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Indoor Millimeter Wave Localization using Multiple
Self-Supervised Tiny Neural Networks

Anish Shastri, Andres Garcia-Saavedra, Paolo Casari

Abstract—We consider the localization of a mobile millimeter-
wave client in a large indoor environment using multilayer
perceptron neural networks (NNs). Instead of training and
deploying a single deep model, we proceed by choosing among
multiple tiny NNs trained in a self-supervised manner. The
main challenge is then to determine and switch to the best
NN among the available ones, as an incorrect NN will fail to
localize the client. In order to upkeep the localization accuracy,
we propose two switching schemes: one based on the innovation
measured by a Kalman filter, and one based on the statistical
distribution of the training data. We analyze the proposed
schemes via simulations, showing that our approach outperforms
both geometric localization schemes and the use of a single NN.

I. INTRODUCTION

M ILLIMETER wave (mmWave) technologies have been
instrumental for designing high-accuracy location sys-

tems [1]. Although mmWaves propagate quasi-optically, they
are short-ranged due to high pathloss and atmospheric at-
tenuation (especially around the 60 GHz band), and are
easily blocked by obstacles. Hence, it is common to consider
dense deployments of mmWave access points (APs) [2]. In
such scenarios, location information becomes a vital tool to
optimize the performance of mmWave networks [3].

To localize a mmWave device, existing localization schemes
employ the geometric properties of mmWave signals such as
the angle of arrival (AoA), angle of departure (AoD), and time
of flight (ToF). However, they require knowledge of the indoor
area, e.g., the locations of the APs and corresponding anchors,
the geometry of the room, the device orientation, etc. [1].
In practice, maintaining and distributing this information is
not always feasible. Machine learning techniques have been
explored for precise indoor localization [4], [5]. However,
they rely on collecting large training datasets, which is often
burdensome, and the resulting models are often computation-
ally complex for resource-constrained devices. In our previous
work [6], we proposed a shallow NN model to map angle
difference-of-arrival (ADoA) measurements to client location
coordinates. These NNs relieve the training data collection
process by exploiting the location labels obtained from a boot-
strapping localization algorithm (the data annotation technique
that automatically labels the training data). However, large
irregular-shaped indoor environments exhibit more complex
relationships between ADoAs and the client locations. This
issue typically translates into larger training datasets.In this
paper, we advocate that subdividing a room into sections
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(smaller regular-shaped overlapping or non-overlapping sub-
areas) and using multiple tiny NN models to cover each
section is a better strategy than training and covering the
whole space with a single model. This makes the approach
scalable even in rooms of large size. These NNs, one for each
given section of the indoor space, are trained using location
labels obtained from a geometric bootstrapping localization
algorithm. Training multiple NNs offers two key advantages:
(i) the models require less training data to accurately localize
a client, resulting in lower computational overhead on the
bootstrapping localization algorithm, and expediting the NNs
training; (ii) the resulting localization scheme is device-centric
(i.e., location estimation is carried out at the client) and can
be easily scaled up: once the models are trained at a central
server, they can be independently downloaded and run by
multiple clients. In this work, we obtain the training labels
in a self-supervised manner by resorting to JADE [7] as the
bootstrapping algorithm [6]. JADE requires zero knowledge
of the indoor environment, and employs ADoAs as input (like
our tiny NNs), thus making the localization problem invariant
to client orientation. To select the best NN to localize the
client, we propose two schemes: one based on the innovation
measured by a Kalman filter (KF), by exploiting track infor-
mation of the client, and another based on out-of-distribution
detection (ODD), that exploits the statistical distribution of the
training labels.

The key propositions of our work are: (i) to train mul-
tiple tiny NNs in a self-supervised fashion, by exploiting
the training labels obtained from a bootstrapping localization
algorithm; (ii) two NN switching schemes: a Kalman filter
tracking-based and an out-of-distribution detection (ODD)-
based scheme, to choose the best NN to infer the client loca-
tion; (iii) performance evaluation via a simulation campaign.

The outline of the paper is as follows: Section II presents a
brief review of the existing localization schemes; Section III
elaborates on our proposed localization schemes; Section IV
presents the results of our simulation campaign; finally, we
draw our conclusions in Section V.

