensional, and the response curve becomes
a hypersurface that is very difficult to assess with simple methods. In light of this,
and since it is rare to know a priori the magnitude of parameters’ interactions,
there is a need for a more refined approach.

An advanced method to perform sensitivity analyses is the Sobol method, which
can be categorized as a variance-based method. Its goal is to compute sensitivity
indices, the Sobol indices, obtained by decomposing the variance V of the model
output into multiple components accounting for the individual parameter contribute
(first-order term) and its interaction with the other parameters (higher-order terms).
This method allows evaluating if a parameter is involved in strong interactions, or
if it is a noninfluential factor that can be fixed at any value without affecting the
output variance, i.e. how much it is possible to reduce the variance of the output
V if that parameter is fixed.

Although being an advanced method, the Sobol method is also known for its
very high computational cost. For simple and fast models, this method has been
used in the literature with more than 10000 runs (e.g. Cuntz, Mai, Zink, et al.,
2015; Cuntz, Mai, Samaniego, et al., 2016). For more complex and computationally
expensive models such as WRF, this may be unfeasible. The minimum number of
simulations required to obtain consistent sensitivity indices also depends on the
specificity of each problem and cannot be known a priori. Therefore, given the
computational intensity of WRF and the need for a large number of simulations,
alternative approaches are considered.

The concept of surrogate models has become very popular in fluid dynamics
(Queipo et al., 2005; Fernández-Godino et al., 2017; Taira et al., 2017; Vinuesa et al.,
2022; Longo et al., 2020; Lamberti et al., 2021), where data-driven models have
been used in the last few years in methods such as proper orthogonal decomposition
(POD), dynamical modes decomposition (DMD), and reduced order models (ROM).
All these methods employ a data-driven approach to make predictions based on
data coming typically from a small ensemble of high-fidelity, more computationally
intensive simulations. The goal of these models is to build a faster surrogate model
to reduce the computational burden.

Among the data-driven techniques used for building surrogate models, Machine
Learning (ML) methods are increasingly being used in various fields where the
evaluation of the sensitivity of parameters, usually referred to as "predictors" or
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"model features", is a crucial task for problems with high demands in terms of
precision, such as system control engineering (Queipo et al., 2005; Brunton, Noack,
et al., 2020; Brunton and Kutz, 2019), medical and genetic fields (Sharma et al.,
2014; Cui et al., 2016; Cui et al., 2016; Antonogeorgos et al., 2009; Maroco et al.,
2011; Yang, Wang, et al., 2022), but also in earth science fields such as those
studying the susceptibility of landslides and fire risk (Yilmaz, 2010; Catani et al.,
2013; Pradhan, 2013; Youssef et al., 2016; Kalantar et al., 2018; Lee et al., 2018;
Chen, Zhu, et al., 2020; Daviran et al., 2023; Elia et al., 2023; Oliveira et al.,
2012; Bar Massada et al., 2013; Arpaci et al., 2014; Pourtaghi et al., 2016; Satir
et al., 2016; Gigović et al., 2019). At the cost of less interpretability compared to
ROMs, machine learning is usually a faster method for model surrogation, making
it attractive for complex models such as NWPs, where computational power is
critical.

An example of the use of this approach in climate sciences can be found in Dagon
et al., 2020, where an ML-based tool for parameter calibration developed by the
Community Land Model (CLM) team from the National Center for Atmospheric
Research (NCAR) is presented. The Authors found that an ensemble with perturbed
land model parameters, in which each simulation has a duration of approximately 2
hours, can be replaced by the results of an artificial neural network algorithm that
uses 2.6 s to generate predictions, with a correlation over 90% between original and
surrogate model values.

In light of the above discussion, the present thesis proposes a sensitivity analysis
tool based on ML algorithms (ML-AMPSIT) which has been developed in collabo-
ration with the Noah-MP group at NCAR. This tool aims to guide users from start
to end in a comprehensive sensitivity analysis, utilizing ML data-driven methods
to obtain predictions based on simulation data, mixing the use of ML-based regres-
sion and Sobol-based sensitivity. While it currently focuses on weighting model
parameters, its versatility allows for potential future applications in various other
tasks such as spatial/temporal interpolation and prediction of observables.

Currently, the ML-AMPSIT implements the following regression algorithms:
Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO),
Support Vector Machine (SVM), Bayesian Ridge Regression (BRR), Gaussian
Process Regression (GPR), Extreme Gradient Boosting (XGboost), and Classifica-
tion And Regression Trees (CART). Most of these regression algorithms provide
regression weights by default, while BRR and GPR are probabilistic methods that
are used within ML-AMPSIT to compute sensitivity indices via an implementation
of the Sobol method.

The rationale for adopting a multi-method approach in this analysis tool stems
from the recognition that different regression algorithms, despite aiming to achieve
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the same goal, operate based on fundamentally distinct principles. For instance,
LASSO employs a least squares approach with regularization, making it well-suited
for linear problem-solving. In contrast, algorithms like Random Forest are based
on decision tree ensembles and are inherently more suited at capturing non-linear
relationships.

This diversity in algorithmic approaches is particularly valuable in scenarios
where the underlying characteristics of the problem are not clearly understood
a priori. For example, in cases dominated by linear relationships, methods like
LASSO might offer more accurate predictions. Conversely, for problems with
complex, non-linear dynamics, a method like Random Forest might potentially
yield better results.

Given this context, ML-AMPSIT allows users to explore a variety of method-
ologies, providing a comprehensive perspective on the problem at hand. After
evaluating the performance of different algorithms, users have the flexibility to
either average the results for a more balanced view or select the best-performing
method based on their specific dataset and analysis goals. This multi-faceted
approach equips users with the necessary tools to effectively tackle a wide range
of problems, including those that are complex or not fully understood, thereby
enhancing the robustness and reliability of the analysis.

As mentioned above, the case study used to test the performance of the new
tool refers to the simulation of a sea breeze over flat terrain with the systematic
variation of six parameters related to the vegetation canopy. The results show that
most of the algorithms are able to replicate the original model, yielding predictions
with correlations above 90% with respect to the original model values. Notably,
these results are obtained reaching convergence after only about 20 simulations
used for training.

After validating the ML-AMPSIT tool, the work focuses on thermally driven
winds in an idealized valley. All the relevant Noah-MP vegetation-related parame-
ters for the chosen configuration are considered for the sensitivity analysis, for a
total of 21 parameters.

The outline of the thesis is as follows:

Chapter 1 provides an overview of the methods used in this work. It begins
with a detailed description of the Noah-MP land surface model, focusing on its
treatment of canopy effects on radiation transfer, heat and momentum fluxes, and
a rapid overview of the different options to parameterize physical processes. This
is followed by an introduction to the Weather Research and Forecasting model.
The chapter then discusses sensitivity analysis methods, including sampling design,
computational cost, global sensitivity analysis, and the Sobol method. The final
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part of the chapter discusses data-driven modeling, the variance-bias tradeoff, and
various machine learning algorithms employed in ML-AMPSIT.

Chapter 2 reviews the state of the art in idealized simulations of the valley
wind system, sensitivity analysis applied to land surface models, and machine
learning-based sensitivity analysis.

Chapter 3 presents the research article "ML-AMPSIT, a machine learning-
based automated multi-method parameter sensitivity and importance analysis
tool". The paper delves into the ML-AMPSIT workflow, the Sobol method, and the
implemented ML algorithms. A case study is presented, focusing on the WRF/Noah-
MP model and its setup. The sea breeze ensemble results, ML-AMPSIT output,
convergence analysis, parameter importance analysis, and vertical variability are
discussed.

Chapter 4 presents the research article "Machine learning-based sensitivity anal-
ysis of surface parameters in numerical simulations of thermally-driven circulations
in a mountain valley". The modeling setup and the Noah-MP parameters chosen
for the analysis are first described. Then, the results obtained, considering in
particular the simulation of the valley circulation and the output of the sensitivity
analysis, are presented.

Finally, the thesis concludes with a summary of the results, their implications,
and suggestions for future research in the field of land surface modeling and
numerical weather prediction, as well as further potential developments of the
ML-AMPSIT tool.
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Methods

1.1 Noah-MP

The early LSMs, emerging around four decades ago, were relatively simplistic
in their approach to representing land surface processes. These models primarily
focused on the energy balance equation, utilizing basic assumptions like prescribed
albedo, constant soil moisture, and often neglecting soil heat storage (Bonan,
2008). Their approach to simulate sensible and latent heat fluxes was guided
by bulk aerodynamic transfer equations. Vegetation’s impact on latent heat flux
was indirectly included via a β factor, which modified potential evaporation to
reflect limited soil moisture conditions (Bonan, 2008). The models’ hydrology was
rudimentarily represented using a simple bucket model (Manabe, 1969).

The advancement to second-generation models was led by the work of Deardorff
(1978), introducing a separate vegetation canopy layer and a two-layer soil column.
This development allowed for differentiated calculations of canopy and ground
temperatures and distinct turbulent and radiative fluxes. These models, like BATS
(Dickinson, Henderson-sellers, Kennedy, and Wilson, 1986) and SiB (Sellers et al.,
1986), were more complex, incorporating detailed radiative transfer calculations and
differentiating soil evapotranspiration mechanisms. They marked a significant leap
in land surface modeling, integrating data from satellite products for vegetation
and soil characteristics (Bonan, 2008).

Third-generation LSMs advanced further, utilizing biochemical models of pho-
tosynthesis (Farquhar et al., 1980) and semi-empirical models for stomatal con-
ductance (Ball et al., 1987b; Leuning, 1990; Collatz et al., 1992). These models
enhanced the simulation of atmospheric CO2, integrating more detailed responses
of stomata to environmental factors.

The Noah LSM was a second-generation model widely used in weather and
climate predictions, representing a collaborative effort across multiple institutions
(Mahrt et al., 1984; Schaake et al., 1996a; Schaake et al., 1996b; Ek et al., 2003).



10 Chapter 1.

This model, however, faced limitations in its structure, particularly in representing
snowpack dynamics and soil moisture processes, which affected its accuracy in
various environmental simulations (Barlage et al., 2010).

To address these limitations, significant augmentations were introduced in the
following third-generation version, Noah-MP. These included a vegetation canopy
layer, a modified two-stream radiation transfer scheme, a Ball-Berry type stomatal
resistance scheme, and a dynamic vegetation model (Yang and Friedl, 2003; Niu and
Yang, 2004; Ball et al., 1987a; Dickinson, Henderson-sellers, Kennedy, and Wilson,
1986). Additionally, the model was improved with a simple groundwater model, a
three-layer snow model, and a frozen soil scheme, enhancing its permeability and
overall accuracy (Niu, Yang, Dickinson, and Gulden, 2005; Niu, Yang, Dickinson,
Gulden, and Su, 2007; Yang and Friedl, 2003).

Noah-MP is currently one of the most used LSMs and has been implemented
inside many of the principal weather and hydrological models available today,
such as the NCAR WRF model, the NOAA National Water Model (NWM), the
NASA Land Information System (LIS), the NCAR High-Resolution Land Data
Assimilation System (HRLDAS), the NOAA Unified Forecast System (UFS), as
well as the new NCAR Model for Prediction Across Scales (MPAS).

In the next sections, the main components of Noah-MP are briefly presented
and discussed.

1.1.1 Canopy effects on radiation transfer

Figure 1.1: Semi-tile treatment for radiative and heat fluxes in Noah-MP, from Niu, Yang,
Mitchell, et al., 2011.

Noah-MP uses a semi-tile subgrid scheme (Figure 1.1) to separate the fractional
vegetated area from the fractional bare ground area in the computation of longwave
radiation, latent heat, sensible heat, and ground heat fluxes. The shortwave
radiation transfer is computed across the entire grid cell, taking into account
probabilities of gaps between and within canopy clusters to include both scattering
and multiple reflections of radiative fluxes. The arrangement and size of these
gaps are dependent on factors such as the canopy’s radius and density, the spacing
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between tree trunks, and the solar zenith angle (SZA). This approximation assumes
a uniform distribution of canopies over the grid cell, calculating surface-absorbed
and ground-absorbed solar radiation. The scheme allows for the utilization of
different vegetation fractions in energy budget computations.

The between-crown gap probability and the within-crown gap probability are
computed from the geometrical properties of the canopy summarized in Figure 1.2,
defined by the crown radius R, the top and bottom of the canopy Htop and Hbottom,
the SZA θ, the vegetation fraction Fveg, and the foliage volume density Fa.

The gaps computation contributes to the definition of the direct and diffuse
radiation that interacts with the canopy, the optical depths, and the upscattering
parameters, leading to the total radiation flux fab absorbed by the vegetation
expressed as:

fab = 1− fr (1− αd)− ftd (1− αi) · fti (1.1)

where fr is the total radiation flux reflected by the vegetation and the ground,
ftd and fti are the downward direct and diffuse radiation fluxes below the vegetation,
αd and αi are direct and diffuse albedos of the underlying soil, functions of the soil
moisture.

The effects of multiple reflections and absorption inside the canopy emulate the
radiation trapping effects observed in real canopies, which significantly reduces the
amount of radiation reaching the ground, as shown in Figure 1.3.

Figure 1.2: Canopy 3d structure in Noah-MP radiation treatment, from Yang and Friedl,
2003.

Energy fluxes are calculated differently for the bare ground fraction, the vege-
tated ground fraction, and the vegetation canopy.

Using subscripts b, g, and v for bare, vegetated ground, and canopy respectively,
the total fluxes entering the energy budget are:
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Figure 1.3: Dampening effect of vegetation over solar radiation (a) and net all-wave
radiation (b) at 3 different times, from Monteith et al., 1979.

La = (1− Fveg)La,b + Fveg(Lav + Lag) (1.2)

LE = (1− Fveg)LEb + Fveg(LEv + LEg) (1.3)

H = (1− Fveg)Hb + Fveg(Hv +Hg) (1.4)

G = (1− Fveg)Gb + FvegGv (1.5)

where La is the net longwave radiation, LE is the total latent heat flux, H is
the total sensible heat flux, G is and the total ground heat flux.

The surface energy balance is:
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Sav + Sag = La + LE +H +G (1.6)

where Sav and Sag are the solar radiation component absorbed by vegetation
and ground.

Each component in the Equations (1.2)-(1.5) is computed as summarized in
Figure 1.4. Sensible and latent heat fluxes follow bulk formulae as a function of
temperature and water vapor pressure, modulated by the thermal resistances of
air, soil, stomata, and leaf boundary layer, in analogy with the electrical circuit
representation. Ground heat is also a function of the surface layer thickness and
thermal conductivity.

Figure 1.4: Derivation of quantities used in fluxes calculation, from Niu, Yang, Mitchell,
et al., 2011.

The radiation is computed for both the near-infrared and visible bands, ac-
counting for the strong dependence on the wavelength of the vegetation reflectivity,
transmissivity, and absorptivity observed in nature, as reported in Figure 1.5.



14 Chapter 1.

Figure 1.5: Leaf reflectivity, transmissivity and absorption, as functions of wavelength,
from Monteith et al., 1979.

1.1.2 Canopy effects on heat and momentum fluxes

At the canopy top Hcan the wind speed is derived from the logarithmic law:

Uc =
u∗
k

ln

(
Hcan − d
z0M

)
(1.7)

where u∗ is the friction velocity:

u∗ =
URk[

ln
(
zref−d
z0M

)
− ψm

(
zref−d
LMO

)] (1.8)

k is the von Kármán constant, Hcan is the height of the canopy top, z0M is
the momentum roughness length, d = 0.65 ·Hcan is the zero-plane displacement
height, UR is the velocity at reference height zref = d + z′a, where z′a is the first
level height above the surface zero plane received from the host model. ψm is the
stability function for momentum from Monin-Obukhov Similarity Theory (MOST,
Monin 1954) and LMO is the Monin-Obukhov length.

Heat and momentum fluxes are modulated by resistances in a two-layer model,
as shown in Figure 1.6. Between the reference height and the height d+ z0M , the
aerodynamic resistances for heat and momentum are (Bonan, 1996):

rahc =
1

κu∗

[
ln

(
zref − d
z0M

)
− ψh

(
zref − d
LMO

)]
(1.9)

ramc =
UR
u2
∗

(1.10)

while, under the canopy, the resistances are modified to account for the canopy
extinction (Brutsaert, 1982a):
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Figure 1.6: Canopy effect over the heat and momentum fluxes modeled in terms of
resistances.

rahg =
Hcane

a

K(Hcan)a

[
exp

(
−az0HG

Hcan

)
− exp

(
−az0H + d

Hcan

)]
(1.11)

where z0HG and z0H are the roughness lengths for heat fluxes for ground and
vegetation, which Noah-MP assumes to be equal to the momentum roughness
lengths z0MG and z0M , a is the canopy wind extinction coefficient modulated by an
empirical wind extinction parameter CWPV T and the vegetation area index V AI:

a = (CWPV T × V AI ×Hcan × ψm)0.5 (1.12)

and Kc is the turbulent transfer coefficient for sensible heat:

Kc(Hcan) = κu∗(Hcan − d) (1.13)

The latent heat flux exchange coefficients rawg and rawc are assumed equal to
the sensible heat coefficients.

The leaf boundary layer resistance is computed as

Rleaf,bdy = 50× a

1− e−a/2
×
√
Dleaf

Uc
(1.14)

where Dleaf is a characteristic leaf dimension.

Finally, the stomatal resistance is computed based on the Ball-Berry (1987)
scheme or the Jarvis (1976) scheme depending on the chosen option.



16 Chapter 1.

1.1.3 Options

Beyond its enhanced complexity and open-source accessibility, a pivotal attribute
of the Noah-MP model lies in its remarkable flexibility through the availability
of multiple options for each physical process. Users can choose between disabling
dynamic vegetation and using prescribed values for Leaf Area Index (LAI) and
Green Vegetation Fraction (GVF), or enabling it with predictions from the leaf
dynamic, requiring the Ball-Berry implementation for stomatal resistance (Schaake
et al., 1996a). Stomatal resistance itself offers two options: the Ball-Berry type,
which correlates resistance with photosynthesis rates affected by Photosynthetically
Active Radiation (PAR), and the Jarvis type, which accommodates variations
in sunlit and shaded LAI and their PAR (Schaake et al., 1996a). Soil moisture
factors influencing stomatal resistance come in three forms: Noah type based on
soil moisture, and the CLM and SSiB types utilizing matric potential with different
functional expressions (Xue et al., 1991; Oleson et al., 2004; Yang, Dickinson,
et al., 1997). Runoff and groundwater modeling in Noah-MP include four schemes
ranging from simple TOPMODEL-based approaches to the more complex BATS
runoff scheme (Niu, Yang, Dickinson, and Gulden, 2005;Niu, Yang, Dickinson,
Gulden, and Su, 2007; Schaake et al., 1996b; Yang, Dickinson, et al., 1997). For
the surface exchange coefficient for heat, options include the standard Noah version
3.0 method and another based on MOST (Chen, Janjic, et al., 1997; Brutsaert,
1982b). Handling of supercooled liquid water in frozen soil has two alternatives,
one following a general freezing-point depression equation and the other including
an extra term for increased interface between soil and water (Niu and Yang, 2006;
Koren et al., 1999). Frozen soil permeability can be modeled with either a linear or
nonlinear effect of soil ice on infiltration (Niu and Yang, 2006; Koren et al., 1999).
Radiation transfer through the vegetation canopy offers three options, differing in
their assumptions about vegetation distribution (Yang and Friedl, 2003; Niu and
Yang, 2004). For snow surface albedo, Noah-MP provides two choices, BATS and
CLASS, each accounting differently for variables like snow age and SZA (Dickinson,
Henderson-sellers, and Kennedy, 1993; Verseghy, 1991). Finally, the model offers
three methods for partitioning precipitation into rainfall and snowfall, each varying
in complexity and assumptions about surface air temperature (Jordan, 1991).

1.2 Weather Research and Forecasting model

The Weather Research and Forecasting (WRF) model (Skamarock, Klemp, Dud-
hia, Gill, Liu, Berner, Wang, et al., 2019) is a highly advanced mesoscale numerical
weather prediction system designed for both atmospheric research and operational
forecasting needs. Developed collaboratively by several agencies, including the
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National Center for Atmospheric Research (NCAR), the National Oceanic and
Atmospheric Administration (NOAA), the U.S. Air Force, the Naval Research
Laboratory, the University of Oklahoma, and the Federal Aviation Administration
(FAA), WRF has gained widespread usage across the globe due to its accuracy,
computational efficiency, and versatility. WRF is designed to be a community
model, meaning it is continually being updated and improved by contributions from
users and developers around the world. The model supports parallel computation,
making it suitable for running on a variety of computing platforms, from small
clusters to supercomputers.

The WRF dynamical core ARW solves the compressible non-hydrostatic Euler
equations in flux form (Skamarock, Klemp, Dudhia, Gill, Barker, et al., 2008):

∂tU + (∇ · V u) + µdα∂xp+

(
α

αd

)
∂ηp∂xϕ = FU (1.15)

∂tV + (∇ · V v) + µdα∂yp+

(
α

αd

)
∂ηp∂yϕ = FV (1.16)

∂tW + (∇ · V w)− g

[(
α

αd

)
∂ηp− µd

]
= FW (1.17)

∂tΘm + (∇ · V θm) = FΘm (1.18)

∂tµd + (∇ · V ) = 0 (1.19)

∂tϕ+
1

µd

[
(V · ∇ϕ)− gW

]
= 0 (1.20)

∂tQm + (∇ · V qm) = FQm (1.21)

In the above equations u, v, w are the velocity components, θm = θ
(

1 + Rv

Rd
qv

)
≈

θ (1 + 1.61qv) is the moist potential temperature, qm are the mixing ratios, φ = gz

the geopotential. µd = ∂pd
∂η

is the vertical coordinate metric accounting for the
hybrid terrain-following coordinate, which is a modified version of the standard
terrain-following coordinate η, defined similarly to the one used in the Community
Atmospheric Model (CAM), as described in the NCAR CAM3.0 Technical Note.
µd enters in the flux form definitions for the prognostic variables as:

V = µdv = (U, V,W ), (1.22)

Ω = µdω, (1.23)

Θm = µdθm, (1.24)

Qm = µdqm. (1.25)
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The advantage of this new vertical coordinate is to remove the influence of the
terrain more rapidly with height (Figure 1.7), preventing gravity wave amplification.

Figure 1.7: Resulting vertical grid stretching over complex terrain by using traditional
sigma coordinate (a) and hybrid sigma coordinate (b), from Skamarock, Klemp, Dudhia,
Gill, Barker, et al., 2008.

In addition to the prognostic equations, there are the following diagnostic
equations for dry hydrostatic pressure and full pressure:

∂ηϕ = −αdµd (1.26)

p = p0

(
RdΘm

p0αd

)γ
(1.27)

where αd is the inverse of the dry air density, γ = cp/cv = 1.4 is the ratio of the
heat capacities for dry air, Rd is the gas constant for dry air, and p0 is a reference
surface pressure

The governing equations are re-casted in perturbation form to reduce truncation
errors in the horizontal pressure gradient calculations and machine rounding errors
in the vertical pressure gradient and buoyancy calculations. Each variable is
decomposed in a reference state in hydrostatic balance x̄(z̄), and a perturbation
part x′.

x = x̄(z̄) + x′, (1.28)

On the right-hand side of the governing equations (1.15)-(1.21) solved by ARW
there are all the forcing terms FU , FV , FW , and FΘm , coming from physical pro-
cesses parameterized and computed in dedicated modules: microphysics, radiation,
turbulent mixing, spherical projection, Coriolis effect, etc.

The time discretization is performed in a time-split strategy, with an outer loop
for the large time-step computed with a 3rd order Runge-Kutta integration, and an
inner loop for the acoustic mode integration with time-step ∆τ < 1

2
· ∆x
cs
, where ∆x

is the spatial resolution and cs is the speed of sound. This allows for separating the
treatment of acoustic modes from the integration of more significant atmospherical
processes.
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Spatial discretization is performed as in Figure 1.8 over an Arakawa C grid
(Arakawa et al., 1977), providing a better resolution of gravity waves. With this
prescription, pressure gradient and divergence terms are computed over grid levels.
The grids are rectangular, horizontally uniform, and stretched vertically. The
ARW core provides finite difference spatial discretization from 2nd to 6th order for
advection terms, with the possibility to specify the order for horizontal and vertical
terms separately.

Figure 1.8: Arakawa-C staggering grid employed in WRF, from Skamarock, Klemp,
Dudhia, Gill, Barker, et al., 2008.

The ARW core offers the capability of explicitly solving spatial diffusion both
vertically and horizontally, or alternatively to solve only horizontal diffusion with
vertical parametrized turbulence, or even using manually prescribed eddy viscosities.
If the vertical turbulent mixing is computed independently by a dedicated planetary
boundary layer scheme, the horizontal eddy viscosity can still be computed with a
Smagorinsky closure from the deformation tensor D as:

Kh = C2
s l

2
[
0.25(D11 −D22)2 +D2

12xy

]1/2

(1.29)

with l = ∆x∆y and Cs = 0.25.

A sixth-order spatial filter can also be applied horizontally to remove noise from
the kinematical fields (Knievel et al., 2007).

