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Abstract

Dealing with large amounts of unlabeled data is a very challenging

task. Recently, many different approaches have been proposed to lever-

age this data for training many machine learning models. Among them,

self-supervised learning appears as an efficient solution capable of train-

ing powerful and generalizable models. More specifically, instead of relying

on human-generated labels, it proposes training objectives that use “labels”

generated from the data itself, either via data augmentation or by masking

the data in some way and trying to reconstruct it. Apart from being able to

train models from scratch, self-supervised methods can also be used in spe-

cific applications to further improve a pre-trained model. In this thesis, we

propose to leverage self-supervised methods in novel ways to tackle different

application scenarios. We present four published papers: an open-source

library for self-supervised learning that is flexible, scalable, and easy to use;

two papers tackling unsupervised domain adaptation in action recognition;

and one paper on self-supervised learning for continual learning. The pub-

lished papers highlight that self-supervised techniques can be leveraged for

many scenarios, yielding state-of-the-art results.

Keywords

Self-supervised Learning, Unsupervised Domain Adaptation, Continual Learn-

ing.
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Chapter 1

Introduction

1.1 Background

In recent years, Artificial Intelligence (AI) saw remarkable progress in the

fields of Computer Vision (CV) [120, 132, 95, 90, 137], Natural Language

Processing (NLP) [173, 13, 165, 156, 193] and Audio processing [10, 176].

More specifically, in CV, there was remarkable progress in many tasks

such as image and video classification, object localization and tracking,

segmentation, image generation, image representation, and visual question

answering. In turn, this allowed applications in various fields, such as

healthcare, robotics, fundamental math, and chemistry. In NLP, recent

generative models can provide a conversation-like experience for answering

questions, performing code generation, and translation. In Audio Process-

ing, recent methods can generate speech, music, and sound effects, and

perform speech recognition.

These breakthroughs and advances were made possible due to Deep

Learning (DL), a subfield of Machine Learning (ML), that is concerned with

Artificial Neural Networks (ANNs), which are algorithms inspired by how

the human brain functions. ANNs are composed of neurons that process

information sequentially in the form of a hierarchy of layers. Moreover,
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1.1. BACKGROUND CHAPTER 1. INTRODUCTION

given an input, an ANN will process this input one layer at a time, using

the output of a layer as the input to the next layer until the model outputs

its final result. Then, given a differentiable loss function that quantifies how

poorly the model is performing, the ANN will be updated to reduce this

loss, effectively learning from the data, by computing the per-parameter

gradients using backpropagation. Although they are very flexible, they also

present several disadvantages, e.g., overfitting, their lack of interpretability,

the huge amount of data needed to train these methods, and the difficulties

in updating these models without forgetting previous information.

1.1.1 Learning Paradigms

Machine Learning and Deep Learning can be divided into three main types

of learning paradigms: supervised learning, unsupervised learning,

and reinforcement learning [12].

Supervised learning consists of training a model given labeled data.

This means that the excepted output of the model is provided. Addition-

ally, it can be further divided into classification if the expected output is a

categorical value, or regression if the output is a continuous variable [12].

To provide a more concrete example, consider a problem where, given an

image, the expected output is a label that represents which class the image

is from, e.g., a cat, dog, or a car. To train an ML model for this task, one

would first need to collect human annotations for the images. Then, the

model is trained by using a loss function that considers both the output of

the model as well as the expected output. Although this approach is very

powerful and has many applications, a clear disadvantage is the need for

labeled data. Furthermore, while some labels might be easier to obtain,

e.g., the class of the object in the images, others are much harder and

require more expert annotators, e.g., a per-pixel segmentation mask of the

2
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objects in an image. Additionally, labels encode a specific human bias for

what is important in the data, so the data itself might have conflicting

information with the label, meaning that the model will learn to ignore

certain elements of the data [83, 7].

On the other hand, unsupervised learning consists of training a

model without any labels with the goal of learning hidden structures in

data. Some traditional methods include autoencoders, dimensionality re-

duction methods, e.g. principal component analysis (PCA), or clustering

approaches, e.g., K-means [12]. Autoencoders consist of training two mod-

els, one encoder and one decoder, such that the encoder compresses the

input data into a lower-dimensional representation and the decoder tries to

reconstruct the input data given the lower-dimensional representation [66].

PCA consists of finding the principal components in the data, such that

these components capture the largest variations in the data [12]. Lastly,

clustering methods try to create groups of similar data points given some

distance metric [12].

More recently, self-supervised learning (SSL) emerged as a powerful

subcategory of unsupervised learning. It consists of leveraging the data

itself as the training signal [7]. For instance, a model can be trained to

reconstruct masked parts of the data [71, 183] or predict the colors of a

gray-scale image [94]. By doing this proxy task, the model is able to learn

strong feature representations of the data. However, unlike supervised

learning, it might not be possible to readily apply it to downstream tasks

since the learned representations are not correlated with the task of inter-

est. Nonetheless, after pre-training a model with self-supervised learning,

one can simply employ much smaller models, e.g. a linear classifier, to learn

the final mapping from the features to the desired outputs in a supervised

way. More details of self-supervised learning are present in Chapter 2.
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Lastly, reinforcement learning is a paradigm that learns by interact-

ing with an environment [12]. Given an environment, e.g. a game, the

reinforcement learning algorithm has a set of actions that it can perform,

e.g. move to the left, move to the right, and jump, that will modify the en-

vironment in some way. Then, the environment will produce some form of

reward or penalty, e.g. if the player beats the level, it will receive a reward,

but if the player loses a life, it will receive a penalty. The model learns

by continuously interacting with the environment in order to increase the

amount of expected reward gained.

This work focuses on the supervised and unsupervised learning paradigms.

More specifically, it leverages self-supervised learning methods for different

application areas to make use of the vast amounts of unlabeled data that

are available.

1.2 Contributions

Here, we present the main contributions of this thesis. They can be di-

vided into three main areas, default self-supervised learning, unsupervised

domain adaptation (UDA), and continual learning (CL).

Open-source Library. One issue with SSL is that it has a high en-

try barrier. This is due to the presence of a lot of ”moving pieces”, e.g.,

many methods, hyper-parameters, loss functions, training tricks, impor-

tant architectural choices, and high training costs [7]. The issue is further

accentuated when newer methods are developed. They usually also in-

troduce novel training tricks that are not bound to specific methods, e.g.,

multi-cropping [19] or an asymmetric data augmentation pipeline [69]. This

means that older methods can be revisited and improved by applying novel

tricks. Because of these reasons, we proposed a unified, open-source li-
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brary for learning self-supervised models for vision, called solo-learn [40].

It encompasses many methods, training tricks, model architectures, and

quality-of-life features such as multi-gpu training, automatic logging, and

checkpointing.

Unsupervised Domain Adaptation. The first application area that

we tackled was Unsupervised Domain Adaptation. UDA methods try to

leverage two datasets, one labeled and the other unlabeled, to train a

model that performs well on a test dataset, which is related to the unla-

beled dataset. Because it needs to learn from unlabeled data, leveraging

self-supervised methods is an interesting and powerful approach. We pro-

posed two methods to tackle the UDA scenario. In the first method, we

introduce a novel synthetic dataset for UDA in action recognition while also

proposing a method that leverages multiple variations of the contrastive

loss to learn from the unlabeled data. In the second paper, we introduce a

method specifically targeted for Transformers [174], using an information

bottleneck loss similar to [191] to train the model given the labeled and

unlabeled data.

Continual Learning. Lastly, we target the domain of continual learn-

ing. It consists of methods that allow a model to continuously learn with

incoming data, without losing information about previously seen sam-

ples. We posed this problem in the unsupervised setting, where no labels

are available. Then, we proposed and systematically evaluated a simple

method that relied on a self-supervised loss and matched distillation loss

to allow the model to retain information learned from previous data.

5
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1.3 Publications

This thesis is composed of a set of publications on the topic of self-supervised

learning and its applications to two other areas, unsupervised domain adap-

tation and continual learning. It contains the following publications, orga-

nized in chronological order:

1. Solo-learn: A Library of Self-supervised Methods for Visual Represen-

tation Learning. V. G. T. da Costa*, E. Fini*, M. Nabi, N. Sebe,

and E. Ricci. Journal of Machine Learning Research (JMLR), 2022

[40]. Link to the code: https://github.com/vturrisi/solo-learn.

2. Dual-head Contrastive Domain Adaptation for Video Action Recogni-

tion. V. G. T. da Costa, G. Zara, P. Rota, T. Oliveira-Santos, N.

Sebe, V. Murino and E. Ricci. Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV), 2022 [41].

Link to the code: https://github.com/vturrisi/CO2A.

3. Unsupervised domain adaptation for video transformers in action recog-

nition. V. G. T. da Costa, G. Zara, P. Rota, T. Oliveira-Santos,

N. Sebe, V. Murino and E. Ricci. Proceedings of the International

Conference on Pattern Recognition (ICPR), 2022 [43]. Link to the

code: https://github.com/vturrisi/UDAVT.

4. Self-Supervised Models are Continual Learners. E. Fini*, V. G. T.

da Costa*, X. Alameda-Pineda, E. Ricci, K. Alahari, and J. Mairal.

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2022 [57]. Link to the code: https://github.

com/DonkeyShot21/cassle.
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1.4 Other Publications

In addition to the publications that are contained in this thesis, other

publications were done during the PhD period on other topics. A list of

these publications is presented below:

1. Simplifying Open-Set Video Domain Adaptation with Contrastive Learn-

ing. G. Zara, V. G. T. da Costa, S. Roy, P. Rota and E. Ricci.

arXiv preprint arXiv:2301.0332, 2023 [190]. Link to the code: https:

//github.com/gzaraunitn/COLOSEO.

2. Bayesian prompt learning for image-language model generalization.

M. M. Derakhshani, E. Sanchez, A. Bulat, V. G T. da Costa, C.

G. M. Snoek, G. Tzimiropoulos and B. Martinez. Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV),

2023 [47]. Link to the code:

https://github.com/saic-fi/BayesianPrompt-Learning.

3. Diversified in-domain synthesis with efficient fine-tuning for few-shot

classification. V. G. T. da Costa*, N. Dall’Asen*, Y. Wang, N. Sebe

and E. Ricci. arXiv preprint arXiv:2312.03046, 2023 [39]. Link to the

code: https://github.com/vturrisi/disef.

1.5 Structure of the Thesis

First, in Chapter 2, a comprehensive review of the state-of-the-art self-

supervised techniques is presented, which is then followed by a review of

unsupervised domain adaptation and continual learning methods.

The rest of the thesis is divided into four main technical chapters that

present four main papers on self-supervised learning and its applications.

7

https://github.com/gzaraunitn/COLOSEO
https://github.com/gzaraunitn/COLOSEO
https://github.com/saic-fi/Bayesian Prompt-Learning
https://github.com/vturrisi/disef


1.5. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

In Chapter 3, we present the paper entitled ”solo-learn: a library of self-

supervised methods for visual representation learning powered by Pytorch

Lightning”. There, we developed a Python-based library to unify self-

supervised learning methods and tricks. As the area is very fast-paced,

techniques that are proposed by newer papers are not readily available

to older methods. Because of that, we initially unified 13 state-of-the-art

methods.

In Chapter 4, we present the paper entitled ”Dual-head contrastive do-

main adaptation for video action recognition”. We tackle the problem of

unsupervised domain adaptation for the video domain. First, we propose a

novel method that consists of two heads, one that is trained with a normal

cross-entropy loss, and the other that is trained via a contrastive loss. As

both heads share the same backbone, the goal is to finetune a pre-trained

video-based model such that it adapts to a novel domain. There, domain

adaptation is carried out by the contrastive head. Additionally, we also

present a novel synthetic dataset, which was the first proposed benchmark

for the UDA setting from the synthetic to real domain.

We further study the UDA scenario in Chapter 5. There, we present the

paper entitled ”Unsupervised Domain Adaptation for Video Transformers

in Action Recognition”. We adopted a transformer-based video model

instead of the CNN-based one. Then, we proposed a novel two-phase

training that involved a source-only fine-tuning of a partially frozen model,

followed by an adaptation phase using an information bottleneck-based

loss.

Chapter 6 presents the paper entitled ”Self-supervised Models are Con-

tinual Learners”. We focused on the problem of continual learning by pos-

ing it as a self-supervised problem. Commonly, continual learning consists

of fine-tuning a model as new data arrives. However, this data is usually

8
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labeled. We posed the problem in the unsupervised setting by assuming

that no labels are available for new data. Additionally, we also provide a

novel method for continual learning that is simple and effective, relying on

self-supervised learning to adapt the model.

Lastly, in Chapter 7, we present the conclusions and future research

directions.

9
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Chapter 2

State of the Art

Here, we present a general overview of the state-of-the-art for self-supervised

learning, unsupervised domain adaptation, specifically for the action recog-

nition domain, and continual learning.

2.1 Self-supervised Learning

Self-supervised learning is a general training strategy that can leverage vast

amounts of unlabeled data [7]. Its objective is to learn an encoder network

E , e.g., a CNN or a Transformer model, using data X = {x1, x2, ...x3},
where xi is a data sample, e.g. an image, video or text sentence, that does

not contain any additional information like labels or a segmentation mask.

Although there are self-supervised methods for many types of data, here we

target only vision. More specifically, the methods in this section consider

data samples to be images, but the same concepts can be generalized to

videos.

Many different self-supervised methods have been proposed in the last

few years exploring different strategies to learn from X. They can be di-

vided into four main families: deep metric learning, self-distillation, canon-

ical correlation analysis, and masked image modeling [7]. Nonetheless, all

11
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methods follow the same basic principle of learning E such that it produces

similar features for images with similar semantics.

2.1.1 Deep Metric Learning Methods

Deep metric learning is a family of methods that rely on encouraging sim-

ilar feature representations for different transformations of the same input

sample (positives) while encouraging different representations w.r.t other

samples (negatives). These methods are all contrastive and rely on the In-

foNCE loss for training [170]. The main representatives are SimCLR [28],

MoCo [72, 29, 31] and NNCLR [52].

SimCLR [28] starts by building a set of positives Pi and negatives Ni

for each sample in the batch B = {x1, x2, ...xn}. Positive samples are

defined as different transformations, or views, of the same input data xi,

usually achieved via some form of data augmentation, e.g., cropping, and

color jittering. Using T , a data augmentation function, SimCLR produces

a positive pair (xai , x
b
i), where xai = T (xi) and xbi = T (xi). On the other

hand, negatives are other samples in the batch, e.g., xi and xj are negatives

if i ̸= j. In practice, SimCLR uses only two views, so xai and xbi are

considered as positives given instance i and all the other samples (xaj , x
b
j)

n
j=1,

with j ̸= i, are considered as negatives. These augmented images are

forwarded through the encoder E , which is coupled with a small MLP

projector P , producing feature representations z = P(E(x)). Note that

P is used only during training and discarded afterward. For simplicity,

only a single instance x is shown, but all (xap, x
b
p)

n
p=1 pairs are forwarded

through P(E(.)). Finally, the contrastive loss InfoNCE [170] is applied for

each sample i in the batch as:

La,b
i = −log

e(sim(zai ,z
b
i ))/τ)

e(sim(zai ,z
b
i ))/τ) +

∑{a,b}
v

∑n
j=1 1j ̸=i e

(sim(zai ,z
v
j )/τ)

, (2.1)

12



CHAPTER 2. STATE OF THE ART 2.1. SELF-SUPERVISED LEARNING

where sim(.) is a similarity function, e.g. cosine similarity and τ is a

temperature parameter. In practice, the loss is symmetrized by swapping

the views, computing Li =
La,b
i +Lb,a

i

2 for each sample and averaging the loss

across the batch as:

L =
1

n

n∑
i=1

Li. (2.2)

Intuitively, the InfoNCE loss is minimized when the positives are closer to-

gether and negatives are far apart, i.e. positive pairs have similar feature

representations whereas negative pairs have dissimilar feature representa-

tions.

MoCo [72] differs from SimCLR as it does not use the same encoder

E and projector P for both views of the data. Instead, it leverages two

versions of P(E(.)), the default one, called the online model, and another

that is a momentum copy PM(EM(.)) of the online model, called the offline

model. Instead of updating PM(EM(.)) via gradient descent, we simply

update it as a momentum-based exponential moving average of P(E(.)),
i.e., θM = mθM+(1−m) θ, where θM is a parameter in the offline model,

θ is a parameter on the online model and m is a momentum coefficient

that controls the update rate. Additionally, instead of relying on other

instances in the batch to construct the set of negatives, it keeps a bounded

queue Q of the previously seen instances and uses them as negatives. This

makes the number of negatives per instance much larger than in SimCLR,

as it is not bounded by batch size. Finally, the InfoNCE loss for MoCo is

computed as:

Li = −log
e(sim(qi,ki))/τ)∑Q
j=1 e

(sim(qi,kj)/τ)
, (2.3)

where q = P(E(xa)) is a “query” and k = PM(EM(xb)) is a “key”. As for

SimCLR, MoCo also swaps views and computes the symmetric loss, such

that, q = P(E(xb)) and k = PM(EM(xa)). MoCo v2 [29] improves the

13
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set of augmentations used and leverages more recent training strategies.

MoCo v3 [31] drops the idea of a separate queue and uses the instances

in the batch to compute the keys k as it finds that large enough batches

are sufficient for producing a good set of negatives.

NNCLR [52] builds upon SimCLR, introducing the idea of using the

nearest neighbor of sample i as its positive instead of i itself. For that, it

keeps a support set in the form of a queue Q, similar to MoCo [72], which

is used to retrieve the nearest neighbor of a sample. Then, the second view

of i, i.e., xbi , is replaced with its nearest neighbor in Q as nni = NN(xbi , Q),

constructing the positive pair (xai , nni). Lastly, the same loss in SimCLR is

applied considering (xai , nni) as the positive pair for i and (xaj , x
b
j)

n
j=1, with

j ̸= i, as the negatives.

2.1.2 Self-distillation Methods

Self-distillation methods consist of feeding two different augmented views

of the same input data through two parallel encoders, usually an online

and an offline encoder, as in [73], and mapping one output to the other via

a predictor network. Unlike deep metric learning methods, self-distillation

methods do not rely on negatives to avoid collapsed solutions, which occur

when the model outputs the same values for all samples. Instead, these

methods employ other strategies, such as asymmetric architectures or the

stop gradient operation. Its main representatives consist of BYOL [69],

SimSiam [30] and DINO [21, 120].

BYOL [69] proposes many improvements upon previous methods. It

leverages the idea of having an online and an offline model as in MoCo [72],

but instead of using a symmetric model, where both views are processed

by the same number of layers/blocks, it introduces an additional predictor

network H to the online model to create an asymmetric structure. Second,
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it replaces the contrastive loss with a simple mean-squared error (MSE)

loss, defined as:

L = 2− 2
pai

||pai ||
zbi

||zbi ||
, (2.4)

where pai = H(P(E(xai ))) is produced by the online model and zbi =

PM(EM(xbi)) is produced by the offline model. As in previous methods, the

loss is also symmetrized by using pbi = H(P(E(xbi))) and zai = PM(EM(xai )).

Lastly, it also proposes to have a set of asymmetric augmentation pipelines,

such that T is represented as T a and T b that apply distinct operations, such

that xai = T a(xi) and xbi = T b(xi).

SimSiam [30] is conceptually similar to BYOL but simplifies the method

by not using a momentum copy of the model. Instead, it shows that only

a stop gradient operation and the asymmetry of the model are enough

to avoid collapse. The stop gradient operation avoids that gradients are

backpropagated through part of the computational graph. Finally, Sim-

Siam uses the same MSE loss from BYOL, with pai = H(P(E(xai ))), pbi =
H(P(E(xbi))), zai = stop grad(P(E(xai ))) and zbi = stop grad(P(E(xbi))).

