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Abstract— Millimeter wave (mmWave) radar sensors are emerging
as valid alternatives to cameras for the pervasive contactless mon-
itoring of people in indoor spaces. However, commercial mmWave
radars feature a limited range (up to 6–8 m) and are subject to occlu-
sion, which may constitute a significant drawback in large, crowded
rooms characterized by a challenging multipath environment. Thus,
covering large indoor spaces requires multiple radars with known
relative position and orientation and algorithms to combine their
outputs. In this work, we present ORACLE, an autonomous system
that (i) integrates automatic relative position and orientation esti-
mation from multiple radar devices by exploiting the trajectories of
people moving freely in the radars’ common fields of view, and (ii)
fuses the tracking information from multiple radars to obtain a unified tracking among all sensors. Our implementation
and experimental evaluation of ORACLE results in median errors of 0.12 m and 0.03

◦ for radars location and orientation
estimates, respectively. Fused tracking improves the mean target tracking accuracy by 27%, and the mean tracking error
is 23 cm in the most challenging case of 3 moving targets. Finally, ORACLE does not show significant performance
reduction when the fusion rate is reduced to up to 1/5 of the frame rate of the single radar sensors, thus being amenable
to a lightweight implementation on a resource-constrained fusion center.

Index Terms— Indoor sensing, mmWave radar network, self calibration, radar fusion, sensor fusion, people tracking

I. INTRODUCTION

RADARS operating in the mmWave frequency band have

emerged as valid alternatives to cameras for indoor

monitoring, as they are robust to changing and poor lighting

conditions, and raise less privacy concerns [1]–[3]. Their use

enables advanced sensing applications spanning contactless

people tracking [4], personnel recognition [4]–[6] and move-

ment classification [7]. However, commercial mmWave radars

have limited range [5] (up to 6–8 m) and are subject to

occlusion [4], which may constitute a significant drawback in

large, crowded rooms containing furniture and walls. Thus,

covering large indoor spaces requires multiple radars (i.e.,

radar networks), with known relative position and orientation

and algorithms to combine their output information.
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In this work, we tackle the largely unexplored design of

distributed mmWave radar networks to monitor people in

indoor spaces. Our aim is to develop automatic calibration and

sensor fusion algorithms to enable the quick deployment of

multiple, jointly operating radars with no human intervention

and no accurate synchronization between the devices. Mul-

tistatic radars used in, e.g., [8], [9], require synchronizing

the devices’ clocks in order to allow coherent processing

of the received signals. This is highly impractical, as it

mandates clock distribution through an optical connection to

be set up, jeopardizing the ease and speed of deployment. For

this reason, we rather assume that the radar devices operate

independently (i.e., they can only receive their own transmitted

signals), and communicate the result of the target detection

and tracking steps to a fusion center. In this scenario, we

need to solve two main issues: (i) automatically obtain the

positions and orientations of the radars (self-calibration), as

they are often unknown, or it is impractical to measure them at

deployment time; and (ii) combine the environment perception

capabilities of the multiple radars (sensor fusion), so as to

boost their sensing accuracy and mitigate occlusion. The few

existing solutions to point (i) present significant practicality

and usability limitations in real scenarios [10]–[12]. Point
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(ii), instead, has not been investigated with indoor mmWave

radars, to the best of our knowledge. This aspect is particularly

challenging as we aim at enhancing the tracking accuracy

without leveraging coherent processing, thus only assuming

coarse synchronization as provided by popular network proto-

cols (e.g., the network time protocol, NTP).

In this paper we propose ORACLE, a solution to the

mmWave radar network deployment and integration problem.

Our contribution is twofold. As a first step, ORACLE automat-

ically estimates the location and orientation of multiple radars

with respect to a common coordinate system through an im-

proved version of our previous work [13]. For this, ORACLE

takes the trajectories of people moving in the environment

as a reference. Then, the system fuses the information about

moving people tracked by different radars at a fusion center

(FC), enhancing the resilience of the tracking process in case

of occlusion. ORACLE processes local information, transmit-

ted by the radars to the FC, in a slotted-time fashion, thus

handling the high variability in the frame rate of commercial

radars. Then, it merges local tracks and provides a global

representation of the moving targets in the environment.

The original contributions of this work are:

1) We propose ORACLE, a novel plug-and-play system for

the real-time, automatic self-calibration and integration

of multiple incoherent mmWave radars for indoor people

tracking.

2) As a first component of ORACLE, we present a fully-

automated method for the self-calibration of multiple

mmWave radars. The algorithm extends our previous

work [13] by adding a masking phase (see Section IV-

A.3) that handles a wider range of cases and provides

better calibration results. ORACLE estimates the relative

positions and orientations of the radars with a median

error of 0.12 m and 0.03◦, respectively, when 3 people

move in the environment.

3) ORACLE includes a track-to-track radar fusion algo-

rithm that combines information about the same subject

collected by different radars. This improves the mean

tracking accuracy by up to 27% with respect to single-

sensor tracking.

4) We evaluate our method via an extensive measurement

campaign through the RadNet platform [14], using 4
commercial mmWave radars deployed in realistic condi-

tions and multiple subjects, including challenging human

motion. In the most difficult case of 3 subjects moving

concurrently, ORACLE achieves a tracking accuracy of

87% and a mean tracking error of 23 cm.

The remainder of this paper is organized as follows: Section II

provides a summary of the related work. In Section III, the

problem tackled by ORACLE is presented and formulated.

Section IV presents and discusses ORACLE, the proposed

method. Section V provides some insights regarding the practi-

cal implementation of ORACLE and presents the experimental

results on our testbed. Finally, concluding remarks are drawn

in Section VI.

II. RELATED WORK

Multistatic radars. Using multiple radar receivers with syn-

chronized clocks enables coherent analysis of the received

signals, which yields significant processing gains due to spatial

diversity [15]. Existing works have leveraged this principle

for drone detection [16] and people tracking [8], [17]–[19].

Despite their potentially superior accuracy and resolution, the

main drawback of multistatic radars lies in their impracticality

and deployment cost. Indeed, a common clock source needs

to be distributed to the receivers, either via optical links or

GPS, which is not available indoors. This would prevent the

radar sensors from being quickly deployed, used, or relocated.

Conversely, we target a scenario where ease of deployment

and minimal human intervention are key requirements. For

this reason, multistatic radars are not applicable and ORACLE

focuses on track-level sensor fusion from incoherent sensors,

that are only coarsely synchronized (i.e., not at the clock level)

using standard NTP.

Radar networks. A large body of work has considered the

use of incoherent radar networks outdoors, e.g., in airborne

and automotive applications, to improve the detection and

tracking capabilities of the standalone sensors, [20]–[23].

These works tackle the fusion of distributed radar tracks

without leveraging the multistatic gain available with precise

synchronization. However, the considered radar setups are

significantly different, as mmWave radars are typically used

indoors or in short-range (6–8 m) outdoor scenarios, where

the presence of multiple subjects may create crowded scenes

and occlusions. The latter occur when people or objects block

the line of sight between a radar and the target, thus making the

occluded subject undetectable. In outdoor scenarios occlusion

seldom occurs as targets are typically widely separated, the

monitored area is much larger, or a lower frequency band is

used for better propagation at longer distances (see, e.g., [20],

[21]). On the other hand, most existing works on mmWave

radar networks rely on very simple offline data association

rules based on known sensor positions, with no data fusion to

improve the tracking accuracy [24], [25]. This is reasonable in

large-scale outdoor scenarios or automotive applications, as the

radar sensors are supposed to be deployed in a fixed location

for good. Conversely, practical human sensing applications

require a more flexible system where sensors can be moved

around frequently and can automatically recalibrate for the

new deployment. To the best of our knowledge, only two

works have addressed indoor radar networks for people track-

ing [12], [26]. A major drawback of both is that they consider

only one person to be present in the environment, thus ne-

glecting the reciprocal occlusions caused by crossing moving

trajectories of multiple subjects. This is unrealistic in general

indoor settings. All the above limitations are solved by the

proposed solution, which is the first system that (i) combines

the information from multiple radars, handling the presence

of multiple subjects, (ii) automatically estimates their relative

positions and orientations, and (iii) shows robust real-time

performance thanks to its low complexity and distributed

computation load.