Different options allow the management of acoustic modes and gravity waves
on the vertical, including the prescription of an absorbing layer, multiple dumping
options, or a Rayleigh damping formulation for vertical velocity with the option
to automatically activate it only in locations where w approaches the Courant
number.

Allowed lateral boundary conditions are periodic, symmetric, open (also called
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"gravity-wave radiating", as in Klemp et al., 1978), or specified (mostly for real
datasets).

More options are available in WRF for real simulations, but, in the present
thesis, idealized simulations are performed with the microphysics scheme deactivated
and without considering the Coriolis force. Among the main parameterizations
available in WRF that play a role in the simulations performed for this thesis, it is
worth mentioning the surface schemes, which compute the momentum and heat
fluxes within the surface layer, and the planetary boundary layer schemes, which
parameterize turbulence. The following describes the PBL and surface schemes
available in WRF which are used in the case studies proposed in this thesis.

The Mellor-Yamada-Janic (MYJ) scheme (Janjic, 2002; Janjić, 1990) is a 1.5-
order local scheme, i.e. it uses local vertical gradients to solve a prognostic equation
for turbulent kinetic energy and uses it to compute the eddy diffusivity K as a
function of height:

Km,h = lv (2e)
1
2 S∗ (1.30)

where lv is a mixing length following Prandtl theory, e is the turbulent kinetic
energy and S∗ is a nondimensional profile function. The subscripts m and h refer
to momentum and heat diffusivities. From the eddy viscosity coefficient, the fluxes
are evaluated as in the flux-gradient theory:

(u′w′) = −Km
∂u

∂z
(1.31)

The surface layer scheme for MYJ is the Eta-similarity scheme (Janjić, 1990),
which incorporates the Zilitinkevich’s (1995) parameterization for a viscous sub-
layer with variable roughness height, relating temperature and momentum transport
as:

z0T = z0Mexp

(
−A0

√
u∗z0M

ν

)
, (1.32)

where u∗ is the friction velocity, ν is the kinematic viscosity, and A0 is an empirical
constant. The correction term βw2

∗ formulated by Beljaars (1995) is applied for
free convection, where β is the empirical free convection coefficient and w∗ is the
Deardorff velocity scale for convective mixed layers. The Beljaars term represents
the near-surface wind induced by large eddies and avoids singularities for vanishing
velocities.

The YSU scheme (Hong et al., 1996) is a non-local scheme which estimates the
PBL height as:

h = Ribcr
θva|U(h)|2

g(θv(h)− θs)
(1.33)
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where Ribcr is the critical bulk Richardson number, θva is the potential temperature
at the lowest model level, θs is a prescribed surface virtual potential temperature,
U(h) and θv(h) are the horizontal wind speed and virtual potential temperature at
h.

h is used to compute the eddy viscosity for momentum (subscript m) and heat
fluxes (subscript h) as a function of height as:

Km,h = kzs

(
1− z

h

)2

, (1.34)

YSU also makes use of a counter-gradient term γh in the Reynolds averaged
equation for θ, to account for the effects of deep convection typically not captured
in local schemes, and a top PBL flux term −

(
w′θ′

)
h
multiplied by

(
z
h

)3, inversely
proportional to the surface flux:

∂θ

∂t
= . . .+

∂

∂z

Kh

(
∂θ

∂z
− γh

)
−
(
w′θ′

)
h

(
z

h

)3
 (1.35)

The YSU parameterization scheme for surface fluxes is MM5, which uses Paulson
(1970) stability functions to compute the scaling parameters:

u∗ =
kU

ln
(
z
z0

)
− ψm

(1.36)

θ∗ = − k(θ − θ0)

Pr

[
ln
(
z
z0

)
− ψh

] (1.37)

q∗ = − Mk

ku∗z


Q−Qs

(
θ
θ0

)
ln
(
z
z0

)
− ψh


 (1.38)

where u∗ is the friction velocity, q∗ represents the scaling parameter for moisture
or latent heat flux, θ∗ is the scaling parameter for sensible heat flux, U is the
mean horizontal wind speed, k is the von Kármán constant (typically around 0.4),
z is the height above ground level, z0 is the roughness length, M is a moisture
availability parameter, Q and Qs are the specific humidity at height z and at the
surface, respectively, θ and θ0 are the potential temperature at height z and at the
surface, respectively, and Pr is the Prandtl number.

ψm and ψh are stability correction functions properly prescribed for unstable
free convection, unstable forced convection, and stable conditions. The stability is
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determined from the bulk Richardson number.

The quasi-normal scale elimination (QNSE) model is a quasi-Gaussian spectral
closure model from renormalization perturbation theory (Sukoriansky et al., 2005).
It is defined as a self-contained algorithm of small-scale mode elimination to estimate
effective viscosities and diffusivities. The complete theoretical treatment of the
spectral model can be found in Sukoriansky et al. (2005), while the implementation
in WRF is as follows: the definition of the eddy viscosity KM and diffusivity
KH contains approximate stability functions αM = KM/K0 and αH = KH/K0

predicted by the spectral theory as functions of the local gradient Richardson
number Ri:

αM =
1 + 8Ri2

1 + 2.3Ri+ 35Ri2
(1.39)

αH =
1.4− 0.01Ri+ 1.29Ri2

1 + 2.34Ri+ 19.8Ri2
(1.40)

The eddy viscosity for neutral flowK0 is evaluated from the Prandtl-Kolmogorov
expression:

K0 = C0le
1/2, C0 = 0.55. (1.41)

where e is the turbulent kinetic energy solved from a prognostic equation.

The length scale l is given by

1

l
=

1

lB
+

1

lN
(1.42)

where lB is the Blackadar scale (Blackadar, 1962) and lN is a length scale
limitation due to stable stratification:

lN = cN
K1/2

N
, cN = 0.75 (1.43)

The surface scheme for QNSE derives the drag coefficients for momentum and
heat, CD, CH as:

CD =
κ2(

ln z
z0

+ ψM(ζ)− ψM(ζ0)
)2 (1.44)
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CH =
κ2(

ln z
z0T

+ ψM(ζ)− ψM(ζ0T )
)(

1
Pr0

ln z
z0T

+ ψH(ζ)− ψH(ζ0T )
) (1.45)

where ζ = z
L
, ζ0 = z0

L
, L is the Monin-Obukhov length, Pr0 = 0.71 is the

turbulent Prandtl number for fully developed neutral turbulence, and the stability
factors ψM and ψH are:

ψM(ζ) = 2.25ζ − 0.2ζ2 (1.46)

ψH(ζ) = 2Pr0ζ + 0.1
[
(ζ − 0.5)2 − 0.52

]
(1.47)

1.3 Sensitivity Analysis

Measuring the impact of small input perturbations on model output has his-
torically been the first methodology to perform a sensitivity analysis (Iooss et al.,
2014). Morris (1991) first introduced the concept of "elementary effect" to define
the effect of the perturbation as the output obtained by that perturbation divided
by the perturbation itself. This approach is based on a One-At-a-Time (OAT)
methodology, i.e., changing only one parameter at a time, leaving all the others
at fixed values. To translate these local perturbations into a global measure of
sensitivity, Morris introduced an index defined as the average of all elementary
effects for each of the parameters. This novel approach put the foundations of the
so-called global sensitivity analysis (GSA). The Morris method is still used today
with good results for screening procedures to discriminate the most influential
parameters from the least influential ones. One of the main problems with the
Morris method and, in general, with OAT approaches, is the assumption of a linear
relationship between the parameter and the output variable, which does not allow
to account for any interaction effect between parameters.

Figure 1.9 shows an example of a 2-parameter model where first-order and
second-order effects are compared to first-order effects only. In this example, the
output is related to the two parameters by the expression z(X,Y) = 2X + 3Y +
0.5XY2. On the other hand, if the interaction effect is neglected, i.e. changing a
single parameter leaving the other fixed, leads to z(X) = 2X +3c+ 0.5Xc2, and
z(Y) = 2c+3Y+0.5cY2, with c being an arbitrary constant. It is important to note
from the results of this simplified example that an OAT strategy for sensitivity
analysis can be significantly misleading in understanding the system response to
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input perturbations.

Figure 1.9: Interaction effect for a simple toy model of two parameters X and Y affecting
a variable z.

A "variance-based" approach is more appropriate and leads to more robust
results. The variance-based methods consist of decomposing the variance of the
model output into multiple terms that account for all parameter interactions
(Saltelli, Annoni, et al., 2010). With such tools, according to Saltelli et al. (2004),
it is possible to correctly estimate both the overall input factors’ influence on the
output and their individual contributions to the total variance.

The most well-established variance-based method is the Sobol method (Saltelli
and Sobol’, 1995), which allows the computation, for each parameter, of the Sobol
total index (which is the sum of all decomposition terms) and of multiple additional
sensitivity indices, up to an arbitrary order of interactions (first-order, second-order,
etc.) in the variance decomposition. The main problem with the Sobol method is
its very high computational cost. For this reason, the implementation of the method
is usually coupled with a screening procedure performed with the Morris method
(Cuntz, Mai, Zink, et al., 2015; Cuntz, Mai, Samaniego, et al., 2016; Li, Zhang,
Barlage, et al., 2018). Since the Morris method can decrease the computational
costs by up to two orders of magnitude compared to the Sobol method (Herman
et al., 2013), it is also often used as a proxy for the Sobol total order index.

As stated in Tarantola et al. (2024), there is a marked spread between local
sensitivity analysis methods and global sensitivity analysis methods in the literature
(Figure 1.10), with the majority of papers using GSA coming from engineering and
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environmental sciences (Figure 1.11). The Authors assert that the slower uptake of
GSA methods is most probably due to divergent research cultures and traditions
in the different scientific disciplines, heterogeneous computational resources in the
various research fields, and varying degrees of proficiency and familiarity with
sensitivity analysis methods among researchers in the different disciplines, which
could explain why the majority of scientific fields favor older but more familiar
methods. There is no doubt that the increasing complexity of models requires
increasingly robust sensitivity analysis techniques, and a key requirement of good
standard should be the ability of such techniques to provide a global perspective on
the influence of uncertainties in model inputs, considering its criticality for decision
making in systems with high degrees of nonlinearity and parameter interactions.

Figure 1.10: Meta-analysis of sensitivity related literature from Tarantola et al., 2024,
depicting papers that utilize GSA versus papers using classical SA.

1.3.1 Sampling design and computational cost

To perform a GSA, it is necessary to set up each model run with a different
set of values for the selected parameters of interest. These values must be chosen
carefully, as good sampling statistics are key to obtaining meaningful results. The
criteria for selecting a sampling method should take into account the degree of
interaction expected for the specific problem under analysis. If there is only a
single parameter to be analyzed, the algorithm may be as simple as a Monte
Carlo sampling (Fishman, 1996) of values within a given range with a normal
distribution, which, depending on the sample size, may have the drawback of
showing unwanted clusters and gaps within the interval. A better strategy for
ensuring homogeneity would be a "stratified sampling", where the domain is divided
into sub-intervals, constrained by the rule to have an equal number of values in
each. If the problem has multiple parameters, the simplest extension would be



26 Chapter 1.

Figure 1.11: Meta-analysis of sensitivity related literature from Tarantola et al., 2024,
classification by field of research.

to change one parameter at a time (OAT), leaving all the others fixed. While
this is an acceptable sampling strategy for local sensitivity analysis, it does not
take into account the interaction effects between the parameters involved, thus
limiting the analysis to a very restricted ensemble of all possible output behaviors.
Unfortunately, a full factorial sampling method, i.e. a sampling that explores
all possible OAT combinations, requires 2k simulations for k parameters, where
each combination would represent a corner of a k-dimensional hypercube (Saltelli,
Ratto, et al., 2008). Such sampling, called "two-level full factorial design", can
be further improved in terms of exploration adding more points from inside the
hypercube, thus obtaining an s-level design with sk model runs, which increases
the accuracy but inevitably also the computational cost. Selecting only a fraction
of the combinations of a full factorial design leads to a fractional factorial (FF)
design. Despite the convenience of reducing the sampling size, a two-level FF is
often not enough to give insights into the variation of the model output (Saltelli,
Ratto, et al., 2008). The Latin Hypercube (LH) sampling (Mckay et al., 1979) is
considered one of the best methods to choose strategically the fraction of a full
factorial design with s > 2. This method consists of constraining the values to
ensure that each parameter is individually stratified over s > 2 levels, and that
each level contains the same number of points.

The resulting sampling is stratified in an ensemble of non-overlapping regions
ensuring that all parts of the original sample space are represented. Figure 1.13
shows an example of a 3-level FF with LH design in 2 dimensions: unlike the
unstratified random sampling of Figure 1.12, for which a fractional design is
visibly non-homogeneous, the 3-level FF-LH sampling ensures that each of the four
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Figure 1.12: Example of random sampling in the parameter space spanned by two
parameters.

Figure 1.13: Example of FF-LH sampling in the parameter space spanned by two
parameters.

quadrants contains the same number of points and each row and column contains
3 points.

Despite the advantages, LH sampling still misses important properties, such
as the possibility to expand an already existing sampling, or the reproducibility
offered by a deterministic procedure. Moreover, an LH sampling does not inherently
incorporate any convergence criterion to ensure the best minimization of the number
of simulations.

A pseudo-random number generator is a desirable alternative procedure due
to its properties of straightforwardness and flexibility, allowing for easy expansion
if additional parameters or simulations are needed. While classic randomly gen-
erated samples suffer from irregular distribution, pseudo-random sampling is a
deterministic sequence built to increase the homogeneity as fast as possible with
the number of samples, with a convergence criterion based on the discrepancy
of the sequence, ensuring a superior optimization of the number of simulations
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compared to an LH sampling (Renardy et al., 2021). Discrepancy is a metric
used to quantify the unevenness of point distribution in a multidimensional space,
with lower values indicating more uniform distributions, i.e. ideal for sensitivity
analysis. Low-discrepancy sequences, or pseudo-random sequences, are generated
by algorithms that strategically bias the placement of new points to avoid proximity
to existing ones, promoting uniformity across the entire sample space.

The benefits of low discrepancy become more apparent with larger sample sizes,
even if more parameters necessitate larger quasi-random samples for the advantages
of low discrepancy to manifest.

The Sobol sequence is a type of low-discrepancy sequence, also known as a
quasi-random or quasi-Monte Carlo sequence, specifically designed to cover the
multidimensional space more uniformly than uncorrelated random points. It is
a sequence of high-dimensional points that are used to create a more uniform
distribution of points within a unit hypercube. The Sobol sequence is particularly
beneficial in numerical integration and in the estimate of the distribution of complex
models, where traditional random sampling may fail to provide a sufficient level of
accuracy.

The Sobol sequence (Sobol’, 1967), and the quasi-Monte Carlo sampling method-
ologies in general, can be conceptualized as follows (Hung, 2023). Let D in [0, 1]d

be a d-dimensional unit hypercube, and f a real integrable function over D. The
aim is to construct a sequence pi in D so that:∣∣∣∣∣∣ 1n

n∑
i=1

f(pi)−
∫
D

f(x) dx

∣∣∣∣∣∣ ≤M(P )V (f), (1.48)

where M(P ) = ‖Fn(x)−F (x)‖ is the discrepancy defined as the difference between
the artificial distribution based on the allocation P = {p1, . . . , pn} and the exact
uniform distribution F (x) overD, and V (f) measures the fluctuation of the function
f (Niederreiter, 1992). The aim is to minimize the discrepancy, hence to solve an
optimization problem to find an allocation P∗ such that:

P ∗ = arg min
P{D}

M(P ) (1.49)

This results in more accurate estimations for integrals and model distributions in
higher-dimensional spaces when compared to standard random sampling techniques.
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1.3.2 Global Sensitivity Analysis

For each parameter, an elementary effect can be defined as the ratio between
the difference in the output response produced by a perturbation of its original
value and the perturbation itself. Using the notation of Saltelli et al. (2008), if
each input parameter is perturbed once, for a given set of k input parameters
X = X1, X2, ..., Xi, ..., Xk, the elementary effect (EE) of the i− th input parameter
is defined as:

EEi =
[Y (X1, X2, ..., Xi + ∆, ..., Xk)− Y (X1, X2, ..., Xi, ..., Xk)]

∆
, (1.50)

where ∆ is one of the N random perturbations of the i− th parameter. A global
measure of the sensitivity is obtained by computing an average of all the N
elementary effects of a single parameter:

µi =
1

N

N∑
i=1

EEi. (1.51)

Since µi is sensible to effects of opposite signs, it is usually substituted by a more
practical form introduced by Campolongo et al. (2007):

µ∗i =
1

N

N∑
i=1

|EEi|, (1.52)

Due to the implicit linear assumption in Equation (1.52), its standard deviation is
typically used, since its introduction by Morris (1991), to assess the non-linear or
interacting nature of the averaged elementary effects:

σ2
i =

1

N − 1

N∑
i=1

(EEi − µ)2, (1.53)

It is important to note that, although σ2
i measures the difference between the

direct linear effect of a single parameter and any other effect, it does not allow to
distinguish between non-linear effects and interactions.

1.3.3 The Sobol Method

As previously stated, the Sobol method decomposes the variance of the model
output Y into fractions that can be attributed to multiple inputs. The variance
decomposition V (Y ) is written as:

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V12...k, (1.54)
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and dividing by V (Y ), we can introduce the Sobol indices Si = Vi/V , Sij = Vij/V ,
etc., leading to:

1 =
∑
i

Si +
∑
i

∑
j>i

Sij + · · ·+ S12...k. (1.55)

The total effect, or total order index ST i, is the total contribution to the output
variation due to a specific factor Xi, i.e. a specific parameter. Hence, for instance,
for a set of three parameters, X1, X2, X3, the total effect index for the parameter
X1 is:

ST1 = S1 + S12 + S123. (1.56)

The total order index, by definition, is in principle equivalent to the Morris µ∗i
index, and thus, for a reasonable amount of samples that ensure good convergence
of the method, µ∗i should be a good proxy for ST i.

The analysis of the first-order index Si and the total index ST i provides important
information about the parameter Xi. (Saltelli, Ratto, et al., 2008):

• if the difference between ST i and Si is high, the parameter Xi is involved in
strong interactions;

• a total index ST i ≈ 0 means that the parameter Xi is a noninfluential factor
and can be fixed at any value without affecting the output variance V (Y );

• the magnitude of Si indicates how much it is possible to reduce the variance
of the output V (Y ) if the parameter Xi could be fixed;

• the difference 1−
∑

i Si is an overall indicator of the presence of interactions
in the model.

As shown in Cuntz et al. (Cuntz, Mai, Samaniego, et al., 2016), when studying
time series, i.e. when the model output under analysis is a time sequence, the
Sobol indices computed for each time step can also be studied as a time series. As
shown in Equation (1.55), the sum of all the indices theoretically amounts to unity
(although this could not be true in case of convergence inaccuracy). This implies
that ranking the k Sobol indices as Smax < ... < Smin for a specific hour of the day,
results in a ranking of the weights that each parameter has on the total variance
with respect to the other parameters under analysis. In other words, the Sobol
indices obtained are strictly bounded to the specific set of the chosen parameters
and the specific hour over which the variance is considered, i.e. the time evolution
of the Sobol indices has to be interpreted as a change in the relative weights of the
parameters. Conversely, it would be an error to interpret the change of a single
parameter sensitivity index without considering the other parameter sensitivity
changes.
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In principle, the brute-force computation of the Sobol first-order index would
require N2 model runs per input factor, with reliable results typically obtained in
the range of N≈102-104. The following will describe the derivation of the algorithm
proposed by Sobol and Saltelli (2010) to circumvent this prohibitive computational
cost.

To be coherent with the original mathematical treatment of Saltelli, slight
changes in the notation are first introduced. The variance of the model Y due to
the change of all the factors except Xi = x∗, will be written as the conditional
variance VX∼i

[Y |Xi = x∗], where x∗ is a fixed value for the factor Xi. The problem
of local sensitivity states that this is not a sufficient measure of importance for the
factor Xi, because it is dependent on the value x∗. Taking the average over all the
possible x∗ will get EXi

[VX∼i
[Y |Xi]], which is now independent from x∗. The total

variance of the model Y can be written as:

V [Y ] = EXi

[
VX∼i

[Y |Xi]
]

+ VXi

[
EX∼i

[Y |Xi]
]

(1.57)

where the term VXi

[
EX∼i

[Y |Xi]
]
is the first-order factor from which the sensi-

tivity index can be recovered:

Si =
VXi

[
EX∼i

[Y |Xi]
]

V [Y ]
(1.58)

The variance appearing in the nominator can be explicitly written in terms of
its definition:

VXi
[EX∼i

[Y |Xi]] = EXi
[E2

X∼i
[Y |Xi]]− (EXi

[EX∼i
[Y |Xi]])

2

=

∫
E2
X∼i

[Y |Xi] dxi −
(∫

EX∼i
[Y |Xi] dxi

)2 (1.59)

The integrals in Eq. (1.59) can be furtherly made explicit considering that:

EX∼i
[Y |Xi] =

∫
f(x∼i, xi)dx∼i (1.60)

And by defining a dummy vector variable x
′
∼i:

E2
X∼i

[Y |Xi] =

∫
f(x∼i, xi) dx∼i ·

∫
f(x∼i, xi) dx∼i

=

∫ ∫
f(x

′

∼i, xi)f(x∼i, xi) dx
′

∼i dxi

(1.61)
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Hence the explicit form of the variance:

VXi
[EX∼i

[Y |Xi]] =

∫ ∫
f(x

′

∼i, xi)f(x∼i, xi)dx
′

∼idxi −
(∫

f(x)dx

)2

(1.62)

which leads to the integral form of the first-order sensitivity index:

SXi
=
VXi

[EX∼i
[Y |Xi]]

V [Y ]

=

∫ ∫
f(x

′
∼i, xi)f(x∼i, xi) dx

′
∼i dxi −

(∫
f(x) dx

)2∫
f(x)2 dx−

(∫
f(x) dx

)2

(1.63)

The same procedure applies to derive the total effect index, which yields:

STXi
=
EX∼i

[VXi
[Y |X∼i]]

V [Y ]

=

∫
f 2(x) dx−

∫ ∫
f(x∼i, x

′
i)f(x∼i, xi) dx

′
i dxi∫

f(x)2 dx−
(∫

f(x) dx
)2

(1.64)

The discretization of the integrals leads to the algorithm found by Saltelli, which
prescribes the following steps:

1. generate a (N , 2k) matrix of random numbers (k is the number of inputs)
and define two matrices of data (A and B), each containing half of the sample.
N is called a base sample; to give an order of magnitude, N can vary from
a few hundred to a few thousand. Sobol recommends using sequences of
quasi-random numbers (Sobol’, 1967);

2. define a matrix Ci formed by all columns of B except the ith column, which
is taken from A;

3. compute the model output for all the input values in the sample matrices
A, B, and Ci, obtaining three vectors of model outputs of dimension N × 1:
yA = f(A), yB = f(B), yC = f(C).

After the above steps, the following expression for the first-order index is
obtained:

Si =
V
[
E[Y |Xi]

]
V [Y ]

=
yA · yCi

− f 2
0

yA · yA − f 2
0

=
1
N

∑N
j=1 y

(j)
A y

(j)
Ci
− f 2

0

1
N

∑N
j=1

(
y

(j)
A

)2

− f 2
0

(4.21) (1.65)
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where

f 2
0 =

 1

N

N∑
j=1

y
(j)
A

2

(1.66)

is the mean, and the symbol · denotes the scalar product of two vectors.

The total effect is obtained from:

STi = 1−
V
[
E[Y |X∼i]

]
V [Y ]

= 1− yB · yCi
− f 2

0

yA · yA − f 2
0

= 1−
1
N

∑N
j=1 y

(j)
B y

(j)
Ci
− f 2

0

1
N

∑N
j=1

(
y

(j)
A

)2

− f 2
0

(1.67)

The matrices A and B account for 2N model evaluations, while the matrices Ci
require N · k model runs for k input factors, for a total of N · (k + 2) model runs,
which is significantly lower than the N2 required for the brute-force approach.

As proposed in the present thesis, this computational efficiency can be further
enhanced by employing data-driven modeling techniques to construct a surrogate
model. Such a surrogate model approximates the behavior of the original complex
model, enabling the computation of the required evaluations for the Sobol method
at a significantly reduced computational cost. By fitting a surrogate model to a
subset of the original model evaluations, the responses for a wide range of input
parameters can be estimated without the need to run the full model each time.
This approach is particularly advantageous in scenarios where the original model is
computationally intensive, as it substantially decreases the total number of model
runs required for a comprehensive sensitivity analysis. The surrogate model, once
validated for accuracy, serves as a rapid computational tool, ensuring that the
Sobol method’s application remains both efficient and reliable, even for models
with a high computational burden.

1.4 Data-driven modeling

Data-driven modeling for regression tasks involves a sequence of key steps
designed to build and evaluate predictive models based on continuous data. While
the specific details of the workflow may vary across different studies, reflecting their
unique requirements and objectives, the core components of this process remain
consistent in every workflow. A typical workflow is shown in Figure 1.14, which is
specific to weather applications using three different machine learning algorithms.
Each step in the ideal workflow contributes to the overall accuracy and reliability
of the model.