DINO [21] uses only the encoder E , projector P and their momentum

copies EM and PM. Then, given zai = P(E(xai )) and zbi = PM(EM(xai )), it

computes probability distribution of the student as psi = softmax(zai ) and

the probability distribution of the teacher as pti = stop grad(softmax(

centering(zbi ))). The centering operation consists of subtracting C, the a

moving average representation of z, from z. Then, the objective consists of

minimizing the cross-entropy loss across the two distributions, computed

as:

L = H(pti, psi), where H(a, b) = −a log b. (2.5)

The loss is also symmetrized by computing zbi = P(E(xbi)), zai = PM(EM(xai )),

psi = softmax(zbi ) and pti = stop grad(softmax(centering(zai ))). In

DINO v2 [120] the authors propose a set of improvements to DINO. They
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replaced the centering operation with the Sinkhorn-Knopp centering from

[20]; applied randomly masking to the patches and a loss to reconstruct

the feature representations of the masked patches as in [197]; added newer

regularization strategies; and performed distillation from a larger model to

train smaller models.

2.1.3 Canonical Correlation Analysis Methods

Canonical correlation analysis methods work by inferring the relation-

ship between two variables, leveraging either cluster assignments or cross-

covariance matrices. Its main representatives consist of SwAV [19], Barlow

Twins [191], and VICReg [9].

SwAV [19] consists of clustering one view of the images in the batch

and then trying to predict its cluster assignments given the other view.

More specifically, it performs clustering via the Sinkhorn-Knopp algorithm,

which produces soft cluster assignments instead of hard assignments. Then,

given one view, it tries to predict the soft cluster assignments of the other

view. Additionally, it also proposes multi-cropping, which consists of lever-

aging multiple smaller crops, instead of the commonly used two crops.

Unlike simply increasing the number of large crops, using smaller crops is

much more efficient to compute.

Barlow Twins [191] works by computing the cross-correlation ma-

trix between two augmented versions of the same instance, xai and xbi and

approximating it to the identity matrix. This naturally avoids collapsed

solutions as it decorrelates different features while maximally correlating

the same features across views. Unlike other methods, it employs a simple

symmetric structure without a momentum model. Given views xai and xbi
it produces zai = P(E(xai )) and zbi = P(E(xbi)). Then, it computes the
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cross-correlation for feature f as Cff as :

Ca,b
f,f =

∑
i z

a
i,f z

b
j,f√∑

i(z
a
i,f)

2
√∑

i(z
b
i,f)

2
, (2.6)

where i indexes different instances and f indexes a specific feature in the

vector. Lastly, it computes its loss as:

L =
∑
f

(1− Cf,f)
2 + λ

∑
f

∑
g ̸=f

(Cf,g)
2. (2.7)

Note that C is a square matrix that contains the cross-correlation values of

all feature pairs, with values between -1, indicating perfect anti-correlation,

and 1, indicating perfect correlation. Minimizing the loss consists of mak-

ing C approximate the identity, making diagonal elements closer to 1 and

off-diagonal elements closer to 0.

VICReg [9] builds upon Barlow Twins [191] but decomposes the de-

sired properties of the loss into individual terms. The loss consists of three

individual terms. The first enforces invariance between samples by mini-

mizing the MSE error of positive samples. The second enforces variance

across the representations of different samples by applying a hinge loss to

maintain the standard deviation over instances of the batch above a given

threshold, defined as:

v(Z) =
1

f

∑
f

max(0, γ − S(z.,f , ϵ), (2.8)

where f is a feature, z.,f is a vector containing all values of f for the

instances in the batch, γ = 1, ϵ a small value to prevent numerical insta-

bility and S(x, ϵ) =
√

V ar(x) + ϵ the regularized standard deviation. The

third decorrelates different features across instances in the batch, reusing

Ca,b
f,g =

∑
f

∑
g ̸=f C

2
f,g from Barlow Twins [191]. Then, the final loss is

defined as:

L = λMSE(Za, Zb) + µ[v(Za) + v(Zb)] + ν[Ca,a
f,g + Cb,b

f,g], (2.9)
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where Za contains all zai of the batch.

2.1.4 Masked Image Modelling Methods

Masked image modeling methods are a family of methods that rely on

corrupting the input image and then reconstructing it. Its main represen-

tatives are BEiT [8], MAE [71], SimMIM [183] and iBOT [197].

BEiT [8] tries to perform masked image modeling by classifying masked

patches from a set of visual tokens. First, it learns an image tokenizer in

the form of a discrete variational autoencoder. Then, the training objec-

tive consists of feeding a masked image x′, that is produced by randomly

masking patches in an image x, through the encoder E followed by a small

model auxiliary network that classifies each patch into the set of possible

image tokens from the first step. The loss is then a simple cross-entropy

loss for classification.

MAE [71] consists of a encoder-decoder transformer. Given the encoder

model E and an auxiliary decoder D, the training objective consists of

reconstructing masked regions of an input image x. First, x is masked to

produce x′ and then fed to E to produce z = E(x′). Then, z is concatenated
with learnable mask patches m and given to the decoder D, producing, o =

D(z+m). Lastly, the loss is simply an MSE loss between the reconstructed

masked patches in o and the original image x.

SimMIM [183] is similar to MAE, but proposes a series of simplifica-

tions. First, instead of feeding E with only x′, it feeds it with both x′ and

the mask patches m. Second, it replaces the transformer decoder D with

a linear layer. Lastly, it uses an L1 loss instead of the MSE loss (L2).

iBOT [197] uses two transformer networks, the online and the offline

models. However, instead of feeding the online network with the whole
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image, it randomly masks some of its patches. Then, it has two losses.

First, the self-distillation loss from DINO [21] between the [CLS] tokens of

the two views, that were processed by the two different models. Second, it

performs self-distillation between the masked patch features produced by

the online model and the unmasked patch features produced by the offline

model.

2.2 Unsupervised Domain Adaptation

Commonly, deep learning models are built under the assumption that the

training dataset (called source dataset in the UDA literature) and the test

dataset (called target dataset in the UDA literature) have the same data

and label distribution. However, this is not usually the case in real-world

applications due to a phenomenon called domain shift, where the data

distribution between the source and the target data changes.

To address this problem, unsupervised domain adaptation methods try

to leverage supervised source data and unsupervised target data to train,

or adapt, a model that performs well on the test target data, which is a

test set from the target domain. More formally, given source data S =

{(XS
i , y

S
i )}N

S

, where XS
i can be an image, video, or any other input data,

ySi is its respective label and N is the size of the dataset, and training

target data T = {(XT
i )}N

T

, that does not contain labels, the goal is to

learn a function fθ : X → y, where θ is the set of parameters of a DL

model, that performs well on the test target data. Note that although the

target data does not have any labels available for training, the test target

data contains labels that are used to evaluate a model.

UDA methods usually perform adaptation by aligning the source and

target data distributions [104, 17, 138, 110, 169], leveraging adversarial
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learning methods [168, 103, 76] or even self-supervised learning strategies

[184, 182, 2, 154].

2.3 Continual Learning

Continual Learning is an area that studies the capacities of models to learn

sequentially with new data. The main issue with feeding sequential data

to a model, especially a DL model, is a phenomenon called catastrophic

forgetting. This refers to the fact that the model forgets old information as

it is fed new data. So, the majority of CL focuses on proposing techniques

to adapt models or part of them, continually, as the data distribution

changes, focusing on preserving past knowledge.

According to [45], they can be divided into three major groups: replay-

based [121, 136, 134, 15, 26, 106], regularization-based [58, 99, 144, 91,

192, 4, 23, 51, 79, 25, 179, 24], and parameter isolation methods [139,

142]. Replay-based methods consist of keeping track of important past

data and using it with new data to update the model. On the other

hand, regularization-based methods work by keeping previous versions of

the model and making sure that the current model does not deviate a

lot from them. Lastly, parameter isolation methods work by continuously

adding new parameters to the model to adapt it to new data.
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Chapter 3

solo-learn: a library of

self-supervised methods for visual

representation learning powered by

Pytorch Lightning

3.1 Introduction

Deep networks trained with large annotated datasets have shown stunning

capabilities in the context of computer vision. However, the need for hu-

man supervision is a strong limiting factor. Unsupervised learning aims to

mitigate this issue by training models from unlabeled datasets. The most

prominent paradigm for unsupervised visual representation learning is Self-

supervised Learning (SSL), where the intrinsic structure of the data pro-

vides supervision for the model. Recently, the scientific community devised

increasingly effective SSL methods that match or surpass the performance

of supervised methods. Nonetheless, implementing and reproducing such

works turns out to be complicated. Official repositories of state-of-the-art

SSL methods have very heterogeneous implementations or no implemen-

tation at all. Although a few SSL libraries [68, 155] are available, they
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assume that larger-scale infrastructures are available or they lack some re-

cent methods. When approaching SSL, it is hard to find a platform for

experiments that allows running all current state of the art methods with

low engineering effort and at the same time is effective and straightforward

to train. This is especially problematic because, while the SSL methods

seem simple on paper, replication of published results can involve a huge

time and effort from researchers. Sometimes official implementations of

SSL methods are available, however, releasing standalone packages (often

incompatible with each other) is not sufficient for the fast-paced progress

in research and emerging real-world applications. There is no toolbox offer-

ing a genuine off-the-shelf catalog of state-of-the-art SSL techniques that

is computationally efficient, which is essential for in-the-wild experimenta-

tion.

To address these problems, we present solo-learn, an open-source

framework that provides standardized implementations for a large num-

ber of state-of-the-art SSL methods. We believe solo-learn will enable

a trustworthy and reproducible comparison between the state of the art

methods. The code that powers the library is written in Python, using

Pytorch [124] and Pytorch Lightning(PL) [157] as back-ends and Nvidia

DALI1 for fast data loading, and supports more modern methods than re-

lated libraries. The library is highly modular and can be used as a complete

pipeline, from training to evaluation, or as standalone modules.

3.2 The solo-learn Library: An Overview

Currently, we are witnessing an explosion of works on SSL methods for

computer vision. Their underlying idea is to unsupervisedly learn feature

1https://github.com/NVIDIA/DALI
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representations by enforcing similar feature representations across multiple

views from the same image while enforcing diverse representations for other

images. To help researchers have a common testbed for reproducing dif-

ferent results, we present solo-learn, which is a library of self-supervised

methods for visual representation learning. The library is implemented

in Pytorch, providing state-of-the-art self-supervised methods, distributed

training pipelines with mixed-precision, faster data loading, online linear

evaluation for better prototyping, and many other training strategies and

tricks presented in recent papers. We also provide an easy way to use the

pre-trained models for object detection, via DetectronV2 [180]. Our goal

is to provide an easy-to-use library that can be easily extended by the

community, while also including additional features that make it easier for

researchers and practitioners to train on smaller infrastructures.

3.2.1 Self-supervised Learning Methods

We implemented 13 state-of-the-art methods, namely, Barlow Twins [191],

BYOL [69], DeepCluster V2 [20], DINO [21], MoCo V2+ [29], NNCLR [52],

ReSSL [195], SimCLR [28], Supervised Contrastive Learning [86], SimSiam

[30], SwAV [20], VICReg [9] and W-MSE [53].

3.2.2 Architecture

In Figure 3.1, we present an overview of how a training pipeline with

solo-learn is carried out. In the bottom, we show the packages and

external data at each step, while at the top, we show all the defined vari-

ables on the left and an example of the newest defined variable on the

right. First, the user interacts with solo.args, a subpackage that is re-

sponsible for handling all the parameters selected by the user and provid-

ing automatic setup. Then, solo.methods interacts with solo.losses
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solo.args

--dataset imagenet
--dali

--gpus 0,1,2,3
--lr 0.1

--optimizer sgd
--lars

Args

solo.methods

solo.losses

Args

Method

Data
Callbacks

Extras AutoUMAP

...

Pretrain
dataloader

Checkpointer

Dataset

solo.utils

Hardware
GPU

support
TPU

support

CPU

Extra features
Mixed

precision
Gradient

accumulation

Loggers
Distributed

training

Pytorch Lightning
Trainer

User

Args

Method

BYOL

Momentum

Figure 3.1: Overview of solo-learn.

to produce the selected self-supervised method. While solo.methods con-

tains all implemented methods, solo.losses contains the loss functions for

each method. Afterwards, solo.utils handles external data to produce

the pretrain dataloader, which contains all the transformation pipelines,

model checkpointer, automatic UMAP visualization of the features, other

backbone networks, such as ViT [49] and Swin [102], and many other util-

ity functionalities. Lastly, this is given to a PL trainer, which provides

hardware support and extra functionality, such as, distributed training,

automatic logging results, mixed precision and much more. We note that

although we show all subpackages working together, they can be used in

a standalone fashion with minor modifications. Apart from that, we have

documentations in the folder docs, downstream tasks in downstream,

unit tests in tests and pretrained models in zoo.

3.2.3 Comparison to Related Libraries

The most related libraries to ours are VISSL [68] and Lightly [155], which

lack some of our key features. First, we support more modern SSL methods,

such as BYOL, NNCLR, SimSiam, VICReg, W-MSE and others. Second,

we target researchers with fewer resources, namely from 1 to 8 GPUs,
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allowing much faster data loading via DALI. Lastly, we provide additional

utilities, such as automatic linear evaluation, support to custom datasets

and automatically generating UMAP [113] visualizations of the features

during training.

3.3 Experiments

Benchmarks. We benchmarked the available SSL methods on CIFAR-

10 [92], CIFAR-100 [92] and ImageNet-100 [46] and made public the pre-

trained checkpoints. For Barlow Twins, BYOL, MoCo V2+, NNCLR, Sim-

CLR and VICReg, hyperparameters were heavily tuned, reaching higher

performance than reported on original papers or third-party results. Tab. 3.1

presents the top-1 and top-5 accuracy values for the online linear evalu-

ation. For ImageNet-100, traditional offline linear evaluation is also re-

ported. We also compare with the results reported by Lightly in Tab. 3.3.

Nvidia DALI vs traditional data loading. We compared the training speeds

and memory usage of using traditional data loading via Pytorch Vision2

against data loading with DALI. For consistency, we ran three different

methods (Barlow Twins, BYOL and NNCLR) for 20 epochs on ImageNet-

100. Tab. 3.2 presents these results.

3.4 Conclusion

Here, we presented solo-learn, a library of self-supervised methods for

visual representation learning, providing state-of-the-art self-supervised

methods in Pytorch. The library supports distributed training, fast data

2https://github.com/pytorch/vision
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Table 3.1: Online linear evaluation accuracy on CIFAR-10, CIFAR-100 and ImageNet-

100. In brackets, offline linear evaluation accuracy is also reported for ImageNet-100.

Method
CIFAR-10 CIFAR-100 ImageNet-100

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Barlow Twins 92.10 99.73 70.90 91.91 80.38 (80.16) 95.28 (95.14)

BYOL 92.58 99.79 70.46 91.96 80.16 (80.32) 94.80 (94.94)

DeepCluster V2 88.85 99.58 63.61 88.09 75.36 (75.40) 93.22 (93.10)

DINO 89.52 99.71 66.76 90.34 74.84 (74.92) 92.92 (92.78)

MoCo V2+ 92.94 99.79 69.89 91.65 78.20 (79.28) 95.50 (95.18)

NNCLR 91.88 99.78 69.62 91.52 79.80 (80.16) 95.28 (95.28)

ReSSL 90.63 99.62 65.92 89.73 76.92 (78.48) 94.20 (94.24)

SimCLR 90.74 99.75 65.78 89.04 77.04 (77.48) 94.02 (93.42)

Simsiam 90.51 99.72 66.04 89.62 74.54 (78.72) 93.16 (94.78)

SwAV 89.17 99.68 64.88 88.78 74.04 (74.28) 92.70 (92.84)

VICReg 92.07 99.74 68.54 90.83 79.22 (79.40) 95.06 (95.02)

W-MSE 88.67 99.68 61.33 87.26 67.60 (69.06) 90.94 (91.22)

Table 3.2: Speed and memory comparison with and with-

out DALI on ImageNet-100.

Method DALI 20 epochs 1 epoch Speedup Memory

Barlow

Twins

1h 38m 27s 4m 55s - 5097 MB

✓ 43m 2s 2m 10s 56% 9292 MB

BYOL
1h 38m 46s 4m 56s - 5409 MB

✓ 50m 33s 2m 31s 49% 9521 MB

NNCLR
1h 38m 30s 4m 55s - 5060 MB

✓ 42m 3s 2m 6s 64% 9244 MB

Table 3.3: Comparison

with Lightly on CI-

FAR10.

Method Ours Lightly

SimCLR 90.74 89.0

MoCoV2+ 92.94 90.0

SimSiam 90.51 91.0

loading and provides many utilities for the end-user, such as online lin-

ear evaluation for better prototyping and faster development, many train-

ing tricks, and visualization techniques. We are continuously adding new

SSL methods, improving usability, documents, and tutorials. Finally,

we welcome contributors to help us at https://github.com/vturrisi/

solo-learn.
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Chapter 4

Dual-head contrastive domain

adaptation for video action

recognition

4.1 Introduction

Visual recognition models are built under the assumption that the training

and test data are drawn from the same distribution. Unfortunately, this

assumption rarely holds in practice, leading to a drop in performance on

the test data. To address this problem, over the years, several unsuper-

vised domain adaptation (UDA) methods [38] have been developed. UDA

approaches leverage relevant knowledge from labelled data in a source do-

main to learn a model for a different, but related, target domain where

no annotations are provided. These methods have already proved to be

effective in several image-related tasks, ranging from object recognition

[109, 140, 169, 105] to semantic segmentation [78, 194, 77, 32] and object

detection [96]. However, so far much less attention has been devoted to

video analysis which, compared to image-related applications, is undoubt-

edly more challenging. In particular, videos introduce one more level of

variation in the data, i.e. the temporal dimension, which increases the de-
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Figure 4.1: Sample sequences from the Mixamo and the Kinetics datasets. Keypoints are

also provided for the Mixamo dataset.

Mixamo

Domain
Shift

Kinetics

mand for hardware and leads to additional complexity. To address UDA in

the context of video analysis, researchers have proposed to rethink the tra-

ditional strategies for images in order to learn robust classifiers for videos,

using domain-invariant deep feature representations [36, 37, 117, 122, 27].

Action recognition [56, 196, 166, 22] is one of the fundamental problems

in video analysis. This task is inherently challenging as actions can vary

over time according to several factors, such as speed, duration, relative

movement between the actor and the camera, and the actor’s interaction

with surrounding objects. Also, people can perform the same action in dif-

ferent ways, raising a challenging ambiguity. Although Convolutional Neu-

ral Networks-based (CNN) approaches have enabled significant advances,

this task still poses many open problems. In particular, the important

variation derived from video sequences makes the domain shift harder to

address compared to the case of images. One way to address the variation

issue without increasing the cost of data acquisition is to rely on synthetic

data; however, such data still present the challenge of the large domain

gap.

This paper advances the state of the art in UDA for video action recog-

nition by proposing a novel two-headed deep architecture. The design of
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our model is motivated by the idea of jointly leveraging source supervi-

sion, target pseudo-labelling and contrastive learning to mitigate the do-

main shift arising in video action recognition. Our network consists of a

shared encoder that extracts feature representations from clips of source

and target videos and aggregates them with an attention mechanism. The

video-level features provided by the encoder are then fed to two sepa-

rate network heads that learn complementary classification models, one

based on a cross-entropy loss and the other trained with contrastive losses.

A key element of our approach is a novel consistency loss term that en-

forces the network to produce coherent predictions among the two network

heads, resulting in more reliable pseudo-labels for the target samples. Tar-

get pseudo-labels and source labels are then jointly exploited by a novel

inter-domain contrastive loss, which performs conditional feature align-

ment among data distributions of different domains, thus counteracting

domain shift. Lastly, inspired by recent literature on contrastive learn-

ing [28], we leverage video-specific data augmentations, both at clip and

video-level, to learn multi-scale spatio-temporal feature representations for

target videos. Our Contrastive Conditional domain Alignment approach

is named as CO2A.

An important contribution of this work is also the introduction of Mix-

amo → Kinetics, a new large-scale dataset for video action recognition.

The proposed dataset is the first benchmark that allows studying the chal-

lenging problem of UDA when source data are synthetically generated

videos and target data are real Youtube videos. In our dataset, frame

sequences in the synthetic domain are generated using realistic motion se-

quences gathered from Mixamo1 and rendered using Blender2, resulting

in videos depicting actions performed by 3D avatars with different visual

1https://www.mixamo.com/
2https://www.blender.org/

29

https://www.mixamo.com/
https://www.blender.org/


4.2. RELATED WORK CHAPTER 4.

appearances in a randomised 3D scene. Data of the real domain, instead,

are obtained from the popular Kinetics dataset [147]. Sample frames for

two sequences of our dataset are shown in Figure 4.1.