Radar networks self-calibration. Few works have tackled
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the problem of self-calibration in mmWave radar networks,

i.e., [10], [11], [26]. These studies share significant prac-

tical limitations. [26] proposes a semi-automatic calibration

in which a set of reflectors (e.g., oscillating pendula) has

to be deployed in the environment and then removed once

calibration is complete. Moreover, only the relative rotation

between radars is estimated, while the translations are manu-

ally measured. [10], instead, performs calibration using a target

of opportunity, but it requires the presence of only one target

following a strictly linear trajectory in the radars field of view

(FoV). Finally, [11] can handle multiple subjects, but all of

them need to be static (e.g., sitting). Such assumptions consid-

erably limit the application scope of these systems. Conversely,

our method completely automates the calibration process,

working with movement trajectories of arbitrary shapes and

with multiple concurrently moving targets. Actually, ORACLE

benefits from having multiple trajectories of complex and

irregular shape that span a large portion of the FoVs of the

radars, as they lead to a more accurate calibration.

III. PROBLEM OUTLINE

In this section, we first present an overview of mmWave

Multiple-Input Multiple Output (MIMO) radars. Then, we

formalize the problems of combining the information obtained

by the different radars in the network at a central fusion entity,

and of estimating their relative positions and orientations.

A. mmWave MIMO radars

A MIMO FMCW radar jointly estimates the distance, the

radial velocity, and the angular position of the targets with

respect to the radar itself [27]. During the sensing process,

the radar transmits sequences of linear chirp signals with

bandwidth B. A full sequence, or “radar frame”, is repeated

with a period of Ts seconds. The distance, r, and velocity,

v, of the targets are computed from the frequency shift

induced by the delay of each reflection, usually by applying

discrete Fourier transform (DFT) processing. The FMCW

radar distance resolution is related to the bandwidth B by

∆r = c/(2B), where c is the speed of light. This makes

mmWave devices accurate to the level of a few centimeters

using a bandwidth of 2–4 GHz [4]. Furthermore, using a 2D

array of multiple receiving antennas makes it possible to obtain

the angle of arrival (AoA) of the reflections along the azimuth

(θ), and the elevation (φ) domains, by leveraging phase shifts

across different antenna elements. The azimuthal AoA res-

olution depends on the number of antennas N in the array

and is given by ∆θ = λ/(Nd cos θ), where d is the spacing

between the antennas. Due to the high ranging resolution, a

human presence in the environment generates a large number

of reflecting points, which are detected by the radar. This set of

points, usually termed radar point cloud, can be transformed

into the 3-dimensional Cartesian space using the distance,

azimuth, and elevation angles information of the multiple body

parts. Each point is described by a vector [x, y, z]
T

including

the point’s spatial coordinates x, y, z obtained by transforming

r, θ and φ. Movement trajectories can be tracked across time

from the point-clouds.

B. Sensor fusion in mmWave radar networks

Consider a mmWave radar network consisting of S mono-

static radar sensors. Each radar has local computational ca-

pabilities and a communication interface that enables them to

transmit information to a FC. The sensors are identified by

indices s = 1, . . . , S, while quantities related to the FC are

denoted by superscript c. All radar sensors operate at discrete

time steps of duration Ts, indexed by variable k. The FC also

operates at discrete time steps that, in general, may have a

different duration Tc and are indexed by variable m.

The people tracking problem relates to estimating the sub-

jects’ movement trajectories in the (x, y) horizontal plane

across time, exploiting the measurements of the multiple radar

sensors. For this, we define the state of subject u, seen by the

FC at time m, as xm(u) = [xm(u), ym(u), ẋm(u), ẏm(u)]
T

,

containing u’s coordinates and the corresponding velocity

components ẋm(u) and ẏm(u). We assume that the state’s

evolution obeys a constant-velocity (CV) model [28]. At the

FC, the state model for target u is

xm(u) = FTc
xm−1(u) +wm(u), (1)

where FTc
is the state transition matrix that projects the

state forward by a time duration Tc, according to the CV

model, while wm(u) is the (global) Gaussian process noise,

having zero-mean and covariance matrix W [4], [29]. The

process noise is here considered to be generated by a random

acceleration that is not explicitly accounted for by the CV

model [4]. Sensor measurements of the state of target n, at

time k, are obtained according to

zsk(n) = Hxk(n) + vs
k(n), s = 1, . . . , S, (2)

where zsk(n) is the observation obtained from sensor s, H

is the observation matrix relating the observation to the state

and vs
k(n) is the sensor-specific measurement noise having

covariance matrix Vk [4]. In our system, all sensors are of

the same type and have the same specifications. Therefore, we

can safely assume that the measurement error processes have

the same zero-mean, Gaussian distribution, whose covariance

is time-varying due to the dependence of the radars’ resolution

on the position of the targets in the FoV [4].

The aim of our system is to estimate xm over time, exploit-

ing the measurements collected by the sensors. Note that: (i)

the correspondence between the targets tracked by each sensor

is unknown, and finding a suitable association between them

is part of the problem we tackle; (ii) the algorithm can handle

the fact that the same target may be tracked simultaneously

by one or more sensors; and (iii) the sensors may collect the

measurements and obtain state estimates at a different time

granularity than that of the FC.

Each sensor locally tracks the targets in the environment.

The common approach to people tracking from mmWave radar

point-clouds [4], [5], [25] includes: (i) a detection phase via

density-based clustering algorithms (e.g., DBSCAN [30]) to

separate the reflections from multiple subjects; (ii) applying

Kalman filtering techniques [31] on each cluster centroid to

track the movement trajectory of each subject in space. The

association between new observations and Kalman filter (KF)
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Fig. 1: Proposed workflow.

states exploits the Nearest-Neighbors Joint Probabilistic Data

Filter (NN-JPDAF) algorithm [32]. The KF used at each sensor

provides, at each time step, an estimate of the state of the

targets in its FoV and the corresponding error covariance.

We call Ns
k the number of such targets at time k, x̂s

k|k(n)
the estimated state of target n after the KF update step, and

Cs
k|k(n) the associated error covariance. Note that the above

quantities are sensor-dependent, as different sensors provide

their own estimates of the state of the same target. We denote

by T s
k (n) = {x̂s

k|k(n),C
s
k|k(n)} the track corresponding to

target n as estimated by sensor s, expressed with respect to its

own reference frame. In addition, we assume that each sensor

is able to provide a timestamp, τ sk , corresponding to the current

time step, according to its local time reference (e.g., internal

clock or network time). For the timestamps to match between

different sensors, some level of synchronization is needed

within the radar network (e.g., using NTP). At the end of each

time step, sensor s transmits the set of its tracks, denoted by

T
s
k = {T s

k (1), . . . , T
s
k (N

s
k), τ

s
k} to the FC, together with the

corresponding timestamp.

If the same target is tracked by more than one sensor, the

FC should maintain a single track for it, which is updated and

improved by fusing the information coming from the sensors.

Our aim is to develop an algorithm to estimate the position of

the targets across time at the FC, in the form of central tracks

T c
m(u) = {x̂c

m|m(u),Cc
m|m(u)}, obtained by combining the

sensor information T
s
k, s = 1, . . . , S. The above problem

is complicated by correlation between the estimation errors

of the tracks obtained at the sensors and at the FC. From

Eq. (1), one can see that some correlation exists between all the

tracks that refer to the same target (also in different sensors),

as the process noise is the same, but this can be typically

neglected if the process noise has low intensity or if the radar

measurement rate is high with respect to the subject’s motion

[29]. Conversely, the error correlation between a central track

and a sensor track of the same target cannot be ignored, as the

FC obtains its own tracks as a function of the sensor tracks.

This is especially true for our real-time application, where the

fusion occurs frequently, e.g., from 10 to 15 times per second.

C. Self-calibration of mmWave radar networks

The track sets that the radars transmit to the FC are

expressed in the local reference frames of the sensors. Any

algorithm that fuses them to improve the tracking accuracy

requires to know the sensors’ relative position and orientation.