1. Data Collection and Preprocessing: this step includes data cleaning (handling
missing values, removing duplicates), data transformation (converting data



34 Chapter 1.

Figure 1.14: Workflow from Singh et al., 2019

into a suitable format), and feature engineering (creating new features from
existing data).

2. Data Standardization/Normalization: this step prevents features with larger
scales from dominating the model’s learning process.

3. Data Splitting (Train-Test Split): typically, data is split into a training set
(used to train the model) and a testing set (used to evaluate the model). A
common split ratio is 70:30 or 80:20 (train:test). Splitting data into these
two sets is crucial for assessing the model’s ability to generalize beyond the
data it was trained on. If the model only performs well on the training data
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but not on the test data, it may be affected by overfitting.

4. Model Training: the training dataset is used to train the machine learning
model. It includes both the input data and the corresponding expected output.
The model learns to map inputs to outputs from this dataset. The choice of
the regression algorithm (linear regression, decision trees, etc.) depends on
the nature of the task and data. The model learns to map input features to
the target variable during training.

5. Cross-Validation: this step provides a more robust way to assess the model’s
performance. It is used to prevent overfitting. The training set is divided
into smaller subsets. The model is trained on some subsets and validated on
others, typically using techniques like k-fold cross-validation (Figure 1.15).
This process is repeated multiple times to ensure the model’s stability and
reliability.

Figure 1.15: K-fold cross-validation performed by defining a training fold set and a test
fold in each iteration, from De Oliveira et al., 2017.

6. Hyperparameter Tuning: hyperparameters are the parameters inherent to the
machine learning algorithms. They are set prior to the training process and
remain constant during it. Tuning of the hyperparameters is important to
optimize the algorithms and improve their performance. Techniques like grid
search or random search are used to find the optimal set of hyperparameters.

Grid Search (Figure 1.16) is a brute-force approach to hyperparameter tuning
that systematically builds and evaluates a model for each combination of
algorithm parameters specified in a grid.

Random Search (Figure 1.17) addresses some of the limitations of Grid
Search by randomly selecting combinations of hyperparameters to evaluate.
It can sample a broader range of values than Grid Search and it is possible
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to incorporate prior knowledge by specifying the distributions from which
hyperparameters are sampled. It often achieves better performance with fewer
evaluations compared to Grid Search, particularly when the hyperparameter
space has a low intrinsic dimensionality.

Gradient descent (Figure 1.18) is a first-order iterative optimization algorithm
for finding a local minimum of a differentiable function. In the context of hy-
perparameter tuning, gradient descent can be used to minimize a loss function
L(θ), which depends on the model’s hyperparameters θ. The hyperparameters
are updated iteratively to minimize the loss function. When dealing with
complex functions that have multiple local minima, gradient descent can
end in one of these local minima rather than finding the global minimum,
especially if the function is not convex. This issue can be circumvented by
modifying the algorithm with more refined strategies or by using a different
methodology such as Bayesian Optimization.

Bayesian Optimization is a more sophisticated approach that uses the Bayesian
technique to direct the search in order to find the minimum or maximum of
an objective function efficiently. It is particularly useful when the evaluation
of the function is expensive, i.e. time-consuming. The key idea is to estimate
the posterior probability distribution of the objective function and use it
to select the most promising hyperparameters to evaluate them in the true
function. In Bayesian Optimization, the choice of the next point to evaluate
is based on the posterior distribution derived from the previous evaluations,
typically using the Gaussian Process method to create a surrogate model.

The surrogate model in a GP framework is defined as:

f(x) ∼ GP(m(x), k(x, x′)), (1.68)

where f(x) is the unknown objective function, m(x) is the mean function, and
k(x, x′) is the kernel function defining the covariance between two points x and
x′ in the hyperparameter space. The acquisition function α(x) determines the
query point xn solving an optimization problem. After evaluating the objective
function at xn, the surrogate model is updated with a new observation xn+1

from the dataset. This update is done using Bayes’ theorem, hence the name
Bayesian Optimization. The update rule for GPs, taking into account the
new data point xn+1, yn+1, is:

p(f |x(1:n+1), y(1:n+1)) ∝ p(yn+1|f, xn+1)p(f |x1:n, y1:n), (1.69)

where p(f |x(1:n), y(1:n)) is the posterior probability of f given the data points
observed so far, and p(yn+1|f, xn+1) is the likelihood of observing xn+1, yn+1.
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Figure 1.16: Homogeneous optimization procedure performed in a grid-search algorithm
(https://en.wikipedia.org/wiki/Hyperparameter_optimization).

Figure 1.17: random optimization procedure performed in a random-search algorithm
(https://en.wikipedia.org/wiki/Hyperparameter_optimization).

Figure 1.18: Optimization procedure based on a gradient-descent strategy (https:
//en.wikipedia.org/wiki/Hyperparameter_optimization).

https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization
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7. Model Test: The test dataset is a separate set of data not used during training.
It is used to evaluate the performance of the model after training. Metrics
such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), or the determination coefficient R2 are typically
used to quantify the model’s accuracy. The model test provides insights into
how well the model generalizes to new, unseen data.

1.4.1 Variance-bias tradeoff

The final aim of the model is to avoid overfitting and find the best compromise
between the variance and the bias. Achieving this balance is crucial, as it directly
influences the model’s overall performance and its ability to generalize well to new,
unseen data. To achieve this goal, it is necessary to consider the contributions to
the prediction error of an ML-based regression algorithm.

The total expected prediction error can be written as (e.g. Hastie et al., 2004):

Total Error = (Bias2) + Variance + Irreducible Error (1.70)

where the bias refers to the error introduced by overly simplistic assumptions
in the learning algorithm. High bias can cause a model to miss relevant relations
between features and target outputs (underfitting). The bias is defined as the
difference between the expected prediction of the model and the true output values:

Bias2 =
(
E[f̂(x)]− f(x)

)2

(1.71)

On the other hand, the variance measures how much the predictions of a model
vary for a given data point when trained on different datasets. High variance is
observed when a model is overly sensitive to small fluctuations in the training set
(overfitting).

Variance = E

[(
f̂(x)− E[f̂(x)]

)2
]

(1.72)

Overfitting occurs when a statistical model or machine learning algorithm
captures the noise in the data rather than the underlying pattern. It occurs when
a model is overly complex, such as having too many parameters relative to the
number of observations. An overfitted model performs very well on the training
data, but poorly on unseen data (test data). This is because it has learned both the
true underlying relationships in the training data and the random fluctuations that
are not actually part of the underlying data pattern. In other words, overfitting
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occurs when the algorithm learns the specifics of the examples rather than the
generalized input-output relationship.

Increasing model complexity typically decreases the bias but increases the
variance, and vice versa. Simplifying a model can lead to higher bias (underfitting),
while increasing its complexity can lead to higher variance (overfitting). This is
shown in Figure 1.19, where the error from sample training and testing data is
plotted against model complexity. While the error is guaranteed to decrease during
training for any level of model complexity (cyan colored line), the error associated
with the testing phase (red colored line) eventually reaches an inflection point,
meaning that beyond that point the algorithm will overfit the training data and
lose the ability to obtain good general results.

Figure 1.19: Variance-Bias tradeoff in the prediction error curve for the training sample
and the test sample, from Hastie et al., 2004.

The goal in many ML tasks is to find the tradeoff between bias and variance,
minimizing the total error. This optimal complexity point does not necessarily
mean the lowest possible bias or variance, but the point where their combination is
minimized.

Thoroughly following the good practices described in the previous section, as
well as using the specific strategies discussed in the following section, which some
regression methods inherently employ (e.g. regularization, bootstrapping, boosting,
etc.), is typically considered the most effective empirical strategy to identify the
optimal tradeoff point between bias and variance for the specific problem under
analysis. The accuracy metrics used to evaluate the goodness of the test phase
are the final indicators to assess whether the obtained tradeoff is sufficient for the
research objectives.
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1.4.2 ML algorithms

As of today, there is a great variety of ML methods for data-driven modeling.

In the field of ML, algorithms can be divided in two main categories: super-
vised and unsupervised learning, both of which can be applied to regression and
classification tasks. Supervised learning algorithms rely on labeled data sets to
train the model. This means that the input data is paired with the correct output,
allowing the algorithm to learn over time how to predict the output from the input.
Supervised learning works well for both classification tasks, where the output is a
category or label, and regression tasks, where the output is a continuous value.

Unsupervised learning algorithms, on the other hand, do not use labeled data.
They work by identifying patterns or inherent structures in the input data. These
algorithms are typically used for clustering tasks, where the goal is to group similar
items together, or to identify rules that describe large portions of the data.

In the specific case of this thesis, the aim is to use input features and associated
outputs to train the models, hence the focus is on supervised learning methods.
Furthermore, since the focus is exclusively on datasets with continuous values,
the attention turns to regression tasks within the supervised learning paradigm.
Regression models are trained to understand and predict continuous outcomes
based on the relationships derived from the input features and their corresponding
continuous outputs.

1.4.2.1 Decision Trees

A decision tree is a hierarchical method with a flowchart tree-like structure,
where each internal node (the "decisional nodes") defines a test over an attribute,
and has two or more branches leading to the test outcomes (the "leaf nodes"). Over
a continuous variable, these tests act by splitting the data into smaller subsets
based on criteria over input and output pairs, with the aim of obtaining the data
segmentation that minimizes the residuals.

Using the same notation of Hastie et al. (2004), if the dataset is composed
of input xi and output yi, and is segmented by the algorithm into M partitions
R1, R2, . . . , RM , with the output modeled as a constant cm in each region, the
function built by the decision tree is:

f(x) =
M∑
m=1

cmI(x ∈ Rm). (1.73)

The search of a splitting point s performed over the variable j consists of obtaining
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two partitions defined as:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (1.74)

and the minimization to be solved, using the sum of squares
∑

(yi − f(xi))
2 as the

cost function, is:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 . (1.75)

which finds the best splitting of the data.

Tree-based algorithms such as CART (Classification and Regression Trees,
Breiman et al., 1984) are based on the "greedy algorithm" to explore the input
space and find split points with recursive binary slitting using a cost function. A
stopping criterion is chosen beforehand for the greedy algorithm, such as reaching
a certain amount of samples in each leaf node. In the building of a tree structure,
trees with fewer branches are favored by the use of tree pruning techniques, avoiding
an over-clusterization of the data. A curve regression performed by simple decision
trees would appear as in Figure 1.20, showing the effects of changing the depth of
the tree, i.e. the length of the longest path from the root node to a leaf node. The
discontinuous nature of the individual decision branches results in discretized steps
which can be made more dense increasing the depth of the tree, but the proper
size for each step must be tuned for the specific data set without ending up in an
underfitting/overfitting scenario.

Despite their simplicity and intuitiveness, basic decision tree algorithms such
as CART can easily suffer overfitting, high variance, and low bias. A solution to
make the method more robust to outliers and more reliable is to a use multitude of
decision trees and to average the results obtained from each tree separately. This
approach is called "ensemble learning" and is the base of more refined methods
such as Random Forests (RF, Breiman, 2001).

In the RF algorithm, each tree is obtained from a subsample of the dataset
(Figure 1.21) extracted by a bootstrap procedure.

The bootstrap method is a resampling technique used to estimate statistics on
a population by sampling a dataset with replacement. In the context of ML, it is
often used to create multiple datasets from a single original dataset. Each element
of the original dataset has the same probability of appearing in each bootstrap
sample, and elements can appear multiple times in a single sample. This is different
from traditional sampling methods, where each element can appear only once in
each sample (sampling without replacement).
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Figure 1.20: Decision tree regression for 2 values of the hyperparameter max_depth
(https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.
html).

In particular, RFs utilize the Out-Of-Bag (OOB) method, which is a bootstrap-
ping method for validating the model without needing a separate validation set.
During the creation of each bootstrap sample, some instances from the original
dataset are left out (i.e. not sampled). These left-out data are referred to as
"out-of-bag". The OOB instances can be used to test the performance of each
model in the ensemble, since they were not used during the model’s training. The
error rate of predictions on the OOB instances is known as the OOB error, which
is a measure of prediction accuracy. Since OOB instances are a random sample
of the original dataset, the OOB error can be a reliable estimate of the model’s
performance on unseen data, similar to cross-validation. The variance reduction
comes from choosing the best split from these random subsets of features.

The tree-based algorithms can achieve even more benefits from a boosting
approach (e.g. XGboost, Chen and Guestrin, 2016). Boosting is an ensemble
technique where multiple models (usually weak learners) are trained sequentially.
Each new model focuses on the errors of the previous models and tries to correct
them. The key idea is to train subsequent models by emphasizing the data points
that were incorrectly predicted by earlier models, hence each subsequent tree is
built with an information function coming from the old tree, as shown in Figure
1.22. This is often achieved by assigning higher weights to these misclassified
points or by focusing on the residual errors. The final model is typically a weighted

https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
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Figure 1.21: Random forest voting system depiction, from Wang, Pan, et al., 2019

average of all the "weak learners", where more accurate learners are given more
weight. Specifically, gradient boosting is a type of boosting that optimizes a cost
function. In gradient boosting, the decision trees are added sequentially to correct
the residuals (i.e. the errors) of the combined ensemble. The gradient of the loss
function is used to minimize the errors. The next model in the sequence specifically
targets reducing the overall loss, making the learning process more direct and
efficient. Mathematically, the procedure of gradient boosting, given a loss function
L(y, f(x)), and a number of iterations M , is as follows (Hastie et al., 2004):

1. Initialize f0(x) = arg minγ
∑N

i=1 L(yi, γ).

2. For m = 1 to M :

(a) For i = 1, 2, . . . , N compute

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

. (1.76)

with rim being called pseudo-residuals.

(b) Fit a regression tree to the targets rim resulting into data partitions
Rjm, j = 1, 2, . . . , Jm.

(c) For j = 1, 2, . . . , Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ). (1.77)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm).
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3. Output f̂(x) = fM(x).

Figure 1.23 shows how the regression of a boosting method for decision trees
changes with the number of estimators, i.e. the number of trees that are iteratively
added to correct the errors of the combined ensemble.

Figure 1.22: Gradient boosting procedure depiction, from Wang, Pan, et al., 2019

Figure 1.23: Boosting method for decision tree regression with 2 values of the hyperpa-
rameter n_estimators (https://scikit-learn.org/stable/auto_examples/ensemb
le/plot_adaboost_regression.html).

https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html
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1.4.2.2 Regression curves

Curve-fitting-based algorithms like Support Vector Machine (SVM, Vapnik,
1963) and LASSO (Least Absolute Shrinkage and Selection Operator, Tibshirani,
1996) focus on finding a function that best fits the data. Considering a linear
model:

f(X) = β0 +

p∑
j=1

Xjβj (1.78)

a curve-fitting regression task will search for the unknown coefficients βj’s from
a set of training data (x1, y1), . . . , (xN , yN), constrained by the minimization of a
cost function:

RSS(β) =
N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

yi − β0 −
p∑
j=1

xijβj

2

. (1.79)

In methods like LASSO, the minimization accounts for an additional constraint,
called "regularization", and can be written as (Hastie et al., 2004):

β̂lasso = arg min
β


N∑
i=1

yi − β0 −
p∑
j=1

xijβj

2
 subject to

p∑
j=1

|βj| ≤ t.

(1.80)

or, in the equivalent Lagrangian form:

L(β, λ) = arg min
β

 N∑
i=1

yi − β0 −
p∑
j=1

xijβj

2

+ λ

 p∑
j=1

|βj|


 . (1.81)

where λ
(∑p

j=1 |βj|
)

is called "penalty term", which is the key concept of
regularization. Applying this term to the cost function helps the model to prevent
overfitting, because it manages the bias-variance tradeoff in model training. In
practical terms, while adding a penalty increases the bias, it reduces the variance,
helping the model to generalize better to unseen data.

LASSO uses an "L1 Regularization", i.e. it adds a penalty equal to the absolute
value of the magnitude of the coefficients. This can lead to models where some
coefficients are exactly zero, which is useful for feature selection, because it leads
to sparser models (i.e., models with fewer predictors), which can be advantageous
for interpretation and when dealing with high-dimensional data.
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Another type of regularization is the L2 regularization (Ridge). This consists
of adding a penalty equal to the square of the magnitude of the coefficients.
This term tends to shrink the coefficients but does not set any of them to zero,
resulting in models where all features are included but with reduced magnitude. L2
regularization tends to work better when most features have a significant impact on
the output variable. Unlike L1 regularization, which can completely eliminate the
weight of some features, L2 regularization only shrinks the coefficients towards zero,
but it does not set them to zero. This makes it a better choice when discarding
features is not desirable.

SVM is a model that makes use of ridge regularization. It estimates the β
coefficients as:

H(β, β0) =
N∑
i=1

V (yi − f(xi)) +
λ

2
‖β‖2, (1.82)

where V is a function which introduces a tolerance ε, such that errors of size
less than ε are ignored:

Vε(r) =

0 if |r| < ε,

|r| − ε, otherwise.
(1.83)

The use of a tolerance error, often referred to as the ε-insensitive loss (or ε-
tube) in SVM regression, has several implications for the model’s behavior and
performance. If the predicted value is within an ε margin from the actual value,
it is considered an acceptable prediction, and no penalty is applied. This concept
introduces a form of robustness in the model, as it is not heavily affected by small
deviations.

Moreover, using an ε-insensitive loss often leads to sparsity in the solution.
Since only the data points that lie outside the ε-tube (or on its boundary, where
they are defined support vectors) contribute to the model, the model is effectively
influenced only by the points that are either errors (outside the margin) or are
critical to defining the margin itself.

The SVM minimization problem has solutions:

β̂ =
N∑
i=1

(α̂∗i − α̂i)xi, (1.84)

f̂(x) =
N∑
i=1

(α̂∗i − α̂i)〈x, xi〉+ β0, (1.85)
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where α̂i, α̂∗i are positive and solve the quadratic problem:

min
αi,α∗i

 N∑
i=1

(α∗i + αi)−
N∑
i=1

yi(α
∗
i − αi) +

1

2

N∑
i,i′=1

(α∗i − αi)(α∗i′ − αi′)〈xi, xi′〉


(1.86)

subject to the constraints:

0 ≤ αi, α
∗
i ≤

1

λ
,

N∑
i=1

(α∗i − αi) = 0, (11.41)

αiα
∗
i = 0.

(1.87)

It can be shown that approximating the solution of Eq. (1.85) using a rep-
resentation with basis functions {hm(x)},m = 1, 2, . . . ,M , leads to a "kernel
formulation":

f(x) =
M∑
m=1

βmhm(x) + β0 =
N∑
i=1

âiK(x, xi) (1.88)

with K(x, y) =
∑M

m=1 hm(x)hm(y) known as "kernel". Depending on the
specificity of the SVM application, by using a particular class of functions as kernel
to represent the approximate solution, the algorithm can be significantly faster and
accurate.

1.4.2.3 Probabilistic approach

Probabilistic-based data-driven methods represent an inherently different ap-
proach compared with the other mentioned methods, because they integrate the
quantification of uncertainty into the model predictions. This feature makes them
particularly suitable for creating surrogate models, since they can effectively emulate
the original model variability and generate a realistic ensemble of surrogate outputs.
Since the surrogate outputs are obtained significantly faster than the original model
outputs, it is possible to generate a large enough number of surrogate outputs to
implement the Sobol algorithm described in Section 1.3.3. The following part of
the section discusses the two probabilistic methods implemented in ML-AMPSIT:
Gaussian Process Regression (GPR) and Bayesian Ridge Regression (BRR).

GPR is equivalent to the more famous spatial interpolation method known as
"kriging" (Stein, 1999). It treats each individual parameter-output relationship as
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a member of a multivariate Gaussian distribution of unknown mean and variance:

X =


X1

X2

...
Xn

 ∼ N (µ,Σ) (1.89)

The covariance matrix Σ = Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)T ] describes
the shape of the distribution around the mean vector µ. Inside Σ, the diagonals
represent the variances σ2

i along the ith variable (i.e. the ith training/test point),
and the off-diagonal elements describe the correlation σij between the ith and the
jth variable. Such a covariance matrix is determined by specifying a kernel, which
defines the functional space from which a function can be extracted as a candidate
for the fitting; thus, the kernel controls the possible shape that a fitted function
can adopt. A common kernel used for GPR, also adopted in this study, is the
Radial Basis Function (RBF) kernel, which contains all the functions of the form
σ2 exp

(
− (t−t′)2

2l2

)
for each t, t′ ∈ Rn received as input and length scale l. Each time

a couple t, t′ is extracted from the training data, the kernel function returns the
covariance measure between the two points as:

k : Rn × Rn → R, Σ = Cov(X,X ′) = k(t, t′) (1.90)

Initially, when no training data are available, a prior distribution is assumed.
Each time new training data are considered, a new conditioning is performed, i.e.
a new Bayesian inference is computed for the values of the covariance matrix. In
other words, the training data constrains the set of functions to only those that
pass through it. Gaussian processes also model the errors of each measurement
by adding noise to the training points and then obtaining probabilistic predictions
by sampling from the resulting distribution and considering a confidence interval.
An example is shown in Figure 1.24 for a GPR over 10 randomly generated data
points with an RBF kernel.

BRR (Box et al., 1992) is another probabilistic approach starting from the
assumption that data comes from a linear model with additive Gaussian noise
(Tipping, 2001). Hence the weights w of the regression follow a prior distribution
whose parameters α and λ are also assumed to be probabilistic, following hyperpriors
Gamma distributions. Knowing the priors and the likelihood, the parameters
and hyperparameters are updated by computing the posteriors from Bayes’ rule
during the assimilation of the training data. It is noteworthy that in BRR the
hyperparameter α, controlling the variance of the Gaussian distribution, is also
implicitly applying a regularization, since a higher α, i.e., a smaller Gaussian
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Figure 1.24: Visual example of a GPR with an RBF kernel. Ten training data are used
to show the constraints they place on the probability density function.

variance, shrinks the coefficient weights asymptotically toward zero, as in the
ridge-type regularization.
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Chapter 2

State of the art

2.1 Idealized simulations of the valley wind system

Mountain valleys are characterized, especially during fair weather days in the
warm season, by the development of thermally driven circulations due to the
differential heating and cooling of the lower atmospheric layers. The daily cycle of
this type of circulation for a simplified valley-plain configuration was first theorized
by Wagner (e.g. Rampanelli et al., 2004) and subsequently schematized by Defant
(Defant, 1951). In the Defant scheme (Figure 2.1), four main wind components
alternate: upslope and upvalley winds develop during the day, while downslope and
downvalley winds develop during the night. In the slope atmosphere (Whiteman
et al., 1984), along-slope air currents result from pressure gradients moving air
from the mountain basis to the top of the ridge (anabatic flow) during the day and
from the ridge to the bottom of the valley (katabatic flow) during the night. Above
the slope circulation, a counterflow compensating the thrust of the low-level air
masses is generally present during the day (Monteith et al., 1979), with subsidence
in the center of the valley. On the other hand, the convergence of upslope winds
can generate rising plumes at the top of the ridge. The valley atmosphere is
instead characterized by along-valley winds, which develop due to the combination
of different contributions to the thermal gradient. First, the difference in the air
volume between the valley and the plain, i.e. the "volume effect" (Rampanelli
et al., 2004), causes faster heating and cooling of the former with respect to the
latter (Zardi et al., 2013). Then, during daytime, the overheating of the valley
atmosphere is enhanced by the subsidence in the valley center due to the presence
of the upslope circulation, while the nighttime cooling of the valley is promoted by
the convergence towards the valley floor of downslope winds, which accumulate
cold air in the lower layers (Rampanelli et al., 2004; Serafin et al., 2011). As a
consequence, atmospheric pressure tends to decrease from the plain to the inner
sections of the valley during daytime, promoting the development of upvalley winds,
while the opposite occurs during the night, with the development of downvalley
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winds. Above the valley core there is typically another counterflow closing the
plain-mountain circulation (Monteith et al., 1979). Radiative processes within
the valley also contribute to the strengthening of the thermal gradient with the
plain region, since the valley air mass is partially enclosed by radiating surfaces
(Monteith et al., 1979; Zardi et al., 2013). Slope circulations react fast to the
heating and cooling of the sidewalls, so they generally develop immediately after
sunrise (upslope) and sunset (downslope), with brief transition phases. On the
other hand, the inertia of the along-valley circulation is greater, with a gradual
weakening of the circulation before the reversal of the wind direction. For example,
during the evening transition phase, when the stable layer begins to grow from the
valley floor, the downvalley wind gradually develops starting from the lower layers,
moving the up-valley wind to the valley core (Giovannini et al., 2017).