Contributions. To summarise, our contributions are the following: (i)

a UDA approach for action recognition in videos that exploits label and

pseudo label information for semantic alignment of the source and target

data distributions. The proposed method achieves state-of-the-art perfor-

mance on several challenging benchmarks for action recognition, such as

UCF ↔ HMDB [27], UCF ↔ Olimpics Sports [27] and Kinetics → NEC-

Drone[36]; (ii) a novel deep architecture that seamlessly integrates three

components: a dual head structure to learn two different but coherent

models (based on classification loss and contrastive losses, respectively),

an inter-domain contrastive loss, which exploits source labels and target

pseudo-labels for domain distribution alignment, and a multi-level con-

trastive loss for target feature learning; (iii) a novel large-scale synthetic-

to-real dataset, Mixamo → Kinetics, devised for testing UDA methods for

action recognition.

To the best of our knowledge, the dataset we propose is the only bench-

mark that will be publicly available for assessing the ability of UDA ap-

proaches to transfer knowledge from the synthetic to the real domain in

videos.

4.2 Related Work

Action recognition. Different deep architectures for action recognition

have been proposed in the last few years. For instance, in [56], two-stream

networks were proposed to jointly use RGB and optical flow frames within

two 2D CNNs, modelling temporal information. Zhou et al. [196] intro-
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duced Temporal Relation Networks, a deep model that employs a spe-

cialised pooling layer to model temporal relations between frames. Other

works considered 3D CNNs to learn spatio-temporal features. Tran et al.

[166] proposed C3D, which directly employs 3D convolutions rather than

2D ones. Carreira et al. [22] introduced I3D, a deep network that inte-

grates inflated 2D convolutional filters to leverage large-scale pre-trained

2D models. Very recently, some other works have proposed approaches

based on contrastive learning for extracting useful motion representations

for action recognition [188, 131, 177, 126]. Different from our work, all men-

tioned studies tackle the traditional supervised action recognition problem

(no domain shift).

UDA for images. Existing approaches mostly differ on the strategy

used to cope with domain shift. One category of methods performs do-

main distribution alignment by matching statistical moments of the first

and second-order of the source and target data distributions [104, 17, 138,

110, 169]. Recently, these methods were improved considering label infor-

mation during the alignment process [84]. Another prominent strategy in

UDA is adversarial training [103, 78, 63, 167], where discriminative and

domain-agnostic feature representations are learned by coupling a domain

discriminator with the source classification loss. Similar to moment match-

ing methods, the best-performing approaches of this category leverage the

semantic information given by classifier predictions to perform adversarial

adaptation. Generative adversarial networks [67] have also been consid-

ered to address the domain shift [76, 175, 141], as they permit generating

target-like images that can then be used to train a target classification

model. Furthermore, recent works have considered self-supervised learning

and auxiliary tasks, such as predicting rotations [154] or image patches

permutations in a jigsaw setting [14] to learn domain-invariant features.

Our work is related to previous methods based on semantic distribution
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alignment [103, 84, 116], but innovates over past literature since adaptation

is performed thanks to a novel domain contrastive alignment loss. CO2A

also shares some similarities with previous UDA approaches with double

classifier structure [140]. However, one particular aspect of CO2A is the

choice of the supervised contrastive loss [86] for one of the two network

heads. Lastly, contrastive learning for UDA has been recently studied

in [123, 88]. However, the deep architectures in [123, 88] are radically

different from ours and do not exploit contrastive learning within a two-

headed neural network. Moreover, these works do not tackle the more

challenging problem of video action recognition.

UDA for action recognition. Despite its importance in many real-

world applications, only a few works addressed the problem of domain

shift for action recognition [117, 122, 27, 36, 37]. Chen et al. [27] proposed

the Temporal Attentive Adversarial Adaptation Network (TA3N), which

integrates a temporal relation module to simultaneously learn the tempo-

ral dynamics and achieve domain alignment. Pan et al. [122] introduced

Temporal Co-attention Network (TCoN), a deep architecture with a cross-

domain attention module to match the distributions of temporally aligned

features between source and target domains. In [36], the problem of UDA

for recognising actions was considered in the specific case of videos col-

lected by drones and an adversarial adaptation framework was proposed.

Furthermore, in [37], the problem of open-set domain adaptation has been

also investigated. Choi et al. [37] introduced an attention mechanism

to determine discriminative clips and used this information for video-level

alignment within an adversarial learning framework. In [117], a domain

adaptation approach based on self-supervision and multimodal learning

(RGB+optical flow) was proposed for fine-grained first-person view ac-

tion recognition. RGB+optical flow modalities were also exploited in [149]

within a contrastive approach. Whereas [149] considers positives using the
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same data on another modality and negatives by perturbing the frames

temporally, we consider positives and negatives in different ways: using

the real labels for a source only contrastive loss, using real and pseudo-

labels for an across domain contrastive loss, and using different augmenta-

tions for a target only contrastive. None of these previous works considers

a dual-head contrastive framework for learning and aligning source and

target video representations.

UDA benchmarks for action recognition. Table 4.1 provides an

overview of the publicly available benchmarks for UDA and video action

recognition along with the previous UDA methods that have considered

them. Only three datasets, HMDB ↔ UCF [27], Kinetics → NEC Drone

[36] and UCF ↔ Olympic Sports [27] are available in a third-person view

setting. Additionally, two other datasets for domain adaptation in a first-

person view setting have been introduced, EPIC Kitchens [44] DA, and, in

the hybrid first-person/third-person view settings, Charades-Ego dataset

[146]. However, first-person and third-person views setting are quite differ-

ent in terms of visual appearance. The Jester dataset used in [122] has not

been publicly released, whereas the Gameplay dataset considered in [27]

only addresses the real → synthetic scenario. As shown in Table 4.1, the

proposed Mixamo → Kinetics dataset is significantly larger than the ex-

isting benchmarks. Furthermore, it can be easily extended in the future by

generating more synthetic data. There are other synthetically-generated

datasets for action recognition, such as SURREAL [171], SURREACT [172]

and 3DPeople [130]. However, all of them render synthetic humans over a

static photo background. Furthermore, they have not been generated with

the purpose of UDA, and the overlap in terms of categories with existing

datasets of real videos, e.g. Kinetics [147], is very limited.
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Table 4.1: UDA benchmarks for video action recognition

Dataset # classes # videos 1st person 3rd person Methods

HMDB ↔ UCF 12 3,209 ✓ [37] [27] [122]

Kinetics ↔ NEC Drone 7 994 ✓ [36] [37]

UCF ↔ Olympic Sports 6 1,145 ✓ [27] [122]

Charades-Ego dataset 157 4,000 ✓ ✓ [146] [36]

EPIC Kitchens DA 8 ∼ 8, 500 ✓ [117]

Mixamo → Kinetics 14 36,195 ✓ This work

4.3 Mixamo → Kinetics dataset

Synthetically generated images and videos are nowadays recognised as an

important resource in the computer vision community and are widely used

in many tasks. By using computer graphics software and simulators, it

is possible to generate large-scale datasets with virtually infinite visual

variability and with annotations readily available. However, when mod-

els are trained on synthetic data but tested on images and videos from

the real world, the problem of domain shift naturally arises. This section

describes Mixamo → Kinetics, the first large scale dataset for benchmark-

ing domain adaptation methods for action recognition in the challenging

task of transferring knowledge from the synthetic to the real domain. Our

dataset comprises 36, 195 videos, divided into 14 action categories and two

domains, i.e., the source domain (synthetic videos from Mixamo) and the

target domain (real videos from Kinetics).

Source dataset (Mixamo). It consists of 24, 533 videos synthetically

generated using the 3D characters from Mixamo. The dataset comprises

videos depicting actions performed by 6 distinct avatars, with different

backgrounds, camera positions and random 3D objects in the scene. Also,

key-points are provided for each character following the scheme from the

COCO dataset [100], but without the key-points for eyes and ears. Each
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frame is generated with a resolution of 512 by 512 and the mean length of

the videos is 138 frames. To generate each video, we first created a Blender

graphic environment; subsequently, for each video, the background and

floor images were randomly selected from a set of ∼200 natural images

and geometric patterns (e.g., wood floor or other tiling patterns), all col-

lected from the web. Different images were chosen for the background and

the floor to avoid the unnatural effect of a “floating” avatar. We further

enriched each scene with random 3D objects of varying shape, size and po-

sition. Since the objects were positioned using a predefined reference grid

around the character, partial occlusions could be performed without the

risk of completely hiding the character. Finally, we added to the scene a

static sun-like light source and rendered it from 8 different camera angles.

Using the light source, it was possible to produce realistic shadows for both

the characters and the 3D objects in the scene, which is not possible on

datasets that simply place a character in front of a background image. We

also plan on generating a larger version of the dataset, with more camera

angles and moving light source.

Target dataset (Kinetics). The target dataset was created consid-

ering 11, 662 videos from 14 action categories extracted from the Kinetics

dataset [147]. The overlapping actions between the two datasets are swing

dancing, breakdancing, salsa dancing, throwing, capoeira, jogging, shout-

ing, side kick, clapping, texting, golf putting, squat, punching and backflip.

Additional details about the dataset are provided in the supplementary

material.
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Figure 4.2: Overview of the proposed CO2A approach.

4.4 UDA for Action Recognition

4.4.1 Problem and Notation

The problem of UDA for action recognition can be formalised as follows.

Let X be the sequence of frames from videos and Y the set of action cate-

gories. Given a labelled source domain S and an unlabelled target domain

T , the aim is to learn a function fΘ : X → Y , where Θ denotes a model’s

parameters, that successfully predicts the corresponding action category

from videos of the target domain. Since no annotation is available for the

target domain, the training process leverages information from labelled

videos of the source domain. The training set T = TS
⋃

TT is composed by

NS annotated videos in the source domain TS = {(V S
1 , Y S

1 ), . . . , (V S
NS
, Y S

NS
)}

and NT unlabelled videos from the target domain TT = {V T
1 , . . . , V T

NT
}.

The main challenge of learning fΘ lies in addressing the domain shift, i.e.

the fact that the data from the two domains are drawn from two different

distributions pS(V, Y ) and pT (V, Y ) over X × Y .
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4.4.2 Proposed Architecture

Overview. An overview of the proposed architecture is illustrated in Fig-

ure 4.2. First, source and target videos are divided into K non-overlapping

parts of equal size, denominated clips. For simplicity, we omitted the fact

that we used a minibatch of data and augmented target data. More for-

mally, a video Vi is divided into K clips Ci,1, ..., Ci,K consisting of evenly

spaced frames, which are fed to an encoder network ϕ(·) that produces

clip-level features ci,j = ϕ(Ci,j). From here onward, the video indexes i

are omitted for simplicity (cj indicates ci,j). At this level, a self-supervised

contrastive loss LCc is applied to learn clip-level feature representations.

Following [28], we apply a projection head before computing the contrastive

loss. In practice, the clip-level features cj are passed through a module that

outputs zcj = ωc(cj) to which the contrastive loss is applied.

To produce video representations, clip features cj are aggregated into

video-level feature v =
∑K

j=1 αjcj, where the weight vector α ∈ RK is

computed using a simple attention module κ(·), implemented as multi-

layer perceptron (MLP) that receives K clip feature vectors as input,

i.e. α = κ(c1, . . . , cK). Subsequently, v is fed to two separate network

branches, with a similar base structure, implementing our two-headed ar-

chitecture. In the first branch, the classification head hCE(·) produces log-
its l = hCE(v). In the second branch, v is first provided as input to the

contrastive head hCT (·) to produce features v̄ = hCT (v), and then to a pro-

jection head ωv, resulting in a latent vector zv = ωv(v̄). The first head is

trained using a cross-entropy loss LCE , whereas the second head uses a com-

bination of three contrastive losses: a supervised contrastive loss LSC [86]

for source data, a self-supervised contrastive loss LCv to learn better video-

level representations for the target data and a class-aware inter-domain

contrastive loss LIDC that aligns the distributions of the features of both
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domains. Finally, the stability loss LST enforces an agreement between the

predictions of the two main network heads hCE(·) and hCT (·).
Our network is trained on minibatches of size 3M , i.e. composed of

MS randomly chosen source videos, MT randomly chosen target videos

and their MT augmented versions. So we end up with MS source videos

and 2MT target videos. In practice, data augmentations are only used for

target data to train the unsupervised contrastive loss terms.

Next, we describe in detail the main components of our approach: (i) the

proposed multi-scale feature representations, where we used self-supervised

contrastive learning to compute both video-level and clip-level features; (ii)

our novel contrastive domain alignment loss LIDC and (iii) our novel dual-

head classifier structure.

Multi-scale Contrastive Video Feature Learning. Clip-level and

video-level features carry different information about a video [115]. While

the first ones focus on sub-parts of an action, the second ones are in-

tended to represent the complete action. This work proposes to leverage

the complementary clip-level and video-level information to learn repre-

sentations on the target domain within a contrastive learning framework.

Specifically, we resort to data augmentation on the target domain and,

inspired by recent works on video representation learning [131], we define

two self-supervised contrastive loss terms, one at video-level and the other

at clip-level.

At the video-level, we use the output of the projection head ωv, which

produces the projected video-level features zv, and define the loss:

Li
Cv = −

2MT∑
j=1

1φi,j
· log sz

v
i ,z

v
j∑2MT

p=1 1i ̸=p · sz
v
i ,z

v
p

. (4.1)

where szi,zj = exp(
zi·zj/τ

||zi||·||zj ||), τ > 0 is a temperature parameter, 1 is an

indicator function which is 1 if its argument is true or 0 otherwise, and
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φi,j is true if i and j are two different augmentations of the same video. In

practice, this loss has the effect of pulling together representations in the

embedding space of augmented versions of the same target video (positive

samples), while pushing away those associated with different videos in the

same mini-batch (negative samples).

Similarly, at clip-level, we use the output of the projection head ωc,

which produces the projected clip-level features zcj , and define the loss:

Li
Cc = − 1

K

2MT∑
j=1

K∑
u=1

1φi,j
log

sz
cu
i ,zcu

j

sz
cu
i ,zcu

j +Negi,u
, (4.2)

where Negi,u =
∑2MT

p=1 1p ̸=i,p ̸=j

∑K
v=1 s

zcu
i ,zcv

p is the set of negatives for in-

stance i and clip u. In practice, this loss considers different augmentations

of the same clip as positives and clips from different videos as negatives.

Selecting different clips from the same video to form the set of negatives,

in fact, could be harmful, since an action may span over multiple clips.

The final self-supervised contrastive loss on target data is:

Li
C = Li

Cc + Li
Cv (4.3)

It is worth noting that the two proposed losses are complementary since

they use different notions of positives and negatives and operate at different

temporal resolutions. Our experimental results (Sec. 4.5) demonstrate

the benefit of our multi-scale self-supervised video representation learning

strategy.

Contrastive Domain Alignment. To specifically address the domain

shift problem and perform feature alignment of the source and target data,

we introduce a novel inter-domain contrastive loss. Previous works on su-

pervised contrastive learning [86] introduced a loss that has the effect of

pulling together in the embedding space samples belonging to the same

class while pushing far apart samples from different classes. In practice, in
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[86], positive and negative samples are obtained by only considering label

information. In this work, we propose to revisit this idea by jointly combin-

ing samples from the two domains. However, while each source video V S

has an associated label Y S, for the unsupervised target videos, we compute

pseudo-labels Ỹ T = argmax σ(lT ), where σ denotes the softmax operator.

We employed a simple pseudo-labelling strategy, but other more complex

strategies could be used. Therefore, we propose to consider as positives,

instances from different domains that share the same label/pseudo-label,

while instances with different labels/pseudo-labels and different domains

are regarded as negatives. In this way, feature alignment among different

domains is realised, while also taking into account semantic information.

Formally, our proposed inter-domain contrastive loss is defined as:

Li
IDC = − 1

γi

3M∑
j=1

1ρi,j · 1Ỹi=Ỹj
· log sz

v
i ,z

v
j∑3M

p=1 1ρi,p · sz
v
i ,z

v
p

, (4.4)

where 1ρa,b = 1a/∈Ω1b/∈Ω1D(a)̸=D(b), γi is the number of positives for instance

i and D(·) is a function that returns the domain of an instance. Ω de-

notes the set of target instances for which pseudo-labels are not considered

reliable. Note that alternative losses such as those based on domain dis-

crepancy minimisation and adversarial learning are designed to encourage

the network to produce domain-agnostic features, whereas our proposed

inter-domain contrastive loss encourages the network to produce tight rep-

resentations and exploits label/pseudo-label information to push together

features belonging to the same class and pull apart those belonging to

different classes. To limit the effect of noise that is typically present in

pseudo-labels, we propose to employ a simple sample filtering procedure:

target instances are added to Ω when H(σ(lTi )) > log(nclasses)/η, where H

is an entropy function and η a user-defined parameter that represents the

percentage of the maximum allowed entropy.
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Two-headed network. As discussed above, we design an architecture

with two different heads. Each head is supervised with different losses.

The first head, hCE , is mainly trained with a cross-entropy loss on source

instances, i.e.:

Li
CE = −

∑
Y S
i log σ(li). (4.5)

Differently, the second head, hCT , is trained using the contrastive losses.

Besides the previously described Li
Cv and Li

IDC, we also introduce a super-

vised contrastive loss [86]:

Li
SC = − 1

γi

M∑
j=1

1i ̸=j · 1Ỹi=Ỹj
· log sz

v
i,z

v
j∑MS

p=1 1i̸=p · szv
i,z

v
p

. (4.6)

By leveraging from source supervision in a different way, the two heads

promote the learning of different feature representations. To maximally

benefit from this dual head structure, we introduce an additional loss term

that enforces coherence between the predictions of the two heads. Besides

stabilising the training of both heads, it makes additional information flow

directly from the hCT to hCE and vice versa. As the contrastive head oper-

ates on instance pairs, we propose to define this coherence loss considering

pairwise predictions associated to pairs of source and target videos in the

minibatch, as follows:

Li,j
ST = qi,j log(pi,j) + (1− qi,j) log(1− pi,j) (4.7)

Here pi,j = lilj
T denotes the pairwise predictions computed on source video

i and target video j using of the logits produced by hCE . Similarly, qi,j

indicates the binary prediction label which is computed though hCT as:

qi,j =

1, if cos(v̄i, v̄j) > θ

0, otherwise
(4.8)

where cos(·, ·) indicates the cosine similarity between two vectors and θ is

a threshold that we set equal to 0.5.
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Overall Loss. The whole model is trained by combining the losses and

weighting them accordingly as follows:

L =
1

M

M∑
i=1

wceLi
CE + wscLi

SC +
1

µ

3M∑
i=1

widcLi
IDC+

1

2M

2M∑
i=1

wcLi
C +

1

2M 2

2M∑
i=1

M∑
j=1

wstLi,j
ST ,

(4.9)

where µ is the number of instances with at least one positive.

Inference. At inference time, the projection heads ωc and ωv, and

hCT are discarded. Data is only forwarded through the shared backbone

and hCE , producing the logits l that are further normalised by a softmax

function to generate the classes probabilities. It is worth noting that while

at training time the addition of the double head implies an increase in terms

of parameters, during inference, since the ωc, ωv and hCT are discarded, the

number of parameters is the same as if we used a single head architecture.

4.5 Experimental Results

4.5.1 Setup

Datasets. We conduct experiments on three standard UDA benchmarks

for action recognition: UCF ↔ HMDB [27], UCF ↔ Olympic Sports [27],

Kinetics → NEC-Drone [36], and on our newly proposed Mixamo → Ki-

netics. In UCF ↔ HMDB and UCF ↔ Olympic Sports, the domain shift

is caused by varying visual appearance, lighting, camera viewpoint, etc.

However, source and target domains are both associated with videos de-

picting real scenes. In the Kinetics → NEC-Drone, the domain shift is

large as data of the source domain consist of Youtube videos, while the

target domain comprises videos taken from a camera installed on a drone.
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Lastly, the Mixamo → Kinetics dataset presents the most severe domain

shift, comprising synthetically generated video sequences in the source do-

main and Youtube videos in the target.