However, manually measuring them is impractical and prone

to errors, therefore an automatic self-calibration procedure is

highly appealing. Here, we propose to exploit the trajectories

of targets of opportunity that move within the radars’ FoVs,

independently tracked by each sensor. Tracks from different

radars that correspond to the same target have almost the same

shape, up to a rigid transformation and some noise. Estimating

such rigid transformation parameters corresponds to estimating

the sensors’ relative position and orientation.

Considering the system of S radars, deployed in the same

area, call Fs, s = 1, . . . , S, their reference systems (RSs).

Each RS consists of a pair Fs = {ts,Rs}, where ts is the

2 × 1 vector with the coordinates of the s-th RS’s origin

and Rs is the 2× 2 rotation matrix specifying its orientation.

Without loss of generality, in this paper we consider a global

RS (of the FC) which coincides with that of radar 1 and

for which it holds that t1 = 02×1 and R1 = I2, respectively,

the 2 × 1 zero vector and the rank 2 identity matrix. Self-

calibrating the system consists in estimating Fs, s = 2, . . . , S.

We define the movement trajectory of target n, as seen by

sensor s, as the sequence of position estimates of the target,

p̂s
k(n) = [x̂s

k(n), ŷ
s
k(n)]

T , for k = 1, . . . , K, where k is the

discrete time index. Note that p̂s
k(n) contains the first two

components of the KF state estimate x̂s
k|k(n). An estimate

of the rotation matrix and of the translation vector between

radar s and radar 1 (our reference) can be obtained solving

the following Least-Squares (LS) problem

argmin
Rs∈SO(2)

ts∈R
2

K
∑

k=1

∣

∣

∣

∣(Rsp̂
s
k(n) + ts)− p̂1

k(n)
∣

∣

∣

∣

2
, (3)

where SO(2) denotes the special orthogonal group in dimen-

sion 2 (i.e., the set of all possible rotations around a point in a

2-dimensional space) and || · ||2 is the Euclidean norm. While

the translation vector of sensor s with respect to the global RS

is directly obtained by solving Eq. (3), the orientation angle,

denoted by θs, is given by θs = cos−1 (trace(Rs)/2).
In Section IV-A we present the proposed approach to

solve the self-calibration problem in the more complex and

realistic scenario where: (i) multiple sensors concurrently track

multiple targets; (ii) the track-target correspondence among

different sensors is unknown, so, an association strategy has

to be developed; and (iii) the trajectories should be aligned in

time before using Eq. (3).

IV. PROPOSED APPROACH

In this section, we first present a high-level overview of the

processing blocks of ORACLE and then provide a detailed

description of each of them. Fig. 1 presents the workflow of

ORACLE.

Self-calibration. In this phase, the relative positions and ori-

entations of the radars are obtained from the trajectories of

targets of opportunity (see Section IV-A). The steps are:

1) Time alignment. A time alignment between the tra-

jectories from radar 1 and the trajectories from radar

s is sought, by minimizing the distance between the

trajectories’ timestamps (see Section IV-A.1).

2) Track association. Using the time alignment from point

1), we solve the problem in Eq. (3) for all the trajectory
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pairs and compute a corresponding association cost

matrix. Using the cost matrix, the best associations

between track pairs are computed (see Section IV-A.2).

3) Masking. When estimating the roto-translation param-

eters at point 4), multiple track pairs will be used all

together. To avoid that possibly wrong associations spoil

the final results, all possible subsets of the best associ-

ations from point 2) are considered through a masking

operation and a new association cost is computed using

all the trajectories in each subset. In the end, the subset

giving the lowest cost will be selected for the final

parameters estimation in point 4) (see Section IV-A.3).

4) Radar calibration. All the track pairs from point 3) are

stacked together and used to set up a rigid transformation

problem as in Eq. (3) that provides the final position and

orientation estimates for the radar (see Section IV-A.4).

Multi-radar fusion. Here, the tracks from the radars are fused

at the FC to build a set of central tracks associated with the

subjects in the environment (see Section IV-B). This includes:

1) Slotted sensor information processing. The tracks infor-

mation from the sensors are sent to the FC and processed

using a slotted protocol. (see Section IV-B.1).

2) Track association. A method to associate (frame-by-

frame) those tracks that correspond to the same target,

according to their statistical similarity, is used to select

pairs of tracks to be fused (see Section IV-B.2).

3) Radar track fusion algorithm. The fusion algorithm

combines sensor tracks with the central tracks using

different rules depending on the type of fusion event

(see Section IV-B.3).

A. Self-calibration

1) Time alignment: For simplicity of notation, call n1 a

trajectory from sensor 1 and ns a trajectory from sensor s.

Each of them contains the sequence of the position estimates

of some target that may, or may not, coincide. Sensors

communicate position estimates to the FC along with their

timestamps. Note that the trajectories may have a different

length. The time alignment is then performed so that each

position estimate of trajectory n1 is associated with the

position estimate of trajectory ns that minimizes the time

difference between the two acquisition instants. Elements of

trajectory n1 that do not have a corresponding element of

trajectory ns within Tc seconds are discarded and vice-versa

(recall that Tc is the duration of a FC time step). This operation

reduces the trajectories to a common length of K time-aligned

positions. Call k1 and ks the vectors containing the indices

that provide the time-aligned sequences from radars 1 and

s, respectively. Note that k1 and ks have the same length.

With the time alignment operation, we retain only the portions

of the trajectories that are sufficiently well synchronized, in

order to avoid performing the rigid transformation on wrongly

associated points. Once the trajectory association has been

established, we define the mean time shift of the pair {n1,ns}
as τ̄(n1,ns) =

1
K

∑K

k=1 |τ
1
k1,k

−τ s
ks,k

|, where kj,k denotes the

k-th element of vector kj . The value of τ̄(n1,ns), expressed

in seconds, is related to the alignment quality of the two

trajectories and will be used in the association step (see

Section IV-A.2).

2) Track association: Our data association strategy consists

in computing a cost for each pair {n1,ns} and solving the

resulting combinatorial cost minimization problem to obtain

the best associations. We assume to have N1 and Ns tra-

jectories available at radars 1 and s, respectively. Our cost

function incorporates different aspects: (i) the length of the

trajectories, as longer trajectories are assumed to provide a

better calibration; (ii) the time alignment of the trajectories,

as we should compare position estimates acquired almost

simultaneously by the different radars; and (iii) the quality

of the rigid transformation, in terms of residual error in

superimposing trajectories from the different radars. We define

the association cost, A, for the pair {n1,ns}, as

A(n1,ns) = −ρ(K, τ̄) [1 + ξ(n1,ns)]
−1

, (4)

where ξ(n1,ns) is the sum of the LS residuals, after applying

the time alignment and the rigid transformation, while ρ(K, τ̄)
is a factor that favors trajectory pairs with a long overlap and

a low mean time shift. The rigid transformation parameters

R
(n1,ns)
s , t

(n1,ns)
s are computed, using the time-aligned track

pairs from point 1), solving the LS problem in Eq. (3) in

closed-form through a Singular-Value Decomposition (SVD)

method [33]. Then, the LS residuals sum is computed as

ξ(n1,ns) =
∑K

k=1 ||n1,k −R
(n1,ns)
s ns,k − t

(n1,ns)
s ||2, where

k indexes trajectory positions. Recalling that Tc is the sam-

pling interval of the FC, the corrective term is formalized as

ρ(K, τ̄) = ln(KTc) [1 + τ̄(n1,ns)]
−1

. Costs A(n1,ns) are

arranged into a N1 ×Ns cost matrix and the optimal asso-

ciation of trajectories is obtained by minimizing the overall

cost, computed through the Hungarian algorithm [34]. This

yields Nt = min (N1, Ns) pairs of associated trajectories,

which are possibly the same targets seen by the two radars.