The sensitivity of this thermally-driven circulation to the geometric properties
of an idealized valley has been extensively studied using both Reynolds-averaged
Navier Stokes (RANS) simulations and Large-Eddy Simulations (LES). Wagner et
al. (2015) performed LES with the WRF model adopting an idealized valley-plain
configuration (Figure 2.2), showing that the increase of the valley floor inclination
causes a strong intensification of the plain-valley temperature contrast and the
subsequent along-valley wind penetrates much deeper into the valley. The increase
in wind speed also occurs with the reduction in valley volume and especially with
the narrowing of the valley walls. In all simulations the Authors observed a valley
inversion layer separating two vertically stacked circulation cells, which is weaker
for wider valleys (Wagner et al., 2014). With a similar configuration (Figure 2.3),
Wagner et al. (2014) investigated the effects of a systematic variation of valley
depth, width, and length, performing several WRF-LES simulations and found that
valley deepening strengthens upvalley winds, increases the formation of vertically
stacked cells, and of a higher inversion layer; on the contrary, valley widening
weakens upvalley winds. The Authors also found that vertical transport is stronger
for deep and narrow valleys, which then leads to a more pronounced exchange
between the boundary layer and the free atmosphere over the valley compared to
the plain region.

The idealized valley configuration has also been used for a model intercomparison
study by Schmidli et al. (Figure 2.4), who extended the analytical expression for
the topography proposed in Rampanelli et al. (2004). In particular, the Authors
compared nine different non-hydrostatic mesoscale models with the same initial and
boundary conditions in the simulation of the daytime valley circulation, finding a
similar behavior except for a time shift of up to two hours. Their analysis suggests
that these inconsistencies are primarily caused by differences in the simulation of
the surface energy budget. In the same study, it was shown that different turbulence
schemes have a strong influence on the vertical structure of the boundary layer and
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Figure 2.1: Defant schematization of the valley wind cycle, From Rampanelli et al., 2004.
(a) Sunrise initiates upslope winds (white arrows) alongside persistent mountain winds
(black arrows), with the valley cooler than the plain. (b) By mid-morning, strong slope
winds emerge and transition from mountain to valley winds, equalizing valley and plain
temperatures. (c) By noon and early afternoon, slope winds subside as valley winds fully
develop, warming the valley above plain temperatures. (d) In the late afternoon, hillside
winds cease while valley winds continue, maintaining a warmer valley. (e) Evening brings
the onset of downslope winds and a decrease in valley winds, with the valley remaining
slightly warmer than the plains. (f) Early night brings the establishment of downslope
winds and a shift from valley to mountain winds, equalizing temperatures between the
valley and the plains. (g) Overnight, continuous downslope and fully developed mountain
winds cool the valley below plain temperatures. (h) Late night into morning, downslope
winds cease and mountain winds dominate, keeping the valley colder than the plain.

the along-valley wind; in particular, the K-profile-based models tend to simulate
the deepest boundary layer. The use of computational horizontal mixing, such
as Smagorinsky-type mixing, also results in a wider convergence zone over the
ridge. Idealized simulations have also been successfully employed to reproduce the
triggering of specific phenomena to better understand the dynamics involved. For
instance, Leukaf et al. (2016) performed a series of WRF-LES simulations to study
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Figure 2.2: Representation of the valley topography used for simulations in Wagner et al.,
2014, varying geometric configurations across (a)-(d) setups. Dashed gray boxes indicate
horizontal areas at crest height.

Figure 2.3: Valley topographies for various valley depths and widths used for simulations
in Wagner et al., 2015.

the mechanisms leading to the breakup of the valley temperature inversion varying
the surface heating and the Brunt-Vaisala frequency. The progressive heating of
the valley atmosphere initially favors the development of a convective boundary
layer (CBL) with a stable layer on top (the stable core) and a slope wind layer
with a stability-dependent height that decreases with increasing height.

Studies such as those presented above contributed to building a solid and
reliable tool to reproduce and investigate multiple aspects of valley circulations.
This background forms the basis for the idealized configurations used in the present
work.
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Figure 2.4: Sections of a three-dimensional valley-plain topography used in Schmidli,
Billings, et al., 2011.(a) Upper section of the domain at different contour heights (b)
Cross-section showing the topography and the initial profile for the potential temperature,
with a contour interval of 1 K.

2.2 Sensitivity analysis applied to LSMs

The Sobol method has long been applied to hydrological and environmental
models (Gan et al., 2014; Wang and Solomatine, 2019; Pyo et al., 2021; Gong et al.,
2015; Rosolem et al., 2012; Griensven et al., 2006; Rosero et al., 2010). Rosero et
al. (2010) used this method to evaluate the performance of the Noah land surface
model by comparing three different versions, the standard version, the standard
version with the adjoint of a groundwater module, and the standard version with
the adjoint of a dynamic phenology module. Comparing the Sobol first-order index
with the total index, the study showed that the parameter interaction becomes
increasingly significant with the complexity of the model version, but also that the
variance of the model response is mainly controlled by a few important parameters
such as the soil porosity, the bare soil evaporation exponent fx (empirical parameter
from the first-layer direct soil evaporation scheme, as reported in Ek et al. 2003)
and the leaf area index. The dynamic vegetation module was found to cause the
largest increase in interactions but did not improve the model’s performance. In
addition, the Authors highlighted the presence of interactions between parameters
with no functional relation, suggesting that the model was operating differently
from the originally intended purposes. The Authors argued that the problems
could be related to the absence of a separate canopy layer and of a Ball-Berry
stomatal conductance formulation. While both of these options are now available
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in Noah-MP, this work demonstrated how useful the Sobol method can be in
addressing model issues.

In recent years, many extensive studies have been published focusing on testing
Noah-MP through GSA. Cuntz et al. (2016) showed that the most influential
parameter of an ensemble composed of 42 changeable parameters and 75 hard-
coded parameters was a coefficient appearing in the formulation of the soil surface
resistance to direct evaporation, which happened to be a hard-coded parameter.
Furthermore, only two-thirds of the 42 modifiable parameters were meaningfully
sensitive parameters. Notably, as in Rosero et al. (2010), the dynamic vegetation
option was considered problematic, arguing that with this option activated the
leaf area index sensitivity is spread to new vegetation parameters, increasing the
number of interactions and leading to less clear results.

In evaluating Noah-MP parametric ensemble simulations over the Central
Tibetan Plateau, Jianduo Li et al. (2018) found that the energy and water fluxes
are dominated by soil parameters. Moreover, the canopy height was found to be
the most sensitive vegetation parameter, while the Clapp-Hornberger b parameter
was the most sensitive soil parameter. With the same workflow philosophy, Kristi
et al. (2018) identified five soil parameters and six vegetation parameters as
primary controls of soil moisture, sensible heat, latent heat, and net ecosystem
exchange, among which some of the most important are the b parameter, the field
water capacity, the soil porosity, the canopy height, the roughness length, and
the matric potential. In two other works, Jianduo li et al. (2019; 2020) focused
on the sensitivity of subprocesses, emphasizing the significant influence on the
model performance of those subprocesses related to the computation of the surface
exchange coefficients, the soil moisture threshold, the radiation transfer, the surface
resistance to evaporation, the runoff, and the groundwater.

The studies presented in the literature review on GSA applied to Noah-MP
have always been performed with the model running offline, forced by experimental
datasets as initial and boundary conditions. Since the focus of the present thesis is
to assess the influence of surface parameters on the local thermally driven circulation
in a mountain valley, it is important to evaluate the interaction between the LSM
and the coupled numerical weather prediction model, in particular the way the land
surface parameters affect atmospheric variables. For this reason, in the present
thesis, simulations have been performed with an online coupling between WRF
and Noah-MP.
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2.3 Machine learning-based sensitivity analysis

Machine learning algorithms have been increasingly employed for feature selec-
tion in the last decades, offering significant improvements in various applications.
While the following literature review does not aim to be exhaustive, it highlights
some notable examples that underscore the evolving role of machine learning in
this field.

Regression algorithms have a long history in data science, with some of the most
famous methods introduced between the 1960s-1990s: for example, the Support
Vector Machine (SVM) was introduced by Vapnik et al. Vapnik, 1963 (1963), the
Classification And Regression Trees (CART) by Breiman et al. (1984), the Least
Absolute Shrinkage and Selection Operator (LASSO) by Tibshirani et al. (1996),
the Bayesian Ridge Regression (BRR) by Box et al.(1992), the Gaussian Process
Regression (GPR) by Stein et al. (1999), and the Random Forest (RF) by Breiman
et al. (2001). Despite this, their applicability to sensitivity analysis has been
fully formalized in later years. Oakley et al. (2004) addressed the complexity of
mathematical models used to simulate real-world phenomena, particularly focusing
on the challenge of understanding how changes in model inputs affect outputs.
Given the uncertainty in determining accurate input values for specific applications,
the Authors introduced a unified framework for probabilistic sensitivity analysis.
This method quantifies uncertainty in model outputs induced by the variation in
inputs framed within a joint probability distribution. The significant contribution
of Oakley et al. (2004) is the introduction of a Bayesian framework to unify various
tools of probabilistic sensitivity analysis. This approach is computationally efficient,
requiring fewer model runs than standard Monte Carlo methods while still enabling
a comprehensive analysis. This efficiency is especially crucial for models where each
run demands considerable computational time. One year later, Queipo et al. (2005)
introduced the definition of "Surrogate-Based Approach for Analysis and Optimiza-
tion (SBAO)" to emphasize how surrogate models, constructed from data derived
from high-fidelity models, offer fast approximations of objectives and constraints,
making sensitivity and optimization studies feasible despite the computational
expense of accurate, high-fidelity models. At the Fourth International Conference
on Sensitivity Analysis Model Output (SAMO) and in continuation with the work
of Oakley, O’Hagan (2006) presented a systematic approach to sensitivity analysis
called Bayesian Analysis of Computer Code Outputs (BACCO), which put the
foundation for the use of probabilistic methods as the Gaussian Process Regression
emulation in surrogate-based sensitivity analysis. In more recent years, a systematic
review performed by Brunton et al. (2020) meticulously outlines the history of
ML in fluid mechanics, highlighting the successes of ML in critical tasks such as
dimensionality reduction, feature extraction, Particle Image Velocimetry (PIV)
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processing, super-resolution, reduced-order modeling, turbulence closure, shape
optimization, and flow control. Kim et al. (2020) explored the efficiency of subset
selection regression techniques in developing surrogate models for simulation-based
or data-driven system optimization. The Authors compared these techniques with
nonlinear interpolating functions, such as radial basis functions and Kriging, finding
that subset selection shows promising performance for low-dimensional problems,
although showing performance degradation in higher dimensions. Antoniadis et al.
(2021) focused on GSA methods in complex computational models with numerous
input variables. The Authors proposed using meta-modeling as a quantitative
approach for nonparametric GSA, highlighting the efficiency of RF in building
meta-models for sensitivity analysis and showing that the RF methodology offers
advantages in handling correlation, high-dimensional data, and variable interactions.
Moroever, the Authors demonstrated the effectiveness of RF in estimating GSA
measures through simulations and real dataset analysis, even in cases of dependent
data and small sample sizes. Vinuesa et al. (2022) highlighted the growing im-
portance of machine learning in computational fluid dynamics (CFD), identifying
areas such as the acceleration of direct numerical simulations, improvement of
turbulence closure modeling, and development of enhanced reduced-order models.
The Authors discussed emerging ML areas with a high potential impact on CFD,
along with potential limitations.

Compared to their proliferation in fluid dynamics, ML-based surrogate models
are still quite new in the weather and climate literature, but there have been
foundational works also in this field in recent years: Singh et al. (2019) explored
the application of SVM, ANN, and a Time Series based Recurrent Neural Network
(RNN) for weather prediction. The study emphasized the superior performance
of RNN in predicting weather, highlighting the effectiveness of these models in
meteorological applications. Parente et al. (2020) developed a multi-fidelity
framework to predict the turbulent Schmidt number (Sct) with applications in
atmospheric dispersion modeling. This framework utilized high-fidelity data from
a delayed Detached Eddy Simulation (dDES) and employed data-driven models
and Principal Component Analysis (PCA) to derive reliable information for Sct,
demonstrating the potential of multi-fidelity approaches in enhancing the accuracy
of turbulence models for atmospheric dispersion studies. Chen et al. (2020) reviewed
the use of ML in tropical cyclone forecasting, covering genesis, track, intensity,
and associated extreme weather forecasts. The Authors highlighted the untapped
potential of ML and multi-source data in improving forecast accuracy, addressing
the challenges of predictability and stability in tropical cyclone prediction.

Dagon et al. (2020) advanced the application of ML in land modeling by
developing a calibration procedure for the Community Land Model version 5
(CLM5) using artificial neural networks. In particular, the Authors focused on
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refining the model’s parameters based on carbon and water flux observations.
The innovative approach involved creating emulators of CLM5 using feed-forward
artificial neural networks, trained to predict annual mean spatial variability in
carbon and water fluxes. Techniques such as regularization and early stopping were
utilized to prevent overfitting and ensure generalizability. This study highlighted
the significance of parameters like plant hydraulic conductivity and the stomatal
conductance–photosynthesis relationship in influencing the predictive skill of the
emulator. This approach marked a shift from traditional hand-tuning methods to a
more efficient machine learning-based optimization of parameter values, considering
observational uncertainty and model error.

Mansfield et al. (2020) introduced an ML approach to expedite climate change
projections and decipher early indicators of long-term climate responses. Utilizing
existing climate model simulations, the study aimed at individuating relationships
between short-term and long-term temperature responses under various climate
forcing scenarios. The study compared Ridge Regression and GPR with traditional
pattern scaling, finding that the latter often underestimated the range and variability
of responses, especially in short-lived forcing scenarios. Both Ridge Regression and
GPR generally outperformed pattern scaling at different spatial scales, with GPR
showing the lowest errors. The study demonstrated that ML models, particularly
at the grid-scale level, can provide more accurate and diverse climate projections
than traditional methods.

The application of ML techniques to climate modeling was also proposed by
Chaure et al. (2023), who tackled the challenges in climate modeling related to
the computational demands of fully coupled General Circulation Models (GCMs).
Their research explored the potential of using GPR as a surrogate model. Given
the high computational resources required by GCMs, surrogate models offer a
more efficient alternative. The Authors emphasized the advantages of GPR over
deep learning surrogates, particularly its probabilistic approach and the ability to
provide nuanced modeling of uncertainty estimates.

A different application of ML algorithms was proposed by Gorle et al. (2021),
who presented a multi-fidelity ML framework that combines RANS and LES to
accurately predict wind loads on buildings. This framework efficiently balances
the computational cost with prediction accuracy, demonstrating the utility of
multi-fidelity ML approaches in complex turbulent flow simulations.

ML approaches are also used for solar radiation forecasts: for example Wu et
al. (2021) assessed the transferability of RF and SVM in estimating daily global
solar radiation across different climate zones. The study underscored RF’s superior
performance and stability over SVM, suggesting specific conditions under which
RF and SVM can be effectively applied for solar radiation estimation.
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Finally, ML was also recently used for identifying sensitive parameters in the
WRF model by Baki et al. (2022), considering the simulation of tropical cyclones
over the Bay of Bengal. Employing GSA methods, the study found that a subset
of parameters significantly influenced the meteorological variables, offering insights
into the optimization of tropical cyclone simulations.
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Abstract

The accurate calibration of parameters in atmospheric and Earth system models
is crucial for improving their performance, but remains a challenge due to their
inherent complexity, which is reflected in input-output relationships often charac-
terized by multiple interactions between the parameters and thus hindering the
use of simple sensitivity analysis methods. This paper introduces the Machine
Learning-based Automated Multi-method Parameter Sensitivity and Importance
analysis Tool (ML-AMPSIT), a new tool designed to estimate the sensitivity and
importance analysis of parameters in complex numerical weather prediction models.
This tool leverages the strengths of multiple regression-based and probabilistic ma-
chine learning methods including LASSO, Support Vector Machine, Classification
and Decision Trees, Random Forest, Extreme Gradient Boosting, Gaussian Process
Regression, and Bayesian Ridge Regression. These regression algorithms are used to
construct computationally inexpensive surrogate models to effectively predict model
outputs from input parameters, thereby significantly reducing the computational
burden of running high-fidelity models for sensitivity analysis. Through a detailed
case study with the Weather Research and Forecasting (WRF) model coupled
with the Noah-MP land surface model, ML-AMPSIT is demonstrated to efficiently
predict the behavior of Noah-MP model parameters with a relatively small number
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of model runs, by simulating a sea breeze circulation over an idealized flat domain.
ML-AMPSIT’s ability to consider non-linearities and interactions between vari-
ables, as well as to provide a comparative analysis across various machine learning
methods, offers an alternative promising new approach for sensitivity analysis in
atmospheric sciences.

3.1 Introduction

One of the primary sources of error in atmospheric/Earth system models stems
from inaccurate parameter values (Clark et al., 2011; Li, Chen, Zhang, et al.,
2018), which can affect different physical parameterizations. Although model
parameter tuning can help to alleviate this issue, determining optimal values
is highly dependent on model structures and how model outputs are influenced
by input parameters. Sensitivity analysis is commonly used to evaluate these
input-output relationships and parameter importance, but traditional one-at-a-
time (OAT) methods yield varying results depending on the interdependence
of parameters, particularly within complex models, leading to issues of poor
reproducibility and inability to generalize results. Consequently, more advanced
variance-based techniques like the Sobol method, in the context of global sensitivity
analysis (GSA, Saltelli, Ratto, et al., 2008), exhibit superior performance in such
tasks, albeit being computationally intensive (Herman et al., 2013) and sometimes
infeasible, especially when dealing with complex weather/climate models like the
widely used Weather Research and Forecasting (WRF) model (Skamarock, Klemp,
Dudhia, Gill, Liu, Berner, Wanh, et al., 2021).

An alternative approach that avoids running numerous model realizations is
the utilization of surrogate models or emulators (Fernández-Godino et al., 2017;
Forrester et al., 2008; Kim et al., 2020; Lamberti et al., 2021; Longo et al., 2020;
O’Hagan, 2006; Queipo et al., 2005). A surrogate model/emulator is a simpler
model trained using the input-output pairs of the original complex high-fidelity
model, that can be used in substitution of it. The emulator makes the model
process more computationally efficient in producing model realizations, while it
still provides accurate predictions of the output variable. Machine Learning (ML)
algorithms designed for regression tasks offer a computationally efficient means to
build surrogate models to be used for sensitivity analysis (Antoniadis et al., 2021;
Engelbrecht et al., 1995; Muthukrishnan et al., 2016; Shen et al., 2008; Torres,
2021; Zouhri et al., 2022). Over time, a variety of algorithms have been tested in
the literature and used in different fields.

These algorithms can also be used to extract feature importance, which has
become a well-established methodology widely employed in different geoscience
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fields, such as landslide susceptibility (Catani et al., 2013; Chen, Zhu, et al., 2020;
Daviran et al., 2023; Elia et al., 2023; Kalantar et al., 2018; Lee et al., 2018;
Liu et al., 2021; Pradhan, 2013; Yilmaz, 2010; Youssef et al., 2016; Zhou et al.,
2018), forest fire susceptibility (Arpaci et al., 2014; Bar Massada et al., 2013;
Gigović et al., 2019; Oliveira et al., 2012; Pourtaghi et al., 2016; Satir et al., 2016),
water quality assessment (Alqahtani et al., 2022; Haghiabi et al., 2018; Palani
et al., 2008; Rodriguez-Galiano et al., 2014; Sarkar et al., 2015; Shah et al., 2021;
Trabelsi et al., 2022), hydrological modelling (Zhang, Srinivasan, et al., 2009),
air quality assessment (Lei et al., 2023; Maleki et al., 2019; Sihag et al., 2019;
Suárez Sánchez et al., 2011; Yu et al., 2016), groundwater mapping (Rahmati
et al., 2016), agronomy (Kok et al., 2021; Sridhara et al., 2023; Wu, Cui, et al.,
2023), climatological applications (Dey et al., 2022; Wu, Li, et al., 2021), renewable
energy (Meenal et al., 2022; Wolff et al., 2017), earthquake detection (Murti et al.,
2022), and it also has significant relevance in civil engineering (Farooq et al., 2020;
Gholampour et al., 2017; Salmasi et al., 2020; Tian, 2013), genetics (Sharma et al.,
2014), biology (Cui et al., 2016), and medical research (Antonogeorgos et al., 2009;
Maroco et al., 2011; Yang, Wang, et al., 2022). While ML techniques have gained
traction in weather and climate modeling and observations (Schneider et al., 2022;
Schultz et al., 2021), particularly in parameter optimization tasks like calibration
(Bocquet et al., 2020; Bonavita et al., 2020), spatial interpolation (Sekulić et al.,
2020; Stein, 1999), downscaling (Fowler et al., 2007; Leinonen et al., 2021; Maraun
et al., 2018), parameterization substitution (Grundner et al., 2022; Han et al., 2020;
Mooers et al., 2021; Rasp et al., 2018; Ross et al., 2023; Yuval et al., 2020), and
image-based classification (Chase, Harrison, Burke, et al., 2022; Chase, Harrison,
Lackmann, et al., 2023), the extraction of feature importance remains relatively
uncommon in the meteorological/climate modeling literature (Baki et al., 2022; Ren,
Li, et al., 2020). Additionally, several studies have explored the use of emulators
for tuning weather prediction and climate models, highlighting the potential of
these methods for parameter space exploration and model calibration (Cinquegrana
et al., 2023; Couvreux et al., 2021; Dagon et al., 2020; Watson-Parris et al., 2021;
Williamson et al., 2013).

Many of the previous studies have proposed comparisons between several feature
importance analysis algorithms. This is because the ability of these algorithms to
best capture feature relevance is influenced by a variety of factors that can change
with applications, depending on the context under analysis, such as the degree
of nonlinearity of the input-output relationships, the interaction degree between
features, the dimensionality of the features, the size and quality of the data used
for training, the shape and smoothness of the distribution of the training data,
and ultimately the validity of each algorithm’s assumptions. Often, the influence
of one or more of the factors on the quality of the chosen method cannot be
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assessed in advance, leading to a trial-and-error procedure that would benefit from
a multi-algorithm approach where the results of different methods can be compared.
For this reason, the present work shares the same multi-method philosophy of many
of the studies mentioned above, extracting the most popular algorithms available
in the literature and combining them into a single flexible efficient framework for
analysis.

In light of the above considerations, this paper proposes a Machine Learning-
based Automated Multi-method Parameter Sensitivity and Importance analysis
Tool (ML-AMPSIT) that applies a series of ML feature importance extraction
algorithms to model parameters (using the widely-used WRF/Noah-MP coupled
weather model as a case study), accommodating any user-specified model configu-
ration. The included algorithms are among the most commonly used in literature,
namely: LASSO, Support Vector Machine, Classification and Decision Trees, Ran-
dom Forest, Extreme Gradient Boosting, Gaussian Process Regression and Bayesian
Ridge Regression. While most of them directly provide a measure of feature im-
portance, the last two methods are probabilistic methods, specifically used in this
framework for a fast implementation of the Sobol method through the SALib
Python library, leading to a computationally efficient way to obtain the Sobol sensi-
tivity indices directly from the ML-inferred relation between input and output data.
Our tool’s objective is overall to assist users in evaluating parameter sensitivity
and importance using computationally inexpensive and nonlinear interaction-aware
approaches.

3.2 Methods

3.2.1 ML-AMPSIT workflow

The ML-AMPSIT workflow (Figure 3.1) can be divided into 5 main steps, each
of which involves one or more Python/Bash-based scripts: the pre-processing phase,
the model run phase, the post-processing phase, the sensitivity analysis phase, and
an optional convergence analysis phase.

1. The selection of the input features is accomplished by specifying the parame-
ter names within the configuration file configAMPSIT.json. The compiled
configuration file related to the case study discussed in this paper is reported
in the Appendix. There is no upper limit for the number of parameters that
can be analyzed, but it is worth noting that the sensitivity analysis could
converge significantly more slowly in high-dimensional (i.e., with more pa-
rameters) problems. Moreover, the scalability with the number of parameters
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Figure 3.1: ML-AMPSIT workflow. The main code scripts are indicated with blue boxes.
The yellow boxes indicate the configuration files that need to be filled by the user, the
green boxes refer to all the output files that eventually become inputs for other subsequent
scripts, and the orange box indicates the generic model execution that varies depending
on the model involved.

can highly depend on the case study considered. The number of simulations
to perform must also be specified through the configuration variable totalsim.
To generate the values of the parameters to be tested, a Sobol sequence of
the same length of totalsim is produced for each parameter from the pre-
processing script sobol.ipynb. The Sobol sequence (Saltelli, Annoni, et al.,
2010, Bratley et al., 1988) is a quasi-random low-discrepancy distribution
designed to produce well-spaced points in the unit hypercube representing
the parameter space. Unlike random sampling, each point in the sequence
considers the positions of the previous points, resulting in a more uniform
filling of gaps, as shown in Figure 3.2. Consequently, a robust sequence is
generated more efficiently compared to random sampling, requiring fewer
points.

Once the Sobol sequences are generated, a user-specified reference value and a
maximum perturbation percentage need to be specified in configAMPSIT.json,
which will be passed to the preprocessing script autofill.sh. These values
are used to rescale the sequence values from the [0,1] range to the actual
parameter range space. The output of the sobol.ipynb script is the file X.txt,
containing a m x n matrix, where m is the number of simulations and n the
number of parameters tested.