Baselines. We compare with three state-of-the-art UDA methods for

action recognition: (i) TA3N [27], considering both the original implemen-

tation of the 2D encoder (from [198]) and the adapted 3D version (similar

to [37]) using the I3D [22] backbone; (ii) TCoN [122], considering the

Resnet101 architecture as backbone, and (iii) SAVA [37], which employs

I3D as clip feature extractor. We did not compare with [149] because their

approach combines RGB with optical flow information, whereas ours solely

uses RGB. Results are also reported for each backbone considering the fol-

lowing settings: (i) supervised source only, when the network is trained

only with supervised source data, and (ii) supervised target only, when the

network is trained (fine-tuned) with supervised target data. These settings

correspond respectively to a lower and an upper bound for UDA methods.

Note that while code for TA3N [27] is publicly available, we did not find

implementations for TCoN [122] and SAVA [37]. The associated results are

taken from the original papers. Methods are compared in terms of Top-1

Accuracy.

Implementation details. We employ an I3D architecture as backbone

network to be comparable with our closest competitor [37]. ϕ(·) since .

The I3D is pretrained on Kinetics for all datasets, except on the Mix-

amo → Kinetics where it is initialised by inflating the weights from an

Imagenet-pretrained Inception-v1 network, as in [22], and fine-tuned on

Mixamo labelled data. We implemented κ as MLP with architecture Lin-

ear/ReLU/Linear/Sigmoid that receives as input K = 4 clips, following

[37]. The two heads hCE(·) and hCT (·) are both implemented as 2-layers

MLPs with ReLU activation and without BatchNorm layers, with the only

difference that a linear classifier is appended to hCE(·). Both take as input
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the video-level features, but hCE(·) outputs a vector of size equal to the

number of classes and hCT (·) a vector of size 256. The projection heads

ωv and ωc are both implemented as Linear/ReLU/Linear with output 128.

The input space of ωv is 256, whereas in ωc it is 1024.

We perform video-based data augmentations on target data. Follow-

ing [131], given a video, the same transformation is applied to all frames

coherently. Colour, spatial and random horizontal flip augmentations are

considered. Additional details about augmentations are reported in the

supplementary material.

Hyper-parameters selection is performed following a common protocol

in UDA literature [145], i.e. by selecting a subset (here, 5 annotated videos

per class) in the target training set and by using them as validation set.

On HMDB ↔ UCF and UCF ↔ Olimpic, the losses weights are wce = 1,

wsc = 1, widc = 1.5, wc = 0.2 and wst = 0.02; for Kinetics → NEC-Drone

we set widc = 0.2, wc = 1.2 and wst = 0.01 and for Mixamo → Kinetics

we set widc = 2, wc = 0.2 and wst = 0.02. All values were found using

grid-search. We trained our network with SGD with learning rate 0.02,

momentum of 0.9 and weight decay of 1−9. We set η = 6 for Mixamo →
Kinetics and η = 4 for the other experiments. Experiments were carried

out on 4 Nvidia RTX 5000 GPUs for around 1 hour HMDB ↔ UCF and

UCF ↔ Olimpic, 3 hours for Kinetics → NEC-Drone and 4 hours for

Mixamo → Kinetics.

4.5.2 Results

Comparison with state of the art. We first report the results obtained

by comparing our approach with state-of-the-art methods. Tables 4.2, 4.3

and 4.4 show the results of our experiments on HMDB ↔ UCF, UCF ↔
Olympic Sports and Kinetics → NEC-Drone, respectively. In all tables,
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Table 4.2: Results on UCF ↔ HMDB

Method Encoder U → H H → U

Supervised source only [27]

Resnet101-TRN

71.7 73.9

DANN [61] 75.2 76.3

JAN [105] 74.7 79.6

AdaBN [98] 72.2 77.4

MCD [140] 73.8 79.3

TA3N [27] 78.3 81.8

Supervised target only [27] 82.8 94.9

Supervised source only [33]

I3D-based TRN

80.6 88.8

TA3N [27] 81.4 90.5

Supervised target only [27] 93.1 97.0

Supervised source only [37]

I3D

80.3 88.8

SAVA [37] 82.2 91.2

Supervised target only [37] 95.0 96.8

TCoN [122] 2D/3D CNN 87.2 89.1

CO2A I3D 87.8 95.8

the best results are indicated in bold and the second-best in italic.

As shown in Table 4.2, our approach outperforms all previous methods

for the HMDB ↔ UCF setting. In particular, it achieves an accuracy of

87.8% for U → H and 95.8% for H → U, outperforming its best competitor,

SAVA [37] with the same I3D backbone, by 5% and almost 4%, respec-

tively. Notably, all recent UDA methods specifically designed for action

recognition, i.e. TA3N [27], TCoN [122], SAVA [37] and our method, signif-

icantly outperform traditional image-based UDA approaches, i.e. DANN

[61], JAN [105], AdaBN [98] and MCD [140].

Similar observations can be made by looking at results in Table 4.3. Our
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Table 4.3: Results on UCF ↔ Olympic Sports

Method U → OS OS → U

W. Sultani et al. [152] 33.3 47.9

T. Xu et al. [185] 87.0 75.0

AMLS (GFK) [82] 84.6 86.4

AMLS (SA) [82] 83.9 86.0

DAAA [82] 91.6 89.9

TA3N [27] (Resnet101-TRN) 98.2 92.9

TCoN [122] (Resnet101-TRN) 96.8 96.7

SAVA [37] (I3D) 98.1 96.7

CO2A (I3D) 100 97.5

method outperforms the best competing methods, i.e. TA3N [27] on UCF

→ Olympic Sports and TCoN [122] and SAVA [37] on Olympic Sports →
UCF. Again, modern UDA methods for action recognition, i.e. TA3N [27],

TCoN [122], SAVA [37] and CO2A, are significantly more accurate than

traditional techniques [82, 152, 185].

Finally, Table 4.4 reports the results obtained in the more challenging

Kinetics → NEC-Drone setting. The gap in performance between super-

vised source only (lower bound) and supervised target only (upper bound)

indicates a domain shift that is significantly more pronounced than that

observed in the HMDB ↔ UCF and the UCF ↔ Olympic Sports datasets.

Even in this challenging setting, our approach outperforms state-of-the-art

methods. In particular, the accuracy of CO2A is 1.6% higher than its best

competitor SAVA [37].

Results on the Mixamo → Kinetics dataset. Table 4.5 shows the

results obtained on our newly proposed Mixamo → Kinetics dataset. This

setting is much more challenging than previous ones, not only due to the
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large domain gap but also because it contains more action categories than

Kinetics → NEC-Drone (14 classes versus 7) and previous benchmarks.

For this dataset, we only consider baseline methods for which the code is

publicly available, i.e. TA3N [27]. Additionally, we run a previous image-

based UDA approach, i.e. ADDA [167]. Due to the intrinsic difficulty of

the Mixamo → Kinetics dataset, it is not surprising that all the methods

achieve lower performance than in other settings. Still, our approach sets

the state-of-the-art, outperforming its best competitor TA3N [27].

The table also reports the performance of CO2A and baselines con-

sidering a weakly supervised setting, i.e. assuming that annotations are

available for 5 randomly selected target instances per class. As shown in

the table, our method again outperforms the competitors. The table addi-

tionally reports, as an upper bound, the score of the supervised target only

method, which considers annotations available on the entire target training

set. The large gap between the performance of UDA methods and the up-

per bound encourages further research on this challenging synthetic-to-real

UDA setting that we introduced with this paper.

Ablation Study. We also perform an ablation study to assess and em-

pirically demonstrate the importance of our technical contributions. Table

4.6 reports the results of a set of experiments conducted to analyze the

role of the distinct losses employed in our framework. The ablation exper-

iments consider the HMDB ↔ UCF and Kinetics → NEC-Drone datasets

and report results obtained by disabling one loss at the time. Looking at

Table 4.6 the following observations can be made: (i) The scores obtained

with the full model (last line of the table) show that the different losses

are complementary and the model achieves the best results when com-

bining all of them; (ii) the inter-domain loss LIDC is beneficial in all the

settings, enabling to reduce the domain shift by promoting domain distri-

bution alignment; (iii) the heads consistency loss LST provides a significant
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Table 4.4: Results on Kinetics → NEC-Drone.

Method Encoder Top-1 acc

Supervised source only [27] ResNet-101-based TRN 15.8

TA3N [27] ResNet-101-based TRN 25.0

Supervised source only [27] I3D-based TRN 15.8

TA3N [27] I3D-based TRN 28.1

Supervised source only [37] I3D 17.2

DANN [61] I3D 22.3

ADDA [167] I3D 23.7

Choi et al. [36] (on val set) I3D 15.1

SAVA [37] I3D 31.6

Supervised target only I3D 81.7

CO2A I3D 33.2

benefit in term of performance in the most challenging setting, i.e. in the

Kinetics → NEC-Drone setting: the accuracy drops by 6% when this loss

is disabled; (iv) disabling the clip-level and video-level losses is also detri-

mental for performance, with different performance among datasets. This

suggests that both video-level and clip-level information are important to

describe action videos. Lastly, (vi) disabling the supervised contrastive loss

greatly reduces the performance on HMDB →UCF and Kinetics → NEC-

Drone, which is related to the fact that the second head is not performing

on par on source data.

Figure 4.3 shows the results of a sensitivity analysis of our model con-

cerning the weights associated to LIDC and LSC.The sensitivity analysis for

the weights of LCc, LCv and LST are provided in the supplementary mate-

rial due to lack of space. We considered the HMDB ↔ UCF setting and

we show that both losses are beneficial for the final score when the optimal
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Table 4.5: Results on Mixamo → Kinetics.

Method Weak Supervision Encoder Top-1 acc

Supervised source only I3D 11.2

ADDA [167] I3D 11.0

TA3N [27] Resnet101-TRN 7.0

TA3N [27] I3D-based TRN 10.0

ADDA [167] ✓ I3D 17.0

TA3N [27] ✓ Resnet101-TRN 13.0

TA3N [27] ✓ I3D-based TRN 19.1

Supervised target only ✓ I3D 79.3

CO2A I3D 16.4

CO2A ✓ I3D 20.1

values of their weights are set. Figure 4.3 (left) shows that a value of widc

equal to zero corresponds to the worst performance since no domain distri-

bution alignment takes place. Figure 4.3 (right) shows that a value of wsc

equal to zero, corresponding to no supervision provided on the contrastive

head, is suboptimal and performance can be improved if supervision on

both network heads is provided. Similarly, using a high weight for LSC

implies relying too strongly on source data and losing the benefit of the

0.0 0.5 1.0 1.5
widc

82.5

85.0

87.5

90.0

92.5

95.0

A
C

C

HMDB↔UCF

UCF↔HMDB

0.0 0.5 1.0 1.5

wsc

82.5

85.0

87.5

90.0

92.5

95.0

A
C

C

HMDB↔UCF

UCF↔HMDB

Figure 4.3: Sensitivity analysis of the weights of the losses LIDC and LSC.
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Table 4.6: Ablation study on HMDB ↔ UCF and Kinetics → NEC-Drone: importance

of different losses.

Method H → U U → H K → N-D.

CO2A w/o LIDC 92.5 87.5 30.9

CO2A w/o LST 94.4 82.4 27.0

CO2A w/o LCc 91.9 85.5 29.6

CO2A w/o LCv 95.8 81.5 24.8

CO2A w/o LSC 91.5 86.9 28.1

CO2A (full) 95.8 87.8 33.2

losses applied to the target data. Additional results are provided in the

supplementary material, due to lack of space.

4.6 Conclusions

We presented CO2A, a novel UDA approach for video action recognition

that explores conditional feature alignment across domains within a con-

trastive learning framework. Our approach achieved state-of-the-art per-

formance on three publicly available UDA benchmarks. Moreover, we

introduced the novel large-scale dataset Mixamo → Kinetics. This new

benchmark will foster future research in domain adaptation from synthetic

to real video sequences. In the future, we plan to improve our approach

by integrating more sophisticated methods for obtaining reliable pseudo-

labels. Additionally, we plan to extendMixamo to include videos generated

with random light source position and strength and with moving cameras.

50



Chapter 5

Unsupervised Domain Adaptation

for Video Transformers in Action

Recognition

5.1 Introduction

The standard setting for visual learning tasks relies on the assumption

that training and testing data belong to the same domain, i.e., they are

drawn from the same distribution. However, in practice, this often does

not hold, as many real-world scenarios require models to be tested on very

different, yet related, domains. This often leads to poor performance in

the domain of interest, especially when the domain shift is significant. To

address this issue, Unsupervised Domain Adaptation (UDA) techniques

have been developed with several approaches achieving remarkable results

on image-related tasks. However, much less attention has been devoted

to videos, which poses a greater challenge given the significant increase in

complexity that arises when the temporal aspects come into play.

Action recognition [56, 196, 166, 22] is one of the most popular tasks

when it comes to video analysis. This task is particularly challenging due
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to some inherent characteristics of sequential visual data, mostly related

to the significant variability that arises due to the many different ways

in which a certain human activity can be carried out, with variations in

terms of speed, duration, relative movement between camera and actor(s),

occlusion, etc. These issues, along with many others, have been tackled

in several previous works [56, 196, 166, 22] that demonstrated remarkable

performance exploiting different deep architectures. Nevertheless, many

open problems still exist when domain shift arises in video analysis.

In this work, we tackle the problem of UDA in video action recognition

by proposing a novel approach that exploits a new information theoretic-

based domain alignment loss on top of a transformer-based feature extrac-

tor. In particular, our architecture is built upon a shared encoder derived

from the STAM [143] visual transformer coupled with a domain alignment

loss inspired by the Information Bottleneck (IB) principle [163, 164]. The

encoder is composed of a spatial transformer, e.g. ViT [50], that processes

individual frames and a temporal transformer, e.g. a simple multi-layer

transformer as in [173], that aggregates spatial features to process a whole

video. In this paper, we propose a two-phase process for training, where

we first fine-tune the whole transformer using only source data as in [107],

and then we freeze the spatial transformer and fine-tune only the temporal

one with the novel IB loss, which promotes domain distribution alignment.

The seamless integration of the transformer with our adaptation strategy

leads to improved recognition accuracy (see Sec. 5.4) that stems from a

better spatio-temporal action localisation. As an example, Fig. 5.1 de-

picts a 16-frame sequence and the associated frame-level attention values

for a validation video, comparing the model trained only on source data

(a) and the same model trained with our UDA approach (b). From the

picture, it is possible to see that our method enables the network to better

focus on the frames where the handshake action takes place. We called
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(a) Source only

(b) IB Domain adaptation

Figure 5.1: Temporal attention visualisation: comparison between a source-only model

(a) and UDAVT (b). Most and second most attended frames are highlighted.

our method UDAVT (Unsupervised Domain Adaptation for Video Trans-

formers in Action Recognition). We evaluate our approach on two popular

UDA benchmarks for action recognition, namely HMDB ↔ UCF [27] and

Kinetics → NEC-Drone [36], and show that UDAVT outperforms previous

UDA methods.

Contributions. Our contributions are as follows: (i) we propose a novel

UDA approach for video action recognition that exploits class label infor-

mation within a novel IB domain alignment loss; (ii) we show, for the first

time, that a transformer-based feature extractor can be successfully em-

ployed in UDA for building a robust source model that is more resilient

to domain shift than traditional architectures for video analysis; (iii) we

provide an extensive evaluation of our method and show that UDAVT

outperforms state-of-the-art UDA approaches on all considered datasets.
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5.2 Related Work

Action recognition. In the last few years, several approaches and ar-

chitectures have been proposed for video action recognition. For instance,

two-stream networks were proposed in [56], jointly exploiting RGB and

optical flow sequences. The Temporal Relation Network was proposed

by Zhou et al. [196] to model temporal relations across the sequence by

employing a specific pooling layer. Other works opted for 3D CNNs to

learn spatio-temporal features [166, 22]. Recently, some works proposed

contrastive-learning-based methods in order to extract efficient motion rep-

resentations for action recognition [188, 131, 177, 126]. In order to model

the temporal aspects, fusion methods have been proposed [114, 3], as well

as, combinations of recurrent and convolutional networks [151]. Bai et

al. [6] introduced an approach based on multi-range feature interchange

to capture short-range motion features and long-range dependencies. Fi-

nally, advanced transformer-based approaches have been proposed for ac-

tion recognition [64, 143, 11, 80, 111, 118], often exploiting skeleton points

[128, 97, 153, 34, 35]. Different from our work, these approaches consider

a standard supervised setting, where all data is labelled and there is no

domain shift between training and evaluation datasets.

UDA for images. Existing UDAmethods differ from the strategy adopted

to address the domain shift. One option consists of matching statistical mo-

ments of the source and target data distributions [104, 17, 138, 110, 169],

eventually integrating label information in the alignment loss [84]. An-

other common approach is based on adversarial learning [103, 78, 63, 167]

and aims at learning discriminative and domain-agnostic feature repre-

sentations by combining implementing a domain discriminator. Another

possibility is to use Generative Adversarial Networks [76, 175, 141] to

generate target-like instances from source data that are then employed
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to train the model. Furthermore, self-supervised learning has been re-

cently exploited for DA, in particular when devising auxiliary tasks, such

as predicting rotations [154] or image patches permutations [14], to learn

domain-invariant feature representations. Finally, recent works proposed

to employ transformer-based architectures in the scope of domain adapta-

tion [187, 186]. However, all these methods were proposed for images.

UDA for action recognition The challenging problem of domain shift

for video action recognition has been addressed by a limited number of

works [117, 122, 27, 36, 178], despite the several possible applications it

finds in real-world scenarios. Chen et al. [27] proposed TA3N (Temporal

Attentive Adversarial Adaptation Network), which employs a temporal re-

lation module to jointly perform alignment between the source and target

domains and learn the temporal relation across the video sequences. Pan

et al. [122] proposed TCoN (Temporal Co-attention Network), a deep ar-

chitecture integrating a cross-domain attention module in order to match

the distributions of source and target domain between temporally aligned

feature representations. Choi et al. proposed two methods based on ad-

versarial learning [36] and on an attention mechanism [178], respectively.

Kim et al. [89] proposed an UDA approach based on learning cross-modal

contrastive features, while in [117] an approach was introduced based on

self-supervised and multimodal learning (RGB + optical flow). Song et

al. [149] proposed a method for spatio-temporal contrastive domain adap-

tation. Lastly, Turrisi da Costa et al. [42] proposed CO2A, an approach

for UDA that relies on a contrastive loss to perform domain alignment, in

addition to stabilising training by making a classification and a contrastive

head agree. Our proposed approach presents similarities with previous self-

supervised based frameworks [123, 88], but introduces novelty in employing

an Information Bottleneck loss to align domains rather than to learn better

feature representations. Additionally, our work is also the first to exploit
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transformers for UDA in the context of action recognition.

5.3 Proposed method

Problem setting and notation. The paper tackles the problem of UDA

for action recognition. Given a source dataset S = {XS
i , y

S
i }NS

i=1 of videos

and associated annotations, and an unlabelled target dataset T = {XT
i }NT

i=1,

where Xi ∈ X and y ∈ Y , Y = {1, 2, . . . , K} (K denotes the number of

action categories), we aim to learn a function Fθ : X → Y with parameters

θ that maps an input video X to a class label y and perform well on target

data. Note that this is not a trivial task, since source and target data are

sampled from two different distributions, P S(X) ̸= P T (X). To tackle this

problem, we propose a novel approach called UDAVT that combines two

main components: a spatio-temporal transformer architecture and a novel

distribution alignment scheme derived from the IB principle [163].

Overview. An overview of UDAVT is shown in Fig.5.2. We propose a

two-phase training pipeline where the model is first trained with source

data and subsequently adapted using source and target data. Our model

is defined as Fθ = C ◦H, where H represents a video transformer encoder

[143] and C represents a linear classifier. H is composed by two main parts,

a spatial transformer Hs that extracts frame-level feature representations

and a temporal transformer Ht that aggregates the frame-level features to

produce video-level representations. In particular, Hs is the vision trans-

former ViT [50], whereas Ht is a simple multi-layer transformer as in [173].

An auxiliary MLP projection head P is also used in the second phase.

Finally, the complete model also has a queue Q that is responsible for

keeping the most recent feature representations of source data. The two

main phases of our approach are described as follows.