Due to the presence of spurious trajectories, ghost targets and

clutter, we select a subset of the associated trajectory pairs

that have a cost below a threshold Aself , which represents a

confidence value under which the pair is truly a trajectory

pair generated by a human. Denote the set of selected track

pairs by Q1s = {{s11, s
s
1}, . . . , {s

1
Nt

, ssNt
}}, where sqp indicates

the p-th selected track from radar q. In our experiments, we

empirically adopted Aself = 18.

3) Masking: In phase 4) (see Section IV-A.4), one or more

of the Nt track pairs selected during the previous phase

are used combinedly to compute the final self-calibration

parameters. Ideally, each of the selected track pairs should

provide two trajectories, one from each radar, corresponding

to the same target. However, in practice, there might be wrong

associations. To mitigate this shortcoming, in phase 3) all

possible subsets of the selected Nt tracks are considered,

through a masking operation on the one-to-one track asso-

ciations. We call it a masking operation as it corresponds to

purposedly ignoring (masking) some of the track associations

in the computation of the self-calibration parameters. The same

association cost of Eq. (4) is computed by stacking together

all the trajectories in each subset. Then, the subset providing

the lowest cost is used for the final calibration. Formally, let

P (Q1s) be the set of all possible subsets of Q1s excluding the
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Fig. 2: Scheme of the proposed fusion algorithm with 2 radars.

empty set. Recall that Q1s is the set of all selected track pairs

after the track association phase. Each element of P (Q1s) is a

set of track pairs from radar 1 and radar s. For each element of

P (Q1s), all the trajectories from sensor 1 are stacked in vector

q1 and all the trajectories from sensor s are stacked in vector

qs and the same operation is performed with the corresponding

timestamp sequences. Then, cost A(q1,qs) is computed as

in Eq. (4) and all costs are stored in a matrix of dimension

(2Nt − 1) × 1. The element of P (Q1s) providing the lowest

cost is selected. The N∗
t ≤ Nt trajectory pairs contained in

such minimum-cost element are used in phase 4) to compute

the self-calibration parameters. Since the masking phase cost

is exponential in the number of track-to-track associations, it

is possible to limit the maximum number of track pairs to

be retained from Q1s. In this case, the track pairs with the

highest cost are to be excluded. In our experiments, we used

a maximum of 5 track pairs.

4) Radar calibration: The N∗
t trajectory pairs selected dur-

ing the masking phase are then stacked together and used to set

up a rigid transformation problem as in Eq. (3). The problem

is solved with the same procedure described in Section IV-A.2

[33], obtaining the final rotation matrix and translation vector

to calibrate radar s, namely {R∗
s, t

∗
s}. This step exploits all

the available information from multiple subjects, improving

the calibration accuracy by increasing the number of useful

measurements per time frame. Note that, even though target

occlusion events may split a trajectory into multiple compo-

nents, our algorithm still works by exploiting each resulting

sub-trajectory.

B. Multi-radar fusion

Once the radar network is calibrated, i.e., we have an

estimate {R∗
s, t

∗
s}, ∀s, we can fuse the information coming

from the S radars at the FC. In the following, we consider

S = 2 for better clarity in the algorithm description, but the

method works for an arbitrary S. We denote the precision

matrix, which is defined as the inverse of a covariance matrix,

by P = C−1. The fusion algorithm, represented in Fig. 2, is

described as follows:

1) Slotted sensor information processing: The FC maintains

a central time variable, denoted by τ cm = τ0 +mTc, which is

incremented at the end of each central time step and where

τ0 is the time when the FC starts operating. In order to

cope with the random variations in the sensor acquisition,

processing, and communication times, the FC operates on

time slots of duration Tc. Specifically, several track sets from

different sensors can be received during time step m due

to differences between the FC and the sensors’ time steps

and the variable communication time. Using the timestamp

information contained in the received tracks, at time m the

FC filters out all the track sets that are not received within the

interval (τ cm−1, τ
c
m] and retains only the most recent track set

from each sensor. Formally, for each s, we select the track set

whose timestamp is the solution to argminτs
k
(|τ cm − τ sk |). In

the following, to highlight that a track set has been selected

from sensor s to be processed in time step m, we denote it

as T
s
m, using the time index of the FC rather than that of the

sensor, and we do the same for all the tracks it contains.

The slotted processing procedure (i) reduces the number

of fusion steps the FC carries out, using only the most

recent information available from each sensor, and (ii) avoids

erroneously fusing outdated tracks.

After selecting the sensor tracks, the FC transforms them

to match its own reference system, using the information

about the location and orientation of the radar sensors. Then,

according to the CV model, the tracks are propagated to

the FC current time. We denote by t̄∗s = [t∗s,01×2]
T the

augmented translation vector and by R̄∗
s = blkdiag(R∗

s,R
∗
s)

the 4 × 4 augmented rotation matrix of sensor s, where

blkdiag(·) returns a block diagonal matrix of its inputs. The

transformation and propagation are performed, together, as

x̂s
m(n) = Fτc

m−τs
k

[

R̄∗
sx̂

s′

m(n) + t̄∗s

]

, (5)

Cs
m(n) = Fτc

m−τs
k
R̄∗

sC
s′

m(n)
(

R̄∗
s

)T
FT

τc
m−τs

k
, (6)

with x̂s′

m(n) and Cs′

m(n) being the state and covariance com-

municated by sensor s that have been selected in the current

central slot, expressed in the reference frame of sensor s, while

x̂s
m(n) and Cs

m(n) are expressed in the reference frame of

the FC. In Eq. (5) and Eq. (6), the state evolution matrix

Fτc
m−τs

k
projects the sensor state/covariance estimates forward

by τ cm−τ sk , so that they are up to date with the current FC time.

Similarly, the FC also performs a prediction step, for a time

duration Tc, on all its maintained tracks, by leveraging their

motion model. For this, the standard KF prediction equations

are used

Cc
m|m−1(u) = FTc

Cc
m−1|m−1(u)F

T
Tc

+W, (7)

x̂c
m|m−1(u) = FTc

x̂c
m−1|m−1(u). (8)

2) Track association: The FC has to compute track-to-track

associations before being able to fuse the information from

the sensors with its own tracks, as it needs to identify which

tracks correspond to the same target. There can be (i) sensor-

to-center associations (SC), to verify whether the sensor tracks

correspond to any of the maintained central tracks, and (ii)

sensor-to-sensor associations (SS), only for sensor tracks

which did not find a SC association, to establish which tracks

correspond to the same targets and consequently initialize the

correct number of central tracks. The aim is to find a one-

to-one association between two sets of tracks, respectively,

indicized by variables i and j. Note that i and j may refer to
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two sensor tracks, in case of an SS association, or to a central

track and a sensor track, in case of an SC association.

Initially, SC associations are considered. As the first step,

it is verified whether associations from previous time steps

are still valid. To this purpose, unique identifiers associated

with each sensor, central track, and sensor track are exploited.

Every sensor-to-center track pair that has a correspondence in

previous SC associations is examined to verify whether the

association still holds. This operation consists in computing

the Mahalanobis distance [35] between the two tracks and

confirming the association only if the distance is lower than,

or equal to, a threshold Ath. Formally, it is computed as

dM (i, j) = (x̂(i)− x̂(j))
T
P(i, j) (x̂(i)− x̂(j)) , (9)

P(i, j) = [C(i) +C(j)]−1 (10)

where P(i, j) is the precision matrix inducing the distance. All

track pairs for which dM (i, j) ≤ Ath are retained as valid SC

associations, while the remaining ones undergo the following

further association stages. Assume M and N central and

sensor tracks are left to be associated, respectively. A M ×N
cost matrix, Λ, is obtained, where the value of entry Λij is

computed differently depending on the relationship between

central track i and sensor track j.

If i and j were previously fused together within a time interval

of Tth seconds, then, Λij is computed as in Eq. (9) with the dif-

ference that each track state estimate x̂(q) and each covariance

matrix C(q), q = i, j, is replaced by x̂dec(q) = x̂(q) − x̄(j)
and Cdec(q) = (C(q)−1 − C̄(j)−1)−1, respectively. x̄(j) and

C̄(j) are the last communicated state and covariance matrix

from track j, respectively. x̂dec(q) and Cdec(q) represent the

decorrelated versions of the corresponding quantities, accord-

ing to the decorrelation principle [29], [36]. The decorrelation

operation removes the effect of previous fusion events that,

otherwise, would affect the computation of the association cost

[29].