Therefore, each row specifies a different set of parameter values that will be
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Figure 3.2: Demonstration of the differences between random sampling (red dots) and
Sobol sampling (blue dots) in representing the parameter space. The Sobol sequence is
able to more uniformly cover the parameter space, avoiding the presence of very close
points, as it occurs in the random sequence.

used in each particular model realization. Based on these data, the autofill.sh
script creates multiple copies of the folder in which the model is run and then
searches for each parameter name within the original model parameter look-
up table in each newly created folder. The values of the parameters are then
changed according to the X.txt file for each realization. Since this script edits
the original model parameter look-up table, which is MPTABLE.TBL for the
WRF/Noah-MP model in the case study, it is necessarily model-dependent
and thus needs to be adapted if used with other models, to suitably modify
the values of the tested parameters.

2. After all the simulation folders have been created, the original high-fidelity
model can be run by the user as usual. It will be necessary to collect all
the output files into one single folder, whose path must be specified in the
configuration file, so that the post-processing script can find it.

3. Once the user has completed all the high-fidelity model runs, a post-processing
script named WRFload.ipynb is provided to extract single-point time series
for each output variable at specific coordinates in the simulation domain, as
specified by the user in the configuration file. The resulting output data,
which serves as input to the sensitivity analysis tool ML-AMPSIT.ipybn,
consists of different files with the naming convention var_h_v_time.txt,
where var is the variable name, h and v indicate the labels identifying the
horizontal and vertical grid cell, while time represents the simulated time.
The script WRFload.ipynb specifically extracts variables from NetCDF files
that follow a WRF-like format (a widely used format for weather/climate
models). If the user’s model output follows a different format, the script must
be modified accordingly.
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Extracting single-point time series means that the tool has no information
about spatial patterns, nor can it capture time patterns, because the sensitivity
analysis is performed on each single point and time separately. Consequently,
the importance of different parameters can be directly compared only for the
specific point and time being analyzed. However, the observation of consistent
relative importance between parameters across different points and times can
confirm the statistical robustness of the results.

4. The sensitivity phase is performed by the main script of the ML-AMPSIT tool
ML-AMPSIT.ipybn, which accomplishes a regression task based on different
ML algorithms offered to the user. As mentioned in the Introduction, this
multi-method approach is useful for comparing different results, since each
algorithm is structurally different and could be more or less appropriate for
the problem at hand. This ML-based ensemble philosophy is similar to an
ensemble learning (EL) approach (Ren, Zhang, et al., 2016), which combines
the predictions of multiple base models to improve the overall performance,
but the present tool does not yet include an option to integrate the methods
into a stacking, bagging, or boosting procedure, allowing for the user to choose
any single or multiple methods independently. For each method offered by
the present tool, the input and output data are split into training and testing
sets in proportions of 70% and 30%, and each set is scaled separately to have
zero mean and unit variance with respect to the ensemble. The training set is
used to fit the model to the data, while the testing set is used to evaluate the
model’s ability to reproduce new data. This strategy is used to mitigate the
risk of overfitting. The coefficient of determination (R2), the mean squared
error (MSE), and the mean absolute error (MAE) have been used as measures
of goodness when comparing the predicted output against the actual "truth",
i.e. the results of the original physical model simulations. Since all the
variables are scaled before calculating these error metrics, MSE and MAE are
not affected by the different scales of the variables. This allows for a fair and
meaningful comparison of the model’s performance across different variables.
The coefficient of determination R2 = 1 − SSres

SStot
, is used as a measure of

goodness of fit, where SSres is the residual sum of squares and SStot is the
total sum of squares. R2 indicates how much variation in the target variable
can be explained by the model’s predictors. R2 is typically a value between
0 and 1, where values closer to 1 indicate a better ability of the model to
explain the variance in the data. Eventually, if the chosen model fits worse
than the average value, then SSres

SStot
can be greater than 1 and R2 is negative.

If the model has low values of MSE and MAE, but also low values of R2, it
might indicate that the relationship between the input data and the target
variable cannot be properly explained in terms of linear weights only. This is
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an indication of nonlinearity in the output response. In addition to the R2

coefficient, the associated p-value is also computed and saved.

The script SAML.ipybn produces an interactive graphical user interface
(GUI) built from the ipywidgets python library, which allows the user to
specify which vertical level and surface point to consider in the analysis, the
output variable for which to compute the sensitivity analysis, the number of
simulations to consider, the algorithm to use, and the output time to plot for
punctual evaluations. The flexibility of this GUI allows the user to quickly
check the influence of the number of simulations on the robustness of the
results and the performance of the different ML methods implemented.

Based on the selected options, unless the specified methods are Gaussian
Process Regression or Bayesian Ridge Regression, the tool produces four
plots: the upper two dedicated to the feature importance time series and
the time-evolution of the metrics for the whole simulation duration, and the
lower two showing the metrics and feature ranking specific to a particular
time selected. Hence the user is provided with both the global result and
the analysis related to a single output time. An example from the proposed
case study will be provided in Section 3.3. If the specified method is either
Gaussian Process Regression or Bayesian Ridge Regression, the features are
ranked based on the total Sobol index, and the tool produces two additional
plots, one showing the second-order Sobol interaction index between each
couple of parameters, and the other showing the feature ranking based on the
first-order Sobol index, which could potentially be different from the total
order based ranking if parameters’ interactions are strong enough.

An alternative version of the main script is the ML-AMPSITloop.ipynb loop
suite, which allows the user to automate multiple analyses by using the
loopconfig.json configuration file, specifying all the combinations of settings
to be explored, without the need to manually set each combination through
the graphical interface, saving time for long in-depth analyses.

5. It is possible to further investigate the convergence of the obtained feature
importance and metrics with the optional tool convergenceAnlys.ipybn. This
script manipulates all the outputs ofML-AMPSIT.ipybn orML-AMPSITloop.ipybn
to visualize the sensitivity of the parameter scores to the number of simula-
tions, the vertical grid point, the horizontal grid point, and the algorithm
used. The plots produced by this tool, related to the case study presented in
this paper, will be shown and commented on in more depth in Section 4.2.
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3.2.2 Sobol method

In classical sensitivity analysis, given a set of input parameters {X1, ..Xk}, the
elementary effect of a single perturbation ∆ in the input parameter Xi over the
output Y (X) is defined as (“Elementary Effects Method” 2007):

EEi =
[Y (X1, X2, ..., Xi + ∆, ..., Xk)− Y (X1, X2, ..., Xi, ..., Xk)]

∆
, (3.1)

The above definition assumes a linear relationship between the parameter and
the output variable and it becomes ineffective in the presence of non-linearities or
interactions between parameters. To achieve the highest level of generalization in
sensitivity analysis, both the effect of the single input parameter and the additional
effect of its interaction with other parameters must be evaluated.

A variance-based approach achieves this while also not relying on a linear
assumption. The most well-established variance-based method is the Sobol method
(Saltelli and Sobol’, 1995). With this approach, the variance V (Y ) is decomposed
as:

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V12...k, (3.2)

where Vi is the main effect variance, representing the contribution of the i-th input
parameter to the output variance, Vij is the second-order interaction effect variance,
representing the combined contribution of the i-th and j-th input parameters to
the output variance, and so on up to V12..k, which represents the interaction effect
variance of all k input parameters together.

Dividing by V (Y ), the Sobol indices are derived as Si = Vi/V (Y ), Sij =

Vij/V (Y )..., leading to:

1 =
∑
i

Si +
∑
i

∑
j>i

Sij + · · ·+ S12...k. (3.3)

The total effect, or total order index ST i is the total contribution to the output
variation due to a specific factor Xi i.e. a specific parameter. Hence, for instance,
for a set of three parameters X1, X2, X3 the total effect index for the parameter X1

is:
ST1 = S1 + S12 + S123. (3.4)

Both first-order effects Si and total effects ST i are important to assess the
overall influence of an input parameter.
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3.2.3 Implemented ML algorithms

3.2.3.1 LASSO

The Least Absolute Shrinkage and Selection Operator, (LASSO, Tibshirani,
1996) is an ML method used for feature selection and regression. It derives from
the basic concept of curve fitting in the context of optimization, therefore it is one
of the simplest algorithms among the most widely used. The goal of LASSO is to
identify a subset of input features that are most predictive of the output variable,
while also performing regularization to prevent overfitting.

In a classical regression problem, the goal is to find a function that maps the
input features to the output variable. This is done by minimizing an objective
function that takes into account the differences between the observations and the
predictions, as a measure of how well the model fits the data. The minimization
is performed during the training process to find the optimal values of model
coefficients. In the LASSO algorithm, a penalty term (the "regularization") is
added to the objective function, encouraging the model coefficients to be small.
Specifically, the objective function for LASSO regression is the residual sum of
squares (RSS), while the penalty term is based on the sum of the absolute values
(L1 norm) of the coefficients, which promotes sparsity of the solution, and it can
be adjusted to control the amount of shrinkage applied to the coefficients. As a
result, LASSO can be particularly useful to identify the most important features
by setting the coefficients of the less important features to zero.

The present tool uses LassoCV from the Python library scikit-learn, which
adds a cross-validation strategy to the standard LASSO algorithm. In cross-
validation, data are divided into multiple subsets or "folds", and the model is
trained and evaluated multiple times, each time using a different fold as the
validation set and the rest of the data as the training set (e.g. as explained in
(Brunton, Noack, et al., 2020)). By averaging the results of the multiple evaluations,
cross-validation provides a more accurate estimate of the model’s performance than
a single evaluation on a single training-validation split.

3.2.3.2 Support Vector Machine

Support vector machine (SVM) is an ML method that can be used for regression
as well as classification tasks. The original algorithm was proposed in 1963 (Vapnik,
1963), was refined multiple times (Boser et al., 1992; Cortes et al., 1995; Schölkopf
et al., 2002), and is considered a core method in ML.

For regression tasks, SVM aims to find a hyperplane that approximates the
underlying relationship between the input variables (i.e. the model parameters) and
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the continuous output values. In order to do this, SVM solves a convex optimization
problem by minimizing a cost function that incorporates a margin of error and an
L2-norm-based regularization term (ridge-type regularization). Unlike the LASSO-
type regularization, the L2 regularization, also known as ridge-type regularization,
is a penalty based on the square of the coefficients. This penalty term is less
strict compared to LASSO, because it helps to shrink the coefficient values towards
zero without eliminating them completely. This can be preferred to a LASSO
regularization in situations when there are many important parameters, since it
avoids eliminating them in favor of the most important ones. The regularization
term controls the trade-off between the complexity of the model and the amount
of error allowed, and its strength is controlled by the hyperparameter "C". The
optimization problem in the proposed implementation is solved by the default
quadratic "liblinear" Python solver. SVM offers several advantages, including the
ability to handle high-dimensional data and resistance to overfitting when properly
regularized.

The tool presented in this paper implements a simple linear kernel, which maps
the input data into a high-dimensional space using a linear function.

3.2.3.3 Classification and Regression Trees

The Classification and Regression Trees (CART, Breiman et al., 1984) algorithm
is one of the most basic and straightforward decision tree methods, making it widely
used and popular for various applications. The main idea behind CART is to
recursively partition the input space into smaller regions based on the values of the
input variables, with the goal of minimizing the impurity (or variance) within each
resulting region. This partitioning process creates a binary tree structure called
a "decision tree", where each internal node represents a splitting rule based on a
selected input variable and a threshold value. The leaf nodes of the tree represent
the final prediction or class assignment.

In the proposed tool, from the training dataset consisting of input-output pairs,
the algorithm recursively selects the best splitting rule at each internal node based
on the mean squared error for regression. The splitting process continues until a
stopping criterion is met, such as a maximum tree depth or a minimum number of
samples required to split a node. For regression tasks, the predicted output is the
average value of the training samples within the leaf node.

3.2.3.4 Random Forest

Random Forest (RF, Breiman, 2001) is technically an ensemble learning method,
that can be used both for classification and regression tasks. Differently from the
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CART algorithm, a multitude of decision trees are constructed in an RF, and the
final prediction is based on the average of the predictions of all the trees. For this
reason, RF usually performs significantly better than CART.

The advantage of using RF is that it can handle high-dimensional data and
complex interactions between variables, making it a useful tool for sensitivity
analysis. However, it can suffer from overfitting, where the model performs well on
the training data but poorly on new data. To mitigate this, both cross-validation
and Bayesian optimization are used to make the model more robust.

3.2.3.5 Extreme Gradient Boosting

The Extreme Gradient Boosting (XGboost, Chen and Guestrin, 2016) builds an
ensemble of decision trees, similarly to RF, but each new tree is trained to correct
the errors of the previous trees. It is hence a refined version of an RF and it is
usually expected to perform better.

3.2.3.6 Gaussian Process Regression

Gaussian Process Regression (GPR), better known in geosciences as kriging
(Stein, 1999) when applied to spatial interpolation, is a nonparametric algorithm for
computing the probability density function of the regression curve, instead of a single
fitting curve and can be used as a supervised ML technique (Rasmussen et al., 2005).
GPR assumes that the output values follow a Gaussian distribution with unknown
mean µ and variance σ which must be predicted, given a set of input-output pairs.
To achieve this, GPR models the output values as a function of the input variables,
where the function is assumed to be smooth and continuous. GPR is often described
as a non-parametric method because it does not assume a specific functional form
for the relationship between input and output variables. Instead, it models this
relationship as a distribution over possible functions, allowing for flexibility in the
shape of the regression curve. However, it is important to note that there are
underlying assumptions about the functional form embedded in the chosen kernel.
The kernel influences the shape and properties of the functions that the Gaussian
Process can learn. The kernel implemented inside ML-AMPSIT is the Radial Basis
Function (RBF) kernel, which uses functions of the type σ2 exp

(
− (t−t′)2

2l2

)
where

σ2 is a variance, l is a length scale and t, t′ represent pairs of values extracted from
the training data. The choice of an RBF kernel is particularly advantageous due
to its ability to model complex, non-linear relationships without imposing strong
parametric constraints. The RBF kernel’s smoothness assumption is well-suited
for many real-world applications where the underlying function is expected to
be continuous and differentiable. During the training phase, GPR estimates the
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parameters of this kernel function and calculates the covariance matrix between
the input-output pairs. Using this covariance matrix and the training data, GPR
then estimates the mean and variance of the distribution for each new input value
through Bayesian inference.

3.2.3.7 Bayesian Ridge Regression

In Bayesian Ridge Regression (BRR), the hyperparameters of a classical ridge
regression (i.e. a linear regression which implements a ridge regularization term) are
associated with a priorly assumed probability distribution (also called hyperpriors),
and tuned through training in a Bayesian inference approach (Box et al., 1992).
Defining both a prior distribution p(H) for the model parameters H and a likelihood
function p(E|H) for the observed data E, the BRR model computes the posterior
distribution over functions p(H|E) given the observed data through the use of
Bayes’ theorem p(H|E) = p(E|H)·p(H)

p(E)
, where p(E) =

∫
p(E|H) · p(H) dH is the

marginal likelihood. Once the posterior distribution is obtained, the model is
used to make predictions for unseen data points. These predictions come with
uncertainty estimates, which are derived from the posterior distribution. BRR, as
in the case of the SVM algorithm, employs an L2 regularization, hence it spreads
the coefficient values more evenly, stabilizing the model and preventing overly large
coefficient estimates.

3.2.4 Feature Extraction Computation

Each of the algorithms implemented in this study provides a method for cal-
culating feature importance, albeit through different approaches. In principle, a
single sensitivity method could be used to evaluate feature importance across all
algorithms. However, some algorithms have built-in methods specifically designed
to align with their inherent characteristics.

• Tree-based algorithms: for Random Forest, Decision Trees, and Extreme
Gradient Boosting, feature importance is assessed using the Mean Decrease
in Impurity (MDI) method. This method quantifies the contribution of each
feature to the overall prediction accuracy by measuring how much each feature
decreases the impurity of the splits in which it is involved, averaged over all
the trees in the ensemble. In the scikit-learn library, these contributions are
accessible through the feature_importances_ attribute. The MDI method
is particularly effective because it directly measures the impact of each
feature on the model’s decision process, providing a clear indication of feature
importance.
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• Fitting Methods: LASSO and Linear Support Vector Machine derive feature
importance from the model coefficients. In these linear models, the magnitude
of the coefficients indicates the strength and direction of the relationship
between each feature and the target variable. Specifically, in scikit-learn,
this can be accessed through the best_estimator_.coef_ attribute. Larger
absolute values of these coefficients indicate greater importance.

• Probabilistic methods: Gaussian Process Regression and Bayesian Ridge
Regression do not have a built-in mechanism for directly assessing feature
importance. Therefore, in this work, the Sobol method was used to infer
feature importance. Once built and tested against the original model outputs,
the GPR and BRR surrogate models can be used to perform a GSA in substi-
tution of the original model. By using a surrogate model, the computational
cost of running the original model for a large number of input combinations is
avoided. Instead, the surrogate model can be used to generate a large number
of input combinations with significantly less computational time and evaluate
their impact on the output. Over these samples, the Sobol sensitivity indices
can be feasibly computed following for instance the definition proposed by
Saltelli (Saltelli, Ratto, et al., 2008). The user can then compare the Sobol
indices evaluated with both GPR and BRR, providing information on their
robustness and reliability. In the proposed tool, after the algorithm generates
the optimal surrogate model, it uses the Python library SALib to compute
the Sobol first-order index as a score for the sensitivity importance of each
parameter.

Despite the differences in the feature importance calculation approaches of the
different algorithms, each method is applied to standardized, non-dimensional data
and each feature importance set is scaled between [0,1]. This ensures that feature
importance scores are comparable across models. The primary objective of all these
methods is to quantify the sensitivity of the model output to changes in the input
features. Consequently, the feature importance scores obtained from these different
methods provide a well-posed comparison of parameter sensitivities. By evaluating
and comparing these scores, we gain a comprehensive understanding of the relative
importance of each feature across different modeling approaches, which increases
the robustness of the results.

3.2.5 Hyperparameter Tuning

In the proposed tool, the hyperparameters of each implemented algorithm are
tuned based on a cross-validation score obtained through Bayesian optimization.
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Bayesian optimization is an iterative process that seeks to explore the hyperparam-
eter space while also exploiting regions of the space that are expected to yield good
performance. At each iteration, the method proposes a new set of hyperparame-
ters based on a probabilistic model of the function behavior and then evaluates
the function at that point. The results of the evaluation are used to update the
probabilistic model, which is then used to propose a new set of hyperparameters
for the next iteration.

3.3 Case study

The proposed case study, adopted to highlight the functionalities of ML-
AMPSIT, is based on idealized coupled WRF/Noah-MP simulations of a sea
breeze circulation over a flat three-dimensional domain. The objective of this case
study is to evaluate the impact of a prescribed set of Noah-MP parameters on the
development of the thermally-driven wind.

3.3.1 The WRF/Noah-MP model

The Weather Research and Forecasting (WRF) model is a widely-used state-of-
the-art mesoscale numerical weather prediction model for atmospheric research and
operational forecasting applications which is supported by the NSF National Center
for Atmospheric Research (NCAR), with more than 50000 registered users from
more than 160 countries (Skamarock, Klemp, Dudhia, Gill, Liu, Berner, Wanh,
et al., 2021). It offers a wide range of customization options consisting of dedicated
modules and physics schemes to meet the state of the art in atmospheric science and
adapt to a wide variety of scenarios. The dynamical core used for this case study
is the Advanced Research WRF (ARW), which uses a third-order Runge-Kutta
scheme for time integration with a time-split method for solving acoustic modes
(Wicker et al., 2002) and an Arakawa-C grid staggering for spatial discretization.
In the case study presented here to illustrate the functionalities of ML-AMPSIT,
WRF is coupled with the Noah with Multi-Physics options (Noah-MP, He Niu,
Yang, Mitchell, et al., 2011, Yang, Niu, et al., 2011) Land Surface Model (LSM).
Noah-MP is one of the most used LSMs available in WRF to calculate surface-
atmosphere exchanges and interactions. It is an augmented version of the Noah
land surface model (Ek et al., 2003), that allows the usage of different physical
schemes and multi-parametrization options, reaching a total number of 4,584
possible combinations (https://www.jsg.utexas.edu/noah-mp/).
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3.3.2 Model setup

Simulations are performed using one domain with 201 x 201 cells in the horizontal
plane with a grid spacing of 3 km. 65 vertical levels are used, transitioning from
a vertical resolution of 7 m close to the surface up to 600 m at the top of the
domain, which is placed at 16 km above sea level. The domain is completely flat
and subdivided into two equally-sized rectangular sub-regions of land and water,
with the interface line oriented along the west-east direction. The aim is to simulate
the diurnal cycle of a sea/land breeze. Boundary conditions are set as open at all
the boundaries.

The atmospheric initial potential temperature profile is set using the following
expression, representative of a stable atmosphere:

θ(z) = θs + Γz + ∆θ(1− e−βz), (3.5)

with θs = 280 K, Γ = 3.2 K Km−1, ∆θ = 5 K, and β = 0.002 m−1. The atmosphere
is initially at rest and the relative humidity is set constant over all the domain and
equal to 30%.

The idealized simulations start at 13:00 UTC, 19 March, are centered at 47°N,
11°E, and last for 35 hours, thus with a solar radiation cycle representative of the
equinoxes at mid-latitudes. The first eleven simulation hours are not analyzed and
considered as spin-up period. Therefore, analyses concentrate on a full diurnal
cycle, from 00:00 UTC 20 March to 00:00 UTC 21 March. Model output is saved
every hour.

The physical parameterization schemes selected for the present work are the
Rapid Radiative Transfer Model (RRTM) for longwave radiation (Mlawer et al.,
1997), the Dudhia scheme (Dudhia, 1989) for shortwave radiation and the YSU
scheme (Hong et al., 1996) as planetary boundary layer (PBL) parameterization,
coupled to the MM5 similarity scheme for the surface layer. Since this idealized
study aims at reproducing a sea/land circulation, which best develops under
completely clear sky, the microphysics parameterization is switched off, as well as
the convective scheme, since convection is explicitly resolved at the resolution used.

As said above, the Noah-MP model is used to evaluate land-atmosphere exchange.
In Noah-MP, the canopy radiative transfer scheme used is the "modified two-stream"
(Niu and Yang, 2004), one of the most used, which aggregates cloudy leaves into
evenly distributed tree crowns with gaps. The gaps are computed according to
the specified vegetation fraction. The Ball-Berry scheme, the most common choice
in literature, is used for the stomatal resistance computation, with the Noah-
type soil moisture factor (Schaake et al., 1996a), while the default TOPMODEL
with groundwater option is used for runoff and groundwater processes (Niu and
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Yang, 2007). The surface resistance to evaporation and sublimation processes is
set following Sakaguchi et al. (2009a). The surface-layer drag coefficient, used
to compute heat and momentum exchange coefficients, is calculated with the
traditional Monin-Obukhov-based parameterization. In this work, the dynamic
vegetation option is not activated, with the prescription of a fixed vegetation
fraction of 60% to consider a reasonably realistic percentage, while the monthly
satellite-based climatological leaf area index is read from the MPTABLE.TBL
file, which contains all the parameter values. Finally, crop and irrigation options
are deactivated. It is important to underline that water physical properties are
not varied in the sensitivity simulations, but changes in atmospheric variables are
expected also over water, due to the indirect effects of the variations in the surface
parameters over land.

In order to simplify this demonstrative case study, only six of the surface
parameters defined in the look-up table MPTABLE.TBL, from which WRF reads
and sets the surface values accordingly, are considered. In particular, the Noah-MP
reference vegetation type adopted over land is grassland (vegtype=10 of the IGBP-
Modified MODIS classification) and the parameters for which the sensitivity and
relative importance is evaluated are the characteristic leaf dimension (DLEAF),
the height of the vegetative canopy top (HVT), the momentum roughness length
(Z0MVT), the near-infrared leaf reflectance (RHOL-NIR), the empirical canopy
wind parameter (CWPVT), and the leaf area index referred to the month of March
(hereafter LAI_MAR). The choice of these parameters is based on their importance
in other sensitivity studies reported in the literature (Arsenault et al., 2018; Cuntz,
Mai, Samaniego, et al., 2016; Mendoza et al., 2015). The final perturbed model
parameter ensemble contains 100 samples, each with different parameter values
based on the associated Sobol sequences. The input ensemble is generated by
perturbing the parameters by up to 50% of their reference value in the look-up
table MPTABLE.TBL. It should be clear that the results of a sensitivity analysis,
regardless of the approach chosen, always depend on the range of exploration of
the parameters, and that their transferability to arbitrary ranges of values is not
guaranteed if the true sensitivity of the parameters in unexplored ranges is not
known a priori. The perturbation percentage in this work has been chosen to
avoid unphysical values, but it must be noted that the aim of the present work is
to introduce and test the ML-AMPSIT functionalities in a simplified case study,
while a more detailed analysis would require more attention to the choice of the
parameter space.

The output variable for which sensitivity is evaluated is the south-north hor-
izontal component of the wind v in the lowest 10 vertical levels at two different
locations in the domain, one over land and one over water. For both locations, the
average output from three adjacent cells in the south-north direction is analyzed, in
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order to increase the representativeness of the results. The central points of these
two locations are x=100, y=95 and x=100, y=105 for water and land respectively,
i.e., in the central cell in the west-east direction, and 5 grid points to the north
and to the south of the land-water interface.