56



CHAPTER 5. 5.3. PROPOSED METHOD

Fully frozen

Partially frozen

Spatial transformer

Temporal transformer

Projection head

Linear classifier

Source-only fine-tuning Adaptation

...

...

...
...

...

SOURCE

SOURCE

TARGET

Queue

Figure 5.2: Overview of UDAVT. Our approach is articulated in two steps. In phase

1 (left), source data are fed to a video transformer H (composed of a spatial transformer

Hs and a temporal transformer Ht) followed by a classifier C. The overall model is

finetuned with a supervised cross-entropy loss LCE similarly to [107]. In phase 2 (right),

the weights of Hs are frozen, while Ht is fine-tuned. Source and target data are fed to

the backbone and the proposed IB-based loss LIB performs domain alignment, while LCE

further trains the action classifier. A queue Q is added in order to increase the number

of source instances considered while computing LIB.

Phase I: Source-only fine-tuning. The training process of this phase

starts from a model H pretrained on the Kinetics dataset [85] and con-

sists of fine-tuning the entire model Fθ using only the source data S. As

in [143], we consider 16 frames uniformly sampled to represent a source

video XS as input to Fθ. The first part of the model Hs divides each

frame into 16x16 patches that are then projected into feature vectors. Hs

consists of ViT, which receives as input the projected patches together

with a classification token [CLS]S as in [48]. Each frame is processed indi-

vidually, extracting feature representations fS
Hs

= [CLS]S that consists of

the classification token linked to that specific frame. During the forward

pass, [CLS]S will collect all important information from the image patches.

The frame-level features fS
Hs

are then forwarded through Ht together with

a new classification token [CLS]T which, after processing, produces the

video-level feature representations fS = [CLS]T . In this step, Hs and Ht

are fine-tuned following the strategy proposed in [107], which consists of
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freezing all parameters except the positional encoding, the input embed-

dings, the classification tokens and the affine transformations inside the

layer normalisations [5]. While [107] studied the problem of partially fine-

tuning a transformer for handling different modalities, in this work, we

show that this strategy can be successfully applied to the problem of do-

main adaptation. Finally, the video level features are then fed to a linear

classifier C. The entire model is trained with a supervised cross-entropy

loss LCE , defined as:

LCE = −E(X,y)∈S
∑

yk log σ(Fθ(X)), (5.1)

where σ is the softmax operation. Due to lack of space, the reader is re-

ferred to [143] and [50] for more details about the transformer architecture.

Phase II: Target Adaptation. In this phase, the spatial transformer Hs

is frozen, while the parameters of Ht are trained to exploit both labelled

source and unlabelled target data. Note that both Hs and Ht are initialised

with the weights after Phase I. This choice is motivated by the need of re-

ducing computational resources, while still performing adaptation at the

temporal level. Freezing part of the model enables us to increase the batch

size, which is fundamental for the proposed domain alignment strategy

(Eqn. 5.3). To train our model, 16 frames are sampled from both source

XS and target XT videos, as in the previous phase. Video-level feature

representations fS and fT are then produced for videos of both domains.

Subsequently, the temporal features of source videos fS are provided as

input to the linear classifier C. To perform adaptation, we rely on the

Information Bottleneck (IB) principle [163, 164]. Fig. 5.3 shows how the

IB principle is applied to our problem. First, we assume that there exists a

domain transformation g ∼ G that maps a target instance XT to a source

instanceX
S
that has the same label. Unlike [191], which considers that one

instance is mapped to a perturbed version of the same instance via some
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Figure 5.3: Information Bottleneck diagram showing the proposed flow of information to

perform adaptation.

type of data augmentation, we map a single target instance XT to multiple

different X
S
in the same iteration. We experimentally show that this is

indeed beneficial since by increasing the number of source instances via the

usage of a queue, and consequently the number of pairs, we observed a large

boost in performance. As annotations are not provided for the target do-

main, we resort to pseudo-labels for matching source and target instances.

The model H maps X
S
to the feature representation f

S
. According to the

IB principle, we want the model H to learn a representation f
S
which en-

codes as much information as possible about the original instanceXT . This

objective is carried out by maximising the Mutual Information I(f
S
, XT ).

Then, the second objective consists of minimising I(f
S
, X

S
) to make the

model H invariant to the transformation of the sample XT into a different

domain. The overall loss function can be written as:

LIB = I(f
S
, X

S
)− β I(f

S
, XT ) (5.2)

Since optimising for mutual information in a high dimensional space
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is difficult, previous works have proposed different ways to approximate

Eqn. 5.2. In this work, we derive a loss function similar to that used in

the Barlow Twins method [191], where it was proved that, under certain

conditions, Eqn. 5.2 can be approximated as:

LIB =
d∑
i

(1− Cii)
2 + λ

d∑
i

d∑
j ̸=i

(Cij)
2, (5.3)

where C is a cross-correlation matrix computed over a batch of B data

obtained through a feature extractor {z1, . . . , zB} and their correspond-

ing transformed version {z′1, . . . , z′B}, where i is the feature index and d

is the total number of features. Each element of C is defined as Cij =∑
b zi,bz

′
j,b√∑

b(zi,b)
2
√∑

b(z
′
i,b)

2
, where zi and z′i are mean centred. While in [191] the

cross-covariance matrix is computed considering the original images and

their augmented versions, in this paper we propose to re-purpose it for

domain alignment using corresponding samples across the two domains.

The loss in Eq.5.3 is a trade-off between two objectives, the first term

that pushes the learned representation to be domain invariant and a sec-

ond term that decorrelates the different components of the embedding. To

build C, we introduce a projection head P , similar to the one in [191],

mapping fS and fT to zS and zT . Then, each source instance representa-

tion zSi is paired with all target instance representations zTj where the label

of instance i and the pseudo-label of instance j are equal. Note that the

same instance i or j can appear in more than one pair. We also introduced

a queue Q to keep recent zS, effectively increasing the number of possible

instances that are paired with zT in the minibatch. After forming this list

of pairs, the cross-correlation matrix can be computed between the source

instances and the target instances of all pairs. This process makes the

model invariant to instances of different domains and enables tackling the

domain adaptation setting. Our final loss, introducing a weighting factor
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α, is then defined as follows:

L = LCE + αLIB. (5.4)

5.4 Experiments

Datasets. We conduct an extensive evaluation of UDAVT on two bench-

marks for UDA in action recognition, namely HMDB ↔ UCF [27] and Ki-

netics → NEC-Drone [36]. The former setting comprises videos from the

HMDB51 [93] and UCF101 [150] action recognition datasets, which both

contain real videos downloaded from Youtube. In this case, the domain

shift is therefore present, but limited. Kinetics → NEC-Drone, consists of

videos from the large scale Kinetics dataset [147], that contains sequences

from Youtube, and the NEC-Drone [36] dataset, which consists of video

sequences taken from moving drones in an indoor environment. Further-

more, the video sequences of NEC-Drone comprise high-resolution frames

(1920x1080), and the action is often relegated to the corner of the frame

and in many cases, the view is extremely slanted. Understandably, this

setting is characterised by a significantly more challenging domain shift

that consequently induces all the tested state-of-the-art methods to per-

form poorly on the original data. To alleviate this problem, we employed

a pre-processing step exploiting a pretrained YOLO-based [135] human

detection model using AlphaPose [55] to identify and locate the human

actor(s) and then crop around the humans with a minimal resolution of

224x224. Table 5.1 reports an overview of the boost observed when apply-

ing different models to the cropped version of the dataset. As it can be

seen, our pre-processing enables a consistent and significant improvement

in performance for all methods, with the gain ranging from 14% to 50%.

The Table also includes the performance of SAVA [178], which proposed by

61



5.4. EXPERIMENTS CHAPTER 5.

Table 5.1: Effect of pre-processing on accuracy for Kinetics → NEC-Drone

Method Original data Cropped data

Source only 15.0 29.4 (+14.9)

SAVA [178] 31.6 42.5 (+10.9)

CO2A [42] 33.2 47.9 (+14.7)

UDAVT 16.0 65.3 (+49.3)

UDAVT - supervised 30.0 78.9 (+48.9)

the researchers who originally released the dataset1, and our best competi-

tor CO2A [42]. In the following experiments, we used the cropped version

of the NEC-Drone dataset.

Implementation details. Our method was implemented using Pytorch

[125]. The model was fine-tuned in phase 1 starting from a STAM model

pretrained on Kinetics-400. Subsequently, the partial fine-tune was carried

out for 20 epochs with SGD, cosine learning rate decay, learning rate 0.001,

weight decay of 1e−9 and batch size 8. In the second phase, the model was

trained for an additional 20 epochs using the same optimiser, learning rate

scheduler and weight decay, however, with a learning rate of 0.005 and a

batch size of 64 instances per domain. Additionally, the projection head P

was not trained, as we found that using a fixed random non-linear projec-

tion made the model more resilient to bad pseudo-labels. Since this results

in fewer parameters to optimise, we hypothesise that this makes training

more consistent. For HMDB ↔ UCF, we set α = 0.01 and the queue size

to 1024. For Kinetics → NEC-Drone, we used α = 0.025 and a queue of

size 2048. First, α needs to be set to a small value due to the sheer differ-

ence in magnitude between LCE and LIB. Second, α controls the strength

1The original code for SAVA was not available so the result for the cropped version of Kinetics →
NEC-Drone was obtained with our implementation.
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of decorrelating feature representations of two different instances across

domains that share the same label (pseudo-label for the target domain).

Intuitively, it needs to be set higher the larger the domain gap is.

Baselines. We compare our results with those obtained by state-of-the-art

methods for UDA in video action recognition, namely TA3N [27], TCoN

[122], SAVA [178] and CO2A [42]. For a fair comparison, the results of

TA3N are also reported after replacing their ResNet backbone with I3D.

Also, as a transformer-based baseline, we report the results obtained by

replacing our proposed UDAVT loss with three different domain align-

ment strategies, namely: a Maximum Mean Discrepancy (MMD) domain

alignment component [104], an adversarial approach relying on a domain

classifier as in [62] and a Maximum Classifier Discrepancy (MCD) based

component [140]. MCD aligns domains by employing task-specific decision

boundaries that maximise the discrepancy between the output of two dis-

tinct classifiers to detect target samples lying far from source support and

minimise the discrepancy of the transformer, so it learns how to produce

target features closer to source support. The adversarial-based approach

[62] consists of adding an MLP-based domain classifier that is responsible

for predicting the domains of the instances given their video-level feature

representations. We added a target cross entropy based on the pseudo-

labels to all baselines was we found that this improved performance.

5.4.1 Results

Table 5.2 presents the results on HMDB ↔ UCF. Along with the scores

achieved with our proposed method, we report the ones obtained by previ-

ous approaches in the same settings. As it can be observed, all transformer-

based models significantly outperform previous methods (except for CO2A

[42]) in both directions, suggesting that transformer-based methods are
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more robust to domain shift even without any domain adaptation strat-

egy. In particular, we achieve an accuracy of 96.8% and 92.3% in the two

directions, outperforming the current best competitor (CO2A [42]) by 1%

and 4.5%, respectively. Results also show that our method outperforms

MMD with a transformer-based architecture. Also, the proposed MCD

and adversarial-based baselines are outperformed (in just one of the two

directions for the case of MCD). Finally, we report, as upper bounds, the

scores obtained with the supervised version of UDAVT, i.e., the case where

ground truth target labels are used instead of pseudo-labels to compute

the cross-correlation matrix. Table 5.3 reports the scores obtained on the

Kinetics → NEC-Drone benchmark. This setting corresponds to a more

significant domain shift since the target video sequences are shot by drones

in a specific indoor environment. For this reason, it is easy to observe that

the absolute value of all the reported scores is significantly lower when com-

pared to the accuracy obtained in the previous benchmarks. However, the

results clearly show how the transformer-based approaches strongly out-

perform the baselines achieving a score of 65.3%, which is about 17 points

more than the best competitor. In addition, the proposed loss achieves

more than 10 points when compared to the MMD-based transformer. The

gap is wider when it comes to the MCD and adversarial-based baselines,

which are outperformed by 27 and 25 points. These experiments show

that (i) the transformer-based backbone proves effective when applied to

cases where a higher domain shift is present and (ii) the proposed UDAVT

alignment method addresses the domain gap more efficiently leading to a

significant increase in accuracy on the target domain.

One question that might arise is: what if the pseudo-labels have poor

quality? We want to show that the domains are aligned even if the pseudo-

labels are initially causing clusters of different classes to form. Since

UDAVT is strongly inspired by the IB principle, commonly employed
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Table 5.2: Results on HMDB ↔ UCF.

Method Encoder H → U U → H

Baselines

Source only [27]

ResNet

71.7 73.9

DANN [61] 76.3 75.2

JAN [105] 74.7 79.6

AdaBN [98] 72.2 77.4

MCD [140] 73.8 79.3

TA3N [27] 81.8 78.3

Target only [27] 82.8 94.9

TCoN [122] 2D/3D CNN 89.1 87.2

Source only [178]

I3D

88.8 80.3

TA3N [27] 90.5 81.4

SAVA [178] 91.2 82.2

CO2A [42] 95.8 87.8

Target only [178] 95.0 96.8

Transformer-based

Source only

Transformer

93.7 86.9

MMD [104] 96.5 87.9

MCD [140] 97.2 87.9

Adversarial [62] 96.6 87.6

UDAVT (ours) 96.8 92.3

UDAVT (ours) - supervised 97.2 94.4

Target only 97.9 95.8

for self-supervised learning, we also perform an additional evaluation re-

purposing other methods, i.e., SimCLR [28] and VICReg [9], for domain

adaptation. Both methods have been proposed for unsupervised represen-

tation learning and, to adapt them for UDA, we used the same procedure

employed to construct pairs in UDAVT, i.e., we replaced distorted ver-

sions of the same instances with pairs of source and target instances with

corresponding label/pseudo-label. VICReg is similar to Barlow Twins but

explicitly avoids the collapsing problem. It employs different terms to
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Table 5.3: Results on Kinetics → NEC-Drone.

Method Encoder Top-1 Acc

Baselines

Source only
Resnet

15.8

TA3N [27] 28.0

Source only

I3D

32.0

TA3N [27] 44.7

SAVA [178] 42.5

CO2A [42] 45.8

Transformer-based

Source only

Transformer

29.4

MMD [104] 54.4

MCD [140] 38.1

Adversarial [62] 40.8

UDAVT (ours) 65.3

UDAVT (ours) - supervised 78.1

Target only 82.9

maintain invariance to data augmentation, diversifies feature representa-

tions for different data, and enforces different features to encode differ-

ent information. SimCLR relies on the concept of positive and negative

pairs and, by using the InfoNCE loss [170], it performs an optimisation

procedure that consists of pulling the feature representations of positives

closer together whereas those of the negatives are pushed farther away. We

adapted this loss for DA using a similar formulation to [87], in which mul-

tiple positives can be considered for the same instance. In the proposed

model, positive instances are those from different domains that share the

same label or pseudo-label and negatives are instances from a different do-
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Table 5.4: Application of different self-supervised methods for domain alignment.

Method Encoder H → U U → H K → N-D

Source only

Transformer

93.7 86.9 29.4

SimCLR [28] 95.4 85.8 38.6

VICReg [9] 95.1 86.4 46.5

UDAVT (ours) 96.8 92.3 65.3

main, but without matching labels. To avoid specialising within a domain,

we did not consider inter-domain pairs as neither negatives nor positives.

Results for these losses, compared to our UDAVT, are reported in Table

5.4. These results show that although re-purposing the considered self-

supervised methods to DA produces competitive performance in the target

domain, our proposed UDAVT loss outperforms both strategies. In partic-

ular, in the challenging Kinetics → NEC-Drone setting the performance

boost is more than 16% higher than the second-best method.

Lastly, we report in Fig. 5.4, the ablation study that we carry out

to study the performance of the model concerning (i) the usage of the

queue Q and (ii) the usage of target pseudo-labels for the domain align-

ment component. For the first, we removed Q, while for the latter we used

random labels for target data. We can observe that the removal of Q is

detrimental to the overall performance of the model in the supervised and

unsupervised cases, respectively, except for the supervised setting of Ki-

netics → NEC-Drone, where the model behaves very similarly. Regarding

the labels, results show that the model always benefits from being provided

with better target labels.

67



5.5. CONCLUSIONS CHAPTER 5.

HMDB->UCF UCF->HMDB Kinetics->NEC Drone
20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Random Labels Unsupervised - w/o Q Unsupervised Supervised - w/o Q Supervised

Figure 5.4: Ablation on the usage of the queue Q and random labels for target data

instead of pseudo-labels for domain alignment.

5.5 Conclusions

We presented UDAVT, a simple and novel framework for unsupervised

domain adaptation in video action recognition, which couples a power-

ful transformer-based feature extractor with a domain alignment compo-

nent that exploits the Information Bottleneck principle to perform domain

alignment. We reported results on two popular benchmarks for domain

adaptation in action recognition, proving the effectiveness of UDAVT by

outperforming previous state-of-the-art models in all settings, and further

provided insight by exploring self-supervised contrastive variants for do-

main alignment, all of which proved effective, yet inferior to our proposed

IB loss. In future work, we plan on improving our approach by further

leveraging the capabilities of visual transformers for video action recogni-

tion while devising more sophisticated domain alignment strategies accord-

ingly. Another research direction would be adapting the model to open set

domain adaptation.
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Chapter 6

Self-supervised Models are Continual

Learners

6.1 Introduction

During the last few years, self-supervised learning (SSL) has become the

most popular paradigm for unsupervised visual representation learning

[19, 21, 28, 72, 69, 191, 9, 29]. Indeed, under certain assumptions (e.g., of-

fline training with large amounts of data and resources), SSL methods are

able to extract representations that match the quality of representations

obtained with supervised learning, without requiring annotations. How-

ever, these assumptions do not always hold in real-world scenarios, e.g.,

when new unlabeled data are made available progressively over time. In

fact, in order to integrate new knowledge into the model, training needs

to be repeated on the whole dataset, which is impractical, expensive, and

sometimes even impossible when old data is not available. This issue is

exacerbated by the fact that SSL models are notoriously computationally

expensive to train.

Continual learning (CL) studies the ability of neural networks to learn

tasks sequentially. Prior art in the field focuses on mitigating catastrophic
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Figure 6.1: Linear evaluation accuracy of representations learned with different self-

supervised methods on class-incremental CIFAR100 and ImageNet100. In blue the accu-

racy of SSL fine-tuning, in green the improvement brought by CaSSLe. The red dashed

line is the accuracy attained by supervised fine-tuning.

forgetting [112, 59, 65, 45]. Common benchmarks in the CL literature eval-

uate the discriminative performance of classifiers learned with supervision

from non-stationary distributions. In this paper, we tackle the same for-

getting phenomenon in the context of SSL. Unsupervised representation

learning is indeed appealing for sequential learning since it does not re-

quire human annotations, which are particularly hard to obtain when new

data is generated on-the-fly. This setup, called Continual Self-Supervised

Learning (CSSL), is surprisingly under-investigated in the literature.
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In this work, we propose CaSSLe, a simple and effective framework for

CSSL of visual representations based on the intuition that SSL models

are intrinsically capable of learning continually, and that SSL losses can

be seamlessly converted into distillation losses. Our key idea is to train

the current model to predict past representations with a prediction head,

thus encouraging it to remember past knowledge. CaSSLe has several

favourable features: (i) it is compatible with popular state-of-the-art SSL

loss functions and architectures, (ii) it is simple to implement, and (iii)

it does not require any additional hyperparameter tuning with respect to

the original SSL method. Our experiments demonstrate that SSL methods

trained continually with CaSSLe significantly outperform all the related

methods (CSSL baselines and several methods adapted from supervised

CL).

We also perform a comprehensive analysis of the behavior of six pop-

ular SSL methods in diverse CL settings (i.e., class, data, and domain

incremental). We provide empirical results on small (CIFAR100), medium

(ImageNet100), and large (DomainNet) scale datasets. Our study sheds

new light on interesting properties of SSL methods that emerge when

learning continually. Among other findings, we discover that, in the class-

incremental setting, SSL methods typically approach or outperform super-

vised learning (see Fig.6.1), while this is not generally true for other settings

(data-incremental and domain-incremental) where supervised learning still

shows a sizeable advantage.