If i and j were never fused together, or the fusion event

happened more than Tth seconds before, then, Λij = dM (i, j),
as in Eq. (9), without modifications. Once matrix Λ is avail-

able, the minimum total cost association is obtained by using,

e.g., the Hungarian algorithm [34], and all associations whose

cost doesn’t exceed threshold Ath are considered as valid SC

associations.

After these operations, all acceptable SC associations have

been established and only SS associations are left to be

computed. Let i and j be two tracks from different sensors.

Then, a similar cost matrix Λ is built, where Λij = dM (i, j),
as in Eq. (9). Since sensor tracks are originated from different

sensors, they are negligibly correlated and there is no need

to apply any decorrelation operation on them. Then, the

minimum total cost association is obtained, as before, using,

e.g., the Hungarian algorithm [34]. In our experiments we

adopted Ath = 18 and Tth = 1.3× Tc.

3) Radar track fusion algorithm: The track fusion algorithm

behaves differently in case it has to combine two sensor tracks

(SS fusion) or one sensor track with a central track (SC

fusion). If the FC is currently not maintaining any track for

a certain subject, but one or more radars are, a new central

track needs to be initialized based on the received information

from the local sensors. Specifically, two cases may happen:

(i) if a target n1 is currently tracked by one sensor only,

the corresponding central track is initialized using the state

and covariance of the sensor track; (ii) if the FC receives

two tracks that can be associated, say T 1
m(n1) and T 2

m(n2),
these are fused into a single, new track associated with target

with central index u (SS fusion). The local tracks from

sensors 1 and 2 have uncorrelated (or negligibly correlated)

errors as they are two sensor tracks, so they can be fused

with a weighted combination of their states [29]. The states

are weighted by the precision matrices associated with the

estimation errors at each sensor. The fusion equations used

for the initialization of a new central track, at time m, in case

(ii), are

Cc
m|m(u) =

[

P1
m(n1) +P2

m(n2)
]−1

, (11)

x̂c
m|m(u) = Cc

m|m(u)
[

P1
m(n1)x̂

1
m(n1) +P2

m(n2)x̂
2
m(n2)

]

,
(12)

for the couple of associated tracks T 1
m(n1) and T 2

m(n2). Note

that, to detect when a SS fusion has to be performed, our

algorithm applies the SS association procedure to all the sensor

tracks that have not been associated to any central track in the

current slot. In case more than 2 sensors are available, the

above process is repeated sequentially using sensors 1 and 2
first, then fusing the resulting track with the information from

sensor 3 and so on until the track sets of all S sensors are

used.

On the other hand, if the FC has already initialized the

track for a subject, the fusion has to be performed between

the central track and a sensor track corresponding to the

same subject. Denote by T
c
m the set of tracks maintained by

the FC at the central time step m. Upon receiving the local

information T
s
m, the FC runs the track-to-track association al-

gorithm to find pairs of corresponding tracks {T c
m(u), T s

m(n)}.

Once such pairs are available, if the timestamp associated

with T
s
m is older than Tth, then, the same fusion rule of

Eq. (11) and Eq. (12) is used, as the two tracks can be

considered sufficiently decorrelated, otherwise, each central

track is updated with its corresponding sensor track using the

information decorrelation method [29], [36] as follows

Cc
m|m(u) =

[

Pc
m|m−1(u) +Ps

m(n)− P̄s(n)
]−1

, (13)

x̂c
m|m(u) = Cc

m|m(u)
[

Pc
m|m−1(u)x̂

c
m|m−1(u)+

+Ps
m(n)x̂s

m(n)− P̄s(n)x̄s(n)
]

,
(14)

where P̄s(n) and x̄s(n) are the last communicated precision

matrix and state estimate of track T s
m(n) from sensor s to the

FC. Information decorrelation copes with the problem of time

correlated tracks between the FC and the radar sensors, by

removing the most recently received information about target

n (or u from the FC perspective), as, otherwise, this would be

accounted for twice.

4) Track initialization and termination: To deal with the ini-

tialization and termination of central tracks, while keeping

the complexity of the system as low as possible, we follow

a so-called m/n logic, similar to what is done for the local
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tracking process of each radar sensor [4]. Specifically, a track

is maintained if it is associated with any of the received sensor

tracks for at least m out of the last n frames. Similarly, received

sensor tracks that are not associated with any existing central

track are initialized as new tracks if they are detected for at

least m out of the last n frames. As detailed in Section IV-B.3,

before initializing a new central track, the received selected

tracks form the radars are associated and fused with an SS

fusion step, whenever possible. In this way, we avoid multiple

initializations of the tracks corresponding to the same targets.

We remark that the proposed track initialization and ter-

mination strategy allows ORACLE to robustly handle people

entering and leaving the FoV of the radar network. Whenever

a person walks inside the FoV of one radar, the latter starts

tracking the person and sending the tracks to the fusion center.

The same applies to the other radars in the network and

all the received tracks pertaining to the same subject are

fused together. Therefore, as long as there is at least one

radar tracking a subject, their track is also maintained at

the fusion center. This allows nimbly handling cases when

a person moves across different radar FoVs, concurrently

leaving and entering the FoVs of different radar devices, by

always maintaining a valid track for the user at the fusion

point.

V. EXPERIMENTAL RESULTS

We evaluated ORACLE through an implementation of

the RadNet platform [14] featuring 4 Texas Instruments

IWR1843BOOST mmWave radars1 connected to 2 Jetson

Xavier NX DevKit2, 1 Jetson TX2 DevKit3 and 1 Jetson

Nano DevKit4, all communicating via Ethernet. The radars

operate in the 77-81 GHz band in real-time at a frame rate of

1/Ts = 15 Hz with a FoV of ±60◦ and ±15◦ over the azimuth

and elevation planes, respectively. Fig. 4 shows a picture of

the implemented experimental setup.

A. Implementation notes on numerical stability

In this section, we provide insight into the numerical stabil-

ity of ORACLE, which are key to implementing the system

in practice. Specifically, during our experiments, we observed

that ORACLE’s operations on covariance matrices (e.g., the

information decorrelation or roto-translations) can easily make

them (i) non positive definite and (ii) ill-conditioned (with very

large condition numbers), causing wrong track associations

and fusion results because of the spoiled inverse matrices.

The solution to point (i) is to enforce positive definiteness

by adding a properly designed diagonal matrix. Formally, let

P be a symmetric square matrix obtained by ORACLE as

part of the information fusion process, and λmin ≤ 0 be its

minimum, non-positive eigenvalue. We obtain the corrected,

positive definite matrix Ppos, as

Ppos = P+ (−λmin + ε)I, ε > 0. (15)

1https://www.ti.com/tool/IWR1843BOOST
2https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
3https://developer.nvidia.com/embedded/buy/jetson-tx2-developer-kit
4https://developer.nvidia.com/embedded/buy/jetson-nano-devkit

This approach relies on the fact that a symmetric matrix is

positive definite if and only if all its eigenvalues are positive.

As a solution for (ii), we use Ridge regularization [37] to limit

the condition number of the matrix. Let λ′
min > 0 and λ′

max >
0 be, respectively, the minimum and maximum eigenvalues of

the positive definite matrix Ppos. Denote by cond(Ppos) =
λ′
max/λ

′
min the condition number of matrix Ppos, and by δ the

regularization parameter. The regularized covariance matrix,

Preg, is obtained as

Preg =
1

1 + δ
(Ppos + δI). (16)

As a result of Eq. (16), the minimum and maximum eigen-

values of Preg are λ′
max + δ and λ′

min + δ, respectively. To

limit the condition number of Preg, we specify an upper bound

for its value, denoted by c∗. Then, such bound is enforced by

computing δ from cond(Preg) = (λ′
max+δ)/(λ′

min+δ) ≤ c∗,

which is solved with equality by

δ = max

(

0,
λ′
max − cλ′

min

c∗ − 1

)

. (17)

In our experiments, we empirically decided to adopt c∗ = 50.