3.4 Results

3.4.1 Sea breeze ensemble

Before analyzing the ML-AMPSIT results, this section presents an overview
of the output of the WRF/Noah-MP simulations, focusing on the horizontal
south-north wind component v at the two locations selected for the application
of ML-AMPSIT. Figure 3.3 shows the ensemble time series of v during the entire
period analyzed at the first vertical level. The daily cycle of the sea breeze is
evident at both locations, as the velocity changes sign according to the radiation
pattern and the varying horizontal temperature and pressure gradient, i.e. v is
negative (northerly, from land to sea) during the night and positive (southerly,
from sea to land) during the day. The spread of the ensemble tends to be larger
over water than over land, especially before sunrise, indicating that the variation of
the input parameters has a larger effect on v over water. This highlights that local
variations of surface parameters can significantly affect atmospheric conditions also
in regions of the domain where no variations are prescribed, since temperature
contrasts are affected, and, as a consequence, the development of thermally-driven
circulations.

Figure 3.4 shows the ensembles of the vertical profiles of v in the lowest 200 m,
containing the first 10 vertical levels, at three different times, 7:00 UTC, 13:00 UTC,
and 19:00 UTC, which are representative respectively of the maximum intensity of
the northerly land breeze, the morning transition between northerly and southerly
wind, and the maximum intensity of the southerly sea breeze at the water point.
It can be noted that the northerly land breeze (Fig. 3.4a,b) is shallower than the
southerly sea breeze (Fig. 3.4e,f). Moreover, the comparison between Fig. 3.4e and
Fig. 3.4f highlights the stronger effect of friction over land, with a more pronounced
decrease of the wind speed close to the surface.

The ensemble variance is small near the ground over land and increases with
elevation at 07:00 UTC and 19:00 UTC, while over water the spread is larger and
more uniform along the entire vertical profile, especially at 13:00 UTC and 19:00
UTC. During the transition (Fig. 3.4c and Fig. 3.4d), the ensemble spread is very
small over land, with all the simulations showing very small v values along the
entire vertical profile, while a large spread is observed over water, suggesting that
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the variations in the surface parameters investigated significantly influence the
timing of the transition from land to sea breeze over water, although preserving
the shape of the vertical profile.

Figure 3.3: Time series of the south-north wind component at the first vertical level.
The solid and dashed red lines represent the ensemble mean and standard deviation,
respectively, while the gray lines represent the output of the single simulations. The
values of the maximum and minimum hourly standard deviations (std) are also reported.

3.4.2 ML-AMPSIT output

After all the steps discussed in Section 2.1, the basic output that the ML-
AMPSIT tool offers to the user is a composition of four plots similar to those
reported in Figure 3.5, which refers to the results obtained for v at the third vertical
level, over the water point (for this example, no averaging over multiple points was
performed and all the simulation hours are shown, in order to present the default
output of the tool) obtained with the LASSO algorithm. In particular, panel a)
shows the importance time series related to each of the 6 selected parameters, panel
b) shows the time evolution of the metrics, underlining how the correlation score
and the errors eventually change over time, while panels c) and d) are specific to a
single hour selected by the user, showing respectively the goodness of fit and the
ranking of the importance of the features for that hour. In the following sections,
the outputs from ML-AMPSIT will be aggregated to perform convergence analysis
and methods comparison.

3.4.3 Convergence analysis

Figure 3.6 and 3.7 show the convergence of the MSE and of the feature im-
portances computed by each method as a function of the number of simulations
considered, i.e. the number of input-output relations used for training the algo-
rithms. The analysis of the convergence is important because it indicates when the
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Figure 3.4: Vertical profiles of the south-north wind component in the lowest 200 m above
the surface, at a) 07:00, b) 13:00, and c) 19:00 UTC. The solid and dashed red lines
represent the ensemble mean and standard deviation, respectively, while the gray lines
represent the output of the single simulations. The values of the maximum and minimum
hourly standard deviations (std) are also reported.

regression tasks reach a stable state and additional simulations do not significantly
alter the results. When convergence is reached, it can be assumed that the obtained
feature importance provides a reliable representation of the underlying relationships
in the system and that a sufficient number of simulations are performed to capture
the essential characteristics of the system under investigation.

For the sake of brevity, only results over the land region at the first vertical level
are shown here, considering results at 13:00 UTC for the metrics convergence and at
8 different times for the feature importance. However, the considerations reported
below can be generalized to other points/times, since the methods maintain similar
speed of convergence during the entire run in every analyzed point.
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Figure 3.5: Example of the ML-AMPSIT output for a LASSO regression of 100 simulations
with a duration of 36 hours (spin-up phase included), focusing on v at the third vertical
level above the water point and displaying the metrics for the 30th simulated hour:
a) importance time series of the 6 parameters; b) time evolution of the metrics MSE,
MAE and p-value; c) quality of the test phase associated to the selected hour with the
corresponding metrics; d) ranking of the importance of the features for the selected hour.

Despite each method showing some differences, especially in the oscillations
around the convergence values, four out of seven of the proposed methods are able
to reach a reasonably stable result after approximately 20 simulations. BRR, GPR,
LASSO and SVM are the fastest and most stable algorithms to reach convergence.
On the other hand, the decision-tree-based methods have significant oscillations
even after 20 realizations and the metrics show that they are less consistent than
the other methods. However, the results highlight that all the methods propose a
stable and consistent ranking of the parameters’ importance after 80 simulations
and, in most cases, even with a much lower number of simulations.

3.4.4 Parameter importance analysis

Figures 3.8 and 3.9 show respectively the time series of the performance metrics
for the south-north wind component at the lowest vertical level over the land and
water regions, while Figures 3.10 and 3.11 show, for the same variable and regions,
the time series of the feature importance for each of the proposed methods.

In this example, GPR, BRR, LASSO and SVM show the best metrics, suggesting
that in the proposed case study there is no relevant difference between non-linearity-
aware approaches and linear approaches, as they both correctly capture the relation
between the tested parameters and the south-north wind component. These
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Figure 3.6: Convergence of the MSE with the number of realizations for each method
implemented, considering v over land, at the first vertical level, at 8 different times.

Figure 3.7: Convergence of the feature importance with the number of realizations, for
each method implemented, considering v over land, at the first vertical level, at 13:00
UTC.

algorithms show very stable results, with slightly worse performance metrics only
in correspondence with the peak of the sea breeze around 16:00 UTC over land
and with the nocturnal peak of the northerly wind around 07:00 UTC over water.
The three decision-tree-based methods present a more irregular behavior of the
performance metrics, with higher errors and lower correlations. In particular, CART
presents the worst performance metrics for this case study. The poorer metrics
compared to more refined methods such as RF or XGboost are expected, since
CART does not compute an ensemble of decision trees and does not consider the
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Figure 3.8: Time series of the performance metrics for each method implemented, consid-
ering v over land at the first vertical level: blue, green, red and orange lines represent
respectivelyR2, MSE, MAE and p-value.

errors of the previous branches.

For both regions, all methods agree very well on the ranking and overall
magnitude ratios of the feature importance, individuating similar patterns, with
only minor differences, also considering the methods showing worse performance
metrics (cf. Fig. 3.8).

Figure 3.10 highlights cyclic trends of the parameters’ importance over the land
region, likely induced by the cycle of the diurnal thermally-driven circulation. In
particular, Z0MVT and RHOL-NIR alternate as the most important parameters,
with RHOL-NIR dominating during the entire day, with the exception of the
hours close to sunrise and sunset, when ZOMVT becomes more important. This
seems to indicate a stronger role of the surface friction when stronger winds are
present (ZOMVT directly influences the surface friction), coherently with the wind
speed profiles shown in Figure 3.4a,e. LAI_MAR shows an importance almost
comparable to RHOL-NIR during the day, especially with LASSO, SVM and RF,
while its importance is lower during the night, especially in the algorithms that
tend to separate more the relevant and non-relevant parameters (i.e., GPR, BRR
and decision-tree-based methods). The other parameters seem to be more relevant
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Figure 3.9: Time series of the performance metrics for each method implemented, consid-
ering v over water at the first vertical level: blue, green, red and orange lines represent
respectivelyR2, MSE, MAE and p-value.

at night, with the exception of DLEAF, which is always non-relevant for each
method implemented.

The results are more uniform over water than over land, and the ranking of
the parameters does not show significant variations during the whole day. In
particular, the dominant parameters are RHOL-NIR and LAI_MAR, with Z0MVT
always showing low importance values. Since the sea breeze is driven by thermal
contrasts, it is expected that the parameters mainly affecting temperature, such as
the reflectivity and the leaf area index, are also particularly relevant for this kind
of circulation.

It is interesting to note that the decision-tree-based algorithms, CART, RF and
XGboost, overall detect minor differences between the less relevant parameters,
while the other methods, GPR, BRR, LASSO and SVM, enhance the differences
and define a clearer ranking. The reason for these differences is reasonably due
to the fact that, as mentioned in Section 2, the decision-tree-based algorithms
are less strict about feature shrinkage compared to other methods containing a
regularization term like LASSO, hence resulting in a less clear ranking in feature
importance with respect to the other methods. However, the relative importance
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Figure 3.10: Time series of the importance of the parameters considered for each method
implemented, considering v over land at the first vertical level.

between parameters is overall conserved, i.e. the feature importance ranking is
mostly the same as the other methods for the entire length of the simulation.

It is also worth noting that, considering the importance time series obtained
from GPR and BRR surrogate models, the surrogate Sobol first index agrees very
well with the feature importance scores of the other algorithms, which indicates
that the Sobol indices derived from BRR and GPR and the feature importance
derived from the other methods have equivalent sensitivity estimation capability
when convergence is properly achieved.

3.4.5 Vertical variability

Figure 3.12 and 3.13 show, for the land and water regions respectively, the
variations in the feature importance in the lowest 10 vertical levels at different times.
Since, as highlighted in the previous section, GPR is one of the methods presenting
the best performance metrics, it has been chosen as the reference algorithm for
this analysis. However, the results obtained with GPR are consistent with those
obtained with all the other methods, particularly with LASSO, SVM and BRR.
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Figure 3.11: Time series of the importance of the parameters considered for each method
implemented, considering v over water at the first vertical level.

Over the water region, the parameters’ ranking does not show significant
variations with height, except in correspondence with the nocturnal wind peak
(06:00 UTC), when LAI_MAR becomes more important than RHO-NIR above the
8th model level. The situation is more complex over the land region, with more
significant variations of the parameter importance with height. In particular, it can
be seen that Z0MVT is more important close to the surface, especially when wind
speed is stronger, consistent with the results shown in Fig. 3.10, and remarking
that friction is particularly important close to the surface. The importance of
LAI_MAR tends to increase with height, especially during the night, while the
importance of RHOL-NIR slightly decreases with height with the northerly land
breeze and strongly increases in the lowest vertical levels when the southerly sea
breeze is well developed.

It is worth noting that the MSE for GPR, LASSO, BRR and SVM does not show
significant variations in the lowest 10 vertical levels both over land and over water
(Figure 3.14 and 3.15), meaning that the observed variations in feature importance
are related to changes in the input-output relation rather than to uncertainty issues.
A slightly higher variability is shown by RF and XGboost, while CART is the only
method presenting a strong height dependence, in particular considering higher
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MSE values close to the surface at night over land and in correspondence with the
northerly land breeze peak over water. These observations strengthen the evidence
that this method is not performing well in this case study.

Figure 3.12: Parameter importance, considering v in the first 10 vertical levels over the
land region at different times, for the GPR method.

Figure 3.13: Parameter importance, considering v in the first 10 vertical levels over the
water region at different times, for the GPR method.

3.5 Discussions and conclusions

This paper presented a novel automated model parameter sensitivity and
importance analysis tool (ML-AMPSIT) that applies different machine learning
algorithms, namely LASSO, Support Vector Machine, Classification and Decision
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Figure 3.14: MSE for each method implemented, considering v in the first 10 vertical
levels over the land region at different times.

Figure 3.15: MSE for each method implemented, considering v in the first 10 vertical
levels over the water region at different times.

Trees, Random Forest, Extreme Gradient Boosting, Gaussian Process Regression
and Bayesian Ridge Regression, to perform sensitivity analysis and extract feature
importance from input-output relationships. This tool was conceived to alleviate
the computational burden usually associated with traditional global sensitivity
analysis methods, which require a large number of model realizations, proposing an
alternative approach using surrogate models or emulators. In fact, global sensitivity
analysis methods, such as the Sobol method, demonstrate superior performance
with respect to one-at-a-time approaches, which do not consider the interaction
between parameters, but the large number of model realizations needed often
makes their use unfeasible for complex numerical models. On the other hand,
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surrogate models or emulators, trained using input-output pairs of the original
high-fidelity model, offer a cost-effective means of generating accurate predictions
of the output variable. The utilization of machine learning techniques provides
computationally efficient solutions while considering non-linearity and interactions
between variables.

The implementation of different methods, also within the same family of algo-
rithms, for example CART, Random Forest, and Extreme Gradient Boosting, which
are all decision tree-based algorithms, or LASSO and SVM, which are both linear
regression algorithms, or GPR and BRR, which are both probabilistic methods, is
multifaceted. First, if a family of algorithms produces consistent results, this consis-
tency increases the reliability and robustness of the outcome. Moreover, depending
on the situation, it could be more convenient to rely on the fastest method instead
of the most accurate, as in the case of CART with respect to XGboost. Second,
the use of different families of algorithms extend the applicability and flexibility of
the tool, as different families of algorithm can perform well in different scenarios.

The functionalities of the tool were tested and shown in a case study using
the WRF meteorological model coupled with the Noah-MP land surface model.
A sensitivity analysis applied to a set of Noah-MP parameters was presented for
simulations of a sea breeze circulation over an idealized flat geometry. The different
algorithms work as surrogate models of the original WRF/Noah-MP high-fidelity
simulations and are able to accurately predict the original model behavior and reach
robust conclusions about the parameter sensitivity given a relatively small ensemble
of model runs. The efficiency of the model emulation is also tested through the
computation of first-order Sobol indices from the training of Gaussian Processes
Regression and Bayesian Ridge Regression, with results strongly consistent with the
other proposed feature extraction methods. By integrating multiple algorithms into
a flexible framework, ML-AMPSIT offers a comprehensive and reliable approach
for sensitivity analysis in complex models, also allowing the evaluation of the
uncertainty of the estimates by evaluating the spread between the outcomes of
different algorithms.

Among different methods, Gaussian Process Regression, LASSO, Support Vector
Machine, and Bayesian Ridge Regression emerged as the most reliable and robust
methods. In contrast, decision-tree-based algorithms exhibited lower stability
both in terms of convergence with respect to the realization number and higher
uncertainty. In this case study, the linear models LASSO, Support Vector Machine,
and Bayesian Ridge Regression demonstrated equal performance to the non-linearity-
aware Gaussian Process Regression, suggesting the absence of strong non-linear
relationships between the chosen parameters and the output variable in the analyzed
domain regions.
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For the best algorithms, the convergence of the feature importance was achieved
with a small sample of about 20 simulations, whereas classical global sensitivity
analysis approaches often require a much higher number of realizations. A qual-
itative comparison to evaluate the added value of ML-AMPSIT in terms of the
number of simulations needed to reach robust results can be performed considering
two of the most advanced methods in global sensitivity analysis, i.e. the Morris
method (Morris, 1991), and the Sobol method (Saltelli and Sobol’, 1995), assuming
to use six parameters following a Latin Hypercube Sampling (Mckay et al., 1979)
with radial design (Campolongo, Saltelli, et al., 2011). This sampling technique is
one of the best trade-offs for decreasing the number of simulations needed compared
to a full-factorial sampling (Saltelli, Ratto, et al., 2008). If parameter interactions
are not relevant, such as for models with low complexity and low dimensionality, a
viable strategy is to use the Morris method to find out the most and least relevant
parameters. For Nc centroids produced with a Latin Hypercube sampling, and k
perturbations produced by a radial design, the total number of sample points, i.e.,
the total number of model runs required, is N = Nc(k + 1). A sufficient number of
centroids Nc for this sampling design ranges from 10 to 50 (Campolongo, Cariboni,
et al., 2007), leading to 70-350 total simulations. However, even with this number
of simulations, convergence is not guaranteed, as it depends on the specific case.

For more complex models, the Morris method can be very inefficient in stating
the true parameter relevance (it is usually considered only a proxy of the true
sensitivities, depending on the number of interactions and non-linearities in the
model, Cuntz, Mai, Zink, et al., 2015). The Sobol method is able to weigh more
accurately the interaction effects between each parameter, but it is more demanding.
Following Saltelli, Annoni, et al. (2010), to circumvent some constraints over the
number of model runs required, the final number would be NT = Nc(k + 1)(k + 2)

which, using the previous assumptions for Nc, gives a minimum number of 1120-
1680 runs. Aside from the minimum amount computed above, real applications of
the Sobol methods can easily exceed this value to achieve robust results (Cuntz,
Mai, Samaniego, et al., 2016; Cuntz, Mai, Zink, et al., 2015). However, this is
not usually feasible for complex and computationally intensive models such as the
WRF model.

It is then clear that ML-AMPSIT significantly reduces the number of simulations
needed for sensitivity analysis and extraction of feature importance. Considering
that all the proposed regression methods in ML-AMPSIT intrinsically account for
interactions between parameters, this highlights its added value over classical global
sensitivity analysis methods and points out its possible applications, especially in
cases when the use of classical global sensitivity analysis methods is not feasible.
Furthermore, the intercomparison of the results from different algorithms in ML-
AMPSIT can reveal useful physical insights into model simulations.
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It should be noted that the results presented in this paper are limited to
the simple case study considered here to test the tool functionalities. Further
investigations with a more complex scenario, where non-linearities are expected to
be more strongly involved in the input-output relations, are in progress and will be
presented in a future work.
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Appendix

3.5.1 ML-AMPSIT configuration file

Figure 3.16: An example of the configuration file for the WRF/Noah-MP model case
study.
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Abstract

This study investigates the sensitivity of Land Surface Model (LSM) surface
parameters in simulating atmospheric processes over complex terrain, with a
particular focus on thermally driven circulations in an idealized valley. Using
the Weather Research and Forecasting (WRF) model coupled with the Noah-MP
LSM, we perform a comprehensive sensitivity analysis to evaluate the impact of
empirical parameters on model accuracy and performance. A unique aspect of
our methodology is the application of an ensemble of machine learning algorithms,
integrated into the ML-AMPSIT tool, to emulate and evaluate the input-output
relationships of the high-fidelity WRF outputs. Our results highlight the significant
role of canopy height (HVT), stomatal resistance (RS), and near-infrared leaf
reflectivity (RHOLNIR) in influencing the model’s output surface fluxes, potential
temperature, and valley wind circulations. The study highlights the importance
of accurate parameterization in LSMs, especially in complex terrain, to improve
the reliability of numerical weather prediction models. The integration of variance-
based global sensitivity analysis with machine learning provides a novel approach to
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understanding and improving model sensitivities, thus providing valuable insights
into the dynamic interactions between land surface parameters and atmospheric
conditions.

4.1 Introduction

In numerical weather prediction (NWP) models energy and mass exchange
at the ground interface are evaluated by means of land surface models (LSMs),
which, depending on their complexity, consist of a number of different interacting
parameterizations to account for the relevant physical processes and to provide the
atmospheric model with bottom boundary conditions. It is well known that LSMs
represent one of the major sources of uncertainty in simulations with NWP models
(e.g., Massey et al., 2014; Schmidli, Billings, et al., 2011; Tomasi et al., 2017), due
not only to the approximations introduced by the physical parameterizations, but
also to the use of a set of parameters whose value is often estimated empirically.
A delicate issue regarding the use of specific parameter values stems from the
representativeness of the land data. In fact, land cover parameters used in LSMs
are usually defined on the basis of predefined look-up tables, which take into
account representative or typical characteristics for each land cover type. However,
in the real world, the actual characteristics of a specific land cover may significantly
deviate from its typical features, depending for example on climatic or geographic
aspects. This issue tends to be even more relevant over complex terrain, where land
cover characteristics usually present larger temporal and spatial heterogeneity. This
affects the estimation of the correct values for the parameters and, consequently,
the quality of the simulation. The development of high-resolution and customized
maps of such parameters can be extremely complex and sometimes not feasible,
due to the lack of relevant information. Therefore, it is important to evaluate the
sensitivity of the parameterizations to the uncertainty in the values of the empirical
parameters, in order to concentrate the effort on the parameters that most affect
model results.

One of the most popular and used LSMs is Noah-MP (Niu, Yang, Mitchell,
et al., 2011; Yang, Niu, et al., 2011), which is available in the Weather Research
and Forecasting (WRF) meteorological model. It is an augmented version of the
Noah LSM (Ek et al., 2003), that allows the usage of different physical schemes
and multiparametrization options reaching a total number of 4’584 possible combi-
nations. It is an open-source model, with different contributions from the scientific
community. Noah-MP uses more than 200 parameters related to land cover and soil
properties, and it can employ different predefined sets of vegetation classes with
particular choices of parameter values representative of different types of vegetation
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cover. The choice of these parameters is fixed to an empirical value, defined in
the dedicated file MPTABLE.TBL, and, although they are used to define large
land cover classes, no range of uncertainty is taken into account. This contrasts
with a more realistic scenario in which the parameter values are not constant over
the same vegetation category, hence this approach leads to potential issues in the
model performance.

The importance of each parameter to the model output can be assessed through
a sensitivity analysis. Analyzing the impact of small input perturbations on the
model output has historically been the first type of approach for carrying out a
"local sensitivity analysis" (Iooss et al., 2014), i.e. referred to local variations of
the input parameters. The main limitation of these methods is the assumption
of a linear relation between the parameter and the output variable. Since many
simulated processes are unavoidably non-linear, the situation is usually more
complex. Moreover, in a typical model, a parameter does not only affect the output,
but also the behavior of the other parameter-output relations. This can be defined
as the "interaction problem". To overcome this problem, more refined and global-
oriented methods (hence the name "global sensitivity analysis") were introduced,
among which is the variance-based approach, which decomposes the variance of
the model output into multiple terms accounting for all the parameter interactions
(Saltelli, Annoni, et al., 2010). The most famous and well-established variance-based
method is the Sobol method (Saltelli and Sobol’, 1995), which leads to multiple
sensitivity indices evaluating an arbitrary number of interactions in the variance
decomposition. The Sobol method has been widely applied to hydrological and
environmental models (Gan et al., 2014; Gong et al., 2015; Griensven et al., 2006;
Pyo et al., 2021; Rosolem et al., 2012; Wang and Solomatine, 2019). Rosero et al.
(2010) used this method to assess the performance of the Noah LSM by comparing
three different versions, differing in the inclusion of a groundwater module and
a dynamic phenology module. Rosero et al. (2010) showed that the interaction
between the model parameters is significant, increasing with the complexity of
the model version, but also that the variance of the model response is mainly
controlled by a few important parameters, among which is the leaf area index
(LAI). This study showed that the dynamic vegetation module caused the highest
increase in the interactions between the model parameters, but without a significant
improvement in the model performance. In more recent years, many extensive
studies have evaluated the performance of Noah-MP using global sensitivity analysis.
Cuntz, Mai, Samaniego, et al. (2016) highlighted that many hard-coded parameters,
i.e. parameters whose value is fixed inside the code and cannot be changed by
the user, are very influential considering the sensitivity of the simulated surface
runoff. Evaluating the behavior of Noah-MP over the central Tibetan Plateau,
Li, Zhang, Barlage, et al. (2018) found that energy and water vapor fluxes are
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dominated by soil parameters. Moreover, the canopy height (HVT) was the most
sensitive vegetation parameter, while the Clapp-Hornberger b parameter was the
most sensitive soil parameter. With a similar approach, Arsenault et al. (2018)
identified five soil parameters and six vegetation parameters acting as primary
controls on soil moisture, sensible heat, latent heat, and net ecosystem exchange.
Some of the most relevant parameters were the Clapp-Hornberger b parameter,
the field water capacity, the soil porosity, the height of the canopy, the roughness
length and the soil water availability.

The aim of the present study is to identify, through a sensitivity analysis,
which LSM vegetation parameters need to be handled with the most care while
simulating atmospheric processes over complex terrain, with a particular focus on
the development of thermally-driven circulations and the related thermodynamic
fields in an idealized valley. In such a context, it is expected that variations
in relevant LSM parameters translate into different changes in the model output
depending on the position in the valley and the time of the day. In fact, a significant
aspect distinguishing complex terrain from simple geometry areas concerns the
development of local thermally-driven circulations. In particular, mountain valleys
are characterized by the development of thermally-driven circulations resulting
from the differential heating and cooling of the lower atmospheric layers during
fair weather days. Slope winds respond rapidly to the heating/cooling of the valley
slopes, blowing upslope after sunrise and downslope after sunset. On the other
hand, valley winds, which develop due to pressure differences between different
valley sections or between the valley and the plain, typically blow down-valley
during the night and up-valley during the day (Zardi et al., 2013). The alternation
of these circulations typically marks the diurnal wind cycle in mountain valleys,
strongly affecting the climatology of these regions.