6.2 Related Work

Self-Supervised Learning. Recent SSL approaches have shown perfor-

mance comparable to their supervised learning equivalents [19, 21, 28, 72,
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69, 191, 9, 29]. In a nutshell, most of these methods use image augmenta-

tion techniques to generate correlated views (positives) from a sample, and

then learn a model that is invariant to these augmentations by enforcing

the network to output similar representations for the positives. Initially,

contrastive learning, based on instance discrimination [181] using noise-

contrastive estimation [70, 119], was a popular strategy [28, 72]. However,

this learning paradigm requires large batch sizes or memory banks. A

few methods that use a negative-free cosine similarity loss [69, 30] have

addressed such issues.

Concurrently, clustering-based methods (SwAV [19], DeepCluster v2 [19,

18] and DINO [21]) have also been proposed. They do not operate on the

features directly, and instead compare positives through a cross-entropy

loss using cluster prototypes as a proxy. Redundancy reduction-based

methods have also been popular[53, 191, 9]. Among them, BarlowTwins

[191] considers an objective function measuring the cross-correlation ma-

trix between the features, and VicReg[9] uses a mix of variance, invariance

and covariance regularizations. Methods such as [52] have explored the

use of nearest-neighbour retrieval and divide and conquer [160]. However,

none of these works studied the ability of SSL methods to learn continually

and adaptively.

Continual Learning. A plethora of methods have been developed to

counteract catastrophic forgetting [91, 139, 144, 106, 26, 142, 25, 4, 192, 15,

58, 51, 179, 23, 134, 79, 129, 99, 121, 24, 136]. Following [45], these works

can be organized into three macro-categories: replay-based [121, 136, 134,

15, 26, 106], regularization-based [58, 99, 144, 91, 192, 4, 23, 51, 79, 25, 179,

24], and parameter isolation methods [139, 142]. All these works evaluate

the effectiveness of CL methods using a linear classifier learned sequentially

over time. However, this evaluation does not reflect an important aspect,

i.e., the internal dynamics of the hidden representations. Moreover, most
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CL methods tend to rely on supervision in order to mitigate catastrophic

forgetting. A few of them can be adapted for the unsupervised setting,

although their effectiveness is greatly reduced (see discussion in Sec. 6.5,

Sec. 6.6 and the supplementary material).

Works such as [133, 1, 148] laid the foundations of unsupervised CL,

but their studies are severely limited to digit-like datasets, e.g., MNIST

and Omniglot, and the proposed methods are unfit for large-scale scenar-

ios. Recently, [60, 16] explored self-supervised pretraining for supervised

continual learning with online and few-shot tasks, and [24] presented a su-

pervised contrastive CL approach. Two concurrent works [101, 108] have

also attempted to address CSSL recently. The former [101] extends [24] to

the unsupervised setting, but is specifically designed for contrastive SSL,

such as [28, 72], and lacks generalizability to other popular SSL paradigms.

The latter [108] is also limited as it only shows small-scale experiments in

the class-incremental setting and considers just two SSL methods. In con-

trast, we present a general framework for CSSL with superior performance,

conduct large-scale experiments on three challenging settings, thereby pre-

senting a deeper analysis of CSSL.

6.3 Preliminaries

Self-Supervised Learning. The training procedure of several state-of-

the-art SSL methods [191, 28, 72, 19, 21, 9, 52, 69] can be summarized

as follows. Given an image x in a batch sampled from a distribution D,

two correlated views xA and xB are extracted by applying stochastic im-

age augmentations, such as random cropping, color jittering and horizontal

flipping. View xA is fed to an encoder fθ = fp ◦ fb, which is parametrized

by θ and has a backbone fb and a projection head fp, that extracts feature

representations zA = fθ(x
A). Similarly, xB is forwarded into the same
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networks, or possibly copies thereof, updated with exponential moving av-

erage (EMA), to obtain the representation zB. A loss function LSSL is

applied to these representations to learn the parameters θ as follows:

argmin
θ

Ex∼D
[
LSSL

(
zA, zB

)]
. (6.1)

More details on the implementation of LSSL are provided in Sec. 6.5.1 and

Tab. 6.1. This procedure turns out to be extremely powerful at extracting

visual representations from large unlabeled datasets. The intuition behind

the success of these models is that they learn to be invariant to augmen-

tations. Importantly, augmentations are hand-crafted in a way that the

two views xA and xB contain roughly the same semantics as x, but their

overall appearance (geometry, colors, resolution, etc.) is different. This

forces the model map images with the same semantics to similar regions of

the feature space. Interestingly, these augmentations are much stronger,

i.e., they distort the image more, than augmentations commonly used to

train supervised models.

Continual Learning. The CL problem focuses on training models such

as deep neural networks from non-stationary data distributions. More for-

mally, this involves a network f ′
θ′ = f ′

c ◦ f ′
b with parameters θ′, backbone f ′

b

and a classifier f ′
c, that learns from an ordered set of tasks {1, . . . , T}, each

exhibiting a different data distribution Dt. Usually, an image x sampled

i.i.d. from Dt is processed by f ′ that predicts a probability distribution p

over the set of classes Yt. The objective is to find parameters θ′ such as:

argmin
θ′

T∑
t=1

E(x,y)∼Dt
[LCL (p,y)] , (6.2)

where, in most cases, LCL is the cross-entropy loss. However, during task t,

the previous data distribution Dt−1 is not available and therefore Eq. (6.2)

cannot be minimized directly. Current research focuses on approximating
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θ′ using indirect approaches. Some of them [99, 51] are based on knowledge

distillation [75], i.e., transferring knowledge from one network to another

by forcing them to produce the same outputs. We will discuss the appli-

cability of distillation methods in CSSL in Sec. 6.5.

6.4 Continual Self-Supervised Learning

In this paper, we tackle the problem of Continual Self-Supervised Learning

as an extension of both SSL and CL. In practice, a CSSL experiment

starts with the first task, where the model is trained as per the specific

self-supervised method that it implements, with no difference from offline

training. Subsequent tasks are then presented to the model sequentially,

and the data from the previous tasks are discarded. No labels are provided

during this training phase. For the sake of simplicity and since we are

exploring a new, challenging setting, we assume task boundaries to be

provided to the model. More formally, the CSSL objective is to learn a

strong feature extractor that is invariant to augmentations on all tasks.

Following the notation introduced in Sec. 6.3, we define:

argmin
θ

T∑
t=1

Ex∼Dt

[
LSSL

(
zA, zB

)]
. (6.3)

Note the absence of labels y when sampling from Dt, the summation over

the set of tasks inherited from Eq. (6.2) and the SSL loss function in

Eq. (6.1). The expectation is approximated using stochastic gradient de-

scent on minibatches.

Evaluation. After each task, it is possible (for evaluation purposes) to

train a linear classifier on top of the obtained backbone fb. With this linear

classifier we report accuracy on the test set. This protocol is compatible

with standard CL metrics, as shown in Sec. 6.6.1. We explore three CSSL
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settings in our work.

▶ Class-incremental: each task t is represented by a dataset Dt ∼ Dt

containing images that belong to a set of classes Yt such that Yt ∩Ys = ∅
for each other task s ̸= t. Note that the class labels are only used for

splitting the dataset and they are unknown to the model. In practice, the

set of classes in the dataset are shuffled and then partitioned into T tasks.

Each task contains the same number of classes.

▶ Data-incremental: each task t contains a set of images Dt such that

Dt ∩ Ds = ∅ for each other task s ̸= t. No additional constraints are

imposed on the classes. In practice, the whole dataset is shuffled and then

partitioned into T tasks. Each task can potentially contain all the classes.

▶ Domain-incremental: each task t contains a set of images Dt drawn

from a different domain. We assume that the set of classes Yt in each

dataset remains the same for all tasks but the data distribution changes,

as if the data were collected from different sources.

6.5 The CaSSLe Framework

We now introduce “CaSSLe”, our framework for continual self-supervised

learning of visual representations and detail its compatibility with several

SSL methods.

Distillation in CSSL. From a supervised CL perspective, the concept

of invariance is interesting. Here, we would like to learn representations

of previously-learned semantic concepts that are invariant to the state

of the model’s parameters. Indeed, this idea was investigated in prior

works [51, 79] that leverage knowledge distillation for CL. However, such

approaches are only mildly effective in a CSSL scenario, as we show in

Sec. 6.6. We believe this is due to CSSL being fundamentally different from

supervised CL. In CSSL, we aim to extract the best possible representations
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that can be subsequently reused in a variety of tasks, and maximize the

linear separability of features at the end of the CL phase. Thus, the linear

classifier does not benefit much from the stability of the representations.

Also, forcing the representations not to change may prevent the model

from learning new concepts. This is especially critical for SSL methods for

two reasons: (i) the performance of the models improve substantially with

longer training, implying that the representations continue to get refined,

and (ii) they exhibit different losses and feature normalizations that might

interfere with distillation and vice-versa (e.g., BarlowTwins uses standard-

ization while [51, 79] use l2-normalization). Nonetheless, the features still

need to be informative of previous tasks to maximize the separability of

the old distribution but the current state might be too different from the

previous one making comparing representations complicated.

Distillation through SSL losses. Our framework, shown in Fig. 6.2, is

based on the following ideas: (i) a predictor network that maps the current

state of the representations to their past state, by leveraging a distillation

through time strategy that satisfies both stability and plasticity principles,

and (ii) a family of adaptable distillation losses inherited from the SSL

literature that solves the issue of having different objectives interfering

with each other.

When a new task is received, we start by making a copy of the current

model. This copy does not require gradient computation and will not be

updated. We call this the frozen encoder f t−1. As soon as an image x ∈ Dt

is available we apply our stochastic image augmentations and extract its

features z = f t(x). In addition, we also use the frozen encoder to extract

another feature vector z̄ = f t−1(x). Now, our goal is to ensure that z

contains at least as much information as (and ideally more than) z̄. Instead

of enforcing the two feature vectors to be similar, and hence discouraging

the new model from learning new concepts, we propose to use a predictor
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Figure 6.2: Overview of the CaSSLe framework.

network g to project the representations from the new feature space to the

old one. If the predictor is able to perfectly map from one space to the

other, then it implies that z is at least as powerful as z̄.

We are now ready to perform distillation, but which is the most appro-

priate distillation loss? Since we want the representations produced by g

to be invariant to the state of the model, we propose to use the same SSL

loss used to simulate invariance to augmentations. Empirically, we verify

that this choice reduces interference and minimizes the need for hyperpa-

rameter tuning. We can hence write a generic distillation loss by reusing
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the definition of LSSL:

LD(z, z̄) = LSSL(g(z), z̄). (6.4)

Note that z̄ is always detached from the computational graph, such that

the frozen encoder does not receive any gradient, and the gradient only

flows through the predictor g, as prescribed in [30]. On the one hand,

if training converges and LD is minimized, the features predicted by g

will likely be quasi-invariant to the state of the model, which satisfies the

stability principle. On the other hand, the current encoder is less bound to

its previous state, hence representations z can be more plastic. The loss can

be extended to multiple views by applying it to both representations, i.e.,

LD(z
A, z̄A) + LD(z

B, z̄B), and also swapped distillation, e.g., LD(z
A, z̄B)

and vice-versa (see ablation in Tab. 6.6).

The final loss of an SSL method trained continually with the CaSSLe

framework is given by:

L = LSSL(z
A, zB) + LD(z

A, z̄A)

= LSSL(z
A, zB) + LSSL(g(z

A), z̄A).
(6.5)

This loss can be made symmetric by applying it to both the views (swap-

ping A and B in Eq. (6.5)) and it can also be easily adapted for multi-

crop [19]. Note that we do not use any hyperparameter to weight the

importance of the distillation loss with respect to the SSL loss.

6.5.1 Compatibility of SSL methods with CaSSLe

The main difference among SSL methods is the loss function that they

use. Following the notation defined in Sec. 6.3, and the loss functions in

Tab. 6.1, we now detail if and how SSL losses can be used in our CaSSLe

framework. Full derivation of distillation losses is deferred to the supple-

mentary material.
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InfoNCE-based methods [28, 72] perform instance discrimination, where

positive samples help to build invariance to augmentations. The negatives

prevent the model from falling into degenerate solutions. The InfoNCE

(a.k.a. contrastive) loss can be written as in Eq. (6.6), where subscript i

is the index of a generic sample in the batch, sim is the cosine similarity

and η(i) is the set of negatives for sample i in the current batch. Distilling

knowledge with this loss is equivalent to performing instance discrimination

of current task samples but in the feature space learnt in the past. Thus,

the predictor g learns to project samples from the present to the past space

to maximize the distance with the negative samples, and the similarity with

itself in the past.

MSE-based approaches [69, 30] enforce consistency among positive sam-

ples and ignore the negatives. BYOL [69] uses a momentum encoder and

SimSiam [30] performs a stop gradient operation to avoid degenerate solu-

tions. Since the representations are l2-normalized, their loss (Eq. 6.7) can

be rewritten as the negative cosine similarity: − sim(qA, zB) = − qA

||qA||2 ·
zB

||zB ||2 , where q
A = h(zA) and h is a prediction head. The gradient is back-

propagated only through the representations of the first argumentation. A

special case of this family of methods is VICReg [9], which uses a combi-

nation of multiple losses, where MSE acts as invariance term. Features are

not l2-normalized in VICReg and its predictor is the identity function. In

our framework, this loss encourages the model to predict the past state of

representations without additional regularization.

Cross-entropy-based. Instead of simply enforcing invariance of the rep-

resentations to augmentations, cluster prototypes C = {c1, . . . , cK} are

used as a proxy in these approaches, so that the model learns to predict

invariant cluster assignments. Slight variations of this idea result in dif-

ferent methods: SwAV [19], DeepClusterV2 [19] and DINO [21]. Once a

probability distribution over the prototypes is predicted, the cross-entropy
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Table 6.1: Overview of state-of-the-art SSL methods and losses. In all tables, highlight

colors are coded according to the type of loss.

Methods Loss Equation

SimCLR [28]

− log
exp(sim(zA

i ,zB
i )/τ)∑

zj∈η(i) exp(sim(zA
i ,zj)/τ) (6.6)MoCo [72]

NNCLR [52]

InfoNCE

BYOL [69]

−||qA − zB||22 (6.7)SimSiam [30]

VICReg [9]

MSE

SwAV [19]

−∑
d a

B
d log

exp(sim(zA,cd)/τ)∑
k exp(sim(zA,ck)/τ)

(6.8)DCV2 [19]

DINO [21]

Cross-entropy

Barlow

Twins [191]
∑

u (1− Cuv)2 + λ
∑

u

∑
v ̸=u C2

uv (6.9)

VICReg [9]

Cross-correlation

loss (Eq. 6.8) is used to compare the two views. Features and cluster proto-

types c are l2-normalized. The assignments aB can be calculated in several

ways, e.g., k-means in DeepCluster, Sinkhorn-Knopp in SwAV and EMA in

DINO. When employed as a distillation loss, cross-entropy encourages g to

predict the assignments generated by the frozen encoder with a set of frozen

prototypes: aB =
exp(sim(z̄B ,ct−1

d )/τ)∑
k exp(sim(z̄B ,ct−1

k )/τ)
, where Ct−1 =

{
ct−1
1 , . . . , ct−1

K

}
.

Cross-correlation-based. These methods use a different approach based

on decorrelating the components of the feature space, e.g., Barlow Twins [191],

VICReg [9] and W-MSE [53]. For our analysis, we will mainly focus on

Barlow Twins’ implementation of this objective. Extensions to VICReg are

left for future work. The cross-correlation based objective function is shown

in Eq. 6.9, where λ is an hyperparameter to control the importance of the
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first and the second terms of the loss, and Cuv =
∑

i z
A
i,uz

B
i,v√∑

i(zA
i,u)

2
.

√∑
i(zB

i,v)
2 is the

value of position (u, v) of the cross-correlation matrix computed between

the representations of the views along the batch dimension. Note that the

representations here are mean centered along the batch dimension, such

that each unit has mean output zero over the batch. Performing distilla-

tion with this loss has the additional effect of decorrelating the dimensions

of the predicted features g(zA).

6.6 Experiments

6.6.1 Experimental Protocol

Evaluation Metrics. Following previous work [106], we propose the follow-

ing metrics to evaluate the quality of the representations extracted by our

CSSL model:

▶ Linear Evaluation Accuracy: accuracy of a classifier trained on top

of the backbone fb on all tasks (or a subset, e.g., 10% of the data) or a

downstream task. For class-incremental and data-incremental, we use the

task-agnostic setting, meaning that at evaluation time we do not assume

to know the task ID. For the domain-incremental setting, we perform both

task-aware and task-agnostic evaluations (the latter is discussed in the

supplementary material). To calculate the average accuracy we compute

A = 1
T

∑T
i=1AT,i, where Aj,k is the linear evaluation accuracy of the model

on task k after observing the last sample from task j.

▶ Forgetting: a common metric in the CL literature, it quantifies how

much information the model has forgotten about previous tasks. It is

formally defined as: F = 1
T−1

∑T−1
i=1 maxt∈{1,...,T} (At,i − AT,i).▶ Forward

Transfer: measures how much the representations that we learned so far

are helpful in learning new tasks, namely:
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FT = 1
T−1

∑T
i=2Ai−1,i − Ri where Ri is the linear evaluation accuracy

of a random network on task i.

Datasets. We perform experiments on 3 datasets: CIFAR100 [92] (class-

incremental), a 100-class dataset with 60k 32x32 colour images; ImageNet100

[161] (class- and data-incremental), 100-class subset of the ILSVRC2012

dataset with ≈130k images in high resolution (resized to 224x224); Do-

mainNet [127] (domain-incremental), a 345-class dataset containing roughly

600k high-resolution images (resized to 224x224) divided into 6 domains.

We experiment with 5 tasks for the class- and data-incremental settings and

with 6 tasks (one for each domain in DomainNet) in the case of domain-

incremental. The supplementary material presents additional results with

different numbers of tasks. For the domain-incremental setting, we order

the domains in decreasing number of images.

Implementation details. The SSL methods are adapted from solo-learn

[40], an established SSL library, which is the main code base for all our

experiments. The number of epochs per task is as follows: 500 for CI-

FAR100, 400 for ImageNet100, 200 for DomainNet. The backbone fb is

a ResNet18 [74], with batch size 256. We use LARS [189] for all our ex-

periments. The offline version of each method, which serves as an upper

bound, is trained for the same number of epochs as the continual coun-

terpart for a fair comparison. All the results for offline upper bounds are

obtained using the checkpoints provided in [40]. For some SSL methods, it

was necessary to slightly increase the learning rate over the values provided

by [40] in order for the methods to fully converge in the CSSL setting. Al-

though tuning the hyperparameters might be beneficial in some settings,

we do not perform any hyperparameter tuning for CaSSLe. We also nei-

ther change the parameters of the SSL methods, nor use a weight for the

distillation loss (as per Eq. (6.5)).
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Baselines. Most of the CL methods require labels which makes them un-

suitable for CSSL. However, a few works can be adapted for our setting with

minimal changes. We choose baselines from three categories [45]: prior-

focused regularization (EWC [91]), data-focused regularization (POD [51],

Less-Forget [79]), and rehearsal-based replay (ER [136], DER [15]) meth-

ods. We also compare with two concurrent works that propose approaches

for CSSL (LUMP [108], Lin et al. [101]). Finally, we do not consider meth-

ods based on VAEs [133, 1], since they have been shown to yield poor

performance on large scale. Details on how the baselines are selected, im-

plemented and tuned for CSSL can be found in the supplementary material.

Table 6.2: Comparison with state-of-the-art CL methods on CIFAR100 (5 tasks, class-

incremental) using linear evaluation top-1 accuracy, forgetting and forward transfer.