ORACLE applies the correction in Eq. (15) whenever a

covariance (or precision) matrix is non positive definite. The

regularization in Eq. (16), instead, is used if the condition

number of a covariance (or precision) matrix is above c∗.

B. Measurements setup and Dataset

To assess the performance of the proposed method, we

conducted tests in a 7×4m2 research laboratory (see Fig. 3a)

equipped with a motion tracking system featuring 10 cameras.

This provides the ground truth (GT) 3D localization of a set of

markers placed on the radars and on the moving subjects with

millimeter-level accuracy. We considered 2 different scenarios

with 4 radars and 1, 2, and 3 moving targets. Fig. 3 shows

the locations and orientations of the radars in the different

setups, where the black numbered dots represent the radar

devices and the arrows identify their pointing direction. The

blue dots represent the moving people, while the dashed lines

show the traveled trajectories in the direction given by the blue

arrows. The first row shows setup-1 deployments whereas the

second row shows setup-2 deployments. We also asked the

subjects to move according to 6 possible different trajectories:

(i) in-line, identifying a movement along a straight line, one

subject after the other; (ii) parallel, identifying a movement

along parallel lines; (iii) circular, corresponding to the two

subjects following parallel and circular trajectories; (iv) free,

where all subjects could move freely in the room; (v) paral-

diag, identifying a movement on parallel lines but with the

subjects spaced apart along the movement directions; and (vi)

vs-in-line, where the two subjects moved one towards the other

following the same linear trajectory. All trajectories are de-

picted in Fig. 3. In total, we collected 55 sequences, each 40 s

long. In every sequence, subjects were tracked by all 4 radars

simultaneously and independently. Then, tracking information

has been fused considering all possible combinations of 1 to 4
radars. However, we experienced the Jetson Nano DevKit edge

computer not being able to properly track more than 2 targets
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Fig. 3: Setup schemes. The black numbered dots represent the radar devices and the arrows identify their pointing direction.

The blue dots represent the moving people, while the dashed lines show the traveled trajectories in the direction given by the

blue arrows. The first row shows setup-1 deployments whereas the second row shows setup-2 deployments.

Fig. 4: Experimental setup. The fusion center, not shown in the

picture, is connected to the edge computers through a switch.

simultaneously, and we noticed the issue after the experiments.

For this reason, in order to provide reliable results, we decided

to show results with up to 3 fused radars. After filtering out

the corrupted data, considering all the evaluated combinations,

we analyzed a total of 220, 187, and 91 experiments for 1, 2,

and 3 fused radars, respectively.

Moreover, to assess the performance of ORACLE in cases

when furniture and obstacles are present in the environment,

we conducted additional experiments recreating a common

office environment, with a table, chairs, and a hanger, and sim-

ulating the corner of a corridor. These setups are represented

in Fig. 10. For this part of the experiments, we collected 40

sequences with 2 subjects and 3 radars. Results pertaining to

this part of the dataset will be presented in Section V-G.1.

C. Evaluation metrics

To evaluate the self-calibration algorithm performance, we

define the orientation error as the absolute value of the

difference between the true orientation angle of a radar and the

estimated one. This is derived from the corresponding rotation

matrix, after calibration, as explained in Section III-C. The

position error is defined as the Euclidean distance between the

estimated position of the radar and its true position. In order to

assess the tracking performance, we adopt the Multiple Object

Tracking Performance Accuracy (MOTA) metric, which ac-

counts for the number of misses, false positives, and switches

in the object detections, and the Multiple Object Tracking

Performance Precision (MOTP) metric, which represents the

mean position error by considering only correctly tracked

objects. More details about these metrics can be found in [38].

D. Self-calibration

As previously mentioned, in the first part of this work we

are presenting an enhanced version of mmSCALE [13], our

self-calibration algorithm. The enhancement, consisting in the

addition of the masking phase to the self-calibration procedure,

allows to handle a wider range of cases, where the previous

version was more prone to errors, and to achieve a general

improvement in the accuracy of the calibration parameters

estimation. To show the effect of the enhancement, we will

focus on the comparison between the old and the new version

of the self-calibration algorithm.

Qualitative results. Fig. 5 shows a qualitative example of

the calibration process. Here, after finding the optimal rotation

and translation parameters, we applied the rigid transformation

to the trajectory seen by radar 2 (blue line, R2), so as to

superimpose it with the one of radar 1 (orange line, R1).

The transformed trajectory (green line) matches the reference

one well, showing a good calibration result. We represent the

reference radar with a red square (located at [0, 0]T ), while
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Fig. 5: Example of self-calibration with a free trajectory.
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]
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old calib [m]

−2.5 0.0 2.5

new calib [m]

Fig. 6: Example of a situation where the old algorithm

fails while the new one doesn’t. In this case, linear, similar

trajectories led to a mistake in the track association phase,

resulting in a shift in the estimated location of the radar.

the black triangle and the purple square mark the estimated

position of radar 2 and its GT, respectively.

As long as only one target is being tracked, the track

association phase is easy and it is likely that no errors occur. If

the number of tracked targets increases, the track association

phase becomes more challenging. Our track association cost

(see Section IV-A.2) is able to lead to a correct association

for most situations. However, there are some particular cases

where it is not sufficient. Fig. 6 shows an example of one of

such cases with 3 subjects following a parallel trajectory. The

blue lines represent the trajectories of the reference radar in

its RS, the orange lines shows the trajectories of another radar

after transforming them in the reference radar’s RF using the

old self-calibration algorithm, while the green lines represent

the trajectories from the same radar after transforming them

using the new self-calibration algorithm. In this scenario, all

trajectories are very similar, as the subjects proceed in parallel

and at the same speed. Because of the very high correlation

between the track positions over time, the association costs are

very similar and the final association result depends on subtle

numerical variations due to the tiny differences between the

trajectory shapes. From the figure, we notice that this causes a

wrong association between the tracks from the reference radar

and the other one, reflecting in a shifted estimate of the radar’s

RS, when using the old method. The new method, instead,

correctly copes with this situation.

Position and orientation errors. Fig. 7 shows a comparison

between the calibration performance using the old and the new

version of the self-calibration algorithm versus the number

of targets tracked. When only one target is tracked, there is

almost no difference between the two algorithms, while a clear

improvement is observed as the number of targets increases.

In particular, the new algorithm has a great effect in reducing

the sparsity of the box plots, meaning it is increasing the

number of cases it is able to handle correctly. Tab. 1 shows the
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Fig. 7: Comparison of the self-calibration results when using

the old and the new self-calibration algorithm as a function of

the number of targets tracked during the calibration phase.

TABLE 1: Comparison of self-calibration algorithms

Median Error (IQR) Old New New-Old Diff.

1T
Position [m] 0.21(0.14) 0.21(0.14) ±0.00(±0.00)

Orientation [◦] 0.95(1.50) 1.00(1.60) +0.05(−0.10)

2T
Position [m] 0.16(0.25) 0.15(0.21) −0.01(−0.04)

Orientation [◦] 0.75(1.70) 0.09(0.81) −0.66(−0.89)

3T
Position [m] 0.17(0.26) 0.12(0.18) −0.05(−0.08)

Orientation [◦] 0.66(2.20) 0.03(0.22) −0.63(−1.98)

TABLE 2: Summary of ORACLE’s tracking performance

1R 2R 3R 3R-1R diff.

1T
MOTA [%] 95± 2 97± 0 97± 0 +2
MOTP [m] 0.10± 0.04 0.21± 0.04 0.20± 0.03 +0.10

2T
MOTA [%] 74± 13 90± 6 94± 4 +20
MOTP [m] 0.12± 0.09 0.25± 0.17 0.26± 0.19 +0.14

3T
MOTA [%] 60± 11 77± 7 87± 3 +27
MOTP [m] 0.18± 0.14 0.31± 0.17 0.23± 0.05 +0.05

numerical results in terms of median and interquartile range

(IQR). It also shows the difference between the new and the

old algorithm.