The sensitivity of these circulations to the geometric characteristics of the
valley has been widely studied through Reynolds-averaged Navier-Stokes (RANS)
simulations and large-eddy simulations (LES), mainly using idealized valley ge-
ometries (e.g., Rampanelli et al., 2004, Serafin et al., 2010, Serafin et al., 2011).
For example, Wagner et al., 2014 and Wagner et al., 2015 performed different
LES with the Weather Research and Forecasting (WRF) model, highlighting vari-
ations in wind intensities depending on the valley floor slope, the valley volume,
depth, width, and length. An idealized valley geometry was also used by Schmidli,
Billings, et al. (2011) to compare the up-valley wind system simulated by eight
different non-hydrostatic mesoscale models with the same initial and boundary
conditions, finding that the main differences between the models were related to the
representation of the surface energy budget and the different turbulence schemes.

Since slope and valley circulations develop as a consequence of temperature
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contrasts in the atmospheric boundary layer between different areas in complex
terrain, it is clear that they are strongly affected by surface-atmosphere exchanges
and local surface characteristics. Therefore, accurately representing these processes
in NWP models is crucial for their correct simulation. However, a comprehensive
evaluation of the sensitivity of their simulation to surface parameters is missing in
the literature.

The studies presented above, which used sensitivity analysis to evaluate the
impact of model parameters on Noah-MP results, were performed with the model
executed in offline mode, i.e. forcing the LSM with observations without a coupled
meteorological model, in order to evaluate only the LSM behavior. The low
computational cost of these offline simulations allowed these studies to test the
model output over long time periods, in order to obtain robust statistics. Since
the aim of the present study is to assess the influence of surface parameters on the
simulation of thermally-driven circulations in a mountain valley, it is fundamental
to evaluate the interaction between the LSM and the coupled NWP model. For this
reason, the analyses presented in this work are based on simulations in which the
Noah-MP LSM is online coupled with the meteorological WRF model. Due to the
high computational cost of the WRF simulations, this paper proposes a different
approach based on surrogate models (Fernández-Godino et al., 2017; Forrester et al.,
2008; Kim et al., 2020; Vinuesa et al., 2022), specifically an ensemble of machine
learning (ML) algorithms that are trained over samples of the original "high-fidelty"
model outputs, and emulate the input-output relations through regression tasks.
These algorithms are implemented inside an automated software, the ML-AMPSIT
tool, written specifically to perform ML-based sensitivity studies and presented
in (Di Santo et al., 2024). ML extraction of feature importance is widely used in
other Earth science fields, as stated in 3.1. Nonetheless, to the Author’s knowledge,
the present study is the first one that has been conducted applying ML algorithms
to extract parameter importance from an LSM coupled with an NWP model in a
complex terrain scenario.

The paper is organized as follows: Section 2 presents the modeling setup,
detailing the specifics of the idealized valley geometry, the computational domain,
the initial and boundary conditions, and the various options used in the Noah-MP
land surface model. It also describes the methodology for the sensitivity analysis,
including the machine learning algorithms used, the parameters tested, and the
statistical methods used to evaluate parameters’ importance. Section 3 reports the
analysis of the simulations, discussing the variability of the simulation ensemble and
the results of the sensitivity analysis, highlighting the most influential parameters
affecting the valley circulation and surface fluxes. Finally, Section 4 concludes the
paper with a summary of the main findings.



98 Chapter 4.

4.2 Methods

4.2.1 Modelling setup

The sensitivity analysis has been performed by means of simulations over an
idealized valley geometry on a clear-sky day, eliminating complexities induced
by real terrain and peculiar meteorological conditions, in order to facilitate the
interpretation and generalization of the results.

The idealized valley-plain topography used in the present work is based on
Schmidli and Rotunno, 2010 andSchmidli, Billings, et al., 2011. Following the
criteria established by Rampanelli et al., 2004, the valley floor and the plain share
the same elevation, avoiding contributions of up-valley anabatic winds. The valley-
plain length is chosen long enough to avoid boundary effects on the along-valley
flow and the valley slopes are not overly steep so that numerical inaccuracies do
not arise from the terrain-following grid system. The valley geometry, with the
axis oriented in the North-South direction, is defined by the following analytical
expression (Fig. 4.1):

z = h(x, y) = hphx(x)hy(y), (4.1)

where hx(x) and hy(y) are defined as follows:
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(4.3)

where hp = 1.5 km is the valley depth, Ly = 200 km half the valley length,
Sx = Sy = 9 km the width of the slopes, X1 = 0.5 km, X2 = 9.5 km, X3 = 10.5 km,
X4 = 19.5 km, and X3 −X2 = 1 km is the ridge width in the cross-valley direction.

The computational domain extends 300 km both in the North-South and West-
East directions, while the domain top is placed at 16 km height. The choice of
the horizontal extension of the domain was performed after a series of preliminary
simulations, aiming at evaluating an optimal extension that prevents the influence
of boundary effects on the simulation of the valley circulation while still keeping a
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Figure 4.1: (a) Model topography, where dashed lines represent the position of the
cross-valley and along-valley sections presented in section 4.3.1, respectively in Figs. 3-6
and 7-8. Their extension is limited by the red rectangle, which also represents the zoom-in
area shown in (b), where the four points chosen to study the different valley regions are
represented by red dots.

reasonable computational effort. The horizontal grid spacing is 1 km, representative
of operational forecasts with local area meteorological models, and a total of 65
vertical eta levels are used, with 20 levels below 1 km height. The center of the
domain is set at 47°N 11°E; the simulations start at 12:00 UTC (LST+1), 19 March,
and run for 30 hours, with the first six hours used as spin-up period to allow the
development of the thermally-driven circulation. Therefore, a full diurnal cycle has
been analyzed, in order to evaluate the different phases of the the valley circulation,
with a radiation cycle representative of the equinox in an Alpine valley.

The initial potential temperature vertical profile is divided into three layers,
with a shallow, 500-m-deep mixed layer close to the surface topped by two stable
layers, representative respectively of the troposphere and the lower stratosphere:

θ(z) =


280 0 ≤ z < 500 m

280 + 0.0033 · (z − 500) 500 ≤ z < 10000 m

280 + 0.0033 · 9500 + 0.0098 · (z − 10000) z ≥ 10000 m

(4.4)

where the potential temperature is evaluated in K and the height z in m.

The initial relative humidity is constant and equal to 30% along the entire
vertical profile and the atmosphere is initially at rest.

The Advanced Research WRF (ARW) dynamical core is used, which implements
a third-order Runge-Kutta scheme for time integration with a time-split method to
manage the acoustic modes (Wicker et al., 2002) and an Arakawa-C grid staggering
for spatial discretization. In this work, 5th-order-accurate horizontal advection
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and 3rd-order-accurate vertical advection are used. The integration time step is
60 s. The W-E boundary conditions are set as periodic, while the N-S boundary
conditions are symmetric, thus with the effect of simulating a valley that is twice
as long and open on both sides (cf. Wagner et al. (2014)). Moreover, a Rayleigh
sponge layer with a nondimensional damping coefficient of 0.1 has been set at the
upper boundary. Coriolis force has been neglected.

As to the physics options, the Rapid Radiative Transfer Model (RRTMG) is used
for shortwave and longwave radiation (Iacono et al. (2008)). After the preliminary
evaluation of several planetary boundary layer parameterizations, the quasi-normal
scale elimination scheme (Sukoriansky et al., 2005) resulted in producing the
least amount of spurious rolls, which are typical of simulations with mesoscale
meteorological models at the kilometer scale (Ching et al., 2014), hence it has
been selected for this work, coupled with the corresponding surface layer scheme.
The microphysics parameterization is not activated to simulate a full diurnal cycle
not affected by clouds, in order to allow the full development of the valley wind
circulation and simplify the interpretation of the results. Similarly, the cumulus
parameterization is also switched off. The effects of the topography on shading and
radiation are both taken into account.

The following options of the Noah-MP LSM have been used: the dynamic
vegetation option is not activated with the prescription of a vegetation fraction,
which in this work is fixed to 0.6, while the leaf area index is read from the
dedicated Noah-MP table (MPTABLE), and changes in the sensitivity analysis.
The radiative transfer scheme is the "modified two-stream" (Niu and Yang, 2004),
which aggregates cloudy leaves into evenly distributed tree crowns with gaps.
The gaps are computed according to the specified vegetation fraction and the
sum of leaf and stem area indices, which in this work change in the sensitivity
analysis. The Jarvis scheme for the computation of the stomatal resistance (Jarvis
et al., 1976) with Noah-type soil moisture factor (Schaake et al., 1996a) and
the TOPMODEL with groundwater option for runoff and groundwater processes
(Niu, Yang, Dickinson, Gulden, and Su, 2007) are used. The surface resistance
to evaporation and sublimation processes has been set following Sakaguchi et al.,
2009b, while the surface layer drag coefficient parameterization, used to compute
heat and momentum exchange coefficients, is the default Monin-Obukhov-based
scheme. Finally, the soil texture definition is chosen from the MPTABLE, thus
deactivating the usage of pedotransfer functions and the crop model has not been
activated, as well as irrigation and harvesting options.

The sensitivity analysis presented in this work is based on 200 simulations
perturbing the values of several parameters defined in the MPTABLE, as defined in
Section 2.3. In particular, the class "mixed forest" of the MODIS IGBP classification
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has been chosen as the reference land cover to define the unperturbed values of all
the tested parameters. The analysis is performed over 5 WRF variables, the west-
east (cross-valley) wind component, the south-north (along-valley) wind component,
the potential temperature, the sensible heat flux, and the latent heat flux.

4.2.2 ML-AMPSIT

ML-AMPSIT is a fully automated sensitivity analysis tool that uses a set of
ML-based regression algorithms to assess the importance of parameters for a given
model. The algorithms currently included are LASSO, Support Vector Machine
(SVM), Random Forest (RF), Extreme Gradient Boosting (XGboost), Gaussian
Process Regression (GPR), and Bayesian Ridge Regression (BRR). In the ML-
AMPSIT tool, the parameters to test, their range of variability, and the number of
simulations to perform with the high-fidelity model (in this case WRF/Noah-MP)
must be first specified. A Sobol sequence (Saltelli, Annoni, et al., 2010) of the same
length as the number of the simulations is then produced for each parameter. The
sensitivity analysis is performed at different points in the computational domain,
as specified by the user, using the different methods cited above. ML-AMPSIT
calculates a series of performance metrics, namely the coefficient of determination
(R2), the mean squared error (MSE), and the mean absolute error (MAE), to
evaluate the quality of the results. Moreover, the tool allows for the investigation
of the convergence of the obtained feature importance and metrics. By integrating
diverse algorithms, ML-AMPSIT offers a comprehensive toolkit for sensitivity
analysis. The ensemble approach ensures that the tool can handle the problem
under analysis from different perspectives balancing the outcomes of the different
methods and offering robust results. A complete presentation of ML-AMPSIT
can be found in Di Santo et al., 2024, while the open-source code is provided in
Di Santo, 2024.

Among all the algorithms available in ML-AMPSIT, a preliminary analysis (not
shown) of their individual performance for the present case study led to the choice
of using here a method-wise average based on SVM, RF, XGB, and GPR. RF and
XGB are used with their default settings, while slight modifications are introduced
to SVM and GPR.

Considering SVM, in the present work the kernel function, which determines
the shape of the decision boundary, is set to polynomial, instead of linear, i.e.
for each two data points x, x′ the kernel is defined as k(x, x′) = (γ〈x, x′〉 + r)d,
where γ is a scale factor, r is the offset parameter and d is the polynomial degree.
The polynomial kernel allows for non-linear relationships between features to be
modeled by SVM. This choice is motivated by preliminary analyses suggesting that
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non-linear models are desirable over linear models, which performed poorly in the
present case study.

As to GPR, compared to the default Radial Basis Function (RBF) kernel
implemented in ML-AMPSIT, in the present work the more flexible rational
quadratic kernel is applied, which is a mixture of multiple RBF kernels with
different length scales, and is expressed as:

k(x, x′) =

(
1 +
‖x− x′‖2

2αl2

)−α
(4.5)

where ‖x− x′‖ is the Euclidean distance computed between two data points (x, x′),
α is the scale-mixture parameter that controls the weight of large and small scale
variations across the RBF kernels mixture, and l is the length-scale parameter
determining the smoothness of the function. The new kernel choice significantly
improved the efficiency and fastness of hyperparameter tuning compared to the
default option. GPR not only provides point estimates for the regression coefficients,
but also quantifies the uncertainty around these estimates, offering a probabilistic
interpretation of the model parameters.

The tree-based algorithms used in this work (RF and XGboost) inherently
provide a quantification of parameter importance using the mean decrease in
impurity (MDI) method. This method evaluates the importance of a feature by
measuring the reduction in variance (or impurity) it provides across all the trees in
the forest. The greater the average variance reduction attributed to a feature, the
more important it is considered. On the other hand, GPR is a probabilistic method
that does not provide a built-in method for measuring sensitivity, but it can be used
to emulate the "high-fidelty" computationally expensive model (WRF/Noah-MP)
and act as a surrogate, faster version of it. The speed of the surrogate model allows
for a fast implementation of the Sobol method. In other words, the sensitivity
indices are obtained directly from the ML-inferred relation between the original
model inputs and outputs. Similarly, the Support Vector Machine (SVM) method
with a non-linear kernel (as implemented here), does not inherently provide a
measure of feature importance. For linear SVMs, the coefficients can indicate
feature importance similarly to LASSO, where the magnitude of the regression
coefficients directly indicates the importance of the corresponding features. However,
with non-linear SVMs, the connection between coefficient weights and parameter
importance is lost due to the complexity of the kernel transformations. Therefore,
a dedicated sensitivity method must be applied after the regression task to assess
feature importance. As for GPR, this modified implementation of ML-AMPSIT
utilizes the Sobol method to perform the sensitivity analysis using the results of an
SVM-based surrogate model.
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Despite the differences in the feature importance evaluation methods, the
comparison between the sensitivity indices obtained is well-posed. This is because
all methods aim to quantify the relative importance of parameters and are based
on standardized, non-dimensional input data.

The input-output data used to train the algorithms are collected using a
sampling strategy that changes all the parameter values according to quasi-random
low-discrepancy Sobol sequences to optimally explore the parameter space. For
each method available in ML-AMPSIT, the ensemble of simulations generated by
varying the input parameters is divided into training and test sets in a 70-30 ratio.
During the training phase, the ensemble members from the training set are used by
the algorithms through a cross-validation procedure to fit their hyperparameters
to the provided dataset. The search for the best model parameters is aided by a
Bayesian optimization algorithm for hyperparameter tuning. After the training,
the algorithms use the tuning results to predict the ensemble members in the test
set.

4.2.3 Noah-MP parameters

The Noah-MP parameters whose importance is evaluated in the present study
include those defined in the WRF MPTABLE categorized on the basis of the
vegetation type, hence excluding all the soil-related and crop-related parameters.
Moreover, all the parameters associated with physical processes involving snow,
ice, microphysics, runoff and groundwater have been ignored because not relevant
to this case study. Hence, the chosen parameters are strictly related to the canopy
properties having a clear role in the radiation and heat budget.

4.2.3.1 Relevant parameters for radiative fluxes

Leaves play an important role in the net radiation budget. Their cellular
structure tends to almost completely diffuse scattering, resulting in relatively
equal amounts of reflected and transmitted radiation (Monteith et al., 1979). The
overall canopy albedo is usually significantly lower than the individual leaf albedo,
depending on the angle of solar incidence and the stand architecture, which influence
processes such as the penetration of radiation inside the canopy and radiation
trapping, which is very strong in forests. These effects are mostly controlled by
the scattering parameters, canopy height, and the leaf area index. Stems also
play a role in the radiation budget, but, especially for forests, the main radiation
exchange comes from the canopy itself, while trunks are less important. The
greatest radiation trapping is present in canopies with larger leaf area index due
to small leaf size, such as in conifers, because the small size increases the overall
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roughness and scattering.

In the modified two-stream canopy radiation scheme of Noah-MP, the leaves
are treated as clouds aggregated into tree crowns with gaps, uniformly distributed
in the single grid cell, and positioned over the underlying surface. Both inter-crown
and intra-crown gaps are considered, and the parameters affecting these gaps are
the crown radius, canopy height, and the leaf/stem area index.

In the calculation of the radiative fluxes, the vegetation absorption is regulated
by the canopy leaf/stem orientation index, reflection, and transmission parameters
XL, ρ, and τ respectively. The key variables entering the calculations of these
fluxes are the scattered fraction of leaf intercepted radiation ωL = ρ+ τ , and the
single scattering albedo A:

A = 0.5 · (ρ+ τ) ·

[
φ1+φ2·cos θ′

φ1+2·φ2·cos θ′

]
·
[
1− φ1·cos θ′

φ1+2·φ2×cos θ′
· log

(
φ1·(1+cos θ′)+2·φ2·cos θ′

φ1·cos θ′

)]
(φ1 + 2 · φ2 · cos θ′)

(4.6)
where both φ1 and φ2 are polynomials of the variable leaf/stem orientation index
XL. θ is the solar zenith angle and θ′ is the adjusted solar zenith angle that takes
into account the geometric configuration of the canopy as:

θ′ = tan−1

[(
HV T −HV B

2RC

)
× tan(θ)

]
(4.7)

Where HVT and HVB are the canopy top and bottom heights, and RC is the
crown radius.

The values of ρ and τ are specified for the near-infrared band and the visible
band for both leaf and stem, taking into account the different response of vegetation
to these two wavelength ranges, i.e. Noah-MP defines the following 8 parameters
RHOL_NIR, RHOS_NIR, RHOL_VIS, RHOS_VIS, TAUL_NIR, TAUS_NIR,
TAUL_VIS, TAUS_VIS.

4.2.3.2 Relevant parameters for latent heat, sensible heat and momen-
tum fluxes

Noah-MP uses LAI, ρ, and τ to derive the fraction of vegetation under sunlight,
which affects the stomatal resistance according to the Jarvis scheme, and ultimately
the transpiration contribution to latent heat. It is expected that in the present
case study this contribution is the most significant for the total latent heat flux,
considering the absence of a wet fraction of the canopy. The stomatal resistance
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is composed of three different contributions referring respectively to the incoming
solar radiation (Frs,solar) affected by the maximum and minimum stomatal resis-
tances RSMAX and RS and the radiation stress factor RGL, the air temperature
(Frs,temp) affected by the optimal temperature parameter TOPT , and the vapor
pressure deficit (Frs,vpd) affected by the vapor pressure deficit stress factor HS,
which modulates the influence of the pressure deficit. The three contributions are
calculated as:

Frs,solar = max

(
0.0001,

2·Spar

RGL
+ RS

RSMAX

1 + 2·Spar

RGL

)
(4.8)

where Spar is the photosynthetically active radiation, which has a different value
for sunlit and shaded leaves and therefore represents a discriminant between day
and night in the final stomatal resistance calculation;

Frs,temp = max
(
0.0001, 1− 0.0016 · (TOPT − Tv)2

)
(4.9)

where Tv is the canopy temperature;

Frs,vpd = max

(
0.01,

1

1 +HS ·max(0, wcan_air_sat − wcan_air)

)
(4.10)

where wcan_air_sat and wcan_air are the saturated mixing ratio and the mixing ratio
of the canopy air.

The final stomata resistance is:

Rstomata =
RS

Frs,solar · Frs,temp · Frs,vpd · βtr
(4.11)

where βtr is a soil moisture factor computed as a function of the soil wetness in
each root layer, decreasing the stomatal resistance for increasingly wet soils.

Another important parameter for both latent and sensible heat fluxes is the
leaf boundary layer resistance Rbl, which is controlled by the leaf characteristic
dimension DLEAF , the canopy wind extinction parameter CWPV T , the leaf
and stem area indexes LAI and SAI, the canopy height HV T , and the roughness
length Z0MV T :

Rbl = 50 · a

1− e−a/2
·
√
DLEAF

Uc
(4.12)

where a is the canopy wind extinction coefficient containing the Monin-Obukhov
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stability function (Monin et al., 1954) for heat ψh(ζMO) evaluated below the canopy:

a =
[
CWPV T · (LAI + SAI) ·HV T · ψh(ζMO)

]0.5 (4.13)

and Uc is the wind speed evaluated at the height of the canopy top HV T :

Uc =
u∗
k

ln

(
HV T − d
Z0MV T

)
(4.14)

where

u∗ =
URk[

ln
(

zref−d
Z0MV T

)
− ψm

] (4.15)

is the friction velocity, k is the von Kármán constant, d = 0.65 ·HV T is the zero-
plane displacement height, UR is the velocity at the reference height zref = d+ z′a,
where z′a is the height of the first WRF level above the zero-plane displacement
height, and ψm is the Monin-Obukhov stability function for momentum evaluated
below the canopy.

The friction velocity is also used to define the exchange coefficients for momen-
tum:

Cm =
k2[

ln
(

zref−d
Z0MV T

)
− ψh

]2 , (4.16)

and heat:

Ch =
k2[

ln
(

zref−d
Z0MV T

)
− ψm

] [
ln
(

zref−d
Z0MV T

)
− ψh

] , (4.17)

which are used to compute the aerodynamic conductances for the surface fluxes.

Rbl is used to calculate the associated heat conductances for sensible and latent
heat flux CSH,cond,leaf and CLH,cond,tr:

CSH,cond,leaf =
2 · EV AI

Rbl

(4.18)

CLH,cond,tr =

[
EV AIsun

Rbl +Rstomata,sun

+
EV AIshd

Rbl +Rstomata,shd

]
(4.19)
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where EV AI is equal to LAI+SAI in the setup used in this work, while subscripts
sun and shaded indicate respectively the fraction of vegetation exposed to direct
solar radiation and in the shade.

Larger LAI and SAI values imply that the leaf boundary resistance Rbl de-
creases, resulting in higher heat conductance coefficients. Increasing the leaf size
DLEAF also increases Rbl, because larger leaves produce thicker laminar layers
(Monteith et al., 1979). Since CWPV T controls the wind extinction within the
canopy, a larger value of CWPV T implies lower wind speed in the canopy, reducing
the heat exchange.

The sensible heat and latent heat fluxes are also modulated by a turbulent
transfer coefficient, entering the computation of the below-canopy aerodynamic re-
sistances, which is directly controlled by the canopy height HV T and the roughness
length Z0MV T through u∗:

Ch,turb = κu∗(HV T − d) (4.20)

Although equation (4.20) implies that both increased roughness and increased
canopy height increase the heat exchange between the canopy and the atmosphere,
it is worth noting that the two parameters have different weights, with Ch,turb

depending linearly on HVT, while on the roughness length as 1
ln(1/Z0MV T )

.

4.2.3.3 Investigated parameters

Table 4.1 shows the parameters investigated in this work, summarizing the
above arguments and pointing out the main physical processes they control. Since
the effect of stem transmittance is not relevant for forest vegetation for both near-
infrared and visible bands, the respective parameters of the MTABLE TAUSNIR

and TAUSV IS have been excluded from the sensitivity analysis. Moreover, also
the parameter controlling the bottom height of the canopy (HV B) has not been
taken into account, in order not to have unphysical simulations resulting from the
contemporary variation of the top height of the canopy (HV T ).

Table 4.1 also shows the reference value of each parameter based on the MODIS
land cover class "mixed-forest". In this work, the percentage of variation adopted
for the sensitivity analysis for the pseudorandom ensemble is set as 20% for all
the parameters. The optimal temperature parameter TOPT has been converted
to degrees Celsius before applying the variation, to avoid unrealistic temperature
settings. Since the results obtained by a regression algorithm over a specific
simulation ensemble cannot be assumed to be valid for any type of ensemble, the
specific variations chosen for the parameters in this study are expected to generate
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results that are strictly valid only for this range of variations. Nonetheless, the
parameter space explored in this work is reasonably representative of the variability
of forest-like land cover classes. This ensures that the results are physically
consistent and as realistic as possible.

Parameters Definition Physical processes Reference
LAI leaf area index, one-sided Rad / Ext / Stom 2.20
SAI stem area index, one-sided Rad / Stom 0.40

RHOLNIR near-infrared leaf reflectance Rad / Stom 0.45
RHOLVIS visible leaf reflectance Rad / Stom 0.10
RHOSNIR near-infrared stem reflectance Rad / Stom 0.39
RHOSVIS visible stem reflectance Rad / Stom 0.16
TAULNIR near-infrared leaf transmittance Rad / Stom 0.25
TAULVIS visible leaf transmittance Rad / Stom 0.05

XL leaf/stem orientation index Rad / Stom 0.25
RC tree crown radius Rad 1.40
HVT height of canopy top Rad / Ext / Turb / Leaf BL 16.0

Z0MVT momentum roughness length vegetated surface Ext / Turb / Leaf BL 0.80
DLEAF characteristic leaf dimension Leaf BL 0.040
CWPVT empirical canopy wind parameter Ext / Leaf BL 0.29

RS Jarvis minimum Stoml resistance Stom 125
RSMAX Jarvis maximum Stoml resistance Stom 5000
RGL Jarvis radiation stress parameter Stom 30
TOPT Jarvis optimum transpiration air temperature Stom 298
HS Jarvis vapor pressure deficit parameter Stom 51.93

Table 4.1: Parameters analyzed in this work. The main physical processes and reference
values for each parameter are given.