Strategy
SimCLR Barlow Twins BYOL

A (↑) F (↓) T (↑) A (↑) F (↓) T (↑) A (↑) F (↓) T (↑)

Fine-tuning 48.9 1.0 33.5 54.3 0.4 39.2 52.7 0.1 35.9

EWC [91] 53.6 0.0 33.3 56.7 0.2 39.1 56.4 0.0 39.9

ER [136] 50.3 0.1 32.7 54.6 3.0 39.4 54.7 0.4 36.3

DER [15] 50.7 0.4 33.2 55.3 2.5 39.6 54.8 1.1 36.7

LUMP [108] 52.3 0.3 34.5 57.8 0.3 41.0 56.4 0.2 37.9

Less-Forget[79] 52.5 0.2 33.8 56.4 0.2 40.1 58.6 0.2 41.1

POD[51] 51.3 0.1 33.8 55.9 0.3 40.3 57.9 0.0 41.1

CaSSLe 58.3 0.2 36.4 60.4 0.4 42.2 62.2 0.0 43.6

Offline 65.8 - - 70.9 - - 70.5 - -

6.6.2 Results

Comparison with the state of the art. In Tab. 6.2 we report com-

parison with CL baselines and fine-tuning in composition with three SSL

methods: SimCLR, Barlow Twins and BYOL. We select these three meth-
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Table 6.3: Comparison with Lin et al. [101] on CIFAR100 (2 and 5 tasks, class-incremental

setting). MoCoV2+ is an updated version of MoCoV2 that uses a symmetric loss. The

difference between the two is ≈1% at convergence [30].

Strategy Method 2 Tasks 5 Tasks

Lin et al.[101]
SimCLR 55.7 -

MoCoV2 56.1 53.8

SimCLR 61.8 58.3
CaSSLe

MoCoV2+ 63.3 59.5
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Fine-tuning EWC LUMP Less-Forget Ours

Figure 6.3: Evolution of top-1 linear evaluation accuracy over tasks on CIFAR100 (5

tasks, class-incremental).

ods for the following reasons: (i) they feature different losses (InfoNCE,

Cross-correlation and MSE), (ii) they exhibit different feature normaliza-

tions (l2, standardization and mean centering), and (iii) they use different

techniques to avoid collapse (negatives, redundancy reduction, momentum

encoder). The comparison is performed on class-incremental CIFAR100

with 5 tasks. Offline learning results are reported as upper bound.

First, we notice that CaSSLe produces better representations than all

the other strategies, outperforming them by large margins with all SSL

methods in terms of top-1 accuracy. Moreover, our framework also shows

better forward transfer, meaning that its features are easier to generalize
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to other tasks (also evident in Tab. 6.8). CaSSLe appears to reduce catas-

trophic forgetting with respect to fine-tuning, and is comparable to other

methods. In general, SSL methods already have low forgetting with respect

to supervised learning on CIFAR100 (see Tab. 6.4) and therefore there is

little margin for improvement. However, on higher resolution images (Im-

ageNet100) CaSSLe actually achieves remarkable results in the mitigation

of catastrophic forgetting.

Replay-based methods (ER, DER) clearly do not help against forgetting

in CSSL. We found two reasons for this failure. First, in supervised CL,

replay-based methods benefit from storing labels, which contain a lot of

information about previous tasks and enable the retraining of the linear

classifier on old classes. This is not the case in CSSL, where labels are

unavailable. Second, SSL models need more training epochs to converge,

which means that samples in the buffer are also replayed many more times.

This causes severe overfitting on these exemplars, defeating the purpose

of the replay buffer. LUMP mitigates this effect by augmenting the buffer

using mixup but does not reach too far, surpassing other baselines only with

Barlow Twins. EWC holds up surprisingly well, outperforming more recent

methods, meaning that the importance of the weights can be calculated

accurately with the self-supervised loss. Distillation methods (POD, Less-

Forget) show good performance. However, they use l2-normalization in

their loss, causing loss of information when coupled with Barlow Twins,

which decreases accuracy.

Fig. 6.3 shows the evolution of top-1 linear evaluation accuracy over

the whole training trajectory on class-incremental CIFAR100 with 5 tasks.

CaSSLe outperforms the other methods, and keeps improving throughout

the sequence. We found BYOL to be unstable when simply fine-tuning the

model. CaSSLe, EWC and Less-Forget mitigate this instability completely.

On the other hand, LUMP first drops slightly and then recovers. We believe
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Table 6.4: Linear evaluation top-1 accuracy on class-incremental CIFAR100 and Ima-

geNet100 with 5 tasks. CaSSLe is compared to fine-tuning, offline and supervised learn-

ing.

Method Strategy
CIFAR100 ImageNet100

A (↑) F (↓) T (↑) A (↑) F (↓) T (↑)

Barlow

Twins

Fine-tuning 54.3 0.4 39.2 63.1 10.7 44.4

CaSSLe 60.4 0.4 42.2 68.2 1.3 47.9

Offline 70.9 - - 80.4 - -

SwAV

Fine-tuning 55.5 0.0 32.8 64.4 4.3 42.8

CaSSLe 57.8 0.0 34.5 66.0 0.2 43.6

Offline 64.9 - - 74.3 - -

BYOL

Fine-tuning 52.7 0.1 35.9 66.0 2.9 43.2

CaSSLe 62.2 0.0 42.2 66.4 1.1 46.6

Offline 70.5 - - 80.3 - -

VICReg

Fine-tuning 51.5 0.9 36.4 61.3 7.9 42.0

CaSSLe 53.6 0.2 41.1 64.8 4.3 45.3

Offline 68.5 - - 79.4 - -

MoCoV2+

Fine-tuning 47.3 0.2 33.4 62.0 8.4 41.6

CaSSLe 59.5 0.0 39.6 68.8 1.5 46.8

Offline 69.9 - - 79.3 - -

SimCLR

Fine-tuning 48.9 1.0 33.5 61.5 8.1 40.3

CaSSLe 58.3 0.2 36.4 68.0 2.2 45.8

Offline 65.8 - - 77.5 - -

Supervised
Fine-tuning 54.1 6.8 36.5 63.1 5.6 42.5

Offline 75.6 - - 81.9 - -
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this is due to some instability introduced by the mixup regularization, to

which the model takes time to adapt.

In Tab. 6.3 we also compare with Lin et al. [101] on class-incremental CI-

FAR100. Although our method is not specifically designed for contrastive

learning, it substantially outperforms Lin et al. with 2 and 5 tasks. It

is worth nothing that MoCoV2+ is slightly better than MoCoV2 (≈1%

difference), whereas our gains are much larger (≈7%).

Ablation study. We ablate the most critical design choices we adopt

in CaSSLe: (i) distillation without swapped views, and (ii) the presence

of a prediction head g. These results are reported in Tab. 6.6. Our full

framework clearly outperforms its variants with swapped views and with-

out predictor. This validates our hypothesis that a predictor to map new

features to the old feature space is crucial. The result that swapping views

does not help is likely due to the frozen encoder not being invariant to the

current task.

Class-incremental. In Tab. 6.4 we report a study of CSSL with 6 SSL

methods in composition with the CaSSLe framework on class-incremental

CIFAR100 and ImageNet100. Fine-tuning and Offline SSL results are re-

ported as lower and upper bounds. The accuracy of supervised learning

is also reported. CaSSLe always improves with respect to fine-tuning. In

particular, our framework produces higher forward transfer and lower for-

getting, especially on ImageNet100, where methods tend to forget more.

Notably, CaSSLe outperforms supervised fine-tuning, except when coupled

with VICReg on CIFAR100. On average, SSL methods trained continually

with CaSSLe improve by 6.8% on CIFAR100 and 4% on ImageNet100.

Data-incremental. Tab. 6.7 presents results for linear evaluation top-

1 accuracy on ImageNet100 with 5 tasks in a data-incremental scenario.

While no SSL method is better than supervised fine-tuning, Barlow Twins
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Table 6.5: Training 5 times longer on 1/5 of the data vs. training continually w/ and w/o

CaSSLe on ImageNet100 (5 tasks, class- and data-incremental). Bold is best, underlined

is second best.

Setting Method Fine-tune Offline 1/5 CaSSLe

Class-inc.

SimCLR 61.5 63.1 68.0

Barlow Twins 63.1 63.5 68.2

BYOL 66.0 60.6 66.4

Data-inc.

SimCLR 68.9 67.2 72.1

Barlow Twins 71.3 70.2 74.9

BYOL 74.0 66.7 73.3

Table 6.6: Ablation study of design choices in CaSSLe.

Strategy Method Swap No pred. Ours

CaSSLe

SimCLR 49.3 52.6 58.3

Barlow Twins 57.4 57.3 60.4

BYOL 52.0 58.6 62.2

coupled with CaSSLe is competitive. CaSSLe improves performance in all

cases by 2% on average, except for BYOL. This is likely due to the fact

that in the data-incremental scenario remembering past knowledge is less

important than in other scenarios, and BYOL already has a momentum

encoder that provides some information about the past. This hypothesis is

validated by the fact that MoCoV2+ (that uses a momentum encoder) im-

proves less than SimCLR when coupled with CaSSLe. We believe that, by

tuning the EMA schedule, improvement could also be achieved for BYOL.

In addition, BYOL already shows impressive performance with fine-tuning,

outperforming all the other methods by more than 2%. Interestingly, SwAV

comes closest to its offline upper bound, with only a 3% decrease in per-

formance when coupled with CaSSLe.
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Domain-incremental. We also examine the capability of CaSSLe to

learn continually when the domain from which the data is drawn changes.

Tab. 6.7 shows the average top-1 accuracy of a linear classifier trained

on top of the frozen feature extractor on all domains separately (domain-

aware). Domain-agnostic evaluation and results for each domain are pre-

sented in the supplementary material. Again, CaSSLe improves every

method by 4.4% on average, showing that our distillation strategy is ro-

bust to domain shift, and although the data distribution is really different,

information transfer is still performed. Interestingly, most of the methods,

when trained with CaSSLe get very close to their offline accuracy.

Long training vs continual training. We also analyze the following

question: is it worth training continually or is it better to train for longer

on a small dataset? This depends on two factors: (i) the SSL method,

and (ii) the CSSL setting. For SimCLR and Barlow Twins in the class-

incremental setting it seems to be better to train offline on 1/5 of the classes

instead of training continually with 5 tasks. In this setting, offline BYOL

seems to suffer from instability, ending up lower than fine-tuning. On

the other hand, on the data-incremental setting, fine-tuning outperforms

longer training, especially for BYOL, which also outperforms CaSSLe (as

explained previously). Apart from this exception, CaSSLe always produces

better representations than other strategies, making it the go-to option.

Downstream and semi-supervised. In Tab. 6.8, we present the down-

stream performance of CaSSLe compared with fine-tuning when trained on

ImageNet100 and evaluated on DomainNet (Real). Barlow Twins, SwAV

and BYOL show higher performance than the supervised model, even when

considering a fine-tuning strategy. This is probably due to the fact that SSL

methods tend to learn more general features than their supervised counter-

parts. CaSSLe improves performance on all the SSL methods, making them

surpass the supervised baseline. Lastly, when compared with fine-tuning,
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CaSSLe improves the performance of SSL methods by 3.4% on average.

Tab. 6.9 contains the top-1 accuracy on ImageNet100 when training a lin-

ear classifier on a frozen backbone with limited amount of labels (10% and

1%). First, we can observe that no SSL method with fine-tune surpasses

the performance of supervised learning. When using CaSSLe, MoCoV2+

outperforms supervised with 10% labels and, in general, Barlow Twins and

MoCoV2+ work best in both semi-supervised settings. CaSSLe improves

all SSL methods when compared with fine-tuning.

6.7 Conclusion

In this work, we study Continual Self-Supervised Learning (CSSL), the

problem of learning a set of tasks without labels continually. We make two

important contributions for the SSL and CL communities: (i) we present

CaSSLe, a simple and effective framework for CSSL that shows how SSL

methods and losses can be seamlessly reused to learn continually, and (ii)

we perform a comprehensive analysis of CSSL, leading to the emergence of

interesting properties of SSL methods.

Limitations. Although CaSSLe shows exciting performance, it has some

limitations. First, it is applicable in settings where task boundaries are

provided. Second, our framework increases the amount of computational

resources needed for training by roughly 30%, both in terms of memory

and time. Finally, CaSSLe does not perform clustering, meaning that it is

unable to directly learn a mapping from data to latent classes, and thus

needs either a linear classifier trained with supervision, or some clustering

algorithm.

Broader impact. The capabilities of supervised CL agents are bounded

by the need for human-produced annotations. CSSL models can poten-
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tially improve without the need for human supervision. This facilitates the

creation of powerful AIs that may be used for malicious purposes such as

discrimination and surveillance. Also, since in CSSL the data is supposed

to come from a non-curated stream, the model may be affected by biases

in the data. This is problematic because biases are then be transferred to

downstream tasks.
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Table 6.7: Linear evaluation accuracy on ImageNet100 (5 tasks, data-incremental) and

DomainNet (6 tasks, domain-incremental).

Method Strategy
ImageNet100

(Data-inc.)

DomainNet

(Domain-inc.)

Barlow

Twins

Fine-tuning 71.3 50.3

CaSSLe 74.9 55.5

Offline 80.4 57.2

SwAV

Fine-tuning 70.8 49.6

Knowledge 71.3 54.3

Offline 74.3 54.6

BYOL

Fine-tuning 74.0 50.6

CaSSLe 73.3 55.1

Offline 80.3 56.6

VICReg

Fine-tuning 70.2 49.3

CaSSLe 72.3 52.9

Offline 79.4 56.7

MoCoV2+

Fine-tuning 69.5 43.2

CaSSLe 71.9 46.7

Offline 78.2 53.7

SimCLR

Fine-tuning 68.9 45.1

CaSSLe 72.1 50.0

Offline 77.5 52.6

Supervised
Fine-tuning 75.9 55.9

Offline 81.9 66.4

Table 6.8: Downstream performance with different SSL methods trained on Imagenet-100

and evaluated on DomainNet (Real).

Strategy
Barlow

Twins
SwAV BYOL VICReg MoCoV2+SimCLR Supervised

Fine-tune 56.2 55.9 55.0 54.0 52.4 51.6
54.3

CaSSLe 60.3 56.9 56.9 56.3 58.7 56.5
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Table 6.9: Top-1 linear accuracy on Imagenet-100 with different SSL methods, semi-

supervised setting with 10% and 1% of labels.

Percentage Strategy
Barlow

Twins
SwAV BYOL VICReg MoCoV2+ SimCLR Supervised

10%
Fine-tune 56.6 57.6 55.7 53.6 54.9 52.5

60.8
CaSSLe 60.3 58.2 56.5 56.5 61.7 58.9

1%
Fine-tune 42.6 42.5 42.3 40.4 40.9 39.7

48.1
CaSSLe 47.0 43.1 43.4 43.2 47.8 46.8
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Chapter 7

Conclusions and Future Research

Directions

This thesis explored and proposed novel methods in self-supervised learning

applied to unsupervised domain adaptation and continual learning.

First, we proposed an open-source library to unify different methods

and training strategies in a way to facilitates further research in the area

of self-supervised learning.

Second, we proposed two novel methods for unsupervised domain adap-

tation that leveraged the recent advances in self-supervised learning. In

the first method, we leveraged variations of the contrastive loss that were

adapted specifically for performing unsupervised domain adaptation for

videos. In the second, we worked on transformer-based architectures and

proposed an information bottleneck loss to efficiently learn from both the

labeled and the unlabeled data that was available.

Lastly, we also tackled the problem of continual learning. For that, we

posed the continual learning problem as an unsupervised task and proposed

a simple and effective method that was based on self-supervised losses and

a distillation loss derived from the self-supervised losses. By doing so, we

show that self-supervised learning is not only a strong pre-training method
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by itself, allowing us to train models that are able to produce powerful

feature representations of the data, but also serves as an auxiliary method

to further improve models in other domains.

7.1 Future research directions

Although the current self-supervised methods are powerful, they still re-

quire a lot of domain expertise to work and a lot of computational re-

sources. Because of that, the first interesting research direction would be

on how to efficiently learn in a self-supervised way within a resource or

data-constrained environment.

Additionally, the methods currently explored here are all within the

vision domain. Multi-modal methods, such as CLIP [132], are also an

interesting research direction. These methods can leverage much more

data, not only providing stronger feature representations of visual data but

also allowing prompting. Prompting methods allow one to interact with

a model via text to change its behavior during test time. Furthermore,

multi-modal methods are also currently employed in the few-shot learning

scenario. There, instead of having access to a large amount of labeled data

from the desired classes, only a few, around 8 or 16, are available. One

current promising research direction is in using both parameter-efficient

fine-tuning (PEFT) methods and synthetic data, as explored in [39]. PEFT

methods will allow us to leverage large pretrained multi-modal models for

multiple tasks without the need for expensive fine-tuning schedules.

Another research direction is to use only synthetic data for training DL

models. For instance, in [159], the authors train a contrastive learning

method on only synthetic data, showing that it can rival training with

real data. The synthetic data is generated using a diffusion model that is
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guided by image descriptions provided in an open-source large-scale image-

text dataset. In [158], they further expand on this idea, first generating

a synthetic caption that is then used to generate the synthetic images.

However, using synthetic data for training different types of models, e.g.,

segmentation or object detection methods, is still an unexplored research

direction. Furthermore, the current generation process cannot be done

in real-time, so it is done as an initial step, carried out before training a

model. Improving the speeds of the generation process would also allow

one to connect the generation and the training process, creating synthetic

data that is specifically tailored to that moment in the training process.
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A.1. THE MIXAMO DATASET APPENDIX A.

A.1 The Mixamo dataset

This Section describes additional details and statistics about our Mixamo

dataset. In Table A.1, we report the number of videos and frames for each

class in our dataset. For comparison purposes, we also report the same

information for the corresponding Kinetics subset. Figures A.1 and A.2

provides a visual overview of the distribution of the number of frames and

the number of videos across the two datasets.

Table A.1: Number of videos and frames in Mixamo and Kinetics

Class
# videos # frames

Mixamo Kinetics Mixamo Kinetics

backflip 959 844 83,717 51,879

breakdancing 2304 829 238,464 63,613

capoeira 3456 940 326,304 75,102

clapping 1344 934 175,488 74,469

golf putting 1037 650 100,370 55,567

jogging 2304 719 143,424 60,808

punching 2016 577 108,784 52,114

salsa dancing 960 517 326,880 42,544

shouting 1248 680 148,224 52,407

side kick 2304 970 142,272 73,998

squat 2081 888 265,833 74,906

swing dancing 1304 750 599,055 64,723

texting 1296 548 432,000 48,690

throwing 1920 1816 221,760 155,869

Furthermore, the dataset presents a rich internal variability within each

action class. That is, each class is divided into a number of sub-classes,

each associated to a different way of performing the same action. For
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Figure A.1: Distribution of frames per class across Mixamo and Kinetics

instance, the jogging class includes 8 sub-actions, which consists of unique

animations: jog forward, jogging with box, jog forward diagonal, injured

jog, slow jog, jogging, jog in circle, jogging stumble. Figure A.3 shows the

number of unique sub-classes for each one of the original 14 categories in

our synthetic dataset.

A.2 Single-head versus dual-head ablation

For completeness, we ablate the usage of the proposed dual-head architec-

ture. Although it is not possible to apply LST without the two heads, it

is possible to use the other losses in a single-head architecture. By do-

ing so, the contrastive losses can directly influence the classification head,

which could lead to better feature representations. However, in Table A.2,

we show that, by doing so, the contrastive losses are detrimental for the

performance of the model. Although on UCF→HMDB the performance

of a single-head model is slightly better than the dual-head model, in the

other direction, HMDB→UCF, there is a large drop in accuracy. Lastly,
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Figure A.2: Distribution of videos per class across Mixamo and Kinetics

Table A.2: Ablation of single-head versus multi-head on HMDB↔UCF

Method H→U U→H

CO2A dual-head w/o LST 94.4 82.4

CO2A single-head w/o LST 91.4 82.9

CO2A (full) 95.8 87.8

the single-head approach is greatly outperformed by the full model.

A.3 Additional sensitivity analysis

In Figure A.4, we also ablated the sensitivity of our method to different

weights considering the losses LCc and LCv . Note that we decoupled wc into

wc
c for the clip-level loss and wv

c for the video-level loss. First, considering

LCc, we can see that our method achieves the best performance for a value

of the weight equal to 0.2. This indicates a trade-off between a condition

in which the loss has enough weight to guide representation learning at
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Figure A.4: Sensitivity analysis of the weights of the losses LCc , LCv and LSC.

the clip-level and a condition where it dominates other losses. A very

similar behaviour is observed for LCv , even if the impact of this loss on

HMDB→UCF is less pronounced. Nonetheless, for the other direction,

where the domains are quite different, using a good value for the weight of

LCv results in an accuracy of around 2% higher.