E. Fusion center tracking accuracy

We evaluate the performance of the fusion algorithm in

two cases: (i) using the roto-translation parameters obtained

from the GT; and (ii) using their estimations from the self-

calibration algorithm. In order to evaluate ORACLE in a more

realistic scenario, when using self-calibration, the transforma-

tion parameters are computed only once per setup-trajectory

pair, that is, the first time a sequence with that setup-trajectory

pair is elaborated. Then, all sequences with the same setup

and trajectory type use the same parameters. Fig. 8 shows

the tracking results versus the number of targets tracked and

the number or radars used for the fusion. In the figure, xT-

SF and xT-GT denote a case where x targets are tracked and,

respectively, self-calibration or GT are used. The bar charts

represent the 1 standard deviations for the self-calibration

results. The values are computed as the average over all

the sequences with the same number of radars and targets.

Numerical results using self-calibration are presented in Tab. 2,

where xR is used to indicate that x radars were used for the

fusion.

When only one target is tracked, there is almost no dif-

ference between using a single radar or multiple fused radars
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Fig. 8: Average MOTA and MOTP as a function of the number of radars used for the fusion and of the number of targets

tracked. Solid and dashed lines identify, respectively, results obtained using self-calibration (SF) and ground-truth (GT) to

estimate radars’ location and orientation. The bar charts represent the 1 standard deviations for the SF case.

(+2%). As the number of tracked people increases, single sen-

sors experience a remarkable decrease in the MOTA (−35%)

while the FC maintains high performance, with a MOTA

as high as 87% when 3 targets are tracked, leading to an

improvement with respect to single sensors of +27%. This is

due to the fact that multiple targets may often create occlusions

with respect to single radars, increasing the number of misses

and switches in the tracks. Instead, occlusions can be mitigated

by fusing data from different points of view. We also note that

GT and self-calibration achieve very similar results in terms

of MOTA.

In general, MOTP slightly increases in the fused track-

ing. The reason is twofold. First, noise can be incorporated

during the fusion process and slightly affect the localization

performance. Second, MOTP is computed only for correctly

tracked targets. Because a single radar’s tracking capability

is limited, successful tracking occurs only in sufficiently

simple scenarios, where MOTP would be straightfowardly

low. On the contrary, multiple radars track targets successfully

even in more complicated cases. This increases the range of

points for which we compute MOTP to include more arduous

and inevitably less precise location and movement estimates.

Interestingly, for the 1T and 2T cases, after increasing from

1 to 2 radars, MOTP is almost constant when moving from

2 to 3 fused radars, suggesting that this could be the case

also if more radars are fused. Following the 3T lines, instead,

MOTP increases from 1 to 2 radars and then decreases when

3 radars are used, reaching the same values of the 2T lines. A

possible explanation for this is that 2 radars are not enough for

tracking 3 targets, leading to errors in the track associations

that cause the MOTP to increase. 3 radars, instead, have better

tracking capabilities and can better handle 3 targets. For the

most challenging scenario (3 targets), MOTP is 31 cm when

2 radars are used and 23 cm when 3 radars are used. MOTP

is slightly lower when using GT rather than self-calibration

because of the more precise knowledge about sensors’ position

and orientation.

As a final test, we acquired some sequences where we fuse

all of the 4 radars for various 2-target trajectories, providing

a MOTA and MOTP of 95% and 20 cm, respectively, while

single radars on the same sequences reach a MOTA and MOTP
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Fig. 9: Average MOTA and MOTP versus different values

of the ratio Tc/Ts when calibration is performed using GT

measurements (GT), or with the self-calibration (SF). The

shaded areas represent 1 standard deviation.

of 78% and 11 cm, respectively. Since, for this test, we only

collected a few sequences that do not represent a statistically

significant set, we present them only as an example.

These results show that our self-calibration algorithm works

well in combination with the proposed fusion algorithm

and that they can be effectively used together to enable an

occlusion-resilient people tracking through a self-calibrated

radar network, requiring almost no human intervention.

F. Robustness to reduced fusion rate

In certain resource-constrained applications it may be useful

to reduce the FC processing rate of the sensors data, in order

to lower the computational burden. However, this requires

striking a balance between fusion rate and tracking accuracy,

as decreasing the processing rate reduces the capability of the

FC to follow the movement of the subjects.

In Fig. 9, we show the MOTA and MOTP curves as a function

of the ratio Tc/Ts. This is varied by fixing Ts = 66.7 ms

(15 fps) and changing Tc from 0.2Ts to 25Ts. Values are

obtained by averaging all experiments with 3 radars. We can

identify three regions.

(i) For Tc/Ts < 0.8, the MOTA is very low, as the FC runs

significantly faster than the sensors and, therefore, has to rely

mostly on the KF predictions, which are inaccurate after a

few consecutive steps. The MOTP instead is unaffected as it
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is obtained only on the successfully tracked subjects.

(ii) For 0.8 ≤ Tc/Ts ≤ 5, our system achieves the best

performance in terms of MOTA, i.e., over 90%. At the same

time, the MOTP is still low, with errors of less than 29.4 cm

when using self-calibration with Tc/Ts = 5. This shows that,

if necessary, the processing load on the FC can be reduced by

5 times with negligible performance degradation.

(iii) For Tc/Ts > 5, MOTA degrades slowly and MOTP

increases. This is because the time-step of the FC, especially

towards the end of this region, is too long to accurately follow

human movement using the CV model.

Finally, we notice that the MOTA is almost unaffected by

using self-calibration in place of the GT sensor locations and

orientations. This holds for all regions (i)-(iii). However, as

expected, the MOTP is slightly worse in case self-calibration

is used, as the residual error in the locations of the sensors

indirectly affects the FC tracking precision.

G. Impact of obstacles and furniture

In this section, we evaluate the tracking performance of

ORACLE in two challenging scenarios characterized by the

presence of furniture and obstacles.

1) Presence of furniture: The first scenario contains furni-

ture, placed as shown in Fig. 10b. Subjects walk in a typical

office setting including a table, chairs, and a hanger, following

linear ad free trajectories. The MOTA and MOTP obtained by

ORACLE in this case are reported in Tab. 3, with one (1T)

and two (2T) targets moving in the room. By comparing the

obtained results with those in Tab. 2 referring to the same

number of radars and targets (but without any furniture), we

observe that the furniture has an impact on the performance

with one radar (1R), decreasing the MOTA of −20% in the

Furn-1T case and of −9% in Furn-2T, respectively. Instead,

when data from three radars (3R) are fused, the MOTA is

unaffected, proving that ORACLE mitigates the effect of

furniture on the tracking performance. We remark that, in

this setup, we purposely placed the radars at the same height

as the table and the chairs, to create a challenging scenario

where part of the radio reflections are occluded by the objects.

This prevents the correct tracking of the subjects when a

single radar is used and occlusions occur, whereas the tracking

performance is unaffected when multiple radar combine their

data via the proposed data fusion algorithm.

2) U-shaped corner: In the second scenario, which we refer

to as “U-shaped corner”, we place a large, wall-like obstacle

in the middle of the room. The obstacle is made with metal

whiteboards covered with foam rubber, which completely

block the mmWave signal. This replicates a U-shaped corner

in which targets are entirely occluded for some of the radar

sensors (see Fig. 10c), while they are always in the FoV of at

least one sensor. Specifically, targets moving in the proximity

of radar 1 in Fig. 10c cannot be detected by radar 2 and vice

versa. Tab. 3 shows the MOTA and MOTP metrics obtained

by ORACLE in this scenario, compared against the results for

a single radar sensor (radar 2). The subject was instructed

to move according to free and linear trajectories, and the

reported results show the combined resulting metrics. MOTA

TABLE 3: Tracking performance with furniture (Furn-) and in

a U-shaped corner.

1R 3R 3R-1R diff.

Furn-1T
MOTA [%] 75± 8 96± 2 +21
MOTP [m] 0.19± 0.02 0.16± 0.01 −0.03

Furn-2T
MOTA [%] 65± 10 94± 3 +29
MOTP [m] 0.16± 0.03 0.16± 0.01 ±0

U-shaped MOTA [%] 50± 7 94± 4 +44
corner MOTP [m] 0.17± 0.02 0.18± 0.03 +0.01

and MOTP performance obtained by ORACLE show that our

system is not affected by the presence of the large obstacle.