II. RELATED WORK

Geometry-based schemes exploit angle and range informa-
tion to localize mmWave devices [1], e.g., ADoAs are used
to triangulate a client’s location in [8]. Blanco et al. exploit
AoA and ToF measurements from 60-GHz 802.11ad-based
and sub-6 GHz routers to trilaterate the client location [9]. The
authors of [10] process the channel impulse response (CIR)
measurements from an FPGA-based 802.11ad implementation
in order to estimate ToF and AoDs, and compute the client
locations. Then a Kalman filter smooths out the trajectory.

Deep learning methods have also been explored to localize
a mmWave device. For example, RSSI and SNR beam indices
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Fig. 1. The workflow of our proposed approaches to select the best NN model for accurate indoor localization.

from 802.11ad-based mmWave routers help learn a multi-
task model for location and orientation estimation [4], [11].
The authors of [12] designed a dual-decoder neural dynamic
learning framework to sequentially reconstruct the intermittent
beam-training measurements, and thus estimate a client’s tra-
jectory. signal-to-noise ratio (SNR) fingerprints were used to
train a multilayer perceptron regression model and the coarse
estimates were filtered using a Kalman filter [13].

III. PROPOSED LOCALIZATION SCHEME

A. Problem statement and main idea
The main objective of this work is to employ multiple self-

supervised tiny NNs to localize a client moving in a large
indoor environment in a distributed fashion. A key aspect then
is to decide when to switch to the right NN model, given that
prior information about the ground truth locations and the map
of the indoor environment is not available.

Fig. 1 illustrates the workflow of our proposed localization
scheme, which consists of two phases. In the offline training
phase, NN m (corresponding to section m of the indoor
space) is trained using the ADoA values ϕ̃ϕϕ computed from
the AoA measurements Φm (obtained by processing channel
state information (CSI) at the client as in [9]). These are fed
to the bootstrapping localization algorithm to obtain sets of
training labels χm. These sets of labels form a distribution
with the corresponding mean and covariance matrix paired as
(µµµm,Σm). These labels are used to train NN m. Note that the
input to both our NN model and the bootstrapping localization
algorithm are the same, i.e, ϕ̃ϕϕ.

For the online training phase, we propose two schemes. The
first scheme exploits the location estimates from the NN m to
track the evolution of the client’s state. We exploit the state
innovation yt and the normalized innovation squared (NIS)
metric β of the predicted state, which measures how accurately
the Kalman filter predicted the measurements, to choose the
best NN. The second scheme exploits the statistical parameters
of the training labels to compute the distance between the NN
estimates from m different training label distributions. The
idea is to compute the distance between the NNs’ estimates
and the distribution of the labels (in this work, we resort to the
Mahalanobis distance). As the wrongly estimated location will
be far from the distribution corresponding to the true label, we
refer to this scheme as out-of-distribution detection.

B. Kalman filter (KF)-based decision scheme
The KF-based scheme involves two stages: the trajectory

tracking phase and the decision phase.

Kalman tracking phase. In this phase, we track the evolution
of the client trajectory, as estimated by our trained NNs, using
a Kalman filter [14]. Let the state of the client at time t be st =
[xt, ẋt, yt, ẏt]

T , where x and y are the 2-D coordinates of the
client, and ẋ and ẏ are the x and y component of the velocity.
The state s evolves in time following a constant-velocity (CV)
model. The evolution of the state s at t is given as st =

Ftst−1 + wt, where Ft = III2 ⊗
[

1 ∆t
0 1

]
is the 4×4 state

transition matrix that transforms the state of the client at time
step t− 1 to t, and wt ∼ N (0,Qt) represents the zero-mean
Gaussian distributed process noise with covariance matrix Qt.
Here, ∆t = 1 s, ⊗ is the Kronecker product, and III2 is the
2× 2 identity matrix. The predicted state representing the 2D
location of the client is Hst + rt, where H is the observation
matrix given by diag(1, 0, 1, 0) and rt ∼ N (0,Vt) is the zero
mean Gaussian observation noise, with the observation noise
covariance matrix Vt.