A.4 Augmentation details

Video-based augmentations were applied similarly to [131]. More specif-

ically, frame-wise augmentations are performed keeping time consistency,

i.e., for each video, the parameters for the augmentations are randomised
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once, and then applied to all frames equally. Colour, spatial and random

horizontal flip augmentations were applied only to the target data. The

colour augmentation parameters for torchvision were 0.15 for the bright-

ness, contrast and saturation, and 0.05 for hue. Spatial augmentation was

performed by resizing the image to 256 by 256 and randomly cropping it to

be of size 224 by 224 (using the default parameters). In Mixamo→Kinetics

we also applied a temporal augmentation, which simply samples the total

amount of frames, orders and then divides them into theK clips. For source

data, we applied the same augmentations only in Mixamo→Kinetics. In

settings where no augmentations were applied, images are simply resized to

256 and are centrally cropped with a size of 224. Horizontal flip is applied

with a 50% probability.

For completeness, we also ablated our method with different combina-

tions of augmentations on HMDB↔UCF and Kinetics→NEC-Drone in

Figure A.5. In Figure A.5 (a) we can observe that our method is not

sensitive to the choice of the augmentations and different combinations

of augmentations achieve very similar performance. However, In Figure

A.5 (b), we can see that the combination of colour + spatial + horizontal

outperforms other configurations. Lastly, in the more challenging setting

of Kinetics→NEC-Drone (Figure A.5 (c)), we can see that the choice of

augmentations is more important, with colour + horizontal and colour +

spatial + horizontal performing very similarly. Because colour + spatial

+ horizontal performs best on UCF→HMDB and Kinetics→NEC-Drone

and is only slightly inferior to the best combination on HMDB→UCF we

selected it as a good default combination across these datasets.
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Figure A.5: Ablation of different augmentations using CO2A on HMDB↔UCF and

Kinetics→NEC-Drone.

A.5 Visualisation of the learned representations

In Figure A.6 we visualise the features before the linear classifier on the test

data for HMDB↔UCF when considering a source only model and CO2A.

First, considering HMDB→UCF, our model produces more compact clus-

ters when considering the majority of classes. Also, it is able to better

separate some classes, e.g., golf from shoot bow and pull-up from fencing.

On UCF→HMDB the classes’ clusters are more compact, but we can also

observe that some clusters became even more compact, e.g., punch and

kick ball. Likewise, it better-separated fencing and shoot bow. On both

directions, we observe that the circles and crosses (source and target do-

mains) have more overlap, indicating that the adaptation procedure better
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aligns both domains.
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Figure A.6: t-SNE plots of test data on HMDB↔UCF for a source only model versus

CO2A.

137



A.5. VISUALISATION OF THE LEARNED REPRESENTATIONS APPENDIX A.

138



Appendix B

Supplementary Material:

Self-supervised Models are Continual

Learners

139



B.1. PYTORCH-LIKE PSEUDO-CODE APPENDIX B.

B.1 PyTorch-like pseudo-code

We provide a PyTorch-like pseudo-code of our method. As you can see,

CaSSLe is simple to implement and does not add much complexity to

the base SSL method. In this snippet, the losses are made symmetric by

summing the two contributions. In some cases, the two losses are averaged

instead. In CaSSLe, we symmetrize in the same way as the base SSL

method we are considering.

Algorithm 1 PyTorch-like pseudo-code for CaSSLe.

# aug: stochastic image augmentation

# f: backbone and projector

# frozen_f: frozen backbone and projector

# g: CaSSLe ’s predictor

# loss_fn: any SSL loss in Tab. 1 (main paper)

# PyTorchLightning handles loading and optimization

def training_step(x):

# correlated views

x1, x2 = aug(x), aug(x)

# forward backbone and projector

z1, z2 = f(x1), f(x2)

# optionally forward predictor ...

# compute SSL loss (symmetric)

ssl_loss = loss_fn(z1, z2) \\

+ loss_fn(z2, z1)

# forward frozen backbone and projector

z1_bar , z2_bar = frozen_f(x1), frozen_f(x2)

# compute distillation loss (symmetric)

distill_loss = loss_fn(g(z1), z1_bar) \\

+ loss_fn(g(z2), z2_bar)

# no hyperparameter for loss weighting

return ssl_loss + distill_loss

B.2 Derivation of distillation losses

In this section, we derive distillation losses from the SSL losses in Tab. 1

of the main paper, starting from the definition of our distillation loss:

LD(z, z̄) = LSSL(g(z), z̄), (B.1)
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where z and z̄ are the representations of the current and frozen encoder,

and g is CaSSLe’s predictor network implemented as a two-layer MLP with

2048 hidden neurons and ReLU activation.

Contrastive based. Our distillation loss based on contrastive learning is

implemented as follows:

L(zi, z̄i) = − log
exp (sim (zi, z̄i) /τ)∑

zj∈η̄(i) exp (sim (zi, zj) /τ)
, (B.2)

where η̄(i) is the set of negatives for the sample with index i in the batch.

Note that the negatives are drawn both from the predicted and frozen

features.

MSE based. This distillation loss is simply the MSE between the predicted

features and the frozen features:

L(z, z̄) = −||g(z)− z̄||22. (B.3)

It can be implemented with the cosine similarity as stated in the main

manuscript.

Cross-entropy based. The cross-entropy loss, when used for distillation in

an unsupervised setting, makes sure that the current encoder is able to

assign samples to the frozen centroids (or prototypes) consistently with

the frozen encoder:

L(z, z̄) = −
∑
d

ād log
exp

(
sim

(
g(z), ct−1

d

)
/τ

)∑
k exp

(
sim

(
g(z), ct−1

k

)
/τ

) (B.4)

where:

ā =
exp

(
sim

(
z̄, ct−1

d

)
/τ

)∑
k exp

(
sim

(
z̄, ct−1

k

)
/τ

) , (B.5)

and the set of frozen prototypes is denoted as: Ct−1 =
{
ct−1
1 , . . . , ct−1

K

}
.
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Cross-correlation based. We consider Barlow Twins’ [191] implementation

of this objective. For VICReg [9] we only consider the invariance term.

As a distillation loss, the cross-correlation matrix is computed with the

predicted and frozen features:

L(z, z̄) =
∑
u

(
1− C̄uv

)2
+ λ

∑
u

∑
v ̸=u

C̄2
uv, (B.6)

where:

C̄uv =
∑

i g(zi,u)z̄i,v√∑
i g (zi,u)

2.
√∑

i (z̄i,v)
2
. (B.7)

B.3 Further discussion and implementation details of

the baselines

Selection. When evaluating our framework, we try to compare it with

as many existing related methods as possible. However, given that SSL

models are computationally intensive, it was not possible to run all base-

lines and methods in all the CL settings we considered. As mentioned in

the main manuscript, we choose eight baselines (seven related methods +

fine-tuning) belonging to three CL macro-categories and test them on CI-

FAR100 (class-incremental) in combination with three SSL methods. The

selection was based on the ease of adaptation to CSSL and the similarity

to our framework.

The most similar to CaSSLe are data-focused regularization methods.

Among them, a large majority leverage knowledge distillation using the

outputs of a classifier learned with supervision e.g. [99, 23, 58], while a

few works employ feature distillation [79, 51] which is viable even without

supervision. [81] is also related to CaSSLe, but it focuses on memory effi-

ciency which is less interesting in our setting. Also, [81] explicitly uses the
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classifier after feature adaptation, hence it is unclear how to adapt it for

CSSL, especially since in SSL positives are generated using image augmen-

tations, which are not applicable to a memory bank of features. On the

contrary, augmentations can be used in replay methods, among which we

select the most common (ER [136]) and one of the most recent (DER [15]).

Regarding prior-focused regularization methods, we choose EWC [91] over

others (SI [192], MAS [4], etc.) as it is considered the most influential and

it works best with task boundaries. We also consider two CSSL baselines:

LUMP [108] and Lin et. al [101]. Finally, we do not consider methods

based on VAEs [133, 1], since they have been shown to yield poor perfor-

mance on the large and medium scale. For instance, as found by [54], a

VAE trained offline on CIFAR10 reaches an accuracy of 57.2%, which is

lower than any method (except VICReg) trained continually on CIFAR100

with CaSSLe.

Implementation. For EWC, we use the SSL loss instead of the supervised

loss to estimate importance weights. For POD and Less-Forget, we only

re-implement the feature distillation without considering the parts of their

methods that explicitly use the classifier. For DER, we replace the logits of

the classifier with the projected features in the buffer. We re-implement all

these baselines by adapting them from the official implementation (POD),

or from the Mammoth framework provided with [15] (DER, ER, EWC),

or from the paper (Less-Forget). We also compare with two concurrent

works that propose approaches for CSSL (LUMP [108], Lin et al. [101]).

LUMP uses k-NN evaluation, therefore we adapt the code provided by the

authors to run in our code base. For Lin et al., we compare directly with

their published results, since they use the same evaluation protocol. We

perform hyperparameter tuning for all baselines, searching over 5 values

for the distillation loss weights of POD and Less-Forget, 3 values for the
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Table B.1: Linear evaluation top-1 accuracy on ImageNet100 (5 tasks, class- and data-

incremental).

Method Strategy
ImageNet100

Class-inc. Data-inc.

Supervised

Contrastive

Fine-tuning 61.6 74.3

CaSSLe 69.6 76.9

weight of the regularization in EWC and 3 replay batch sizes for replay

methods. The size of the replay buffer is 500 samples for all replay-based

methods.

B.4 Additional results

Continual supervised contrastive with CaSSLe. After the popularization of

contrastive learning [28, 72] for unsupervised learning of representations,

[86] proposed a supervised version of the contrastive loss. Here, we show

that CaSSLe is easily extendable to support supervised contrastive learn-

ing. The implementation is basically the same as for our vanilla contrastive-

based distillation loss. In Tab. B.1, we show the improvement that CaSSLe

brings with respect to fine-tuning, which is sizeable in the class-incremental

setting. We also report the same comparison on DomainNet in Tab. B.2,

showing interesting results in both task-aware and task-incremental evalu-

ation.

Task-agnostic evaluation and domain-wise accuracy on DomainNet. In the

main manuscript, we showed that CaSSLe significantly improved perfor-

mance in the domain-incremental setting using task-aware evaluation. Here,

“task-aware” refers to the fact that linear evaluation is performed on each
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Table B.2: Linear evaluation top-1 accuracy on DomainNet (6 tasks, domain-incremental

setting) w/ and w/o CaSSLe. The sequence of tasks is Real → Quickdraw → Painting →
Sketch → Infograph → Clipart. “Aw.” stands for task-aware, “Ag,” for task-agnostic.

Method Strategy
Real Quickdraw Painting Sketch Infograph Clipart Avg.

Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag.

Barlow

Twins

Finetuning 56.3 50.9 54.1 45.8 42.7 35.9 49.0 41.9 22.0 17.4 59.0 52.5 50.3 43.7

CaSSLe 62.7 57.1 59.1 50.6 49.2 42.1 53.8 47.7 25.5 20.6 61.9 55.6 55.5 48.9

Offline 67.1 63.0 60.3 53.9 52.4 46.3 51.9 46.9 25.9 21.0 58.8 52.6 57.2 51.8

SwAV

Finetuning 57.7 52.3 53.2 43.5 43.0 35.9 46.1 39.0 21.6 16.5 53.4 46.6 49.6 42.5

CaSSLe 62.8 57.8 59.5 50.2 47.5 41.2 49.5 42.5 22.5 17.9 56.5 49.6 54.3 47.5

Offline 64.1 59.5 60.6 53.6 47.6 42.9 47.7 42.1 23.3 18.9 53.6 47.3 54.6 49.1

BYOL

Finetuning 58.7 53.2 51.7 41.6 44.0 37.4 49.6 43.9 23.5 19.0 58.6 53.5 50.6 43.8

CaSSLe 63.7 60.5 59.3 50.9 48.6 44.1 50.4 45.2 24.1 19.4 59.0 54.4 55.1 49.7

Offline 67.2 64.0 60.2 53.3 51.5 47.3 50.4 46.2 24.5 20.8 57.0 51.5 56.6 51.9

VICReg

Finetuning 54.7 49.6 53.0 44.9 42.1 34.7 49.0 41.9 21.1 16.4 58.5 52.6 49.3 42.8

CaSSLe 59.0 53.2 56.4 47.8 46.0 38.9 52.3 45.6 23.9 18.5 60.9 55.3 52.9 46.1

Offline 66.4 62.7 59.2 53.5 52.4 47.2 53.2 48.1 25.3 20.7 58.3 53.2 56.7 51.9

SimCLR

Finetuning 52.5 47.6 48.2 38.1 37.5 31.7 42.8 35.7 18.8 14.4 50.9 46.8 45.1 38.4

CaSSLe 58.4 43.4 54.2 44.7 43.9 37.7 47.6 41.9 22.0 17.8 54.9 50.5 50.0 44.2

Offline 62.1 59.5 58.3 52.9 46.1 42.5 45.6 41.3 22.1 18.8 51.0 45.9 52.6 48.6

MoCoV2+

Finetuning 50.9 45.5 45.8 37.5 36.0 29.3 39.5 32.1 17.9 13.5 50.3 44.5 43.2 36.7

CaSSLe 56.0 50.3 48.7 40.0 40.4 33.6 42.0 35.0 19.9 15.2 51.7 44.5 46.7 38.8

Offline 65.2 61.3 57.9 51.3 48.7 43.1 44.7 39.1 23.4 19.0 51.3 44.8 53.7 48.4

Supervised

Con-

trastive

Finetuning 57.7 52.6 55.3 45.5 44.9 38.0 51.7 45.0 22.6 18.3 64.0 60.0 52.1 45.4

CaSSLe 63.4 58.8 59.7 51.3 50.1 44.7 55.9 50.3 26.9 22.4 65.0 61.3 56.7 50.9

Offline 67.4 65.3 65.8 63.0 53.6 50.9 56.0 53.1 28.0 25.7 62.8 59.6 60.0 57.4

Supervised
Finetuning 63.0 58.2 56.9 47.6 49.1 44.0 55.7 50.3 27.7 23.3 68.6 63.5 55.9 49.8

Offline 74.7 73.2 68.5 67.8 62.0 59.3 65.7 63.7 33.7 34.5 72.3 69.3 66.4 65.0

domain separately, i.e. a different linear classifier is learned for each do-

main. However, it might also be interesting to check the performance of

the model when the domain is unknown at test time. For this reason, we

report the performance of our model when evaluated in a task-agnostic

fashion. In addition, we also show the accuracy of each task (i.e. domain).

All this information is presented in Tab. B.2. CaSSLe always outperforms

fine-tuning with both evaluation protocols. The accuracy of CaSSLe on

“Clipart” is also higher than offline. This is probably due to a combina-

tion of factors: (i) Clipart is the last task, therefore it probably benefits in

forward transfer and (ii) a similar effect to the one found in [160], where
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Table B.3: k-NN evaluation on ImageNet100 (5 tasks, class-incremental) performed on

backbone and projected features.

Method Strategy
k-NN accuracy (↑)

Backbone (fb) Projector (fp)

Barlow

Twins

Fine-tuning 59.1 34.4

CaSSLe 63.4 53.2

SwAV
Fine-tuning 60.0 53.9

CaSSLe 59.7 61.3

BYOL
Fine-tuning 57.1 33.0

CaSSLe 61.2 60.8

VICReg
Fine-tuning 56.7 35.3

CaSSLe 59.5 43.4

MoCoV2+
Fine-tuning 54.5 39.0

CaSSLe 61.5 53.1

SimCLR
Fine-tuning 54.8 40.1

CaSSLe 61.7 53.2

dividing data in subgroups tends to enable the learning of better repre-

sentations. Also, we notice that task-agnostic accuracy is lower than the

task-aware counterpart. This is expected and means that the class condi-

tional distributions are not perfectly aligned in different domains. As in

the main paper, the colors are related to the type of SSL loss.

Additional results with k-NN evaluation. For completeness, in this supple-

mentary material, we also show that CaSSLe yields superior performance

when evaluated with a k-NN classifier instead of linear evaluation. We use

weighted k-NN with l2-normalization (cosine similarity) and temperature
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Table B.4: Linear evaluation top-1 accuracy on CIFAR100 (10 tasks, class-incremental).

Method Strategy A (↑)

SimCLR
Fine-tuning 39.3

CaSSLe 52.7

Barlow Twins
Fine-tuning 49.9

CaSSLe 53.7

scaling as in [21]. Since k-NN is much faster than linear evaluation we

could also assess the quality of the projected representations, instead of

just using the backbone. The results can be inspected in Tab. B.3. Three

interesting phenomena arise: (i) CaSSLe always improves with respect to

fine-tuning, (ii) the features of the backbone fb are usually better than the

features of the projector fp and (iii) CaSSLe causes information retention

in the projector, which significantly increases the performance of the pro-

jected features. An exception is represented by SwAV [19], which seems to

behave differently to other methods. First, the accuracy of the projected

features in SwAV is much higher than other methods. This might be due

to the fact that it uses prototypes, which bring the representations 1 layer

away from the loss, making them less specialized in the SSL task. Second,

it seems that CaSSLe only improves the projected features when coupled

with SwAV. However, this is probably an artifact of the evaluation proce-

dure, as the l2-normalization probably causes loss of information. Indeed,

although the overall performance is lower, SwAV + CaSSLe outperforms

SwAV + fine-tuning (58.7% vs 56.9%) if the Euclidean distance is used in

place of the cosine similarity for the backbone features. We leave a deeper

investigation of this phenomenon for future work.
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Table B.5: Linear evaluation top-1 accuracy on ImageNet100 (5 tasks, class- and data-

incremental) with ResNet50 [74].

Method Strategy
A (↑)

Class-inc. Data-inc.

SimCLR
Fine-tuning 70.7 75.6

CaSSLe 74.0 77.2

Barlow Twins
Fine-tuning 71.2 75.8

CaSSLe 74.8 78.1

Different number of tasks. The analysis of CSSL settings that we show in

the main manuscript is limited to the 5 task scenario. However, it is inter-

esting to run the same benchmarks with a longer task sequence. Nonethe-

less, one should also remember that SSL methods are data-hungry, hence

the less data is available per task, the higher the instability of the SSL mod-

els. In Tab. B.4, we present additional results with 10 tasks on CIFAR100

(class-incremental). Barlow Twins seems to hold up surprisingly well, fin-

ishing up at roughly 50% accuracy, while SimCLR suffers in the low data

regime. Nonetheless, CaSSLe outperforms fine-tuning with Barlow Twins,

and to a very large extent with SimCLR.

Deeper architectures. The experiments we propose in the main manuscript

feature a ResNet18 network. This is a common choice in CL. However, in

SSL, it is more common to use ResNet50. For this reason, in Tab. B.5

we show that the same behavior observed with smaller networks is also

obtained with deeper architectures. More specifically, CaSSLe outperforms

fine-tuning in both class- and data-incremental settings by large margins.

148



APPENDIX B. B.4. ADDITIONAL RESULTS

Table B.6: Combinations of SSL methods and distillation losses on CIFAR100 (class-

incremental, 2 tasks).

Distillation Loss SimCLR Barlow Twins BYOL

InfoNCE 61.8 64.5 64.8

Cross-correlation 60.1 67.2 65.8

MSE 61.3 64.6 66.7

The role of the predictor. In the main manuscript, we provided an intu-

itive explanation of the role of the predictor network that maps the current

feature space to the frozen feature space. This intuition is corroborated

by extensive experimentation and ablation studies. However, one more

thing that is worth mentioning is that the success of the predictor net-

work might also be related to the findings in SimSiam [30], BYOL [69]

and DirectPred [162]. Moreover, we perform additional ablations on the

design of CaSSLe’s predictor for SimCLR on CIFAR100 (5 tasks): adding

BatchNorm after the hidden layer does not make any difference in terms

of performance, and removing the non-linearity only causes a 0.3% drop in

accuracy.

Combinations of SSL methods and distillation losses. For computational

reasons, it was not feasible to perform experiments combining all SSL meth-

ods with all possible distillation losses. However, in Tab. B.6 we provide a

subset of the possible combinations to validate our strategy that uses the

same SSL loss for distillation.
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