4.3 Results

4.3.1 Valley circulation

This section presents the results of the reference simulation, i.e. with all
the parameters set to the reference value, with the main aim of describing its
main features, considering in particular the development of the thermally-driven
circulations. Results are presented at four times representative of the diurnal cycle
of both slope and valley winds, i.e., 18:00, 00:00, 06:00 and 12:00 UTC and along
the cross-valley and along-valley sections shown in Fig. 4.1b.

From Fig. 4.2 it can be seen that at 18:00 UTC down-slope winds are already
well-developed, especially along the western valley sidewall, due to earlier orographic
shading in the afternoon. In fact, since the valley is north-south oriented, the main
asymmetries in the circulation come from the changing insulation of the valley
sidewalls during the day, which particularly affects the development of slope winds,
which quickly react to surface heating/cooling. On the other hand, the up-valley
wind is still strong in the valley core, with velocities around 5 m s−1 between 500
and 1000 m AGL, and extending rather homogeneously in the along-valley direction
up to the ridge top. At 00:00 UTC (Fig. 4.3), shallow down-slope winds converge
towards the valley floor, contributing to the development of a cold pool (Arduini
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et al., 2016). A weak down-valley wind is developing starting from the lowest
atmospheric layers, and is topped by a residual up-valley wind extending from 1000
m AGL to the ridge top. The along-valley section (Fig. 4.3c) highlights that the
down-valley wind is developed especially at the valley exit. Fig. 4.3c also shows
lower temperatures in the valley with respect to the plain, driving the progressive
development of the down-valley wind. Indeed, the down-valley wind becomes
stronger at 06:00 UTC (Fig. 4.4), extending to higher levels and towards the inner
valley sections. The down-slope winds are significantly weaker, especially close
to the valley floor, where colder air has accumulated during the night. At 12:00
UTC (Fig. 4.5), up-slope winds are well-developed along both sidewalls, converging
at the ridge top, and topped by return branches causing subsidence in the valley
center. The along-valley section highlights higher potential temperature in the
valley with respect to the plain, causing the transition from down- to up-valley
wind.

Figure 4.2: Cross-valley section (see Fig. 4.1 for the position) of (a), cross-valley wind u
(color shading), wind component parallel to the section (arrows) and potential temperature
(solid lines) (b) along-valley wind v (color shading), wind component parallel to the section
(arrows) and potential temperature (solid lines); (c) along-valley section of along-valley
wind v (color shading), wind component parallel to the section (arrows) and potential
temperature (solid lines). All variables refer to 18:00 UTC of the first simulated day.
Red dotted lines indicate the location of the valley floor, slope, and ridge points, which
will be considered in the following analysis. For visualization purposes, the vertical wind
component w in the cross-valley sections has been magnified by a factor of 10 and wind
vectors are plotted every two grid points.

Figure 4.3: As Fig. 4.2, but referring to 00:00 UTC.
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Figure 4.4: As Fig. 4.2, but referring to 06:00 UTC.

Figure 4.5: As Fig. 4.2, but referring to 12:00 UTC.

4.3.2 Simulation ensemble

The variability of the simulation ensemble is evaluated by analyzing the time
series of the along-valley (south-north, v) and of the cross-valley (west-east, u) wind
components and of the potential temperature at the lowest model level, as well as
of the surface latent and sensible heat fluxes (Figs. 4.6-4.10) at four points of the
domain representative respectively of the valley floor, the western valley slope, the
western ridge and the plain close to the valley exit (see Fig. 4.1b). Moreover, for
the same four points, the ensemble results are also shown for the vertical profiles of
the horizontal wind components and of the potential temperature in the lowest 500
m AGL at the same four representative time steps analyzed in Section 3.1 (Figs.
4.11-4.13). Both the time series and the vertical profiles are spatially averaged over
11 cells along y, from 5 cells south to 5 cells north of the selected point, to obtain
more robust results.

Focusing on the ensemble time series (Figs. 4.6-4.10), it can be seen that
the ensemble spread changes not only with time and position, but also with the
variable of interest. The along-valley wind component seems more sensitive to
input parameter variability close to the peak of the up-valley wind in the afternoon,
considering in particular the valley floor, the slope and the ridge. On the valley
floor the along-valley wind component displays significant spread also during the
night (Fig. 4.6). The ensemble spread of the cross-valley wind is generally larger,
especially considering the slope point during the night (down-slope wind, Fig. 4.7b).
The variability of the potential temperature tends to be larger during daytime
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on the valley floor, the ridge and the plain, while over the slope the ensemble
spread is roughly constant throughout the day. The variables that present the most
marked daily cycle in the ensemble spread are the latent and sensible heat fluxes,
which show strong differences between nighttime, when the variability is very low,
and daytime, when differences between the ensemble simulations are considerably
larger.

Considering the vertical profiles of the along-valley wind component, Figure
4.11 shows that the ensemble spread is larger at night on the valley floor, where the
variability tends to increase at higher levels, and over the plain, especially above
the peak of the low-level jet at 100 m AGL. On the other hand, the variability of
the along-valley wind component is particularly low over the ridge, except at 18:00
UTC. The cross-valley wind component (Fig. 4.12) over the slope shows rather
strong variability at all levels at 18:00 UTC (first phase of the down-slope wind)
and at 12:00 UTC (up-slope wind), while at 00:00 and 06:00 UTC the spread of
the down-slope wind is concentrated at low levels. Therefore, the strong variability
observed during nighttime in Fig. 4.7b affects only the shallow down-slope wind
layer. A strong variability is observed over the ridge in the upper levels at 18:00
UTC, reducing in the following hours. The ensemble spread of the cross-valley
wind component tends to be low over the valley and plain points, with slightly
larger variability in both cases at 12:00 UTC and over the plain close to the surface
at 06:00 UTC. The ensemble spread of the potential temperature does not present
a significant height dependence for all the points and times considered, except over
the plain during the night, where variability increases with height (Fig. 4.13). The
variability is larger at all points at 12:00 UTC, coherently with Fig. 4.8, while it is
particularly low over the ridge at night.

Figure 4.6: Ensemble time series for the along-valley wind component at the four points
shown in Fig. 4.1b representative of the valley floor, the slope, the ridge and the plain.
The continuous and dotted red lines indicate respectively the ensemble mean and the
standard deviation of the ensemble. The box indicates the mean, minimum and maximum
standard deviation of the ensemble time series.
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Figure 4.7: As Fig 4.6, but for the cross-valley wind component.

Figure 4.8: As Fig 4.6, but for the potential temperature.

Figure 4.9: As Fig 4.6, but for the latent heat flux.

Figure 4.10: As Fig 4.6, but for the sensible heat flux.
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Figure 4.11: Ensemble vertical profiles in the lowest 500 m AGL for the along-valley
wind component at the four points shown in Fig. 4.1b representative of the valley floor,
the slope, the ridge and the plain and four different times representative of the daily
cycle of valley and slope winds: 18:00, 00:00, 06:00 and 12:00 UTC. The continuous and
dotted red lines indicate respectively the ensemble mean and the standard deviation of
the ensemble. The box indicates the mean, minimum and maximum standard deviation
of the ensemble time series.

4.3.3 Sensitivity analysis

This section presents the results of the sensitivity analysis, focusing in particular
on the outcomes of the assessment of the parameters’ importance. The analysis
is divided between nighttime (18:00-05:00) and daytime (06:00-17:00), in order
to evaluate possible differences depending on the phase of the thermally-driven
circulations. Moreover, the analysis focuses on the four points representative of
the valley floor, the slope, the ridge and the plain shown in Fig. 4.1b. To obtain
robust results, also in this case the analyses are performed averaging model results
along y over 11 cells, from 5 cells south to 5 cells north of the selected point. In
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Figure 4.12: As Fig. 4.11, but for the cross-valley wind componnent.

this section, the analyses referring to the lowest vertical level are presented. The
analysis referring to higher levels has also been performed, but, since the main
patterns do not show a significant variation with height, the figures related to the
other vertical points analyzed are left in the appendix.

The performance metrics of the surrogate models used in this work are also
presented, to highlight that they are able to satisfactorily reproduce the input-
output relationships of the original model.

4.3.3.1 Performance metrics

The performance metrics are reported in Figure 4.14 for all the points and
variables considered. The results refer to the average of all the surrogate models
used. In particular, the metrics shown, R2, MSE, and MAE, are estimates of how
well the methods performed during the test phase, i.e., when predicting new, unseen
data.
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Figure 4.13: As Fig. 4.11, but for the potential temperature.

For the majority of the variables and points, the results highlight that R2 is
about 0.9, MSE is lower than 0.2, and MAE is around 0.3. Notable exceptions
are the nocturnal cross-valley wind component in the valley and over the ridge,
and the along-valley wind component over the slope. However, it should be noted
that very good values of the metrics are obtained for the variable-point pairs most
representative of the development of slope and valley winds, i.e. the along-valley
wind component over the valley floor and the cross-valley wind component over the
slope. This highlights the ability of the surrogate models to accurately reproduce
the influence of the input parameters on the output variables, especially where a
strong signal is present.

The overall good results suggest that the algorithms are correctly trained and
not affected by overfitting. Even when each algorithm is evaluated separately (not
shown), the metrics retain their robustness, with GPR and SVM showing the best
performance.
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Figure 4.14: Performance metrics averaged over all the algorithms used in the present
study for each variable and points analyzed at the first vertical level. The heatmaps
show MAE, MSE, R2, and pvalue for daytime (left, 06:00-17:00) and nighttime (right,
18:00-05:00).

4.3.3.2 Parameters’ importance

As for the performance metrics shown in the previous section, the analysis of
parameter importance presented here refers to the average values of all the methods,
in order to obtain an ensemble result that is robust to individual method variations.
Nevertheless, a prior evaluation of the parameter importance (not shown) showed
very high consistency across methods.

It is important to emphasize the relative nature of the parameters’ importance
analysis; each regression is run at a specific time and location with no information
about other times and locations. Therefore, comparisons between different columns
of the heatmap do not reflect absolute importance but should be understood in
terms of the relative impact of the parameters. On the other hand, the importance
of a particular parameter can be compared with the importance of the other
parameters in the same column of the heatmap (same variable-location pair), to
evaluate what are the parameters most affecting the variable under investigation in
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that particular location.

To facilitate the heatmap visibility, a filter has been applied such that any param-
eter importance less than 0.05 has been set to white in the colormap, highlighting
the most influential parameters.

When the parameters are ranked by their importance across regions and vari-
ables, a clear hierarchy emerges. RS consistently ranks as one of the most influential
parameters, especially for latent heat flux and potential temperature, with high
values both during daytime and nighttime. From Eq. (4.8) and Eq. (4.11), it
can be seen that that the influence of the parameter RS persists both during
daytime and nighttime. Moreover, it is clear from Eq. (4.11) that RS is the most
influential parameter affecting the stomatal resistance. This result is consistent
with the expectation that the stomatal resistance strongly influences LH through
modulating transpiration, and indirectly affecting temperature. Considering the
other parameters related to the stomatal resistance, RGL and RSMAX display
negligible importance. HS, which represents the weight that vapor saturation has
over stomatal resistance, shows secondary but non-negligible importance across
all variables. Considering that humidity plays a minor role in the present setup,
this result suggests that this parameter might be much more critical in situations
where mixing ratio and soil moisture are more important. Higher importance values
are found for TOPT considering both wind components during daytime. TOPT
is also observed to be relevant for heat fluxes, and in particular it shows a very
high importance for the heat fluxes over the ridge, especially for the latent heat
flux. TOPT enters the Equation (4.9) as (TOPT − Tv)2, implying that, when its
difference with the virtual temperature Tv is larger, this parameter can be more
influential. Therefore, the higher temperatures observed over the ridge during
daytime could explain a larger effect of TOPT on the latent heat flux through the
contribution of Frs,temp.

HVT is also a critical parameter, showing strong effects on all variables, with
the exception of the latent heat flux. HVT displays a high importance especially
for the sensible heat flux and potential temperature, across all regions, with its
influence often intensifying at night. Equation (4.7) shows that HVT is a crucial
parameter for radiation, influencing radiation trapping, which is greater for taller
canopies, and ultimately translating HVT into a temperature modulating parameter.
Leaf boundary resistance is also strongly affected by HVT, as seen in Eq. (4.12),
thus influencing the heat conductances for both sensible and latent heat fluxes,
although a clear difference between the two is the additional presence of the stomatal
resistance in the latent heat conductance, which explains the great importance of
RS observed for the latent heat flux.

Considering radiation-related parameters, the only relevant parameter turns out
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to be the near-infrared reflectivity RHOL_NIR, which shows a significant influence
during daytime on the sensible heat flux and the potential temperature, and at
night for the cross-valley wind component over the slope and the ridge and the
along-valley wind component over the slope. On the other hand, transmissivity,
both in the near-infrared and in the visible (TAUL_NIR and TAUL_VIS) are
observed to be always non-influential parameters. The presence of the near-infrared
reflectivity as one of the most important parameters highlights the important role
of radiation inside the canopy in modulating the surface energy budget and thus
the heating-cooling of the near-surface atmospheric layers. The range chosen to
vary the near-infrared leaf reflectivity and transmissivity is compatible with the
empirically observed values of these two parameters, i.e. the leaf transmissivity
ranges are significantly smaller compared to those of the leaf reflectivity in the
near-infrared spectrum (Monteith et al., 1979). Therefore, considering their very
similar role in Noah-MP, it is expected that larger variations in the reflectivity input
would lead to larger effects on the analyzed variables. Similarly, since RHOL_VIS
is empirically observed to be nearly 5 times smaller than RHOL_NIR, and they
have been modified accordingly in this work, it is easily expected, due to their
equivalence in the Noah-MP code, that RHOL_VIS is negligible compared to
RHOL_NIR. Finally, TAUL_VIS can be considered negligible for the same reason
as RHOL_VIS.

LAI overall displays rather low importance values, with the exception of the
latent heat flux and the sensible heat flux, and a secondary role for the wind
components during daytime. It is important to point out that these results are
valid only for a 20% perturbation of LAI, while across the Noah-MP Modis-based
vegetation classes this parameter varies more than 100%, possibly leading to a
significantly different impact on the output of the simulations, as for the setup
used in Di Santo et al., 2024, where LAI was varied by 50%. On the other hand,
SAI is always observed as a non-influential parameter. Since the variation of SAI
is generally much smaller than the variation of LAI, it is expected that SAI plays a
smaller role than LAI, especially since LAI influences more processes in Noah-MP
compared to SAI, e.g. the calculation of canopy radiation and transpiration.

CWPVT shows low importance values during daytime, while it becomes more
important at night for the heat fluxes, especially over the ridge and slope for the
latent heat flux.

Finally, some of the parameters show transient importance throughout the day,
which could lead to fluctuations in feature importance that are not fully represented
in the time windows chosen for the average.
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Figure 4.15: Parameters’ importance during daytime (06:00 - 17:00 UTC) computed for
the first model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.

Figure 4.16: As in Fig, 4.15, but during nighttime (18:00 - 05:00 UTC).

4.4 Conclusions

This study presented a detailed investigation of the importance of LSM param-
eters in atmospheric simulations over complex terrain, with a focus on thermally
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driven circulations in an idealized valley. Recognizing that LSMs are a significant
source of uncertainty in NWP models, the study investigated how the uncertainty
in the representation of LSM parameters can affect atmospheric processes in the
planetary boundary layer, highlighting the challenges posed by spatial and temporal
heterogeneity of surface conditions in mountainous areas. The methodology inte-
grated a variance-based approach within a data-driven modeling framework, using
the Sobol method enhanced by machine learning algorithms to determine parameter
significance. This combination allowed a fast evaluation of parameter effects on
model outputs, taking into account non-linear relationships and interactions.

The analysis revealed that stomatal resistance (RS), canopy height (HVT), and
near-infrared leaf reflectivity (RHOL_NIR) are critical in modulating atmospheric
boundary layer processes both during daytime and nighttime, with RS being the
most influential parameter across all regions and variables. Leaf area index (LAI)
and optimal temperature (TOPT) were also identified as influential. The canopy
wind extinction parameter (CWPVT) was observed to be influential mostly during
the night for the latent heat flux.

The results obtained in this work highlight what are the LSM parameters
that mostly affect model results, and, as a consequence, those parameters whose
quantification should be treated with most care. It is expected that the optimization
of the quantification of these parameters can lead to significant benefits to the
overall quality of the simulation of atmospheric boundary layer processes over
complex terrain.
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Appendix

4.4.1 vertical sensitivity

4.4.1.1 second level

Figure 4.17: Performance metrics averaged over all the algorithms used in the present
study for each variable and points analyzed at the second vertical level. The heatmaps
show MAE, MSE, R2, and pvalue for daytime (left, 06:00-17:00) and nighttime (right,
18:00-05:00).

4.4.1.2 third level

4.4.1.3 fourth level

4.4.1.4 fifth level
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Figure 4.18: Parameters’ importance during daytime (06:00 - 17:00 UTC) computed for
the second model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.

Figure 4.19: Parameters’ importance during nighttime (18:00 - 05:00 UTC) computed
for the second model level as an average of the five methods chosen for this case study:
SVM, RF, XGB, and GPR.
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Figure 4.20: Performance metrics averaged over all the algorithms used in the present
study for each variable and points analyzed at the third vertical level. The heatmaps
show MAE, MSE, R2, and pvalue for daytime (left, 06:00-17:00) and nighttime (right,
18:00-05:00).

Figure 4.21: Parameters’ importance during daytime (06:00 - 17:00 UTC) computed for
the third model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.
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Figure 4.22: Parameters’ importance during nighttime (18:00 - 05:00 UTC) computed for
the third model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.

Figure 4.23: Performance metrics averaged over all the algorithms used in the present
study for each variable and points analyzed at the fourth vertical level. The heatmaps
show MAE, MSE, R2, and pvalue for daytime (left, 06:00-17:00) and nighttime (right,
18:00-05:00).
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Figure 4.24: Parameters’ importance during daytime (06:00 - 17:00 UTC) computed for
the fourth model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.

Figure 4.25: Parameters’ importance during nighttime (18:00 - 05:00 UTC) computed for
the fourth model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.
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Figure 4.26: Performance metrics averaged over all the algorithms used in the present
study for each variable and points analyzed at the fifth vertical level. The heatmaps
show MAE, MSE, R2, and pvalue for daytime (left, 06:00-17:00) and nighttime (right,
18:00-05:00).

Figure 4.27: Parameters’ importance during daytime (06:00 - 17:00 UTC) computed for
the fifth model level as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.
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Figure 4.28: Parameters’ importance during nighttime (18:00 - 05:00 UTC) computed for
the fifth modellevel as an average of the five methods chosen for this case study: SVM,
RF, XGB, and GPR.



128 Chapter 4.



Conclusions

This thesis proposed and tested a comprehensive methodology to perform
sensitivity analyses of the results of simulations with a numerical weather prediction
(NWP) model to land surface model (LSM) parameters, with a particular emphasis
on atmospheric processes over complex terrain.

The advanced capabilities of Noah-MP, with its unique treatment of canopy
processes and its extensive parametric ensemble, were used to analyze the vari-
ability in the output of an atmospheric host model to specific land surface input
parameters. Such variability can be a problematic source of uncertainty when, for
instance, parameters do not accurately reflect the heterogeneity of natural land-
scapes, especially in the highly variable environments typical of complex terrain
regions.

The problem of quantifying and classifying model sensitivity to a set of input
parameters has been addressed through the development of a machine learning-
based automated multi-method parameter sensitivity and importance analysis tool
(ML-AMPSIT). The new tool has been thoroughly leveraged to deal with the
problem of high dimensionality, which often makes sensitivity analysis infeasible.
ML-AMPSIT utilizes an array of machine learning algorithms, including LASSO,
Support Vector Machine, Classification and Regression Trees, Random Forest,
Extreme Gradient Boosting, Gaussian Process Regression, and Bayesian Ridge
Regression, to create surrogate models. It employs multiple strategies to prevent
overfitting, including cross-validation and Bayesian optimization for hyperparameter
tuning.

ML-AMPSIT addresses the computational challenges associated with traditional
global sensitivity analysis methods, like the Sobol method, which requires numerous
model realizations to perform effectively. By leveraging machine learning algorithms
to construct surrogate models, ML-AMPSIT significantly reduces the number of
simulations needed for robust sensitivity analysis.

ML-AMPSIT performance is first evaluated in a case study involving simulations
of a sea breeze circulation over an idealized flat domain with the Weather Research
and Forecasting (WRF) model coupled with the Noah-MP land surface model.
It was shown that ML-AMPSIT was able to efficiently predict the sensitivity of
selected Noah-MP model parameters with a relatively small number of model runs.
Convergence analysis revealed that the system response stabilizes after about 20
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simulations for several methods, while the ensemble of methods generally agrees on
the importance rankings of the parameters after 80 simulations. This stabilization
suggests that the obtained feature importance reliably reflects the underlying
dynamics of the system, capturing essential features with fewer simulations than
typically expected. For the specified setup, ML-AMPSIT identified near-infrared
leaf reflectivity and leaf area index as the most consistently influential parameters
among the 6 parameters analyzed, while momentum roughness length was found
to be critical in the transition time windows of sunrise and sunset.

Then, ML-AMPSIT was applied to evaluate the sensitivity to surface parameters
of WRF/Noah-MP simulations of thermally-driven circulations in a mountain valley,
characterized by the development of slope and valley winds due to differential
heating. The study provided insights into the response of the WRF model to
an extensive set of Noah-MP input parameters. Across 19 parameters analyzed,
the results highlighted that the stomatal resistance, the canopy height, and the
near-infrared leaf reflectivity are critical in modulating both diurnal and nocturnal
atmospheric boundary layer processes. In particular, the stomata resistance emerged
as the most influential parameter across all scenarios. The leaf area index, the
optimal transpiration air temperature, the vapor pressure deficit parameter, the
canopy wind extinction parameter, and the momentum roughness length also
showed significant effects on the model outputs. The study demonstrates that
parameter sensitivity is highly variable depending on the time of the day and
location, emphasizing the complexity of accurately modeling land-atmosphere
interactions. These findings suggest that special attention should be paid to these
parameters when configuring LSMs for NWP models, especially over mountainous
terrain.

The importance of sensitivity analysis in meteorological models cannot be
overstated. It contributes to quantifying uncertainty in models that potentially
impact decision-making processes related to public safety and resource management.
Currently, there is a noticeable lack in the application of modern sensitivity methods
in the field of meteorology, although it is well known that the chaotic nature of
the atmospheric dynamics as well as the interactions between a large number of
parameterizations lead to models that are highly sensitive to input variations,
which are also characterized by a very high dimensionality. Therefore, uncertainty
quantification still represents a crucial issue in improving atmospheric model
reliability. ML-AMPSIT has been developed to fill this gap by providing a new
toolkit for sensitivity analysis.

ML-AMPSIT offers several avenues for expansion and improvement. For exam-
ple, the implementation of a neural network architecture, due to its high scalability
potential, could extend the tool’s ability to provide deeper insights and more robust
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feature recognition capabilities. Moreover, expanding the array of available methods
to the class of physics-informed machine learning algorithms could significantly
improve the interpretability of results. Furthermore, the integration of non-ML
data-driven methods, such as data assimilation techniques or reduced-order models
(ROMs), could greatly expand the capabilities of the tool. While ML-based algo-
rithms are designed to emulate the data set without considering the underlying
physics, ROM methods would be able to synthesize the principal components
of the dynamics inherent in the input-output relationships. A mixture of these
two approaches could offer the benefits of both, resulting in speed, accuracy, and
physical interpretability.

The inclusion of additional sensitivity analysis methods beyond the Sobol
method would also be valuable. The presence of multiple techniques such as the
Morris method, FAST (Fourier Amplitude Sensitivity Testing), and other variance-
based methods could provide a more comprehensive toolkit, consistent with the
multi-method purpose of ML-AMPSIT, for understanding parameter influences
and interactions.

In the context of sensitivity analysis, ML-AMPSIT could be used in the future to
address other parameterization-induced problems, i.e. when the uncertainty comes
from the parameterization employed; within atmospheric models these include
land-surface interactions, turbulence closure, microphysics, convection, and more.
ML-AMPSIT could be employed in the future not only to quantify the importance
across input parameters, but also to evaluate the impact of multiple simulation
setups, e.g. physical schemes, sub-processes, land covers, numerical strategies, and
geometrical configurations.

In addition, the methodologies employed in ML-AMPSIT are not exclusively
confined to applications within LSMs but are, in principle, adaptable to any dataset
of input-output pairs, regardless of the nature of these data. Therefore there
is potential for ML-AMPSIT to extend its application domain to any task that
benefits from regression, such as spatial and temporal interpolation, which are
critical in operational meteorology. By using data-driven modeling, these tasks can
be performed more quickly and with potentially less data. Similarly, applying the
tool to the prediction of observables could streamline the forecasting process, making
forecasts more efficient and accessible. Lastly, since understanding relationships
and patterns within data sets can be meaningful in any scientific or statistical field,
the applicability of a data-driven tool like ML-AMPSIT potentially extends far
beyond the specific applications that could be enumerated here.
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