The Kalman filter performs two steps: prediction and model
update. The prediction step estimates the current a priori state
of the client st|t−1 based on the previous a posteriori estimate
st−1|t−1, i.e., st|t−1 = Ftst−1|t−1+wt, and also computes the
a priori state covariance matrix Pt|t−1 = FtPt−1|t−1F

T
t . The

model update equations correct the existing state predictions
and the covariance matrix using the measurement vector x̂t

and the updated Kalman gain. The prediction error ŷt is the
innovation of the Kalman filter and is given as

ŷt = x̂t −Hst|t−1. (1)

This is used to correct the predicted state of the client as
st|t = st|t−1 +Ktŷt, where Kt is the Kalman gain.

We exploit the innovation along with the innovation covari-
ance Gt = HPt|t−1H

T + rt, to compute

βt = yT
t G

−1
t yt. (2)

We also compute the Euclidean distance δt between the
predicted state Hst|t−1 and the current measurement x̂t, given
as δt = ||Hst|t−1− x̂t||2. We use ŷt and βt to implement the
decision scheme to switch among the NNs.
KF-based decision scheme. The measurements used by the
Kalman filter are the location estimates obtained from NN
m, trained in section m of the indoor space. NN m will be
able to estimate the client location accurately as long as the
client is moving within section m. Thus, the Kalman filter will
be able to predict the location of the client with a low δt. At
any time step k when the client moves into a different section,
the estimates of NN m become more inaccurate. However, the
Kalman filter would predict the location estimate based on the
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model learned up to time step k−1, yielding an expected client
location that closely adheres to the past trajectory. Conversely,
an inaccurate NN estimate would result in a large δk and an
even larger βk. When βk exceeds a user-defined threshold
η, we feed the corresponding ADoAs ϕ̃ϕϕk to the M trained
NN models to compute the location estimate x̂k,m, where
m = 1, . . . ,M . We select the NN m∗ that minimizes the
Euclidean distance between x̂k,m and the Kalman-predicted
location Hksk|k−1, i.e., m∗ = argminm δk,m, where δk,m =
||Hksk|k−1−x̂k,m||2, with the best estimate of the client being
x̂∗
k = x̂k,m∗ . The subsequent set of measurements for the

Kalman filter would be the locations estimated by NN m∗.
We repeat this procedure to switch to the right NN whenever
the β metric exceeds a threshold η. In our evaluation, we set
η = 2, as theoretically, the expectation of β should equal the
number of degrees of freedom of the Kalman filter (i.e., the
2D coordinates of the client) [15].

C. Out-of-distribution detection (ODD) switching scheme

In this approach, we exploit the statistical properties of
the location labels used to train the NNs of each section of
the indoor space. Specifically, we compute the mean and the
covariance of the training labels distribution χm correspond-
ing to section m, characterized by its mean-covariance pair
(µµµm,ΣΣΣm). In the online testing phase, at any time instance k,
if the distance between the current location estimate x̂k and
the previous estimate x̂k−1 exceeds a user-defined threshold
ζ, i.e., ||x̂k − x̂k−1||2 > ζ, where ζ is the distance threshold
(1 m in our case), the ADoA values ϕ̃ϕϕk at test location k are
fed to M NNs. This results in M location estimates x̂k,m. We
then compute the Mahalanobis distance ρk,m of x̂k,m from
each of the distributions χm as

ρk,m =

√
(x̂k,m −µµµm)TΣΣΣ−1

m (x̂k,m −µµµm) . (3)

The Mahalanobis distance measures the distance of a point
from a distribution of data samples, where, the smaller the dis-
tance, the closer the point to the distribution. We finally choose
the best NN as m∗ = argminm ρk,m, and its corresponding
estimate x̂k,m∗ as the best location estimate. Whenever the
location estimated by NN m∗ is far from the previous estimate,
i.e., the Euclidean distance between the current estimate and
the previous estimate exceeds the distance threshold ζ (chosen
after exhaustive search), we repeat the above procedure and
switch to another NN model.

D. Tiny neural network architecture

We resort to a 4-layer tiny NN model with
(Ni, Nh1

, Nh2
, Nh3

, 2) neurons in each layer. Here, Ni is
greater than or equal to the number of ADoAs from visible
anchors [6], Nh1 = ⌈κNi⌉, Nh2 = Nh1 , Nh3 = ⌈Nh2/2⌉,
and ⌈·⌉ represents the ceiling function. The NN outputs 2D
coordinates of the client by learning a non-linear regression
function F(ϕ̃ϕϕt) between the ADoAs ϕ̃ϕϕt and the client location
x̂t. The regression problem is minimizes the mean-square
error (MSE) between the self-supervised training labels and
the locations estimates obtained from the NN. The NN
employs the rectified linear unit (ReLU) activation function
and Adam optimizer. The hyperparameters used for tuning

the NN are the factor κ, dropout rate p, learning rate r, and
the training batch size b.