This is a result of the combined view provided by the fusion

center, which is robust to the subjects being undetectable by

a subset of the available radars. Conversely, the MOTA of the

single radars is reduced on average, as a result of the subjects

being occluded by the U-shaped corner for a fraction of the

measurement time.

As a final remark, we underline that the performance of

ORACLE in the U-shaped corner scenario also serves as an

experimental evaluation of the robustness of its track initial-

ization and termination procedure, described in Section IV-

B.4. It follows that such procedure is robust to subjects that

frequently enter and leave the field of view of radar sensors

due to occlusions.

H. Impact of tracking on localization error

Our experimental results show that applying a tracking

algorithm to smooth the raw radar measurements and handle

their association to the different subjects is crucial. This is

especially true for multiple targets scenarios, where there is

ambiguity regarding which target generates which reflection.

Fig. 11 shows the empirical localization error CDF of the

single sensors using tracking, compared to that obtained from

the raw measurements, for 2 and 3 moving targets. There is a

clear gain in applying our tracking mechanism, which avoids

the error have a long-tailed distribution. Raw measurements

are unreliable in multipath-rich indoor enviroments, as they

are subject to fluctuations, as well as missed and ghost

detections. Note that the use of a (multi-sensor) tracking step

sets ORACLE apart from other approaches, such as [12]: while

these previous works apply measurement-level centralized data

fusion without tracking, relying on raw radar measurements,

ORACLE performs track-level fusion. ORACLE achieves

better localization performance, while significantly lowering

network overhead, as only the low-dimensional tracks need to

be communicated to the fusion center.

I. Impact of radars’ location on fused tracking

When tackling the problem of people tracking through

multiple radars, it is interesting to explore how different radar

deployments affect the results. This kind of study is beyond

the scope of this paper and would require a denser deployment

of radars. For this reason, here we show only some preliminary

results, while we leave a deeper inspection of the problem to

future developments. In Fig. 12 we compare the results for

3 trajectories and some specific combinations of radars for
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(a) Picture of the setup with furniture. (b) Furniture layout.

Wall

(c) U-shaped corner.

Fig. 10: To the left, (a) shows the setup with furniture. To the right, we represent the schemes of the setups with furniture (b)

and simulating the U-shaped corner of a corridor (c).
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using a tracking algorithm on the single sensors, thus relying

only on the raw radar measurements.
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Fig. 12: Box plots of MOTA and MOTP for particular

trajectories, as a function of specific combinations of fused

radar. More precisely, (1, 3) has facing radars, (2, 3) has

perpendicular radars, (1, 2, 3) fuses all of the three. Radar

numbers correspond to those in Fig. 3, first row (setup-1).

the fusion. In particular, according to setup-1 (see Fig. 3, first

row) combination (1, 3) corresponds to two radars facing each

other, combination (2, 3) has perpendicular radars, while com-

bination (1, 2, 3) fuses all of the three. For each combination,

results are computed using self-calibration and averaging over

all sequences featuring the particular trajectory, with either

1, 2, or 3 targets. Considering MOTA, perpendicular radars

are generally better than facing radars, while fusing 3 radars

always provides the best results. Regarding MOTP, there is no

clear trend common to all trajectories. The median MOTP is

always within the [0.20, 0.25] m interval, which means there

are no great differences depending on the combinations. The

only case worth mentioning is that featuring free trajectory and

(1, 3) combination, where MOTP values are generally higher

than in the other cases. In conclusion, from this brief analysis,

TABLE 4: Comparison with MHT algorithm

1R 2R 3R

ORACLE
MOTA [%] 83± 6 91± 6 96± 1
MOTP [m] 0.08± 0.02 0.27± 0.19 0.2± 0.01

ORACLE MOTA [%] 76± 22 83± 15 90± 6
with MHT MOTP [m] 0.32± 0.17 0.2± 0.03 0.19± 0.02

it appears that (i) a larger number of radars is to be preferred

over a lower one, and (ii) radars with more diverse points of

view provide, in general, better tracking results.

J. Comparison with the MHT algorithm

ORACLE radar network calibration and fusion techniques

require the edge sensors to only provide a state vector and a

covariance matrix for each target, along with the corresponding

timestamp. This design provides flexibility in the choice of

the tracking algorithm at the radar devices, as any can be

implemented, as long as it returns the desired state vector and

covariance information. To demonstrate ORACLE’s flexibility,

we replaced the NN-JPDAF tracking at the edge computers

(described in Section III-B) with the well-known Multiple

Hypothesis Tracking (MHT) scheme [39]. For MHT, we

used the same inputs as for NN-JPDAF, that is, we applied

DBSCAN [30] clustering to the radar point clouds and used

the clusters centroids as detections. MHT was tested on a

subset of the dataset including 2 targets and free and parallel

trajectories, presenting the results in Tab. 4. Both NN-JPDAF

and MHT show an improvement as the number of fused radar

tracks increases (from one, 1R, to three, 3R), with NN-JPDAF

performing, overall, slightly better than MHT.

K. Summary of the implementation challenges

In addition to the challenges posed by ORACLE’s design,

presented in Section III, its experimental implementation and

validation involves several other important aspects. The main

ones are discussed in the following.

1) Communication between network nodes: ORACLE’s de-

ployment requires enabling communication between network

nodes. In particular, it is necessary to have a management

unit that allows controlling the beginning and the end of

the experimental sequences and that allows exchanging data

between the edge nodes and the fusion center. In ORACLE,

this is solved by using the RadNet platform [14], which

provides all the necessary functionalities.
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2) Time synchronization between network nodes: As ex-

plained in Section IV, ORACLE relies on a loose time syn-

chronization between the devices (i.e., not at clock level). This

is achieved by using standard NTP that allows synchronizing

the local time of the edge computers to the millisecond-

level. This is important because the radar measurements are

timestamped with the device’s time after being acquired, and

the timestamp is then used for the calibration and fusion

processes. However, as mentioned in Section V-B, we experi-

enced the Jetson Nano DevKit edge computer not being able

to timely track more than 2 targets simultaneously, due to

its low computational power, introducing a delay in the data

timestamps and, therefore, making them unusable.

VI. CONCLUDING REMARKS

In this work, we presented ORACLE, a solution to the

mmWave radar network deployment and integration problem

for human sensing purposes. First, ORACLE automatically

estimates the relative position and orientation of the radars

with respect to a common reference system. Then, it ex-

ploits such estimates to fuse the information about people

tracked by different radars at a fusion center, enhancing the

resilience of the subject localization in case of occlusions.

ORACLE estimates the radars’ position and orientation with

a median error of 0.12 m and 0.03◦, respectively, exploiting

the movement trajectories of tracked people. With respect to

existing self-calibration techniques, ORACLE is more robust

to multiple subjects concurrently moving in the environment,

with no need to follow any predetermined trajectory for the

calibration. By fusing multiple radars tracking information,

ORACLE improves on single sensors by up to 27% in mean

tracking accuracy, with a mean precision of 23 cm in the

most challenging case of 3 targets moving. ORACLE handles

different time steps for the single sensors and for the FC,

keeping the tracking accuracy higher than 90% when the

ratio between the central and the sensors time step is 0.8 ≤
Tc/Ts ≤ 5. Finally, when evaluated in challenging indoor

scenarios, ORACLE shows an improvement in the tracking

accuracy by up to 29% when furniture is present in the room

and demonstrates its capability to effectively handle situations

where tracking is required around corridor corners. These

results substantiate ORACLE as a key technology enabler

for distributed people tracking with radar networks, serving

as a base system for a large variety of applications, from

personnel recognition to restricted areas monitoring, elderly

care, customer profiling, and many others.

Future research includes the extension of ORACLE to

multiple disjoint radar networks (where none of the radars

of a network share a part of the FoV with any of the radars

of the other networks), and the study of how different points

of view of the same scene affect the tracking performance.
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