IV. SIMULATION RESULTS

A. Simulation environment

We validate the performance of our proposed schemes via a
simulation campaign. We simulate human motion trajectories
in an irregular U-shaped room (chosen to mimic realistic
indoor scenarios) as shown in Fig. 2, comprising two vertical
rectangular sections (S-1 and S-3) of size 5 m × 18 m and
6 m × 18 m, connected by a 20 m wide horizontal section (S-
2). We deploy seven mmWave APs to cover the indoor space.
We collect AoAs from all the APs and their corresponding
virtual anchors (VAs) (mirror images of the APs with respect
to each wall of the room) at each client location along a
trajectory using a ray tracer (considering line-of-sight (LoS)
and first-order reflections only, which dominate mmWave
propagation [1]). To simulate realistic noisy measurements, we
perturb the AoAs with zero-mean Gaussian noise of standard
deviation σ = 5◦.

We train each model with ≈ 800 locations within
each boxed section (S-1, S-2, S-3) in Fig. 2. The
trained NNs have the following architecture: NN-1 and
NN-2 have (53, 48, 48, 24, 2) neurons in each layer with
hyperparameters tuple (κ, p, r, b) as (0.9, 0.1, 0.003, 50%),
and (0.9, 0.05, 0.004, 50%) respectively, while NN-3 has
(53, 43, 43, 22, 2) neurons with (0.8, 0.1, 0.003, 50%). We test
the trained NNs on a trajectory comprising 388 client locations
across the three sections of the room (grey line).

B. Analysis of the NN switching schemes

We first analyze the performance of the KF-based switching
scheme. Fig. 3 illustrates the metric β computed while using
NN-1 to track the client along the test trajectory, and the
localization error. Initially, when NN-1 estimates the client
locations in S-1, β is close to zero. As the client crosses the
border between S-1 and S-2 (around location 140), the errors
of NN-1’s estimates increase. These estimates significantly
deviate from the client’s state as predicted by the Kalman filter,
resulting in large δt and hence even larger β values, leading
to the appearance of peaks. Conversely, with every subsequent
wrong estimates by NN-1, the Kalman filter keeps predicting
the client’s location to be around the wrong estimates, resulting
again in lower values of β. This trend can be observed when
the client moves within S-2 and S-3.

We now analyze the ODD scheme. Fig. 4 illustrates the
Mahalanobis distance between the location estimates obtained
from different NNs and the distribution of the training data
χm corresponding to each section of the room, as a function
of the client location. The locations estimated by the NNs and
lying within the distribution of the training data consistently
yield ρ ≤ 2. We also observe that a large set of locations in
the common sections of the room, i.e., C-1 (client locations
from 90 to 140) and C-2 (from 235 to 270), were localized
accurately by the NNs sharing the overlapped sections, as they
compute the ADoAs from the same set of visible anchors.
Thus, these estimates have similar ρ values, as they are part
of two χs. In such situations, we can exploit the Euclidean
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Fig. 2. U-shaped room used for simulations. The colored boxes represent the
three sections of the room; the grey line shows the test trajectory.

distance between the current location estimate and the previous
location estimate to choose the right NN.

While the values of ρ for NN-1 and NN-3 are low in their
respective sections and distinguishable thanks to ADoAs from
a disjoint set of APs, the ρ values for location estimates from
NN-2 are low for the entire trajectory. This is because a vast
majority of the locations in S-2 can compute the ADoA values
from multipath components (MPCs) arriving from all the APs.
Thus, NN-2 estimates the client locations closer to all the three
χs. However, the localization error (yellow dashed line) is
still large, especially for the locations in the non-overlapping
sections of S-1 and S-3. This implies that NN-2’s location
estimates, even though highly erroneous, lie within the other
two distributions. Thus, we remark that the ODD technique
is more appropriate in environments where each section is
illuminated by a disjoint set of APs.

The switching points obtained from the KF-based (triangles)
and ODD-based (squares) switching schemes are depicted in
Fig. 5. The dotted and shaded sections are the borders and
the common areas C-1 and C-2, between S-1 and S-2, and S-
2 and S-3 respectively. The ideal switching points are within
the boundaries of C-1 and C-2 (see Fig. 2), from location index
90 to 140 (C-1) and from 235 to 270 (C-2). We observe that
both schemes decide to switch NN models within the ideal
switching area. However, unlike the ODD scheme, the KF-
based scheme tends to be more robust, as it uses the motion
model of the client to predict its future location.

We now compare the performance of our proposed scheme
with a single NN (SNN) model having up to as many neurons
as the three NNs together. The total number of neurons NT

in the 3 NNs is given by
∑3

c=1

∑3
d=1 Nc,hd

, where d indexes
hidden layers in our tiny NNs. Fig. 6 presents the statistics of
localization errors when using our KF-based scheme (NN-KF)
and the SNN with varying number of neurons in its hidden
layers. We observe that our KF-based switching scheme out-
performs all the SNN models. Also, decreasing the size of
the SNN (from 100% to 33% of NT ) causes the whiskers
to span larger intervals, as an SNN with fewer neurons will
underfit the mapping between the ADoAs and the location
labels, especially in a complex rooms.

We also performed a preliminary experiment to evaluate
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Fig. 5. Localization error using the three NNs and switching points elected by
the KF-based (triangles) and ODD-based (squares) switching schemes. The
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training and inference times. For this, we used a Thinkpad
E14 laptop, with an AMD Ryzen 7 4000 CPU and 24 GByte
of RAM, running in battery-saver mode. Having multiple tiny
NNs reduces location estimation from 1.8 ms for the SNN
model down to 1.2 ms (or 33% less) for each of the tiny NNs.
The model training time also decreases by a factor of 4 (from
about 400 s to about 100 s).

Fig. 7 illustrates the localization errors at each location
along the test track, where we consider the NN switching
points obtained from the KF-based scheme, and concatenate
the location estimates of each NN. Here, blue hues represent
errors ≤ 1 m whereas green to red hues correspond to higher
errors. We observe sub-meter errors at most locations, with
slightly larger errors near the bottom left and right corners,
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and at the switching points, where the NN being used cannot
accurately localize the client. Fig. 8 presents the cumulative
distribution function (CDF) of the localization errors of the
reconstructed trajectory, and of the trajectory estimated using
JADE, a single self-supervised NN, and the geometric ADoA
algorithm [8]. We observe that JADE and our self-supervised
NNs outperform the ADoA scheme [6]. While JADE achieves
sub-meter localization errors in 80% of the cases (mean error:
0.74 m), a single NN achieves sub-meter errors in about
70% of the cases (mean error: 0.82 m). Instead, choosing the
right NN via the KF- or ODD-based schemes achieves sub-
meter errors in about 90% of the cases. We note that running
JADE on the entire trajectory results in large errors, especially
when moving closer to the bottom-left and -right corners of
the room. This is because noisy ADoA values largely offset
the estimates of the associated anchors. Moreover, using a
single NN instead of multiple NNs results in large training
and bootstrapping algorithm complexity, and a single NN
typically needs more parameters to accurately localize a client
in complex-shaped environments. Thus, training multiple,
smaller NNs and employing our proposed switching schemes
can help accurately localize a client in large or irregular rooms.

V. CONCLUSIONS

We proposed to employ multiple self-supervised tiny NNs to
accurately localize a client as it moves across a large indoor
environment. We presented two schemes based on Kalman
filters and on the statistical distribution of training labels, in
order to dynamically choose the best NN model. Results show
that the trajectory reconstructed upon switching to the right
NNs via the proposed schemes achieves ≤1 m localization
errors in 90% of the cases. Upon evaluation, we ascertain
that the KF-based scheme is more robust, owing to its ability
to track the client’s motion and predict the trajectory from
NN location estimates. On the other hand, the ODD scheme
is a viable choice in large distributed environments, where
different sections of the space are illuminated by a disjoint set
of APs. Future work will explore schemes that automatically
segment the indoor space into sections, as larger environments
will warrant a subdivision into larger number of sections.
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